
ePubWU Institutional Repository

Stefan Sobernig and Michael Maurer and Mark Strembeck

RAMLFlask: Managing artifact coupling for Web APIs

Paper

Original Citation:

Sobernig, Stefan and Maurer, Michael and Strembeck, Mark

(2019)

RAMLFlask: Managing artifact coupling for Web APIs.

This version is available at: https://epub.wu.ac.at/7367/
Available in ePubWU: December 2019

License: Creative Commons Attribution 3.0 Austria (CC BY 3.0 AT)

ePubWU, the institutional repository of the WU Vienna University of Economics and Business, is
provided by the University Library and the IT-Services. The aim is to enable open access to the
scholarly output of the WU.

http://epub.wu.ac.at/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elektronische Publikationen der Wirtschaftsuniversität Wien

https://core.ac.uk/display/275578567?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://epub.wu.ac.at/7367/
http://creativecommons.org/licenses/by/3.0/at/deed.en
http://epub.wu.ac.at/

RAMLFlask
Managing artifact coupling for Web APIs

Stefan Sobernig

WU Vienna

Vienna, Austria

stefan.sobernig@wu.ac.at

Michael Maurer

Independent Developer

mmaurer.at@gmail.com

Mark Strembeck

WU Vienna

Vienna, Austria

mark.strembeck@wu.ac.at

ABSTRACT

Modern Web applications rely more and more on communication

with Web services for providing their composite functionality. Cur-

rently, one of the most popular method of providingWeb services is

via HTTP-based APIs—a.k.a. Web APIs with or without Representa-

tional State Transfer. Such services will usually be implemented in

some general purpose language (e.g., Python) and involve several

stakeholders for development and for maintenance (e.g., developers,

testers, architects). Enabling effective communication and devel-

opment between all of these stakeholders can be difficult though.

Software languages specific to describing service interfaces allow

for providing a further level of abstraction, which can improve

communication between stakeholders while also making develop-

ment under evolution less prone to error. This paper documents a

systematic approach (RAMLFlask) to extending Web application

frameworks (Flask) to include support for interface-description

languages (IDLs such as RAML) and code generation. The contribu-

tions include a systematic elicitation to requirements on interface

descriptions and needs for managing coupled development artifacts

from the perspective of developers of Web services and composite

Web applications. This is based on an overview of relevant litera-

ture, complemented by expert interviews with professional Web

developers.

KEYWORDS

Web engineering, Web application integration, artifact coupling,

interface description, application generator, Flask, RAML

1 INTRODUCTION

Building a Web application involves exposing server-side appli-

cation functionality as services accessible via Web APIs, to be

incorporated by client-side building blocks. A Web application-

programming interface (Web API) defines the contract between

client-side and server-side blocks of a Web application in terms

of the functionality offered and used, respectively, by means of

HTTP—i.e., resources and the HTTP virtual machine. A Web API

can contract additional details depending on their architectural

context. This context typically imposes additional architectural

constraints on a Web service and its API. The constraints follow

from the architectural styles used, such as Representational State

Transfer (REST, esp. HATEOAS) or microservices.

Web APIs and the so-provided Web services are typically imple-

mented on top of a Web application framework (e.g., Flask). To this

end, defining and implementing a Web API often involves code that

is boilerplate and scattered. This boilerplate code is incurred by the

respective framework to implement the API on top of HTTP, which

requires highly similar code sections to be included at many places

2 @app.route('/status/<order_id>', methods=['GET', 'POST'])
3 def order_status(order_id):
4 if request.method == 'POST':
5 # Retrieves the status of a specific order
6 set_order_status(order_id, request.form['statusCode'])
7 return
8 else:
9 # Sets the status of a specific order
10 return Response(get_order_status(order_id),
11 mimetype='application/json')

Listing 1: An exemplary Web service order_status im-

plemented using Flask exposed via an HTTP-based API:

@app.route(). In Flask, @app.route signals the use of a func-
tion decorator to define a route and to bind it to a handler

function.

of a code document. The Python example in Listing 1 showcases

a minimal Web service implementation for managing order status

using Flask. As an example of boilerplate, there is annotation code

(on line 4) for each and every route to enable request handling by

the responsible application code (e.g., some getter and setter func-

tions) based on the HTTP method used (GET, POST). In addition,

the interface details (HTTP methods, parameter representation,

content type) appear scattered over the application code (see, e.g.,

lines 7 and 10). Boilerplate code and code scattering are tedious to

handle manually, especially for larger Web APIs. Publicly accessible

Web APIs contain up to 200+ operations (routes), with a mid-range

of APIs having 7–50 operations [12]. The Web APIs looked at in

this paper are representative of that spectrum: between 4 (Flickr)

to 223 routes (GitHub; see Section 5.1).

Also, Web APIs and their implementations are subjected to

change running in parallel with changes in application code. For

example, a Web API may be further developed by adding, by re-

moving, or by altering services or their details (e.g., parameters). In

addition, the details of mapping between the application code (i.e.,

getters and setters in Listing 1) and a resource-orientated HTTP

connector may change over time (e.g., HTTP methods used, pa-

rameter representation). In these cases, in particular upon high

frequency of change and/ or for larger Web APIs, tracking changes

at the level of boilerplate code does incur extra maintenance effort.

For this paper, we reviewed the change history of selectedWeb APIs

and found that, for these projects, more than 50% of commits made

to API definition documents during the review periods affected the

boilerplate code. By affected, we mean that some (typically, manual)

rewriting of boilerplate code (route definitions) had entered a given

commit (see Section 5.2).

2 /status:
3 /{order_id}:
4 get:
5 description: Retrieve the status of a specific order
6 responses:
7 200:
8 body:
9 application/json:
10 post:
11 description: Sets the status of a specific order
12 body:
13 multipart/form-data:
14 properties:
15 statusCode:
16 description: The status identifier to be stored
17 required: true
18 responses:
19 200:

Listing 2: An interface description using RAML correspond-

ing to the Web API defined in Listing 1

On top of that, Web APIs have multiple technical and non-

technical stakeholder roles during development of a Web applica-

tion. Examples include developers responsible for different server-

side building blocks (incl. or excl. the Web API itself), developers

for client-side building blocks, developers writing tests against the

Web API, documentation writers documenting the Web API, opera-

tors overseeing deployedWeb applications and their API endpoints;

as well as management roles to the extent the Web API must be

aligned with important details of a business model (e.g., usage poli-

cies, service levels, pricing). Development involves communication

and close, document-based interactions between these stakeholder

roles. When the Web API is only defined in terms of its imple-

mentation in code, this raises barriers to communication and to

interaction, esp. for non-technical roles being limited to code docu-

ments targeting a single Web-application platform (i.e., a specific

programming language, framework, and application server). But

also, technical roles may suffer from a code-only definition of aWeb

API, due to the API and application code being interleaved; or API

code being scattered over multiple development documents (config-

uration files, code). This is also because of the issues of boilerplate

coding and parallel code change (see above).

