
Purdue University Purdue University 

Purdue e-Pubs Purdue e-Pubs 

Department of Electrical and Computer 
Engineering Faculty Publications 

Department of Electrical and Computer 
Engineering 

2019 

Limitations of zT as a Figure of Merit for Nanostructured Limitations of zT as a Figure of Merit for Nanostructured 

Thermoelectric Materials Thermoelectric Materials 

Xufeng Wang 
Purdue University, wang159@purdue.edu 

Mark Lundstrom 
Purdue University, lundstro@purdue.edu 

Follow this and additional works at: https://docs.lib.purdue.edu/ecepubs 

 Part of the Condensed Matter Physics Commons, and the Electronic Devices and Semiconductor 

Manufacturing Commons 

Wang, Xufeng and Lundstrom, Mark, "Limitations of zT as a Figure of Merit for Nanostructured 
Thermoelectric Materials" (2019). Department of Electrical and Computer Engineering Faculty 
Publications. Paper 158. 
https://docs.lib.purdue.edu/ecepubs/158 

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. 
Please contact epubs@purdue.edu for additional information. 

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/ecepubs
https://docs.lib.purdue.edu/ecepubs
https://docs.lib.purdue.edu/ece
https://docs.lib.purdue.edu/ece
https://docs.lib.purdue.edu/ecepubs?utm_source=docs.lib.purdue.edu%2Fecepubs%2F158&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/197?utm_source=docs.lib.purdue.edu%2Fecepubs%2F158&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/272?utm_source=docs.lib.purdue.edu%2Fecepubs%2F158&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/272?utm_source=docs.lib.purdue.edu%2Fecepubs%2F158&utm_medium=PDF&utm_campaign=PDFCoverPages


Limitations of zT as a figure of merit for
nanostructured thermoelectric materials

Cite as: J. Appl. Phys. 126, 195703 (2019); doi: 10.1063/1.5127175

View Online Export Citation CrossMark
Submitted: 9 September 2019 · Accepted: 29 October 2019 ·
Published Online: 21 November 2019

Xufeng Wang and Mark Lundstrom

AFFILIATIONS

Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, USA

ABSTRACT

Thermoelectric properties of nanocomposites are numerically studied as a function of average grain size or nanoparticle density by
simulating the measurements as they would be done experimentally. In accordance with previous theoretical and experimental results, we
find that the Seebeck coefficient, power factor, and figure of merit, zT, can be increased by nanostructuring when energy barriers exist
around the grain boundaries or embedded nanoparticles. When we simulate the performance of a thermoelectric cooler with the same mate-
rial, however, we find that the maximum temperature difference, ΔTmax, is much less than expected from the given zT. This occurs because
the measurements are done in a way that minimizes Joule heating, but the Joule heating that occurs in operating devices has a large effect
for these kinds of materials. The same nanocomposite but without energy barriers at the grain boundaries has a lower measured zT but a
higher ΔTmax. The physical reason for these results is explained. The results illustrate the limitations of zT as a figure of merit for nanocom-
posites with electrically active grain boundaries.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5127175

I. INTRODUCTION

To address the challenge of increasing the thermoelectric
materials’ figure of merit, zT, Hicks and Dresselhaus suggested in
1993 that zT might be enhanced in nanostructures.1,2 Following
this strategy, researchers have been able to substantially and steadily
increase zT.3 Today, there are many reports of zT . 1, and all of
them make use of nanostructuring of one kind or another.4 This
progress has primarily been achieved by nanostructuring materi-
als to reduce the lattice thermal conductivity without substantially
degrading the electrical conductivity,5–8 but benefits to the elec-
tronic performance have also been reported. These benefits
include an increased Seebeck coefficient (Refs. 9–21) and/or a
reduction of bipolar effects.6 Enhanced Seebeck coefficients are
thought to be due to energy filtering near nanoscale inclusions or
grain boundaries;22 theoretical treatments23 and models24 have
been reported. If nanostructured materials could be engineered to
both lower the lattice thermal conductivity and improve the elec-
tronic performance, then substantial additional increases in zT
would be possible.4

The physics of interfaces due to nanoscale inclusions or grain
boundaries has been studied, and various models have been pro-
posed. In Ref. 25, the authors modeled the grain boundary as a par-
abolic band material with potential barriers for carriers and found

that the model could readily explain experimental results. More
detailed models have also been reported.26–30 In Refs. 31 and 32,
the authors showed that recent experimental results in rather com-
plicated thermoelectric materials could be explained using simple
models without considering the energy-dependence of the carrier
scattering. While these models differ in detail, they all show that
band bending at interfaces is the origin of differences observed in
the Seebeck coefficients of bulk crystals and nanocomposites. Based
on these prior studies, we model the interfaces as electrostatic
potential barriers using full, numerical simulations of random
structures. The details are discussed in Sec. II.

