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Abstract

Argument Labeling of Explicit Discourse Relations using LSTM Neural Networks

Sohail Hooda

A discourse relation can be described as a linguistic unit that is composed of sub-units that,

when combined, present more information than the sum of its parts. A discourse relation is usually

comprised of two arguments that relate to each other in a given form. A discourse relation may

have another optional sub-unit called the discourse connective that connects the two arguments

and describes the relationship between the two more explicitly. This is called Explicit Discourse

relation. Extracting or labeling arguments present in an explicit discourse relations is a challenging

task. In recent years, due to the CoNLL competitions, feature engineering has been applied to

allow various machine learning models to achieve an F-measure value of about 55%. However,

feature engineering is brittle and hand-crafted, requiring advanced knowledge of linguistics as well

as the dataset in question. In this thesis, we propose an approach for segmenting (or identifying the

boundaries of) Arg1 and Arg2 without feature engineering. We introduce a Bidirectional Long

Short-Term Memory (LSTM) based model for argument labeling. We experimented with multiple

configurations of our model. Using the Penn Discourse Treebank (PDTB) dataset, our best model

achieved an F1 measure of 23.05% without any feature engineering. This is significantly higher

than the 20.52% achieved by the state of the art Recurrent Neural Network (RNN) approach, but

significantly lower than the feature based state of the art systems. On the other hand, because our

approach learns only from the raw dataset, it is more widely applicable to multiple textual genres

and languages.
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Chapter 1

Introduction

1.1 Problem Definition

Consider the following statement:

“Never put off till tomorrow what may be done the day after tomorrow just as well.” - Mark Twain

The textual construction provided above can be broken down into many textual units. One level

of textual units could be syntactic or parts of speech. This level gives an insight into the structure

of the language and the usage of the tokens provided in the dictionary that form the vocabulary

of the language. Another level could be the semantic level where the word tokens as well as their

combination could be used to infer understanding of the overall sentence.

Note that the semantic de-constructions of the textual segment provided is able to capture the

meaning of the segment independently. In other words, the de-constructed semantic units each

represent some meaning independent of the rest of the text. These meanings can be composed to

re-create the same meaning of the original text itself. Thus in this example, the meaning of the

entire text can be mapped to its individual semantic units in a lossless fashion.

However, consider the following example:

“Always do what is right. It will gratify half of mankind and astound the other.” - Mark Twain

In this case, the following larger semantic units can be created:

“Always do what is right.” and

“It will gratify half of mankind and astound the other.”
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These units (or any other combination of further de-constructed semantic units) are unable to

express the entire meaning conveyed by the original text in an independent manner. A discourse

relation is a relationship between two independent textual units that, when put together, add further

meaning to the overall text.

Discourse relations can be either implicit, such as the one expressed above, or explicit such as

the one exemplified below:

“Thunder is good, thunder is impressive; but it is lightning that does the work.” - Mark Twain

In an explicit discourse relation, the relationship between the two textual units is explicitly pro-

vided via a discourse connective. The goal of our thesis is to identify explicit discourse relations

and automatically extract the textual units or arguments present in a discourse relation.

Separating arguments present within a discourse relation is a difficult task. This is due to two

main reasons.

(1) A discourse relation can span multiple sentences, most of which can be removed without

much loss of information in the original discourse relation.

(2) Within the segment of text, the structure and placement of the arguments vary greatly.

1.2 Motivation

Automated argument labeling indeed poses a significant challenge. However, a generalized so-

lution to this problem can greatly advance our understanding and usage of various corpora. For

example, recognizing discourse relations, can permit a system to generate higher quality summaries

of a given document. Question answering can also benefit greatly if the relationship can be estab-

lished automatically between sentences that are significantly far apart in a given relation. Finally,

in the context of written texts as well as conversations in real-time, analysis and understanding of

discourse relations could identify hidden meanings, or even general inconsistencies within a given

document, allowing for further insight into the author’s works. Thus, even though the problem state-

ment is extremely challenging, the advantages of resolving it, merit further investigation and study

into this subject.
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On the practical side, current solutions to this problem are brittle and focus on exploiting features

or logical consistencies (grounded in syntax and semantics), that hint towards the start and end of

a given argument as well as the discourse connective. These consistencies cannot be completely

generalized and may only present themselves in some corpora as well as languages but not others.

Hence, there is a need for investigating approaches that can lead to a generalized solution for the

problem at hand.

1.3 Contributions

Our work has made advances in generalizing a solution to the problem of segmenting (or identi-

fying the boundaries of) Arg1 and Arg2 defined above. We implemented a neural network model

based on bidirectional LSTM units that allows us to explore a less manual approach where the

system can learn the features automatically based on the training dataset provided. We also experi-

mented with injecting pre-computed syntactic information for the word tokens in the dataset using

pre-computed word embeddings. This allows us to realize the potential of providing pre-computed

information as a feature to the model in order to enhance the performance of the approach. Our best

model achieved an F1 measure of 23.05% without any feature engineering. This is significantly

higher than the 20.52% achieved by the state of the art RNN approach, but significantly lower than

the feature based state of the art systems. On the other hand, because our approach learns only from

the raw dataset, it is more widely applicable to multiple textual genres and languages. This work

has also been published in the proceeding of the 2017 edition of the Conference Recent Advances

in Natural Language Processing (Hooda & Kosseim, 2017).

1.4 Structure of the thesis

This chapter attempts to introduce the reader to the problem domain briefly so as to provide

a general introduction to the subject. The rest of the thesis is structured to explain the problem

and our work in the following way. Chapter 2 explains the problem domain in greater detail while

presenting a historical review of the work done for this task. Chapter 3 discusses our approach and

describes our experiments in detail. Chapter 4 presents a review of the results obtained from our

5



approach and compares them against other approaches established in the field. Finally, in Chapter 5,

we present challenges and further possibilities along with work that can be performed to extend our

study into this field.
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Chapter 2

Literature Review

Chapter 2 provides a literature review on the subject of Discourse Parsing and focuses more

specifically on Argument Labeling approaches.

2.1 History of NLP

In recent years, Natural Language Processing (NLP) has seen strides of advances thanks to the

increase in available data, computing resources, better algorithms and a deeper understanding of

languages (Hirschberg & Manning, 2015). Much of this has happened gradually since the 1950s

where Language Processing involved in-depth knowledge of rules of the language itself that were

coded into algorithms to better comprehend and parse complex syntactic structures. By the early

1970s, a need for more extensible approaches was deemed necessary and during the 1980s statistical

approaches were widely considered to provide more generalized and adaptable solutions. The use

of probabilistic methods on issues concerning languages became ubiquitous and machine-readable

data became readily available in huge quantities (K. S. Jones, 2001). The field of NLP slowly trans-

formed into the big data domain. This allowed research to move away from understanding and

coding features into algorithms into building more robust and generalizable systems for processing

natural languages. Algorithms that could apply specific features automatically based on historical

data such as Naive Bayes were considered to be of paramount importance. Consequently, it was

realized that simple methods such as Bag of Words (BOW) trained on large datasets would achieve

7



significant results. Later on, even more complex statistical approaches such as Hidden Markov

Models (HMMs) and Support Vector Machines (SVMs) were applied (Manning & Schütze, 1999).

However, increasing the baseline set by the earlier and simpler statistical methods proved to be quite

challenging. This further motivated the need for even more complex and generalized approaches

along with a richer understanding of languages. In the last decade, a resurgence of neural networks

in Machine Learning has inspired Computational Linguistics to push the boundaries even further

while simultaneously removing the need for learning features of the dataset (Jian, She, Zhang,

Zhang, & Feng, 2016). This has further garnered a special interest as neural networks are adept at

generating representations of a given dataset which can then be extrapolated to other sample data in

order to parse syntactic, semantic and even complex discourse structures. These representations can

also be studied further to gain a better understanding of the language at hand (Mikolov, Sutskever,

Chen, Corrado, & Dean, 2013). Thus, in a way, we have gone full circle from understanding lan-

guages so that they may be applied to algorithms, to applying language data to algorithms so that it

may be better understood for further applications.

2.2 Discourse and Discourse Relations

With the availability of large scale annotated datasets, research in NLP has incorporated works

not only on the syntactic and semantic units of languages but also on discourse structures. This thesis

focuses on the rhetorical or discourse nature of linguistic structures and attempts for the automated

understanding of various units of a discourse segment. In the late 1980s, there was an emergence

in the understanding of linguistic units larger than those comprised at the semantic and syntactic

levels. Rhetorical Structure Theory (RST) was formalized to describe the organization of natural

texts (Mann & Thompson, 1988). RST outlines the hierarchical nature of a text and describes

how large textual units may be subdivided (Mann & Thompson, 1988). Consider, for example,

the statement “It was time for lunch and John was hungry”. According to the RST framework,

a discourse can be broken down into unitary constituents that are called spans. In this case, the

constituent spans would be “It was time for lunch”, and “and John was hungry”. Pairs of spans can

then exhibit a relationship that connects them together. Thus a relation is a connection by which a
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pair of spans relate to each other. This is one of the integral and significant elements of the RST

framework. As an example, Figure 2.1 shows an example of a hierarchical tree structure built using

the software of (Zeldes, 2016).

An RST relation defines a semantic or rhetorical relationship that holds between two non-

overlapping segments of text or spans. These pairs of spans can be further categorized as a nucleus

or a satellite. In general, a nucleus is the span that is more essential and deletion or replacement of

it will render the satellite span incomprehensible. In contrast, a satellite span is the less essential

constituent of a relation and lends itself easily to substitution without making the overall relation

necessarily incomprehensible (Mann & Thompson, 1988). In our example, the first span, “It was

time for lunch”, would be the nucleus whereas the latter, “John was hungry”, would form a satellite.

From another perspective, these spans can also be seen to have an anaphoric connection between

them. This connectedness is expressed by a discourse connective. In this case, the structure of a

relation is slightly modified to include the discourse connective as a separate constituent along

with the two text spans that it connects. Based on this approach, we can restructure our example

statement to have the spans “It was time for lunch” and “John was hungry” which are related by

the discourse connective “and” representing a conjunction or simultaneity of the two events co-

occurring. This is a more lexically grounded approach and relies on an explicit connection formed

by the discourse connective or an implicit connection formed via other anaphoric entities in the

constituent arguments (Webber, Stone, Joshi, & Knott, 2003). More formally, the latter approach

looks for discourse connectives as predicates that connects two arguments together. This approach

is termed Discourse Lexicalized Tree Adjoining Grammar (D-LTAG) (Polanyi, Culy, Van Den Berg,

Thione, & Ahn, 2004; Webber, 2004). The RST and the D-LTAG frameworks are considered to be

the two most popular frameworks for analyzing discourse in the field of NLP. D-LTAG has given

rise to the largest dataset of discourse annotation to date: PDTB (see Section 2.3.

Another area where the RST-DT and the PDTB diverge is in the classification of the senses of

a discourse relation. While the PDTB implements a deep tree-based sense classification system,

RST-DT attempts a more flattened approach. Overall, the PDTB defines 4 major classes which, in

turn, have deeper subclasses. These subclasses detail the sense classification of a given discourse

relation. On the other hand, the RST-DT defines 16 classes that specify over 78 relation types. The

9



details of the senses for RST-DT and PDTB are provided in Figure 2.2 and Figure 2.3 respectively.
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Figure 2.1: A hierarchical discourse relation annotated using the RST Framework.
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(1) Attribution: attribution, attribution-negative

(2) Background: background, circumstance

(3) Cause: cause, result, consequence

(4) Comparison: comparison, preference, analogy, proportion

(5) Condition: condition, hypothetical, contingency, otherwise

(6) Contrast: contrast, concession, antithesis

(7) Elaboration: elaboration-additional, elaboration-general-specific, elaboration-part-whole,

elaboration-process-step, elaboration-object-attribute, elaboration-set-member, example, def-

inition

(8) Enablement: purpose, enablement

(9) Evaluation: evaluation, interpretation, conclusion, comment

(10) Explanation: evidence, explanation-argumentative, reason

(11) Joint: list, disjunction

(12) Manner-Means: manner, means

Figure 2.2: List of senses and relation types as defined in the RST-DT (Carlson & Marcu, 2001)

2.3 Discourse Corpora

Based on the RST framework and the D-LTAG approach, two major datasets have been created

each of which uses one of the two theories to define and tag discourse relations. The RST-DT (Carl-

son, Okurowski, & Marcu, 2002) is grounded in the RST framework of Mann and Thompson

(1988). In contrast, the PDTB (Prasad et al., 2008) relies on the anaphoric approach of charac-

terizing discourse relations. The PDTB is a superset of the RST-DT and unlike the RST-DT, it does

not necessarily follow the hierarchical classification of subdividing a large body of text into relations

connected via a tree structure.

The approach adopted by the PDTB thus results in shallow discourse relations. These shallow

discourse relations are further sub-divided into Explicit, Implicit and non-Implicit discourse rela-

tions. The Explicit relations are those where a lexical entry representing a discourse connective
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Figure 2.3: List of senses as defined in the PDTB (Prasad et al., 2007)

exists. For example, in:

(1) “...even if you’re not a reporter or a researcher or a scholar or a member of Congress” (Prasad

et al., 2007).

Here, the underlined terms represents the discourse connective, forming a relationship between

the two arguments that occur before and after it. Adjacent sentence pairs where a relation can be

inferred but no term explicitly signals the relation, are called Implicit relations. For example, the

following relation contains an Implicit relation; where the term “so” is not explicitly used but can

be inferred
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Table 2.1: Number of instances in the PDTB Dataset (Prasad et al., 2008) and in the RST

Dataset (Carlson et al., 2003)

Dataset Count
PDTB Explicit 18,459

PDTB Implicit 16,224

PDTB Non-Implicit 6,088

PDTB Total 40,771

RST-DT 21,789

(2) “The projects already under construction will increase Las Vegas’s supply of hotel rooms by

11,795, or nearly 20%, to 75,500. (Implicit = so) By a rule of thumb of 1.5 new jobs for each new

hotel room, Clark County will have nearly 18,000 new jobs.” (Prasad et al., 2007)

Finally, sentence pairs where a relation does exist but no Implicit connectives are considered

appropriate are non-Implicit relations. The following sentence serves as an example of a non-

Implicit relation:

(3) “The market for export financing was liberalized in the mid-1980s, forcing the bank to face

competition.” (Prasad et al., 2007)

Table 2.1 shows a comparison between the number of discourse relations in the PDTB corpus

in contrast to those in the RST-DT corpus.

Since there is no convention on the predicate-argument nature of discourse relations, the argu-

ment which is syntactically connected to the connective is called Arg2 and the other argument is

referred to as Arg1. Figure 2.4 illustrates this syntactic connectivity.

Such problems will require considerable skill to resolve. However, neither Mr. Baum nor Mr.
Harper has much international experience.

