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Abstract 
Microcarrier cell scaffolds have potential as injectable cell delivery vehicles or as building 

blocks for tissue engineering. The use of small cell carriers allows for a ‘bottom up’ approach 

to tissue assembly when moulding microparticles into larger structures, which can facilitate 

the introduction of hierarchy by layering different matrices and cell types, while evenly 

distributing cells through the structure. In this work, silk fibroin (SF), purified from Bombyx mori 

cocoons, was blended with gelatin (G) to produce materials composed of varying ratios of the 

two components (SF:G 25:75, 50:50, and 75:25). Cell compatibility to these materials was first 

confirmed in two-dimensional culture and found to be equivalent to standard tissue culture 

plastic, and better than SF or G alone. The mechanical properties of the blends were 

investigated and the blended materials were found to have increased Young’s moduli over SF 

alone. Microcarriers of SF/G blends with defined diameters were generated in a reproducible 

manner through the use of an axisymmetric flow focussing device, constructed from off-the-

shelf parts and fittings. These SF/G microcarriers supported adhesion of rat mesenchymal 

stem cells with high degrees of efficiency under dynamic culture conditions and, after culturing 

in osteogenic differentiation medium, cells were shown to have characteristics typical of 

osteoblasts. This work illustrates that microcarriers composed of SF/G blends are promising 

building blocks for osteogenic tissue engineering. 
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1. Introduction 

Scaffold design for tissue engineering has traditionally relied on a top-down approach, 

generally attempting to seed cells evenly throughout a relatively large pre-formed scaffold. 

This has distinct disadvantages; it is often difficult to ensure even cell distribution, and central 

or core scaffold regions can remain underpopulated. Encapsulating cells within hydrogels is a 

possible means of overcoming cell distribution issues, but hydrogels have their own 

shortcomings, such as poor mechanical properties [1]. More recently, bottom-up approaches 

have been investigated by a number of groups, whereby smaller scaffold fragments or 

particles are seeded with cells before being moulded or shaped into the final 3D structure [2-

4]. In this way, cells are evenly spread throughout the construct, and complexity can be built 

in by layering different cell or scaffold types. Cell microcarriers, particulate growth matrices 

with diameters of several hundred microns, are ideal candidates for this type of approach, and 

also have wider applications in the scale-up of cell production [5-7] and the precise, injectable 

delivery of therapeutic cells to areas of disease or damage within the body [6, 8, 9]. 

 

Bone tissue is a promising target for the application of microcarriers, either assembled into a 

construct to treat a sizeable defect, or as injectable cell delivery vehicles to stimulate repair 

[10]. Microcarriers for applications in bone tissue engineering and repair should possess 

physicochemical and mechanical properties to support the growth and proliferation of suitable 

cells, and be able to withstand the mechanical loads present within bone tissue. Silk fibroin 

(SF), the core protein in silkworm-extruded silk fibres, is a promising biomaterial for use in 

tissue engineering. It is biocompatible, degrades slowly, can be chemically modified, and can 

be processed into a wide variety of structures [11, 12]. It also has excellent physical properties, 

being lightweight, strong, highly elastic and thermally stable [11]. Due to its high mechanical 

strength and positive influence on mineralisation, silk is a strong candidate material for bone 

tissue engineering [13, 14]. However, cell adhesion to SF can be poor, so blending with 

materials that promote cell adhesion can harness the positive attributes of each component 

material. For example, SF has been blended with other natural polymers including gelatin [15-

17], chitosan [18] and hyaluronic acid [19] to improve its properties. 

 

While a wide range of silk-based scaffolds, such as freeze dried sponges [13], nanofibers [20, 

21] and hydrogels [22, 23] have been investigated for bone engineering and repair, there are 

no reports in the literature regarding the use of spherical silk particles for tissue engineering. 

Although silk microparticles have been proposed as vehicles for the delivery of drugs and 
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growth factors [24-26], the use of silk fibroin, either alone or blended, for the generation of 

spherical cell microcarriers has not, to our knowledge, been investigated. This paper describes 

the first report of silk microcarrier production by microfluidic flow focussing, which generates 

particles in a reproducible and controllable manner. The device described here was (unlike 

previously reported systems) assembled entirely from unmodified commercially available 

fittings, thus facilitating easy adoption and adaptation of this device by other groups [27]. To 

confirm cell compatibility, SF and SF/gelatin blends (SF/G), were first investigated as two-

dimensional films. The mechanical properties of these blends were then evaluated by 

compression testing to determine the effects of changing the ratio of SF to gelatin. Spherical 

SF/G microcarriers, produced by flow focussing, were characterised by light and scanning 

electron microscopy to ascertain their diameter and surface morphology before examining 

mesenchymal stem cell (MSC) seeding and osteodifferentiation on this particulate scaffold. 

 

 

2. Materials and Methods  
2.1 Materials 

Silk cocoons were purchased from Homecrafts Direct (http://www.homecrafts.co.uk/). Foetal 

calf serum was purchased from Thermo-Fisher. Antibodies for fluorescence-activated cell 

sorting were obtained from Miltenyi Biotec Ltd., R&D Systems and BD Biosciences as 

described in Table 1. The osteopontin ELISA kit was purchased from R&D Systems. Upchurch 

HPLC fittings and connectors described in section 2.6 were purchased from Kinesis, and glass 

capillaries were purchased from CM Scientific. All other materials and reagents were 

purchased from Sigma-Aldrich and used as supplied. 

 

2.2 Purification of silk fibroin (SF) from silk cocoons 

SF was extracted from Bombyx mori silk cocoons as previously described [28]. Briefly, 

chopped cocoons were degummed by boiling in 0.02 M sodium carbonate for 1 hour and then 

washed 5 times in distilled water before being air-dried overnight. The dried silk was then 

dissolved at 15% w/v in 9 M lithium bromide by heating at 60 °C for up to 4 hours. After cooling 

to room temperature, the solution was filtered through a 5 µm syringe filter (Sartorius) and 

dialysed against deionized water using SnakeSkin™ dialysis tubing (3,500 Da MWCO; 

Thermo) until the conductivity of the dialysate did not increase (2-3 days). The SF solution 

was then either freeze dried (Thermo Savant MicroModulyo) or known volumes were oven-

dried overnight to determine the concentration, and the solution stored at 4 °C until required. 
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2.3 Rat mesenchymal stem cell (rMSC) isolation and culture 

rMSCs were extracted from the bone marrow of juvenile Wistar rats as described by Zhang 

and Chan [29]. Cells were initially selected by adherence to tissue culture plastic (TCP) and 

grown to ~80% confluence prior to enrichment using fluorescence-activated cell sorting 

(FACS). For this, cells were trypsinized, counted and divided into microcentrifuge tubes 

containing between 105 and 106 cells per sample. Cells were then pelleted by centrifugation 

(300 x g, 5 minutes) and washed in cold FACS buffer consisting of PBS with 1% v/v FBS 

before 30 minutes incubation on ice. Cells were again pelleted and re-suspended in 50 μL of 

FACS buffer. The antibodies and isotype controls were added to each sample as appropriate, 

in the dilutions listed in Table 1. The samples were incubated for 1 hour on ice, protected from 

light. Finally, the samples were washed twice by pelleting and re-suspending in FACS buffer, 

then finally re-suspended in 500 μL of PBS, at which point FACS was performed using a 

Becton Dickinson FACS Aria III. 