Two different types of nanocomposite thermoelectric materials
are examined. The first type is a p-type polycrystalline Bi2Te3 with
grain boundaries that produce energy barriers. The second type is a
p-type crystalline Bi2Te3 with embedded silver nanoparticles that
produce energy barriers around the nanoparticles. We use these as
model systems for which experimental data are available,17,33 but
the conclusions should be more general. The thermoelectric prop-
erties as a function of average grain size or nanoparticle density are
examined by numerically simulating the measurements of electrical
and thermal conductivity and Seebeck coefficient as they would be
done experimentally. In addition, we simulate the performance of
an ideal thermoelectric cooler (i.e., no interface resistances or shunt
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conductances) and compare the zT extracted from ΔTmax to the zT
obtained from the simulated measurements of the thermoelectric
parameters.

We focus in this paper on polycrystalline nanocomposites, but
similar results (discussed in the supplementary material) are
observed for nanocomposites with embedded Ag nanoparticles.
For the case where the grain boundary or nanoparticle acts to
deplete the grain, energy barriers for majority carriers result, and
we find in accordance with experiments that the Seebeck coeffi-
cient, power factor (PF), and figure of merit, zT, can be increased
by nanostructuring, but when we simulate the performance of a
thermoelectric cooler, we find that the maximum temperature
difference, ΔTmax, is much less that what would be expected from
the given zT. An important finding is that conventional measure-
ments of the thermoelectric parameters of nanostructured thermo-
electric materials may provide overly optimistic predictions of
device performance. This occurs when the grain boundaries are
electrically active because Joule heating, which is negligible in the
zT measurement, plays a strong role under device operating condi-
tions. The same nanocomposite but with no potential barriers at
the grains has a lower zT but produces a higher ΔTmax in a TE
cooler. The physical reason for these results will be explained.

The paper is organized as follows. Section II describes the
numerical techniques for the two-dimensional electrothermal
simulations. Also described in Sec. II are the material parameters
used in the simulations and the treatment of grain boundaries.
Section III presents the results in terms of zT vs grain size where
zT is extracted in three ways: (1) by simulating the measurement
of the individual thermoelectric parameters, (2) by simulating
Harman method measurements,34 and (3) by deducing zT from
ΔTmax of a simulated cooler. We discuss the results in Sec. IV and
summarize the conclusions in Sec. V.

II. APPROACH

In this study, we use the semiconductor device simulation
program, Sentaurus, which solves the coupled partial differential
equations that describe electrothermal transport in semiconduc-
tors.35 The following equations36 were numerically solved:

∇ � ~D ¼ ρ, (1a)

@n
@t

¼ �∇ � (~Jn=�q)� R, (1b)

@p
@t

¼ �∇ � (~Jp=q)� R, (1c)

ctot
@T
@t

¼ ∇ � (κtot~∇T)þ H: (1d)

Equation (1a) is Poisson’s equation, where ~D is the displacement
vector and ρ is the space charge density, which includes contribu-
tions from mobile electrons and holes and ionized dopants.
Equations (1b) and (1c) are the electron and hole continuity
equations where ~Jn and ~Jp are the current densities that include
contributions from gradients in the electrochemical potential and

temperature (q is the magnitude of the elementary charge). The
term R is the carrier recombination rate, which is only important
in the presence of bipolar effects. The final equation (1d) is an
energy balance equation for the temperature, T. Local thermody-
namic equilibrium is assumed so that the electron, hole, and
lattice temperatures are identical. The total heat capacity, ctot, and
the total thermal conductivity, κtot, include contributions from
the lattice as well as the electrons and holes. Finally, the heat
source term, H, includes contributions from Joule heat, recombi-
nation heat, and Thompson heat.36 Transient simulations are
performed only to simulate the Harman method—all other simu-
lations are steady-state.