Figure 2.4: Example from the PDTB. Arg1 is stylized using regular font. Arg2 and the Connective

are bold. The connective is also italicized to indicate its syntactic connectedness with Arg2.

The goal of our research is to segment explicit relations defined in the PDTB dataset texts into

Arg1 and Arg2. These explicit relations are based on discourse connectives of three grammatical

varieties:
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(i) Most balloonists seldom go higher than 2,000 feet and most average a leisurely 5-10 miles an
hour.

(ii) Metropolitan Houstons population has held steady over the past six years. And, personal
income, after slumping in the mid-1980s, has returned to its 1982 level in real dollar terms.

Figure 2.5: Examples of discourse relations taken from PDTB. In (i), the arguments exist in a single

sentence, whereas in (ii) the arguments exist in separate sentences. In both cases, the Arg1 is styled

in italics, Arg2 is represented using bold formatting, and the discourse connective is underlined.

(1) Subordinating Conjunctions such as “because”, “although”, and “however”,

(2) Coordinating Conjunctions such as “and”, and “or” and

(3) Discourse Adverbials such as “for example”, and “instead”.

Each of these three types of connectives dictate the position of the arguments in the relation.

Subordinating conjunctions have the subordinate clause bound to the connective which becomes

Arg2. In a relation dictated by subordinating conjunctions, the Arg2 can precede Arg1 or fol-

low it, or even be embedded within Arg1. On the other hand, coordinating conjunctions and dis-

course adverbials simply generate a straightforward relation where Arg1 is followed by Arg2.

However, there are scenarios for discourse adverbials where an Arg1 may be embedded within an

Arg2 (Prasad et al., 2007). These arguments of a given relation are neither constrained spatially

nor structurally. That is to say that arguments may appear as separate disconnected sentences or

within a single sentence. For example, consider the sentences in Figure 2.5.

However, a minimality constraint (Prasad et al., 2007) does apply to an argument which states

that an argument must contain the necessarily minimal amount of information required for complete

interpretation of a relation. According to the PDTB, any other extraneous span of text that may

exist in between the arguments is considered to be supplementary information. Figure 2.6 shows an

example of supplementary text for Arg1.

The PDTB labels this information as “Sup1” and “Sup2” with respect to which argument it

relates to. The minimality principle also dictates the generation of Attribution segments. The At-

tribution segments are textual spans that specify arbitrary relationships between an agent and an
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“Underclass youth are a special concern. Are such expenditures worthwhile, then? Yes, if

targeted.”

Figure 2.6: An example of a discourse relation from the PDTB with supplementary information for

Arg1 is underlined.

“(Sup1 Workers described “clouds of blue dust”) that hung over parts of the factory, even though

exhaust fans ventilated the area.”

Figure 2.7: An example of a discourse relation with attribution from the PDTB. The text in paren-

thesis is supplementary information that is not necessarily required for the discourse relation. The

Arg1 is in italics, Arg2 is in bold and the discourse connective is underlined.

abstract object. These attribution spans may or may not be considered necessary to satisfy the min-

imality principle of establishing a valid argument in a relation (Prasad, Webber, & Joshi, 2014).

Figure 2.7 shows an example of a case where supplementary information is present in a discourse

relation

The PDTB characterizes the arguments or predicates of a relations as abstract objects that rep-

resent events, states or propositions. This results in arguments that are non-clausal in structure and

may signal event information as well as references to abstract objects (Asher, 1993). Consequently

this allows argument spans to be useful in practical contexts of automatic text summarization and

natural language generation as well as in generating knowledge bases and question answering sys-

tems that go beyond factoid based mechanisms. These practical applications rely significantly on

identifying the location and length of arguments in a given relation. Since Arg2 is established to be

structurally related to the discourse connective, identifying the connective can lead to easy identifi-

cation of Arg2 and understanding the minimality of a predicate level clause can give an idea of its

length as well. Arg1, however, can be present next to the connective or any arbitrary distance away

and therefore can be much harder to locate and define. The PDTB dataset contains relations where

Arg1 is identified either in the same sentence as the connective, in a preceding sentence, in a sen-

tence following that of the connective or in a non-adjacent sentence. Variations also exist on Arg1

occupying an entire sentence or more or even sharing sentence or sentences with supplementary

textual spans. While there is no definite structural pattern to a relation that can point accurately the
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location and the length of its constituting Arg1, the majority of the relations in the PDTB dataset

are either in the same sentence as the connective or in a sentence immediately preceding it or in a

non-adjacent sentence with respect to the connective. In regards to the span, Arg1 tends to occupy

a single full sentence or just part of it (Pitler et al., 2008). This allows for some structural features to

be incorporated in algorithms for locating Arg1 as well as Arg2 once the discourse connective is

identified. Since these connectives are well defined, locating and bounding Arg2 is much less of a

challenge as compared to Arg1. Table 3.1 provides counts on the distribution of discourse relations

based on the position of Arg1 with respect to the discourse connective.

2.4 Prior Work

As indicated in Section 2.3, our goal is to segment (or identify the boundaries of) Arg1 and

Arg2. In the last few years much work has been accomplished to push the understanding of argu-

ment identification and spanning length. In part, an important reason for this advancement in the

field can be attributed to the CoNLL Shared Tasks for the Nineteenth and Twentieth Conference on

Computational Natural Language Learning (Xue, Ng, Pradhan, Bryant, & Rutherford, 2015; Xue

et al., 2016). These shared tasks are in fact competitions on discourse parsing organized by the

CoNLL Committee that a number of well known research teams in the field participated in. The

shared task included the challenge of identifying as well as categorizing discourse relations. This

included parsing relations, the sense expressed in a relation, the arguments of the relation and finally

the connective in case of an explicit relation. One sub task of the Discourse Parsing competition

was argument span labeling for explicit relations. As a result, new techniques, approaches as well

as features were identified and utilized that improved the state of the art for argument span labeling

as dictated by the minimality principle.

Prior to the CoNLL tasks, some work had already been done for argument labeling and feature

identification for relations and their arguments. In 2005, some features had been described that

relied on syntactic structures of an intra-sentential relation based on attribution (see Section 2.3)

to identify arguments and their spans (Dines et al., 2005). One of the first attempts in argument

labeling that utilized machine learning approaches was proposed by Wellner and Pustejovsky. In
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Drug makers shouldn’t be able to duck liability because people couldn’t identify precisely which
identical drug was used.

Figure 2.8: An illustration of a discourse relation with head word identification (Wellner & Puste-

jovsky, 2007). In this case, the head word for Arg2 in bold is identify. The discourse connective is

marked in italics

2007, Wellner and Pustejovsky proposed techniques based on machine learning, specifically Naive

Bayes approaches to extract argument spans. The idea was to re-cast the argument labeling problem

into a form where a “head” word dictated the argument in a given parse tree of a relation. For

example, in the discourse relation in Figure 2.8, the head word for Arg2 would be identify. Thus

the problem was re-formulated into identifying only the head words of an argument. The end of

an argument was considered to be simply the “natural” syntactic end of the text segment. A log-

linear ranking model belonging to the family of Maximum Entropy based models was used. A

classifier was constructed for each argument with various features in order to determine the true

arguments from the argument candidates. The candidates, in turn were identified using a head

finding algorithm developed previously and modified slightly (Wellner & Pustejovsky, 2007). Once

a given argument for Arg1 was identified, it was paired against candidates for Arg2 to find the

best matching argument candidate for the given relation. Furthermore, many more features based

on the constituent, dependencies, and syntactic knowledge of the relation and the connective as well

as contextual features were identified and employed in this approach.

The work of Wellner and Pustejovsky (2007) was further expanded upon by Elwell and Baldridge

(2008), who realized that distinct models targeting the different kinds of relations (based on the

explicitly defined discourse connective) produced better results then generalizing all senses into a

single model. In this case, however, issues relating to lack of adequate amounts of data were encoun-

tered. This was balanced by creating type specific models for the 3 different types of connectives:

• Coordinating conjunctions

• Subordinating conjunctions

• Adverbial phrases
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A generalized model was also included along with models for each of the different types of con-

nectives as well. The final classifiers were built via an optimized version of all 4 models combined

via linear interpolation. This allowed for building a classifier that accounts for the specificity of

some relations while maintaining the generalized understanding of all relations as well. A balance

in the data availability was also made possible via the interpolation of the specific, semi-specific

and generalized models together. Along with this approach, newer features were also introduced

that defined the morphological properties of discourse connectives as well as their arguments, syn-

tactic configurations and finally allowed for a wider context that included the previous as well as

the following connectives. The latter feature assisted specifically in determining the given relation

more coherently based on the connectives in neighbouring relations. This technique improved the

absolute accuracy by about 3.6% over the model proposed by Wellner and Pustejovsky, bringing it

to an accuracy of 82.0% for Arg1 and 93.7% for Arg2 on the gold standard of the PDTB Dataset

(see Section 2.3). Accuracy, here, is defined as the percentage of correctly identified Arguments.

However, it should be noted that while this method does perform better on argument identification

tasks, it does not improve the state of the art on the problem of argument span labeling.

The work of Prasad, Joshi, and Webber (2010), shifted the focus in argument identification

from detecting the head words as shown in Figure 2.8 of an argument to identifying the sentence

containing the argument itself as shown in Figure 2.9.

In early 1600s, Galileo published his findings soon after he confirmed that Jupiter’s moons were in
orbit around Jupiter. But most astronomers refused to believe that Galileo’s discoveries were

true attributing it to errors in measurement.

Figure 2.9: An illustration of a discourse relation from the PDTB where sentence based argument

identification is exemplified. Here, Arg1 in represented by the sentence in italics, Arg2 is in bold
and the discourse connective is underlined.

The reasoning behind this is sound, as the PDTB has few arguments that are subordinate or

embedded clauses rather than the main clause in the given sentence. Table 2.2 shows the number

of Arg1s that were found in more than one discourse relations. Table 2.3 shows the total number

repetitions for Arg1s. However, this approach, like the head word based argument identification,

suffers from defining the exact bounds of an argument and thus is unable to locate argument spans
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Table 2.2: Total number of duplicate or embedded Arg1s in the training set.

Relation Type Count
Explicit 5,608

Implicit 1,634

Others 343

Total 7,585

Table 2.3: Total count of duplicate or embedded Arg1s in the training set.

Relation Type Count
Explicit 10,958

Implicit 7,314

Others 737

Total 19,009

within a relation. This issue of argument span labeling was addressed in (Prasad et al., 2010) via a set

of heuristic-based approaches that incorporated various features as well as extraneous knowledge

from other overlapping corpora. Later works such as (Ghosh, Johansson, & Tonelli, 2011) also

incorporated the use of Conditional Random Fields as a series of decision based chain relying on

the Markov Assumption. As before, various linguistic features including those derived from the

syntactic and semantic nature of the relations were utilized. A new trend in research was thus

started consisting of a pipeline process to discourse parsing whereby the classifiers were connected

in a cascading pattern and outputs from a classifier for Arg2 were fed into a classifier for Arg1.

Figure 2.10 gives an example of such a pipeline structure.

This allowed for more continuity and direct processing of arguments and exploited their relation-

ship in order to understand the structure of a given relation better. The Conditional Random Fields

Figure 2.10: An illustration of a pipeline structure for explicit discourse parsing.
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were well suited to the pipeline architecture as they rely on decisions made in the past as a feature

for making a given classification which in turn is derived from the Markov Assumption (Ghosh et

al., 2011). At this point machine learning approaches were part of mainstream Computational Lin-

guistics and techniques such as Support Vector Machines had also been tested with success in this

domain (W. Wang, Su, & Tan, 2010).

More recently, in 2014, works from Lin, Ng, and Kan (2014) and Kong, Ng, and Zhou (2014)

promoted further interest in this domain and its sub-problems which culminated into the CoNLL

2015 and CoNLL 2016 Shared Tasks (Xue et al., 2015, 2016). The first end-to-end parser (Lin et

al., 2014) was developed which combined features and classifiers in a pipeline fashion in order to

mimic the entire annotation process of the PDTB. This included the argument labeling classifiers

and its features as well. A basic, yet powerful classifier was constructed that improved well upon

the previous methods and achieved impressive accuracy of 53.85% (Lin et al., 2014). However,

in comparison, this score is still far behind the 90.2% value achieved by humans (Prasad et al.,

2008). Also, of note, was another additive technique which employed the linear aspects exploited

by Ghosh et al. (2011) as well as utilizing the subtree extraction technique similar to the head

words approach by Wellner and Pustejovsky (2007). This approach first classified constituents

from a parse tree as possible argument candidates which were then re-labelled to be of Arg1,

Arg2 or neither via a linear tagging mechanism. Global information across candidates was then

incorporated further to smoothen the final outputs via Integer Linear Programming. This allowed the

classifier to incorporate linear constraints on the construction of Arg1 and Arg2 constituents. Thus

a scenario where consecutive words of a relation were classified alternatively as Arg1 and Arg2

was avoided and smoothened to have a chunk of segment of Arg2 labels followed or preceded (or

even encapsulated) by Arg1 labels.

2.5 CoNLL 2015 and 2016

The sixteenth CoNLL Conference organized in 2015 focused on Discourse Parsing and Argu-

ment Segmentation and labeling as the subject of its shared task. In essence, this was designed

as a standardized competition geared to push the state of the art for discourse parsing and attract
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Table 2.4: Number of instances in the PDTB Dataset

Dataset Explicit Non-Explicit Total
Sections 2-21 15,246 17,289 32,535

Section 22 699 737 1,436

Section 23 923 1,016 1,939

Total 16,868 19,042 35,910

attention and further interest in the topic. The results of the competition proved this to be the case.

The CoNLL competition provided the PDTB 2.0 dataset (see Section 2.3) for training and develop-

ment of the models. As is standard with this dataset, Sections 2-21 of the PDTB were set aside for

training only, Section 22 was marked for development and Section 23 for testing of the models. Ta-

ble 2.4 describes in detail the size of the sections with respect to explicit and non-explicit discourse

relations.

In line with standard machine learning tests, the organizers created a separate dataset. At

CoNLL 2015, this was composed of English Wikinews accessed on October 22nd 2014. The sep-

arate dataset was annotated by two different annotators independently according to the PDTB 2.0

guidelines (Prasad et al., 2007). The inter-annotator agreement between the two was 96% overall in-

dicating a high degree of adherence to the PDTB 2.0 standard. For our purposes, the inter-annotator

agreement for explicit argument segments was 89.6% for argument 1, 98.7% for argument 2, and

88.7% for both combined. These scores not only indicate that a pattern exists that is more or less me-

chanical and readily understood, but also helps to set a theoretical upper limit on how well machine

learning algorithms can be expected to perform.

