

THE AGILE MODEL-DRIVEN METHOD

by

KLAUS MAIRON

A thesis submitted to the University of Plymouth
in partial fulfilment for the degree of

DOCTOR OF PHILOSOPHY

School of Engineering, Computing and Mathematics

October 2019

PhD Thesis ii

Copyright Statement

This copy of the thesis has been supplied on condition that anyone who consults it is

understood to recognise that its copyright rests with its author and that no quotation from

the thesis and no information derived from it may be published without the author's prior

consent.

PhD Thesis iii

Acknowledgements

In the first place, I have to thank my family for their support during the preparation of

this work. Without her patience and consideration, I would not have been able to

coordinate the family, profession, and research. Another thanks to my employer, msg

systems ag, and my manager Ralf Christmann. Only through the possibilities of reduction

to part-time and the understanding of the resulting restrictions has this work become

possible at all.

A least as great gratitude my supervisors at the universities in Furtwangen and Plymouth.

I am particularly grateful to Prof. Dr. Martin Buchheit for his constant drive and

motivation, which was necessary over this long period. Another great thank you to Dr.

Shirley Atkinson, Prof. Dr. Martin Knahl, and Prof. Steven Furnell for the patience and

support they have shown me. Throughout the years in which I created this work, they

always were good counselors and patient listeners to my problems and they gave helpful

ideas in joint discussions.

Additionally, I would like to thank my colleagues at msg systems ag as well as my

contacts in insurance companies and IT companies who gave me valuable ideas for this

work through insights into concrete projects.

October 2019

PhD Thesis iv

Author’s Declaration

At no time during the registration for the degree of Doctor of Philosophy has the author

been registered for any other University award without prior agreement of the Doctoral

College Quality Sub-Committee.

Work submitted for this research degree at the Plymouth University has not formed part

of any other degree either at the University of Plymouth or at another establishment.

Word count of main body of thesis: 36.948 words.

Signed: __________________________

Date: 10/10/2019

PhD Thesis v

Abstract

The Agile Model-Driven Method

Klaus Mairon, M.Sc.

Centre for Security, Communications and Network Research,

Plymouth University, Plymouth, United Kingdom

Furtwangen Research Node, Faculty of Business Information Systems,

Hochschule Furtwangen University, Germany

Supervisioning: Prof. Dr. Martin Buchheit, Prof. Dr. Martin Knahl,

Dr. Shirley Atkinson and Prof. Steven Furnell

Today the development of business applications is influenced by increased project

complexity, shortened development cycles and high expectations in quality [11]. Rising

costs in the software development are an additional motivation to improve the

productivity by the choice of a suitable development process [59]. In the development of

complex applications models are of great importance. Models reduce complexity by

abstraction. Additionally, models offer the possibility to build different views onto an

application. If models are sufficiently formal they are suitable for the automated

transformation into source code. For this reason, an important acceleration and quality

factor in the software development is attributed to the Model-Driven Software

Development [91].On the other hand, Model-Driven Software Development requires

quite high initial work for the definition of meta-models, domain-specific languages and

transformation rules for the code generation process.

PhD Thesis vi

A different approach to improve productivity is the use of agile process models like

Scrum, Extreme Programming (XP) or Feature Driven Development (FDD) [65]. For

these process models an early production of source code and the adjustment of executable

partial results are important aspects of the process. The communication with the end user

and the direct feedback are the most important success factors for a project and facilitate

quick reactions on requirement changes [35]. In agile methods modelling often plays a

subordinated role. The requirements will be documented via “user stories” (XP) or

“features” (Scrum, FDD). They are summarized either in Product- or Sprint-Backlogs

(Scrum) [28][85] or in Feature-Sets (FDD) [24].

From this, the idea is developed to apply agile work practices and techniques in a process

tailored to model-driven development. First, existing process models for model-driven

development are identified and described. Their common features such as process steps,

artefacts and team organisation are worked out and abstracted in a metamodel. The aim

is to reuse these process elements in a new agile process model. At the same time, suitable

agile practices for modeling are identified, which can support such a process. Additional

criteria and suggestions for the improvement of such a process are identified on the basis

of case studies from practical model-driven projects.

The Agile Model-Driven Method (AMDM) presents a combination of agile procedures

and modelling techniques with the technology of model-driven development. AMDM is

iteratively incremental and relies on proven concepts of accepted agile standards [62].

AMDM integrates the development of a domain-specific modelling language, the

modelling of problem domains and the development of the software architecture into a

context. The development takes place in several cycles of sprints (iterations) which are

distinguished in initial sprint, domain sprint and value sprint. Parallel to the development

PhD Thesis vii

of domain language and application, the software architecture is developed evolutionarily

and transferred to development.

Finally, based on the mentioned case studies from the practice and investigations of

model-driven projects in other industrial companies and business fields is checked how

AMDM can contribute by agile concepts to increase efficiency in model-driven projects

and how the expressed criticisms and problems from these studies can be avoided.

PhD Thesis viii

Table of Contents

1 Introduction .. 14

1.1 Research Background ... 14
1.2 Objectives of this Work .. 16
1.3 Applied Methodologies .. 17
1.4 Summary ... 19

2 Model-Driven Development .. 23

2.1 Software Engineering and Models .. 23
2.2 Definitions .. 24

2.2.1 Model, Platform and View ... 25
2.2.2 Model-Based Development vs. Model-Driven Development 27
2.2.3 The Term “Domain Architecture” .. 28

2.3 Methodologies for Model-Driven Development .. 29
2.3.1 ODAC ... 30
2.3.2 MASTER .. 32
2.3.3 DREAM .. 35

2.4 Critical View / Problems in MDD Projects .. 38
2.4.1 Effort/Cost Drivers in MDD Projects ... 38
2.4.2 Limitations of Model-Driven Development ... 39
2.4.3 General Limitations and Criticisms .. 42

2.5 Summary ... 43

3 Agile Development and Modelling – Existing Approaches 44

3.1 The Agile Approach .. 45
3.1.1 Agile Principles .. 47
3.1.2 Agility ... 48
3.1.3 Agile Techniques and Practices .. 48

3.2 Opportunities and Limitations of Agile Approaches 50
3.3 Agile Methods for MDD Support ... 53
3.4 Existing Approaches, Solved Problems and Limitations 58

3.4.1 Agile Model Driven Development (AMDD) .. 58
3.4.2 MIDAS Framework .. 61
3.4.3 Feature Driven Development (FDD) .. 63

3.5 Consequences ... 66
3.6 Summary ... 68

4 Case Studies – Practical Experience in MDD Projects 69

4.1 Case Study 1: Interfaces to Legacy Systems .. 70
4.1.1 Initial Situation ... 70
4.1.2 MDD Approach .. 70
4.1.3 Result / Experience ... 74

4.2 Case Study 2: Software Component Development ... 75
4.2.1 Initial Situation ... 75
4.2.2 MDD Approach .. 76
4.2.3 Result / Experience ... 78

PhD Thesis ix

4.3 Case Study 3: Insurance Programming Language .. 79
4.3.1 Initial Situation ... 79
4.3.2 MDD Approach .. 79
4.3.3 Result / Experience ... 80

4.4 Experiences from other Case Studies ... 80
4.4.1 ABB Robotics and Ericsson ... 81
4.4.2 Autoliv, Sectra und Saab Aerospace ... 82
4.4.3 IBM ... 84
4.4.4 Motorola ... 85

4.5 Summary ... 86

5 Approach: Using Agile Elements in MDD-Processes 88

5.1 Combination of MDD and Agile .. 88
5.2 A detailed view on MDD methodologies ... 89
5.3 Commonalities of the Reviewed Methods .. 90

5.3.1 Project Phases and Steps ... 92
5.3.2 Artefacts and Result Types ... 94
5.3.3 Roles and Team Members .. 97

5.4 Agile Techniques and Practices for Modelling ... 99
5.4.1 Assume Simplicity / Simple Design ... 100
5.4.2 Architecture Envisioning .. 101
5.4.3 Model Storming .. 102
5.4.4 Just Barely Good Enough ... 102
5.4.5 Iteration Modelling ... 103
5.4.6 Multiple Models .. 104
5.4.7 Document Continuously ... 105
5.4.8 Some other Practices ... 106

5.5 The Appropriate Agile Development Process .. 108
5.6 The Meaning of Architecture in Agile Projects .. 110

5.6.1 Architecture - a Definition .. 111
5.6.2 The Difference between Architecture and Design 114
5.6.3 Agile Best Practices for Architecture ... 115

5.7 Known Limitations ... 119
5.8 Summary ... 120

6 The Agile Model-Driven Method: AMDM ... 123

6.1 Requirements and Constraints .. 124
6.2 Findings from the Studies ... 125
6.3 Definitions .. 127

6.3.1 Team and Role .. 127
6.3.2 Backlog ... 127
6.3.3 Iteration ... 128
6.3.4 Architecture .. 128
6.3.5 Domain-specific Language (DSL) and Metamodel 129
6.3.6 Transformation and Transformation Rules ... 130

6.4 Basic Concepts .. 130
6.4.1 Teamwork ... 130
6.4.2 Evolutionary Software Architecture ... 132
6.4.3 Backlog Content ... 135

PhD Thesis x

6.4.4 Modellling Language (DSL) ... 135
6.4.5 Modelling in the Development Process .. 137

6.5 Implementation ... 138
6.5.1 Team Members and Roles .. 138
6.5.2 Artefacts .. 141
6.5.3 Process Steps .. 143
6.5.4 Communication ... 148

6.6 Summary ... 150

7 Evaluation .. 151

7.1 Significance for the Case Studies ... 151
7.1.1 Case Study 1: Interfaces to Legacy Systems 151
7.1.2 Case Study 2: Software Component Development 152
7.1.3 Case Study 3: Insurance Programming Language 153
7.1.4 Other Case Studies .. 153

7.2 Pilot Project .. 157
7.2.1 Goals of the Project .. 157
7.2.2 Team ... 159
7.2.3 Project Course ... 159
7.2.4 Project Experience .. 163

7.3 Agile Review .. 164
7.4 Summary ... 166

8 Conclusions ... 168

8.1 Achievements ... 168
8.2 Limitations .. 169
8.3 Suggestions for Future Research .. 170

References ... 171

Appendix: Interviews from the Pilot Project ... 183

A1: Interview Product Owner .. 183
A2: Interview Domain Architect/Domain Developer .. 184
A3: Interview Business Analyst .. 186
A4: Interview Application Architect ... 188
A5: Application Developer 1 ... 190
A6: Application Developer 2 ... 191

Publications ... 192

Biographical Information .. 193

PhD Thesis xi

List of Figures

Fig. 1: Dependencies between the parts of the Domain Architecture [91] 29
Fig. 2: The ODAC Process [7] ... 31
Fig. 3: The MASTER Process [7] ... 33
Fig. 4: The DREAM Process [7] .. 36
Fig. 5: The two Phases of an MDD Project .. 39
Fig. 6: Hype Cycle for Application Development, Gartner, 2008 44
Fig. 7: Agile Techniques and Practices .. 50
Fig. 8: Characteristics of the selected Methods (Excerpt from [78]) 54
Fig. 9: Characteristics of the AMDD Methodology (Excerpt from [78]) 56
Fig. 10: Awareness Level and Distribution of Agile Methodologies (see [78]) 57
Fig. 11: The AMDD Process [5] ... 58
Fig. 12: Model Driven Architecture of MIDAS [20] .. 61
Fig. 13: Modelling within the FDD Process [6] ... 64
Fig. 14: Dependencies between Artefacts in MDD Projects .. 67
Fig. 15: Models and Generated Artefacts in Case Study 1 ... 71
Fig. 16: Sample UML Class Diagram for the Definition of a COBOL Copybook 72
Fig. 17: Sequence in the Activity Diagram refined in the State Diagram 73
Fig. 18: Project Effort in Case Study 1 ... 74
Fig. 19: Parts of the Software Framework in Case Study 2 .. 75
Fig. 20: Metamodel for the Description of Software Components 77
Fig. 21: Project Effort in Case Study 2 ... 78
Fig. 22: Process Steps in MODA-TEL and the corresponding Element in the Metamodel

 .. 90
Fig. 23: Metamodel with Process Elements ... 91
Fig. 24: Metamodel: Roles in Existing MDD Processes .. 92
Fig. 25: Artefacts in the Model-Driven Development .. 95
Fig. 26: Identified Project Member Roles in MDD-Projects .. 97
Fig. 27: Agile Modelling Principles ... 100
Fig. 28: Document Continuously ... 105
Fig. 29: Important Agile Methods [62] ... 109
Fig. 30: UML, Meta-meta-Models and Profiles ... 129
Fig. 31: Team Structure in AMDM .. 131
Fig. 32: Joint Development of Architecture (“Big Picture”) .. 134
Fig. 33: Class Archetypes and Typical Associations [24] .. 136
Fig. 34: AMDM Process Overview .. 144
Fig. 35: Domain Sprint ... 146
Fig. 36: Value Sprint ... 147
Fig. 37: Microservices in the Context of the existing Back-Office Solution 158

PhD Thesis xii

Glossary

AMDD

AMDM

 Agile Model Driven Development (agile modelling technique)

The Agile Model-Driven Method

CIM Computation Independent Model

CWM Common Warehouse Metamodel (OMG standard)

DSL Domain Specific Language

DSDM Dynamic System Development Method (agile methodology)

EDOC Enterprise Distributed Object Computing (UML-profile, OMG)

FDD Feature-Driven Development (agile methodology)

ISO International Organization for Standardization

IST Information Society Technology

ITU-T International Telecommunication Union

(Telecommunication Standardization Sector)

MDA Model-Driven Architecture (OMG standard)

MDD Model-Driven Development

MDE Model-Driven Engineering

MDSD Model-Driven Software Development

MOF Meta Object Facility (OMG standard)

OMG Object Management Group

PIM Platform Independent Model

PLE Product Line Engineering

PSM Platform Specific Model

RM-ODP Reference Model of Open Distributed Processing

PhD Thesis xiii

QVT Query/Views/Transformations (OMG standard)

TDD Test-Driven Development (agile methodology)

UML Unified Modelling Language (OMG standard)

XMI XML Metadata Interchange (OMG standard)

XP eXtreme Programming (agile methodology)

PhD Thesis 14

1 Introduction

1.1 Research Background

In the IEEE Standard Glossary of Software Engineering Terminology [55] “software

engineering” is defined as “(1) The application of a systematic, disciplined, quantifiable

approach to the development, operation, and maintenance of software; that is, the

application of engineering to software. (2) The study of approaches as in (1).” But the

discipline of software engineering holds two key challenges that separate it from other

engineering disciplines. In their paper about the impact of agile methods on software

project management, the authors Coram and Bohner explain these challenges as follows:

“Software, a conceptual and often intangible product, changes and evolves at a much

higher rate than integrated circuits or steel. While software is a changeable product,

there is an increased cost the later in a project the change occurs.” [29][51] The authors

use this statement to describe the challenge of accepting changes in the requirements for

a software system, while at the same time limiting the costs of the project, which are

burdened by late changes. Managing change while reducing the impact on project costs

is a key challenge for project management. And it is also a challenge for the software

development process.

In the last three decades, a large number of software development processes have been

introduced in software development. In the hope of making the development process more

efficient, there were always new technologies, programming paradigms, languages and

methods. On the one hand, the different methods and development processes try to

counteract the increasing complexity of the development of information systems by

consistently defining and structuring the necessary tasks. So Scacchi outline in [83] that

PhD Thesis 15

“software process models often represent a networked sequence of activities, objects,

transformations, and events that embody strategies for accomplishing software

evolution.” But a study from 1999 [70] claims, that the analyzed software development

methodologies are “too mechanistic to be used in detail”. The study concluded, that at

this time industrial software developers become skeptical about “new” methodologies.

According to Abrahamsson et al., this is the background for the emergence of agile

software development methods in the late 1990s [1]. Also Dingsøyr et al. state in [33] the

“agile development methods as a reaction to plan-based or traditional methods.”

On the other hand, there was an attempt to industrialize software development and bring

more automation into the development process. The use of models in the first computer-

aided software engineering tools (CASE tools) and the emergence of structured methods

were an approach to consider graphical models as part of the software design and to create

standardized documentation [89]. These tools and standardized models also made it

possible to automate the software development process, such as generating code from

graphical models or user interfaces from a graphical user interface description. According

to the structured methods of the 1970s and 1980s, the standardization of the different

modeling languages by the UML (Unified Modelling Language) was the basis for model-

driven development and, in addition, model-driven engineering [84][89]. With the

standardization of model-driven development by the Object Management Group (OMG),

the automated generation of software has gained widespread acceptance.

The OMG Standard MDA (Model-Driven Architecture) is the foundation for uniform

software development based on (partly) automated model transformations. The associated

standards MOF (Meta Object Facility), CWM (Common Warehouse MetaModel) and

XMI (XML Metadata Interchange) are still used today in various tools and code

PhD Thesis 16

generators. Based on the UML, a large number of UML profiles have been developed to

describe different functional and technical requirements. These domain-specific

modeling languages are also called UML dialects. However, the multitude of these

dialects and the associated softening of the UML standard is one of the criticisms of this

approach.

In today's modern industrial software development, the pure MDA standard is only

occasionally used. Nevertheless, individual components of the MDA are applied.

Modeling tools and code generators exchange model information via the XMI standard,

and the modeling language is often based on UML and MOF. It can be observed that the

basic technical structures of the defined application architecture are generated on the basis

of model information, but not so much the functional logic of the application systems. In

an initial step, the starting point for further development is created. Model-driven

development is therefore not embedded in the respective process model. And this is where

this thesis comes in.

1.2 Objectives of this Work

Model-driven development enables the technical aspects of the software architecture to

be regarded, further developed and adapted separately from the business functionality.

The aim of this work is to support the model-driven development of modern business

applications through an optimized agile process model. It is particularly important to

consider that the principles of agile software development, such as the early delivery of

partial results, must also be recognizable in the new process model.

In addition, the new process model should not only define a process, but also the roles

involved in the process and how they interact with each other. The individual tasks of

these roles must be defined. A separation between technical tasks and functional content

PhD Thesis 17

is particularly important for model-driven development [91]. This is a major advantage

of model-driven development, as technical aspects can be developed and adapted

separately without influencing business models. This must also be reflected in the roles'

distribution of tasks.

Because model-driven development brings additional complexity to development,

another goal must be to reduce the complexity or make it easier to handle.

For the definition of the new process model, it must be checked in advance to what extent

process models for model-driven development exist at all. These must be examined to

determine which phases and development cycles they include for model-driven

development in particular and which they may have in common. In addition, it must be

checked to what extent they already take agile principles into account or which sub-

elements of these process models are suitable for use in an agile environment.

Finally, the new process model should address small and medium-sized teams, which is

the common practice in business application development today [30][45]. Furthermore,

elements of existing agile process models should be reused to facilitate the introduction

and acceptance of a new process model.

1.3 Applied Methodologies

Evaluating the design of a software development process is difficult. This also applies to

this work. In this environment, quantitative data can only be used to make statements

about the distribution and use of software development processes. In this work, sources

PhD Thesis 18

such as Gartner, Forrester Research and the German Research Center for Computer

Science (FZI) are used.

Therefore, qualitative research methods are used to assess the development process

defined in the thesis. In the development of the fundamentals, a qualitative content

analysis based on case studies from practice is applied. These case studies come partly

from the author's concrete working environment and partly from published case studies

from projects of IBM, Motorola, ABB Robotics and others.

In the analysis of existing development processes for model-driven development, a

methodology is applied that Dr. Susanne Strahringer describes in her dissertation at

Darmstadt Technical University [95]. In this method, the elements of the processes are

described and categorized using metamodels so that differences and similarities can be

better identified.

For the evaluation of the defined development process, a projection on the case studies

mentioned above takes place first. Here the influence of the new development process on

the problem areas described there is rated. In addition, a pilot project in the author's

working environment will test the concrete use of the development process. The

assessment of the development process on the basis of this pilot project is carried out

using the qualitative empirical research method of interviews with selected participants

of the project. In a third section, the extent to which the newly defined development

process implements the principles of the agile manifesto is examined.