A. Material-level simulation and material parameters

In this work, Bi2Te3 was chosen as a model thermoelectric
material, because it has a simple rhombohedral crystal structure, its
material properties are relatively well-known,37 and experimental
results are available.17,34 The methods and results obtained in this
work should, however, be applicable to other thermoelectric
materials as well. The overall simulation workflow is summarized
in Fig. 1.

Because thermoelectric materials have highly nonparabolic
and complex band structures, the first step was to use density func-
tional theory (DFT) calculations with Quantum Espresso38 to
obtain the Bi2Te3 band structure. For both Bi and Te, we used full
relativistic PAW pseudopotentials with a 40 Ry plane wave energy
cutoff and spin-orbit coupling. An 8 × 8 × 8 and 20 × 20 × 20
Monkhorst-Pack k-point mesh was used for self-consistent and
nonself-consistent calculations, respectively.

The second step was to process the full band structure with
LanTraP, a program that extracts thermoelectric transport parame-
ters from a given band structure.9 We assumed that the scattering
rate for carriers was proportional to the density-of-states and
determined the electron-phonon coupling parameter by matching
the resistivity to experimental values.39 Transport parameters
were extracted along the cross-plane direction. We did not
include the transport anisotropy of Bi2Te3 because our focus was
on the effects of grain boundaries, and the random structures
should average out anisotropies.

The simulated electrical resistivity and Seebeck coefficient vs
hole density of p-type, crystalline Bi2Te3 are shown in Fig. 2. These
parameters are similar to reported values.40–42 The maximum
power factor (PF) occurs at a hole concentration of 4� 1019 cm�3.
For the subsequent simulations of polycrystalline materials, each
grain was doped at this optimal point to ensure that any perfor-
mance increase observed in the polycrystalline material was due to
grain boundary effects.

B. Electrical simulation of nanocomposite materials

To simulate nanocomposites, a random distribution of grains
was first generated, and then the grain boundaries were defined.
The algorithm used to generate this random geometry is described
in the supplementary material. The grain boundaries were 100 nm
thick. A simple thermal interface resistance was added in the
middle of each grain boundary region to account for the additional
thermal resistance. The value of this thermal interface resistance
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was set to agree with experimentally reported trends in thermal
resistivity vs grain density.17,43 The doping density of the grain
boundaries was set at NGB

A ¼ 3� 1018 cm�3 to produce results con-
sistent with experiments. The resulting band bending is about
one-half of the bandgap. As shown in Fig. 2(b), the result was that
the Seebeck coefficient of the grain boundaries was substantially
higher than that of the grains.

The generated polycrystalline geometry was used as an input
to the Sentaurus Device simulator. It was critical to resolve the
band bending within and near the grain boundaries. For polycrys-
talline materials, a fine mesh on both sides of the grain boundary
was needed. The added burden of a dense mesh is the main reason
why we used 2D simulations instead of 3D. A full 3D simulation of
a geometry that is large enough to be statistically meaningful would

have taken days. As discussed in Sec. IV, simulations of 1D nano-
composites show results that are very similar to those obtained
by 2D simulations; it is likely, therefore, that the effects found in
the 2D studies would not change in 3D. (See the supplementary
material for a description of how the 1D simulations were done.)

The Sentaurus simulations used tables of transport parameters
vs carrier density for all thermoelectric parameters; these tables
were generated using LanTraP with the aforementioned DFT calcu-
lations. Phenomena such as the Thomson effect and mobility varia-
tions with doping density were, therefore, automatically included.
For each random sample, we computed the conductivity by apply-
ing a small voltage (0.1 mV), computing the resulting current, and
converting the result to a conductivity for the sample. To compute
the Seebeck coefficient and thermal conductivity, we applied a

FIG. 1. Simulation flow used in this
work. Upper left: Band structure as
obtained from DFT simulation. Upper
right: Parameter extraction using the
LanTraP tool.9 Lower right: Grain struc-
ture and numerical grid for one ran-
domly generated sample. The dark
areas show the high density numerical
grid. The inset shows an expanded
view of how the grid is refined near
and inside the grain boundaries. The
average grain size here is 1 μm, and
the simulation domain is 1 × 1 mm2.
Lower left: Simulated performance of a
TE cooler. For a typical case, 100
random samples were generated and
simulated, and the results were
averaged.