Both the 2015 and 2016 competitions were divided into two streams, the Closed and the Open

tracks. The closed track was restricted on the usage of extraneous data beyond the PDTB 2.0 dataset

and was only allowed to utilize phrase structure parses predicted via the Berkeley parser (Petrov &

Klein, 2007) and dependency parses that were produced by the Stanford parser (Manning et al.,

2014) using the former dataset as input. In contrast, the open track was allowed to use any dataset

or extraneous knowledge to dynamically build the model or algorithm for the task. For the 2015

challenge, all participants opted for the closed track. For the argument labeling sub task, the rules of

the competition imposed strict regulations on the identification of an argument and considered it to
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be correctly identified only if it matched its corresponding gold standard argument span exactly with

correct labeling (i.e. whether it was Arg1 or Arg2). Failure to match the corresponding argument

span exactly was not considered to be a partial match but simply inaccurate. Thus the scoring

criteria was binary with no room for a single-character error on the part of the systems. The actual

scoring system was based on the F1 score which is defined as the harmonic mean of Precision and

Recall. Precision focused on the ratio of true positives over all positive signals emitted by a given

system whereas Recall focused on true positives over true positives and false negatives identified

by the given system. (For more details on these metrics, see Figure 4.1). The task also required the

development of an end-to-end system that attempted full discourse parsing of explicit and implicit

relations, segmenting out the arguments as well as the connectives for the explicit relations along

with defining the sense of the relation. This concept of an end-to-end discourse parser first originated

from the work of (Lin et al., 2014) and consequently participants used this as an inspirational point

to derive their own pipeline based architectures. For argument extraction, most participants resorted

to casting the problem as a sequence labeling task at the token level while a few teams, in contrast,

applied rule based approaches to extract the arguments. For the sequence labeling approach, a

popular choice of learning algorithm were the Conditional Random Fields (CRFs). These are types

of probabilistic undirected graphical models that are discriminative and rely on the Markov Property

to establish a relationship between current and historical inputs and outputs. As a result, they can

account for and learn dependencies between words of a relation that appear in a non-consecutive

format thereby learning the start and end points of an argument span.

While most models did rely on conventional machine learning techniques, one group from

Dublin University (L. Wang et al., 2015) attempted to use neural networks for the argument la-

beling task. This topic is discussed in Section 2.6 in more detail. The Dublin University team

utilized a specific model of the deep neural network family called RNNs. They used token level

features such as part of speech (POS) tags extracted from a fixed window of words that is centered

on a target word token. This was the first time that Deep Neural Network algorithms were applied

to argument extraction. Table 2.5 shows the results of all teams at CoNLL 2015. The accuracy on

Explicit argument segmentation task was 26.27% for Arg1, 37.33% for Arg2 and 18.59% for both

combined on the development set. To compare, the best results in the competition were offered by
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the East China Normal University Team (J. Wang & Lan, 2015) with accuracy values of 80.56% for

Arg2, 61.56% for Arg1 and 54.05% for both combined. In general, the parser developed by the

East China Normal University Team had an overall F1 score of 24.00%. It can be easily noticed that

the RNN model from the Dublin University Group is lacking in terms of performance compared to

the model produced by the East China Normal University Team.

Table 2.5: F1 Scores from the CoNLL-2015 task on Explicit Ar-

gument Labeling and Connective Identification (Xue et al., 2015).

Rank Participant
Explicit

Arg1 and Arg2 Arg1 Arg2 Connective Parser

Blind Test
1 University of Texas Dallas 40.04 49.68 70.06 89.90 30.58

2 East China Normal University 41.35 48.31 74.29 91.86 30.38

3 University of Trento 39.59 49.03 70.68 89.92 29.97

4 Concordia University 36.60 45.18 69.18 90.19 27.32
5 Japan Advanced Institute of Science and Tech. 34.23 44.08 51.35 61.66 27.20

6 AU KBC Research Center 34.73 44.49 64.20 84.49 26.73

7 UIUC Cognitive Computing Group 30.05 37.89 60.11 87.98 23.32

8 Soochow University 30.42 36.43 73.04 91.62 22.95

9 Chinese Academy of Sciences 27.20 36.40 61.00 82.60 22.20

10 Nippon Telegraph and Telephone Lab Japan 21.61 28.13 38.02 51.04 16.93

11 Goethe University Frankfurt 19.04 26.41 36.85 51.18 13.51

12 India Institute of Technology 13.65 22.32 61.99 89.30 12.36

13 Dublin City University 1 12.47 18.05 36.65 87.81 9.12

14 Shanghai Jiao Tong University 1 10.55 13.94 48.97 81.68 8.04

15 Dublin City University 2 11.10 16.65 28.13 79.43 7.85

16 Peking University 3.57 6.07 20.89 59.11 2.32

Standard WSJ Test (Section 23)
1 East China Normal University 45.20 50.66 77.40 94.21 39.96

2 University of Trento 44.58 50.05 76.23 92.77 39.54

3 University of Texas Dallas 41.57 49.75 68.55 89.33 37.59

4 Nippon Telegraph and Telephone Lab Japan 38.82 46.07 68.38 89.12 34.47

5 Japan Advanced Institute of Science and Tech. 38.16 43.82 56.25 63.89 33.22

6 Concordia University 38.07 44.69 72.34 91.38 32.60
7 UIUC Cognitive Computing Group 30.39 37.25 66.67 91.83 27.02

8 AU KBC Research Center 30.77 36.64 49.68 86.44 26.78

9 Chinese Academy of Sciences 28.70 36.07 63.53 90.64 25.75

10 Soochow University 30.21 34.02 74.48 94.77 25.30

11 Goethe University Frankfurt 25.20 30.79 50.74 68.19 21.89

12 Dublin City University 1 19.36 24.42 46.20 93.18 17.38

13 Dublin City University 2 14.66 21.10 38.20 88.06 13.21

14 India Institute of Technology 13.78 20.34 59.38 93.06 12.90

24



Table 2.5: (continued)

Rank Participant
Explicit

Arg1 and Arg2 Arg1 Arg2 Connective Parser

15 Shanghai Jiao Tong University 1 10.29 14.68 48.77 78.67 9.97

16 Peking University 4.28 6.31 24.05 58.04 3.53

Development
1 AU KBC Research Center 54.69 62.90 75.91 92.80 49.11

2 East China Normal University 54.05 61.56 80.56 95.14 48.16

3 University of Trento stepanov 57.10 78.70 93.79 46.89 40.08

4 Nippon Telegraph and Telephone Lab Japan 47.90 55.68 72.16 88.94 43.02

5 University of Texas Dallas 48.51 57.46 72.24 93.43 41.49

6 Japan Advanced Institute of Science and Tech. 45.14 51.56 57.79 65.53 41.17

7 Concordia University 45.91 53.16 75.34 92.25 39.52
8 UIUC Cognitive Computing Group 34.78 43.18 65.97 91.45 31.18

9 Chinese Academy of Sciences 33.16 41.71 67.99 91.52 30.25

10 Soochow University 34.67 38.67 74.37 94.22 29.78

11 Goethe University Frankfurt 27.37 33.93 48.32 63.17 23.77

12 Dublin City University 1 20.52 28.55 41.78 93.23 17.70

13 Dublin City University 2 18.59 26.27 37.33 86.33 15.82

14 India Institute of Technology 17.09 25.94 65.52 93.55 15.59

15 Shanghai Jiao Tong University 1 15.15 18.35 58.27 86.09 14.57

16 Peking University 3.14 4.77 19.08 51.54 2.79

2.6 Machine Learning and Deep Learning

Deep Learning is branch of Artificial Neural Networks which in turn is part of the Machine

Learning Domain. Machine Learning involves methods that are able to discern patterns from within

a given dataset and are able to use these patterns to predict future instances (that are similar in

nature to the original dataset) or make decisions under uncertainty (Murphy, 2012). This is done

by developing an algorithm that is able to find patterns in a given sample dataset that correlate to

specific attributes about the overall population of the data. This can be used to provide the necessary

output needed to solve a given problem for the data points existing outside of the sample dataset.

A simple example of such an algorithm is linear regression where a straight line going through,

or closest to as many points as possible, is able to provide an indication of the trend of the data.

Artificial Neural Networks are simply structural combinations of a mathematical expression similar

to linear regression for a single dimensional dataset. This involves putting together neurons or
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linear-regression-like units together to increase dimensionality in order to accept a data point of

multiple dimensions. These layers of neurons can then be stacked in order to decompose data over

multiple lower dimensions or to converge it to fewer higher dimensions so that a pattern maybe

isolated and recognized between the decomposed or merged portions of a data point. Creating such

a feed-forward structure of layers of neurons can pose issues where the number of parameters that

need to be learned greatly increase leaving the system with not enough sample data to learn the most

optimal values for isolating a pattern (Bengio, Ducharme, Vincent, & Jauvin, 2003). Thus various

other architectures exist that build on reusing parameters while keeping a scalable architecture such

as Recurrent Neural Network (RNN) where a layer feeds back into itself for a specific dimension

of the input data or LSTMs where a learnable parameter is used to decide whether to re-use other

parameters to learn other dimensions of a data point as well (Hochreiter & Schmidhuber, 1997).

Research in Neural Networks has revealed that stacking such layers in an architecture is much more

effective than increasing the number of neurons per layer (Goodfellow, Bulatov, Ibarz, Arnoud,

& Shet, 2013). Thus Deep Learning is simply an evolution of Neural Network architectures that

attempts to re-use parameters from within the network in order to create a deep stack of layers that

is able to achieve effective state-of-the-art results in Machine Learning and Artificial Intelligence

tasks (Schmidhuber, 2015).

2.6.1 Neural Networks

Hornik, Stinchcombe, and White (1989) provided mathematical proof that neural networks can

serve as “Universal Approximators”. Neural networks are able to approximate any function from

a one finite-dimensional space to another up to any desired degree of accuracy, provided certain

conditions are met. Among many others that govern the problem domain these conditions also

include the presence of at least one hidden layer as well as a squashing function for example a

sigmoid function to serve as an activation to a neuron. The degree of desired accuracy required

is directly proportional to the number of hidden units available. Therefore neural networks are

particularly useful in learning features of a given dataset in a supervised learning environment. This

is a situation where a neural network system is exposed to every data point in a sample dataset,

along with its corresponding labels. This allows the network to “learn” the parameters needed to
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approximate a function connecting the data point with its right label. The neural network learns this

information via an algorithm known as “backpropagation” (Rumelhart, Hinton, & Williams, 1986).

In general the neural network is initialized with random parameters. Then, information first flows

from the input data point towards its label. If the correct label is predicted, then nothing is changed.

If not, then the parameters are adjusted to according to the error of prediction in cascading fashion

from the label to the data point. Then the next data point is considered. The system is left to go

through a certain number of such learning cycles in order to get an efficiently generalized learning

model established.

2.6.2 Recurrent Neural Networks

Recurrent Neural Network (RNN) are a special architectural form of the regular feed-forward

neural networks. They are different in the sense that one dimension of the input data is used as a

recurrent loop over the same neuron. For example, consider a stream of sentences of a constant n

words as input and “adjective”, “adverb” or “neither” labels as output. In this case, the network is

expected to predict the correct part of speech (or “neither”) label for every word in the given input

sentence. Here, a single recurrent neuron could be used to loop over every single word in a given

input sentence. Then, via backpropagation, and accounting for the loop, the errors can be adjusted

for the predicted labels of all the words in entire sentence. This allows reuse of the parameters in

the same neuron for all n words as opposed to forming a feed-forward neural network of n neurons

in the first layer. In general, RNNs are better suited for input data that is sequential in nature. The

recursion and re-use of parameters also allows to incorporate dependencies over the range of loop.

In our example, the RNN will take into account words preceding an “adverb” or an “adjective” in

order to find a pattern of either of two occurring.

2.6.3 Long Short-Term Memory

Long Short-Term Memory (LSTM) are a specialized type of “gated” recurrent neuron where the

recursion aspect is modeled for learning rather than as a constant. With vanilla RNNs, it was noticed

that long term dependencies were hard to model due to the problem of vanishing and exploding gra-

dients (Hochreiter, Bengio, Frasconi, & Schmidhuber, 2001). This occurs when during a backward
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propagation through the loops, the actual correction value (due to repeated differentiation) becomes

either negligible or very large (close to infinity) resulting in corrections being either over-saturating

or under-saturating the parameters. With LSTMs, not only are long-term dependencies accounted

for by learnable parameters, but the ability to forget specific dependencies is also learned. For ex-

ample, if a value in a vector depends on another value encountered two steps before it, and not on

the immediately preceding value, then that could be forgotten as it does not constitute a dependency.

Thus LSTMs are able to model much longer dependency ranges and are therefore the most suited

for our problem of argument labeling and identification.

2.7 Word Embeddings

Word Embeddings are simply vectors that map a word into a latent space. The latent space

describes a rich feature set for the word itself. This is usually a multi-dimensional plane where

each dimension describes a feature of the overall language (such as grammatical or semantic rules).

Thus, a word embedding is a vector of size N where N is the number of dimensions in latent

space (Turian, Ratinov, & Bengio, 2010). Conventionally, multiple approaches exist that apply

different techniques in order to build a word embedding from a given set of data. A well known

approach involves leveraging the occurrence of a word within a document (Deerwester, Dumais,

Furnas, Landauer, & Harshman, 1990). This approaches suffer from a problem that arises from the

language structure itself, where the majority of the most common words (such as “the”, and “and”)

do not convey meaning or semantic relatedness of other words but are rather syntactic artifacts

of the language. Thus the co-occurrence of such common words within the same document will

have a higher impact than those that convey meaning within the document (Pennington, Socher, &

Manning, 2014).

One of the more recent approaches known as “word2vec” (Mikolov et al., 2013) relies on a

simple neural network to build a rich set of word embeddings from unsupervised data. This is

done by simply demarcating a window of words known as a context window and attempting to

predict the occurrence of a given word in that context. Thus, a form of neural language model

is generated where word embeddings are elementary units within the model. The model can be
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leveraged for many purposes. One example is to predict the next word in a sequence of words while

another is to be able to find words for a similar concept when provided with a sample, such as the

relationship between the word embeddings for the words King and Man can be leveraged with the

word embedding for Woman to produce the word embedding for Queen. Since word embeddings

are vectors, this can be done using basic mathematical operations such as the one shown below:

Embedding[“Queen”] = Embedding[“King”]−Embedding[“Man”]+Embedding[“Woman”]

However, approaches that rely on a context window tend to ignore the information provided by

the co-occurrence of words within the training set. This prevents the model from learning from the

repetition within the dataset. Another approach known as Global Vectors for Word Representation

(GloVe) Embeddings Pennington et al. (2014) attempts to improve upon both models presented ear-

lier. This is done by building a co-occurrence matrix of every word presented within the corpus.