 

 

The population of cells positively expressing CD90.1 and CD54, and negative for CD45, was 

cultured in basal medium consisting of αMEM supplemented with 10% foetal calf serum, 2mM 

L-glutamine, 100 U/mL penicillin and 100 μg/mL streptomycin (basal medium). Cells were 

maintained at 37 °C, in a humidified atmosphere containing 5% CO2 and used up to passage 

8, after which they lose their capacity to proliferate and differentiate [30].  

 

Antibody Supplier Catalogue # Conjugate Dilution 

Mouse anti-rat CD90.1 Miltenyi Biotec Ltd. 130-102-637 Vioblue 1:11 

Mouse anti-rat CD54 R&D Systems FAB5831F FITC 1:3.5 

Mouse anti-rat CD45 BD Biosciences 561588 PE-Cy7 1:50 

Isotype control mouse 

IgG2a 
Miltenyi Biotec Ltd. 130-098-898 Vioblue 1:11 

Isotype control mouse 

IgG2b 
Miltenyi Biotec Ltd. 130-099-119 FITC 1:3.5 

Isotype control mouse 

IgG1κ 
BD Biosciences 560906 PE-Cy7 1:11 

Table 1: Antibodies and isotype controls used for the identification and enrichment of 
rMSCs by FACS. 
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2.4 Formation of silk fibroin/gelatin films 

Silk fibroin (SF), gelatin (G) and SF/G blends (SF:G 75:25, 50:50, 25:75) were dissolved in 

hexafluoroisopropanol (HFIP) at a total protein concentration of 2% w/v and added to separate 

wells of multiwell plates at a volume sufficient to coat the base of the well (105 μL/cm2). The 

solvent was evaporated to leave thin protein films, which were crosslinked by treatment with 

50 mM 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) in methanol for 

24 hours at 4 °C, which also ensured the transition of SF to the insoluble β sheet conformation 

[31]. Wells were then washed three times with dH2O, dried in a culture hood overnight, and 

sterilised by 30 minutes exposure to UV light (253.7 nm, 0.115 kW, Bioquell). Plates were 

either seeded with cells immediately or stored at 4 °C until use. 

 

2.5 Assessment of cell proliferation and osteogenesis on 2D films 

Relative cell metabolism was used as a measure of cell proliferation and was determined by 

quantifying the reduction of resazurin. To measure cell metabolism by reduction of resazurin 

to resorufin, rMSCs were seeded in 24 well plates at 2.5x104 per well and, at specific time 

points, subsequently incubated with 0.15 mg/mL resazurin solution at 20% v/v in the total 

culture volume. After 2 hours incubation at 37 °C, the fluorescence of the medium was 

measured at 560/590 nm (excitation/emission) using a BMG Labtech FLUOstar Omega and 

cell culture continued in fresh medium. 

 

To promote osteogenic differentiation, rMSCs were seeded in 24 well plates at 3x104 per well 

and grown to confluence in basal medium before switching to osteogenic differentiation 

medium (ODM), which consisted of basal medium supplemented with 0.1 μM dexamethasone, 

0.2 mM ascorbic acid 2-phosphate and 10 mM β-glycerophosphate. Levels of osteopontin 

(OPN) in cell culture supernatants were subsequently quantified using mouse/rat Osteopontin 

Quantikine ELISA Kit (R&D Systems) according to the manufacturer’s instructions. Prior to 

this, cell culture medium was completely replaced on day 10 after switching to ODM and 

supernatants collected on day 14 for OPN analysis. Data was normalised to the number of 

cells per well, quantified by fluorescent detection of Hoechst-stained cell lysate [32]. Briefly, 

media was removed from the samples, which were frozen at -80 °C, then thawed at 37 °C. 

Distilled H2O was added to each well before sonicating for 15 minutes (VWR Ultrasonic 

Cleaner USC300TH) and then re-freezing. Samples were again thawed at 37 °C, and the 

resulting supernatants added to an equal volume of 20 μg/mL Hoechst 33342 in TNE buffer 

(10 mM Tris-HCl, 1 mM EDTA, 2 M NaCl; pH 7.4). A standard curve was constructed using 
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samples with from known cell numbers. Fluorescence was read at 350/460 nm (BMG Labtech 

FLUOstar Omega). 

 

2.6 Construction of an ‘off the shelf’ axisymmetric flow focussing device 

The flow focussing device was based on a design by Terray & Hart [27] and assembled from 

a HPLC T-junction (Tee LP PEEK 1/4-28 1/16" 0.040" Thru Hole) fitted with a central glass 

capillary (Hollow Round Glass Capillaries ID 0.50mm OD 0.70mm). The inner and outer 

phases were fed into the T-junction through PEEK tubing (ID 0.03", 1/16" OD) with the output 

consisting of PEEK tubing with a smaller inner diameter (0.02"). Input tubing was connected 

to Luer lock syringes via tubing-to-cone and cone-to-Luer fittings (Fingertight fitting two-piece 

PEEK 10-32 Long; Adaptor female luer to 10-32 female PEEK). The two input feeds were 

controlled by syringe pumps (Harvard Apparatus Pump 11 Plus and Cole Parmer single 

syringe infusion pump), and consisted of two immiscible fluids, an outer continuous oil phase 

and an inner aqueous phase. 

 

2.7 Microcarrier production by axisymmetric flow focussing 

Type A porcine gelatin was dissolved to a concentration of 50 mg/mL in dH2O at 60 °C, and 

SF solution was diluted to the same concentration. Prior to the formation of microcarriers, 

these solutions were mixed to give blends with SF/G ratios of 100:0, 75:25, 50:50 and 25:75, 

and then maintained at 60 °C until use. To generate microcarriers, SF or SF/G solution was 

used as the inner phase in the flow-focussing device, with the inner flow rate (Qinner) set at 

0.36 mL/h. The outer phase consisted of oleic acid, methanol and Span 80, mixed in a volume 

ratio of 73:25:2 [33], with the outer flow rate (Qouter) set at 7.2 mL/h. The output of the device 

was collected into a mixture of the outer phase solution diluted 1:1 with methanol and kept on 

ice. Following filtration, SF microcarriers were washed with PBS, autoclaved in PBS at 121 °C 

for 15 minutes and then stored at 4 °C until use. Gelatin-containing microcarriers were cross-

linked for 24 hours with 50 mM EDC in methanol at 4 °C and then treated in the same way as 

SF microcarriers.  

