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Abstract The Surface Water and Ocean Topography (SWOT) mission will measure water surface
elevations and inundation extents of rivers of the world but with limited temporal sampling. By
comparing flood location and duration of 4,664 past flood events recorded by the Dartmouth Flood
Observatory to SWOT's orbit ephemeris, we estimate that SWOT would have seen 55% of these, with higher
probabilities associated with more extreme events and with those that displaced more than 10,000 people.
However, SWOT measurements will exhibit uneven temporal sampling and may require a combination of
data obtained at different times to accurately characterize large events. This is illustrated using recent
flooding in the United States, in eastern Iowa and in Houston and surrounding areas from Hurricane
Harvey. SWOT data have significant potential to improve flood forecastingmodels by offering data needed to
enhance flow routing modeling, provided that users can overcome the potential hurdles associated with its
temporal and spatial sampling characteristics.

Plain Language Summary The Surface Water and Ocean Topography (SWOT) satellite mission
will simultaneously measure water surface elevations and inundated areas for the Earth's land surface. Such
information can be valuable for improving flood models and their calibration; however, SWOT temporal
sampling will be limited, with most locations in the world being seen once every 7 to 10 days, which may
cause it to miss floods. Using a record of global flood information, including duration and location, compiled
by the Dartmouth Flood Observatory and the expected satellite orbit, we estimated that, if already
operational, SWOT would have collected at least one measurement over 55% of these events. We illustrate
SWOT data coverage using flood inundation maps generated for flooding in eastern Iowa (2008) and in
Houston and surrounding areas, Texas, caused by Hurricane Harvey (2017). Due to the novelty of this kind
of hydrological information, particularly in the way SWOT samples rivers in time and space, early
engagement of potential users may be instrumental to maximize the utility of this open source of worldwide
observations of rivers, lakes, and inundated land.

1. Introduction

Floods are linked to many fatalities each year and to billions of dollars in property damage in the United
States alone (Pielke & Downton, 2000; Wing et al., 2018). Quinn et al. (2019) estimated a 1% chance of
damages exceeding $78 billion due to fluvial floods in the United States in any given year. With recovery
periods becoming shorter in some regions due to increased flood frequencies (e.g., Mallakpour & Villarini,
2015), it is valuable to have quick access to data on current and past watershed conditions. Remote sensing
has the potential to complement the existing network of in situ instruments: by filling in the gaps in sparse
stream gauge networks (Alsdorf et al., 2007; Pavelsky et al., 2014; Tarpanelli et al., 2019), by offering
worldwide or near‐worldwide coverage (Biancamaria et al., 2016), and by mitigating data sharing barriers
for international river basins (e.g., Gleason & Hamdan, 2015; Hossain et al., 2014; Sneddon & Fox, 2006,
2012; Wolf et al., 1999).

The upcoming Surface Water and Ocean Topography (SWOT) internationally supported (United States,
France, Canada, and United Kingdom) satellite mission will continuously measure water surface elevation
and inundation areas of rivers wider than 100m and lakes larger than 62,500m2, with nearly global coverage
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(e.g., Biancamaria et al., 2016; Durand et al., 2010; Rodríguez, 2015). However, SWOT data will have limited
temporal sampling, which may interfere with its ability to observe flood events.

Biancamaria et al. (2016) estimate typical SWOT revisit periods to be one to two observations every 20.86
days for locations between 20°S and 20°N and two or more at higher latitudes. Our goal here is to assess
the impact of SWOT's temporal resolution on its ability to detect floods. To fulfill this goal, we use a flood
database compiled by G. R. Brakenridge and associates at the Dartmouth Flood Observatory (hereafter
DFO; accessible through http://floodobservatory.colorado.edu/), which provides records of flood duration,
cause, location, start and end dates, and socioeconomic impacts of floods, globally, since 1985 (Adhikari
et al., 2010; Kundzewicz et al., 2013).

We begin with a short description of the future SWOTmeasurements (section 2), after which we present the
method used to identify which flood events would have been observed if the satellite was operational. We
thereby estimate either the probability of detection of events or the guaranteed number of measurements
per event (section 3). We analyze the probability of detections and their geographical distribution in
section 4 and provide overall conclusions in section 5.