To tackle the above issues, the pattern—well established in dis-

tributed systems design and generative programming—of providing

andmaintaining interface descriptions [25] has been applied toWeb

APIs. Using an interface-description language (IDL) such as RAML,

Swagger, API Blueprint, andWADL (among others), an interface de-

scription is a separate, well-defined, and processable development

document which defines the details of a Web API only. IDL-based

tooling includes code generators that produce the implementation

executable on a given Web-application platform (e.g., Flask/Python

code shown in Listing 2). At the same time, other documents can

be derived from such an interface description in support of other

stakeholder roles (test code, mark-up as API documentation). By

reaching out to Web-application developers systematically in terms

of expert interviews, we found out that generating test cases, route

definitions, API usage snippets, and security wrappers for API end-

points are ranked at the top (see Section 3). When supported and

used, this makes an interface description the single source of truth

for all involved stakeholder roles.

On the downside, an interface-description document for a Web

API introduces the complexity of managing co-changes [11] be-

tween documents. Changes to the interface descriptions must be-

come tracked by the code documents (e.g., by triggering re-generation

of the latter) and vice versa. At the same time, modifications to the

application code should not interfere with API-related changes

in unintended ways. To this end, this paper makes the following

contributions:

• A critical-analytical comparison of established generative

techniques for their fit to manage artifact coupling (incl.

propagating changes) in an automated manner between an

interface description (RAML) and the generated Web API

(Flask) code (see Section 4.1).

• A proof-of-concept implementation of a mixed generative

technique (generation gap and delegation) for RAML doc-

uments and Flask-based Web API implementations (see Sec-

tion 4.2).

• A twofold validation of the proof-of-concept implementation

is performed. Second, the generator implementation is tested

for its space and time performance on real-world Web APIs

(see Section 5.1). Second, the chosen technique is tested for

its coverage of typical changes to Web APIs (see Section 5.2).

The proof-of-concept implementation plus test suite, as well as

a reproduction package incl. the collected interface descriptions is

available from a supplemental Web site.
1

2 WEB APIS

Resource
model

Identifier
model

Interface
model

Platform
model

maps to Interface

Service
Service

Service

re
p

re
se

n
ts

g
e

n
e

ra
te

d

 f
ro

m

provide

Service
Service

Client
require

e.g., resource-oriented, HTTP-based
(RESTful) application

interface-description
languages: OAS,
Swagger, RAML

Figure 3: Main tenets of a resource-oriented distributed sys-

tem: resource model, identifier model, interface model, and

Web-application platform model.

Interface Descriptions. In a distributed system, an interface de-

scription [25] defines the interface that is provided by service

applications and required by client applications. The interface is

described in a platform-independent and machine-processable man-

ner. With this, an interface description aligns clients and services,

implemented using different Web-application platforms, on criti-

cal invocation details. An interface description also establishes a

separation of concerns: defining an interface and implementing

the interface become separate actions and responsibilities. Inter-

face descriptions reflect the type of interfaces contracted between

1
https://github.com/nm-wu/RAMLFlask

2

clients and services, e.g., signature interfaces for W3CWeb Services

(based on operations as well as input and output message types) or

resource-oriented interfaces for RESTful services.

A description of a resource-oriented interface is a representation

of a resource model using an (typically, textual) interface-definition

language (IDL). A resource model [16] defines an interface as a

collection of resources, each with one or several representations,

and the supported virtual instructions on the defined resources

(HTTP methods). An associated identifier model defines identifiers

(as URI paths and path elements) that point to resources and that

contribute to establishing relationships between resources of an

interface (see also Section 4).

Interface-definition languages for resource-oriented interfaces

have gained attention in recent years, including Swagger [24] and

the RESTful Application Modeling Language (RAML) [7]. Their

uptake led to the OpenAPI Specification (OAS; [9]) as an effort

towards standardized interface descriptions. More recently, devel-

opment tooling supporting automated transformations from one

description type (RAML) into another (OAS) or (client/ service)

application development sourced by different description types

(RAML, OAS) has become available. In the remainder, the focus is

on interface descriptions defined using RAML 1.0 [7].

It is noteworthy that interface descriptions in these IDL are

not only representations of a resource model and one identifier

model, they establish views on them, often both in terms of an

aggregation and as a projection. As an aggregation, an interface de-

scription adds structured and unstructured (meta-) data not present

in the resource and identifier models, for example: documentation

strings as in Listing 2, usage examples, invocation data for tests,

and revision identifiers (see Section 3). As a projection, interface

descriptions define resource relationships only indirectly and by

convention through a specific interpretation of identifiers, e.g. URI

path elements.

Self-description vs. explicit interface description. Developing a

Web application on top of one or several Web APIs begins with a

developer asking questions about the available interfaces. A self-
describing API allows for answering questions by investigating

responses to calling API endpoints (e.g., HTTP header and payload).

For a self-describing API there is no explicit interface description.

It rather offers a unique URI which identifies a root resource as a

starting point for discovering all its resources as well as exploratory

operations on these resources. Following the HATEOAS architec-

tural style [19], the returned hypertext should contain the API de-

tails (e.g., available navigation options). Avoiding explicit interface

descriptions avoids pitfalls pertaining to inconsistencies between

interface description and API, managing coupled evolution between

description and interface, and processing interface-description doc-

uments [17].

On the downside, in practice, there are problems pertaining to

self-description. Developers must agree on one way to represent

the self-describing API elements. Otherwise, exploring APIs based

on different Web application frameworks will differ from imple-

mentation to implementation [17]. In HATEOAS, one has multiple

options to represent navigation paths in hypertext. Furthermore,

self-describing APIs fall short in providing client developers exoge-

nous details (documentation strings, usage examples, invocation

data for tests). In terms of development style, an API must be fully

implemented to realise the property of self-description [17]. An

explicit interface description can be useful independent from an

interface implementation [20], e.g., for generating server- or client-

side code skeletons, a reference manual for a Web API etc. These

uses of an explicit interface description are deemed important by

practitioners (see Section 3).