 

2.8 Morphological analysis of 3D microcarriers 

Images of the microcarriers were acquired using a Leica DMI4000B microscope and their 

diameters then determined using the Particle Analysis function of ImageJ (NIH, Bethesda, 

MD, USA; http://imagej.nih.gov/ij) [34]. At least 100 particles were analysed for each material 

type. To analyse their surface topography microcarriers were freeze-dried, mounted on 

http://imagej.nih.gov/ij
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aluminium stubs, and sputter coated with gold (Edwards Sputter Coater 5150B). Samples 

were then examined with a JEOL JSM6480LV scanning electron microscope.  

 

2.9 Determination of Young’s Modulus of SF, SF/G blends and gelatin 

To produce discs for compression testing, 1.5 mL aliquots of 5% w/v solutions of SF, the three 

SF/G blends and gelatin were added to wells of a 12 well plate. Plates were cooled to 4 °C to 

gel the gelatin-containing discs, before being frozen at -20 °C. Methanol (1 mL) was added to 

each well and the discs incubated overnight at 4 °C. After removal of the methanol, SF discs 

were then thoroughly wash three times with PBS, while SF/G and gelatin discs were further 

crosslinked by EDC/NHS treatment as described in section 2.4 and then washed in PBS. Once 

removed from the plates, discs of 13.5 mm diameter and 3-4 mm height were punched out of 

the solid materials using a cork borer and then examined by uniaxial, unconfined compression 

analysis using an Instron 5965 testing system at room temperature. All samples were 

subjected to a loading rate of 0.2 mm/minute and measured for 6 minutes. 

 

2.10 Cell seeding and culture on microcarriers 

Cells were seeded onto microcarriers in 24 well plates coated with a non-adhesive layer of 

1% agarose in DMEM. In a total volume of 500 μL, cells were seeded at a concentration of 

3.75x105 cells/mL with microcarriers suspended at 2x103 particles/mL in complete medium. 

The plate was incubated on a plate rocker under standard cell culture conditions and, after 24 

hours, the suspension was filtered through a 70 μm nylon mesh filter to remove unattached 

cells, which were counted to establish the proportion of cells remaining adhered to the 

microcarriers. After initial seeding, cell-laden microcarriers were cultured statically in complete 

medium or transferred into ODM, and cultured for 14 or 28 days. 

 

2.11 Analysis of viability and osteodifferentiation on 3D microcarriers 

To assess rMSC viability on SF/G microcarriers, cells were seeded as described above and, 

after 96 hours in culture, stained simultaneously with calcein-AM and ethidium homodimer-1 

(both 2 μM in PBS) to identify living and dead cells. Cells were washed with PBS, incubated 

in the staining solution in the dark for 20 minutes at 37 °C and then examined using a Zeiss 

LSM510 confocal microscope. To determine osteogenic differentiation of the cells, secretion 

of OPN was measured as described in section 2.5 after 14 days in ODM, or alkaline 

phosphatase (ALP) activity was assayed after 28 days. Microcarriers were washed with PBS, 

cells were fixed briefly in 4% w/v paraformaldehyde (maximum of 60 seconds) and then 
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washed in PBS with 0.05% v/v Tween 20. BCIP/NBT solution (5-bromo-4-chloro-3'-

indolyphosphate p-toluidine salt and nitro-blue tetrazolium chloride), was then added to the 

cells for 10 minutes and the cells washed once more with PBS/0.05% v/v Tween 20. 

Generation of a dark purple precipitate, indicating the presence of ALP, was assessed using 

a stereomicroscope (Olympus SZ61TR). 

 

2.12 Statistical analysis 

Statistical analysis was performed using one-way analysis of variation (ANOVA) with Tukey’s 

honest significant difference post-hoc test using R software [35]. A value of p<0.05 was 

considered statistically significant. 

 

 

3. Results and Discussion 
In order to determine the suitability of SF/G blends for use as a substrate for MSC proliferation 

and osteogenic differentiation, cell-material interactions were initially assessed in 2D by 

seeding rMSCs on biomaterial films, which were cast within multiwell plates. Suitable blends 

were then taken forwards to evaluate their ability to form microcarriers which supported MSC 

adhesion and osteogenesis. 

3.1 rMSC adhesion to SF and SF/G blends in two-dimensional culture 

The ability of films of SF, SF/G and gelatin to support rMSC proliferation was assessed over 

7 days using the resazurin reduction assay which, unlike a number of other metabolic assays, 

enables the same population of cells to be examined across multiple time points (Figure 1). 

rMSCs proliferated poorly on pure gelatin films, which was unexpected as gelatin is well known 

as a highly cell-adhesive material and is used routinely in tissue engineering scaffolds [36-38]. 

In this case, it is possible that the low level of cell adhesion and growth was a result of the 

gelatin absorbing water from the culture medium and becoming very soft. Swelling of gelatin 

under physiological conditions is well-established and, although cross-linking reduces the 

potential for swelling, it does not remove it completely [38-40]. Additionally, it has previously 

been shown that gelatin-coated substrates softer than 100 Pa did not support the survival of 

normal fibroblasts, and it appears the same effect may have occurred in this study [41]. SF is 

less hydrophilic than gelatin, with long regions of hydrophobic amino acid residues in its 

structure, which organise to form insoluble β-sheets upon exposure to methanol [12, 42]. It is 

thus less likely to absorb water and become destabilized to the same extent as gelatin 

hydrogels. However, as is apparent from Figure 1, rMSCs did not proliferate on SF films, while 
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blending SF with gelatin dramatically improved cell growth, with the proliferation of the cells 

on all three SF/G blends being comparable to growth on the tissue culture plastic (TCP) 

control. This stark contrast is likely due to the presence of Arg-Gly-Asp (RGD) integrin binding 

motifs within gelatin [43, 44], which are absent from Bombyx mori SF [45]. Many studies have 

examined the use of SF for bone engineering and repair applications, with considerable 

success. However, even in these studies, cell growth on SF scaffolds is relatively poor, with 

SF used primarily for its mechanical strength, biodegradability and biocompatibility [13, 46, 

47]. Indeed, there are many examples in the literature of modifications to SF scaffolds in order 

to improve cell adhesion and growth, including direct chemical modification of SF and blending 

with other biomaterials or growth factors [20, 48-55]. An exception is the use of electrospun 

SF nanofibres, where improved cell growth on unmodified SF is likely due to the topographical 

features of the fibres and their mimicry of the dimensions of native ECM [56]. Thus, in the 

SF/G blends presented in this study, while SF is likely to improve the physical properties of 

2D films, the presence of gelatin is required to provide valuable sites for cell adhesion. 

 

 

3.2 Osteogenic differentiation of rMSCs on SF/G films 

Deposition of calcified ECM is a commonly used measure to determine osteogenic 

differentiation of MSCs. However, it was found that mineralisation stains, such as Alizarin Red 

[57] and von Kossa [58], gave heavy background staining of SF/G films even in the absence 

Figure 1: Proliferation of rMSCs on films of SF, gelatin and SF/G blends, measured by 
reduction of resazurin. Data is presented as the fluorescence signal relative to cells on the 
untreated TCP control at day 1. Data shown represent the mean value (n=3). 