2. SWOT Observations

SWOTwill orbit Earth at an altitude of 890.5 km and inclination of 77.6°, with an exact orbit repeat period of
20.86 days (Biancamaria et al., 2016). The 21‐day cycle is divided into 585 passes: the path that the satellite
follows as it travels from themost southern point to its most northern point (ascending pass) or from north to
south (descending pass). SWOT's main instrument is a Ka‐band radar interferometer, which uses two anten-
nas separated by 10 m to illuminate two 50‐km swaths over the Earth surface. A graphical representation of
the swaths is shown in Figure S1a in the supporting information. The swaths, located at both sides of the
spacecraft's ground track, are separated by a 20‐km nadir gap: an area immediately below the satellite which
is not surveyed during the overpass.

SWOT's basic measurements are the returned microwave power and range to the ground target and the dif-
ference in phase in the return signal received by both antennas. At near‐nadir incidence angles, water is
more reflective to Ka‐band than land surfaces; therefore, the magnitude of the returned power will be used
to distinguish water from land (Biancamaria et al., 2016; Fjørtoft et al., 2014). The phase difference between
the two antennas, the altitude of the spacecraft, and a reference digital elevation model of the surrounding
terrain are used to simultaneously compute the geographical coordinates and the elevation of the water tar-
gets in a process called geolocation, which resembles triangulation (Fjørtoft et al., 2014).

The geolocated targets lie on an irregular grid resembling a cloud of points, or pixel cloud (Domeneghetti
et al., 2018; Frasson et al., 2017). The pixel size in the grid depends on its distance to the SWOT ground track,
with its cross‐track resolution varying from 60 m at the near range to 10 m at far range and its along‐track
resolution fixed at 6 m as illustrated in Figure S1a. Each pixel carries information on how much of its area
is believed to be inundated, the water surface elevation, and target brightness and interferometric coherence,
from which data quality can be assessed.

The standard deviation of pixel height errors are expected to be on the order of meters (Domeneghetti et al.,
2018). However, spatial aggregation can mitigate water surface elevation noise, also allowing the computa-
tion of water surface slopes, resulting in height and slope errors on the order of 10 cm and 1.7 cm/km or less
for a 100‐m‐wide river averaged over a 10‐km‐long reach (Biancamaria et al., 2016; Esteban‐Fernandez,
2013; Frasson et al., 2017; Rodríguez, 2015). Additionally, from the inundation area of pixels contained
within a reach, one can estimate average reach widths, which after several cycles can be stacked according
to reach averaged heights to produce height‐width curves.

An interesting feature of SWOT data will be the ability to construct continuous water surface profiles of riv-
ers. Depending on river orientation and position with respect to the swath, profiles can be longer than 150
km as illustrated for the Sacramento River, which runs mostly in the north‐south direction (Frasson et al.,
2017), or 120 km with a 20‐km nadir gap for the Po River, which runs west to east, as shown by Frasson
et al. (2017) and Domeneghetti et al. (2018). When aggregated into points located every 200 m over river cen-
terlines, called river nodes, the resulting profiles can be used to detect abrupt changes in the water surface
elevation, indicative of hydraulic structures (Frasson et al., 2017), or be assimilated into one‐dimensional
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hydraulic models to estimate discharge (e.g., Brisset et al., 2018; Oubanas et al., 2018). River nodes can be
further aggregated into reaches, thus allowing for estimation of water surface slopes. The retrieval of water
surface elevations and calculation of slopes based on noisy elevation measurements is demonstrated by
Altenau et al. (2017), Altenau et al. (2019), and Tuozzolo et al. (2019), who estimate reach‐averaged slopes
using water surface elevation measurements obtained by an airplane‐mounted Ka‐band radar interferom-
eter (AirSWOT), for the Tanana and Willamette Rivers, USA.