3 ARTIFACT COUPLINGWITH

INDEPENDENT DELTAS

Generated artifacts. An explicit interface description for a Web

API written using RAML or OAS will be used to generate different

types of development artifacts. From generative programming and

model-driven software development, more generally, there is em-

pirical evidence on the relative importance of certain artifact types

as generator targets for practitioners. There is evidence on M2T

transformations targeting source code (e.g., Flask/ Python scripts in

Figure 4) being the most widely targeted artifact type for generators

in model-driven approaches [6]. This is confirmed by a recent study

of ours on M2T transformations for UML-based domain-specific

modeling languages [□] and a survey among experts on domain-

specific modeling [□]. Code is followed by documentation, DB

schema definitions, test cases, and build descriptors (in this order);

and mixes thereof [6].

For Web APIs and their interface descriptions (RAML, Swag-

ger, OAS), comparable evidence is missing. Available data does

not discriminate between technical domains. For this reason, we

conducted semi-structured interviews with 14 practitioners in Web

application development. The practitioners were selected based on

a convenience sampling. To provide a scaffold for the interviews,

an interview guideline was prepared along with five “user stories”

on an imagined Web application (a content management applica-

tion for insurance contracts). Each user story (e.g., one entitled

“Creation of frontend code for an existing REST route”) documents

a narrative referring to between one or three different types of

generated artifacts (e.g., application code, documentation, or test

code).

As for the procedure, there were three phases: (a) self-assessment,

(b) interviewing, and (c) aggregation. During self-assessment, an ini-

tial selection of participantswas asked to complete a self-assessment

questionnaire featuring items recommended for describing the ex-

perience level of participants. Based on the self-assessments, it was

established whether there is a balance between junior, experienced,

and senior developers. During interviewing, each participant was

asked, in turn, to study each “user story” and to rank the elements

of the user story using a EUR-1000 test [1] along with a justification.

The individual rankings were then aggregated as a cumulative vote

to produce a final ranking of artifact types.

The main result was the ranking of artifact types according to the

perceived importance: (1) test code for HTTP endpoints (routes);

(2) route implementation (on top of a Web app framework); (3)

client-side code snippets for HTTP endpoints; (4) security-concern

implementation (on top of a Web app framework); (5) validation

routines for invocation data (input, output); (6) documentation

strings for routes; (7) build, packaging, and deployment descriptors;

(8) version management for route implementations.

3

On the one hand, these results are confirmatory because they sup-

port the overall importance of test code and application code (route

implementation), as found for general generative programming

and for remoting middleware in general (client- and server-side

stubs incl. validation, versioning). On the other hand, the results

also highlight the importance of artifact types specific to Web ap-

plication development using Web APIs (security concerns such as

contracted authorisation and authentication schemes).

i1 : RAML

i2 : RAML

c1 : Flask

c2 : Flask

c1.1 :
Flask

f

f

Figure 4: Rectangles represent development artifacts con-

forming to a software language (RAML, Flask/Python), and

arrow-headed solid lines are changes. f denotes a mapping

function (model-to-text transformation), δ amanualmodifi-

cation to an artifact, performed by a developer. Dashed lines

denote a consistency relationship. Notation inspired by [11].

Artifact coupling. The use of an explicit interface description

plus generator creates a collection of coupled development arti-

facts [11].The RAML document in Listing 2 and the (generated)

Flask/ Python script in Listing 1 form one such a collection. A col-

lection could also include a generated test suite, client-side stub

code, and documentation strings (see above). Changing one arti-

fact affects the other artifacts in this collection. Figure 4 illustrates

such a change, turning a RAML interface description i1 into i2.
Consider a change which adds a new resource path (e.g., /orders
as a collection resource) to the RAML document; or modifies an

existing one (by changing the representation of a parameter); or

simply removes an existing one. This raises the basic challenge of

supplying transformations that establish a mapping between the

revised interface description and a corresponding Flask/Python

implementation, to maintain the consistency relationship within

the collection, without manual intervention. This basic challenge

is typically tackled by providing a code generator, and so does

RAMLFlask (see Section 4). The code generator produces an API

implementation from the interface description based on predefined

mapping rules.

Realising the mapping between interface description and API

implementation by a generator gives rise to a second challenge.

This is where this paper’s spot is on. The originally generated API

implementation (c1 in Figure 4) is commonly changed by a devel-

oper manually, yielding c1.1. This is, for one, to fully implement

the API, e.g., by weaving framework code to handle compliant

HTTP requests and to produce compliant HTTP responses. In ad-

dition, this is to realise the contracted application behaviour, e.g.,

by implementing the behaviour of a getter or setter function (see

Listing 1). This code delta is created independently from any delta

introduced by changes to the interface description. The key chal-

lenge is to provide for a generated API implementation c2 that

maintains consistency both to the corresponding interface descrip-

tion (i2) and the manually modified, original API implementation

(c1.1). These two consistency relationships must be maintained

even across repeated rounds of generation (re-generation).
There is an array of known techniques from approaches to gen-

erative programming and to model-driven software development

available to tackle this second challenge [10]. Broadly, they can be

grouped into language-based (e.g., design patterns like generation

gap, composition filters, or mixins) or tool-based techniques (e.g.,

protected areas). Given a technical domain, available techniques

(or, a mix thereof) must be surveyed and assessed for their fit in a

systematic and critical-analytical manner (see Section 4.1).

4 RAMLFLASK

For the proof-of-concept implementation RAMLFlask, the Python
Web-application framework Flask was adopted and refined to in-

clude support for generating API skeletons from interface descrip-

tions written using RAML. Flaskwas selected for two reasons: First,
it is representative for the family of microservices frameworks, so

that design and implementation decisions carry over to other frame-

works. Second, integration of interface-description languages with

Flask has been explored before. The resulting framework exten-

sion plus documentation, examples, and tests are available from a

supplemental Web site.
2

RAMLFlask realises a template-based code generator. As a gen-

erator, it accepts RAML documents as input and produces a Flask/

Python script implementing the HTTP-based interface described

by the RAML document. The generator is based on model-to-text

templates as composable and refinable code assets that encode

the mapping between RAML description elements (e.g., and Flask

framework elements). The generator templates are implemented

using the Jinja2 template language and template processor.