PhD Thesis 19

1.4 Summary

This research is to be classified in the field of software engineering and examines how

model-driven development can be optimized with agile principles and techniques and

thus used more efficiently. To this end, existing methods and development processes for

model-driven development are first of all identified and examined for their common

features, strengths and weaknesses. It is also analyzed to what extent models play a role

in agile software development. The question arises as to which solutions already exist for

the support of model-driven development in agile process models and which

consequences result from this. Using reports and case studies from industry, problems

and opportunities of model-driven development are identified. These case studies

describe experiences from industrial projects that have led to positive and negative

assessments of model-driven development. They form the basis for the subsequent

evaluation of new agile process elements and the assessment of the extent to which these

process elements could improve the respective project situation.

The solution approach of this thesis consists of two elements: Firstly, the basic structure

of process models for model-driven development. These are identified in the investigated

process models and abstracted and summarized by means of a metamodel. On the other

hand, from a study of existing agile techniques for modeling in general. Based on these

two elements, the Agile-Model-Driven Method is defined as a new process model for

model-driven development. Finally, this process model is projected onto the case studies

and evaluated with regard to its possible impacts on these projects.

This thesis is structured as follows: Chapter 2 - Model-Driven Development - begins with

an overview of model-driven software development. Starting from the concept of the

model in modern software engineering, the chapter leads to the MDA as a standard

PhD Thesis 20

approach for model-driven software development. In addition to defining the relevant

terms and explaining their meaning for work, the chapter contains a summary of existing

process models and methods in the area of model-driven software development. It is

evident that none of the existing - above all academic - approaches have been accepted in

practice. Nevertheless, the common elements of these approaches provide an indication

of which elements should be considered in a future agile model-driven process. Examples

of this are the definition of the technical framework for the development, the collection

of requirements or the handling of platform-independent or platform-specific models.

Chapter 3 - Agile Development and Modelling - Existing Approaches - first explains the

basic principles of agile software development. In addition to a consideration of the

possibilities and limitations of agile software development, the focus of this chapter is on

the identification of agile practices and process models that seem appropriate to support

model-driven projects. In the following, it deals with the closer examination of the

identified agile practices and existing academic approaches for agile MDD. Because

MDD is characterized also as an architecture-centric approach, the chapter includes a

discussion of the agile approach to architecture and design. Finally, there is a

consideration of consequences of the agile approach to MDD and the impact on the

individual partial results in a model-driven project.

Chapter 4 - Case Studies - Practical Experience in MDD Projects - examines the use of

model-driven software development in industrial software development practice. On the

basis of reports and case studies from industry, positive and negative experiences with

model-driven software development are collected. The three main case studies come from

the author's project environment. These are complemented by further case studies of

renowned companies such as ABB Robotics, IBM, Motorola and others.

PhD Thesis 21

Chapter 5 - Approach: Using Agile Elements in MDD-Processes - describes the basic

idea of adding agile elements to processes for model-driven development. The aim is to

ensure that the typical high initial effort of model-driven development is better spread

over the project phases and that project results can be made available to the end customer

earlier. This raises the question of which process elements are needed for model-driven

development. This applies not only to process phases and steps, but also to other elements

such as important partial results (artefacts) and roles of the project participants. Based on

the examined process models for model-driven development, common features are

identified and abstracted in a metamodel. This forms the basis for a newly defined agile

process model.

If agile process models and model-driven development are to be successfully combined,

it is necessary to consider agile working techniques for modeling. For this purpose, first

of all, different agile modeling techniques are examined to determine whether they are

suitable for use in model-driven development. Subsequently, agile process models are

considered which contain models as relevant partial results and can thus serve as a starting

point for an adapted process. To this end, the extent to which modeling and architecture

are anchored in these process models will be investigated. It is also interesting to see

which approaches are most widely accepted in practice, as this is a good starting point for

a new process. Finally, this chapter examines the aspect of architecture in the context of

agile projects. The background is the focus on architecture as the basis for the model-to-

code transformation required by model-driven development. The chapter concludes with

a reflection on known limitations of agile modelling.

PhD Thesis 22

Chapter 6 - The Agile Model-Driven Method: AMDM - deals with the definition of the

Agile Model-Driven Method. This method combines agile working techniques for use in

model-driven development. A new approach is defined on the basis of existing process

models or their elements. The starting point is the metamodel defined in chapter 5. The

chapter begins with a summary of the findings from chapters 2-5, followed by the

definition of important terms such as team, role, architecture, etc. in the context of

AMDM. Subsequently, the underlying concepts such as evolutionary architectural

development are explained. The chapter concludes with a description of the process and

the roles of the project members, artefacts and process steps in the interaction.

It is difficult to evaluate a new development process. Chapter 7 - Evaluation - attempts to

do this using the case studies presented in Chapter 4. The approach is to assess the impact

of AMDM on the above-mentioned criticisms and problems, thus enabling an assessment

of the process. In addition to this consideration, AMDM is tested as a new development

process in a concrete project scenario in the author's working environment. The

experiences gained from this project are included in the evaluation. Finally, the principles

of the agile manifesto are used to determine whether AMDM meets the criteria of an agile

approach.

Chapter 8 summarizes the results of this work and shows the limitations of the approach

or methodology AMDM. In addition, references are given to further research work or

related research areas.

PhD Thesis 23

2 Model-Driven Development

2.1 Software Engineering and Models

The use of models for the development of complex business applications is not a new

approach. As is well known, the mapping of software system requirements by models

was generally accepted even before the development of UML. CASE should facilitate the

creation of software and support as many phases of software development as possible. In

the following, models for defining requirements or mapping system behavior in software

development became more and more relevant, and the popular use of the standardized

UML finally enabled the approach of model-driven development [89].

In the first decade of the 21st century, model-driven development (MDD) and model-

driven engineering (MDE) became increasingly important for professional software

development and science. Model-driven development supports the work with models on

different abstraction levels [89]. It supports automated transformation between these

levels with the ability to generate source code or other development artefacts. With this

approach, model-driven development pursues the objectives of interoperability,

portability, productivity and quality improvement as well as the reuse of business models

[40][84][91].

The Model-Driven Architecture (MDA) is the standardized approach of the Object

Management Group (OMG) for MDD and is based on the following OMG standards: The

Unified Modelling Language (UML), XML Metadata Interchange (XMI), Meta Object

Facility (MOF) and Common Warehouse Metamodel (CWM) [40][68]. According to [68]

MDA is a model-driven approach, “because it provides a means for using models to

direct the course of understanding, design, construction, deployment, operation,

PhD Thesis 24

maintenance and modification”. Another important concept of model-driven

development is the concept of domain-specific languages. A domain-specific language

(DSL) can be expressed by graphical symbols or texts and is used to describe the concepts

of a particular domain. A DSL must be defined via a metamodel (e. g. based on MOF),

including its static semantics and a corresponding concrete syntax [91]. The MDA

standard approach to defining a domain-specific language is based on extending UML by

defining UML profiles [40], but model-driven development does not depend on it. In [96]

the authors name Excel tables, ASCII text and source code as alternative representations

of a model. The authors explain that there are many different types of models used for

model-driven development in industrial software development.

Another central theme of model-driven development is the transformation of models.

Transformations describe how model elements are to be mapped to the next abstraction

level, be it another model or source code. For this purpose, the OMG provides the Meta

Object Facility (MOF) with its four abstraction levels for metamodels (called M0 to

M3)[40]. For standardized model transformations, OMG has defined

Query/Views/Transformations (QVT), a programming language for describing

transformations. This is a very complex specification, which is only supported by a few

tools, so that in practice many other transformation frameworks are used [91][96].

2.2 Definitions

The following terms are important in the context of Model-Driven Development (MDD)

and Model-Driven Architecture (MDA) as well as in the context of this work.

PhD Thesis 25

2.2.1 Model, Platform and View

• Model: Miller et al. define a model in [68]: “A model of a system is a description

or specification of that system and its environment for some certain purpose. A

model is often presented as a combination of drawings and text. The text may be

in a modelling language or in a natural language.” Or simply like in [40]: “An

abstraction of a system.” And Stahl et al state in [91] “a model is an abstract

representation of a system’s structure, function or behaviour.” For model-driven

development, models are initially relevant for the description of domain-specific

languages (DSL) and their structure, and secondly for the description of the

functional and non-functional requirements of an application system using

models, again using one or more defined DSLs. The language elements of a DSL

can be extensions of an existing modeling standard (e. g. UML), or they can

consist of graphical symbols or texts derived from the corresponding problem

domain. Both types of models are relevant for this work.

• Metamodel: Frankel define a metamodel as “a model of the constructs that make

up a language” [40]. And Miller et al. explains in [68] that, “in language

specifications the abstract syntax of the language is specified as a MOF-

compliant metamodel”. A domain-specific language is often described using an

appropriate metamodel. Also in the context of this work, it is assumed that a

metamodel is the basis of a domain-specific language and that the development

of the metamodel represents a significant step in the context of an MDD project.

• Model transformation: According to Miller et al. “model transformation is the

process of converting one model to another model of the same system.” [68]. For

model-driven development, this means either the transformation of an abstract

PhD Thesis 26

model into a more specific model (M2M: Model to Model Transformation) or the

transformation of a model into text or source code (M2T: Model to Text

Transformation). A transformation can be performed manually or automatically.

The enrichment of a so-called platform-independent model (PIM) with elements

of a DSL (e.g. with annotations in the form of stereotypes and tagged values) is a

common way of a manual M2M transformation into a so-called platform-specific

model (PSM). The further transformation of a PSM into the source code, an M2T

transformation, is often automated by a code generator in a model-driven project.

• Platform: The term “platform” is described in [68] as “a set of subsystems and

technologies that provide a coherent set of functionality through interfaces and

specific usage patterns, which any application supported by that platform can use

without concern for the details of how the functionality provided by the platform

is implemented.” Frankel summarizes this in [40] as “a specified technology or

set of technologies”. In the following, the term platform always refers to a defined

target environment for which specific models, documents, source code or other

artefacts are generated based on a specific domain-specific language.

• Viewpoint / View: Miller et al. defines in [68] a viewpoint on a system based on

[56] as “a technique for abstraction using a selected set of architectural concepts

and structuring rules, in order to focus on particular concerns within that

system.” And they further explain “the Model-Driven Architecture specifies three

viewpoints on a system, a computation independent viewpoint, a platform

independent viewpoint and a platform specific viewpoint.” A view of a system or

a viewpoint model is defined as “a representation of that system from the

perspective of a chosen viewpoint” [68]. The models required for a model-driven

PhD Thesis 27

development project can be divided into two main views. On the one hand, there

is the architect's perspective with the metamodel for the domain-specific

language, its elements and the associated transformation rules. On the other hand,

there is the view of the development team, which uses the defined domain-specific

language to model the requirements of an application. Creating both views is

relevant for the execution of a model-driven project.

2.2.2 Model-Based Development vs. Model-Driven Development

In model-driven development, models "drive" the process and are the most important

artefacts of development. Models also play an important role in model-based

development, but are not essential for the process. An example of model-based

development would be a software development process in which Business Analysts

specify system models, but developers manually write the code based on these models

(no automatic transformation, no code generation). This research deals with model-driven

development and thus the automatic generation of artefacts including the source code.

According to [60][69][84], Model-Driven Engineering is an approach to software

development in which models, not programs, are the main output of the development

process. MDE and MDA are often considered equivalent. In [89] Sommerville, however,

says that MDE has a broader scope than MDA, because "MDA focuses on the design and

implementation phases of software development, while MDE deals with all aspects of the

software engineering process". The focus of this work is on model-driven software

development in the understanding of the MDA.

PhD Thesis 28

2.2.3 The Term “Domain Architecture”

Asadi et al. mention several relevant artefacts for model-driven development in their

paper [8]. These are different types of models or specifications (e. g. PIM, PSM), generic

frameworks, code and transformation specifications. In [91], the authors also mention a

reference model and a reference implementation as relevant artefacts. They also define

the term "Domain Architecture", which summarizes the infrastructure of an MDD project

and the associated artefacts. It consists of the following three components:

• Domain: This term includes the elements needed to describe a problem domain

using models. First of all, this is the metamodel used to define the domain-specific

language. There is also a DSL editor and a reference model. The reference model

demonstrates the use of the domain-specific language using an example.

• Transformations: This component contains the definition of the necessary model

transformations. These are derived from a reference implementation based on the

corresponding reference model (see Domain). The reference implementation is

also the basis for defining the required programming model.

• Platform: The third part of the Domain Architecture contains all the components

on which the generated code is based. This includes code generators, runtime

environments of the target programming language, libraries, etc. According to

[91], the platform supports the implementation of the domain with the aim of

making the transformation of formal models as simple as possible.

PhD Thesis 29

Fig. 1: Dependencies between the parts of the Domain Architecture [91]

Fig. 1 shows the dependencies and influences between the three components of the

Domain Architecture. It makes it clear that the transformations depend on the elements

of the domain on the one hand. On the other hand, however, they are also influenced by

the platform and the technologies used. The development of the Domain Architecture in

an initial project phase is therefore an important and necessary, but also time-consuming

and expensive step in an MDD project. Therefore, it will be interesting to see which

process models are available for model-driven development and whether this initial

development step is reflected in these models.

2.3 Methodologies for Model-Driven Development

Although model-driven development has had a major impact on the development of

software and various surveys such as [94] or [97] conclude that the promised benefits are

achieved, the OMG-standard MDA does not define a corresponding software

development process or methodology. According to [8] a software development

methodology (SDM) is “a framework for applying software engineering practices with

the specific aim of providing the necessary means for developing software-intensive

systems”. The authors explain “a methodology consists of two main parts: a set of

modelling conventions comprising a modelling language (syntax and semantics), and a

PhD Thesis 30

process which provides guidelines about the order of the activities and specifies the

artefacts developed using the modelling language”.

In practice, however, there is no established methodology for MDD projects. But in

academic research, several methods are defined. These methods are: the ODAC

methodology [43][44], MASTER [64], C3 [52], DREAM [90], MODA-TEL [42] and

DRIP-Catalyst [46].

Three of these methods and their main features are described below. Together, they

provide a good overview of the necessary activities and practices in the development

process of an MDD project. The aim is to identify similarities and differences in

methodology. This can be used to derive important process steps, artefacts and roles that

an MDD process must implement.

2.3.1 ODAC

ODAC is a project with the aim to simplify the modelling of open and complex distributed

applications. The project is based on the ODAC Reference Model of Open Distributed

Processing (RM-ODP) [57][79]. RM-ODP was developed by the ISO and the ITU-T, and

includes a reference model, as well as an architectural framework for the development of

distributed applications. The core concept of RM-ODP is the notion of viewpoints, on

which the modelled views are based. The viewpoints enable to structure the modelling

activities. RM-ODP is primarily an architectural framework and not a method.

Based on RM-ODP, ODAC defines processes and process steps for the development of

distributed applications and uses the UML notation as well as the mechanism of UML

PhD Thesis 31

profiles. In addition, project guidelines for software developers and system architects

were developed and described within the ODAC framework. ODAC is not restricted to a

specific application domain, but since today's business applications are often developed

as distributed multi-tier applications, the RM-ODP-based ODAC methodology seems to

be a possible development methodology, especially in this environment. For this reason,

ODAC is also very interesting in the broader context of this work.

ODAC is based on the RM-ODP-based concept of viewpoints and defines the necessary

activities, from analysis to design and implementation. The Enterprise / Information and

Computational views are assigned to the analysis phase, the Engineering view of the

design phase, and the Technology view to the implementation.

Fig. 2: The ODAC Process [7]

Results of the phases are the Behavioral Specification (analysis), the Engineering

Specification (design) and the Operational/Technical Specification (implementation):

PhD Thesis 32

• Behavioral Specification: Modelling of functional behavior and functional

requirements.

• Engineering Specification: Description of the platform with the necessary tools,

libraries, etc.

• Operational/Technical Specification: Mapping instructions for the

transformation of the behavioral specification to the target platform (configuration

of a PIM to a given PSM).

The ODAC Guideline for PIM defines UML profiles related to the different

specifications. These guidelines contain profiles and corresponding rules for their

application (information profile, calculation profile). In addition, the ODAC project also

refers to the EDOC profiles of OMG [72].

In the ODAC project, however, there are no statements about concrete tools for the

development environment or about transformation rules required for automated model

transformation or code generation. ODAC describes a development process and the

results of the process steps as well as the type of results. In addition, ODAC does not

define roles with regard to the persons involved and their responsibilities.

2.3.2 MASTER

The MDA-based method MASTER originates from the European IST project

(Information Society Technology) of the same name. This method defines eight project

phases, each of which consists of a large number of subactivities. These phases are (see

Fig. 3):

PhD Thesis 33

Fig. 3: The MASTER Process [7]

• Capture User Requirements: The aim of this phase is to identify and record

customer requirements. This phase provides three results: a formal representation

of customer requirements in the form of an application model, a first application

PIM and a first specification of the functional requirements.

• PIM Context Definition: In this phase, the definition of the system is to be

developed. The goals for development must also be defined. To this end, external

actors are identified and the most important cases of application of the system are

PhD Thesis 34

described. Business objects that are exchanged between the actors and the system

are also identified.

• PIM Requirements Specification: The main task in this phase is to refine the

results of the PIM context definition. For this purpose, the use cases are specified.

In addition, the non-functional requirements are defined and described as well as

their relationship to the functional requirements.

• PIM Analysis: In this development phase, the main focus is on describing the

system functionality and the QoS aspects (Quality of Service) of the system. The

results of the previous phase are taken into account.

• Design: In this phase of the development process, all requirements can be

transformed into a platform-independent design and modeled as PIM. Based on

this design, the refinement can then be created as a platform-specific design and

a PSM.

• Coding and Integration: After the MDA approach, the source code is

automatically generated on the basis of the PSM using code generators according

to the defined transformation rules.

• Testing: Test cases will also be created automatically based on a model by

generators. This test model represents a further refinement of the PIM.

• Deployment: This phase describes the delivery of the system to the customer.

The method consists of a very rigid sequential process and describes the activities

required for the application of MDA technology. It focuses on the process of capturing

functional and non-functional requirements and on the system boundary. However,

PhD Thesis 35

important questions remain unanswered. During the coding and integration phase, it is

specified that the source code is generated automatically. But when, how and on what

basis the transformation rules are created remains open. The same applies to the creation

of test cases. In [64] Larrucea et al. note that the agile aspect, especially the agile

modelling, is increasing and see it as the focus of their further work.

2.3.3 DREAM

DREAM (Dramatically Effective Application development Methodology) is a

combination of Product Line Engineering (PLE) and the concepts of the model

transformation in MDA. Fig. 4 shows the stages of the process.

The particular phases of this process include the following activities:

• Domain Analysis: This phase collects and describes the common system

requirements of different organizations within a domain. In addition, the

differences between organizations can be identified.

• Product Line Scoping: In this phase, the product line (cf. platform) and the target

environment are defined.

• Framework Modelling: A PIM defines the general architecture for the intended

members of the product family. Including the necessary relations and conditions.

PhD Thesis 36

Fig. 4: The DREAM Process [7]

• Application Requirements Analysis: The result of this phase is the so-called

Application Analysis Model and describes the functional requirements and

features of the application.

• Application-Specific Design: Here, the application analysis model is refined and

a platform-independent design model is created. This result is referred to as an

application-specific PIM.

PhD Thesis 37

• Framework Instantiation: In this phase, the general architecture is concretized

by considering the application-specific variants. The result is the instantiated

framework PIM.

• Model Integration: In this phase, the specific application PIM and the

instantiated framework PIM will be merged into one model.

• Application Detailed Design: The result of the previous phase is refined based

on platform-specific properties. The next result is the PSM.

• Application Implementation: In the final phase, the executable code and

additional artefacts (such as the database) is generated from the PSM.

By focusing on the definition of the product line and establishing a common architecture

for all applications of the product line, the DREAM method responds to the fact that for

applications of a product line or family alone, the generative approach pays off. Stahl et

al. [91] have also recognized this and described it as advantageous. Nevertheless, the

DREAM process is relatively strictly sequential. References to iterative or even agile

approaches are not given. However, there are starting points for this: e. g. the features

identified in the Application Requirements Analysis. They are fine-granular enough and

can therefore be a solid basis for a Feature List (in the agile method FDD) or a Product

Backlog (in Scrum).

PhD Thesis 38

2.4 Critical View / Problems in MDD Projects

2.4.1 Effort/Cost Drivers in MDD Projects

One of the basic problem areas of MDD is the high initial expenditure of an MDD project.