FIG. 2. (a) Electrical resistivity and (b)
Seebeck coefficient vs hole concentration
for the Bi2Te3 baseline material used in
this work. The bulk is doped at the
optimal PF point, NG

A ¼ 4� 1019 cm�3.
To produce depleted grain boundary
regions, NGB

A ¼ 3� 1018 cm�3 was
used. For these calculations, the orienta-
tion of Bi2Te3 was along c-axis.
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small temperature difference (1 K), and simulated the resulting
open-circuit voltage, which yields the Seebeck coefficient and heat
flux, from which we determine the thermal conductivity. From the
three parameters, we could compute a material figure of merit, zT,
for the sample. We also determined zT by simulating a Harman
measurement34 for each sample. Finally, we extracted zT by simu-
lating ΔTmax of an ideal 1-leg TE cooler. The results of 100 such
simulations for each average grain size were averaged and plotted.

III. RESULTS

The simulated Seebeck coefficient for polycrystalline Bi2Te3
as a function of average grain size is shown in Fig. 3(a). Because
the simulation domain (1 × 1mm2) is large enough to contain
thousands of grains, significant grain size averaging occurs for each
randomly generated sample. Still, for each average grain size, 100
randomly generated samples were simulated and averaged. The
error bars shown in Fig. 3(a) show that the sample-to-sample varia-
tion is small. As intuitively expected, with decreasing average grain
size, the Seebeck coefficient increases because the grain boundary
regions have higher Seebeck coefficients, and as the average grain
size decreases, there are more grain boundaries. Still, the size of the
grain boundaries is small, so the grain boundary regions occupy a
small fraction of the polycrystalline sample. If we repeat the simula-
tion but assume no reduction in lattice thermal conductivity, then
as Fig. 3(a) shows, there is a much smaller dependence of the
Seebeck coefficient on grain size.

As noted above, the Seebeck coefficient of the sample increases
substantially when the Seebeck coefficient of the grain boundary is
high and the thermal conductivity of the grain boundary is
low.27,33 This can be understood with a simple 1D model,33

S ¼ SG(1� tGB)=κG þ SGB(tGB=κGB)
(1� tGB)=κG þ (tGB=κGB)

, (2)

where SG(SGB) is the Seebeck coefficient of the grain (grain
boundary), tGB is the thickness of the grain boundary, and

κG(κGB) is the thermal conductivity of the grain (grain boundary).
Figure 2 shows that SGB � 2SG, but the grain boundary is thin,
that it has only a small effect on the overall Seebeck coefficient
unless the thermal conductivity of the grain boundary is also
very low. This expectation is confirmed by the results shown in
Fig. 3(a)—when the thermal conductivity of the grain boundaries
is identical to the thermal conductivity of the grains, the Seebeck
coefficients of the polycrystalline samples are close to that of the
bulk, crystalline reference.

Figure 3(b) shows the electrical resistivity vs average grain size.
The electrical resistivity is more sensitive to grain size than is
the Seebeck coefficient, and it is independent of whether or not the
lattice thermal conductivity is decreased. This result can also be
understood with a simple, 1D model,33

ρ ¼ (1� tGB)ρG þ tGBρGB: (3)

Grain boundaries are thin, but as Fig. 2(b) shows, the resistiv-
ity of the grain boundaries is more than an order of magnitude
larger than that of the grain. This occurs because band bending in
the grain boundary exponentially decreases the carrier concentra-
tion (it linearly increases the Seebeck coefficient). The smaller the
grains are, the more of these grain boundary regions exist and thus
the higher the overall resistivity is. As a result, electrical resistivity
is inversely proportional to the average grain size.