RAML RAMLFlask/ Flask

Interface Blueprint

Resource Request-handler class

HTTP method Request-handler method

Security scheme (incl. default) Delegation class

Data type Validation routine (built-in)

Annotation In-code comment

Table 1: The basic mapping between RAML description el-

ements and Flask implementation elements. This corre-

sponds to the mapping f and the consistency relationship

depicted in Figure 4. Themappings are encoded by two Jinja

templates: one for request-handler classes, one for delega-

tion classes.

Table 1 summarises the correspondences between RAML inter-

face descriptions (e.g., a resource) and a RAMLFlask entity (e.g., a

request-handler class). The processed RAML description is used to

generate a particular Python code structure (see Figure 5).

2
https://github.com/nm-wu/RAMLFlask

4

Flask

Blueprint

RequestHandlerBase

Flask

Response

Request

AResourceHandler ARequestHandler

ResourceBase

:Blueprint

Extension Interface

Inversion of Control

Command

«use»

«use»

«use»

Figure 5: Structural overview of the design artifacts gener-

ated from a single RAML interface description by RAMLFlask.
The UML comments depict the three important architec-

tural design patterns realised by the RAMLFlask generator:

extension interface, configuration group, command,

and inversion of control.

Blueprint. A RAML description as a whole maps to an instance

of a Flask Blueprint class. In Flask, a Blueprint acts as a con-

figuration group [25]. A Flask app or server can have multiple

blueprints active at a time, with a blueprint setting shared configura-

tion properties for the constituents of a blueprint: route definitions.

A single blueprint defines a number of route definitions that can be

reused by different apps or servers. This way, a blueprint serves for

implementing an extension interface[21]. A single Flask app or

server providing for multiple partial Web APIs can so load (or un-

load) implementing endpoints, as part of a composite Web API. The

exemplary RAML document in Listing 2 is turned into a Blueprint
instance with two route definitions, with bindings to two Python

functions; one implementing the getter endpoint (GET branch in

Listing 1), the other the setter endpoint (POST branch).

Handlers. Resources (e.g., /status) and methods on resources

(get, post) are turned into corresponding resource and request

handlers, respectively (see Figure 5). Request handlers implement a

variant of the command pattern. Each generated route definition as

part of the blueprint (see above) indirects a received call to specific

handler instance for a given HTTP method. The instance is created

from a generated request-handler class, with a single invocation

point (handle_request). This represents a single endpoint call as
a Python object, open for refinement and for interception. It also

allows for introducing alternative, runtime-configurable lifetime

strategies for requests, if needed. Request handlers operate on two

fundamental Flask representations—instances of Request and in-

stances of Response—to run parameter validation and to prepare

the response according to the negotiated content type. Request han-

dlers are also the anchor for managing parameter validation (using

built-in, but extensible) validation routines and authentication han-

dlers (delegation classes). For the proof-of-concept implementation,

the implementation of delegatees for handling authentication (e.g.,

OAuth 2.0, basic auth) are mocks. A developer can provide drop-in

replacements.

All generated request handlers implement a uniform interface

defined by a RequestHandlerBase. Also, the request handlers ad-
here to a number of predefined extension points on top of the

single-object representation of per-endpoint calls (command, see

above). Most prominently, the command method handle_request
is provided as a template method [5] owned by the common an-

cestor of all request handlers (RequestHandlerBase). This method

lays out the overall sequence of request-handling actions and calls

into deferred methods whose implementations are provided by

the generated request handlers (e.g., parameter validation based

on a deferred validation method). This follows the inversion of

control principle.

This structure of the generated code has been designed with

best practises from the middleware community [25] and from im-

plementing code generators [10]. In addition, the chosen structure

opens up the opportunity to implement and to compare different

artifact-coupling techniques.

4.1 Managing artifact coupling

The challenge is to manage the coupling of co-changing artifacts in

a way allowing for concurrent changes to the interface description

and changes to the generated code artifacts, while maintaining the

overall consistency (see Section 3). The crux of this challenge is

that there exist multiple different available techniques to tackle

the challenge. The array of techniques must be assessed against

important decision criteria (C1-C3; [8]) and against the background

of a given generator architecture (RAMLFlask; see Figure 5).

Assessment criteria are [8]:

• Separation of generated and curated code (C1): Does a tech-

nique enforce a clear separation of generated and curated

code into distinct source units (e.g., Python scripts) and/ or

composition units (e.g., Python classes) forming the artifacts?

• Extensibility (C2):

– Support for overriding generated parts (C2.1): Can curated

code override (with or without reuse) generated parts of

an artifact? For example, can the details of a generated

route definition (e.g., HTTP method, representation type)

be overridden by curated code?

– Support for adding to the generated parts (C2.2): Can cu-

rated code add features to the generated parts? For exam-

ple, can an extra route definition not announced by the

interface description be added (for testing purposes)?

• Portability (C3): Can the technique be ported to other toolchains

(Web application frameworks other than Flask) or program-

ming languages (other than Python), or is it specific to a

single tool or language environment?

A review must cover tool- and language-based techniques [10];

and account for mixed approaches. A tool-based implementation

technique for mitigating unwanted artifact coupling operates on de-

velopment artifacts (interface-description documents, source-code

documents), that is a technique realised outside the software lan-

guages used to write the development artifacts. We considered the

common techniques of PartMerger and of protected areas (see Ta-

ble 2). A language-based technique, on the contrary, uses or devises

first-class mechanisms of the software languages (RAML, Python)

to maintain consistency in the presence of independent deltas in

a collection of coupled artifacts. Classic language constructs such

as class-based inheritance can be used in a disciplined manner

(Generation Gap [4]), or advanced ones (e.g., composition filters

and message indirection using aspects; see Table 2).