The matrix is then used to compute probabilities of occurrence of every word within the context

of another word. Finally ratios are built for all probabilities in order to generate a word embed-

ding. Thus, in this way, GloVe Embeddings take advantage of both, the context window as well

as the co-occurrence of words provided within a corpus (Pennington et al., 2014). Furthermore,

GloVe optimizes over the standard “word2vec” approach thereby reducing the need to re-compute

embeddings from scratch when more word tokens are appended to the vocabulary.

2.8 Deep Learning based Argument Labeling

As mentioned in Section 2.4, almost all of the explicit argument segmentation and labeling ap-

proaches proposed involve using an algorithmic model that employ various features that exploit the

structure of a discourse in order to provide the argument location and span. In the case of rule based

approaches, these features directly guide the system in isolating the argument and labeling it, while

in the case of classifiers based on machine learning algorithms, the features indirectly assist the

algorithm in understanding the argument and its characteristics so that it can be tagged by the algo-

rithms. Most of these features are grounded in linguistic theory, while some are formulated using
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more mathematical approaches. In either case, these features are devised by trying to understand

the sample dataset in order to elicit its properties that may be generic enough to apply to the entire

population of the data. In this case, however, we tend to move away from this approach and attempt

to realize the learning process entirely without using any features. The idea here is to simply let

the machine learning algorithm extract the features itself from the training dataset and use them

over the test set. The learning process is controlled to account for the fact that the features remain

generalizable enough to be applicable over the entire population of the dataset.

2.9 Summary

In this chapter, we presented a historical review of the field of discourse relations in general

with particular focus to argument labeling. We also gave a brief introduction to machine learning

and deep learning approaches that were introduced in the domain by our contributions.

In the next chapter, we will explain our approach to the problem of argument labeling. We will

describe our methodology and explain in detail our experimental structure.
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Chapter 3

Experimental Methodology

The goal of this thesis is to automatically extract and label discourse arguments without any

prior feature engineering. In order to achieve this, we have used an Artificial Neural Network

(ANN) model that accomplishes this goal. However, the discerning factor in this endeavor is that

the model does not require any prior knowledge about the distribution of the discourse segments or

any grammatical or other linguistic properties of the segments in a given text. This chapter describes

the model developed for this task, the framework used, as well as the parameters adjusted for, and

the dataset used to evaluate the accuracy of the model.

3.1 The LSTM Approach

3.1.1 LSTM

In Section 2.6.3, we gave a brief introduction to LSTMs. Here, we discuss in detail how LSTMs

work and how they relate to the problem of argument labeling in explicit discourse relations.

As mentioned in Section 2.6.3, the LSTM is a variation of the RNN which has memory built into

the recurrent node of the network. This concept of memory is enhanced by the fact that the LSTM

is able to not only learn how to retain information from past tokens of an instance through time

but also forget them thereby releasing resources that are not needed for understanding or predicting

future tokens in a given instance. Figure 3.1 compares an LSTM and an RNN.

A standard hidden recurrent node of an RNN can be expressed mathematically as:
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ht = g(b+Wht−1 + Uxt)

where t is the current time step, W and U are the weight matrices of the hidden node, b is the

bias of the hidden node, g is a squashing function (such as tanh) and finally ht−1 is the output of

the hidden recurrent node from the previous time step.

Thus the hidden node of an LSTM, in turn, can be expressed as follows:

ht = g(st)qt

where s is the internal state of the LSTM cell, and q is the output gate. The internal state further

comprises an input gate, a self loop and a forget gate. The representation of the internal state s can

be mathematically expressed as follows:

st = f tst−1 + itσ(b+
∑

j

Uxt +
∑

j

Wht−1)

where f is the forget gate and i is the input gate. The forget, input and the output gates are

simpler units that apply an element-wise non-linearity to affine transformations of inputs and their

own outputs from the previous timesteps. The element-wise non-linearity is usually a sigmoidal

transformation. These gates are mathematically expressed below:

f t = σ(bf +
∑

j

Ufxt +
∑

j

W fht−1)

it = σ(bi +
∑

j

U ixt +
∑

j

W iht−1)

qt = σ(bq +
∑

j

U qxt +
∑

j

W qht−1)

Similarly to that of an RNN, an LSTM input instance is a sequence of inputs of an arbitrary

length. This sequence is considered a sequence in time whereby the input unit at a given position

in the instance is provided to the LSTM cell at the timestep equal to the position of the input unit in
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Figure 3.1: A side by side comparison of an RNN (left) and an LSTM (right) architecture (Olah,

2015)

the instance.

At every timestep t, the LSTM cell holds a representation or memory generated from the pre-

vious timestep t − 1. At first, the input at the current timestep t is passed through a non-linear

transformation just as it would be in an RNN. Next, the input gate (it) in the LSTM cell decides the

amount of newly computed input information provided that is incorporated into the newly computed

state for time t. Meanwhile, a forget gate (f t) decides on the amount of information held in the state

from the previous timestep t − 1 that is not necessary and therefore can be forgotten or removed.

This is considered as the LSTM’s inner self loop. The combination (vector addition) of the newly

computed input information and the remaining state information from the previous timestep now

become the new state. Finally an element-wise non-linearity (usually tanh) is applied to the newly

computed state information. Lastly, an output gate (qt) decides how much of this information is

provided as the output at the current timestep. In this way, the LSTM manages to incorporate new

information (based on the input gate), selectively remembers past information (based on the forget

gate) and output information relevant only at this timestep (based on the output gate). The weights

and biases at the input, forget and output gates are learned during training of the neural network.

3.1.2 Bidirectional Long Short-Term Memory

A bidirectional LSTM is a variation of a bidirectional RNN where two separate RNNs of the

same node type are fed the same training sequence in opposite orders. The output of both the

RNNs are then connected to same output layer or another neural network layer. In the case of a

bidirectional LSTM, two LSTM memory cells are passed at each and every training instance at

the same time in opposite orders. The forward LSTM cell receives each training instance from
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time t0 to time t1 and so on whereas the backward LSTM cell receives the same training instance

in reverse from time tn to tn−1 and so on. The outputs from the two LSTM cells can then be

concatenated. The combined outputs of the two LSTM cells are then passed forward to the next

layer in the network. Thus for every point in time t of a given training instance, the overall network

has full information of the entire instance as well as the points before and after it. Furthermore,

since the LSTM cells allow for prior information to be retained regardless of how far in the past (or

future) it is, the network is fully independent to learn the target outputs (Graves & Schmidhuber,

2005). Bidirectional LSTMs have been shown to be successful in many NLP applications such

as in phoneme classification (Graves & Schmidhuber, 2005), speech recognition (Graves, Jaitly,

& Mohamed, 2013) as well as emotion recognition using speech and facial expressions (Wöllmer,

Metallinou, Eyben, Schuller, & Narayanan, 2010).

3.1.3 Batch Training

The usual training process for a neural network involves a forward pass of the inputs to calculate

the predicted outputs, a backward pass of the difference between the predicted outputs and the

expected outputs (also known as backpropagation of the errors). During the backward pass the

weights for the network are adjusted based on the error rate between the predicted and expected

outputs. This process of optimization via gradient descent has 3 major variants: Online or Stochastic

Gradient Descent, Mini-batch based, and Batch based. In stochastic gradient descent, the gradients

are updated at every instance whereas in batch-based gradient descent the errors for every neuron

in the network are accumulated and applied at the end of the entire training set. Mini-batch based

gradient descent behaves in the same way as batch-based gradient descent, however the batches are

much smaller chunks of the entire training set, drawn randomly from the training set. Mini-batches

range anywhere between 1 to a few hundred instances (Goodfellow, Bengio, & Courville, 2016).

There are multiple advantages of using the mini-batch process including faster convergence than

batch based and higher chances of avoiding a local minima than the stochastic approach. In our

case, we used a mini-batch size of 128 instances.
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3.1.4 Embedding Layer

An embedding layer is simply a neural network layer designed to convert an integer into a dense

2D vector. The integer here represents the position of 1 in a one-hot encoding of a word in the given

dataset. A one-hot encoding, in turn, is a simple encoding method where a sparse vector of size |V |
is used to represent a word in the vocabulary V of the given dataset. The vector is set to 0 at every

point except one where it is set to 1. The index at value 1 represents the position of the word in

the dictionary. The embedding layer creates a weight matrix WE of size |V | × D where D is the

size of the embedding dimension and |V | is the size of the vocabulary. This matrix is learned and

optimized throughout the training process of the overall network.

3.1.5 Adam Optimizer

An optimizer is a function used to iteratively traverse the decision boundary of a given objec-

tive function and solve for values that define a possible global (but definitely local) optimal point

at which the gradient of the decision boundary is given a value (Kingma & Ba, 2014). In simpler

terms, an optimizer is simply a function that calculates the new weights based on a given instance (or

a mini-batch of instances). These new weights are calculated to perform better on the given instance

(or mini-batch) than the previous weights. The Adam Optimizer (Kingma & Ba, 2014) is an algo-

rithm for stochastic optimization of a neural network’s loss function that can be significantly faster

in some cases than simpler optimizers such as stochastic gradient descent. The Adam Optimizer

simply computes the first moment estimate (estimated mean) and the second raw moment estimate

(estimated variance about 0). Along with the given learning rates, the first and second raw moment

estimates from the given and previous instances are used to compute the new weights. Adam holds

in memory a moving average of estimated mean and estimated variance about 0. This allows for a

small memory footprint of the Adam Optimizer as well as a higher computational efficiency. At the

first weight update process, the moving averages of the first and second raw moments are initialized

to 0. This initialization to 0 requires a bias-correction step which results in the higher effectiveness

of the Adam optimization method (Ruder, 2016).
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3.2 Frameworks and Libraries

Here we provide a brief description of the frameworks and libraries used in our project as well

as our rationale for selecting them.

3.2.1 TensorFlow

TensorFlow (Abadi et al., 2015) is an open-source machine learning framework developed at

Google. TensorFlow was a significant upgrade over previous machine learning frameworks such as

Scipy (E. Jones, Oliphant, & Peterson, 2001) and MALLET (Andrew Kachites McCallum, 2002).

Given a mathematical equation, TensorFlow allows the equation to be decomposed into various

constituents such that the data provided as input to the equation is made to flow from one part of

the equation to another. Intuitively, this is performed by mapping operations of an equation in order

of priority to supply outputs to the next operation. For example, an equation f(x) = ax + b can

be broken down as h(g(x)) where g(x) = ax and h(g) = g + b. The input x can then be used to

compute the node g(x) and the result of that can be used to compute the node h(g) which results in

the value for f(x). The most important advantage of this approach from the perspective of neural

networks is that an equation can be broken down into easily differentiable pieces which is important

for backpropagation algorithms. Using basic calculus principles, these nodes can be automatically

differentiated in order to assist with the backpropagation procedures. This is in addition to other

advantages such as allowing for large scale distributed computation of certain nodes as well as the

ability to debug and visualize the data resulting from “steps” in a given equation.

While TensorFlow is created as a node computational graph library, its major use is in Deep

Learning algorithms. As such, TensorFlow provides tooling as well classes to generate a neural

network as well as plug-in pre-written layers. However, since TensorFlow is not a mature library,

API stability is an important concern and therefore programming projects using TensorFlow as a

library requires consistent maintenance for updates as well as possibility of bugs and unexpected

changes in the library code.
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3.2.2 Keras

Keras (Chollet, 2015) is a high level library that abstracts away the underlying computational

engine and allows for faster and rapid prototyping for proof of concepts as well as larger projects.

Since most computational engines for neural networks are new and subject to change often, Keras

acts as a middle layer thereby allowing for rapid changes to be matched against a more confor-

mant and backward compatible API. This allows for lesser maintainability than writing projects

directly against a computational engine. As a drawback however, newer and cutting edge features

and models provided by a computational engine are harder to make use of. Since Keras allows

abstraction against the computation engine, it also provides the ability to switch out TensorFlow for

Theano (Al-Rfou et al., 2016) or CNTK (Seide & Agarwal, 2016) which are alternatives to Ten-

sorFlow as an underlying computational engine. This allows a developer flexibility to switch to

the most promising computational engine given a particular use case. Finally, Keras also provides a

more simpler API out-of-the-box along with some plug-and-play models, and neural network layers

with defaulted parameters based on latest research that allow for even faster prototyping for some

specific cases.

For the purposes of this project, the initial work was performed using TensorFlow. However,

the final implementations and iterations were switched to use Keras instead.

3.3 Experimental Architecture and Design

This section describes how the experiments were created as well as the construction of the

Neural Network used and the data pre-processing step.

3.3.1 Data Pre-processing

For this experiment, we chose to work with the PDTB version 2.0 dataset described earlier in

Section 2.3. Due to the CoNLL competitions (discussed in Section 2.5), the PDTB version 2.0

dataset has become a reference point for argument labeling methodologies. Furthermore, we used

the corpus in the same way as defined in the CoNLL 2015 and 2016 competitions. Using the corpus

in this format for our experiment, allowed us to directly compare the results with other known
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techniques and network architectures used for this problem.

Since our work focuses only on explicit relations, we only considered the explicit relations out

the entire PDTB dataset. In accordance with the guidelines set out in the CoNLL competitions,

Sections 2-21 were used for training and consisted of about 15,246 instances of discourse relations.

For testing, Section 22 was used which, in contrast, had about 699 instances. Details of the dataset

are shown in Table 2.4.

The PDTB consists of a collection of documents annotated with a DocId. Each document itself

is composed of an ordered collection of sentences. Each sentence in turn contains dependencies,

as well as a parseTree along with an ordered list of words. The list of words is further broken

down into the actual raw token as well as information about the token itself. This information

includes the beginning and ending of the word token’s character position in the sentence as well as

the part of speech it belongs to. Also included in the word is a set of Linkers that define which

discourse relation, if any, does the word belong to and what constituent of the relation does the word

conform. In a nutshell, the structure of the parsed file is shown in Figure 3.2. An example instance

of this structure is shown in Appendix A.

Table 3.1: Number of instances in the PDTB Dataset seperated by the position of Arg1 (Prasad et

al., 2008)
Arg1 Position with respect to the connective Count
Same Sentence 11,236

Immediately Preceding Sentence 5,549

Non-adjacant Preceding Sentence 1,666

Following Sentence(s) 8

Total 18,459

As the data was the only input for the neural network, it had to be provided stripped of all at-

tributes in regular text format. While the PDTB provides this as part of the overall dataset, it requires

reading and connecting it to the parsed version. This can be an error prone process. Therefore, we

decided to directly read the parsed dataset and strip out the annotations as and when necessary. Thus,

for the training set, we were able to isolate only the relations themselves. Any intermediate struc-

tures that were not an annotated relation were automatically discarded via this processing pipeline.