The thermal conductivity shown in Fig. 4(a) can also be
explained in the same way: the more grain boundaries there are,
the more interface scattering for phonons occurs, and thus the
lower the thermal conductivity is. The power factor calculated
using the aforementioned Seebeck coefficient, electrical resistivity,
and thermal conductivity is shown in Fig. 4(b). For the particular
set of input parameters chosen, PF exhibits a peak value at an
average grain size of 3 μm. For smaller grain sizes, the increase in
resistivity begins to dominate, and PF decreases. This echoes
reports in the literature that show optimal grain sizes exist for
various thermoelectric nanocomposites.42–44

FIG. 3. (a) Seebeck coefficient and (b)
electrical resistivity vs average grain
size for 2D polycrystalline Bi2Te3. Also
shown for reference are the corre-
sponding results for homogenous bulk
Bi2Te3 (dashed line). Finally, results for
polycrystalline samples with no reduc-
tion of thermal conductivity are also
shown (open circles).
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Finally, we examine the thermoelectric figure of merit of the
simulated nanocomposites. The figure of merit was obtained in
three different ways. The first was from the simulated measure-
ments of the electrical conductivity, σ, the Seebeck coefficient, S,
and the total thermal conductivity, κ, according to the definition

zT(σ, S, κ) ¼ σS2T
κ

, (4)

where T is the temperature. This is the method most commonly
used to report the measured zT of nanocomposite materials.
The second way zT determined was from simulated Harman mea-
surements, which we label as zT(Harman). The third way zT deter-
mined was from the maximum cooling temperature, ΔTmax, of a
simulated thermoelectric cooler,

ΔTmax ¼ zT2
C

2
: (5)

Because the simulated cooler is ideal with no contact resis-
tances or thermal shunts, we expect values for zT(ΔTmax) that are
similar to those obtained with the first two methods. (A small
difference might be expected because of the temperature depen-
dence of the thermoelectric parameters.) The key question in this
paper is whether zT(σ, S, κ) predicted from Eq. (4), zT(Harman),
and zT(ΔTmax) deduced from Eq. (5) are the same. Figure 5 pro-
vides the answer.

As shown in Fig. 5, for all average grain sizes, measurement
methods (1) and (2) zT(σ, S, κ) and zT(Harman) are identical but
significantly larger than for measurement method (3) zT(ΔTmax). In
other words, ΔTmax of the cooler built from this polycrystalline mate-
rial would not be as high as would be expected. As discussed in the
supplementary material, the conclusion for embedded nanoparticles
is the same. The key point is that when potential barriers and lower
thermal resistance occur, these effects should be expected.

Also shown as filled triangles in Fig. 5 are results for the case
in which the electrical properties of the grain boundaries are

identical to those of the grains and the crystalline reference.
For this case, the only difference between the polycrystalline and
crystalline samples is the lattice thermal conductivity. Figure 5
shows that for this case, zT is greater than for the crystalline refer-
ence and that all three measurement methods for obtaining zT
give identical results.

FIG. 4. (a) Thermal conductivity and
(b) power factor vs average grain size
for 2D polycrystalline Bi2Te3. Also
shown for reference are the corre-
sponding results for homogenous bulk
Bi2Te3 (dashed line).

FIG. 5. Figure of merit, zT, vs average grain size for nanocomposite Bi2Te3. Also
shown for reference are the corresponding results for homogenous bulk Bi2Te3
(dashed line). The results for measurement methods (1) and (2) zT (σ, S, κ) and
zT(Harman) are substantially larger than that for measurement method (3)
zT(ΔTmax), but all three results for the nanocomposites are larger than the corre-
sponding results for homogenous bulk Bi2Te3. Results for polycrystalline samples
for which the electrical properties of the grains and grain boundaries are identical
are shown as closed triangles. In this case, measurement methods (1), (2), and
(3) zT(σ, S, κ), zT(Harman), and zT(ΔTmax) are all identical.
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IV. DISCUSSION

The difference between zT predicted from the individually
measured electrical and thermal conductivities and Seebeck
coefficient (or from a Harman measurement) and zT deduced
from the cooler operating at ΔTmax originates from the nature of
the measurements. Seebeck coefficients are measured by creating
a temperature gradient across a sample and then measuring the
open-circuit voltage. To minimize the effects of temperature
dependent material parameters, the temperature gradient applied
across the sample is typically very small—a few Kelvin.45,46

Harman measurements are typically done at low currents to mini-
mize Joule heating. A thermoelectric cooler operates at high cur-
rents where Joule heating is significant.