One cannot draw a sharp line between these two types of tech-

niques, for example, a template processor is implemented as a pre-

processor to a programming language while templates might be

5

implemented by language constructs (e.g., classes). However, it is

a fruitful distinction. First, it helped guide the critical-analytical

review. For example, pure tool-based techniques are agnostic about

the language used (see C3 portability above). Second, one can con-

sider techniques falling into both families as a mixed technique,

borrowing benefits and drawbacks from both.

g
e
n
e
r
a
t
i
o
n
g
a
p
(
L
)

e
x
t
e
n
d
e
d
g
e
n
.
g
a
p
(
L
)

d
e
l
e
g
a
t
i
o
n
(
L
)

i
n
c
l
u
d
e
(
L
)

p
a
r
t
i
a
l
c
l
a
s
s
e
s
(
L
)

A
O
P
(
L
)

P
a
r
t
M
e
r
g
e
r
(
T
)

p
r
o
t
e
c
t
e
d
r
e
g
i
o
n
s
(
T
)

C1 + + + + + + + –

C2.1 + + – – ∼ + ∼ –

C2.2 – + – ∼ ∼ + ∼ +

C3 + + + – – – + +

Table 2: Comparing language- and tool-based techniques fol-

lowing [8] (C1-C3). Legend: + (supported); ∼ (partially sup-

ported); – (not support); T (tool-based); L (language-based)

As stated in Section 3, RAMLFlask was designed to strive for

supporting critical development tasks regardingWeb APIs and their

interface descriptions. The fundamental tasks are generative sup-

port for route implementation (on top of Flask; ranked 2nd), for

security-concern implementation (ranked 4th), and for validation

routines for invocation data (input, output; ranked 5th). These tasks

must be accomplished given the structural foundations of Flask

(blueprints, handler functions, request and response objects; see

Figure 5) and certain Python constructs, in particular the use of

function decorators for defining views, routes and endpoints (but not
methods). Therefore, certain techniques cannot enter the shortlist.
A syntax-level include-mechanism alone (e.g., in-place sourcing of

a generated Python script) that treats generated route definitions

as opaque, without programmatic access to them, does not allow

for implementing generic validation checks on top, for example.

Aspect-oriented techniques, while realisable using Python’s meta-

programming facilities, will always be specific to this particular

execution environment (C3). Partial classes, including open class

definitions as in Python, come with different, language-specific se-

mantics (e.g., w/ or w/wo overriding), again constraining portability

(C3).

A comprehensive account of the reviewed techniques and the

complete comparison in light of the project-specific requirements

(RAML, Flask) are reported in [□]. In summary, we selected a mix of

two reviewed techniques as the best fitting solution: generation

gap and delegation. More precisely, generation gap is used as

part of representing and handling routes. A basic variant of gen-

eration gap separates generated code into a superclass and the

curated one into a subclass. With this, the superclass can be regen-

erated, with the subclass picking up changes to the generated code.

For the purpose of route definitions for the scope of RAMLFlask

with basic refinement support (C2.1), generation gap turned out

sufficient. The scheme could still be extended by a developer adopt-

ing RAMLFlask to include support for curated interface extensions.

That is, support for manually added and preserved routes and route

handlers (C2.2) using (i.e., ext. generation gap).

Repeatedly required functionality (e.g., authentication proce-

dures negotiated by a RAML description) are factored out as reusable

components that can be shared between Web APIs and their im-

plementing Web applications using delegation. In delegation,

a delegator component (e.g., an authentication call in a generated

routine) redirects authentication requests to a delegatee, based on

the negotiated authentication scheme (or, defaults) and a library of

concrete authentication handlers.

4.2 Design & implementation

«component»

Flask

«component»

raml�cation

Jinja2

«component» «component»

ComparisonServer

«component»«component»

Generator

Figure 6: RAMLFlask components and their dependency

structure

Structure. The main components of RAMLFlask and their rela-

tionships are depicted in Figure 6. RAMLFlask is designed as an

extension to the Flask
3
Web application framework. Flask hosts the

code generated by RAMLFlask as a Flask application. The Genera-
tor generates the structures detailed in Section 4: a blueprint, route

decorators and handlers, and utility code. For this, Generator uses

the Jinja2 templating engine. To process a RAML description into a

Python data structure, RAMLFlask integrates with ramlfications
4
, a

third-party RAML parser. To help a developer manage artifact cou-

pling, once code from an interface description has been generated

for the first time, RAMLFlask provides services by a Comparison
component. This component allows for comparing a potentially

modified RAML description and a given revision of the generated

code structure to point out inconsistencies to the developer. The

Server component manages the lifecycle of a RAMLFlask applica-

tion and is a convenience wrapper around the Flask deployment

infrastructure (e.g., to automatically register the generated blue-

print with the Flask app before execution). In addition, the Server
component allows for a configuration descriptor to define a custom

configuration for RAMLFlask (e.g., to customize layout and location

of generated-source directories).

Behaviour: Generation. Figure 5 summarises the structure of the

generated sources for a given RAML document are explained. This

structure is created by RAMLFlask via a few key operations. First,

RAMLFlask creates three directories to host the different types of

generated code. This includes folders for generated and handwritten

routes, for delegates, and for version comparison artifacts. Most

of these directories are also created as Python modules. The main

step consists of creating the resource and request-handler classes.

This is achieved by iterating the RAML document for the defined

resources, to collect the details to generate validation routines (incl.

checks on return types). The extracted data are used to populate a

3
http://flask.pocoo.org

4
https://github.com/spotify/ramlfications

6

Jinja2 template for each and every handler, yielding a single Python

script hosting all handler classes.

Behaviour: Comparison. The Comparison component allows for

running different consistency checks on the family of coupled devel-

opment artifacts of a RAMLFlask application (i.e., RAML document,

server stub, blueprint, resource and request handlers, delegates).

First, a developer can request a validation run to compare a newer

revision of a generated structure with a previous one. Second, a

developer can at any time verify whether theWeb application under

development, once having departed from the generated skeleton,

still conforms to the interface description.

Comparison can run a structural diff analysis between two given

generated source structures as produced by the RAMLFlask gen-

erator from RAML documents. This diff analysis will compare the

parameter and return-type details of the two revisions. The result of

this diff analysis is a notification of structural changes on parameter

validations and return types. Developers can use this information

as a checklist to inspect their application implementation that any

handwritten code has been updated to accommodate the changes.

Comparison can also auto-generate endpoint tests and monitor

their execution against the Web application under development.

An endpoint tests mocks a request to an endpoint generated by

RAMLFlask. The mock request is populated by exemplary invoca-

tion data provided by the RAML document. An endpoint test can

indicate general availability of an endpoint and exercises parameter

validation. For this, Comparison imports the routes generated by

RAMLFlask for a given RAML document to extract the validation

details. All resources are then looped through to create requests.