This is due to the provision of the infrastructure and the development of the necessary

DSLs, metamodels and transformations for the target platform. As already described, this

is called "MDD infrastructure" or "Domain Architecture" [91]. The development of these

artefacts is described in all the methods studied. The elements of the Domain Architecture

were illustrated in Fig. 1 in chapter 2.2.3.

The development of the Domain Architecture with the three parts "domain",

"transformations" and "platform" is an expensive and time-consuming process at the

beginning of the MDD project. Fig. 5 below illustrates the two general phases of a typical

MDD project and shows this effect. Phase I represents the first construction phase of the

MDD project with the development of the Domain Architecture. In phase II, the actual

application development with the implementation of the business logic takes place. Here

the DSL, generators etc. are used.

By speeding up the initial phase and the development of the Domain Architecture (phase

I) and an earlier start of the development phase (phase II), an important point of criticism

could be defused, namely the high initial costs. An earlier return on investment and, if

necessary, lower overall costs for the project can be achieved. This thesis also examines

the extent to which this can be achieved with agile methods and techniques.

PhD Thesis 39

Fig. 5: The two Phases of an MDD Project

2.4.2 Limitations of Model-Driven Development

As learned, several studies documents that the promised benefits of the model-driven

development can be achieved. However, model-driven development involves some

problems and risks. In [47], Hailpern and Tarr name the following problems that occur in

the context of MDD:

• Redundancy: According to the authors, e.g. the concept of different views or

viewpoint models on a software system is a problem. These are “multiple

representations of artefacts inherent in a software development process,

representing different views of or levels of abstraction on the same concepts”.

Additionally, there is the problem that these are “manually created, duplicate work

and consistency management is required”.

PhD Thesis 40

• Round-trip problems: The authors further criticize the complex

interrelationships between the different levels of abstraction. “The more models

… are associated with any given software system, the more relationships will exist

among those models.” Changing an interrelated artefact will affect one or more of

the other artefacts. “The worst forms of the round-trip problem generally occur,

when changes occur in artefacts at lower levels of abstraction, such as code …”.

The authors conclude, “the basic problem is that the introduction of multiple,

interrelated representations implies the issue of assuring their mutual

consistency.”

• Additional complexity: Additionally, the authors state that with a growing

number of development artefacts the complexity in the relationship between them

increases and also of the development tools. Hailpern and Tarr write that “it

remains to be seen if people have an easier time managing a relatively small

number or large artefacts with fewer relationships, or if they manage better with

a large number of more specialized artefacts, with a correspondingly greater

number of relationships.” And they conclude, “a process may be simple the first

time through, but given the complexity that has been ‘moved,’ it may be impossible

(or prohibitively expensive) to maintain, debug, or change the resulting artefacts

in the future.”

• MDD languages: Hailpern and Tarr identify the standardization of modelling

notations such as UML an important foundation for the success story of model-

driven development. But the powerful extension-mechanism of the UML 2.0, the

Meta Object Facility (MOF)[71], “enables UML to be extended almost

arbitrarily”. And they criticize that “this dearth of semantics complicates the

PhD Thesis 41

correct usage of UML extensions, reduces their expressive power, and limits the

ability of tool vendors to provide reliable, consistent model technologies.”

Heijstek and Chaudron also identify different effects of model-driven development on the

software architecture process in [49]. Possible problems may arise from these points:

• Late changes beyond project scope have a more fundamental impact.

• Increased likelihood of scope creep due to ease of change.

• A code generator is an additional application that needs to be developed, tested,

delivered and maintained in parallel.

• Mismatches between metamodel domain and client reality need to be

acknowledged.

• More tooling is needed to support the MDD process.

• Architectural descriptions need to be more extensive, formal and structured.

As a result of their study in a large-scale industrial software development project, Heijstek

and Chaudron conclude that “more effort should be planned up-front so that all

requirements that impact the metamodel are known upfront and so that architectural

design documentation is of sufficient quality, detail and completeness” [49]. The

development and maintenance of metamodels and generators was perceived as a new,

time-consuming activity. Due to this additional effort and the novelty of the technology

in the project, there is a risk that the expected productivity gain will not be achieved.

In another paper Singh and Sood [88] discuss the perspective of model-driven

development. They identify following additional disadvantages of the MDA-approach:

PhD Thesis 42

• The MDA standards still not support the full development process and they

don’t meet the requirements of the software industry.

• The existing lack of tool support could become an adoption barrier to MDA.

• Due to the complexity of UML there are additional skills required.

Despite these criticisms, all authors come to the conclusion that the MDA approach is

“fast becoming the latest software development approach of present and future.” And if

there will be a better methodology and tool support, “MDA seems to have a great future

ahead” [88].

2.4.3 General Limitations and Criticisms

In their review [7], the authors Asadi and Ramsin present some of the MDA-based

methods described above and compare their properties. The authors conclude that MDA

does not make sense without a software methodology and the tools that implement the

most important concepts and standards. In addition, the authors summarize critically:

• The examined MDD-based methodologies support software engineering activities

insufficiently and crosscutting activities are not sufficiently considered in most of

the reviewed methods.

• Most of the methods give no suggestion for tool usage. Also, they don’t describe

the relevant tool-based activities.

• The development of platform independent models (PIM) and platform specific

models (PSM) is usually well supported, the computation independent model

(CIM), however, is mostly ignored.

PhD Thesis 43

• Conventional OOA and OOD techniques are commonly used to produce platform

independent models (PIM).

Chitforoush et al. also investigate different methods and their support for model-driven

architecture in [21]. Similar to Asadi and Ramsin in [7], the authors come to the

conclusion that in principle only very few MDA methods are available and their

description is usually very incomplete and inaccurate. This was also established and

confirmed in the previous observation. Based on their findings, Asadi et al. and

Chitforoush et al. have developed their own approaches to describe a development

process for MDA. While Asadi et al. in [8] focuses on the life cycle of system

development, Chitforoush et al. describe in [21] a process framework for MDA.

2.5 Summary

In the previous chapter the relevant terms from model-driven development were defined,

which are important for further work. These are in particular the terms model, view and

the central concept of Domain Architecture. As there is no established process model for

model-driven development in the field of commercial software development, three

methods originating from the academic field were presented. These were described with

their essential properties and process steps. In addition, a number of criticisms of these

process models and model-driven development in general have been put together. The

different authors often point out missing or incomplete development processes that

support model-driven development efficiently. They also point to the additional

complexity and increased effort involved in developing the necessary MDA platform

(Domain Architecture).

PhD Thesis 44

3 Agile Development and Modelling – Existing Approaches

The model-driven development attempts to be more effective and more profitable through

the industrialization and automation of the software development. According to [65] a

different approach to improve productivity is the use of agile process models like Scrum

[28], eXtreme Programming (XP) [13] or Feature Driven Development (FDD) [24]. Agile

software development is widespread and on the rise. The large number of agile methods

is a clear indication for this. The different methods have their own specific priorities, their

strengths and weaknesses. In Gartner's "Hype Cycle for Application Development" agile

methods emerge in 2007 for the first time and were classified as "already used and

proven." Gartner estimated in 2008 that agile methods will evolve rapidly over the next

few years and it will take five to ten years for agile methods to become widely accepted

and widely used in companies. From today's perspective, this can be clearly confirmed.

Fig. 6: Hype Cycle for Application Development, Gartner, 2008

PhD Thesis 45

Repeatedly emerging new agile methods also show, however, that there is no "right" agile

method. Adaptation of agile practices and techniques to existing and new development

processes shows the strengths and advantages of agile software development: flexibility

and adaptability.

Agile process models attempt to find a compromise between a “small process” and “too

much process”. The focus is not on the production of documentation. In extreme cases,

this means that the source code is the only documentation. For these process models the

early production of source code and the continuous delivery of executable partial results

is an important aspect of the process. The communication with the end user and the direct

feedback are the most important success factors for a project and facilitate quick reactions

on requirement changes [35]. In agile development processes modelling often plays a

subordinated role. The requirements will be documented via “user stories” (XP) or

“features” (Scrum, FDD). They are summarized either in product- or sprint backlogs

(Scrum) or in feature sets (FDD). This doesn’t mean that there is no documentation or

modelling in the development process. But only FDD describes modelling as an explicit

step in the development process.

3.1 The Agile Approach

In the 1980s and early 1990s there were many views on development methodology and

how to write better software: Risk management, careful project planning, formalized

quality assurance processes and the careful use of analysis and design methods and CASE

tools as well as controlled and monitored software development processes.

PhD Thesis 46

This view came from the software engineering community that was involved in building

large, long-lasting systems. Large teams working for different companies had to develop

software together. Frequently distributed teams often needed a long time to develop the

software. This often resulted in considerable expenditure for planning, construction and

documentation.

Transferred to smaller projects, these practices and formalisms brought with them an

immense overweight of organizational effort and dominated the development process.

The dissatisfaction with heavyweight development processes prompted a group of

software developers in the 1990s to publish the new "agile methods". Therefore, they aim

to refocus the development team's focus on the software itself instead of design and

documentation.

Since then, some agile methods have proven successful in practice. The most common

methods are eXtreme Programming [13], Scrum [28][85][86], Crystal [25][26], Adaptive

Software Development [50], DSDM [92][93] as well as Feature Driven Development [6]

[24][73].

The success of these methods has also led to an integration of traditional methods with

agile development approaches. Examples of this are Agile Modelling [4] as well as agile

instances of the Rational Unified Process. A comparison of agile software development

methods is also found in a study of Pentasys AG [78].

PhD Thesis 47

3.1.1 Agile Principles

The agile manifesto [2] consists of four key messages, behind which are a further twelve

principles of agile software development [3]. Sommerville [89] summarizes these key

messages and principles together as follows:

• Customer involvement: Customers should be closely involved throughout the

development process. Their role is to provide and prioritize new system

requirements and to evaluate the iterations of the system.

• Incremental delivery: The software is developed in increments with the

customer specifying the requirements to be included in each increment.

• People not process: The skills of the development team should be recognized and

exploited. Team members should be left to develop their own ways of working

without prescriptive processes.

• Embrace change: Expect the system requirements to change and so design the

system to accommodate these changes.

• Maintain simplicity: Focus on simplicity in both the software being developed

and in the development process. Wherever possible, actively work to eliminate

complexity from the system.

This summary of Sommerville shows the difference to the conventional, established and

often heavy-weight software development processes: namely, the involvement of the

PhD Thesis 48

customer in an easiest possible and transparent development process, the delivery of

intermediate results for verification and early use.

3.1.2 Agility

The term "agility" is generally understood as mobility, adaptability and flexibility. In the

context of software development, this relates to the agile manifesto based on the following

factors [2]:

• The early provision of functioning software.

• Daily collaboration and personal communication between all those involved.

• The willingness and ability to always accept new customer requirements and to

take them into account.

• The team organizes itself and achieved efficiency gains.

This results in a high degree of adaptability of the development process. This is an

important part of agile software development.

3.1.3 Agile Techniques and Practices

Based on the agile manifesto and the underlying principles, various development

processes like Scrum, FDD, etc. emerged. Within these so-called light-weighted

development processes emerged various agile techniques and practices. The following

table maps known agile practices to the disciplines of a software development process.

PhD Thesis 49

Discipline Agile practise / technique

Team building Dynamic teams

Estimating and planning Story points

Ideal time

Iteration Retrospectives

End game

Milestones first

Early incremental planning

Requirements Consume your own output

Community involvement

New and noteworthy

Modelling Assume simplicity / simple design

Architecture envisioning

Model storming

Just barely good enough

Iteration modelling

Multiple models

Document continuously

Implementation

Implementation (cont.)

Embrace change

Enabling the next effort is your secondary goal

Incremental change

Multiple models

Pair Programming

Refactoring

PhD Thesis 50

Collective code-ownership

Programming conventions

Build management Continuous integration

Small-sized releases

Live betas

Build to last / build for change

Test Test first

Continuous testing

Test-driven design

Fig. 7: Agile Techniques and Practices

The listed techniques are also frequently used independently of specific agile process

models and combined with existing development processes. They are therefore very

interesting as part of a definition of a new development process, because they cover many

disciplines of software development.

3.2 Opportunities and Limitations of Agile Approaches

Sommerville describes in [89] project types that particularly suited for agile methods. So

the author named the product development of small or medium-sized products and also

custom system development within an organization, “where there is a clear commitment

from the customer to become involved in the development process and where there are

not a lot of external rules an regulations that affect the software.” In the development of

large and in many cases complex business applications it is common practice to use more

formal process models with strong administrative aspects, such as for example the V-

model. However, Eckstein describes in [34] that agile process models can also be used in

PhD Thesis 51

large projects instead of the heavyweight process models. But in [80] Ramesh et al.

identifies some challenges for the application of agile development processes in large

(especially distributed) teams. As an example there is the conflict between

communication need and communication independence. Agile development processes

are based on informational communication rather than detailed documentation. But in

large projects with many team members there is a need for formal methods such as

detailed specifications or architectural design to give the developers the information

needed.

In [98] the authors indicate the importance of face-to-face communication in projects as

a limitation of agile processes for distributed teams. Turk et al. also explain several

limitations for agile processes. These are amongst others:

• No or limited/poor support for distributed development: The agile principles [3]

give guidance on the implementation of an agile approach. However, principles

such as “continuous delivery of valuable software” lead to a variety of challenges

in distributed teams. Therefore, the early and continuous delivery of software

requires a stronger collaboration between all locations as in non-distributed

project teams. It’s the challenge not to accomplish several individual systems on

the various sites but one coherent system. Furthermore, it is very difficult to

achieve a close cooperation between customers and developers. In addition to the

spatial distance there are often also cultural differences, and large differences in

time zones can complicate the cooperation too. Nevertheless, all team members

must get a common understanding of the business requirements. In [35], Eckstein

describes different roles (e.g. the “traveller”) to enhance the communication and

collaboration in distributed project teams.

PhD Thesis 52

• No process support to identify reusable software components: In agile processes

the focus is on the development in short cycles and an early delivery of valuable

software. This precludes the development of generalized solutions [99]. But it is

clear that reusability could yield long-term benefits. According to [98] the

development of reusable software components or generalized solutions is best

assigned in teams that are primarily engaged in the development of reusable

artefacts. Turk et al. [98] refers to a study [10] showing it’s best to separate the

product development from the development of reusable software components.

The development of reusable software components requires a special attention to

the quality, because errors in these components are often of greater relevance. In

fact it is desirable to develop reusable components in a timely manner, but

according to [98] it is not clear how agile methods can be adapted accordingly.

Hummel and Atkinson discuss a possible solution to this problem in [53]. The

authors propose to integrate the identification of reusable components tightly to

the test-driven development cycles.

• Problems in refactoring large and complex software systems: Agile methods are

based on the premise that good design is achieved through constant refactoring

[39]. This cannot be sustained in large complex systems. The increasing

dependencies between software components make the code refactoring over the

entire application costly. At the same time, it increases the risk of errors. Turk et

al. [98] also refers to software, whose functionality is so closely coupled and

integrated that it isn’t possible to develop the software incrementally. In agile

projects test-driven development (TDD) is a well-proven method to reduce the

risk of errors during the refactoring process. But, with the increasing complexity

PhD Thesis 53

and the growing number of dependencies between components the effort for the

maintenance of test cases increases too.

But, according to the study from Parsons et al. [74] almost 40% of the surveyed IT

professionals use one or more agile methods or techniques in software development.

Close cooperation with the customer and refactoring are commonly referred to as the agile

techniques with the greatest benefit in terms of quality, productivity and satisfaction.

3.3 Agile Methods for MDD Support

The model-driven software development enables a productive and quality-driven

development of software systems, especially of software product lines. The existing

development processes for MDD projects are, as shown in Chapter 2.3, however,

incomplete, and often rigid and sequentially. Moreover, the problem exists that the

development of the infrastructure of an MDD project, the so-called Domain Architecture,

at the beginning of the project caused a lot of effort (see section 2.4.1). However, it is

necessary for the development of the application, as it provides the necessary elements

for the modelling language and the required model transformations. Agile methods are

more flexible and iterative in their processes, and they focus the goal, to provide useful

application parts as early as possible. Therefore they address exactly the weaknesses and

limitations of the model-driven development. These are reasons to integrate agile

approaches in model-driven processes and to consider how agile techniques and practices

can be utilized in this environment.

Now, if an agile process should support model-driven software development, there is the

fundamental question which agile techniques and existing agile process models provide

PhD Thesis 54

the most appropriate approaches. For this consideration is initially important to identify

the agile process models that emphasize the creation of the artefacts that are necessary for

the model-driven software development. Information on this gives a study of the

PENTASYS AG from Germany in its Status Report 2012 [78] about the most important

methods of agile software development. The study compares 25 agile process models

with respect to their processes and key aspects. To support the model-driven software

development, the methods are interesting, which primarily emphasise the modelling in

the requirements management (RM) and the system design as well as the technical design

(SD). The figure below shows the characteristics of those methods that emphasize the

mentioned topics most.

Fig. 8: Characteristics of the selected Methods (Excerpt from [78])

The methods are:

• Feature Driven Development (FDD): The specialty of FDD is that it emphasizes

the modelling as a separate process step and provides an overall model as starting

point for further development. This method is therefore presented in more detail

in section 0.

PhD Thesis 55

• Iconix: Iconix represents a UML-based, lightweight software development

method. The Iconix process consists of four phases, "Requirements", "Analysis /

Preliminary Design", "Detailed design" and "Implementation", where the last

three phases will be done iteratively until the software met the desired customer

requirements. Iconix uses four UML-based diagrams (Use Case, Sequence

Diagram, Domain, Class), to perform prioritized use cases iteratively into source

code. In each phase a check is made of the previously completed work and, if

necessary, an adjustment.

• Eclipse Way Process (EWP): The Eclipse Way Process is based on the way, as

the widely used open source development environment Eclipse is developed. It is

a combination of agile methods, methods from the open source development and

working practices of large, distributed teams. The techniques of the Eclipse Way

Process can be put together like building blocks and adapted to current needs. Due

to the strong focus of the process on the component-oriented design and technical

approach and techniques for distributed teams, the Eclipse Way Process provides

valuable suggestions for an agile model-driven development process.

• Unified Process (UP), and the derived process models Rational Unified Process

(RUP), Open Unified Process (OUP), and in particular the Agile Unified

Process (AUP): The Unified Process is a popular process framework, and the

Rational Unified Process the best-known manifestation [63]. The Unified Process

is essentially iterative and incremental, regarding to the requirements use case

driven, architecture-centred and has a strong emphasis on the early risk

assessment. The very slender use cases driven approach for the requirements

analysis and the architecture centred design seem to qualify the Unified Process

PhD Thesis 56

as a valuable source for ideas for an agile model-driven development process. The

simplified version of the Unified Process, the Agile Unified Process, has also the

goal to enable greater agility within the Unified Process. Scott Ambler combines

the disciplines of business modelling, requirements analysis as well as design in

one discipline "model", in which the created models thereby only have to satisfy

the claim to be, "just good enough". AUP is designed for medium-term projects

and medium sized teams.

In addition to the four presented process models must be mentioned AMDD (Agile

Model-Driven Development). The properties of AMDD do not fulfil the initially

mentioned criteria with emphasis on requirements management and system design (see

Fig. 9), however AMDD contains interesting approaches in the context of agile modelling

techniques. AAMD is described in more detail in section 3.4.1.

Fig. 9: Characteristics of the AMDD Methodology (Excerpt from [78])

Besides the possible suitability of an agile methodology for model-driven software

development it is additionally relevant, how well known and widespread the respective

agile method is. A possible agile method for MDD will be more accepted, if it is in the

style of a in practice widespread agile methodology. Regarding the awareness level of the

PhD Thesis 57

previously considered agile methods and their distribution the PENTASYS study [78]

can be used, too. The study uses search results on Google, and the number of books at

Amazon to get an indication at spread and popularity. By combining the search results of

Google and Amazon was formed a normalized "relevance index". That is, the method

with the highest combined score gets the relevance index 1. Fig. 10 at the next page shows

the result. As can be seen, however, none of the previously mentioned process models

have a high degree of popularity or widespread. Here still XP, Scrum and TDD are the

dominant development models. For a definition of a process model for the agile model-

driven development, this should be taken into account. It should be considered agile

techniques also from these popular methods, whether they are suitable for this purpose.