Various studies describe the use of remote sensing to map floods and assess flood risks (e.g., Adhikari et al.,
2010; Andreadis et al., 2017; Brakenridge, 2018; Van Dijk et al., 2016) and data collected by a constellation of
satellites has been used to calibrate and validate hydraulic models (e.g., Bonnema & Hossain, 2017;
Domeneghetti et al., 2014). However, unlike traditional nadir altimeters, SWOT will measure water surface
elevations and inundation areas simultaneously, which is unprecedented from a single sensor. Additionally,
due to its operating frequency, SWOT can penetrate clouds, obtaining inundation extent measurements in
situations where optical sensors cannot observe, thus offering a new opportunity to track river and flood-
plain dynamics (Allen et al., 2018; Bates et al., 2014).

3. Materials and Methods

DFO provides a database containing information on flood duration, cause, location (an indicative polygonal
outline of “flood‐affected area”), reported fatalities, and damage that spans from 1985 to the present
(Adhikari et al., 2010). We accessed the DFO repository on 31 August 2018, which at the time included infor-
mation on 4,664 flood events. Relevant predicted satellite passes for each flood event catalogued by DFO
were identified by comparing the distance between the flood polygon centroid and the ground track corre-
sponding to each of the hypothetical 585 SWOT passes.

A flood event is considered “detected” by a particular SWOT pass if the distance between the flood centroid
and the ground track is larger than or equal to 10 km (inner swath edge) and smaller than or equal to 60 km
(outer swath edge), with graphical representation included in Figure S1b. We estimate the average time
between SWOT visits by dividing the repeat cycle (20.86 days) by the number of swaths that intersected
the centroid of each of the flood events. Finally, we compute the ratio between the flood duration and
the time between SWOT observations, which, if equal to or less than 1, can be interpreted as the probability
that the flood would have been observed by SWOT. Ratios larger than 1 indicate a probability of detection
equal to 1; the value of the ratio in this case indicates the guaranteed number of observations of the
flood event.

We utilize the ratio between flood duration and average time between observations to assess the number of
flood events that would have been observed by SWOT. We consider three levels of observations: (1) likely
observed, (2) guaranteed to be observed at least once during the flood, and (3) observed twice or more
throughout the duration of the event. We built a histogram of probability of observations using classes with
width equal to 0.1. The number of observed events per probability class is approximated by multiplying the
number of events on each class by its central probability, which when added over all probability classes
allows an estimate of the number of DFO‐recorded events that would have been likely observed. The num-
ber of events in the second and third levels of observation were determined by counting the number of flood
events with a ratio between duration and time between observations equal to or larger than 1 and in excess of
2, respectively.

4. Results and Discussion

Figure 1 summarizes the probabilities of detection per flood event. Figure 1a shows the histogram of the ratio
between flood duration and average time between SWOT observations, whereas Figure 1b shows the empiri-
cal cumulative distribution function associated with this ratio. The ratio between flood duration and mean
time between SWOT observations is converted into probability by assigning a probability of 1 to any ratio
greater than 1. We thereby estimate that 55% of the DFO floods would have been observed if SWOT was
operational or 2,565 events out of the 4,664 database entries.

The 4,664 database entries were recorded between 1985 and 31 August 2018, a period much longer than the
expected three‐year duration (Rodríguez, 2015) of the SWOT mission. However, exploring the entire
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Figure 1. (a) The histogram of the ratio between the flood duration and the mean time between observations. Ratios less than or equal to 1 can be interpreted as the
probability of detection, whereas ratios greater than 1 represent the number of times a flood would have been observed. (b) The corresponding cumulative
distribution. (c) Box plots of the probability of detection for each reported flood cause. (d) Box plots of the probability of detection for three severity classes: 1—large
flood events with return period of 10 to 20 years, 1.5—very large events with return period between 20 and 100 years, and 2—extreme events with estimated
recurrence interval greater than 100 years. (e) Probability of detection grouped by the size of the displaced population. The number of events per cause, severity, and
displaced population classes can be found in Tables S1–S3 in the supporting information, respectively.
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duration of the DFO database provides a better sample of flood durations and a more robust estimate of the
fraction of floods that are likely to be observed by SWOT which can then be applied to groups of three
consecutive years. Regarding the number of catalogued floods per year, 1987 had the least number of
recorded floods (45), and 2003 showed the largest number of flood events (297). Considering a fraction of
observed floods of 55% applied to three successive years shows that SWOT would observe between 88
(55% of the floods recorded in 1985, 1986, and 1987) and 413 events (2002–2004), with a typical value (the
median number of observed events per three‐year period) of 198 events.