One-dimensional simulations of the structure shown in Fig. 6
provide some insights into these results. Three different cases were
considered: (1) A uniform material with the properties of the
grains in the 2D simulations, (2) a 1D nanocomposite with reduced
thermal conductivity in the grain boundaries, but with electrical
properties that are idential to those of the grain, and (3) a 1D
nanocomposite with a reduced thermal conductivity in the grain
boundaries and with the lighter doping that produces potential
barriers for carriers. Case 1 is the bulk reference. Case 2 is a
nanocomposite that benefits only from a reduction of the lattice
thermal conductivity, and case 3 is a nanocomposite that also
provides an enhanced power factor. For case 3, 1D simulations
give zT(σ, S, κ) ¼ zT(Harman) ¼ 1:35 and zT(ΔTmax) ¼ 1:02,
which, for an average grain size of 1.3 μm, agrees well with the 2D
results shown in Fig. 5.

Figure 7 shows the ΔT vs I comparison for the three cases
shown in Fig. 6. As expected, case 1, the bulk crystal case, has the
lowest performance. For case 2, when the grains only have the
added benefits of increased thermal resistance while their electrical
properties are identical to those of grains, the cooling performance
is significantly enhanced. Finally, note that case 3, for which the
grains have an enhanced S and a lower thermal conductivity,
gives a lower performance than case 2. This occurs in spite of
the fact that the conventionally measured zT for case 3 is
zT(σ, S, κ) ¼ 1:35 while that for case 2 is zT(σ, S, κ) ¼ 1:05.
Figure 7 also shows ΔT vs I that would be predicted from the con-
ventionally measured zT (1.35) for the case 3 nanocomposite.
These results demonstrate that conventional measurements of
nanocomposites with electrically active grain boundaries (case 3)
substantially overpredict the performance of thermoelectric
coolers (compare the solid and dashed lines in Fig. 7). They
also show that while potential barriers at grain boundaries can
increase the measured zT, they decrease the performance of a

thermoelectric cooler in comparison to a nanocomposite with no
potential barriers at the grain boundaries (i.e., case 3 vs case 2).

One way to understand these effects is in terms of the compat-
ibility factor discussed by Snyder et al.47 The grains are optimally
doped to have the highest power factor according to Fig. 2, but the
grain boundaries are not optimally doped. Intuitively, one might
expect this effect to be small because the grain boundaries occupy a
small portion of the overall geometry. The difference shown in
Fig. 7 between case 2 and case 3 is, however, not insignificant. The
additional performance degradation can be understood as due to
the incompatibility between the grain and grain boundary elements.
The essential point-of-view of the compatibility factor is to analyze
the 1D thermoelectric device as infinitesimally small segments
cascaded in series. Next, we adopt this view and compare the ther-
moelectric device under Seebeck measurement conditions and at
ΔTmax of a thermoelectric cooler.

As shown in Fig. 8 for the Seebeck measurement, the ther-
moelectric device is subject to a very small temperature difference,
and the device is open-circuited electrically. The temperature
profile shows the expected linear profile. The details of grain
boundaries are visible in the insets of Fig. 8. Since grain boundary
regions have high thermal resistance, more temperature drops
across them, and the profile shows a zig-zag pattern. As discussed
earlier in Eq. (2), this causes the overall Seebeck measurement to
favor the Seebeck value of the grain boundaries, which is higher
than that of the grains.

Under cooling operation, the electrical current is high, and the
temperature variations are steeper than in the Seebeck measure-
ment. There is also a significant amount of Joule heating, which
cannot be ignored. The temperature profile at ΔTmax is shown in
Fig. 9. Overall, the profile behaves as expected for a homogenous
device. The details, however, are important. At the cold side, the
profile looks like the one seen for the Seebeck measurement, albeit
with a higher temperature variation. Both the grain and grain

FIG. 6. Illustration of 1D nanocomposites. The average grain size is 1.3 μm,
and the material properties of the grains and grain boundaries are the same as
for the 2D samples considered in Fig. 5. Case 1: Uniform material. Case 2:
Nanocomposite with reduced κ in grain boundaries. Case 3: Nanocomposite
with reduced κ and enhanced S in grain boundaries.