10 
 

 

 

of cells, and so could not be used. Instead, we examined the expression of osteopontin (OPN), 

a secreted matricellular protein with roles in biomineralization and bone remodelling [59], 

which is expressed during osteogenesis [60]. Following 14 days culture in either basal medium 

or osteogenic differentiation medium (ODM), OPN secretion by rMSCs was quantified by an 

ELISA (Figure 2). Due to the poor response of rMSCs to SF and gelatin films, these substrates 

were not examined in these assays. 

 

 

Cells grown on all three SF/G blends and the TCP control secreted very low quantities of OPN, 

between 2.08 and 3.08 fg/cell, when cultured in basal medium, with no significant differences 

observed between the different substrates. However, when cultured in ODM, there was a 

significant increase in OPN secretion on all surfaces, ranging from 17.68 to 22.92 fg/cell, 

indicating osteogenic differentiation of the rMSCs on these blended materials. While there was 

an apparent trend for increasing OPN secretion with increasing SF content in the films, 

differences in OPN levels between substrates were not statistically significant. It is extremely 

difficult to compare these relative quantities to similar studies in the literature as data is often 

reported at the mRNA level and/or as a fold-increase or percentage relative to a control rather 

than absolute quantity of protein secreted per cell. Nonetheless, it is clear that SF/G blends 

are capable of supporting the proliferation and osteogenic commitment of rMSCs. 

Figure 2: Secretion of osteopontin by rMSCs grown on TCP or SF/G films in basal medium 
or osteogenic differentiation medium (ODM) for 14 days. Data shown represent mean + 
standard error (n=3). 
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3.3 Production of cell microcarriers from SF/G blends 

Following the positive 2D results, we investigated microcarriers for the 3D culture and 

osteogenic differentiation of MSCs. Previous studies have demonstrated the formation of SF 

microcarriers from simple homogenised emulsions, but this requires volatile organic solvents 

and results in microcarriers with a wide size distribution [61]. At the size range of interest for 

cell microcarriers (~300 μm), variations in diameter have a marked effect on the curvature of 

the particle surface [62], and cells cultured on microcarriers with a wide size distribution 

therefore experience decidedly different environments. In order to reproducibly produce 

microcarriers of a narrow, controlled size range, we employed microfluidic flow focussing to 

produce SF/G microcarriers. The device used was similar to that described by Terray & Hart 

[27] but with the advantage that no alterations to the re-purposed HPLC fittings were required 

(Figure 3). This system was also advantageous in comparison to one-piece 3D printed devices 

described elsewhere [33, 63], in that it could be fully disassembled for cleaning the component 

parts should any of the channels become blocked.  

Figure 3: Schematic image (A) and exploded view (B) of the “off-the-shelf” flow focussing 
device used to generate SF/G microcarriers. 
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Using an outer phase of oleic acid/methanol/Span 80 (73:25:2) and a disperse phase of SF/G 

solution, microcarriers were produced successfully from SF/G 75:25, SF/G 50:50, and SF/G 

25:75. Methanol was employed in the outer phase to induce a conformational change in silk 

fibroin, resulting in the formation of insoluble crystalline β-sheets which act as physical 

crosslinks in the protein structure [64]. This effect was combined with cooling the outflow to 

induce the temperature-dependent gelation of gelatin, allowing the collection of the resultant 

droplets as microcarriers. It was possible to tailor the diameter of the microcarriers by adjusting 

the flow rates of the outer and inner phases, and the ratio between the two (Qouter/Qinner; Figure 

4). Based on preliminary investigations, a Qinner of 0.36 mL/h was the optimum for the 

consistent generation and collection of microcarriers, with Qouter/Qinner of 20 consistently 

yielding microcarriers with diameters in the desired range of 300-400 μm. 

 

3.4 Characterisation of microcarriers 

The morphology of the microcarriers was assessed by visible light and scanning electron 

microscopy. Microcarriers of all three SF/G blends shared a very similar porous surface 

structure, with representative images of SF/G 75:25 microcarriers shown in Figure 5. The 

pores were in the region of ~2 μm, too small for cell migration into the particle interior. Pure 

SF microcarriers, examined alongside SF/G for comparison, collapsed during lyophilisation, 

suggesting that the inclusion of gelatin offers improved structural characteristics compared to 

the non-blended material. 

Figure 4: Mean diameter (± standard error) of SF/G 75:25 microcarriers produced under 
selected flow rate ratios, when Qinner= 0.05 mL/min. 
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Microcarrier diameters were measured using ImageJ analysis of visible light microscopy 

images, and these results are summarised in Table 2 and Figure 6. The mean diameters of 

all three blends fell within the target range of 300-400 µm and were comparable with 

commercially available Cultispher-S gelatin microcarriers. However, in comparison to 

Cultispher-S, the SF/G microcarriers had a narrower size distribution, especially the SF/G 

50:50 and SF/G 25:75 blends, demonstrating the reproducibility and relative homogeneity of 

this flow focussing approach. Interestingly, product literature for the Cultispher-S microcarriers 

states a size range of 130-380 µm, although the range measured in this study, 108-565 µm, 

was considerably larger [65]. To our knowledge, this is the first report of homogeneous SF/G 

microcarriers. Indeed, there are very few studies in the literature on any silk-based 

microcarriers, with most SF particle research focusing on either microparticles in the low 

micron range, or nanoparticles. The only comparable report of SF/G microcarriers describes 

Figure 5: SEM images of SF/G 75:25 microcarriers. The structure observed here was 
maintained in other SF/G blended microcarriers. Scale bars represent 50 µm (A) and 5 µm 
(B). 
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the cryofragmentation of 3D SF/G scaffolds to generate irregularly-shaped particles with a 

broad size range of 50 to 300 µm [17]. In terms of pure SF microcarriers, there is one report 

of a controlled droplet dissolution method to generate transparent silk spheres [66]. These 

particles are homogenous and, although the paper does not state their size, they appear to 

be approximately 600 µm in diameter, which is larger than ideal for a cell microcarrier. Other 

reports of silk-containing microcarriers employ SF as a coating rather than a structural 

components of the particles. To date, silk-coated pullanan [67] and alginate [68] microcarriers 

have been described, with diameters of 170 ± 45 µm and 422 ± 46 µm respectively. The 

particles described in the current study have a narrower size distribution than either of these 

silk-coated carrier approaches and, as they use SF/G as the matrix of the microcarriers rather 

than a gel, they are more robust. 

 

 

Material Particle diameter (µm) Diameter range (µm) 

SF/G 75:25 342 ± 33 201-490 (98.6%) 

SF/G 50:50 349 ± 8 213-446 (99.8%) 

SF/G 25:75 308 ± 3 218-428 (98.6%) 

Cultispher-S 258 ± 11 108-565 (98.6%) 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: Mean diameters and diameter ranges for SF/G microcarriers produced by 
microfluidic flow focussing (Qouter/Qinner = 20, Qinner = 0.36 mL/hr). Values measured for 
Cultispher-S microcarriers are included for comparison. Data represent the mean ± 
standard error (n=3). 
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To examine the mechanical properties of these blends, the Young’s modulus of SF/G discs 

was measured by compression testing and compared to SF and gelatin alone (Figure 7). 