Fig. 10: Awareness Level and Distribution of Agile Methodologies (see [78])

PhD Thesis 58

3.4 Existing Approaches, Solved Problems and Limitations

3.4.1 Agile Model Driven Development (AMDD)

One approach to combine MDD with agile techniques was presented by Ambler [5] with

AMDD (Agile Model Driven Development). The difference to traditional MDD is in the

draft of models. In MDD, first extensive models are created before starting to write the

source code, in AMDD the aim is the creation of models with a minimum of effort (e.g.

on a whiteboard).

Fig. 11: The AMDD Process [5]

The motivation for this is to initially reflect only the most important basic requirements.

The models should be "just good enough" for the current workload. In further iterations

(iterative development), the requirements are refined and optimized.

PhD Thesis 59

The AMDD process includes the following phases:

• Envisioning: At the beginning of the project there is closely work with

stakeholders to identify the most important requirements and to model scope of

the system. The system architecture is also roughly modelled to specify the

technical direction. The entire model is in this phase, relatively little detailed and

just enough. The important thing is that the problem is to be understood.

• Development Iterations: At the beginning of each iteration, the team plans its

work and prioritize the requirements. Through the close cooperation between

stakeholders and developers in each iteration, new or expanded requirements are

developed. The development is to take place to Ambler through test driven

development (TDD).

- Initial Requirements Modelling: The objective of this phase is to develop a

good idea of the project. These include a first usage model, domain model and

user interface model.

- Initial Architecture Modelling: In this phase, a first architectural model is

developed. This determined the technical direction of the project and has also

been the starting point for the project organization.

- Iteration Modelling: Here, the decision on the size of the work packages is

taken to be retrieved from the requirements storage. The packages in the

requirements storage are typically prioritized.

- Model Storming / Just In Time (JIT) Modelling: It is permissible to hold a

so-called "Model Storming" if required, in which a team member gets one or

PhD Thesis 60

two colleagues to help in order to make a spontaneous modelling decision with

more certainty. The Model Storming should take less than 30 minutes.

- Test Driven Development (TDD): The modelling is followed in each case

directly by the coding. This is handled as in the Test Driven Development [12].

- Reviews: Classical reviews or code inspections are not usually carried out.

Except in large teams or in large projects.

• Release: Within this phase final tests and acceptance tests are done to verify the

functionality of the entire system. When errors occur, they will be corrected.

• Production: Goal here is to get the system up and assist users in using the system.

The phase ends when a system or the support for the system expires.

A closer look at this description of the development process of AMDD shows, that in this

case AMDD should less referred as model-driven development, but as model-based

development (see chapter 2.2.2). Nevertheless, the process contains helpful hints and tips,

how can be dealt with the topic of agile modelling.

PhD Thesis 61

3.4.2 MIDAS Framework

In their comparison of different MDA-based methods, both Chitforoush et al. [21] as well

Parviainen et al. [75] mentioned the MIDAS framework. MIDAS should support the agile

development of Web Information Systems. For this it uses UML as modelling language

for the creation of the necessary PIMs and PSMs. In addition, MIDAS defines mapping

rules for the transformation of models from PIM to PIM, PIM to PSM and PSM to PSM.

But unlike the others, already presented MDD methods defines MIDAS no concrete

development process. Instead, MIDAS focuses on three viewpoints, those are iteratively

and incrementally to model. They describe the content, presentation as well as structure

and behaviour of the application (see Fig. 12).

Fig. 12: Model Driven Architecture of MIDAS [20]

In another paper [20] describe Caceres et al. the experiences they have had in a case study

with the integration of agile practices and activities from XP in MIDAS. According to the

authors, it turned out to be positive, to develop the CIM (Computation Independent

PhD Thesis 62

Model) as an early general vision of the future application. The business and domain

models show the relationships and facilitate the entry of new team members. The team

also felt it as positive that the modelling supports the development of a common

vocabulary from the beginning. As further advantages are mentioned in the article:

• The distinction of the models into three viewpoints: This was a great help in the

prioritization and project planning of user stories in the first iteration.

• The use of development standards such as UML. This supports the

communication between the team members.

• Development in Pair: Because of this technique, the developers felt secure in their

decisions and show more responsibility in the development process.

• Continuous Integration: By the frequent delivery of software over the Web a high,

well-balanced level of information in the project could be achieved. The

developers described this as very important. In addition, it supported them in the

task of testing software modules developed by other pairs.

Based on their case study, the authors conclude that it is important to identify the strengths

of agile modelling, to guide developers in creating the models, and to make a breakdown

of the different aspects (via viewpoints).

PhD Thesis 63

3.4.3 Feature Driven Development (FDD)

Feature Driven Development was first presented in [24]. Peter Coad et al. explain in their

book FDD as a lean method for software development. The method provides the notion

of "feature" in the centre of development. A "feature" is defined as a property of an

application that is useful in the eyes of the customer and therefore it is an added value.

Between the fine-grained functions of the features of a complete system often also exist

dependencies. Therefore related features are grouped in so-called feature sets. The feature

sets are also grouped according to functional criteria into higher-level groups, the major

feature sets. Functional specifications comparable to the features and features sets can be

found in similar form in other agile process models (e.g. the Product Backlog in Scrum).

Besides defining features, FDD provides a role model for key roles (e.g. project manager,

chief architect, chief developer, domain expert), supporting roles (e.g. domain manager,

release manager, build engineer) and additional roles (tester, technical writers). Typically,

the team members will assume multiple roles.

Unlike other agile process models in Feature-Driven Development modelling is a defined

activity in the process model. So already in the first process step, a overall model is

created (see Fig. 13). The aim of this first step in the process is to get a common

understanding of the content and scope of the system under development. Here, small

groups of experts and developers define the functionality under the direction of one or

more chief architects. Also plays the knowledge of the chief architects of the nature and

use of the final product a major role because the overall model should be sustainable for

all the features.

PhD Thesis 64

Fig. 13: Modelling within the FDD Process [6]

Another major step in the process flow, which is supported by modelling, is the design of

a feature. During a walk-through of the chief programmer is developing along with the

feature team a refined model. The design of the feature set and checked during an

inspection before it is implemented in the next step.

Feature Driven Development is based on various best practices from the field of software

development. In the field of modelling FDD provides the use of "Domain Object

Modelling". Domain Object Modelling allows you to gain a good overview of the

problem area as a whole. The domain object model covers only business objects that are

persistent generally. Within this model graphical user interfaces and control objects

doesn't matter, since this would complicate the view of the business object model.

Moreover, Scott Ambler recommends in his essay on FDD and Agile Modelling [6] the

agile technique of "Model Storming" for the recording and modelling of functional

requirements.

PhD Thesis 65

With a focus on the business object model in the FDD process is achieved an abstraction

and concentration on the essential relationships. The resulting model can certainly be

compared with the Platform Independent Model (PIM) in the model-driven development.

With the additional knowledge of the target architecture it is possible to describe a

transformation of this model into the corresponding source code and thus achieve

automation in terms of MDD. Any necessary additional information or model refinements

can be added to the model within the process step "Design by Feature". The result is an

annotated PIM, or a Platform Specific Model (PSM). Feature Driven Development can

thus provide information and foundations for a possible process model for an agile

approach to model-driven software development. Additional hints are the defined roles

for team members as well as the best practices mentioned.

However, feature-driven development does not describe a process step for defining the

architecture. Nevertheless, it is pointed out that the knowledge of the context of the

application is important for developing the overall model and the chief architect should

know the nature and use of the final product. But the need of the definition of application

architecture is not explicitly described. However, this should be the latest on the design

of the individual features so it can be considered. In case of using FDD as part of model-

driven software development, the definition of the architecture is, however, a necessary

mandatory step.

PhD Thesis 66

3.5 Consequences

For the definition of Domain Architecture as the basic framework for model-driven

development, the definition of the application architecture of the future system is of

central importance. At the same time, however, the modelling language must give the

developers the opportunity to determine the design of the application due to the business

requirements. These two perspectives have to be considered especially in an agile model-

driven process. For this reason, special attention must be paid to understanding

architecture in an agile environment.

In addition to the special consideration of the architecture as an essential element of

model-driven projects, it is also necessary to consider the further results and artefacts of

such a project. Unless elements of agile process models and individual agile practices

should be applied in an agile model-driven development process, then it must be

considered in what phases these techniques should be applied. It must be considered also,

which results are created in theses phases, and how these partial results are interdependent

and influence each other. If this is right, it must be considered, in what phases a particular

agile technique should be applied.

At the same time, the aims of the Agile Manifesto should be considered.

• The early and regular delivery of functioning partial results.

• Working closely with the customer for accommodating the requirements and

validating the results.

• The constant readiness for change (functional and technical).

PhD Thesis 67

As part of the implementation of MDD projects there are two main phases. In the first

phase, the Domain Architecture is defined as described in Section 2.2.3. I.e. in this phase,

the necessary tools, transformation rules and DSL language elements are provided those

allow developers in the following phase, to create the software using these techniques.

Fig. 14 shows the results of these phases and their dependencies, and the effects of

functional and technical requirements.

Fig. 14: Dependencies between Artefacts in MDD Projects

In the context of agile development with short iteration cycles, and the desire to provide

working software early on, these two stages need not be performed in sequence but in

parallel and closely integrated. Because of the dependencies of the individual results it

will be particularly important to keep the impact of changes in mind. On changes to

functional requirements it is possible to react quickly by adapting the business models. In

the agile environment, this represents not a special case. Greater challenges are changes

to non-functional requirements, which affect the elements of the Domain Architecture.

Changes at the Domain Architecture can directly influence all elements of application

development. This applies both to the MDSD platform as well as the transformation rules

of the generator, however, in particular for the domain specific modelling language. The

PhD Thesis 68

need for changes to the DSL may also caused by newly discovered business requirements.

To cover these requirements, new model elements may extend the DSL, with the goal to

describe the requirement effectively through the modelling language. An essential task

for the definition of an agile model-driven process will therefore be to take into account

the dependencies between the elements of these two phases of development properly and

to find an effective integration of these phases.

3.6 Summary

With AMDD [4][5], FDD [6][24][73] and MIDAS [20][21][75] three process models

have been introduced that provide possible approaches for agile model-driven

development. Supplemented with other agile practices of the methods identified in

Section 3.3, this represents a collection of agile techniques, which provide useful starting

points for the definition of an agile process model for MDD.

The definition and agile understanding of architecture and design is for the support of

MDD projects also important. Ultimately the defined target architecture determines the

necessary transformation of models into software. The properly chosen cut of the

architecture (tailoring) and the anchoring of the design in the development process are

the essential elements for a future development methodology. Another challenge for an

agile, iterative and incremental development process represents the dependencies

between the individual partial results. Here in the model-driven projects, the additional

dependencies exist between the components of the Domain Architecture and the results

of the application development.

PhD Thesis 69

4 Case Studies – Practical Experience in MDD Projects

Fundamental criticism of model-driven development often arises from skepticism about

modeling using UML. Brambelli et al. Summarizes in [17] that the UML is generally

considered too extensive, too cumbersome and incoherent and therefore cannot be used

for DSLs. For this, the authors make some discourses, such as [14], about the advantages

and disadvantages of the UML. In practice, this can be explained by the fact that many

developers only know and use specific diagram forms of the UML. This was examined

in [81] and the authors of the study also showed that there is also a difference between

academic users of the UML and software developers in industry, the latter using the UML

much less than the academics. Thus, it is not surprising that the model-driven

development based on the UML is only very poor in practice. The complexity of the

modeling language in connection with the effort of the DSL definition seems to act as a

deterrent here. In contrast, text-based DSLs are also much more common in practice (see

also case study 3 (4.3)).

But the authors Brambelli et al. in [17] conclude, however, that UML is still the reference

language for the modeling of software systems and will continue to be the industry

standard. The criticism also leads to the fact that the OMG regularly revises the

specification of the UML and tries to achieve a simplification and a better manageability.

The following case studies will show some opportunities and risks in specific MDD

projects from practice. The first case study is originated on a project with an insurance

company in Hanover, Germany. The second case study describes the experience in an

MDD project within the software product development in a medium sized software

company. A third case study shows the difficulties that arise with the increasing

PhD Thesis 70

complexity of the domain-specific language and the difficulties that result for the product

development. In addition to these three case studies, further reports by other authors from

industry studies are presented and explained below.

4.1 Case Study 1: Interfaces to Legacy Systems

4.1.1 Initial Situation

The insurance company had a heterogeneous environment with Java clients, J2EE

application servers and various legacy applications on mainframes, which are written in

COBOL or PL/1. The realignment of the application development had defined Java as the

strategic platform for new applications. The maintenance of data in legacy applications

should be made in future with the new Java clients. But the access to the legacy

applications was implemented inconsistently and access routines and interfaces were

poorly documented. So the provision of a new interface for Java applications and the

additional documentation of the interface needed a time frame of 2-3 month (40-60 person

days).

4.1.2 MDD Approach

The main objectives of the development team were:

• Accelerating the development of an interface.

• Standardizing the implementation and documentation of an interface.

• It is intended to establish UML as modelling language for all applications in the

Java- and COBOL-environment in the company. One UML model should be the

common basis for all target architectures.

PhD Thesis 71

Model-driven development seemed to be a promising approach to achieving these goals.

Based on annotated UML diagrams the Java client as well as the interface implementation

to the legacy application can be generated. Additionally, the UML diagrams should

complete the documentation gap.

Fig. 15: Models and Generated Artefacts in Case Study 1

Based on this idea, the development team has decided to define a domain specific

language as an extension of the UML class diagram as well as of the activity diagram.

• The class diagram should describe the data structure of the interface and the name

of the interface methods (Fig. 16). This aimed to generate following COBOL

modules:

PhD Thesis 72

- Access modules (for access to a database table): Here should be supported the

standard requests such as Insert, Update, Delete and findByPrimaryKey as well

as individual queries.

- Business modules: Due to the fact, that these modules implement individual

business logic, it wasn't possible to create them directly. The aim was therefore

to generate a so-called distribution module, which calls the corresponding

COBOL module for every modelled function. This was intended to ensure that

the provided services are also represented in the COBOL world through a

standard interface.

Fig. 16: Sample UML Class Diagram for the Definition of a COBOL Copybook

- Copybooks: Both, for access modules as well as for the business modules, the

required data structures are generated as copybooks and integrated into the

generated modules. Copybooks reflect the structure of tables, parameters or

return values.

PhD Thesis 73

• Activity and state diagrams should give the developers the possibility to describe

specialized behaviour within the client (Fig. 17). The modelled activities are

intended as methods that are to be implemented by the developer individually.

The states represent the various dialogs. The different transitions specify how the

activity or a state is left.

Fig. 17: Sequence in the Activity Diagram refined in the State Diagram

PhD Thesis 74

As a next step, the team has developed a sample Java Swing client for an exemplary

interface of a legacy application. Additionally, they have defined a standardized COBOL

access routine on the existing implementation. Both, the sample client and the COBOL

routine were reference implementations for the development of the generator templates.

In an iterative process, the team developed the generator templates and extended the

metamodel of the domain-specific language as required.

In a last step, the modelling and coding guidelines for the further development were

defined and the integration in the development environment was completed. Up to this

point, the following effort was needed:

Activity Effort

DSL definition / metamodel development 20 pd

Reference implementation (Java Swing client / COBOL interface) 80 pd

Template development and generator workflow 120 pd

Modelling and coding guidelines 10 pd

IDE / build management integration 30 pd

Total 260 pd

Fig. 18: Project Effort in Case Study 1

4.1.3 Result / Experience

According to a leading software architect at the insurance company, the provision of a

legacy system interface for a Java application has been significantly accelerated. “For the

same things for which we have previously needed up to three months, now we need only

two weeks. Consider the required effort, the return on invest is reached after only nine

interfaces.”

PhD Thesis 75

4.2 Case Study 2: Software Component Development

4.2.1 Initial Situation

The software company developed a J2EE-based software framework, which consists of

software components that provide specific business functions for the processing of claims

in an insurance company.

Fig. 19: Parts of the Software Framework in Case Study 2

The component interfaces were implemented as EJB Session Beans and data are delivered

according to the J2EE-pattern “Transfer Object” via the interface. A proprietary

framework does both, the management of persistent entities within the component as well

as the management of metadata and relevant business rules.

PhD Thesis 76

All software components are based on the same design principle and follow this template.

Therefore, the implementation of each component is very similar in large parts. Studies

showed a potential for 60-70% generic source code.

4.2.2 MDD Approach

For the development of further software components for this framework, the company

decided to invest into model-driven development. Based on the similar design of the

components, the comparable initialization of data, similar configuration as well as the

analogous transformation of persistent entities into transfer objects, it seems to be a

promising approach. Objectives for the development team were to accelerate the

development of new components and the easier adaptation to new architectural standards

or technologies (such as EJB 3).

One of the existing software components was used as reference implementation. Based

on this component, on one hand the modelling conventions (or the DSL) have been

developed and on the other hand the necessary generator templates derived. The previous

figure (Fig. 20) shows the developed metamodel with the definition of stereotypes and

tagged values for the required model elements.

PhD Thesis 77

Fig. 20: Metamodel for the Description of Software Components

As a result of the generation process the following artefacts should be created:

• The interface definition and implementation of the component (as a Session

Bean).

• The persistent entities according to the underlying persistence framework.

• The necessary initialisation of the component by the defined metadata.

• The necessary classes and methods for the transformation of persistent entities to

the required transfer objects for the interface (and vice versa).

• Required deployment descriptors for several application servers.

• Test classes and test drivers for the component as well as different helper classes.

PhD Thesis 78

To achieve these results the following effort was needed:

Activity Effort

DSL definition / metamodel development 30 pd

Reference implementation (not necessary) 0 pd

Template development and generator workflow 220 pd

Modelling and coding guidelines 30 pd

IDE / build management integration 40 pd

Total 320 pd

Fig. 21: Project Effort in Case Study 2

The development was terminated in 2006, because of new components were needed faster

for a project and there was no more time to wait for the completion of the MDD

environment. So, the necessary components were developed manually. The MDD

environment was never completed.

4.2.3 Result / Experience

In hindsight, the termination of the development of the MDD environment has the

following reasons:

• The decision to develop an MDD environment came too late. There were already

too many ready-made components. The prospect of payback purely in relation to

the development of new components was too low.

• Too many requirements / no iterative process: It was developed too much at once.

In the beginning, too many artefacts should be generated.

PhD Thesis 79

• Few intermediate results that could be used.

• The management did not trust the new technology.

4.3 Case Study 3: Insurance Programming Language

4.3.1 Initial Situation

A software company with more than 1000 employees is developing software for life

insurers. The typical application is a distributed Java Enterprise Application with a Web-

based client, a Middle tier with clustered application servers, and several relational

databases in the backend. Added to this is the need to easily integrate host-based systems.

The necessary application architecture is complex. And the functional requirements too.

The development of the application spread to several locations in Germany and Slovakia.

The development of the architecture took place in Cologne, the functional specification

in Stuttgart and the development in Stuttgart and Bratislava.

4.3.2 MDD Approach

A modeling framework has been created to ensure a uniform architecture for the whole

application. This framework includes a graphically based domain-specific language on

the basis of UML, which describes the microflows of the application (that is, the control

of the dialog processes and transactions) as well as the macroflow over the individual

application parts. In addition, a text-based DSL was developed, through which data

structures and interfaces were described. Separate code structures and mixin classes

(according to the Mixin design pattern) were generated from both domain-specific

languages. Both languages, the graphic and the text-based DSL, were oriented on the

PhD Thesis 80

technology stack and both describe technical issues. The aim was to simplify the handling

of technology by means of abstraction.

4.3.3 Result / Experience

With the focus on technical abstraction by the DSL, a high dependency on the selected

application architecture was generated. Changes to applied technologies or the adaptation

of structures within the application architecture often led to changes in the language range

of the DSL. This then requires corresponding model adjustments. The productivity of the

application development was thereby severely impaired. Each release of a new version of

the modeling framework had immense impact and resulted in correspondingly high

adaptation costs. Not infrequently, a new release meant a project stop of up to two weeks.

An analysis of the situation showed that it would have been better to focus the DSL on

the professional statements of the application. The mapping of the technical nature to the

target architecture would have to be done transparently via the model transformation. In

the current situation, there are business models intermixed with technical information

regarding the target architecture. The principle of Separation of Concern has not been

adhered to, and therefore changes in its effects cannot be effectively limited.