FIG. 7. Simulated ΔT vs I for a thermoelectric cooler with the three cases
shown in Fig. 6. Also shown for reference is the projected ΔT vs I assuming
zT(σ, S, κ) ¼ 1:35, which conventional measurements would give for the case
3 nanocomposite.
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boundary regions operate as coolers, and the cooling adds up.
At the hot side, the profile shows a sawtooth pattern. More impor-
tantly, the grain regions no longer act as coolers but as heaters
instead. This occurs because the high resistance of the grain bound-
aries makes them significant Joule heating sources and the low
thermal conductance makes it hard for the heat to flow away. In
other words, the overall cooling device consists of many small seg-
ments of coolers in series with several heaters. This, of course,
lowers the cooling performance.

To understand quantitatively why the temperature profile
shown in Fig. 8 enhances the sample Seebeck coefficient and why the
temperature profile in Fig. 9 does not, consider a one-dimensional
example for which the hole current density is

Jp ¼ σpE � σpSpdT=dx: (6)

From the open-circuit voltage for a sample of length, L, we can
deduce the Seebeck coefficient for the polycrystalline sample from

Ssample ¼ VOC

ΔT
¼

� ÐL

0
Sp(dT=dx)dx

ΔT
: (7)

Equation (7) shows that the Seebeck coefficient of the sample is
strongly influenced by the Seebeck coefficient of regions where the
temperature gradient large. When the Seebeck coefficient is mea-
sured under open-circuit conditions (Fig. 8), the temperature gra-
dient in the grain boundaries is larger than in the grains, so the
overall S increases. On the other hand, at ΔTmax for the TEC,
Joule heating produces a temperature gradient that changes sign
in the grain boundary. According to Eq. (7), this change in sign

FIG. 8. Temperature vs position for the
case 3 nanocomposite under open-
circuit conditions with ΔT ¼ 1 K.
These are the conditions used for
Seebeck coefficient measurements.

FIG. 9. Temperature vs position for
the case 3 nanocomposite operating
as a thermoelectric cooler with
ΔTmax ¼ 71 K. These are the condi-
tions used for Seebeck coefficient
measurements.
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of the temperature gradient essentially eliminates the higher
Seebeck coefficient of the grain boundary.

V. CONCLUSIONS

In this work, we examined the electronic performance of
nanostructured thermoelectric materials using first-principles
informed two-dimensional numerical simulation. It is now well-
established that phonon scattering from grain boundaries or
imbedded nanoparticles lowers the lattice thermal conductivity,
which increases the material figure of merit, zT. Our focus was on
the electronic performance of these materials—specifically on
materials in which the depletion of carriers near grain boundaries
(or around embedded nanoparticles) increases the Seebeck coeffi-
cient. Simulations of these materials with electrically active grain
boundaries confirm that when the Seebeck coefficient of the grain
boundaries is larger than that of the grains, the overall Seebeck
coefficient of the sample only increases significantly when the
lattice thermal conductivity is low where the Seebeck coefficient is
high. More importantly, we showed that when zT of the nano-
composite is determined from standard measurements of σ, κ,
and S, it provides an overly optimistic estimate of the perfor-
mance of a thermoelectric cooler. When we compare a nanocom-
posite with reduced lattice thermal conductivity due to grain
boundary scattering to another nanocomposite that also has
potential barriers at the grain boundaries, we found that the one
with potential barriers had a higher measured zT, but it produced
a lower ΔTmax in a TE cooler.

The parameter space for thermoelectric nanocomposites is
large. We have explored only the case for which the grains are opti-
mally doped, the grain boundaries deplete the grains and bend the
bands by about one-half of the bandgap, and the thermal resistance
of the grain boundary was reduced. (A similar case for embedded
nanoparticles is discussed in the supplementary material.) The con-
clusions of this study are, however, expected to apply more broadly—
potential barriers can increase the measured zT of a nanocomposite,
but they can reduce the performance of a thermoelectric cooler made
from the same nanocomposite. This occurs because electrically active
grain boundaries of the type examined here (or of similarly electri-
cally active embedded nanoparticles) are particularly sensitive to
Joule heating, which occurs during device operation but not during
the measurement of zT. Although we only examined thermoelectric
coolers, the same conclusion may also apply to electrical power gen-
eration from thermoelectric devices.

SUPPLEMENTARY MATERIAL

See the supplementary material for extraction of thermoelec-
tric material parameters from DFT calculation, the procedure for a
random grain geometry generation and coupling with Sentaurus
Device simulator, the results with Ag nanoparticles, and compari-
son between 2D and 1D simulations.
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