First, an empty request is created and then filled with values from

the RAML document. Once the request is built, an instance of the

corresponding request handler is created. The validation method

on this instance is then called to check if the created mock request

passes validation.

Developing using RAMLFlask. To kick off application develop-

ment using RAMLFlask, a developer first triggers generation of

the basic application structure (see the code listing below). An in-

stance of Generator takes the RAML interface description as input.

An instance of Server is defined by passing the generator and a

Comparison instance. The developer can now run the basic code

generation and route binding steps using the all-in-one operation

exec_all(). Behind the scenes, this will not only create a code

skeleton, it will optionally also deploy the generated Flask app.

1 from RAMLFlask.Server import Server
2 from RAMLFlask.Generator import Generator
3 from RAMLFlask.Comparison import Comparison
4

5 gen = Generator('app.raml')
6 comp = Comparison()
7 Server(gen, comp).exec_all()

To actually implement the negotiated and hosted Web API, the

developer can now proceed with the actual development. Most

importantly, the developer must implement the mandatory re-
quest_handler extension point. This can be achieved by defining a
subclass of the generated request-handler class (for a given resource

plusHTTPmethod) and by overriding the request_handlermethod.

This realises a concrete variant of the generation gap in RAMLFlask

(see Section 4.1). Beyond this, a developer may decide to provide

for custom delegation for security schemes and custom parameter-

validation routines.

5 DISCUSSION

5.1 Time and space performance

We measured time and space performance of the most important

generative tasks supported by RAMLFlask (RAML/ YAML parsing,

creation of server stubs, route implementations etc.) on a machine

equipped with the Intel Core i7 CPU, a 2,8 GHz processor, and

16GB RAM, running macOS. We used CPython 2.7.16 and Flask

1.0.1 as the target platform. All test runs were performed under

the CPython’s default configuration. The supplemental Web site

provides a replication package for this computational experiment.
5

As for the design of the computational experiment, time (execu-

tion timings) and space usage (RAM) were collected for 10 publicly

documented Web APIs (incl. GitHub, Instagram, and Gmail), each

described by a single RAML document. These interface descriptions

were officially maintained by the corresponding projects at this

time, managed via their code repositories (independent from the

authors, see Table 3). For each Web API, we recorded the number of

defined routes and the source lines of code (SLOC) of each RAML

(YAML) document, as the two proxies for API size serving for the

independent variable.

Web API #Routes #SLOC

Grooveshark 1 143

Flickr 4 111

Uber 13 1185

Slideshare 17 3114

Slack 29 1896

Gmail 31 2120

Instagram 33 3379

Wordpress 60 2606

Box 66 4451

GitHub 223 21650

Table 3: Overviewof the 10WebAPIs used for time and space

measurements.

Each of the 10 RAML documents was subjected to the different

generative tasks offered by RAMLFlask (generation of server stub,

generation of route definitions, etc.). Each task was repeated 100

times (incl. an upfront warmup of 100 runs), to obtain 100 data

points perWeb API, per task, and per dependent variable (execution

time, RAM usage).

Figure 7 summarises the main findings on time performance.

First, the RAML documents used were selected below half a second

(0.5s) of total execution time (worst case) processed for all but one

API: GitHub, the largest API in our corpus incl. 223 resources, ran for

2.5s (worst case, as denoted by the triangle in Figure 7) to generate a

complete and operative implementation using RAMLFlask. Second,

the total execution times are determined by a single task: the initial

server generation including RAML parsing (using ramlification).

See the dotted line of worst-case execution times for this task in

Figure 7, as a reference. The remainder of the task (incl. route

generation, binding, and comparison tasks) only add minimally to

5
https://github.com/nm-wu/RAMLFlask

7

0.5

1.0

1.5
2.0
2.5

Grooveshark Flickr Uber Slideshare Slack Gmail Instagram Wordpress Box GitHub

e
xe

c
u
ti
o
n
 t
im

e
,
lo

g
(s

e
c
s
)

Figure 7: Comparative boxplots for the total execution times

in log(seconds) for 10 different Web APIs. The dotted line

represents the worst-case (maximum) execution for the ba-

sic server-generation task (incl. RAML parsing), the trian-

gles denote the worst-case (maximum) total execution time

per Web API; 100 runs

the total execution times. Third, the measured execution times per

Web API show only small variance over all runs (as indicated by

the “squeezed” IQR rectangles in Figure 7.

50

75

100

Grooveshark Flickr Uber Slideshare Slack Gmail Instagram Wordpress Box GitHub

m
a
x
.
m

e
m

o
ry

 a
llo

c
a
te

d
 (

m
p
ro

f,
 M

b
)

Figure 8: Comparative boxplots for the max. memory allo-

cated by the OS when processing the 10 different Web APIs

(ordered by increasing #routes from left to right). The trian-

gles denote the largestmaximummemory observed perWeb

API, 100 runs

Memory usage was measured as the maximum memory allo-

cated by the operating system (OS) over regular intervals of 5ms

for the duration of all generative steps (see above). This is because

this maximum memory allocated represents the worst case from

the blackbox perspective of the OS (neglecting a Python implemen-

tation’s garbage collector). The details are reported in [□]. Figure 8
visualises the key findings. The All projects except for GitHub were

observed to have the executing Python process consume less than

50MB (for Grooveshark through Instagram) and less than 75MB

(for Wordpress and Box), respectively. GitHub was found to require

more maximum memory, but less than 120MB.

5.2 Replay simulations

In Section 3, Figure 4 two types of change of a Web API under evo-

lution are highlighted: changes to the interface description (RAML),

changes to the generated code artifacts, and their interactions. Re-

lated work is poor on actual evidence on changes as observed

on Web APIs “in the wild” (see also Section 6). How often are

development artifacts (interface description, generated code, or

curated code) actually changed? What is the relative importance

of either type of change in real-world projects? What are char-

acteristic changes to interface descriptions or generated code or

both?

To collect a corpus of changes to Web APIs—esp. their route

definitions— the public source-code repositories (GitHub) of two

real-world, Flask-based projects were mined for their change histo-

ries: HTTPbin
6
, and Sync Engine

7
. HTTPbin is a service for gen-

erating HTTP requests and HTTP response for client and server

developers to test their HTTP-based applications. Sync Engine of-

fers a Web API enabling developers building apps around E-Mail.