However, for our test set, extra steps had to be taken so that we were also allowing for true nega-

tives in the test set; i.e. the instances that are not true explicit (or implicit) discourse relations (as
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annotated in the PDTB). We did this by providing 2 contiguous sentence structures as potential can-

didates for being an explicit discourse relation. The original raw dataset is simple textual articles

so the effect of having 2 contiguous sentences presented as explicit discourse relation candidates

would be the same. While there are possible discourse relations that span more than 2 contiguous

sentences in the PDTB, they are rare and hence we chose to ignore them. Table 3.1 shows in de-

tail the number of explicit discourse relations in the PDTB separated by the spatial structure of the

discourse relations. Furthermore, most participants in the CoNLL 2015 and 2016 competitions (see

Section 2.5) use of contiguous sentences to evaluate potential explicit discourse relation candidates

as well so our approach attempts to stay consistent with this part.

DATASET:= [

DocId : {
S e n t e n c e s : [

{
d e p e n d e n c i e s : { . . . }
p a r s e T r e e : { . . . }
words : [

[

wordToken ,

{
C h a r a c t e r O f f s e t B e g i n ,

C h a r a c t e r O f f s e t E n d ,

L i n k e r s : [ d i s c o u r s e C o n s t i t u e n t d i s c o u r s e I d ]

}
]

]

}
]

}
]

Figure 3.2: Structure of the overall PDTB dataset

Since the input to our neural network required only the words themselves, we were able to

ignore dependency data and parse tree information and instead focus only on the words and sentence

structure. For our purposes, we extracted out the Linkers values and used them to regenerate a

given discourse relation. This had to be done carefully as a given word token could be part of
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multiple discourse relations forming different constituents of every single discourse.

As part of the competition, the final output had to be in a specific format. This format required

providing the word token index at the level of the document itself for each word token that formed

a constituent of an identified discourse relation. Therefore, as part of the input, the index of word

tokens within the document was also computed and provided to the neural network. Once the

discourse relations were mapped out, it was used to generate the vocabulary of the entire dataset.

The vocabulary also contained a special ZERO WORDwhich was used to pad every relation to a fixed

length. This allowed the input data to be uniform throughout the pipeline making it easy to reason

about it with respect to matrix computations as well for proper processing through the embedding

layer of the network itself. Another vocabulary list was also generated at the document level. This

consisted of the token offset for every word with respect to the document itself which was the main

attribute required for formatting the output of the network.

The overall vocabulary was used to generate word embeddings that were simply a numeric

integer value assigned to every word. These integer values were further used to compute discourse

embeddings which, in turn, were vectors of integers where each vector represented a discourse

relation. The length of the vectors was set to the length of the longest discourse relation in the

dataset. The values of the vectors were the integer values or word embeddings corresponding to

the word at the position in the discourse relation. Another corresponding vector was generated for

every discourse embedding which represented the discourse constituent labels for every word in the

discourse relation itself. Thus the final input data was as shown in Figure 3.3.

This final output was then wrapped into a thin wrapper that provided extra functionalities during

training and testing such as the generating random batches of the dataset by shuffling the actual data.

Another functionality included the parsing of the inputs and outputs to a CoNLL acceptable format

so that the results can be read by the official CoNLL validator and accuracy can be computed at any

given point during the training and testing stages.

There were a few caveats relating to this pre-processing that should be taken into account. For

consistency and ease of experimentation, the training and test datasets were pre-parsed before the

training was done. This was done to make sure that the vocabulary contained all the words present

in the entire dataset and so that the neural network was properly initialized to accept the right length
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INPUT := [

[ a , b , c , d , . . . , ZERO WORD, ZERO WORD, ZERO WORD ] ,

[ . . . , ZERO WORD, ZERO WORD, ZERO WORD ] ,

. . .

] ,

LABELS:= [

[ Arg1 , Arg1 , Connec t ive , Arg2 , . . . , 0 , 0 , 0 ] ,

[ . . . , 0 , 0 , 0 ] ,

. . .

]

Figure 3.3: Structure of the overall inputs and outputs for the neural network, where a, b, c, d are

integer values and Arg1, Connective and Arg2 are the output labels.

of a discourse relation (which was set to be the length of the longest discourse relation in the training

and test sets combined). In order to make the system more robust, one can make the embedding

layer be flexible so that it does not require accepting a fixed length of discourse embeddings (but

this may be difficult and ultimately slower). Also, the vocabulary can be made to contain a special

UNKNOWN word token that is assigned to a word that was seen in the test set but not in the training

set. However, care must be taken to parse the token back to its correct offset within the document

so that the validator provided by CoNLL works correctly on the discourse relations that contain this

token.

3.3.2 Network Architecture

The proposed architectures are shown in Figure 3.4. The first network architecture constructed

for this problem consists of a fully connected embedding layer followed by a bidirectional LSTM

layer that feeds into a fully connected layer which finally results in a softmax output. We call this

model m1. As mentioned in Section 3.3.2, the first embedding layer is simply a memory efficient

dictionary look-up that allows a unique vector to be assigned for every integer that may occur

in the dataset. These integers represent the words in the given discourse relation instance. Thus

the unique vectors (replaced in place of the integers) representing the words are constructed as

part of the network and are therefore learned during the training process. The bidirectional LSTM

layer uses the Glorot Uniform technique Glorot and Bengio (2010) for initializing the weights and
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contains 100 LSTM cells in each direction that are passed the results from the embedding layer

simultaneously. The final connected layer, provides the output as a vector of probability scores

over 4 possible labels: Arg1, Arg2, connective or none for each input word. The problem is

modeled as a sequential labeling task and thus every word in a given statement is labelled as either

“Arg1”, “Arg2”, “Connective”, or “None”. The network is optimized via the Adam Optimizer (see

Section 3.1.5) (Kingma & Ba, 2014). No other supplementary information is used during training

and no features are supplied to the model before the training process. The system is able to learn

dependencies based on the syntactic structure between the “Connective” and “Arg2” and long-term

dependencies for “Arg1”.

Figure 3.4: Architectures of model m1 (top) and model m2 (bottom)

Figure 3.5: An illustration of the architecture using model m1 as an example

As an example of our architecture, an illustration for the first model is provided in Figure 3.5.

As a variation we decided to modify the architecture to include a dropout layer and another fully
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connected layer at the end of the original network architecture. We call this next model m2. The

reasoning behind this was to assist the architecture in differentiating between instances where the

same text segments can be part of Arg1 and Arg2 for two different discourse relations. As an

example, Figure 3.6 shows a pair of discourse relations taken from the training set where the first

discourse relation is labelled as Arg1 for the second discourse relation. Thus the textual span

labelled Arg2 for the first instance is labelled as Arg1 for the second instance.

(i) Solo woodwind players have to be creative if they want to work a lot.

(ii) Solo woodwind players have to be creative if they want to work a lot because
their repertoire and audience appeal are limited.

Figure 3.6: An embedded discourse relation pair taken from (Prasad et al., 2008). The discourse

relation (i) at the top appears as Arg1 in the discourse relation (ii) at the bottom.

3.3.3 Loss Function

Kullback Liebler Divergence (KL) (Kullback, 1997) can be used to measure the difference be-

tween two separate probability distributions. KL has a value of 0 if the two given probability

distributions are equal. Mathematically, KL can be expressed as:

DKL(P ||Q) = Ex∼P [logP (x)− logQ(x)]

Cross-entropy (H(P,Q)) can be defined as a simplification of the KL quantity but without the

logP (x) term. This can be mathematically described as:

H(P,Q) = −Ex∼P [logQ(x)]

The KL equation presented earlier can be re-written as:

DKL(P ||Q) = H(P,Q)−H(P )

where H(P ) can be described as:
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H(P ) = Ex∼P [logP (x)]

We can model our gold standard and the outputs predicted by the neural network, as two in-

dependent probability distributions over the input data x. Using the formulations above, we can

measure how different these two distributions are in terms of bits. Minimizing this cross-entropy

with respect to the predicted probability distribution Q(x) can be used as a way to minimize the

differences between the true and predicted distributions, thereby forcing the neural network to con-

verge to the true distribution. Categorical Cross Entropy differs from Binomial Cross Entropy as it

encodes probability distribution over more than two labels. As is the case here with multiple labels

for the multiple constituents of a discourse relation, categorical cross entropy is well suited to our

task. Thus, the true distributions of the labels were modeled as follows:

(1) Arg1: [1, 0, 0, 0]

(2) Connective: [0, 1, 0, 0]

(3) Arg2: [0, 0, 1, 0]

(4) None: [0, 0, 0, 1]

where None was the class where a word belonged to if it was categorized in none of the other

labels.

3.3.4 Using Different Word Embeddings

In order to test the effect of extraneous information to the neural network, we also applied a

variation of our experiments using pre-computed word embeddings instead of generating random

vectors and learning them as part of the network. Consequently, we used GloVe embeddings (Pen-

nington et al., 2014) in one set of experiments and random values in another set. Since we had two

different testable network architectures: m1 and m2 (see Section 3.3.2), this variation added to our

process resulting in 4 independent runs of our experiment:

(1) m1 random
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(2) m1 GloVe

(3) m2 random

(4) m2 GloVe

3.4 Training Process

This section describes the training process and parameter adjustments performed on the net-

work.

3.4.1 Parameters

For our experimentations, hyper-parameter fine-tuning was performed on a trial and error basis.

The available hyper-parameters to tune were the length of the word embeddings, as well as the

number of LSTM cells. The highest accuracy achieved by our system on the test set was with

100 LSTM cells and word embeddings length of 300 (see Table 4.1). It is possible that increasing

these thresholds leads to a dramatic increase in computational time and a decline in accuracy due

to the small size of the dataset which does not contain enough discourse relation instances leading

to sparsity in weight adjustment due to the curse of dimensionality (Bengio et al., 2003). Therefore

our experiment was limited to the following 4 configurations:

(1) m1 random: Embedding Layer of size 1,170 words, Bidirectional LSTM layer of 100 LSTM

cells each + randomly generated word embeddings of length 300

(2) m1 GloVe: Embedding Layer of size 1,170 words, Bidirectional LSTM layer of 100 LSTM

cells each + GloVe based word embeddings of length 300

(3) m2 random: Embedding Layer of size 1,170 words, Bidirectional LSTM layers of 100

LSTM cells each + Dense + Dropout + Dense + randomly generated word embeddings of

length 300

(4) m2 GloVe: Embedding Layer of size 1,170 words, Bidirectional LSTM layers of 100 LSTM

cells each + Dense + Dropout + Dense + GloVe based word embeddings of length 300
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3.4.2 Training Time

Using preliminary experiments that were run over hundreds of epochs, we established that for

our architecture, the training process stabilizes after about 50 epochs and does not improve results

further. Thus for our experiments, all the models were learned over 50 epochs. The computations

were made on the supercomputer “Helios” from Université Laval, managed by Calcul Québec and

Compute Canada. The operation of this supercomputer is funded by the Canada Foundation for

Innovation (CFI), the ministère de l’Économie, de la Science et de l’Innovation du Québec (MESI)

and the Fonds de Recherche du Québec - Nature et Technologies (FRQ-NT).

The experiments were run using a node consisting of a single K20 GPU with 1 CPU Core. Using

the Keras based implementations, the network run takes roughly about 12-13 minutes per epoch to

learn. For a 50 epochs run, this is just about 10-11 hours. The time required for data pre-processing

in comparison is very small. The entire input dataset is generated in about 5 minutes. As can be

expected, the testing process is also significantly faster and takes about 1 to 2 minutes to run. Once

trained, the model is saved and can be reloaded for more test runs. Reloading the model itself takes

about 2-3 minutes.

3.5 Summary

In this chapter we explained the architecture of our four models, as well as our overall experi-

ments. We described in detail the pre-processing of the dataset from its original state to a form that

was provided to the model. We also discussed in detail the loss function provided to the model.

In the next chapter, we discuss and analyze the results of our experiments and compare them

with those presented at CoNLL 2015 and 2016.
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Chapter 4

Results

This chapter first introduces the evaluation criteria used in the CoNLL competition in Sec-

tion 4.1, then discusses the results of our experiments detailed in Chapter 3. Finally, in Section 4.5,

the results of our approach are compared with that of other research teams at the CoNLL competi-

tion.

4.1 Evaluation Criteria

As mentioned in Section 3.3.1, we used the CoNLL works as a baseline for our task. Thus for

calculating the accuracy of our model, we also used the official CoNLL scoring module1.

The CoNLL scoring module was designed to compute the score of argument segmentation by

maximizing the alignment of the gold labels (manually annotated) along with the predicted labels. It

does this by simply iterating through the set of all predicted spans of Arg1 and Arg2 separately and

testing for a match against a given respective argument span from the gold label set. A confusion

matrix is generated based on the count of correct matches found for a given argument span from the

gold label, no match found as well as any predicted spans that could not be matched with any gold

relation. Finally, in order to compute the final outputs of the performance metrics of the classifier,

the resulting data is plugged in the formulae for Precision, Recall and F1 Score. These formulae

are shown in Figure 4.1. The CoNLL Scoring module was also designed to be able to perform

1 available at https://github.com/attapol/conll16st
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Precision =
TruePositives

TruePositives+ FalsePositives

Recall =
TruePositives

TruePositives+ FalseNegatives

F1 score = 2× Precision×Recall

Precision+Recall

Figure 4.1: Formulae for Precision, Recall and F1 Score

partial as well as complete matching of discourse labels. In partial matching, an attempt is made

to align all possible predicted spans with a given span from the gold standard for Arg1 and Arg2

separately and then compute the F1 scores using those alignments. The F1 scores are subjected to a

cut-off value which must be met for the labels to be considered partially matched. Partial matching

was introduced in CoNLL 2016 as a means of providing diagnostic and debugging information for

participating classifiers. It should be noted that in certain conditions, the relation alignment could

become a difficult problem to solve computationally. Consequently, this matching scheme was

never used for official competition purposes.

For our purposes, we used the exact matching scheme only. The scoring module was, however,

slightly adjusted to calculate the performance for explicit discourse relations only. Specifically, the

scoring module was adjusted to provide the scores for the exact match for Arg1 only, Arg2 only

and Arg1+Arg2, for every instance in the test set. Connective and sense classification as well

implicit relation classification metrics were made to be ignored. It should also be noted that the

official scoring module was created to compute precision and recall separately along with the F1

score. However, for our model, we ignored the notion of providing confidence scores and therefore

computed a labeling sequence for every test instance provided. Thus the precision, recall and F1

metrics were equal and are referred to here as the accuracy score.

4.2 LSTM based Neural Network

The results of our experiments (described in Chapter 3) are presented here. All four models

were made to learn discourse relations labeling over 50 epochs for either configurations. In each
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run, the performance was evaluated at the end of every epoch. Figure 4.2 shows the F1 scores for

all the models for Arg1 only, Arg2 only and Arg1+Arg2.