4.4 Experiences from other Case Studies

In addition to the presented case studies with own practical experience, reports and case

studies on MDD projects from other companies will now be considered in the following.

These cover a variety of business sectors and therefore enable a broad overview.

Representing this are the case studies at IBM [19][22], ABB Robotics and Ericsson [94],

PhD Thesis 81

at Autoliv, Sectra and Saab Aerospace [36] and Motorola [9] called and described briefly

below.

4.4.1 ABB Robotics and Ericsson

The article by Staron [94] describes the case studies at ABB and Ericsson. ABB focuses

on the development of mechatronic systems with embedded software. The embedding of

legacy code and the support of different programming languages were the primary focus

for the support of the software development by MDD. MDD was therefore considered,

because the developers expected a better portability, more accuracy and an earlier

assessment of the quality of the software. On examination, the question stood on the kind

of the models, the availability of the tools and the knowledge of the development team in

the foreground. Ultimately, however, the high startup costs led ABB decide against the

use of MDD.

Ericsson is in the business of mobile telecommunications. The department, which was

involved in the case study, is engaged in the development of services for mobile

platforms. Ericsson expected that MDD would improve its competitiveness by increasing

developer productivity. In addition, for Ericsson reasons such as increasing quality and

improving team communications were relevant. Ericsson was in favour of the use of

MDD. As a modelling language UML 2.0 with custom profiles was chosen. Ericsson

needed profiles because the UML 2.0 language scope of the standard was insufficient for

the problem domain.

PhD Thesis 82

Staron draws the following conclusions from his case studies:

• Domain-specific languages should be designed and developed by the developers,

who want to use MDD.

• Even excellent models do not allow complete code generation. It is not possible

to dispense on manual coding.

• The MDD technology is not so far that a model-only approach like described by

Brown in [18] is possible.

• The companies are struggling with the paradigm shift from the current state of

software development towards MDD and rather use proven technology instead of

UML model-driven process.

• The high implementation costs of MDD can adversely affect a decision in favour

of MDD.

Hence Staron also draws the conclusion that, among other things, the development

process is a crucial factor for the successful introduction of model-driven software

development.

4.4.2 Autoliv, Sectra und Saab Aerospace

The article by Elmqvist and Nadjim-Tehrani [36] focuses on three case studies in which

high reliability and security of the generated code is required. The tools used by the three

companies are presented and evaluated, and then the success of the use of MDD in the

companies is pointed out.

PhD Thesis 83

Autoliv, a German supplier of automotive components used MDD in the development of

a new airbag. The main requirement on MDD was the rapid development of the software

and the required low code size. Through the use of MDD was the time that was spent in

the development, can be shortened by 60% compared to the hand-written code. But the

generated code had to be completed manually.

Sectra is a Swedish manufacturer of secure communication systems. The main

requirement for Sectra on MDD was the integration of legacy code, platform

independence and security of the application. Since none of the study relied MDD tools

was sufficient, a separate code generator has been developed.

At Saab Aerospace especially safety requirements for the code, and the traceability of

changes to the original system were regarded as important. The specification of the

systems takes place partly in a natural language, and in part by a particular model

language. The model can be used for simulation of the finished system. A complete

transformation of the models in the respective target languages could not take place; it

was always a manual intervention necessary.

Elmqvist and Nadjim-Tehrani come, based on their case studies, to the following results:

• None of the available development tools for MDA software is reliable enough to

fulfil the high requirements for their safety.

• In the case of Autoliv a great time saving can be achieved due to the use of MDD

tools.

• Both, in case of Sectra as also at Saab Aerospace manual intervention was

necessary because there was no tool support for all steps from the specification up

to implementation.

PhD Thesis 84

4.4.3 IBM

At IBM, two case studies were conducted. The first case study [22] is about a project to

implement a business performance management system (BPM) with MDD. Various

aspects of BPM were divided into smaller, more workable pieces and modelled using

UML 2.0. On model-to-model transformations so called intermediate models are

generated that represent partial aspects of BPM. Based on these intermediate models, the

actual program code is generated.

The observations of Chowdhary et al. from this case study are:

• MDD provides a platform on which may be developed quickly and flexibly.

• Manual additions of models and code are always needed.

• It was not possible to create a useful model within the first step. In all cases several

iterations were necessary.

• Before a PIM to PSM transformation, the models must always be verified and

validated. There's always a trade-off between the most flexible models for the

business users and the highest possible accuracy of the models.

• When a model is changed, all runtime components must be rebuilt and distributed.

• Because of the MDD approach, the application is only as good as the specified

model of the business users.

The article by Brown et al. [19] less is a classic case study as it is a collection of best

practices, IBM has gained in the development of its own toolkit. The authors transform

these into guidelines for the use of MDD and bring them into the case study.

PhD Thesis 85

4.4.4 Motorola

This case study by Baker et al. [9] describes the experience of Motorola with the model-

driven software development. Motorola has already gained widely experience in several

business areas with MDD. The models were created using UML 2.0, the subsequent

transformations, however, conducted an in-house developed software, as none of the tools

available on the market could meet the needs of Motorola. At Motorola 65%-85% code

generation could be achieved. The development effort was decreased by a factor of 2.3 in

the development, and by a factor of 30-70 in the correction of errors that were discovered

during test. Seen about everything, the quality can be improved by a factor of 1.2 to 4 and

the productivity by a factor of 2 to 8. Baker et al. observed the following points in their

case study:

• System architects and designers tend to make implicit or explicit assumptions

about the implementation of modelling.

• Many development teams were inflexible in changing the traditional development

culture that was fostered by the absence of a defined MDD process.

• The third-party solutions scaled poorly and the generated code was inferior to the

self-programmed solution.

• There is no development environment, which would cover all the needs of

Motorola.

In conclusion, all of the listed case studies show that manual coding is still necessary. The

statement that there is no viable all-in-one solution for the development of MDD projects

closely follows this observation. Overall, apart from ABB [94], the use of MDD in

software development was rated as positive and saved a lot of effort by the application of

this paradigm.

PhD Thesis 86

4.5 Summary

The basic ideas and principles of model-driven software development as described in the

MDA Guide (OMG) [68] are already widely used in practice [61]. An established and

uniform MDA/MDD-process in which policies and processes are defined in a standard

form, one looks in vain. The possibilities are so wide that a consistent process model can

be developed only gradually. However, there are some more or less mandatory resulting

activities, artefacts and roles that can also be found in the studied process models.

The benefits of the MDD-based approach can also be shown without an established

process model and are also described in the various case studies: A higher level of

abstraction in the domain-specific model increases the expressive power of the business

models. There are also shorter development times and higher productivity, with lower

project risk. In addition, media breaks are eliminated, which cause in the traditional

development unnecessarily high costs. But productivity is not the only benefit, but also

the higher quality results. Both the domain-specific language and the generator contribute

to an improved quality. These statements are confirmed by a survey of the computer

science research centre FZI in Karlsruhe [41]. 93% of respondents would use modelling

and generation in future projects again. 80% of them see the high development rate as a

benefit, 71% the clean source code, 68% the higher quality. However, only 37% regard

MDD as a more cost-effective approach.

But the disadvantages are the higher complexity of the development of the DSL

(metamodels) and the corresponding model transformations (generators) with the

associated high costs. This effort, in conjunction with the given complexity, the lack of

standardized processes and the prior unpredictable profitability makes decisions against

PhD Thesis 87

the model-driven development easier to understand. And in the survey of the FZI indicate

40% of the respondents who want to use no more MDD, that the approach takes more

effort than benefit.

PhD Thesis 88

5 Approach: Using Agile Elements in MDD-Processes

5.1 Combination of MDD and Agile

An iterative approach in the development of the "Domain Architecture" and a stronger

integration with application development is described in a case study in chapter 4 as a

possible improvement. As a result, parts of the "Domain Architecture" would be available

for application development earlier, and thus functional final results could be achieved

earlier too. This could also promote the exchange of experience between application

developers and MDD Infrastructure developers. The early provision of results and the

close cooperation of all parties involved are essential characteristics of agile process

models such as Scrum, XP, etc. The same applies to iterative development in short cycles.

Therefore, it is only natural to apply these agile concepts to model-driven development.

However, before agile working techniques and principles can be used in model-driven

development, it is necessary to investigate which project phases are important within

model-driven development. In other words: Which substeps are important? Which

artefacts are relevant? And which team roles are required? The starting point for this can

be the process models for model-driven development identified and described in Chapter

2.3. MODA-TEL, MASTER, etc. are based on classical process models, but provide

valuable information. The common features of the existing procedural models can be

worked out and presented as a metamodel on a more abstract level. When defining a new

and agile process, these process elements can be reused and recombined.

The basic idea is to make the new process agile and thus achieve the characteristics and

goals described above. In addition, the question arises as to which agile working

PhD Thesis 89

techniques and principles should be applied. Similarly, the question arises as to which

fundamental agile process is the basis for a new process model for agile model-driven

development. On this basis, the necessary process steps, artefacts and team roles can be

defined.

5.2 A detailed view on MDD methodologies

Starting point for further considerations are the identified development processes for

model-driven development projects. Even if these are incomplete and imprecise, as

mentioned in 2.3, they describe the necessary actions and relevant result types of model-

driven development. For this reason, the similarities of the various development processes

were identified and its elements described in a metamodel. The following Fig. 24 shows

an excerpt of the metamodel and its derivation from a MDD process (here MODA-TEL,

[42]). The metamodel thus describes the building blocks, which can be used for a new

process or as a supplement to an existing process.

In this way, it is possible that elements of different process models become comparable.

In addition, the gaps in the processes will become more apparent, and it is clearly

represented what elements are used by a specific process and which are not. And

ultimately, this general description allows a specific tailoring to a derived process.

PhD Thesis 90

Fig. 22: Process Steps in MODA-TEL and the corresponding Element in the Metamodel

5.3 Commonalities of the Reviewed Methods

Based on the methods considered for MDD projects a basic metamodel was developed to

describe the identified common process elements, result artefacts or roles of project

participants and their relationships. The illustrated section of the metamodel on the next

page (Fig. 23) shows the possible phases of the project as well as the artefacts, which are

created by a team member in his role.

On closer examination of the mentioned methodologies, the following common elements

of the methodologies can be derived: project phases, roles and development artefacts. In

some methodologies, the project phases are only classified in “Analysis Phase”, “Design

Phase” and “Implementation Phase”, and are reminiscent of the corresponding stages in

PhD Thesis 91

conventional development processes. In these cases only the results of the phases are

related to model-driven development. So, for example, the analysis phase in the ODAC-

method provides the platform independent model (PIM) as a result.

Fig. 23: Metamodel with Process Elements

Other methodologies such as C3 or MODA-TEL, name specific phases related to model-

driven development. Both, C3 and MODA-TEL, define an initial project phase that

describes the requirements for the modelling and the necessary transformations. And, in

addition, they define a software development phase, in which the real application

development is done step by step, from the model-design over the code generation and

the application deployment. In addition to C3 and MODA-TEL, an initial project phase

can also be identified in the other named MDD methodologies. Once it is called

“Engineering Specification” [43], another time “Standardization Phase” [52] or

“Preparation Phase” [42]. In general, this phase includes the definition of the domain

specific language via a metamodel, the definition of the corresponding transformations

and the necessary tooling.

PhD Thesis 92

Fig. 24: Metamodel: Roles in Existing MDD Processes

All named methodologies describe specific roles for project participants very rarely.

However, a description of the necessary skill requirements and responsibilities for those

involved in the development process would be important. A good description of roles can

be found in [91]. The authors separate the developers of the MDD-infrastructure (e.g. the

“Domain Architect” or “domain expert”) by the users of the MDD-technology (the

Application Developers).

5.3.1 Project Phases and Steps

The basic process within the framework of the model-driven development always consists

of a phase of preparation (the initial phase). The authors Stahl & Völter call this in [91]

the development of the Domain Architecture (explained in chapter 2.2.3). The domain-

specific language and the associated metamodel are developed on the one hand. However,

the necessary transformations for the transfer of the models to the source code are also

derived using a reference implementation. This also creates the necessary toolset and the

programming model for the development. This phase is influenced, on the one hand, by

the professional environment with its terms and its structure, from which the

PhD Thesis 93

professionally motivated domain-specific language is derived. On the other hand, the

chosen application architecture, which ultimately determines how the DSL language

elements are transformed into technical artefacts. Thus, these are influences that are

determined in classic projects within the framework of a specification phase and are

described as functional and non-functional requirements. From the point of view of an

agile software development the inclusion of these requirements and therefore also the

development of the DSL and the architecture must be designed evolutionarily.

The second phase in a project with model-driven development is the real development of

the application (development phase). The domain-specific language is used for the

creation of models and the professional domain is described. Code generators translate

the models into source code according to the specified transformations. Since the code

generation is usually not complete, this development phase is typically additionally

implemented manually. These two phases are explicitly found in MODA- TEL [42] as

well as Stahl and Völter [91]. When projected onto an agile model, these two phases

appear to be the most appropriate feature-driven development [24], where a rough overall

model is refined and modeled in later iterations as well as modeled and encoded (see 0).

While in the described development processes these phases do not overlap, this will in

the use of agile approaches necessarily be the case. Therefore, the definition of the

Domain Architecture must be carried out in an iterative and incremental way, and in

parallel to the application development. It should be noted that, as described in section

5.6, the architecture of the target system is previously defined and a tailoring of a

reference architecture has occurred. Hence the agile principle of "system metaphor" is

supported, which requires that all developers know and understand the basic architecture

of the system.

PhD Thesis 94

The phase of the actual development follows the integration and test phase as well as the

delivery for all mentioned process models. With agile aspects, this should be done as

frequently as possible and at short intervals. However, this represents a special challenge

to the development environment and the toolset.

The necessary process-accompanying quality assurance is described in little detail in all

process models. Only in MODA-TEL is a model verification and validation proposed in

the context of development (after modeling and before transformation).

5.3.2 Artefacts and Result Types

A complete description of a development process includes besides the explanation of the

process steps the explanation of what types of results or artefacts are created and at which

time. In this context, the defined term “Domain Architecture” [91] has been described in

section 2.2.3. It describes the main artefacts that can be understood in its broadest sense

as infrastructure components of the development environment for model-driven projects.

Without these artefacts, including the definition of the domain specific language (DSL)

or the transformation rules for models and generators, can be performed no model-driven

project. Though Stahl et al. don´t refer to a specific process model for model-driven

development, also require process models like DREAM, MODA-TEL, ODAC etc. the

development of these components, and define appropriate activities.

Identified artefacts of model-driven development are:

PhD Thesis 95

Fig. 25: Artefacts in the Model-Driven Development

• The DSL (domain-specific language) consists of individual language elements,

which originate from the problem domain and are suitable for describing this

problem domain. The DSL is described by a metamodel. Model elements in the

metamodel define the language elements of the DSL. In addition to the basic

membership of a UML element, each language element has further properties that

allow additional information to be recorded. Relationships between the model

elements in the metamodel represent how individual language elements of the

DSL are interrelated and used.

PhD Thesis 96

• The application architecture defines the structure and relationships in the future

application system. The non-functional requirements specify the framework

conditions for the architecture. A reference implementation or a minimal

prototype ensures that the defined architecture requirements work and thus

enables risk minimization. If the architecture is created evolutionarily, it must be

ensured that the reference implementation is further developed accordingly.

• Based on the reference implementation the necessary technical infrastructure

can be built up. The technical infrastructure is, on the one hand, the environment

for deploying and testing the application. At the same time, however, the

necessary toolset for the development can also be defined. The basis for this is the

reference implementation based on the defined application architecture.

• Using the domain-specific language a reference model is created, which

demonstrates the use of the language elements of the DSL. This reference model

is the basis for the derivation of the transformation rules by means of which the

reference model can be transferred to the reference implementation.

• In most cases, the transformation to source code will only cover part of the

reference implementation and will require manual implementation of the

missing parts. Inserting the missing functionality requires additional architecture

requirements for the development. Appropriate patterns (for example, Strategy or

Factory) can be used to ensure that the manual parts are coupled as loosely as

possible to the generated elements.

PhD Thesis 97

5.3.3 Roles and Team Members

A description of the roles of involved project members is also part of a complete

description of a process model. But in this regard, the descriptions of the identified

processes like MODA-TEL etc. are incomplete. Only in Stahl et al. [91] is a description

of roles included, which differ roughly between Domain Developer and Application

Developer.

Fig. 26: Identified Project Member Roles in MDD-Projects

From the point of agile methods additional role definitions must be considered. For

instance, roles from the FDD process such as chief architect, feature team or chief

programmer are conceivable and must be assigned to the individual process steps. It must

be considered however, that the agile principle of a self-organizing team doesn’t become

limited or overloaded by too many roles.

The following roles can be identified in the context of model-driven development:

PhD Thesis 98

• The Application Architect defines the application architecture according to the

non-functional requirements and directs the development of the reference

implementation, which follows the requirements of the application architecture.

• Application Developers implement the reference implementation and later,

within the framework of the application development, the code portions to be

generated manually.

• The Domain Architect defines the domain-specific language using a metamodel.

• A Business Analyst describes the elements of the domain and thus supports the

definition of DSL by the Domain Architect. This person creates a reference model

with the help of the DSL and thus describes a section from the professional

domain. In the actual application development, the Business Analyst will model

the technical requirements and coordinate with the Application Developer about

the parts to be implemented manually.

• Domain Developers, together with the Domain Architect and Application

Architect, define the transformation rules for mapping to the reference

implementation. The missing and manually coded portions are implemented by

the Application Developer in coordination with the Domain Developer and the

Application Architect.

Agile practices that have established themselves in the context of modelling and seem to

be suitable for a process model for MDD are now considered below.

PhD Thesis 99

5.4 Agile Techniques and Practices for Modelling

Based on the large number of agile methods and techniques such as XP, Scrum, etc. it is

to identify individual procedures that are suitable for creating the artefacts described in

section 5.3.2. For this, it must be a fundamental distinction between agile techniques such

as “pair programming” and “continuous integration” and agile process models such as

Scrum, FDD, etc. (see Section 3.1.3).

In particular, the application of agile techniques, however, has an impact on the model-

driven process. This becomes particularly clear in the application of refactoring, which is

leading to frequent changes on the created artefacts. This may play a minor role in the

editing of the artefacts of the application development, however a refactoring of Domain

Architecture components has a significantly larger impact.

So here is clearly to define which phases of the development interdigitate, and which

artefacts can be developed incrementally, which dependencies are acceptable and for

which areas clear guidelines are required.

In the selection of appropriate methods for supporting model-driven development will

therefore initially have worked out those agile techniques that are suitable for the

preparation of the respective artefacts. In the field of modelling have been already

identified some agile modelling techniques in the elaborations of Ambler [5], Cáceres et

al. [20], Baker et al. [9] and Pei-Breivold et al. [77], which can serve as a starting point.

The following table represents a selection of agile modelling principles:

Discipline Agile practise / technique

PhD Thesis 100

Modelling Assume simplicity / simple design

Architecture envisioning

Model storming

Just barely good enough

Iteration modelling

Multiple models

Document continuously

Fig. 27: Agile Modelling Principles1

In the following the different agile techniques will be analysed in terms of their suitability

for elements of the model-driven development. For this, some criteria have to be defined,

by which agile techniques can be evaluated. These criteria are:

• What artefacts are affected?

• What is the impact of the agile technique on the development effort and how to the

temporal aspect?

• In which phases of the project, the technique is applicable?

• Do dependencies to other artefacts exist? What artefacts are indirectly affected?

5.4.1 Assume Simplicity / Simple Design

This principle first of all advises that the simplest solution is the best solution. With regard

to agile modeling, this means that only these properties are to be modeled, which is

necessary for the current state of knowledge and for the current task. It is advised to

concentrate on the existing requirements and to rework the model successively through

1 http://www.agilemodeling.com/principles.htm (checked on 10/09/2015)

PhD Thesis 101

refactoring.

With regard to the model-driven development, this can, of course, primarily be projected

onto the business model, which is described with the DSL. Iteratively, this model can be

extended and refactored. But does this also work for the description or definition of the

DSL, the metamodel? The experience from the case studies (see chapter 4) suggests that

complex and extensive DSLs lead to problems with dependencies and increased risks for

the project.

