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area of the stone is denoted A = R2 for a hockey puck-shaped 
stone of radius R. If s denotes mass density, then the mass 
of the stone is ms = s R2h. The stone moving through air is 
shown on top. The stone in contact with the surface of the wa-
ter is shown on the bottom.

The stone moves with instantaneous horizontal and ver-
tical velocity coordinates vx and vy in two dimensions. The 
flight path angle with respect to the horizon is  = tan-1(vy/vx).  
A negative value of vy or a negative value of   indicates that 
the stone is falling downward under the acceleration of grav-
ity g. A positive value of vy or a positive value of    indicates 
that the stone is rebounding upward. At time t = 0 the stone 
is launched over a flat surface of water from vertical height y0 
with initial horizontal velocity vx0 and initial vertical velocity 
vy0. Subsequent motion of the stone requires successive pas-
sages through two domains: air and water. Motion in the air 
can be treated as ordinary projectile motion. Motion during 
brief collisions with the water can be treated approximately in 
terms of Newton’s third and second laws with reasonable sim-
plifying assumptions.

Consider a point P at the trailing bottom edge of the stone. 
For simplicity, let the trajectory of P as a function of x, y, 
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As a boy I spent many hours skipping stones across the 
surface of the water on the shore of Lake Michigan.  
The challenge was to get as many skips or as much 

distance as possible. Zero skips was a bust. One or two skips 
was disappointing, three or four skips was mediocre, and six 
or more skips was exhilarating. The angle of the stone with 
respect to the surface of the water seemed to be critical. A 
large angle approaching 45° produced one large jump and 
perhaps one or two more after that. A smaller angle produced 
more skips and a longer run. However, too small an angle 
would cause immediate sinking. Fine tuning the skill of stone 
skipping was a captivating pastime. Today stone skipping has 
become both a recreational and a competitive sport.

Motivated students can explore the underlying physics of 
stone skipping to explain why stones skip, derive equations for 
the trajectory of an idealized skipping stone, and predict the 
number of skips and the total distance of travel of the stone.  
This problem can provide an entertaining exercise to consoli-
date knowledge of first-year physics, and an organizing theme 
for problem-based learning, without requiring advanced 
mathematics or a detailed description of the fluid flow around 
the colliding stone in three dimensions.  

Indeed, one can do for sidearm stone skipping what Poljak1 
has done for overhand vs. underhand throwing to provide 
new insights: namely characterize physical variables needed 
to throw a stone as far horizontally as possible. Calculation of 
complete stone trajectories, including championship throws 
in competition, is possible. For example, Fig. 1 illustrates the 
trajectory of an idealized stone with model parameters tuned 
to enhance skipping behavior. The vertical distance scale is 
expanded to show detail. There are 67 skips over a distance of 
114 meters. The pattern of a few early high skips, followed by 
a large number of low, quick skips is similar to that seen on 
recorded videos (search YouTube championship stone skip-
ping).

An idealized skipping stone
Figure 2 shows sketches of an idealized flat stone, the angle 

of which with respect to the horizontal  is stabilized by rota-
tional spin—the gyroscopic effect—and so is considered con-
stant. The thickness of the stone is denoted h. The flat surface 

Fig. 1.  Trajectory of a skipping stone with parameters of a cham-
pionship throw. Launch speed 3600 cm/s. Note difference in hor-
izontal and vertical distance scales, which distorts the apparent 
heights of the skips.
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Fig. 2.  (a)  An idealized, spin-stabilized skipping stone in flight.  
The radius of the stone is R, and the thickness is h. The velocity 
of the stone in air is v. The tilt angle of the stone from the hori-
zontal is . The flight path angle is  = tan-1(vy/vx), with  < 0 for 
a falling stone and   > 0 for a rising stone. Air resistance creates 
drag force, FD, which opposes forward motion. (b) An idealized, 
spin-stabilized skipping stone in the water. Here the stone is 
moving into the water at velocity, v. The reactive force,  Fn, 
acting on the bottom surface of the stone pushes upward with 
force Fn cos( ) and backward with force Fn sin( ). The stone dis-
places water when moving normal to its bottom surface through 
distance d. A free slip condition at the water-stone boundary 
means that there is no friction during movement over distance, 
s, perpendicular to Fn.
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treatment gives expressions for the vector change in velocity 
of the stone  v s , with each skip for a subset of all possible 
collisions in which the motion of the stone normal to its flat 
bottom surface is stalled by reactive forces before water over-
tops the stone.

An idealized collision
To model the interaction of the stone with the water during 

successive skips, one can imagine the force of the stone push-
ing on the water, the equal and opposite force of the water 
pushing back on the stone, and, in turn, the change in velocity 
of the stone caused by the collision, which allows calculation 
of the trajectory of the stone through the air during the next 
skip. When the stone is in the air, typical projectile motion oc-
curs, and gravity plays an important role. However, when the 
stone is in the water, the reactive forces from displacement of 
the water are much greater than gravity, which for simplicity 
can be neglected during initial analysis of the brief stone-wa-
ter collisions.