Although it would have been preferable to measure the compressive strength of individual 

microcarriers, their dimensions precluded direct measurement and so the bulk material 

properties of macro scaffolds were assessed. SF alone was shown to have a relatively low  

Young’s modulus of 17 kPa and, with the inclusion of 25% gelatin, this showed a marginal 

increase to 28 kPa. The blends of SF/G 50:50 and SF/G 25:75 had significantly higher Young’s 

moduli of 183 kPa and 139 kPa, respectively, while gelatin measured 118 kPa. The 

compressive strength of scaffolds is influenced by a number of factors, including their 

microstructure and component materials. It has been reported that SF scaffolds fabricated by 

gas foaming, salt leaching and freeze drying have compressive moduli ranges of 200-1,000, 

100-790 and 10-220 kPa respectively [69]. The matrices described here are most similar to 

the freeze dried scaffolds, with compressive moduli in the same range. Literature reports 

describe the compressive moduli of lyophilised SF/G scaffolds in the region of 60-160 kPa 

[70]. The higher value for SF/G 50:50 may be attributed to this blend ratio perhaps producing 

a more homogenous pore structure than the other blends, contributing to a stiffer material [70]. 

This again demonstrates the benefits of combining SF and gelatin, as the SF/G 50:50 and 

Figure 6: Mean size distributions of SF/G microcarriers produced by microfluidic flow 
focussing (Qouter/Qinner = 20, Qinner = 0.36 mL/hr) in comparison to commercial Cultispher-S 
microcarriers (n=3). Inset: Typical bright field image of SF/G 25:75 microcarriers. Scale bar 
represents 200 µm. 
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25:75 blends outperform the unblended materials in terms of compressive strength. It is well 

known that the Young’s modulus can have a strong effect on cell behaviour, especially the 

differentiation of mesenchymal and other stem cells. For an osteogenic scaffold, a higher 

Young’s modulus that mimics the rigidity of bone is desirable. It was reported by Engler et al. 

that a Young’s modulus in the region of 30 kPa was stiff enough to induce the 

osteodifferentiation of MSCs [71]. Although this is a lower value than that of bone itself, it 

relates to the osteoid region of bone where MSCs initially differentiate into pre-osteoblasts 

[72]. The SF and SF/G 75:25 discs have Young’s moduli just below this, but the SF/G 50:50 

and 25:75 blends were stiff enough to theoretically support osteogenic differentiation 

according to these criteria. It is also possible that a different range of values could be obtained 

by altering the cross-linking protocol of the gelatin component of the materials, with higher 

levels of cross-linking resulting in stiffer materials and vice versa. 

 

 

 

 

 

 

3.5 Cell adhesion and viability on SF/G blended microcarriers 

Figure 7: Young’s modulus of SF/G gel discs determined by compression testing. Data 
shown represents mean + standard error (n=3). ** p<0.01 w.r.t SF; # p<0.05 w.r.t gelatin. 
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Cell adhesion to the microcarriers, shown in Figure 8, mirrored the results observed in 2D 

culture (Figure 1). Low cell adhesion was observed on the SF microcarriers, while significantly 

higher seeding efficiencies were obtained with the inclusion of 50 or 75% gelatin, with these 

blends supporting cell adhesion at a level equivalent to that observed for Cultispher-S 

microcarriers, included as a positive control. However, for SF/G 75:25 the efficiency was 

significantly lower, suggesting a general trend of increasing cell adhesion in line with 

increasing proportion of gelatin, which is in contrast to the pattern of cell proliferation on the 

2D films of SF/G, where all gelatin-containing substrates supported high growth rates. The 

seeding efficiencies can be grouped into moderate and high pairs: SF and SF/G 75:25 are 

moderate at 62.3% and 63.9%, respectively, while SF/G 50:50 and SF/G 25:75 show higher 

efficiencies at 85.7% and 88.9%. This grouping reflects the pattern of Young’s moduli shown 

in Figure 7, and the level of cell adhesion could be directly related to the stiffness of the 

material blend; it is reported that fibroblastic cells adhere and spread preferentially on stiffer 

materials [73]. The Young’s modulus of the Cultispher-S microcarriers is unknown, but the 

data here suggests the gelatin matrix is more highly cross-linked than the level of the gelatin 

films described in this work, producing a stiffer matrix which supports a high level of rMSC 

adhesion. 

3.6 Viability and osteogenic differentiation of rMSCs on SF/G microcarriers 

Figure 8: Seeding efficiency (percentage of rMSCs seeded that have adhered to 
microcarriers) of SF, SF/G and Cultispher-S microcarriers. Data shown represents mean + 
standard error (n=3). *** p<0.001 w.r.t. SF and SF/G 75:25. 

*** *** *** 
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For applications in bone tissue engineering, it is important that these microcarriers are able to 

support not only cell adhesion, but growth, viability and osteogenesis. Viability of rMSCs was 

confirmed by live/dead fluorescent staining and confocal microscopy of cell-seeded 

microcarriers. The image in Figure 9A shows that the cells maintained a high level of viability 

and were able to spread over the microcarrier surface. The ability of these cells to 

subsequently undergo osteogenic differentiation was assessed by measuring osteopontin 

secretion after 14 days in culture. The results of osteopontin expression from rMSCs cultured 

on either SF/G 25:75 microcarriers (the blend with the best combination of cell and adhesion 

and elastic modulus) or gelatin-based Cultispher-S microcarriers are shown in Figure 10. 

Osteopontin secretion from rMSCs cultured on the SF/G blend was slightly higher than for the 

Cultispher-S cultured population, although the standard error is quite large, and, as expected, 

was increased when the cells were cultured in ODM in comparison to the basal medium. 

These results were also consistent with those from 2D film culture, with a similar quantity of 

OPN secreted per rMSC in 3D microcarrier culture. A further assessment of osteogenesis was 

made after 28 days in ODM, when cells were stained for alkaline phosphatase (ALP) 

expression. In Figure 9B, rMSCs grown on SF/G 25:75 are shown to have ALP activity, in the 

form of deep purple staining, which strongly suggests the cells have differentiated to 

osteoblasts. Although ALP is not uniquely expressed in osteoblasts, it is not expressed in 

undifferentiated MSCs and so its activity here indicates osteogenic differentiation has 

occurred. However, the incomplete purple staining in this image does highlight that cell 

seeding in microcarrier culture isn’t always homogeneous and cell-free particles do exist. 