Artefacts: Metamodel, Business Model

Project phase: Initial Phase, Development Phase

Dependencies: -

5.4.2 Architecture Envisioning

Architecture Envisioning is an agile practice of developing the application architecture at

a high abstract level and discussing the technical implementation with the team on this

basis. The goal is to develop a strategy for the architecture [4] instead of creating

extensive documentation. The architecture is then further developed during application

development in model storming sessions. This can be transferred to the model-driven

software development. If a fundamental strategy of an application architecture has been

developed, the corresponding reference implementation as well as the necessary model-

to-code transformations can be derived on this basis. The revision of the architecture then

leads to corresponding changes to these artefacts. Especially in this aspect is a great

strength of the model-driven development, since the architectural changes can be

implemented by the push of a button.

PhD Thesis 102

Artefacts: Application Architecture

Project phase: Initial Phase, Development Phase

Dependencies: Transformation Rules

5.4.3 Model Storming

Scott Ambler called Model Storming in [4] as just in time modeling. The basic idea

behind this is to solve problems by spontaneously forming a team of team members who

can help. The author points to work techniques from Extreme Programming (XP), such

as Stand-up design sessions [54]. However, the emphasis is on drawing models as

sketches on paper or whiteboards. The work technology therefore derives its advantage

from the simplicity and spontaneous changeability during the discussion. In this way not

only models, but also screen sketches or handwritten CRC cards are created. Thus, the

results of this working technique are not to be processed in machine form. Subsequent

transfer of the sketches into actual models seems to contradict the agile approach. For this

reason, from the point of view of model-driven development, this technology is either not

applicable or difficult to apply.

5.4.4 Just Barely Good Enough

Behind the "Just barely good enough" principle or JBGE is the statement that one should

avoid unnecessarily much effort to invest a partial result or artefact, which in a simple

form already fully fulfills its purpose. This does not mean that quality is lost. The focus

is on delivering precisely the required quality and scope as required - but not more. Agile

modeling is often sketched by hand, as this is often sufficient for communication and

discussion of the facts. From the point of view of model-driven software development,

PhD Thesis 103

however, the principle is also applicable and can be specifically related to the extent and

scope of the DSL. This should be able to describe the necessary facts of a problem

solution, but it should not be possible. In practice it is often observed (see chapter 4) that

domain-specific languages are frequently overloaded with additional features (such as

additional tagged values), which are not related to the problem itself. They usually

provide technical information for a simpler model-to-code transformation, but they

violate a fundamental principle: separation of concerns [32] or the single-responsible

principle [66]).

Artefacts: Metamodel, DSL

Project Phase: Initial Phase

Dependencies: Transformation Rules, Business Model

5.4.5 Iteration Modelling

Iteration modeling goes hand in hand with the principle of Just Barely Good Enough (see

5.4.4). At the beginning of each iteration, a model sketch should be created, for example

the definition of a data structure or the sketch of a screen. The model helps to describe

the complexity and scope of the iteration. As a time frame for an iteration, a typical time

span of two weeks is given for agile methods. The model must be sufficiently precise, so

that the effort can be estimated and the work planned (JBGE). Iteration modeling is

therefore a technique to support the effort and therefore interesting for the project

planning, but not for the concrete creation of the artefacts in the model-driven

development.

PhD Thesis 104

5.4.6 Multiple Models

In the case of multiple models, the basic assumption is that the knowledge of various

modeling techniques and diagram forms is necessary for effective and meaningful

modeling. The modeling by means of different diagram forms enables the representation

of a situation from different perspectives (Views) and at different levels of abstraction.

As a result, different stakeholders can be addressed and issues can be made more

comprehensible and understandable.

However, using different modeling techniques is not easy. There are simply too many

different diagram types. The UML alone has 13 diagram types, and Scott Ambler lists 42

different diagram forms on agilemodeling.com2.

There are two aspects to the model-driven development: For the Domain Architect, who

designs the DSL, it is important to know which diagrams best describe the problem

domain. The Domain Architect must decide on which basis the DSL is developed. For

this, a deep knowledge of the individual modeling languages is necessary. For the user of

the DSL, the Business Analyst, it is really only important that this person knows the

language means used in the DSL and can use them correctly.

Multiple models makes it possible to describe different views with the correct language

means. This is not only useful in the model-driven development, but in general.

Artefacts: Metamodel, DSL

Project Phase: Initial Phase, Development Phase

Dependencies: Business Model

2 http://agilemodeling.com/artefacts/ (checked on 01/12/2016)

PhD Thesis 105

5.4.7 Document Continuously

The goal of any agile method is to have a potentially deliverable or even applicable

product at the end of each iteration. Of course, this documentation also includes a

documentation of this product. In traditional process models, a large part of the

documentation is produced at the beginning of the project in the form of a project plan, a

detailed requirement analysis or a design. After that, the documentation is stopped and is

supplemented by support documents or user manuals only towards the end of the project.

Fig. 28: Document Continuously 3

In agile process models, the documentation is not always in the foreground. In the agile

Manifesto [2], working software is preferred to extensive documentation. Therefore, the

scope of the necessary documentation is discussed in [4] and [82]. This includes all

documents relevant to the stakeholders as the addressees of the delivery. These are

therefore less specification documents (or models), but rather user manuals, deployment,

and system documentation. These documents are best prepared in the following iteration

(for short iteration cycles) or within the iteration (for long iteration cycles) [82].

3 http://www.agilemodeling.com/principles.htm (checked on 10/09/2015)

PhD Thesis 106

For the model-driven development, the question arises as to which documentation can be

created and delivered based on the models. The application architecture responds to this.

It depends on which artefacts are relevant for the delivery of a functioning and installable

software. In addition, all models that describe interaction scenarios with the application

system to be created are of interest to users, and thus provide the stakeholders with an

idea of the scenarios that have already been implemented. This can be useful in the context

of early quality assurance.

Artefacts: Application Architecture, Business Model

Project Phase: Development Phase

Dependencies: -

5.4.8 Some other Practices

In addition to the above-mentioned practices from agile modeling, there are other working

techniques from the agile context that can be used for an application in the context of an

agile model-driven development. These include:

• User Stories: User Stories [27] are software requirements formulated in everyday

language. They should be deliberately kept tight and formulate their statement

with a maximum of two sentences. Similar to use cases, user stories represent the

requirement in the language of the user and thus offer a good starting point for the

modeling. In agile modeling, a user story could face a corresponding, scarce

model.

PhD Thesis 107

• User Story Mapping: The Story Map [76] is a workflow that allows users to

graphically represent the user's successive activities in a graphical overview. In

addition to this, the customer stories, epics etc. up to the individual user stories

are displayed vertically. This representation can also contain a corresponding

simple model.

• Reviews and Retrospectives: In many agile action models (such as Scrum),

reviews and retrospectives are performed at the end of an iteration (in Scrum

Sprint). Reviews are used to present the results of an iteration and thus the quality

assurance of the content. Retrospectives consider the procedure, the observance

of the process and the teamwork and are to contribute to the process improvement.

Both techniques should also be part of the agile model-driven development.

This list of agile working techniques can be continued for a long time, and in addition to

the theoretical approaches, some additional working techniques have developed. Usually

as a result of an adaptation of existing approaches to an individual development process.

PhD Thesis 108

5.5 The Appropriate Agile Development Process

Comparable to the evaluation of agile techniques in terms of their suitability for model-

driven development processes must also be a review of the existing agile process models.

Finally, if a development process should be defined to support model-driven development

(e.g. the ODAC process) with agile methods, the following must be certain: On one hand

must be known, which agile processes in their orientation are close to the model-driven

development processes. And secondly, to what extent they are suitable with their process

flow and how they cover the requirements.

A starting point for the determination of relevant agile processes is the selection in section

3.3, which is based on a study [78]. Here agile processes have been identified that meet

the needs of model-driven projects most likely because they have their priorities in

modelling, requirements management and system design. Based on this selection are

sufficiently information available, to define a suitable process for MDD, or to identify

single process elements for the integration in an existing MDD process (i.e. the ODAC

process).

A further starting point for the selection of an agile method as the basis for the definition

of an agile model-driven process can be the study "Status Quo Agile" [62] of the

University of Applied Sciences Koblenz, in which more than 1,000 international

participants were surveyed on the use, spread and success of agile methods used. The

results can be summarized as follows:

PhD Thesis 109

• Mixed form or pure form: The majority of users of agile methods use these only

selectively or in a mixed form. The consistent use of agile methods is only the

case for approx. 25% of users.

Fig. 29: Important Agile Methods [62]

• Scrum is the leading agile method: Scrum is the most widely used agile method

and is applied by 86% of respondents. Then follow Kanban, XP and Feature

Driven Development. This can also be projected on the applied agile techniques.

85% of the seven most common techniques come from the scrum environment

and nearly 70% of the 22 specifically requested techniques were used by at least

70% of the users. And also in the assessment of the successes, Scrum is rated

better in each sub criterion than other methods.

PhD Thesis 110

The study also contains figures on the size of the project teams or the typical iteration

duration.

• The typical team size is given by 5-9 people. Interestingly, this is also the most

common team size for classical users.

• The duration of a sprint is specified by 2/3 of the respondents with a maximum of

three weeks.

Overall, the success rate of agile methods is assessed more positively than the classical

methods. Thus, agile methods are also better evaluated in partial criteria such as "quality

of results", "employee motivation", "efficiency" or "adherence to schedules". Only 6% of

users of agile methods and 10% of users of classical methods call agile project teams as

undisciplined.

For the definition of an agile model-driven process, it is therefore useful to reuse basic

concepts and structures from Scrum and thus to place the broad spread and the high degree

of recognition. Techniques from XP and Feature Driven Development can certainly be

considered, since these are also mentioned among the most frequently used agile methods.

5.6 The Meaning of Architecture in Agile Projects

In model-driven projects, defining the architecture of the target system is an important

step in the development of the Domain Architecture. The architecture of the target system

is the basis for the derivation of the transformation rules. This determines how a model

element is transferred to a target architecture-compliant implementation in source code.

Due to this great relevance of the architecture for the model-driven development will be

PhD Thesis 111

often spoken of an architecture-centric approach [91]. Therefore, in the context of this

research is to clarify, which significance the term "architecture" has in an agile

environment. And also, what best practices have proven successful for the development

of architecture.

In their daily work IT professionals often use the term “architecture”. As part of the

development of software solutions they paint graphics for different levels or views with

boxes and arrows, and call the result “architecture”. In daily practice, the message of the

graphics is often intuitively clear and describes closely the necessary information for the

development. From the perspective of quality in a project, you are mostly on the safe side.

But if it comes to concrete quantitative efficiency of the approach in the development,

there is the question of how much architecture has to be meaningfully defined. How much

architectural specifications should be given to the development team, so they do not build

something, which must be fundamental rebuilt at the end with high effort? Which part of

the architecture can be omitted, since it is so trivial either that it will be built in any case

like this, or because it limits the creativity and ultimately the effectiveness of the

developers? How important is the definition of an architecture in the agile development

process, and how much can be left to the self-organizing team?

5.6.1 Architecture - a Definition

In this context, it is important to have a clear definition of architecture. But due to the

lack of clear terms in this discussion, terms such as "architectural style" or "reference

architecture" will appear. In contrast, the definition of the term "architecture" should be

defined much more sharply. For this should be considered once, how to use the term

"architecture" in the construction industry. In this context architecture describes the use

PhD Thesis 112

of certain types of components as well as a certain way to use these components.

Transferring these considerations to the domain of the software systems the following

definition of architecture can be deducted:

Architecture describes the basic organization of a system by the kinds of its components

and the kinds of relationships between these components, or the way in which they

interact together. The definition of the architecture includes hence the design principles

of the system.

What do the terms component and relationship mean in this context?

• The term "component" refers to part of a system in terms of general systems

theory. A system consists of parts - and these are called components. The whole

system is described, if, firstly, its components are described with their properties

and, secondly, the relationships in which they are related.

• “Relationships” between components can be interpreted more generally. It's not

just about the static relationships but also about dynamically changing

relationships and the dynamics of the overall system as well as the interaction

between components.

By this definition, architecture describes getting a whole class of systems and never a

single system. Moreover, by this definition, the architecture of a system is clearly

delineated from the design of a system. In architecture only the types of components are

of interest. In contrast, in design each component and possibly also their internal structure

and specific behaviour are of interest. This is referred often as detailed design or

PhD Thesis 113

component design. To verify this interpretation, the following IT architectures are

classified and defined:

• SOA: The acronym stands for service-oriented architecture. The popular

definitions do not argue about types of components and relationships and are

correspondingly uncertain. In [37] the SOA-term is defined as follows: “The types

of components are those which can be identified on the basis of the services of the

business and business strategy, and the way of interaction is the "appropriate

loose coupling”.

• Web service architecture: The types of components are service requestor, service

provider and service registry. The way of the interaction is based on the pattern of

"publish, find and bind".

• Model-View-Controller: The component types are model, view and controller.

The kind of interaction is: controller to model and model to view, with the latter

one usually follows the observer pattern.

• Web application: The types of components are client components on the basis of

web browsers and server components based on web- or application servers. The

interaction happens directly or indirectly via HTTP.

These examples show that the definition of architecture in the domain of software systems

seems to fit very well.

PhD Thesis 114

5.6.2 The Difference between Architecture and Design

An important issue for the benefit of this architecture definition is due to the clear

distinction between architecture and design. A well-made design of a software system

results in particular from business functionality – these are the functional requirements.

An adequate breakdown of the functionality can be found in the ideal case 1:1 in the

structure of the system back to its individual components. And also the internal structure

and the specific behaviour of the components are determined by the particular functional

requirements. However, the architecture of a software system is derived from the non-

functional requirements. The defined types of components primarily result from the

requirement for long-term maintainability, extensibility and modifiability of the software.

This relationship to non-functional requirements can also be shown using the examples

above. In an SOA, for example, the non-functional requirement is the alignment of IT

with the business and the opportunity for flexible adaptation to changing business

processes. And a web application follows the non-functional requirement of replacement

of software distribution.

Software architecture is therefore ideal when the amount of all prioritized or weighted

non-functional requirements are optimally met. Ultimately, this is always a plan-specific

and adequate trade-off. A very similar approach is also the base of methods such as

ATAM (Architecture Trade-off Analysis Method) of the Software Engineering Institute

[87]. The architecture development should consider all potentially conflicting non-

functional requirements explicitly, and considering the trade-offs strive for the optimum.

These trade-offs are different in each concrete development project, and for the necessary

decisions an architect needs a lot of experience. These considerations lead now with

regard to the development efficiency on to three key statements and best practices:

PhD Thesis 115

• Define architecture in advance

• Architect should be a team member

• Tailor the reference architectures

Below these three best practices are considered in more detail.

5.6.3 Agile Best Practices for Architecture

5.6.3.1 Define Architecture in Advance

An iterative approach often proves to be the best way to precisely record requirements. It

does not attempt to understand in advance all the requirements and to create a complete

specification or a detailed design of the system. Instead, only parts are recorded accurately

and then implemented directly into software. The existing software helps the stakeholders

to describe the requirements for the system in the next iteration better. In sum, this

approach is often efficient.

However, it is different for non-functional requirements. The experience shows that it is

most efficient to get this understanding as well as possible in advance. Learning about the

non-functional requirements in iterations is only in exceptional cases a good approach.

And then the iterations usually have the character of prototypes for architectural

evaluation. Mostly, it is much more efficient, to analyse the non-functional requirements

in advance and to identify the trade-off and to derive the architecture from it. This is

especially true because the architecture defines the types of components and any change

or extension of the architecture may lead to extensive renovation of all previously

developed specific components. From experience, this is rarely effective. In this sense,

this understanding of architecture also covered by the definition of Grady Booch: “All

PhD Thesis 116

architecture is design but not all design is architecture. Architecture represents the

significant design decisions that shape a system, where significant is measured by cost of

change.” [16]

Also for agile - and just for efficient projects is therefore the logical claim: To develop

the architecture of the software system in advance as far as possible and not in the context

of iterations.

But this sounds like a contradiction to the agile approach. Finally, the agile manifesto [2]

emphasizes, "The best architectures, requirements and designs are of self-organizing

teams". In established agile process models like Scrum [86], this means a development

within the iterations. With the sharper definition of architecture from above, this is not

longer true. Even if still some improvements to the architecture are possible, the essence

should be pre-thought, especially in the light of the above considerations about efficiency

and to avoid refactoring [39] in the agile process. The design, however, may and should

develop iteratively - emergent design, as part of agile software development, is not a

contradiction to the advancement of the architecture definition. This advancement of the

architecture definition can be used with popular iterative approaches - be it through a

preceding basic concept for the system in a controlled, incremental approach or a

sufficiently extensive envisioning phase in the Scrum project. In no case there is an anti-

pattern.

5.6.3.2 Architect Should Be a Team Member

It is important to separate the basic procedure in the development of architecture, design

and implementation intellectually from the distribution of tasks and roles in the project

PhD Thesis 117

team. In Scrum, for example, the development in sprints takes place, carried out by the

self-organizing team.

It has already been established that the architecture definition should be performed before

the iterations. In addition, the question arises to what extent the support of an experienced

architect for the efficient implementation of the architecture is required. In Scrum, for

example, there is no such role. In Scrum, the self-organizing team is responsible for all

content-related tasks, in keeping with the previously cited quote from the agile manifesto.

The above explanations, however, show clearly that the architecture definition is an

essential phase, defining the success of the project, and that due to the inherent complexity

of the trade-offs an extensive experience is required.

Hence for agile and especially for efficient projects it is imperative: Make sure you have

a designated architect in your team.

Whether this architect now gets the explicit role as "chief architect" and thus explicitly

the corresponding responsibility or whether the architect act as "primus inter pares" in the

self-organizing team and does the job because of his experience, depends on further

project characteristics.

5.6.3.3 Tailor the Reference Architectures

Reference architectures are given architectures, where you can be guided by the

architecture definition in a concrete case. It is ideal in terms of efficiency when the target

architecture can be composed largely of reference architectures, while each reference

architecture can be reused easily without any other changes. Experience has shown that

PhD Thesis 118

this is rarely possible. Reason here is again the call for the architecture in terms of a

reasonable trade-off.

An example: A high degree of decoupling and abstraction is needed especially when long-

term maintainability, extensibility and modifiability have clearly the highest priority. This

prioritization is often not questioned, but the given reference architecture is used

unreflective. At the end, the development effort is high, and the developers are talking

about over-engineering, because there were obviously competing demands. Without

reference architectures software development is not efficient, but without the appropriate

suitable cut also.

Therefore, for agile and especially for efficient projects applies: Work with reference

architectures, but make sure they are in accordance with the trade-off considerations

appropriately tailored.

For this, the following applies: Not using a reference architecture is still better than using

a reference architecture that does not fit to the non-functional requirements. This also

applies in principle to widespread reference architectures that have meaning in an agile

environment. In fact, constellations are thinkable, in which a system explicitly should not

be built according to a reference architecture. But above all, many constellations are

possible, in which the reference architecture should be tailored to a lightweight

architecture. For example, this can be done by simplifying the user interface without

complicated dialogue structures, or, by not using interfaces or transport objects for

decoupling, unless the implementation does not need to be replaced. When tailoring the

reference architecture to the concrete architecture, the selected technology often plays an

essential role. Many abstraction mechanisms are not often needed when a homogeneous

PhD Thesis 119

and modern technology, such as JEE5, can be used. A good example is the very simple

software architecture in [15]. When using of JEE5 and under the simplifying assumption

that the system solution may be mixed with the technology, a particular architecture can

be selected, which differs in the complexity of the reference architecture by factors. It is

obvious that less complex architectures for the team that is working on this basis can be

particularly effective. If the tailoring of the reference architecture is adequate, the

reference architectures significantly contribute to increasing the efficiency of software

development.

5.7 Known Limitations

If agile techniques should be used in MDD projects, this has the consequence that also

must be thought about the impact of agile techniques on the Domain Architecture. One

the one hand it is possible to establish agile techniques in the phase of application

development. As a reaction on changed functional requirements, platform independent

models (PIMs) can be refactored like source code in conventional agile projects. But if

there are new findings that affect the Domain Architecture (e.g. the metamodel), this will

lead to accordant adjustments of the affected part of the Domain Architecture and all

dependent artefacts.

Changes on non-functional requirements also have a strong impact on the Domain

Architecture. But especially in agile process models there is the interest to identify and

implement the requirements in several short iterations (e.g. Sprints in Scrum). Changes

are welcome and the project reacts to this by refactoring the already developed artefacts.