Figure 3 illustrates the flight path of an idealized skipping 
stone colliding with the surface of the water at spin-stabilized 
angle  . The vertical scale is expanded to show detail.  The 
water is regarded as an ideal fluid to allow frictionless slip-
ping at the fluid-solid boundary. Hence, no work is done by 
the water on the stone as the stone moves parallel to its flat 
bottom surface (b). Substantial work is done only as the stone 
moves perpendicular to its bottom surface (a).  (The small 
amount of work done against gravity to lift the mass of the 
stone from its low point in the water to its exit point from the 
water is considered subsequently.) By Newton’s third law, the 
reactive force on the stone is equal in magnitude and opposite 
in direction from the force that the stone exerts on the water. 
By Newton’s second law the product of the average reactive 
force and the brief time interval t of the collision equals the 
mass of the stone multiplied by the change in velocity of the 
stone: F t = ms vs. Both the reactive force and the change 
in velocity of the stone point in the direction perpendicular 
to the bottom surface of the stone. As long as water does not 
overtop the stone, this effect will change the stone’s trajectory 
until the flight path becomes parallel to the stone’s surface at 
angle  (Fig. 3). Thus, the water removes the perpendicular 
component of stone velocity and leaves the larger parallel 
component unaffected. Then the stone exits the water at angle 

  or very nearly . 
As shown in Fig. 4, the outbound velocity vector vout  must 

be approximately at angle  with respect to the horizontal.  
The reactive forces, and the consequent change in velocity 
vector vs, must be perpendicular to the surface of the stone, 
at angle   from the vertical. These two constraints define a 
right triangle for vector addition, vin + vs = vout, which de-
termines the direction and magnitude of the outbound veloci-
ty vout of the stone.

By deduction from Fig. 4, for total angle –   +   at water 
entry, 

| vout | = | vin| cos (–   +   ) .             (1)

For realistic angles , the dominant component of the normal 

and time t represent the position of the stone in space and 
time. When y > 0 the stone is considered to be in the air and 
ordinary projectile kinetics apply. In flight, and ignoring air 
resistance, the acceleration of the stone in the x-direction, ax 
= 0, and the acceleration in the y-direction, ay = –g. If aero-
dynamic drag forces FD are included, the stone experiences 
additional vector drag acceleration aD = FD/ms in a direction 
that opposes its forward motion.  

The crux of the stone skipping problem, however, is to 
characterize the change in velocity of the stone after it hits the 
surface of the water. Reynolds numbers for this scenario of 
stone-water collision are Re ~ 105,  so that viscous forces can 
be neglected, and reactive forces dominate.2,3 The following 
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Fig. 3.  An idealized collision model, in which a spin-stabilized, 
flat stone pushes water ahead of it during collision. In early posi-
tions (a) reactive force slows the stone in the direction normal to 
its surface, changing its trajectory until the flight path becomes 
parallel to the stone’s tilt at angle , after which no more force is 
exerted by the water on the stone (b). The stone exits the water 
at angle . During such collisions the force of gravity is relatively 
small compared to other forces acting on the stone.
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Fig. 4. (a) and (b) Vector addition vin + vs = vout for computing 
outbound velocity of a skipping stone. (c) Serial application of 
the vector addition rule to reconstruct airborne segments of the 
stone’s trajectory.
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then stop. If ylegal = 0, then bounces of any height are allowed.

Numerical computations of stone trajecto-
ries in the air

The horizontal and vertical components of stone acceler-
ation in air can be integrated numerically using the simple 
Euler method, implemented, for example, in Visual Basic code 
within an Excel spreadsheet. Typical initial conditions are de-
scribed in Table I. Specifically, given initial height y0 and ini-
tial velocity components vx0 and vy0, integration is performed 
numerically for each successive time increment t ,

    vx (t + t)   vx(t) + ax t, and vy(t + t)   vy(t) + ay t      (6)
and
    x (t + t)   x (t) + vx t, and y(t + t)   y(t)+ vy t,            (7)

until the stone returns to height y = 0.  A subroutine can be 
created to perform this calculation for both the initial throw 
(y0 > 0, e.g., 50 cm) and subsequent skips (y0 = 0).  One may 
include the aerodynamic drag force on the stone, which has   
direction opposite the stone’s velocity and magnitude  

                                                                                                                            (8)       

where air is the mass density of air (0.00122 g/cm3), constant 
CD is a dimensionless drag coefficient or shape factor, typi-
cally ranging between 0 and 2, area A is the reference surface 
area, taken here as R2 for simplicity, and v is the forward 
velocity. From Hoerner,4 CD < 0.5. Drag acceleration has 
magnitude 

                (9)
  

Horizontal and vertical components of drag acceleration are  
–|aD|cos   and  –|aD|sin  .

Numerical computations of changes in 
stone velocity in water

After either the initial throw or a skip, as soon as the 
computed height of the stone above the water, y(t), becomes 
less than zero, the subsequent change in velocity of the stone 
caused by collision with the water is easily computed using 
Eqs. (1) through (4). The horizontal and vertical exit velocity 
components are then taken as initial conditions for the next 
flight, beginning at y0 = 0. The short unknown horizontal dis-
tance that the stone travels in the water from its point of entry 
is estimated as 2R. This process is repeated until a stopping 
criterion is met.