Figure 4.2: F1 score on the test set as a function of the number of iterations on the training set for

Arg1 (top left), Arg2 (top right) and Arg1+Arg2 (bottom) (Hooda & Kosseim, 2017)

As can be noticed in Figure 4.2, for all the models, the rate of learning is highest in the first 10

epochs where the accuracy increases significantly after each consecutive epoch. However, beyond
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that point, increases in F1 measure are far less pronounced. Running these experiments for longer

terms (up to 500 epochs) reveals the exact same trend. The point of saturation is reached early on

after which the model stabilizes.

It is however important to note that for almost all the models, the increase in accuracy achieved

before the saturation point can vary drastically. This can be noticed much more significantly for

Arg1 but not as much for Arg1+Arg2 and very minutely for Arg2.

For Arg1 it can be noticed that using the pre-computed GloVe embeddings can have a major

improvement in the accuracy of roughly 5-7% just around the saturation point. For Arg2 a similar

conclusion can be drawn based on the top right of Figure 4.2. However, the improvement from

using pre-computed GloVe embeddings is not as significant as for Arg1. Overall, as well, the

improvements from the pre-computed embeddings are closer to that of Arg2 than Arg1. This is

most likely due to Arg2 acting as the limiting factor as it has the lower F1 measures as compared

to Arg1.

The combined F1 measure for Arg1+Arg2 is also, significantly lower than either of the con-

stituents separately. Again, this can be explained by the fact that the correctly identified Arg1 and

Arg2 constituents mostly do not belong to the same discourse relations. In terms of F1 measure, as

mentioned earlier, Arg2 has a slight but significantly lower accuracy when compared with Arg1.

We postulate that this is an artifact of the algorithm trying to decipher the more complicated seg-

ments of Arg1 and then incorrectly classifying terms (especially those that are segment boundaries)

in Arg2 in the same way as that for Arg1 which would be an overestimation of the complexity of

Arg2. However, this favors the correct classification of Arg1 at the expense of Arg2.

Another factor to consider is that the graphs for each of the runs are not smooth and fluctuate

significantly (even before reaching the saturation point). This implies that increasing the accuracy

based on some samples, results in a significant drop in correct classification of a considerable set

of test samples. This implies that there are groups of segmentation mechanics or specific rules that

can be used to explain segmentation in groups of discourse relations. However, these rules are ei-

ther contradictory in different circumstances or require a lot more information to be learned. We

hypothesize that the latter is more likely the problem here as our LSTM based neural network is

unable to learn this information in a smoother fashion even over time. This hypothesis is reinforced
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Table 4.1: F1 scores of our LSTM models for explicit relations compared to the best (hand-crafted)

approaches and to (L. Wang et al., 2015)
Model Arg1+Arg2 Arg1 Arg2 Method
J. Wang and Lan (2016) 55.11% 62.01% 81.26% Linear classification

Schenk et al. (2016) 54.41% 61.97% 78.87% CRF

Qin, Zhang, and Zhao (2016) 53.44% 60.99% 79.94% SVM

Oepen et al. (2016) 51.37% 60.72% 75.83% SVM

Laali, Cianflone, and Kosseim (2016) 48.67% 56.71% 75.95% CRF

Kong, Li, Li, Zhu, and Zhou (2016) 46.37% 52.89% 74.81% MaxEnt

m2 Glove 25.75% 42.06% 41.49% Bidirectional LSTM

m1 Glove 24.89% 42.35% 39.48% Bidirectional LSTM

m2 random 23.75% 39.63% 37.34% Bidirectional LSTM

m1 random 22.75% 36.62% 38.63% Bidirectional LSTM

L. Wang et al. (2015) 20.52% 28.55% 41.78% RNN

by the m2 Glove runs which have a visually less erratic and smoother curve than their m1 Glove

counterpart. This indicates that adding more neurons as well as Dropout layer (to enforce general-

ization) will allow learning this information. However, all models still exhibit many discreet peaks

and valleys. This points to the lack of richness of the dataset itself with regards to learning without

much prior information. This also suggests that a heavily architected rule-based algorithm can be

used to emulate this specific dataset (however, that may not generalize over other datasets very well

and would therefore be very restrictive in usage).

4.3 CoNLL 2015 and 2016

Table 4.1 shows how our models compare with state of the art systems from the CoNLL 2015

and CoNLL 2016 competitions. As Table 4.1 clearly shows, hand-engineered approaches or ap-

proaches that involve manually identifying and implementing features, vastly outperform our

LSTM methodology with F1-measures as high as 55.11% for both Arg1+Arg2, 62.01% for Arg1

and 81.26% for Arg2. For Arg2 our models’ F1-measures fall to almost half the value (and even

lower for some variations) as compared to the state of the art model that uses linear classifica-

tion (J. Wang & Lan, 2016). However, for Arg1, the LSTM based networks perform fairly well

even without GloVe embeddings (in the case of m2 Glove where it is roughly equivalent to about

two-thirds the F1-measures when compared to the state of the art model from (J. Wang & Lan,

2016)). This tends to suggest that, given enough data, and a more optimized network architecture,
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a generic model can be constructed with acceptable accuracy scores for Arg1 that can be learned

without any prior information about the dataset itself.

Also, when compared to (L. Wang et al., 2015), both our models outperform the RNN based

approach. While (L. Wang et al., 2015) included hand-engineered features along with skip-gram

word embeddings (Mikolov et al., 2013) of size 100, as well as 300 hidden nodes for the RNN layer,

our model incorporates GloVe vectors of size 300 and only a 100 nodes at the LSTM layer. Unlike

RNN nodes, the LSTM nodes provide the ability to control retaining the information seen earlier in

a given discourse relation sequence. This information is stored within each LSTM cell as its internal

memory. This seems to show that terms in a discourse relation sequence are unequally important

in terms of their relation to the segment boundaries for Arg1 and Arg2. This also shows that

retaining information from some terms and ignoring others might be a better optimization strategy

when learning segment boundaries for Arg1 and Arg2. Finally, this also hints at the fact that some

terms in a given discourse relation that are much further away from the segment boundaries might

be more important than those that are closer.

A major dichotomy between the approaches from CoNLL 2015 and 2016 is that almost all of

these approaches account for the differences between Arg1 and Arg2 and therefore, build different

models to learn the structures of the respective arguments. This involves a comprehensive break-

down of the overall algorithm that require learning either of the boundaries of Arg1 or Arg2 first

and then based on that information attempt to choose a strategy that will identify the boundaries

of the other argument with respect to information resolved earlier. In all such cases, the primary

information that these pipeline-based models depend on is the location of Arg1 which is known to

be the hardest of the two to identify (Prasad et al., 2007). In comparison, our approach treats the

entire structure as a black box and forces the network to learn the differences and similarities of the

two arguments within the same model as opposed to separate ones. This leads to a formulation that

would, in general, require significantly more amounts of training data that is not required by the

aforementioned approaches. This serves as an important explanation for the differences between

our model and those used in CoNLL 2015 and 2016. In essence, we leave it up to our model to un-

derstand and learn the differences between Arg1 and Arg2 and neither, rather than build separate

models and account for overlaps and / or information produced independently by one of the models.
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Figure 4.3: The pipeline based architecture used by J. Wang and Lan (2016) at CoNLL 2016. The

image shows how the algorithm can be divided into multiple models, the use of which, depends

heavily on identifying the location of Arg1 within a given discourse relation.

It should also be mentioned that while almost all of the approaches seem to outperform our

models, these approaches overlap significantly in the features and methodologies used. In fact, the

methodology used by (Schenk et al., 2016) is to simply re-use the best models from CoNLL 2015

and output the final result using weighted accuracy estimates from the two models. Such similarities

between the approaches given here explain the small space of F1 scores between which most of these

approaches exist. Many of these methodologies also disregard one of the three classes for Arg1

locations rather than include them as part of the learning dataset. Recall from Section 2.3, in a

given discourse relation with respect to the discourse connective, an Arg1 can appear either in the

same sentence, preceding sentence(s) or a following sentence (Prasad et al., 2008). Since the PDTB

dataset contains only 8 out of 18459 instances where Arg1 can appear in a sentence following

that where the discourse connective exists (see Table 3.1), those instances are disregarded by most

systems. Most systems also disregard instances where Arg1 occurs in non-adjacent preceding

sentence(s). This is also justifiable with the same reasoning, as the PDTB dataset only contains
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about 1674 of such instances making up about 9% of the PDTB dataset (see Table 3.1) (Prasad et

al., 2008). Our system, in contrast, does not take into account the lack of instances for such cases

and continues to learn from and identify it, as it would for any other instance in the training and test

sets.

Finally, as discussed in Section 3.3.2, some discourse relation instances in the PDTB dataset, are

known to be embedded within other discourse relations. The example in Figure 3.6 illustrates this

in greater detail. Our models were not specialized to take into account the recursive nature of these

discourse relations. While the models presented at CoNLL 2015 and 2016 do not explicitly account

for this scenario either, they do attempt to classify a discourse relation by learning the location of

Arg1 within the relation and therefore implicitly account for these cases. In our case, however,

this differs as the model has to learn based on word-embeddings (that are either seeded or learned

during training) with no features to adjust for recursive cases.

4.4 Distance based F-measure

As mentioned earlier in Section 2.6.3, the LSTM based approach is able to deal with long-term

dependencies better than a vanilla RNN based model. To verify this hypothesis, we separated the

test dataset by the distance between Arg1 and Arg2. This was done by counting the words between

the closest words of Arg1 and Arg2 excluding the words labelled as constituents of the discourse

connective. For most instances, this meant either counting the word tokens starting from the end of

Arg1 to the start of Arg2 for relations where the Arg1 was in a preceding sentence and from the

end of Arg2 to the start of Arg1 in the case where Arg1 was in a sentence following the discourse

connective. The discourse connective tokens were excluded from this count. Due to the lack of

samples in the test sets, we grouped the instances that had more than 10 word tokens between Arg1

and Arg2. This allowed for a more even distribution between the test dataset in terms of distances.

We calculated the distance-based F1 measure for both our models initialized using random vec-

tors that were learned during the training process (m1 random and m2 random). The calculations

were performed at the last epoch of the training process. Figure 4.4 shows the results achieved. It

can be easily noticed that the model m1 random seems to outperform m2 random for Arg1 and

54



Figure 4.4: Plot of the distance-based F1 scores for Arg1 (top), Arg2 (middle) and Arg1+Arg2
(bottom) (Hooda & Kosseim, 2017)

Arg2. However, model m2 random still gets better scores for Arg1+Arg2 for longer distances

(greater than 9 word tokens). In the case of both models, however, there is no correlation between

the increase in distance and F1 measure that can be abstracted. We can therefore, conclude that

these models are unaffected by the increased distances between the Arg1 and Arg2.

As Figure 4.4 shows, there seems to be a significant parity in the F1 scores for most distances

between the two models. This represents the restrictive nature of our dataset in terms of its size and

quality. The lack of balance between different structures (such as those where Arg1 appears in a

preceding sentence as opposed to the same the next sentence than where the discourse connective

is located, as well as the number of relations with a given distance between Arg1 and Arg2) of

a discourse relation mentioned in Section 3.3.1 and also the recursive nature within the relations

shown in Figure 3.6. Thus increasing the number of learnable nodes in the model does not seem to

have much effect in the F1 measures computed over distances between the Arg1 and Arg2
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An important phenomenon to note however, is that while the F1-measures do not seem to cor-

relate with the increasing distances, they do however, decrease significantly for Arg2 and conse-

quently Arg1+Arg2 for distances greater than 10. This reinforces the conclusion made earlier in

Section 4.2 that the learning capacity of the model is much worse for Arg2 than Arg1. It is, how-

ever, interesting to note that between the distances of 2 and 10 words, Arg2 does perform better

than Arg1 (especially at distances of 6 and 9). We posit that this is due to the fact that the model’s

learning capacity with the given dimensionality is limited and therefore, the model is optimized at

a local minima that results in the provided output. Consequently, we believe, that with a larger and

more balanced dataset, the model would perform significantly better on Arg1 than Arg2.

4.5 Analysis

As mentioned in Chapter 2, in the case of explicit relations, since Arg2 is structurally bound

to the discourse connective, locating and marking the boundaries of Arg2 should be much easier

once the discourse connective is successfully identified. Contrary to this idea, in our LSTM based

approach, the opposite results can be observed. As explained earlier in Section 4.2, this is due to

the complexity difference between Arg1 and Arg2. We also believe that a larger dataset would

alleviate much of the issues faced here in the correct identification of the argument spans in a given

discourse relation.

Another important factor to consider is that unlike the models presented at the CoNLL 2015

and 2016 competitions, our architecture attempts to identify both Arg1 and Arg2 using a single

model (instead of separate models for each argument). As a result, due to the structural differences

between Arg1 and Arg2, our model does not perform as well as those presented in the CoNLL

2015 and 2016 competitions. This shows that separating the learning for the two arguments maybe

necessary for better performance in an LSTM based approach.

We also noticed that the pre-computed embeddings result in a higher accuracy than using ran-

domly generated embeddings that are learned using the training dataset from 22.75% to 24.89% in

the case of Model m1 and 23.75% to 25.75% in the case of Model m2. This is likely due to the high

sparsity rates of some words present in the dataset. Due to the low of occurrence of these words, the
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model is unable to learn the argument labels with respect to those words. As a result, during testing,

the model tends to perform poorly with these words in a discourse relation.

As shown in Section 4.4, our model does, however, perform adequately over increasing dis-

tances between Arg1 and Arg2 for a given discourse relation. Our approach further leads to a

promising conclusion that understanding argument segmentation in discourse relations is a task that

can be solved without prior knowledge. While, injecting prior knowledge into the network (for

example, using pre-computed GloVe embeddings) does indeed boost the accuracy of the model, we

believe that it does so only due to the sparsity of some words in the dataset for which the model’s

learning is augmented by the prior knowledge. Therefore, a more balanced dataset would be helpful

to solve this task.

4.6 Summary

In Chapter 4, we have shown the results of our models and compared them with those produced

by other models at the CoNLL 2015 and 2016 competitions. We explained the differences in per-

formance based on the dataset, as well as the model architecture. We also provided results based on

word token distances between Arg1 and Arg2 (discounting the discourse connective) in a given

relation. We showed that our approach does indeed work well against increasing distances between

the two arguments in a discourse relation due to the internal mechanics of an LSTM. We also argue

that the lack of a rich and more balanced dataset hinders the learning of the network.

In the next chapter, we will summarize our findings and discuss the implications and future work

that can be done to extend our approach.
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Chapter 5

Conclusion and Future Work

Chapter 5 provides a general discussion of the project explained in the previous chapters and

focuses on insights gained as well as aspects of the study that warrant further research. We also

outline a few possible options that could be used to improve upon our models presented in Chapter 3.