On the other hand, the early provision of results is a core postulation of agile processes.

If a project team would like to deliver results as soon as possible, they can’t wait until the

development of the Domain Architecture is completed.

PhD Thesis 120

Therefore, it is an essential requirement to dovetail the two phases "development of the

Domain Architecture" and "application development" in a way that they can be developed

iteratively and incrementally, and the early delivery of parts of the application is made

possible. Therefore must be determined that certain artefacts are created early on. This

primarily includes the layout of the application architecture (see section 5.6).

5.8 Summary

As has been shown, the development processes in the model-driven development are

essentially divided into two phases: a preparatory or initial phase as well as the subsequent

real development. In the individual process steps within these phases, numerous roles are

involved, which in turn influence the development of the DSL, but will also be involved

in the application development on the other hand. Also, numerous artefacts are to be

made, such as e.g. the reference implementation. This does not seem necessary at first

sight, but ultimately it will ensure the quality of the model transformation into source

code [17][91].

To achieve the above objective of an efficient model-driven development, the boundary

conditions must be set for the definition of a development process, and also what kind of

software development project should be considered.

Sommerville [89] judges about model-driven development that the use makes sense only

if there are large, long-living systems, where requirement changes for the target platform

is very likely during their lifetime. This is typical for business applications in the banking

and insurance sector, although the desire for faster introduction of new software and a

significant shortening of the software life cycle can be seen too. For this reason, even in

PhD Thesis 121

the selection of case studies, projects in the field of insurance applications were chosen.

For further consideration within this research project, therefore, the focus is on the model-

driven development of business applications in this area, which also possess the following

characteristics:

• The considered projects are development projects of typical business applications.

They are individually developed for the customer and the time frame is between 8 and

24 month. The team size ranges between 5 and 10 employees. So the necessary effort

will be between 40 and 240 man-month.

• The application is typically distributed, component-based, multi-layered and based on

a standard framework like JEE or a comparable technology.

• The application is developed new and isn’t an extension of an existing application.

Having already identified possible components of a process model, there is now also a

focus on a certain type of application system, on whose development a possible process

should be oriented.

In addition, in this chapter, agile methods and techniques were first examined for their

suitability for an agile model-driven process. The focus was on different agile modeling

techniques. Some of these techniques can be interpreted in the sense of an agile MDD

development or transferred to a corresponding procedure. This includes, for example,

"Assume Simplicity / Simple Design", which must be considered both in the development

of the Domain Architecture (ie in the initial phase in the metamodel) and in the later

development phase. Especially in the complex environment of a model-driven

development, the simplicity and manageability of a DSL is of great importance. And even

PhD Thesis 122

simple business models, which model concrete professional statements, can be interpreted

as "user stories".

Another fundamental question is whether and on which agile method a possible process

for the agile model-driven development should be based. Establishing an existing method

is common practice. According to the study by the University of Applied Sciences

Konstanz, agile methods are frequently adapted, and individual agile practices are also

often used in mixed use. With Scrum as a possible basis, a candidate is given, which

according to the study is the most widespread in practice and the most widely accepted.

This also offers the opportunity for a new process to enable the developers to familiarize

themselves quickly with familiar concepts. If concepts from Kanban or Feature Driven

Development are required, this is also possible due to the high level of recognition.

The architecture of a future application is one of the foundations, especially in the model-

driven development. From this, the mapping of the domain-specific language to the

generated source code depends on the defined transformations. However, the importance

and positioning of architecture in agile projects is often different. For this reason, a

definition of architecture was made under the perspective of agile projects and individual

agile best practices for architectural development were presented.

Thus, besides the properties of model-driven projects, agile methods and practices have

also been considered for modeling. This is now the basis for the development of the Agile

Model-Driven Method (AMDM), which is described below.

PhD Thesis 123

6 The Agile Model-Driven Method: AMDM

As learned in the studies of Asadi and Ramsin [7] and Chitforoush et al. [21], the existing

methodologies for MDD projects are incomplete and their description is imprecise.

Essentially they are based on traditional development processes, and also the process

framework by Chitforoush or the development lifecycle of Asadi and Ramsin do not

regard agile aspects. Other approaches like [5] focus on the use of models in agile

methods, but they do not consider MDD.

Therefore, it is now the goal to develop an adapted process model for model-driven

development projects from the results of the previous steps, which takes up elements of

agile process models and uses appropriate agile techniques, i. e. adapted to the context of

model-driven development. The process model is designed to support the model-driven

development of business applications as described in chapter 1.2. As already mentioned

in chapter 5, the existing MDD processes and their structure are a possible starting point

for a new agile MDD process model, the Agile Model-Driven Method (AMDM). The

identified elements of the process models and the selection of appropriate agile techniques

for generating artefacts from model-driven projects provide the basis for optimization and

adaptation.

PhD Thesis 124

6.1 Requirements and Constraints

The Agile Model-Driven Method (AMDM) organizes the development process into

different structured phases and assigns suitable methods and agile working techniques to

them. AMDM presents the tasks and activities required in the development process in a

logical order. For this reason, AMDM is not only a process but can also be described as

a methodology.

The approach is focused on the individual development of business applications that take

between 8 months and 2 years to develop. The architecture of these applications is

typically distributed, component-based, multi-layered, and based on a standard

framework such as JEE or similar technology. Other frameworks (e. g. for persistence or

UI) are also used. This type of application is comparable to the applications from the case

studies in Chapter 4.

The aim is to develop business applications using model-driven development and to

generate the source code automatically, thereby achieving higher code quality and

increased efficiency. In addition, agile working techniques should be used and the process

should be based on well known, established agile process models.

In this case, the typical steps of model-driven development, starting with the development

of the Domain Architecture and the subsequent application development, will not take

place successively but iteratively and incrementally. The aim is to deliver valuable

intermediate results at short intervals.

PhD Thesis 125

6.2 Findings from the Studies

For the development of a new process model for agile model-driven development, the

findings from previous research in this thesis will be used. This relates to the basics of

model-driven software development from chapter 2. On the one hand, there are now

findings about essential artefacts that have to be created in this context as an important

infrastructure for development. These are primarily summarized under the term "Domain

Architecture" (cf. Chapter 2.2.3). In addition to the tooling platform, these include

important elements such as a metamodel for describing the domain-specific language

(DSL), the transformation rules for model-to-code transformation, etc.

In addition, existing process models for model-driven development provide insights on

the essential phases and activities of model-driven development. The methods ODAC (cf.

Chapter 2.3.1), MASTER (cf. Chapter 2.3.2) and DREAM (cf. Chapter 2.3.3), which are

mainly used in the scientific environment, are hardly applied in practice and cannot be

classified as agile process models. Nevertheless, they provide important information for

AMDM via common phases, work steps and generated artefacts.

In addition, the criticism of model-driven development, e.g. by Heijstek and Chaudron

[49], shows that, for example, model-to-code transformation is to be regarded as an

additional application in development. By providing this application and the necessary

infrastructure, additional activities, a higher complexity and a high initial effort

necessarily arise (cf. Chapter 2.4.1 and Fig. 5). This is not reflected in the investigated

process models. The authors Asadi and Ramsin [7] also share this opinion in their review

of model-driven development processes. AMDM integrates these working steps with

regard to the infrastructure and reduces complexity and initial effort through an iterative

approach. These challenges and points of criticism can also be verified by the case studies,

PhD Thesis 126

which originate from projects in the author's working environment as well as from other

case studies in industry (cf. Chapter 4). These include, for example, the high initial effort,

complexity and effects of changes.

Chapter 3 has provided insights into what working techniques exist for modeling from an

agile point of view. From existing approaches such as Feature-Driven Development,

concepts are integrated into AMDM. AMDD by Scott Ambler describes short modelling

cycles and working techniques such as Model Storming, Iterative Modelling or Initial

Architecture Modelling (see chapter 3.4.1). The MIDAS framework is based on

continuous integration and different viewpoints (see Chapter 3.4.2). In addition, it was

worked out that AMDM must create the possibility to react to changes in both technical

requirements and business requirements (see Chapter 3.5, Fig. 14). AMDM takes this into

account by introducing different sprint types and parallel development branches.

In order to create a basis for the definition of AMDM, Chapter 5 first of all worked out

the commonalities of the examined process models for model-driven development and

described them using metamodels. These include the different project phases (cf. Chapter

5.3.1), artefacts to be created (cf. Chapter 5.3.2) and the roles of the necessary team

members (cf. Chapter 5.3.3). In addition, agile working techniques for modelling were

considered in Chapter 5.4. It was shown for which phases these working techniques are

suitable, which artefacts are affected and which dependencies exist. Finally, chapter 5.5

stated that the agile procedure model Scrum should serve as a starting point for AMDM,

since it is best known in practice (cf. Fig. 29).

PhD Thesis 127

Finally, the concept of architecture is considered under the aspect of agile development

(cf. Chapter 5.6), because architecture is an essential building block in model-driven

development.

These findings and definitions from chapters 2 to 5 now form the essential basis for the

further definition of the Agile Model-Driven Method (AMDM).

In the following chapter, the necessary definitions of terms are made before the essential

concepts and their implementation in AMDM are described.

6.3 Definitions

For a better understanding, the following terms are defined from the context of agile and

model-driven development and their meaning in the context of AMDM.

6.3.1 Team and Role

The team includes all employees who are involved in the development of the application

system. Depending on their qualifications, they assume a role in the development process

and thus take responsibility for creating and editing artefacts (documents, models, source

code).

6.3.2 Backlog

Backlog is a term from the agile Scrum process model (cf. [28] and [85]]) and describes

an ordered listing of the requirements for the software to be created. The requirements

can be functional and non-functional. During the development of the project, the backlog

entries are continuously reduced. Backlog entries are grouped, prioritized and estimated

PhD Thesis 128

for their workload. A backlog is usually broken down into smaller groups of backlog

entries, which are then processed together in an iteration.

6.3.3 Iteration

An iteration describes a repetition of similar or comparable work with the aim of solving

a problem step by step. The iteration is limited in time and content. In the agile procedure

model Scrum, an iteration is called a sprint. AMDM distinguishes between iterations in

Initial Sprint, Domain Sprint and Value Sprint.

6.3.4 Architecture

6.3.4.1 Software Architecture

The software architecture describes the basic structure of a software system, its

components and their properties and interdependencies [23][89]. Definitions of the

software architecture refer to the entire software system and define the basic design of the

software. During the definition of the software architecture, decisions are made regarding

the technology used, such as programming languages, frameworks, databases, etc. Non-

functional requirements are usually the basis for decision-making for structure and

technology decisions.

6.3.4.2 Domain Architecture

In the context of model-driven software development, Domain Architecture (cf. [91] and

chapter 2.2.3) means all the artefacts needed to describe a domain-specific language and

convert it into source code or other artefacts. This includes, in particular, the metamodel

with the definition of the language elements, the transformation rules for generating the

source code and the programming model into which the transformation is to be carried

PhD Thesis 129

out. The latter is derived from the selected application architecture. In a broader sense,

the Domain Architecture also includes tools for transformation, model and DSL editors,

reference models and reference implementations.

6.3.5 Domain-specific Language (DSL) and Metamodel

A domain-specific language is a modeling language that describes the properties of a

particular problem domain. UML-based domain-specific languages extend the language

scope of the UML modeling language by providing the necessary language properties for

the problem domain. Basis is the metamodel of UML. Extensions of UML to domain-

specific language elements are referred to as UML profiles in accordance with UML.

Fig. 30: UML, Meta-meta-Models and Profiles4

4 http://www.uml-diagrams.org/uml-meta-models.html (checked 15/8/2015)

PhD Thesis 130

6.3.6 Transformation and Transformation Rules

In model-driven software development, transformation always takes place on the basis of

a metamodel and transfers a source model to a target model. Transformations can be

model-to-model transformations (M2M) or model-to-code transformations (M2C).

Transformation rules describe the type of transformation and are always based on the

constructs of the domain-specific language (defined by the corresponding metamodel).

Model-to-code transformations are usually performed by code generators.

6.4 Basic Concepts

The terms defined in the previous chapter have to be interpreted and defined for the Agile

Model-Driven Method. In addition, there are different working techniques from agile

action models such as Scrum, XP and others that have to be transferred into this context.

An example of this is the role of the Product Owner in Scrum and its significance for the

Agile Model-Driven Method.

6.4.1 Teamwork

Teamwork and communication are at the forefront of all agile action models. At AMDM,

too, the team as a group of people has a task to fulfil together. The team is

interdisciplinary. Each team member has its own know-how and contributes to the success

of the project. In AMDM, the team is divided into three main groups:

• The first group knows and understands the functional requirements of the

business application. On the one hand, there is the typical Product Owner, who

represents the customer's point of view in the project, identifies and prioritizes

PhD Thesis 131

the requirements. In addition, there are also project staff members who model the

problems using the domain-specific language.

• The second group defines the architecture of the application and the Domain

Architecture for model-driven development. It defines the domain-specific

language formally using metamodeling and creates the necessary rules for model-

to-code transformations.

• The third group is the group of Application Developers who manually add non-

generated functionality to the generated source code according to the architecture

specifications.

If you are a larger team, it is advisable to create an intermediary between the groups to

promote and control communication. In [34], Eckstein described how to deal with large

and distributed teams and described this role as a possible improvement in

communication.

Fig. 31: Team Structure in AMDM

PhD Thesis 132

An important task for the team is to establish rules for development and cooperation in

the project in terms of self-organization. These rules should be simple and serve as

"guidelines" for decisions or quality control. Examples of such rules are, for example, the

SOLID principles5 of Robert C. Martin or guidelines for an emergent design of

architecture.

In order to constantly improve the cooperation and the results, reviews and retrospectives

must be scheduled at regular intervals. While a review is based on quality assurance of

work results, the retrospective focuses on improving cooperation and process

improvement. This is common in Scrum projects at the end of each sprint and is also

available here[28]. With this review, the team can check compliance with its self-defined

rules and quality criteria and react accordingly.

6.4.2 Evolutionary Software Architecture

The software architecture is at the center of model-driven development. ISO 42010-2011

defines software architecture as "fundamental concepts or characteristics of a system in

its environment that are embodied in its elements, relationships and principles of its

design and evolution". It thus defines the scope for the development of structures and

connections of the individual components. In AMDM, the software architecture is

developed evolutionarily. This is in contrast to the usual model-driven development,

where the architecture has to be fixed in large parts at the beginning. It starts with the

creation of a "big picture": It is a first structuring of the software architecture with regard

to

5 http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod (checked on 21/10/2016)

PhD Thesis 133

• the distribution of components,

• layer separation,

• the identification of services / components,

• the definition of infrastructure and used frameworks.

During the creation of the "big picture", the non-functional requirements and acceptance

criteria named in the backlog are taken into account. Examples for this are:

• Scalability and performance

• Reliability

• Usability

• Portability

• Maintainability, etc.

In addition, there may also be additional restrictions that affect the software architecture

(e. g. technology specifications, coding conventions, organizational forms, deadlines).

Despite all these influences, the "big picture" is deliberately kept simple. The goal of the

"big picture" is to give the entire team an impression of the structure of the system and

thus promote an understanding of the entire architecture. Therefore, the involvement of

all developers in defining this "big picture" is essential. This also corresponds to the agile

principle of "architecture envisioning" (see chapter 5.4.2), in which the definition of

architecture is initially based on a high level of abstraction and is discussed with the team.

In addition, an initial implementation is carried out on this basis and a so-called "walking

skeleton" is created. This walking skeleton is used to check the specified specifications

and also serves as a template for defining model-to-code transformations. In addition, the

PhD Thesis 134

necessary infrastructure can be built on this basis. This shows how important it is to

promote a common understanding of the chosen software architecture.

Fig. 32: Joint Development of Architecture (“Big Picture”)

Based on the coarse structure, the architecture is further refined in project progress based

on feedback from development. Structural changes or code improvements are

implemented. When it comes to the question of the order of architectural decisions, it is

a good strategy to implement them "along" the stratification of architecture and the given

dependencies. However, necessary architectural decisions should always be made at the

last possible moment and therefore very late, when more knowledge and experience from

development is available. As a result, sufficient architectural specifications and

definitions are defined at all times in the project, thus adhering to the JBGE principle (see

5.4.4). At the same time, the rule "Assume simplicity" or "Simple design" (see 5.4.1)

ensures that the architecture meets the requirements and remains comprehensible for the

team.

PhD Thesis 135

6.4.3 Backlog Content

Compared to non-model-driven development, the non-functional content is more

pronounced in the backlog of AMDM. This is due to the increasing importance of

software architecture in AMDM. Basically, these non-functional requirements also

influence the application in normal agile projects. In practice, however, they are often

neglected in the backlog. Basic contents of the backlogs are:

• Functional requirements in the form of user stories

• Acceptance criteria and constraints (non-functional requirements)

• Non-functional requirements in the form of acceptance criteria, constraints and

other quality characteristics

• Spikes6 (Experiments to clarify technical questions, design options and to reduce

technical risks)

6.4.4 Modellling Language (DSL)

For the development of the domain-specific language, it is important to structure the

problem domain first and divide it into smaller, more controllable sub-problems by

partitioning. These are easier to describe because they consist of fewer elements. This has

a positive effect on the complexity of the domain-specific language and its manageability.

Another good approach to structuring the problem domain is to focus on the affected

objects, events, participants and locations. The domain-neutral component model

according to Peter Coad et al. [24], assigns the typical elements (classes) of a problem

6 http://agiledictionary.com/209/spike/ (checked on 06/10/2016)

PhD Thesis 136

domain to four categories (archetypes). Models that are designed based on the domain-

neutral component model are similar in structure and therefore easy to understand. This

assignment can also be referred to as a variant of analysis patterns (cf. [38]), which can

also help to describe a problem domain.

Fig. 33: Class Archetypes and Typical Associations [24]

When defining the language scope of the domain-specific language, it is important to

ensure that the vocabulary of the problem domain is not mixed with technical aspects. In

model-driven projects (see chapter 4) it is often observed that information for simple

transformation control is also recorded as tagged values in the language. This

automatically results in a dependency of the domain-specific language on these technical

properties. In this way, technical and technical contents are mixed and modeled. This

disturbs the design principle of the SoC (Separation of Concerns) and leads to the business

PhD Thesis 137

model being affected by technical changes. This leads to further problems in the further

development and maintenance of DSL and transformation rules and also restricts the

independent reuse of the business model.

6.4.5 Modelling in the Development Process

In existing agile process models such as Scrum, Kanban or XP, modeling is used less

rather than more. Modeling is understood here more as a means of communication and

understanding about the technical conditions or as a sketch for the discussion of solution

concepts. This is also the opinion of Scott Ambler in [4], and the author recommends

working methods such as "Model Storming" and "Iteration Modeling" (see sections 5.4.3

and 5.4.5). In Feature-Driven Development (FDD), modeling is explicitly anchored in the

process, but is also understood as a means of communication in the development team,

and there is also no provision for automatic processing of model information.

This is fundamentally different in the context of model-driven development and AMDM

depends on the models as a basis for transformation into source code (and possibly other

artefacts). Therefore, creating a business model using the domain-specific language is

part of every iteration. This model is based on a user story, the corresponding source code

is generated and the necessary additions are programmed. Which diagram is used depends

on the facts to be described ("Multiple Models", cf. 5.4.6). If the domain-specific

language does not provide the necessary language elements (e. g. diagram form or model

elements), this user story and the associated model must be postponed, and the domain-

specific language must be extended first.

PhD Thesis 138

6.5 Implementation

This chapter explains the development process of AMDM. This includes, on the one

hand, the roles assumed by the team members and, on the other hand, the individual

process steps and the resulting artefacts.

6.5.1 Team Members and Roles

The agile team at AMDM is divided into the group of architects, business specialists

and Application Developers as described in 6.4.1. In addition, the persons responsible

for controlling the development process are determined.

6.5.1.1 Product Owner

The Product Owner is borrowed from the agile process model Scrum [85] and performs

the same tasks in this process. The Product Owner manages the backlog, sorts and

prioritizes the entries and communicates the content to the development team. The

grouping of the backlog entries follows the structure of the problem domain and is broken

down by the Product Owner together with the Business Analyst into subject-related and

jointly modelable units. The Product Owner determines the order in which the backlog

entries are implemented, and which will be implemented together in a sprint. It determines

whether further backlog entries are to be implemented functionally (see 6.5.3.3, Value

Sprint) and when the Domain Architecture must be extended or adapted (see 6.5.3.2,

Domain Sprint). The decision is made in consultation with the Application Architect.