The two projects were selected based on the list of publicly known

Flask projects, the accessibility of the code repositories, and their

non-triviality (i.e., depth of recorded change history and SLOC size).

The objective of the subsequent repository mining was a twofold:

On the one hand, a corpus of development artifacts should be estab-

lished, allowing for replaying critical changes on a Web API using

RAMLFlask. On the other hand, first evidence on types and fre-

quency of changes from the field of Web APIs should be reported.

Note that these two projects did not provide a RAML interface

description. For this mining activity, changes to Flask route decora-

tors as well as changes to Flask request and response objects are

considered potential changes to an explicit interface description,

changes to the decorated functions are changes to curated code.

The procedure was as follows (details can be found in [□]):

(1) The Python scripts containing the Flask-based route imple-

mentations for each project were identified: HTTPbin (1 file),

Sync Engine (4). In total, at the time, HTTPbin had defined

50 and Sync Engine 88 unique routes in these files over the

reviewed period.

(2) The GIT commit history of these 5 files was then reviewed,

since their initial commit (manually, at GitHub or via the

command line). The file commit histories counted 151 (HTTP-

bin) and 234 commits (Sync Engine), respectively.

(3) Each diff was screened for changes to the resource and route

definition (decorator, request, and response) and for changes

to the decorated functions. The formerweremarked as “inter-

face changes” plus affected route (RAML resource), the latter

as “code changes”. Interface changes were further charac-

terised according to important RAML concepts (see Table 1):

additions, removals and renamings (of entire routes), route

modifications (parameter type, method, documentation, se-

curity scheme, logging)

The coded change data was summarised. This descriptive analysis

delivered strong support for RAMLFlask’s features: The majority

of resources (routes) has been changed at least once, 70% (35/50)

for HTTPbin and 72.7% (64/88) for Sync Engine. The remainder

has never experienced a change event at all, or only code changes

were recorded. If defined by a RAML interface description, each

change to a route after its first appearance would, therefore, require

a re-generation. From the total of 151 commits reviewed, 26 (or,

17.2%) involved simultaneous modifications to interface description

6
https://github.com/kennethreitz/httpbin

7
https://github.com/nylas/sync-engine

8

and curated code. For Sync Engine, the number of co-changes in

commits was only 17 out of 234 (7.3%). Whatever their frequency,

if driven by a code generator like RAMLFlask such co-changes to
interface description and previously generated, but by now, man-

ually maintained code may create inconsistencies.
8
Beyond the

frequency of co-occurrences of interface and code changes, this

analysis did not reveal substantial types of co-occurrences (e.g.,

certain types of route modifications being paired with parallel code

changes). Therefore, we considered all possible types of co-changes

equally relevant when designing RAMLFlask.

Next, we systematically selected a set of three routes fromHTTP-

bin and Sync Engine covering for a maximum of interface-change

types (route additions, removal, modifications) among all routes.

These three routes and their route change history, as established

through repository mining before, had a change-type overlap of

40% of all routes (both projects combined) and more than 90% when

allowing for partial overlaps. These three routes and their corre-

sponding implementations were then turned in RAMLFlask imple-

mentations. This involved authoring a corresponding RAML doc-

ument and an initial handler implementation using RAMLFlask’s

generation gap approach (i.e., a subclass inheriting from a gen-

erated superclass). Then, the recorded interface changes as well

as code changes were applied to create snapshots both of the gen-

erated and the source files (blueprint, handlers, and application

subclasses). These can be used to replay the change history of the

three routes in a stepwise manner (simulation), and to continuously

test RAMLFlask for support of the critical (co-)change types.

6 RELATEDWORK

While a number of approaches exist that deal with the systematic

development of DSLs in general; see, e.g., [15, 22, 23], the devel-

opment of DSLs for describing Web APIs, in particular, has rarely

been discussed in the scientific literature so far.

EMF-REST [3] is an example of a Java-based REST DSL. However,

as EMF-REST is Java-based it also depends on a Java-specific lan-

guage environment and is thereby inherently platform-dependent.

Moreover, EMF-REST was primarily built for developers and is

therefore difficult to use for non-technical stakeholders. NeoIDL [2]

is another example of a REST DSL. While in principle it does not

dependent on a single programming environment and enables code

generation for different platforms, it was also built for software de-

velopers and is difficult to use for non-technical stakeholders. In ad-

dition, NeoIDL does not provide any (native) support for roundtrip

engineering activities. In contrast, our approach provides a REST

DSL that is suited for developers and non-developers alike, while

also providing support for roundtrip engineering for REST-based

applications. In particular, we provide integrated RTE checks that

are included in the application and guide developers to avoid in-

consistencies during the evolution of their API. Furthermore, while

our proof-of-concept implementation is based on Python Flask,

the generative process is language independent and can easily be

adapted for other programming environments.

Some existing approaches address the specification of REST

mashups, i.e. Web applications that are composed of two or more

8
Note that the two repositories did not allow for verifying the existence of actual

inconsistency (e.g., via referenced bug reports).

REST-based services. For example, Maximilien et al. [13, 14] present

DSLs for Web APIs and services mashups. While Pautasso [18]

presents a non-DSL approach for composing REST-based services.

One commonality of such approaches is that they provide a means

for integrating different APIs that have been developed indepen-

dently of each other. The approach presented in this paper can be

used in a similar way for integrating different REST-based applica-

tions.

7 CONCLUSION

Web applications and their architectures can benefit from using

explicit and processable interface descriptions written using an

interface-description language (e.g., OAS, Swagger, RAML). They

pave the way for automatising Web application development via

code generation. Besides, interface descriptions establish a sin-

gle source of truth for all stakeholder roles in a Web application

project (e.g., developers, testers, documenters). At the same time,

this generative use of interface descriptions introduces challenges

of managing the generated development artifacts under simultane-
ous change.

The paper documents RAMLFlask as an extension to the Flask

Web application framework. RAMLFlask provides a template-based

generator capable of producing an application skeleton from RAML

interface descriptions. In addition, RAMLFlask guides a developer

by highlighting inconsistencies (e.g., as a checklist) when an in-

terface description changes and/ or previously generated code has

been modified. The design and implementation have been system-

atically derived from empirical evidence collected from 14 expert

interviews and from mining of change history from two real-world

Web service projects. In addition, the RAMLFlask research proto-

type was exercised on real-world API descriptions (incl. GitHub,

Wordpress, and Instagram) for its time and space performance.