5.1 Advantages of our Approach

Recall that the goal of our research was to segment or identify the boundaries of Arg1 and

Arg2 using deep learning approaches. To do so, we used an approach based on Bidirectional

LSTMs. This model represents a novel approach towards argument labeling using deep learning

approaches. However, we do fall short against the bench-marked accuracy scores provided by more

conventional approaches. Indeed, our highest F-measure with the CoNLL 2015 and 2016 dataset

reaches only 25.75% while others achieve an F-measure of up to 55.11%. Nonetheless, our approach

does provide an insight into multiple aspects of argument labeling that were not highlighted before.

Applicability to other Languages Our approach promises a potential generalization of argument

labeling over various languages. Since our model does not require hand-crafted features, it can be

used to label arguments written in any other language as well. Assuming a possible structure exists

between arguments within that language and that this structure loosely follows the shallow discourse

structure explained in Section 2.3, then, given enough annotated data to serve as training set, we
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expect to see similar accuracy scores as that provided by our system for the PDTB dataset (Prasad

et al., 2008).

No Feature Engineering Another major advantage of our approach lies in the fact that no pre-

viously understood feature set was required to elicit the accuracy scores that were presented in

Section 4.2. The most important disadvantage with feature based engineering is that there is always

a danger for over-fitting the model to the dataset. This, in turn, is hard to provide proof for with-

out having access to multiple complementary datasets. Computational linguistics in general and

argument labeling in particular are specially prone to this dilemma since, even though the PDTB is

complemented by the RST dataset, the two are based on fundamentally different approaches of un-

derstand discourse relations and therefore cannot be used to serve as comparison. Furthermore, the

RST corpus uses the same underlying text for annotation thereby making the comparison impossible

since the feature set that needs to be tested for specificity is still locked to the same domain.

Use of Pre-Trained Embeddings While our model does indeed perform better using pre-generated

GloVe embeddings, there are multiple arguments that make the use of pre-generated embeddings

more promising than a hard coded feature set. Firstly, the difference in accuracy is not sufficient to

justify that the model performs poorly without it (which tends to be the case for many features for

a given model). Secondly, the use of pre-generated embeddings is much more benign as it can be

generated from raw text via unsupervised learning. This overhead, only adds to the training time

for the model since if pre-generated embeddings do not exist, they have to be created before the

model can be trained for argument labeling. The data required for generating these embeddings

does not rely on a specific domain or any features, but rather only on a large body of provided text

and the definition of word tokens which carries over into the model as well. Thus, this improves our

confidence in generalizing the model over various datasets in the same language as well as different

languages than those with embedded features that assist in de-structuring the given training set.

Easy to Expand Another advantage is that our model is simple and easy to extend. While there are

multiple variations that can be built further from it, the original approach provides a simple starting

point that can be used to test out multiple theories and architectures. For example, a pipeline like
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architecture, reminiscent of conventional models can be applied on top of our approach. Similarly

a more parallel graph can be built around it that passes information back and forth (instead of

sequentially) to understand an argument using more than just one network. Furthermore, it is also

easy to incorporate specific features or knowledge into the model. As an example, consider transfer

learning using GloVe embeddings. Another way to provide more features to the model is by simply

parsing the training instances using a specific feature function and then replacing the word tokens in

the training set in such a way that it directs the model to learn the feature. For example, identifying

the discourse connective and replacing it with an artificial word token “DC” would allow the model

to rely heavily on the presence of “DC” to identify the start of an Arg2 (since Arg2 is structurally

bound to the discourse connective. See Section 2.3 for more details).

Better Modeling Finally, our model allows better experimentation and understanding of the anaphoric

discourse theory (Webber et al., 2003) utilized in the PDTB dataset. By synthetically altering vari-

ous factors (such as distance between Arg2 and the discourse connective, as well as switching the

position of Arg1 before, after or within Arg2), one can understand how the model abstracts the

general structure of a discourse relation and guide the model towards a better understanding for a

given discourse relation instance. This also enforces the idea that the D-LTAG (Polanyi et al., 2004;

Webber, 2004) holds merit and a general validation of the framework can be derived independently

of human bias. Finally, allowing for generalization over multiple languages, this technique can re-

veal further insights in discourse theory and help guide understanding towards language structure

in general.

5.2 Shortcomings of our Approach

Even though our approach does open up new paradigms for argument labeling methodologies,

it does have its shortcomings that must be improved upon.

Lack of data A significant problem with our models, as is the case with most deep learning

approaches, is that the lack of rich training data prevents a more efficient optimization of the model

which, in turn, would lead to better accuracy scores. As mentioned earlier, the training set used lacks
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in size for what would be adequate for a large deep learning model. It also comprises of multiple

discourse relations that are contained within other discourse relations making it harder for the model

to understand the relationship between the arguments that comprise of multiple discourse relations

within a given segment of text. Alternatively, this could also be seen as an area of improvement

for our model where understanding of embedded discourse relations is vital. However, for such a

requirement, the model needs to be heavily adjusted to account for the possible depth of a nested

discourse relation leading towards a more RST (Mann & Thompson, 1988) based approach for

discourse relations for which the RST-DT (Carlson et al., 2002) would be more appropriate as a

training set.

Low Performance Another major drawback of our approach is the F-measure of the model. It

is evident from Section 4.3 that, given the same amount and type of dataset, our model does not

produce F-measure values in the same order as those presented at CoNLL 2015 and 2016. This

suggests further fine tuning in the model parameters or a complete overhaul of the entire model

architecture itself. One could argue, that the number of neurons within the model could be increased

to allow for a more generalized learning. However, in that case, various steps must be taken to

avoid over-fitting the dataset to the model. Another argument can be that learning the structures

for Arg1 and Arg2 is not efficient as they are inherently different. When it comes to labeling

Arg2, the problem is slightly easier as the discourse connective acts as a marker for the start of

Arg2. However, Arg1 can be present before or after the Arg2 making it difficult to locate. Also,

given that Arg1 can be an arbitrarily far away from Arg2 for a given discourse relation, it would

be difficult to properly generate a correct and complete discourse relation as opposed to confusing

Arg1 of a given discourse relation with the Arg2 of an adjacent discourse relation.

Architectural Constraints Another major challenge that we faced with our model is that, while

the Arg1 and Arg2 F1-measure values were lower than those architectures presented at CoNLL

2015 and 2016, the Arg2 F1-measure scores were lower in general when compared to Arg1 F1-

measure scores. This is counter intuitive as theoretically Arg2 is easier to locate due to its structural

attachment to the discourse connective. Arg1 on the other hand is unbounded and therefore much
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harder to locate and thus label. Furthermore, the theory that Arg2 is easier to locate, is well demon-

strated by almost all the projects submitted for the CoNLL 2015 and 2016 competitions. While this

hints at the fact that our model has an architectural flaw, much work needs to be done in order to

determine a more optimal model that can handle both Arg1 and Arg2 appropriately.

No smoothening over labels Another improvement that could be made to the model is the addi-

tion of a smoothening technique. It was noticed that in some of the cases where the model learned

labeling word tokens as either Arg1, Arg2 or neither, the model was not consistent in mapping

out contiguous segments of text as either Arg1 or Arg2. It could be helpful to test the effects of

a generalizing rule where, for example, a word token classified as Arg2 in the middle of 3 word

tokens classified as Arg1 on both sides, is remapped to be labelled as Arg1 instead. This could

improve the accuracy scores and it would be useful to know if a more complicated computation

(such as linear programming) could be helpful in boosting the accuracy scores for the model again

without providing extraneous information. Such computation could also be mapped as a tertiary

neural network that could simply be learned on fake dataset that encodes the smoothening rules that

need to be applied.

Test over multiple languages The last improvement that can made on our work is that, since

our model is generalized to not require any features and still provide an accuracy score that is

not due to chance, it posits a hypothesis that argument labeling in this manner can be generalized

over languages other than English. This hypothesis needs further work such as testing it over other

languages where datasets of a similar magnitude exists. While such scenarios do present themselves

in other languages, experiments need to be performed to confirm or reject this hypothesis. An

interesting improvement could be to test on model on a dataset that is induced using PDTB such as

the one presented in (Laali & Kosseim, 2017). This will also allow for providing a baseline for how

our model behaves on different languages within the same framework as opposed to a discourse

relations framework that is not standardized over multiple languages.
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5.3 Future Work

In our experiments, we attempted to take advantage of a bidirectional LSTM based model to

understand discourse relations and perform argument labeling. However, other approaches can also

be applied to test if different architectures could lead to a better result.

As an example, a recursive neural net would be best suited for embedded discourse relations

presented in RST-DT (Carlson et al., 2002). However, for the PDTB, the dataset would have to

be adjusted so that it fits well within the context of “deep” nesting since the discourse relations

in PDTB are shallow. Another possibility could be the use of Gated Recurrent Units (GRUs) in

place of LSTM cells in order to test the effectiveness of a memory based network. The GRU holds

promise, since it has been known to perform better on smaller datasets (Chung, Gulcehre, Cho, &

Bengio, 2014).

Another option could be to take advantage of even simpler Boltzmann machines (Hinton, Se-

jnowski, et al., 1986) or a Deep Belief Net (Hinton, Osindero, & Teh, 2006). However, due to the

complex structures of discourse relations and the significant amount of variations within the rela-

tions, this approach is not expected to perform very well. One could also attempt to solve this issue

using a convolutional neural network. This might prove useful and even have a better accuracy

score for some discourse relations. However, we believe that, this approach would not work very

well over discourse relations where Arg1 is much further away from Arg2.

A final approach could be to use attention mechanisms with RNNs. With the recent rise of

attention based techniques (Xu et al., 2015) and the ability to allow a network to learn the relevant

parts to focus on based on the instance itself, this is a step above the bidirectional LSTM approach

presented here. An architecture involving attention could prove useful in improving the accuracy

scores much further even for cases where long distances between Arg1 and Arg2 could potentially

be a concern.

Lastly, in general, the model could further benefit from a more defined technique for optimizing

the hyper-parameters of the network. Algorithms such as Grid Search can be implemented in order

to boost the efficiency further without involving trial and error based on numerous executions of the

learning and testing process. Although, hyper-parameter optimization especially Grid Search can
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require the model to be re-run several times and therefore prove to be computationally expensive to

perform.

5.4 Summary

In this chapter, we provided a summary of the advantages of our approach, as well as its disad-

vantages and suggestions for further improvements. In short, we assert that while our approach and

its results show promise, there is still much work to be done before we can consider this a viable

alternative to feature-based learning for argument labeling in discourse relations.
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Appendix A

Parsed Document

This appendix shows an example of a parsed section of the wsj 0200 document from the

PDTB below:

1 {
2 "sentences": [
3 {
4 "dependencies": [
5 [
6 "prep",
7 "attributed-45",
8 "In-1"
9 ],

10 [
11 "det",
12 "review-5",
13 "an-2"
14 ],
15 [
16 "dep",
17 "19-4",
18 "Oct.-3"
19 ],
20 [
21 "amod",
22 "review-5",
23 "19-4"
24 ],
25 [
26 "pobj",
27 "In-1",
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28 "review-5"
29 ],
30 [
31 "prep",
32 "review-5",
33 "of-6"
34 ],
35 [
36 "det",
37 "Misanthrope-9",
38 "The-8"
39 ],
40 [
41 "pobj",
42 "of-6",
43 "Misanthrope-9"
44 ],
45 [
46 "prep",
47 "Misanthrope-9",
48 "at-11"
49 ],
50 [
51 "poss",
52 "Theatre-15",
53 "Chicago-12"
54 ],
55 [
56 "possessive",
57 "Chicago-12",
58 "’s-13"
59 ],
60 [
61 "nn",
62 "Theatre-15",
63 "Goodman-14"
64 ],
65 [
66 "pobj",
67 "at-11",
68 "Theatre-15"
69 ],
70 [
71 "nn",
72 "Classics-19",
73 "Revitalized-18"
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74 ],
75 [
76 "dep",
77 "Theatre-15",
78 "Classics-19"
79 ],
80 [
81 "dep",
82 "Classics-19",
83 "Take-20"
84 ],
85 [
86 "det",
87 "Stage-22",
88 "the-21"
89 ],
90 [
91 "dobj",
92 "Take-20",
93 "Stage-22"
94 ],
95 [
96 "prep",
97 "Take-20",
98 "in-23"
99 ],

100 [
101 "nn",
102 "City-25",
103 "Windy-24"
104 ],
105 [
106 "pobj",
107 "in-23",
108 "City-25"
109 ],
110 [
111 "dep",
112 "Classics-19",
113 "Leisure-28"
114 ],
115 [
116 "cc",
117 "Leisure-28",
118 "&-29"
119 ],
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120 [
121 "conj",
122 "Leisure-28",
123 "Arts-30"
124 ],
125 [
126 "det",
127 "role-34",
128 "the-33"
129 ],
130 [
131 "nsubjpass",
132 "attributed-45",
133 "role-34"
134 ],
135 [
136 "prep",
137 "role-34",
138 "of-35"
139 ],
140 [
141 "pobj",
142 "of-35",
143 "Celimene-36"
144 ],
145 [
146 "vmod",
147 "Celimene-36",
148 "played-38"
149 ],
150 [
151 "prep",
152 "played-38",
153 "by-39"
154 ],
155 [
156 "nn",
157 "Cattrall-41",
158 "Kim-40"
159 ],
160 [
161 "pobj",
162 "by-39",
163 "Cattrall-41"
164 ],
165 [
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166 "auxpass",
167 "attributed-45",
168 "was-43"
169 ],
170 [
171 "advmod",
172 "attributed-45",
173 "mistakenly-44"
174 ],
175 [
176 "root",
177 "ROOT-0",
178 "attributed-45"
179 ],
180 [
181 "prep",
182 "attributed-45",
183 "to-46"
184 ],
185 [
186 "nn",
187 "Haag-48",
188 "Christina-47"
189 ],
190 [
191 "pobj",
192 "to-46",
193 "Haag-48"
194 ]
195 ],
196 "parsetree": "( (S (PP (IN In) (NP (NP (DT an) (ADJP (NNP

Oct.) (CD 19)) (NN review)) (PP (IN of) (NP (" ") (NP (
DT The) (NN Misanthrope)) (" ") (PP (IN at) (NP (NP (NP
(NNP Chicago) (POS ’s)) (NNP Goodman) (NNP Theatre)) (
PRN (-LRB- -LRB-) (NP (NP (" ") (NP (NP (NNP Revitalized
) (NNPS Classics)) (VP (VB Take) (NP (DT the) (NNP Stage
)) (PP (IN in) (NP (NNP Windy) (NNP City))))) (, ,) ("
")) (NP (NNP Leisure) (CC &) (NNP Arts))) (-RRB- -RRB-))
)))))) (, ,) (NP (NP (DT the) (NN role)) (PP (IN of) (NP
(NP (NNP Celimene)) (, ,) (VP (VBN played) (PP (IN by)