Nonetheless, these results are in agreement with a number of literature reports describing the 

successful osteodifferentiation of MSCs on SF-based scaffolds, including SF/chitosan blends 

[20], SF/G coated decellularised bone [74], and in SF/G bio-ink [75]. To the best of the authors’ 

knowledge, however, this is the first report of SF/G microcarriers produced and applied to this 

end.  
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Figure 10: Expression of osteopontin at day 14 in cultures of rMSCs seeded on SF/G 25:75 
and Cultispher-S microcarriers, normalised by cell number. Data shown represents mean 
+ standard error (n=5). 

Figure 9: A. Confocal microscopy image of rMSCs seeded onto SF/G 25:75 microcarriers 
and cultured for 96 hours. Cells are stained with LIVE/DEAD to indicate viability. Cells 
stained green are viable, while cells stained red are dead. Scale bar represents 100 μm. 
B. SF/G 25:75 microcarriers seeded with rMSCs and stained for alkaline phosphatase 
activity after 28 days in osteogenic medium. Purple deposits indicate the presence of 
osteoblasts and, hence, the osteogenic differentiation of rMSCs. Scale bar represents 500 
μm. 
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4. Conclusions 

The results obtained in this study support the use of SF/G microcarriers as scaffolds for cell 

culture and their development towards bone repair applications. rMSC compatibility and 

proliferation on silk fibroin and gelatin materials was first confirmed in a two-dimensional 

format before moving to microcarrier culture. Although silk fibroin alone was shown to have 

poor cell adhesion, blending silk with gelatin improved the cell adhesion, proliferation and 

elastic modulus. The SF/G microcarriers were also shown to support cell adhesion and viability 

as well as osteogenic differentiation of rMSCs. The poor compatibility of the unblended SF 

and gelatin films highlights the importance of scaffold design for cell response. These 

microcarriers have the potential to be used as an injectable delivery system for therapeutic 

cells or a filler material which could stimulate the proliferation and differentiation of resident 

MSCs for the repair of small bone defects, where load-bearing ability is not a prerequisite. An 

additional advantage of carrier-based systems is the capacity to scale up the production of 

therapeutic cells prior to delivery using a stirred, fluidised or rotating bioreactor. Alternatively, 

the use of the microcarriers as building blocks could allow the development of a macroscopic 

tissue construct, by moulding a number of cell-laden microcarriers into a fixed architecture for 

the generation of a number of engineered tissues.  

 

 

5. Acknowledgements 
This work was financially supported by a Medical Research Council DTG studentship awarded 

to KAL. The authors wish to thank the staff of the University of Bath Microscopy and Analysis 

Suite for their assistance with SEM and confocal microscopy. 

 

 

6. References 
1. Hoffman, A.S., Hydrogels for biomedical applications. Adv Drug Deliv Rev, 2002. 

54(1): p. 3-12; doi: 10.1016/S0169-409X(01)00239-3. 

2. Chen, M., et al., A modular approach to the engineering of a centimeter-sized bone 

tissue construct with human amniotic mesenchymal stem cells-laden microcarriers. 

Biomaterials, 2011. 32(30): p. 7532-42; doi: 10.1016/j.biomaterials.2011.06.054. 

3. Matsunaga, Y.T., Y. Morimoto, and S. Takeuchi, Molding cell beads for rapid 

construction of macroscopic 3D tissue architecture. Adv Mater, 2011. 23(12): p. H90-

4; doi: 10.1002/adma.201004375. 



21 
 

 

 

4. Yanagawa, F., et al., Directed assembly of cell-laden microgels for building porous 

three-dimensional tissue constructs. J Biomed Mater Res A, 2011. 97(1): p. 93-102; 

doi: 10.1002/jbm.a.33034. 

5. Chu, L. and D.K. Robinson, Industrial choices for protein production by large-scale cell 

culture. Curr Opin Biotechnol, 2001. 12(2): p. 180-7; doi: 10.1016/S0958-

1669(00)00197-X. 

6. Li, B.Y., et al., Past, present, and future of microcarrier-based tissue engineering. J 

Orthop Translat, 2015. 3(2): p. 51-57; doi: 10.1016/j.jot.2015.02.003. 

7. Lam, A.T., et al., Integrated processes for expansion and differentiation of human 

pluripotent stem cells in suspended microcarriers cultures. Biochem Biophys Res 

Commun, 2016. 473(3): p. 764-8; doi: 10.1016/j.bbrc.2015.09.079. 

8. Turner, A.E. and L.E. Flynn, Design and characterization of tissue-specific extracellular 

matrix-derived microcarriers. Tissue Eng Part C Methods, 2012. 18(3): p. 186-97; doi: 

10.1089/ten.TEC.2011.0246. 

9. Zhou, Y., et al., Expansion and delivery of adipose-derived mesenchymal stem cells 

on three microcarriers for soft tissue regeneration. Tissue Eng Part A, 2011. 17(23-

24): p. 2981-97; doi: 10.1089/ten.tea.2010.0707. 

10. Park, J.H., et al., Microcarriers designed for cell culture and tissue engineering of bone. 

Tissue Eng Part B Rev, 2013. 19(2): p. 172-90; doi: 10.1089/ten.TEB.2012.0432. 

11. Rockwood, D.N., et al., Materials fabrication from Bombyx mori silk fibroin. Nat Protoc, 

2011. 6(10): p. 1612-31; doi: 10.1038/nprot.2011.379. 

12. Wang, Y., et al., Stem cell-based tissue engineering with silk biomaterials. 

Biomaterials, 2006. 27(36): p. 6064-82; doi: 10.1016/j.biomaterials.2006.07.008. 

13. Meinel, L., et al., Silk implants for the healing of critical size bone defects. Bone, 2005. 

37(5): p. 688-98; doi: 10.1016/j.bone.2005.06.010. 

14. Zhang, X., et al., Hierarchical biomineralization of calcium carbonate regulated by silk 

microspheres. Acta Biomater, 2013. 9(6): p. 6974-80; doi: 

10.1016/j.actbio.2013.03.004. 

15. Yang, Z., et al., In vitro and in vivo characterization of silk fibroin/gelatin composite 

scaffolds for liver tissue engineering. J Dig Dis, 2012. 13(3): p. 168-78; doi: 

10.1111/j.1751-2980.2011.00566.x. 

16. Fan, H., et al., Development of a silk cable-reinforced gelatin/silk fibroin hybrid scaffold 

for ligament tissue engineering. Cell Transplant, 2008. 17(12): p. 1389-401; doi: Doi 

10.3727/096368908787648047. 



22 
 

 

 

17. Arkhipova, A.Y., et al., New Silk Fibroin-Based Bioresorbable Microcarriers. Bull Exp 

Biol Med, 2016. 160(4): p. 491-4; doi: 10.1007/s10517-016-3204-x. 

18. Chung, T.W. and Y.L. Chang, Silk fibroin/chitosan-hyaluronic acid versus silk fibroin 

scaffolds for tissue engineering: promoting cell proliferations in vitro. J Mater Sci Mater 

Med, 2010. 21(4): p. 1343-51; doi: 10.1007/s10856-009-3876-0. 