Figure 1c shows how the probability of detection varies for different flood causes. Notably, three types of
floods have higher probability of detection: those caused by snowmelt, ice jam breakup, and those caused
bymonsoons. While floods caused by snowmelt and ice jam breakup happen characteristically at higher lati-
tudes, where temporal sampling is denser, floods caused by monsoons have longer durations, which bal-
ances the sparser time sampling typical of tropical regions. Additionally, Figure 1c shows four categories
with particularly low probability of detection: floods following torrential rains, dam or levee breaks, extra-
tropical cyclones, and tidal surges, all of which tend to show positively skewed probability of
detection distributions.

Furthermore, the DFO classifies its records into three flood severity categories: 1—large flood events with
significant damage to structures or agriculture and/or estimated recurrence interval between 10 and 20 years,
1.5—very large events with recurrence intervals greater than 20 years but less than 100 years, and 2—
extreme events with an estimated recurrence interval greater than 100 years. Grouping probabilities accord-
ing to flood severity shows that more severe events (class 1.5 and 2) have higher probability of being observed
at least once (Figure 1d). The association between severity and probability of detection is even more visible
when probabilities are grouped by the magnitude of the displaced population. Figure 1e shows that floods
that displace 10,000 or more people have a significantly higher probability of detection than those that dis-
placed less than 10,000.

The latitude of a flood controls the number of revisits per cycle and thus the mean time between SWOT
observations. However, when we mapped the probability of detection of the DFO‐recorded floods
(Figure 2a), we did not observe the probability of detection systematically increasing with higher latitudes
(Figure 2c). The lack of this expected correlation between latitude and probability is because flooding that
occurs in the tropical regions commonly lasts longer than floods at higher latitudes, thereby balancing the
decreasing SWOT sampling frequency. Figure 2b shows the guaranteed number of observations per flood
event and is a good indication of the potential SWOTmay offer to floodmodelers, first responders, and water
managers for typical flood events.

Figure 2 provides conservative estimates of the probability of detection and the number of observations
per event for three reasons: (a) if the ratio between flood duration and mean time between observations
is one, then this flood could potentially be observed twice, depending on the start date of the flood; (b)
observations of river height immediately before a flood may be of importance for flood forecasting, but
we use strictly the flood duration reported by DFO; and (c) when selecting the passes that observed a
flood event, we considered only those that intersected with the centroid of a flood. However, for riverine
floods, observations upstream of a region of interest may carry substantial information about future con-
ditions at a downstream location. For example, upstream discharge is a strong predictor of downstream
discharge once travel time is accounted for (Biancamaria et al., 2011) and in the absence of significant
contributions from tributaries.

While associating waterbodies with flood events could potentially allow us to extend the window of signifi-
cance beyond flood duration, as well as extract information on river width and floodplain extent from global
databases (e.g., Allen & Pavelsky, 2018; Nardi et al., 2019 respectively), water surface slope, meander wave-
length, sinuosity, and discharge from Frasson et al. (2019), flood wave travel time from Allen et al. (2018),
and others, such association is difficult to be automated without extensive manual intervention.
Therefore, we present two case studies where we show the timing of SWOT passes with respect to flood
hydrographs and display relevant SWOT swaths over the study areas, illustrating how spatial coverage
may be during real flood events. The two case studies are the 2008 flood of Eastern Iowa, USA (Chen
et al., 2017; Smith et al., 2013), and the 2017 flood of the Houston metropolitan area, USA, caused by
Hurricane Harvey (Risser & Wehner, 2017; Zhang et al., 2018).
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Figure 2. (a) The probability of detection of all 4,664 floods in the DFO database from 1985 to 31 August 2018. (b) Floods that were certain to be observed if SWOT
was already operational, color coded to represent how many times the flood would have been observed by the satellite. (c) Box plots of the probability of detection
grouped by the latitude of the flood.
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Figure 3a illustrates the inundation extent (in blue) of the Cedar and Iowa Rivers derived from high‐
resolution imagery obtained by the SPOT satellite (Kollasch, 2009) acquired in the days following the peak
flow (17 July 2008) and also the location of the United States Geological Survey (USGS) gages (red triangles).
Four of the available USGS gages provide flood hydrographs (Figures 3b–3e) for the event. To illustrate the
SWOT spatial‐temporal sampling, we identify three relevant passes while assuming an arbitrary start date
for the SWOT cycles on 1 January 2008. Observation times are selected over each of the streamgages, shown
as vertical lines superimposed on the hydrographs (Figures 3b–3e). Locations such as the Iowa River gage at
Marengo would have been sampled four to five times during the period of interest (when the discharge
exceeded annual peak flow). The Cedar River in Cedar Rapids and the Iowa River at Iowa City would have
been observed by SWOT at least twice (Figures 3c and 3d, respectively), while the Iowa River at Wapello
would have been sampled three times (Figure 3e).