(NP (NNP Kim) (NNP Cattrall)))) (, ,)))) (VP (VBD was) (
VP (ADVP (RB mistakenly)) (VBN attributed) (PP (TO to) (
NP (NNP Christina) (NNP Haag))))) (. .)) )\n",

197 "words": [
198 [
199 "In",
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200 {
201 "CharacterOffsetBegin": 9,
202 "CharacterOffsetEnd": 11,
203 "Linkers": [
204 "arg1_3173"
205 ],
206 "PartOfSpeech": "IN"
207 }
208 ],
209 [
210 "an",
211 {
212 "CharacterOffsetBegin": 12,
213 "CharacterOffsetEnd": 14,
214 "Linkers": [
215 "arg1_3173"
216 ],
217 "PartOfSpeech": "DT"
218 }
219 ],
220 [
221 "Oct.",
222 {
223 "CharacterOffsetBegin": 15,
224 "CharacterOffsetEnd": 19,
225 "Linkers": [
226 "arg1_3173"
227 ],
228 "PartOfSpeech": "NNP"
229 }
230 ],
231 [
232 "19",
233 {
234 "CharacterOffsetBegin": 20,
235 "CharacterOffsetEnd": 22,
236 "Linkers": [
237 "arg1_3173"
238 ],
239 "PartOfSpeech": "CD"
240 }
241 ],
242 [
243 "review",
244 {
245 "CharacterOffsetBegin": 23,
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246 "CharacterOffsetEnd": 29,
247 "Linkers": [
248 "arg1_3173"
249 ],
250 "PartOfSpeech": "NN"
251 }
252 ],
253 [
254 "of",
255 {
256 "CharacterOffsetBegin": 30,
257 "CharacterOffsetEnd": 32,
258 "Linkers": [
259 "arg1_3173"
260 ],
261 "PartOfSpeech": "IN"
262 }
263 ],
264 [
265 """,
266 {
267 "CharacterOffsetBegin": 33,
268 "CharacterOffsetEnd": 34,
269 "Linkers": [
270 "arg1_3173"
271 ],
272 "PartOfSpeech": """
273 }
274 ],
275 [
276 "The",
277 {
278 "CharacterOffsetBegin": 34,
279 "CharacterOffsetEnd": 37,
280 "Linkers": [
281 "arg1_3173"
282 ],
283 "PartOfSpeech": "DT"
284 }
285 ],
286 [
287 "Misanthrope",
288 {
289 "CharacterOffsetBegin": 38,
290 "CharacterOffsetEnd": 49,
291 "Linkers": [
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292 "arg1_3173"
293 ],
294 "PartOfSpeech": "NN"
295 }
296 ],
297 [
298 """,
299 {
300 "CharacterOffsetBegin": 49,
301 "CharacterOffsetEnd": 50,
302 "Linkers": [
303 "arg1_3173"
304 ],
305 "PartOfSpeech": """
306 }
307 ],
308 [
309 "at",
310 {
311 "CharacterOffsetBegin": 51,
312 "CharacterOffsetEnd": 53,
313 "Linkers": [
314 "arg1_3173"
315 ],
316 "PartOfSpeech": "IN"
317 }
318 ],
319 [
320 "Chicago",
321 {
322 "CharacterOffsetBegin": 54,
323 "CharacterOffsetEnd": 61,
324 "Linkers": [
325 "arg1_3173"
326 ],
327 "PartOfSpeech": "NNP"
328 }
329 ],
330 [
331 "’s",
332 {
333 "CharacterOffsetBegin": 61,
334 "CharacterOffsetEnd": 63,
335 "Linkers": [
336 "arg1_3173"
337 ],
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338 "PartOfSpeech": "POS"
339 }
340 ],
341 [
342 "Goodman",
343 {
344 "CharacterOffsetBegin": 64,
345 "CharacterOffsetEnd": 71,
346 "Linkers": [
347 "arg1_3173"
348 ],
349 "PartOfSpeech": "NNP"
350 }
351 ],
352 [
353 "Theatre",
354 {
355 "CharacterOffsetBegin": 72,
356 "CharacterOffsetEnd": 79,
357 "Linkers": [
358 "arg1_3173"
359 ],
360 "PartOfSpeech": "NNP"
361 }
362 ],
363 [
364 "-LRB-",
365 {
366 "CharacterOffsetBegin": 80,
367 "CharacterOffsetEnd": 81,
368 "Linkers": [
369 "arg1_3173"
370 ],
371 "PartOfSpeech": "-LRB-"
372 }
373 ],
374 [
375 """,
376 {
377 "CharacterOffsetBegin": 81,
378 "CharacterOffsetEnd": 82,
379 "Linkers": [
380 "arg1_3173"
381 ],
382 "PartOfSpeech": """
383 }
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384 ],
385 [
386 "Revitalized",
387 {
388 "CharacterOffsetBegin": 82,
389 "CharacterOffsetEnd": 93,
390 "Linkers": [
391 "arg1_3173"
392 ],
393 "PartOfSpeech": "NNP"
394 }
395 ],
396 [
397 "Classics",
398 {
399 "CharacterOffsetBegin": 94,
400 "CharacterOffsetEnd": 102,
401 "Linkers": [
402 "arg1_3173"
403 ],
404 "PartOfSpeech": "NNPS"
405 }
406 ],
407 [
408 "Take",
409 {
410 "CharacterOffsetBegin": 103,
411 "CharacterOffsetEnd": 107,
412 "Linkers": [
413 "arg1_3173"
414 ],
415 "PartOfSpeech": "VB"
416 }
417 ],
418 [
419 "the",
420 {
421 "CharacterOffsetBegin": 108,
422 "CharacterOffsetEnd": 111,
423 "Linkers": [
424 "arg1_3173"
425 ],
426 "PartOfSpeech": "DT"
427 }
428 ],
429 [
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430 "Stage",
431 {
432 "CharacterOffsetBegin": 112,
433 "CharacterOffsetEnd": 117,
434 "Linkers": [
435 "arg1_3173"
436 ],
437 "PartOfSpeech": "NNP"
438 }
439 ],
440 [
441 "in",
442 {
443 "CharacterOffsetBegin": 118,
444 "CharacterOffsetEnd": 120,
445 "Linkers": [
446 "arg1_3173"
447 ],
448 "PartOfSpeech": "IN"
449 }
450 ],
451 [
452 "Windy",
453 {
454 "CharacterOffsetBegin": 121,
455 "CharacterOffsetEnd": 126,
456 "Linkers": [
457 "arg1_3173"
458 ],
459 "PartOfSpeech": "NNP"
460 }
461 ],
462 [
463 "City",
464 {
465 "CharacterOffsetBegin": 127,
466 "CharacterOffsetEnd": 131,
467 "Linkers": [
468 "arg1_3173"
469 ],
470 "PartOfSpeech": "NNP"
471 }
472 ],
473 [
474 ",",
475 {
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476 "CharacterOffsetBegin": 131,
477 "CharacterOffsetEnd": 132,
478 "Linkers": [
479 "arg1_3173"
480 ],
481 "PartOfSpeech": ","
482 }
483 ],
484 [
485 """,
486 {
487 "CharacterOffsetBegin": 132,
488 "CharacterOffsetEnd": 133,
489 "Linkers": [
490 "arg1_3173"
491 ],
492 "PartOfSpeech": """
493 }
494 ],
495 [
496 "Leisure",
497 {
498 "CharacterOffsetBegin": 134,
499 "CharacterOffsetEnd": 141,
500 "Linkers": [
501 "arg1_3173"
502 ],
503 "PartOfSpeech": "NNP"
504 }
505 ],
506 [
507 "&",
508 {
509 "CharacterOffsetBegin": 142,
510 "CharacterOffsetEnd": 143,
511 "Linkers": [
512 "arg1_3173"
513 ],
514 "PartOfSpeech": "CC"
515 }
516 ],
517 [
518 "Arts",
519 {
520 "CharacterOffsetBegin": 144,
521 "CharacterOffsetEnd": 148,
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522 "Linkers": [
523 "arg1_3173"
524 ],
525 "PartOfSpeech": "NNP"
526 }
527 ],
528 [
529 "-RRB-",
530 {
531 "CharacterOffsetBegin": 148,
532 "CharacterOffsetEnd": 149,
533 "Linkers": [
534 "arg1_3173"
535 ],
536 "PartOfSpeech": "-RRB-"
537 }
538 ],
539 [
540 ",",
541 {
542 "CharacterOffsetBegin": 149,
543 "CharacterOffsetEnd": 150,
544 "Linkers": [
545 "arg1_3173"
546 ],
547 "PartOfSpeech": ","
548 }
549 ],
550 [
551 "the",
552 {
553 "CharacterOffsetBegin": 151,
554 "CharacterOffsetEnd": 154,
555 "Linkers": [
556 "arg1_3173"
557 ],
558 "PartOfSpeech": "DT"
559 }
560 ],
561 [
562 "role",
563 {
564 "CharacterOffsetBegin": 155,
565 "CharacterOffsetEnd": 159,
566 "Linkers": [
567 "arg1_3173"
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568 ],
569 "PartOfSpeech": "NN"
570 }
571 ],
572 [
573 "of",
574 {
575 "CharacterOffsetBegin": 160,
576 "CharacterOffsetEnd": 162,
577 "Linkers": [
578 "arg1_3173"
579 ],
580 "PartOfSpeech": "IN"
581 }
582 ],
583 [
584 "Celimene",
585 {
586 "CharacterOffsetBegin": 163,
587 "CharacterOffsetEnd": 171,
588 "Linkers": [
589 "arg1_3173"
590 ],
591 "PartOfSpeech": "NNP"
592 }
593 ],
594 [
595 ",",
596 {
597 "CharacterOffsetBegin": 171,
598 "CharacterOffsetEnd": 172,
599 "Linkers": [
600 "arg1_3173"
601 ],
602 "PartOfSpeech": ","
603 }
604 ],
605 [
606 "played",
607 {
608 "CharacterOffsetBegin": 173,
609 "CharacterOffsetEnd": 179,
610 "Linkers": [
611 "arg1_3173"
612 ],
613 "PartOfSpeech": "VBN"
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614 }
615 ],
616 [
617 "by",
618 {
619 "CharacterOffsetBegin": 180,
620 "CharacterOffsetEnd": 182,
621 "Linkers": [
622 "arg1_3173"
623 ],
624 "PartOfSpeech": "IN"
625 }
626 ],
627 [
628 "Kim",
629 {
630 "CharacterOffsetBegin": 183,
631 "CharacterOffsetEnd": 186,
632 "Linkers": [
633 "arg1_3173"
634 ],
635 "PartOfSpeech": "NNP"
636 }
637 ],
638 [
639 "Cattrall",
640 {
641 "CharacterOffsetBegin": 187,
642 "CharacterOffsetEnd": 195,
643 "Linkers": [
644 "arg1_3173"
645 ],
646 "PartOfSpeech": "NNP"
647 }
648 ],
649 [
650 ",",
651 {
652 "CharacterOffsetBegin": 195,
653 "CharacterOffsetEnd": 196,
654 "Linkers": [
655 "arg1_3173"
656 ],
657 "PartOfSpeech": ","
658 }
659 ],
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660 [
661 "was",
662 {
663 "CharacterOffsetBegin": 197,
664 "CharacterOffsetEnd": 200,
665 "Linkers": [
666 "arg1_3173"
667 ],
668 "PartOfSpeech": "VBD"
669 }
670 ],
671 [
672 "mistakenly",
673 {
674 "CharacterOffsetBegin": 201,
675 "CharacterOffsetEnd": 211,
676 "Linkers": [
677 "arg1_3173"
678 ],
679 "PartOfSpeech": "RB"
680 }
681 ],
682 [
683 "attributed",
684 {
685 "CharacterOffsetBegin": 212,
686 "CharacterOffsetEnd": 222,
687 "Linkers": [
688 "arg1_3173"
689 ],
690 "PartOfSpeech": "VBN"
691 }
692 ],
693 [
694 "to",
695 {
696 "CharacterOffsetBegin": 223,
697 "CharacterOffsetEnd": 225,
698 "Linkers": [
699 "arg1_3173"
700 ],
701 "PartOfSpeech": "TO"
702 }
703 ],
704 [
705 "Christina",
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706 {
707 "CharacterOffsetBegin": 226,
708 "CharacterOffsetEnd": 235,
709 "Linkers": [
710 "arg1_3173"
711 ],
712 "PartOfSpeech": "NNP"
713 }
714 ],
715 [
716 "Haag",
717 {
718 "CharacterOffsetBegin": 236,
719 "CharacterOffsetEnd": 240,
720 "Linkers": [
721 "arg1_3173"
722 ],
723 "PartOfSpeech": "NNP"
724 }
725 ],
726 [
727 ".",
728 {
729 "CharacterOffsetBegin": 240,
730 "CharacterOffsetEnd": 241,
731 "Linkers": [],
732 "PartOfSpeech": "."
733 }
734 ]
735 ]
736 },
737 {
738 "dependencies": [
739 [
740 "nn",
741 "Haag-2",
742 "Ms.-1"
743 ],
744 [
745 "nsubj",
746 "plays-3",
747 "Haag-2"
748 ],
749 [
750 "root",
751 "ROOT-0",
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752 "plays-3"
753 ],
754 [
755 "dobj",
756 "plays-3",
757 "Elianti-4"
758 ]
759 ],
760 "parsetree": "( (S (NP (NNP Ms.) (NNP Haag)) (VP (VBZ plays

) (NP (NNP Elianti))) (. .)) )\n",
761 "words": [
762 [
763 "Ms.",
764 {
765 "CharacterOffsetBegin": 242,
766 "CharacterOffsetEnd": 245,
767 "Linkers": [
768 "arg2_3173"
769 ],
770 "PartOfSpeech": "NNP"
771 }
772 ],
773 [
774 "Haag",
775 {
776 "CharacterOffsetBegin": 246,
777 "CharacterOffsetEnd": 250,
778 "Linkers": [
779 "arg2_3173"
780 ],
781 "PartOfSpeech": "NNP"
782 }
783 ],
784 [
785 "plays",
786 {
787 "CharacterOffsetBegin": 251,
788 "CharacterOffsetEnd": 256,
789 "Linkers": [
790 "arg2_3173"
791 ],
792 "PartOfSpeech": "VBZ"
793 }
794 ],
795 [
796 "Elianti",
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797 {
798 "CharacterOffsetBegin": 257,
799 "CharacterOffsetEnd": 264,
800 "Linkers": [
801 "arg2_3173"
802 ],
803 "PartOfSpeech": "NNP"
804 }
805 ],
806 [
807 ".",
808 {
809 "CharacterOffsetBegin": 264,
810 "CharacterOffsetEnd": 265,
811 "Linkers": [],
812 "PartOfSpeech": "."
813 }
814 ]
815 ]
816 }
817 ]
818 }
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