19. Yan, S., et al., Silk fibroin/chondroitin sulfate/hyaluronic acid ternary scaffolds for 

dermal tissue reconstruction. Acta Biomater, 2013. 9(6): p. 6771-82; doi: 

10.1016/j.actbio.2013.02.016. 

20. Lai, G.J., et al., Composite chitosan/silk fibroin nanofibers for modulation of osteogenic 

differentiation and proliferation of human mesenchymal stem cells. Carbohydr Polym, 

2014. 111: p. 288-97; doi: 10.1016/j.carbpol.2014.04.094. 

21. Moisenovich, M.M., et al., Composite Scaffolds Containing Silk Fibroin, Gelatin, and 

Hydroxyapatite for Bone Tissue Regeneration and 3D Cell Culturing. Acta Naturae, 

2014. 6(1): p. 96-101.  

22. Fini, M., et al., The healing of confined critical size cancellous defects in the presence 

of silk fibroin hydrogel. Biomaterials, 2005. 26(17): p. 3527-36; doi: 

10.1016/j.biomaterials.2004.09.040. 

23. Wang, X., et al., Sonication-induced gelation of silk fibroin for cell encapsulation. 

Biomaterials, 2008. 29(8): p. 1054-64; doi: 10.1016/j.biomaterials.2007.11.003. 

24. Bessa, P.C., et al., Silk fibroin microparticles as carriers for delivery of human 

recombinant bone morphogenetic protein-2: in vitro and in vivo bioactivity. Tissue Eng 

Part C Methods, 2010. 16(5): p. 937-45; doi: 10.1089/ten.TEC.2009.0486. 

25. Cao, Z.B., et al., The preparation of regenerated silk fibroin microspheres. Soft Matter, 

2007. 3(7): p. 910-915; doi: 10.1039/b703139d. 

26. Mwangi, T.K., et al., Synthesis and characterization of silk fibroin microparticles for 

intra-articular drug delivery. Int J Pharm, 2015. 485(1-2): p. 7-14; doi: 

10.1016/j.ijpharm.2015.02.059. 

27. Terray, A. and S.J. Hart, "Off-the-shelf" 3-D microfluidic nozzle. Lab Chip, 2010. 

10(13): p. 1729-31; doi: 10.1039/b927244e. 

28. Wang, X., et al., Silk microspheres for encapsulation and controlled release. J Control 

Release, 2007. 117(3): p. 360-70; doi: 10.1016/j.jconrel.2006.11.021. 

29. Zhang, L. and C. Chan, Isolation and enrichment of rat mesenchymal stem cells 

(MSCs) and separation of single-colony derived MSCs. J Vis Exp, 2010(37); doi: 

10.3791/1852. 



23 
 

 

 

30. Chang, J., et al., Optimization of culture of mesenchymal stem cells: a comparison of 

conventional plate and microcarrier cultures. Cell Prolif, 2012. 45(5): p. 430-7; doi: 

10.1111/j.1365-2184.2012.00836.x. 

31. Hofmann, S., et al., Silk fibroin as an organic polymer for controlled drug delivery. J 

Control Release, 2006. 111(1-2): p. 219-27; doi: 10.1016/j.jconrel.2005.12.009. 

32. Rago, R., J. Mitchen, and G. Wilding, DNA Fluorometric Assay in 96-Well Tissue-

Culture Plates Using Hoechst-33258 after Cell-Lysis by Freezing in Distilled Water. 

Anal Biochem, 1990. 191(1): p. 31-34; doi: 10.1016/0003-2697(90)90382-J. 

33. Breslauer, D.N., S.J. Muller, and L.P. Lee, Generation of monodisperse silk 

microspheres prepared with microfluidics. Biomacromolecules, 2010. 11(3): p. 643-7; 

doi: 10.1021/bm901209u. 

34. Schneider, C.A., W.S. Rasband, and K.W. Eliceiri, NIH Image to ImageJ: 25 years of 

image analysis. Nat Methods, 2012. 9(7): p. 671-5. 

35. Team, R.C., R: A Language and Environment for Statistical Computing. 2013, R 

Foundation for Statistical Computing: Vienna, Austria. 

36. Broderick, E.P., et al., Enzymatic stabilization of gelatin-based scaffolds. J Biomed 

Mater Res B Appl Biomater, 2005. 72(1): p. 37-42; doi: 10.1002/jbm.b.30119. 

37. Garcia Cruz, D.M., et al., Gelatin microparticles aggregates as three-dimensional 

scaffolding system in cartilage engineering. J Mater Sci Mater Med, 2013. 24(2): p. 

503-13; doi: 10.1007/s10856-012-4818-9. 

38. Kang, H.W., Y. Tabata, and Y. Ikada, Fabrication of porous gelatin scaffolds for tissue 

engineering. Biomaterials, 1999. 20(14): p. 1339-44; doi: 10.1016/S0142-

9612(99)00036-8. 

39. Nichol, J.W., et al., Cell-laden microengineered gelatin methacrylate hydrogels. 

Biomaterials, 2010. 31(21): p. 5536-44; doi: 10.1016/j.biomaterials.2010.03.064. 

40. Pal, K., A.K. Banthia, and D.K. Majumdar, Polymeric Hydrogels: Characterization and 

Biomedical Applications. Des Monomers Polym, 2009. 12(3): p. 197-220; doi: 

10.1163/156855509x436030. 

41. Wang, H.B., M. Dembo, and Y.L. Wang, Substrate flexibility regulates growth and 

apoptosis of normal but not transformed cells. Am J Physiol Cell Physiol, 2000. 279(5): 

p. C1345-50.  

42. Hardy, J.G. and T.R. Scheibel, Composite materials based on silk proteins. Prog 

Polym Sci, 2010. 35(9): p. 1093-1115; doi: 10.1016/j.progpolymsci.2010.04.005. 



24 
 

 

 

43. Davis, G.E., Affinity of integrins for damaged extracellular matrix: αvβ3 binds to 

denatured collagen type I through RGD sites. Biochem Biophys Res Commun, 1992. 

182(3): p. 1025-1031; doi: 10.1016/0006-291x(92)91834-d. 

44. Ruoslahti, E., RGD and other recognition sequences for integrins. Annu Rev Cell Dev 

Biol, 1996. 12(1): p. 697-715; doi: 10.1146/annurev.cellbio.12.1.697. 

45. Mita, K., S. Ichimura, and T.C. James, Highly repetitive structure and its organization 

of the silk fibroin gene. J Mol Evol, 1994. 38(6): p. 583-92. 

46. Riccio, M., et al., Fibroin scaffold repairs critical-size bone defects in vivo supported by 

human amniotic fluid and dental pulp stem cells. Tissue Eng Part A, 2012. 18(9-10): p. 

1006-13; doi: 10.1089/ten.TEA.2011.0542. 

47. Lu, S., et al., A novel silk fibroin nanofibrous membrane for guided bone regeneration: 

a study in rat calvarial defects. Am J Transl Res, 2015. 7(11): p. 2244-53.  