Limitations. To begin with, RAMLFlask is limited to RAML as

interface-description language and its concepts. Also, some RAML

concepts are not covered by the research prototype (e.g., resource

types and traits). However, thanks to the clear correspondences

between interface-description languages, the RAMLFlask contribu-

tions carry over (Swagger, OAS). In addition, certain code elements

generated RAML description elements act only as a non-operational

stub. For example, the prototype does not yet have reusable delegate

implementations, e.g., for authentication schemes such as OAuth

2.0.

As future work, we will explore extending RAMLFlask to support

other interface-description languages (OAS) and to test important

quality attributes of RAMLFlask (ease-of use) using appropriate

empirical designs involving practitioners.

REFERENCES

[1] Patrik Berander and Anneliese Andrews. 2005. Requirements Prioritization.
Springer, 69–94. https://doi.org/10.1007/3-540-28244-0_4

[2] Rodrigo Bonifácio, Thiago M Castro, Ricardo Fernandes, Alisson Palmeira, and

Uirá Kulesza. 2015. NeoIDL: A Domain-Specific Language for Specifying REST

Services. International Journal of Software Engineering and Knowledge Engineering
25, 09n10 (November & December 2015), 613–618.

[3] Hamza Ed-Douibi, Javier Luis Cánovas Izquierdo, Abel Gómez, Massimo Tisi,

and Jordi Cabot. 2016. EMF-REST: Generation of restful APIs from models. In

Proceedings of the Annual ACM Symposium on Applied Computing. ACM, 1446–

1453.

[4] Martin Fowler. 2010. Domain Specific Languages (1st ed.). Addison-Wesley.

9

[5] Erich Gamma, Richard Helm, Ralph E. Johnson, and John Vlissides. 1995. Design
Patterns – Elements of Reusable Object-Oriented Software. Addison-Wesley.

[6] Generative Software. 2010. Umfrage zu Verbreitung und Einsatz modell-
getriebener Softwareentwicklung. Survey Rep. Generative Software GmbH

and FZI Forschungszentrum Informatik. http://www.mdsd-umfrage.de/

mdsd-report-2010.pdf

[7] github.com/raml org. [n. d.]. RAML Version 1.0: RESTful API Modeling Lan-

guage. https://github.com/raml-org/raml-spec/blob/master/versions/raml-10/

raml-10.md. retrieved on 29.09.2016.

[8] Timo Greifenberg, Katrin Hölldobler, Carsten Kolassa, Markus Look, Pedram

Mir Seyed Nazari, Klaus Müller, Antonio Navarro Perez, Dimitri Plotnikov, Dirk

Reiss, Alexander Roth, et al. 2015. Integration of Handwritten and Generated

Object-Oriented Code. In Model-Driven Engineering and Software Development.
CCIS, Vol. 580. Springer, 112–132.

[9] OpenAPI Initiative. 2019. OpenAPI Specification. Available from GitHub at

https://github.com/OAI/OpenAPI-Specification, last accessed: 2.9.2019. https:

//github.com/OAI/OpenAPI-Specification

[10] Sven Jörges. 2013. Construction and Evolution of Code Generators: A Model-Driven
and Service-Oriented Approach. LNCS, Vol. 7747. Springer.

[11] Ralf Lämmel. 2016. Coupled Software Transformations Revisited. In Proc.
2016 ACM SIGPLAN International Conference on Software Language Engineer-
ing (SLE’16). ACM, 239–252. https://doi.org/10.1145/2997364.2997366

[12] Maria Maleshkova, Carlos Pedrinaci, and John Domingue. 2010. Investigating

Web APIs on the World Wide Web. In Proc. 8th IEEE European Conference on Web
Services (ECOWS 2010). IEEE, 107–114. https://doi.org/10.1109/ECOWS.2010.9

[13] EMichael Maximilien, Ajith Ranabahu, and Stefan Tai. 2007. Swashup: Situational

web applications mashups. In Proceedings of the ACM SIGPLAN conference on
Object-oriented programming systems and applications companion. ACM, 797–798.

[14] E Michael Maximilien, Hernan Wilkinson, Nirmit Desai, and Stefan Tai. 2007. A

domain-specific language for web APIs and services mashups. In Proceedings of
the International Conference on Service-Oriented Computing. Springer, 13–26.

[15] M. Mernik, J. Heering, and A.M. Sloane. 2005. When and How to Develop

Domain-Specific Languages. Comput. Surveys 37, 4 (December 2005), 316–344.

[16] A. Neumann, N. Laranjeiro, and J. Bernardino. 2018. An Analysis of Public

REST Web Service APIs. IEEE Transactions on Services Computing (2018). https:

//doi.org/10.1109/TSC.2018.2847344

[17] Luca Panziera and Flavio De Paoli. 2013. A framework for self-descriptive restful

services. In Proceedings of the International Conference on World Wide Web. ACM,

1407–1414.

[18] Cesare Pautasso. 2009. Composing restful services with jopera. In Proceedings of
the International Conference on Software Composition. Springer, 142–159.

[19] restcookbook.com. [n. d.]. What is HATEOAS and why is it important for my

REST API? http://restcookbook.com/Basics/hateoas/. retrieved on 14.08.2017.

[20] Jonathan Robie, Rob Cavicchio, Rémon Sinnema, and Erik Wilde. 2013. RESTful

Service Description Language (RSDL), Describing RESTful services without tight

coupling. Balisage Series on Markup Technologies 10 (2013), 6–9.
[21] Douglas C. Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann. 2000.

Pattern-Oriented Software Architecture. John Wiley & Sons Ltd.Wiley, Chichester,

England, Chapter Extension Interface, 141–174.

[22] D. Spinellis. 2001. Notable Design Patterns for Domain-specific Languages. J.
Syst. Softw. 56, 1 (2001), 91–99.

[23] Thomas Stahl and Markus Völter. 2006. Model-Driven Software Development.
John Wiley & Sons.

[24] swagger. [n. d.]. Swagger. http://swagger.io/. retrieved on 23.10.2017.

[25] Markus Völter, Michael Kircher, and Uwe Zdun. 2005. Remoting Patterns: Foun-
dations of Enterprise, Internet and Realtime Distributed Object Middleware. John
Wiley & Sons.

10