Figure 3. (a) The flood extent (in blue) recorded in eastern Iowa in the summer of 2008 and locations of USGS streamgage (red triangles) in the area. The flood
propagated from northwest to southeast. (b–e) The flood hydrographs in Marengo, Cedar Rapids, Iowa City, and Wapello, respectively, where the vertical lines
show SWOT overpass times if SWOT had been operational in 2008. (f–h) The areas observed by the SWOT swaths during the relevant passes superimposed on the
maximum flood extent (in blue).
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Figures 3f–3h show the ground track and the swaths of the three relevant passes (191, 469, 512) in chrono-
logical order, superimposed on the inundation maps. Pass 191 does not intersect the centroid of this flood;
however, it provides information on the upstream sections of the rivers, which offer information on the
incoming flood wave. Additionally, pass 469 would have shown a long, continuous profile of the Iowa
River and sections of the Cedar River, which provides useful information for the calibration and validation
of local flood hydraulic modeling. Despite the swath gap of pass 512 falling over most of the Iowa River
shown in the study area, leaving the area unobserved, this pass would produce a long profile of elevations
over the Cedar River.

At mean annual flow, the section of the Iowa River depicted in Figure 3 has widths between 50 and 100 m,
that is, below the required observation threshold, but above the detection limit of 50 m. This means that at or
below mean annual flow, SWOT measurement uncertainty would likely be higher than the 10‐cm water
height accuracy for reaches and 1.7 cm/km for reach slopes (Desai, 2018; Rodríguez, 2015). Nevertheless,
smoothing techniques presented by Frasson et al. (2017) and applied to AirSWOT data by Tuozzolo et al.
(2019) can improve measurement accuracy, especially when their application can be done with supervision.

SWOT measurements over urban areas can have higher uncertainty than those listed by Desai (2018) and
Rodríguez (2015). Structures neighboring rivers may introduce four sources of error: beam blockage, a situa-
tion when the river would be obscured by surrounding terrain or buildings; terrain layover, when returns
from water and surrounding terrain reach the satellite simultaneously leading to positive biases

Figure 4. The flooding of Houston and surroundings caused by Hurricane Harvey, 2017. (a) The inundation area (in blue) detected by the Sentinel‐1 satellite on 30
August 2017 after exclusion of permanent water bodies, with the Houston metropolitan area shown in gray, and the position of the USGS streamgages (red tri-
angles). (b–d) The hydrographs of three streamgages with the timing of SWOT passes indicated by the vertical lines. (e–g) The five relevant swaths, over which
SWOT would have collected water surface observations, if operational during the Hurricane Harvey superimposed on the inundation map produced for 30 August
2017.
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(Domeneghetti et al., 2018; Fjørtoft et al., 2014; Frasson et al., 2017); multipath propagation caused by reflec-
tion of radar signals on the sides of buildings before reaching water surfaces leading to increased random
errors as well as biases; and bright roofs, when structures may appear bright and therefore may be erro-
neously classified as water. Moreover, although SWOT's resolution of 60 m by 6 m at the near range and
10 m by 6 m at the far range (Figure S1) will be too coarse to resolve flows around densely built environ-
ments, it may be useful for delineation of inundation extents. While such issues can be manually resolved
at local scales, they will incur in higher uncertainty for both water surface elevations and inundation extents
at regional to larger scales. Furthermore, flashfloods on urban settings or otherwise have durations much
shorter than the typical SWOT revisit time exemplified in Figures 3 and 4, rendering such types of events
incompatible with SWOT temporal sampling.