Table I shows standard model parameters for the ideal-
ized skipping stone. Figure 5(a) shows stone trajectories for 
the standard model. The horizontal axis ranges from 0  to 
2000 cm. The vertical axis ranges from 0 to 75 cm to show 
detail of the skips. The apparent skip heights and water entry 
and exit angles in the figure are correspondingly exaggerated. 
For this standard model, including aerodynamic drag, there 
are nine skips and the flight distance is 13.71 m when the min-
imum legal skip height ylegal = 0. When ylegal is increased to 
between 0.2 cm and 0.5 cm, there are only eight skips, and the 

force, |Fn|cos , is a vertical lifting force. It is this force that 
causes the stone to skip!

The next skip of the stone, beginning at zero height, will 
have initial velocity components

 vxout = | vin| cos (–   +   ) cos                (2)

and
 vyout = | vin| cos (–   +   ) sin   .                                          (3)

Note that very small height skips at the end of the trajectory 
are difficult to distinguish from vibrations and also difficult 
to count. These short skips at end of run with little water 
showing between are known to stone skipping aficionados 
as “pitty-pat” (www.stoneskipping.com/glossary). Thus, to 
avoid unrealistic overestimation of the number of physically 
realistic skips, one might wish to establish a minimum legal 
height criterion, such as 0.5 cm above the smooth surface of 
the water.

Including gravity during collisions and the 
stopping criterion

There is a small elevation change as the stone slides parallel 
to its flat bottom surface from the low point in the water to the 
point of taking flight on the next skip.  To obtain an approx-
imate correction for the extra downward travel of the stone 
caused by the acceleration of gravity during the brief time of 
the collision, one can assume the typical maximal depth of 
point P at the trailing edge of the stone in the water is approx-
imately R sin ( ). Then from conservation of energy the verti-
cal velocity, corrected for the energy required to lift the stone 
a small, constant distance R sin ( ) out of the water, is 

                                                   (4)

Further, if the stone is required to have a minimum legal 
bounce height, 0  ylegal, then the end-of-run stopping crite-
ria are that if 

        (5) 

Variable Value   Units Definition

h 1          cm Stone thickness

R 4          cm Stone radius

s 2.5       g/cm3 Stone mass density

w 1.0       g/cm3 Water mass density

air 0.00122  g/cm3 Air mass density

y0 50         cm    Launch height

y legal 0 to 1    cm Minimum legal skip height for counting

vx0 1000     cm/s     Horizontal launch velocity

vy0 0          cm/s   Vertical launch velocity (positive = up)

0.3        rad Stone surface angle with horizon

17        deg             

t 0.00001   s Time step for numerical integration

Table I. Standard model.
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frequency and angle using a mast placed on a man-made 
stone. This paper is a great source of inspiration for follow-on 
experiments in the real world, including studies of the effects 
of texture or dimples, similar to those on golf balls, on the 
under-surfaces of stones. High-speed video analysis has been 
conducted by Clanet, Hersen, and Bocquet.6 A more detailed 
description of air resistance is provided by Mohazzabi.7 For 
those who wish to spend less time on math and more time 
at the water’s edge, helpful observations on technique can be 
found at www.stoneskipping.com and in a variety of articles 
and videos available online.9-13
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flight distance is only 13.57 m (data not shown).
Figure 5(b) shows the stone trajectory for the otherwise 

standard model in Fig. 5(a) with reduced stone tilt angle  
 = 14o (0.25 rad). There are 13 skips and a flight distance of 

16.00 m. The last three skips are very low in height. If ylegal is 
increased to 0.5 cm, then only 10 skips are counted over  
15.55 m. This feature of hard-to-judge terminal “pitty-pat” is 
characteristic of low tilt-angle throws.

Figure 5(c) shows the stone trajectory for the otherwise 
standard model with increased tilt angle   = 23o (0.4 rad). 
There are five skips and a flight distance of 10.6 m.  The trajec-
tory shows physically realistic skipping behavior.

Other such simulations can readily be done to explore 
effects of stone tilt angle, initial launch angle, initial launch 
velocity, and possible parameters of world record throws.

Discussion
Using elementary physics, based upon Newton’s laws of 

motion, it is possible to estimate the trajectory of an idealized 
skipping stone using a simple computer program. Students 
can practice math and science skills, as well as coding skills, 
by creating a mathematical model of stone skipping and then 
testing its predictions experimentally with actual stones and 
throws through careful video analysis.

Students who wish to delve deeper into the fluid-structure 
interactions between water and a skipping stone can explore 
Refs. 1-13. For example, Richard Crane5 describes the charm-
ing and entertaining experiments for measuring rotation 
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Fig. 5.  Typical stone trajectories for the standard model. Note 
the difference in horizontal and vertical length scales, which 
exaggerates apparent skip height. Minimum legal skip height, 
ylegal = 0. Other model parameters are those listed in Table I. 
(a) Tilt angle = 17o (0.3 rad). (b) Tilt angle  = 14o (0.25 rad). (c) 
Tilt angle  = 23o (0.4 rad).
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