48. He, J., et al., Bottom-up generation of 3D silk fibroin–gelatin microfluidic scaffolds with 

improved structural and biological properties. Materials Letters, 2012. 78: p. 102-105; 

doi: 10.1016/j.matlet.2012.03.051. 

49. Tiyaboonchai, W., et al., Preparation and Characterization of Blended Bombyx mori 

Silk Fibroin Scaffolds. Fibers and Polymers, 2011. 12(3): p. 324-333; doi: 

10.1007/s12221-011-0324-9. 

50. Yao, C., et al., Biodegradable nanofibrous membrane of zein/silk fibroin by 

electrospinning. Polymer International, 2009. 58(4): p. 396-402; doi: 10.1002/pi.2544. 

51. Bessa, P.C., et al., Silk fibroin microparticles as carriers for delivery of human 

recombinant BMPs. Physical characterization and drug release. J Tissue Eng Regen 

Med, 2010. 4(5): p. 349-55; doi: 10.1002/term.245. 

52. Li, C., et al., Electrospun silk-BMP-2 scaffolds for bone tissue engineering. 

Biomaterials, 2006. 27(16): p. 3115-24; doi: 10.1016/j.biomaterials.2006.01.022. 

53. Zheng, K., et al., Chemically Functionalized Silk for Human Bone Marrow-Derived 

Mesenchymal Stem Cells Proliferation and Differentiation. ACS Appl Mater Interfaces, 

2016. 8(23): p. 14406-13; doi: 10.1021/acsami.6b03518. 

54. Zhang, W., et al., Porous silk scaffolds for delivery of growth factors and stem cells to 

enhance bone regeneration. PLoS One, 2014. 9(7): p. e102371; doi: 

10.1371/journal.pone.0102371. 

55. Le, T.D.H., et al., Enhancing bioactive properties of silk fibroin with diatom particles for 

bone tissue engineering applications. J Tissue Eng Regen Med, 2016; doi: 

10.1002/term.2373. 



25 
 

 

 

56. Jin, H.J., et al., Human bone marrow stromal cell responses on electrospun silk fibroin 

mats. Biomaterials, 2004. 25(6): p. 1039-47; doi: 10.1016/s0142-9612(03)00609-4. 

57. Gregory, C.A., et al., An Alizarin red-based assay of mineralization by adherent cells 

in culture: comparison with cetylpyridinium chloride extraction. Anal Biochem, 2004. 

329(1): p. 77-84; doi: 10.1016/j.ab.2004.02.002. 

58. Bellows, C.G., et al., Mineralized bone nodules formed in vitro from enzymatically 

released rat calvaria cell populations. Calcif Tissue Int, 1986. 38(3): p. 143-54; doi: 

10.1007/bf02556874. 

59. Denhardt, D.T. and M. Noda, Osteopontin expression and function: Role in bone 

remodeling. J Cell Biochem Suppls, 1998. 30/31: p. 92-102. 

60. Yao, K.L., R. Todescan, Jr., and J. Sodek, Temporal changes in matrix protein 

synthesis and mRNA expression during mineralized tissue formation by adult rat bone 

marrow cells in culture. J Bone Miner Res, 1994. 9(2): p. 231-40; doi: 

10.1002/jbmr.5650090212. 

61. Baimark, Y., et al., Preparation of Porous Silk Fibroin Microparticles by a Water-in-Oil 

Emulsification-Diffusion Method. J Appl Polym Sci, 2010. 118(2): p. 1127-1133; doi: 

10.1002/app.32506. 

62. Choi, Y.S., S.N. Park, and H. Suh, The effect of PLGA sphere diameter on rabbit 

mesenchymal stem cells in adipose tissue engineering. J Mater Sci Mater Med, 2008. 

19(5): p. 2165-71; doi: 10.1007/s10856-007-3320-2. 

63. Morimoto, Y., W.H. Tan, and S. Takeuchi, Three-dimensional axisymmetric flow-

focusing device using stereolithography. Biomed Microdevices, 2009. 11(2): p. 369-

77; doi: 10.1007/s10544-008-9243-y. 

64. Hu, X., et al., Protein-based composite materials. Mater Today, 2012. 15(5): p. 208-

215; doi: Doi 10.1016/S1369-7021(12)70091-3. 

65. Biolytica, P. Percell Products.  [cited 2 August 2018]; Available from: 

http://www.percell.se/products.htm. 

66. Jativa, F. and X. Zhang, Transparent Silk Fibroin Microspheres from Controlled Droplet 

Dissolution in a Binary Solution. Langmuir, 2017. 33(31): p. 7780-7787; doi: 

10.1021/acs.langmuir.7b01579. 

67. Aydogdu, H., et al., Pullulan microcarriers for bone tissue regeneration. Mater Sci Eng 

C Mater Biol Appl, 2016. 63: p. 439-49; doi: 10.1016/j.msec.2016.03.002. 



26 
 

 

 

68. Perteghella, S., et al., Fabrication of Innovative Silk/Alginate Microcarriers for 

Mesenchymal Stem Cell Delivery and Tissue Regeneration. Int J Mol Sci, 2017. 18(9); 

doi: 10.3390/ijms18091829. 

69. Nazarov, R., H.J. Jin, and D.L. Kaplan, Porous 3-D scaffolds from regenerated silk 

fibroin. Biomacromolecules, 2004. 5(3): p. 718-26; doi: 10.1021/bm034327e. 

70. He, J.K., et al., Bottom-up generation of 3D silk fibroin-gelatin microfluidic scaffolds 

with improved structural and biological properties. Mater Lett, 2012. 78: p. 102-105; 

doi: 10.1016/j.matlet.2012.03.051. 

71. Engler, A.J., et al., Matrix elasticity directs stem cell lineage specification. Cell, 2006. 

126(4): p. 677-89; doi: 10.1016/j.cell.2006.06.044. 

72. Nemir, S. and J.L. West, Synthetic materials in the study of cell response to substrate 

rigidity. Ann Biomed Eng, 2010. 38(1): p. 2-20; doi: 10.1007/s10439-009-9811-1. 

73. Yeung, T., et al., Effects of substrate stiffness on cell morphology, cytoskeletal 

structure, and adhesion. Cell Motil Cytoskeleton, 2005. 60(1): p. 24-34; doi: 

10.1002/cm.20041. 

74. Vorrapakdee, R., et al., Modification of human cancellous bone using Thai silk fibroin 

and gelatin for enhanced osteoconductive potential. J Mater Sci Mater Med, 2013. 

24(3): p. 735-44; doi: 10.1007/s10856-012-4830-0. 

75. Das, S., et al., Bioprintable, cell-laden silk fibroin-gelatin hydrogel supporting 

multilineage differentiation of stem cells for fabrication of three-dimensional tissue 

constructs. Acta Biomater, 2015. 11: p. 233-46; doi: 10.1016/j.actbio.2014.09.023. 