Figure 4 compares the SWOT swath with the inundation caused by Hurricane Harvey. Figures 4a and 4e–4g
show the inundated area based on processing of Sentinel‐1 Synthetic Aperture Radar observations collected
on 30 August 2017 (Brakenridge & Kettner, 2017) with the Houston metropolitan area highlighted in gray in
Figure 4a. Given the lower latitude of Houston as opposed to eastern Iowa, SWOT temporal sampling is spar-
ser. Due to the large flood extent, a mosaic built with several passes is necessary to cover the whole affected
area. Some areas may be observed as waters rise (e.g., Figures 4c and 4d), while others may be monitored as
the flood declines: both can provide insight into different aspects of disaster response and flood manage-
ment, that is, how quickly or widespread a flood event might be, how quickly waters may recede, knowledge
of which can improve resource allocation and better target relief operations. If SWOT information reaches
the end users quickly, it can be valuable for disaster management (Allen et al., 2018). However, even if flood
data are only available sometime after the fact, they can still be of value for, namely, diagnostic and improve-
ment of forecast inundation models, identification of poorly modeled areas, and possibly contribute to refin-
ing floodplain DEMs (Shastry & Durand, 2019). Furthermore, repeated SWOT passes over an area will allow
the creation of relationships between water surface elevation and inundation extent, which can be used in
conjunction with inundation maps generated from other platforms, such as Sentinel 1 to provide denser
time series.

5. Conclusion

The SWOT mission will augment our ability to detect and size floods by simultaneously measuring water
surface elevation and inundation extents over 120‐km‐wide swaths with a 20‐km nadir gap, a novel capabil-
ity compared to other remote sensing platforms such as the SPOT and Sentinel 1. SWOT will measure water
surface elevation and slopes as well as inundation extents of rivers wider than 100 m and possibly as narrow
as 50 m and measure inundation extents and elevations of lakes as small as 62,500 m2 day and night and
through clouds. Even if only available after the end of a flood event, SWOT‐derived water elevation profiles
of rivers can provide valuable information for the calibration and validation of hydraulic, hydrologic, and
geomorphic floodplain extent models.

In some cases, floods cover very extensive geographic areas with persistence measured in weeks (e.g.,
Brahmaputra River flooding, reaching 5‐km widths, at least, each year; Great Mississippi and Missouri
Rivers Flood of 1993). In the latter example, levee failures caused dramatic changes in river elevations as
the flood wave traversed downstream, and flood water reached different maximum levels on different sides
of the trunk streams due to tributary discharge and backwater effects (Brakenridge et al., 1994). Flood waves
may require several days to traverse downstream; it is also likely that SWOTwill, therefore, directly measure
such waves along flooding rivers and provide useful information for comparison to hydraulic modeling
(Brakenridge et al., 1998).

Long‐duration floods, which may be the most destructive and most severely affect local populations, are not
only more likely to be observed, but also will likely be observed more than once. Such observations can, in
turn, provide insight into how riverine floods propagate through the river network, spread across flood-
plains, are affected by levees and levee failures, and how they dissipate. However, SWOT data are irregular
in spatial‐temporal sampling. Locations with latitudes between 20°S and 20°Nwill be observed once or twice
every 20.86‐day cycle, while higher latitudes will be sampled typically 2 ormore times per cycle. Sites that are
observed by multiple passes will have uneven temporal sampling, which is one characteristic that must be
accommodated by the end users. Because of the novelty of this kind of hydrological information, early
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engagement of potential users, that is, through workshops promoted by the SWOT early adopters commu-
nity coordinated by the SWOT applications working group (https://swot.jpl.nasa.gov/applications.htm) as
well as the use of the soon to be released example data products may be instrumental to maximize the utility
of this open source of worldwide observations of rivers, lakes, and inundated land.
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