PhD Thesis 139

6.5.1.2 Business Analyst

The Business Analyst knows the problem domain and defines the functional and non-

functional requirements in the backlog. It describes these first of all via user stories,

possibly anti-user stories, defines the boundary conditions and acceptance criteria. The

Business Analyst works closely with the Product Owner and structures the backlog based

on the structure of the problem domain and creates the individual domain backlogs (see

6.5.2.1).

In addition to formulating the requirements as text, the Business Analyst will work with

Application Developers to model the requirements using the domain-specific language.

In addition, the Business Analyst teaches Application Developers the necessary

knowledge to manually add the necessary business logic to the generated source code

6.5.1.3 Application Architect

Based on the known non-functional requirements, boundary conditions and acceptance

criteria, the Application Architect defines the appropriate software architecture. Together

with the Application Developers, the Application Architect defines the application

architecture and uses it to create a first minimal prototype - the "walking skeleton". The

Application Architect regularly reviews the result together with the Application

Developers in order to recognize the necessary changes to the architecture from the

experiences during development. Together with the Domain Developers this person

develops the transformation of the models into the source code.

PhD Thesis 140

6.5.1.4 Application Developer

The task of the Application Developers is the first implementation of the architecture as

a walking skeleton. And then, above all, the manual implementation of those functional

requirements that cannot be created automatically by the transformation / generation. To

this end, they work closely with Business Analysts with whom they also create the models

together.

6.5.1.5 Domain Architect

The Domain Architect defines the domain-specific language. For this purpose, this person

develops the necessary metamodel based on the metamodels of the selected diagram

types. The Domain Architect receives information from the Business Analyst who knows

the problem domain and the terms used to define the domain-specific language.

6.5.1.6 Domain Developer

The Domain Developer is able to describe the transformations based on the metamodels

and the software architecture. The Domain Developer defines the transformation rules for

transferring business models into the source code. The Domain Developer works together

with the Domain Architect and the Application Architect.

6.5.1.7 Process Lead

As compared to the Scrum Master (see [85]), the Process Lead is responsible for the

compliance with the process. It ensures that the communication between the individual

team members functions. For this purpose, the Process Lead calls up daily stand-up

meetings and is responsible for carrying out reviews and retrospectives at the end of a

PhD Thesis 141

sprint. At the same time, this person represents the team against the customer and the

management.

6.5.2 Artefacts

6.5.2.1 Backlog, Domain Backlog, Sprint Backlog

In AMDM there are three types of backlog, each of which is a subset of a parent backlog.

The starting point is the overall backlog, which contains all requirements for the software

to be created. Possible entries for the backlog are described in section 6.4.3. The Product

Owner is responsible for the content of the backlogs, and decides whether new entries are

added to the backlog and whether existing entries are adjusted.

The domain backlog represents a subset of the backlogs and summarizes all entries

belonging to a related subset of the problem domain. An example of this is the shopping

cart (sub-area) in the context of a web shop (problem domain). Another part of the same

problem domain would be the articles in the assortment, for example. All backlog entries

that can be assigned to such a subject-specific subarea are summarized in a domain

backlog.

The sprint backlog in itself largely corresponds to the comparable counterpart in Scrum

(cf. [85]) and contains all requirements to be implemented in the context of a value sprint

(see 6.5.3.3). The difference to the sprint backlog at Scrum is that the requirements in the

sprint backlog for AMDM originate from a domain backlog.

PhD Thesis 142

6.5.2.2 Software Architecture

The software architecture is developed evolutionarily in AMDM. Initially, it is designed

as a "big picture" taking into account non-functional requirements, boundary conditions

and acceptance criteria. This initial architecture is implemented in the form of a first

minimal prototype ("walking skeleton"). This helps to build up the necessary

infrastructure and minimize technical risks. The "walking skeleton" is created jointly by

Application Architects and developers in a team. This development in the team increases

the understanding and acceptance of the software architecture and leads to a common

understanding of the structure of the future system. At the same time, the designed

architecture is a prerequisite for Domain Developers to be able to define transformation

rules.

6.5.2.3 Metamodel

The metamodel describes the language means of the domain-specific language.

Depending on the chosen modeling language (e.g., UML) and diagram form (e.g., class

diagram, activity diagram), it relies on the associated metamodels. In the case of UML,

this is MOF (see [68], [71], [72]). The Business Analyst and Domain Architect as well as

the Domain Developer are involved in the development of the metamodel. The Business

Analyst provides the terms of the problem domain, the Domain Architect develops the

corresponding metamodel and explains the relationships to the Domain Developers.

6.5.2.4 Transformation Rules

The transformation rules describe the transformation of business models into source code.

These rules for M2C transformation (model-to-code) are defined by Domain Developers.

This requires knowledge of the domain-specific language, its metamodel and the target

PhD Thesis 143

architecture of the software. In addition, this requires knowledge of the rule language

used for the transformations.

The Domain Developers are supported by the Domain Architect and the Application

Architect when defining the transformations.

6.5.2.5 Source Code

The source code is the target of the transformation and represents not only the pure

program code but also all other artefacts that can be automated on the basis of the models

(e. g. documents, configuration files).

Normally, the entire source code of an application cannot be generated. Therefore, in

addition to the automated source code, there are also manually created sources. Generated

and manually written source code should be strictly separated from each other as far as

possible and should only be linked together by appropriate design patterns. In this case,

it is advantageous if the automatically generated source text is not set under version

control and is always regenerated. This avoids mixing of generated and manual code.

6.5.3 Process Steps

The main development process of the agile model-driven method is divided into three

types of sprints and a parallel optimization of the software architecture. These elements

are explained below.

PhD Thesis 144

Fig. 34: AMDM Process Overview

PhD Thesis 145

6.5.3.1 Initial Sprint

In the initial sprint, the framework conditions and necessary foundations for the project

are defined. The following activities are taking place:

• The backlogs are created by the Product Owner in cooperation with the Business

Analyst. In addition, a first grouping and prioritization of the backlog entries and

assignment of backlog entries to domain backlogs takes place.

• Definition of the initial software architecture in the form of a "big picture",

defining the distribution, layers, services and components, required frameworks

and the necessary infrastructure.

• Setting up the infrastructure. This also includes the definition of the MDSD

platform, i.e. the selection of the modeling tools, the modeling language, the

appropriate code generators and frameworks.

• Development of a minimal prototype ("walking skeleton")

• Team building

6.5.3.2 Domain Sprint

Within the domain sprint, the elements of the required domain-specific modeling

language are defined for a specific subset of the problem domain. The requirements

contained in the domain backlog determine which diagram types and elements can be

used to describe these requirements. In addition, the properties of the elements of the

domain-specific language are identified and defined. The domain-specific language is

described using a metamodel and the Domain Developers create the necessary

transformation rules for source code generation. The Domain Developers refer to the

current state of the software architecture.

PhD Thesis 146

Fig. 35: Domain Sprint

The domain sprint thus provides the basis for the modeling and implementation of the

requirements from the domain backlog in the following value sprints. Parallel to these

activities, the Product Owner determines which requirements are implemented in the

following Value Sprints.

6.5.3.3 Value Sprint

A group of requirements is implemented as part of a value sprint. This is always done in

cycles. A story model is created from a user story, which describes the scenario with the

help of the DSL. The defined artefacts (e. g. source code) are generated on the basis of

the model and supplemented manually if necessary. These steps are carried out in short,

recurring cycles in which the Business Analysts model, generate and program together

with the Application Developers. This takes so long until they are convinced that the

requirement has been implemented. (Definition of Done7).

7 https://www.agilealliance.org/glossary/definition-of-done/ (checked on 30/10/2016)

Domain
Backlog

Meta Model

Transformation
Rules

Architecture

PhD Thesis 147

Fig. 36: Value Sprint

In AMDM, several value sprints follow each other until either all the requirements from

the domain backlog are processed and implemented, or the team is of the opinion that

another domain sprint is necessary. One reason for this may be that the team will notice

that the domain-specific language is not sufficient and needs to be expanded or adapted

to describe a situation. Another reason may be that changes to the application architecture

have progressed so far that the appropriately adapted M2C transformation can be taken

into account in the development.

6.5.3.4 Architectural Refinement

The software architecture is further developed in AMDM incrementally on the basis of

the existing non-functional requirements. Architectural decisions are always taken at the

last moment to have a more solid basis for these decisions. Additional suggestions for the

adaptation and optimization of the architecture are provided by feedback from the

Review

Story	Model

{..}

Generated
Code

Code

{..} {..}+
User	Story

PhD Thesis 148

Application Developers from the current value sprints and from the reviews at the end of

the sprints.

Matching to the changes to the software architecture, the corresponding changes must

also be reproduced in the transformation rules for source code generation. If these changes

have been made, they can be included in the application development. This leads to an

interruption of the value sprint sequence and the execution of a domain sprint.

6.5.4 Communication

Communication has a high priority in agile process models. This is also the case in

AMDM and is achieved through various feedback mechanisms as well as the close

cooperation between the involved parties (for example, Business Analyst and Application

Developer in a value sprint). In addition, communication is supported by regular

meetings. The process lead is responsible for conducting the meetings. It also encourages

regular feedback between application development and architects.

6.5.4.1 Daily Standup Meeting

In the daily standup meeting, the team is informed about the activity a team member is

currently working on. The following questions are answered: What did I achieve

yesterday? What do I want to achieve today? These meetings are as short as possible.

They are by no means a problem solving or discussion. Problems can be addressed and

addressed, but the problem solution is planned separately by the Product Owner (and

possibly added as spike in the backlog).

PhD Thesis 149

6.5.4.2 Review

At the end of each value sprint there is a review. In this review, the results of the Value

Sprint are presented and explained to the team and the Product Owner. There is also a

feedback between the Application Developers and the architects. Recognized problems

of the architecture can be addressed. It is also possible to check whether the specifications

have also been implemented accordingly in manual coding.

There is another feedback on modeling. Here it can be judged whether the domain-

specific language is correctly applied in the models or whether it is sufficiently defined

for the modeling of the problem domain. The result of the review is the decision as to

whether the development level reached in the value sprint is delivered or provided as an

application increment.

Finally, a decision is made as to whether a further value sprint is performed or whether a

domain sprint is inserted next.

6.5.4.3 Retrospective

While a review focuses on the results achieved, the process is the focus of the

retrospective. The retrospective should also be carried out regularly after a value print.

The retrospective will discuss whether and how the development process can be

improved. Improvements can affect the team structure, the communication tools used, as

well as the tools for modeling and application development. The entire team is also

involved in the retrospective. However, the final decision on process changes is made by

the process lead.

PhD Thesis 150

6.6 Summary

The Agile Model-Driven Method was introduced in the previous chapters. This

development methodology is based on proven agile process elements and building blocks

from existing process models for MDD. In addition, the focus is on developing the

software architecture and supporting model-driven development. For this purpose, special

roles for team members are defined and specific process elements are defined. An

example of this is the distinction between domain sprints and value sprints and the

definition of the architecture that takes place parallel to development. The special

characteristics of model-driven development require close coordination between

developers, Application Architects and domain specialists. This is taken into account in

AMDM by the specific process elements and roles.

PhD Thesis 151

7 Evaluation

This chapter reviews the defined development process of the Agile Model-Driven

Method. The evaluation of a process is always a difficult matter. What are the advantages

of the newly defined approaches in comparison to other approaches? Is it worth switching

to such a process? Measurement as an objective means of comparison does not exist. For

this reason, the first step is to use the case studies described above in this chapter. The

question is to what extent the use of AMDM would affect the case studies. In particular,

the problems and points of criticism mentioned therein are taken into account.

In a second step, the application of the new AMDM development process will be tested

on the basis of a concrete task from the author's working environment. In this way, the

practical applicability of the development process will be examined.

Finally, the question is discussed to what extent AMDM is actually an agile approach for

model-driven software development. Are the principles of the agile manifesto (cf. [2] and

[3]) considered?

7.1 Significance for the Case Studies

As described in the introduction, the case studies described in chapter 4 will be

examined and evaluated from the perspective of the new AMDM procedure.

7.1.1 Case Study 1: Interfaces to Legacy Systems

The first case study shows a problem in a very limited environment. The task was to

efficiently provide interfaces to existing legacy systems in the Java world. The process of

PhD Thesis 152

model-driven development is very effective in this case. However, the limited task is not

suitable to compare AMDM in this context.

7.1.2 Case Study 2: Software Component Development

Looking at the experiences and problems that ultimately led to the discontinuation of the

model-driven development in this case study, this could have been avoided with AMDM.

The points addressed in detail:

• The decision to develop an MDD environment came too late. There were already

too many ready-made components. The prospect of payback purely in relation to

the development of new components was too low. AMDM would not have

changed the late decision for the model-driven development. This was a

management error. But the development of new components would have

benefited AMDM more quickly from the model-driven development.

• Too many requirements / no iterative process: It was developed too much at once.

In the beginning, too many artefacts should be generated. AMDM is an iterative

and incremental development process. The Domain Architecture as the basis of

the model-driven development is created successively. The waterfall-like

approach to create all MDSD artefacts at the beginning would have been avoided.

• Few intermediate results that could be used. AMDM is designed to produce

continuous and ready-to-use results. The development of the software components

could have been supported much earlier.

PhD Thesis 153

• The management did not trust the new technology. By the early and steady

provision of finished results, confidence in the technology could have been

created. The efficient development of the software components would have been

manageable and workable.

7.1.3 Case Study 3: Insurance Programming Language

The problems in the case study 3 result first from the mixing of technical and technical

aspects in the domain-specific language. The resulting complexity was not mastered. The

dependencies to the architecture led to a high degree of adaptation in the models and

application development.

By focusing on the problem domain in the domain-specific language, AMDM avoids

mixing of technical and technical elements. The architecture is developed parallel to the

modeling and implementation of the technical requirements. Adaptations from

architectural changes do not flow into the models, but only into the transformation. And

because of the evolutionary development of the architecture, their changes are always

limited with regard to their effects.

7.1.4 Other Case Studies

The following case studies from chapter 4.4 are also considered with regard to the

influence of AMDM, as they also include aspects from other industrial and business

sectors.

PhD Thesis 154

7.1.4.1 ABB Robotics and Ericsson

In his article, Staron [94] describes the experiences with model-driven development at

ABB Robotics and Ericsson. The following conclusions are drawn:

• Domain-specific languages should be designed and developed by the developers,

who want to use MDD. In this respect, AMDM takes account of the fact that the

Business Analysts, architects and developers are involved in the development of

the domain-specific language, the transformations and the implementation of the

requirements. There is an overlap in the teaming of the teams, so that the

corresponding teams always have the appropriate know-how.

• Even excellent models do not allow complete code generation. It is not possible

to dispense on manual coding. AMDM also assumes that parts of the application

must be encoded manually. This is done in tight cycles within a value sprint.

• The MDD technology is not so far that a model-only approach like described by

Brown in [18] is possible. Whether a model-only approach will be possible

depends on the quality of the DSL and the power of the transformations. It is quite

conceivable that no manual coding will be necessary in some areas in the near

future. The underlying process of AMDM is, however, still valid.

• The companies are struggling with the paradigm shift from the current state of

software development towards MDD and rather use proven technology instead of

UML model-driven process. By adopting concepts from known agile methods,

attempts are being made to reduce the inhibition threshold compared to this new

PhD Thesis 155

process. Skepticism towards the model-driven technique can be countered by the

rapid availability of partial results.

• The high implementation costs of MDD can adversely affect a decision in favour

of MDD. AMDM also creates additional costs by defining the domain-specific

language as well as the transformation rules. The early provision of applicable

partial results places an early benefit to these costs. The quality of the automated

application parts reduces future costs as part of the error analysis. In addition, the

architecture is evolving evolutionarily. And this always only as far as necessary.

This also avoids unnecessary costs for the creation of a bloated architecture and

the resulting outlay for the M2C transformations.

7.1.4.2 Autoliv, Sectra und Saab Aerospace

The case study by Elmqvist and Nadjim-Tehrani [36] confirms, on the one hand, the

saving of manually implemented code by the use of model-driven development.

However, they are concerned about the availability of sufficient tools for the complete

development process, from specification to implementation.

AMDM now provides a framework in which tools can be meaningfully embedded and

used in a process agile and model-driven. From the requirements in the backlogs, through

the evolutionary development of architecture, to problem area oriented structuring of DSL

and model transformations.

PhD Thesis 156

7.1.4.3 IBM

IBM's case studies [22] also confirm the potential of model-driven development.

However, they assume that many manual changes to models and source code will remain

necessary. AMDM tries to keep the business models as stable as possible because they

focus on the language of the problem domain. IBM also assumes a pure MDA approach

and a two-step transformation from PIM to PSM into the code. This is not tracked in

AMDM. Here a direct transformation takes place from the annotated PIM directly to the

source code.

7.1.4.4 Motorola

The authors of the Motorola study [9] come to the following conclusions in their study:

• System architects and designers tend to make implicit or explicit assumptions

about the implementation of modelling. In AMDM the intensive communication

between architects, Domain Architects, Business Analysts and developers ensures

that the knowledge about the models, transformations and the target architecture

are evenly distributed in the team. Implicit or explicit assumptions about

implementations are avoided in this way.

• Many development teams were inflexible in changing the traditional development

culture that was fostered by the absence of a defined MDD process. To counter

these reservations, AMDM relies on well-known and widely accepted agile

approaches such as Scrum.

• The third-party solutions scaled poorly and the generated code was inferior to the

self-programmed solution. Manual optimizations are always an advantage over

PhD Thesis 157

automatically generated source code. In AMDM, however, optimization takes

place on a different level. Optimization results in an adaptation of the architecture

and transformation rules. In this way, optimizations can be easily published and

implemented in the entire application at the push of a button. The quality of the

entire application thus increases significantly.

• There is no development environment, which would cover all the needs of

Motorola. Whether AMDM can do this is not to be answered at this point.

7.2 Pilot Project

After the possible influence of AMDM on the investigated case studies has been

presented, in a second step the concrete application of AMDM is tested by means of a

pilot project. For this pilot project, a suitable problem from the author's concrete working

environment was used. This evaluation was carried out between February and June 2019.

The team consisted of seven working colleagues of the author, who were then asked about

their experiences and impressions of AMDM.

7.2.1 Goals of the Project

The aim of the project is to provide microservices as a supplement to the existing

application components of the Insurance Suite back-office solution. These application

components have so far been developed as JEE multitier applications in the Java

programming language. Due to their now monolithic structure, they are increasingly

difficult to maintain and expand.

Now several scenarios are to be converted by the project. On the one hand, the

microservices should provide a simple REST-based access to the previous complex EJB

PhD Thesis 158

interface of the application components. On the other hand new functionality of the

specialized applications is to be made available immediately in the form of Microservices.

The following figure shows a target image from a Gartner Vendor Briefing on this topic:

Fig. 37: Microservices in the Context of the existing Back-Office Solution

The challenge in this project was that the architecture and technical decisions about the

used frameworks were not fixed at the beginning of the project. It was clear from the

outset that there would be changes in the progress of the project. In addition, two types

of microservices had to be developed: On the one hand, microservices, which were to act

as facades for interfaces of the existing application components. On the other hand,

microservices, which provide new supplementary functionality to the business

applications. Both were to be kept as transparent as possible for the developers. Since it

was also important to be able to easily regenerate the technical framework due to

architectural adaptations, model-driven development was preferred from the outset. At

the same time, the business logic should be provided early on and regularly supplemented

PhD Thesis 159

according to an agile approach. Thus the boundary conditions for the use of AMDM were

given.

7.2.2 Team

The development team consisted of seven people and was composed as follows:

• 1 Process Lead: This role was performed by the author of this thesis because it

was about understanding and managing AMDM as a process.

• 1 Domain Architect / Domain Developer: This role was performed by a person

who already had experience in defining metamodels for UML and implementing

transformation rules with the generator framework in use.

• 1 Application Architect: This team member was particularly familiar with the

architecture of the existing applications and the technical frameworks used for

them. This person also designed the implementation of the microservices for the

various application scenarios.

• 2 Application Developers: These had the task of supplementing the functional

logic of the new microservices and, if necessary, writing additional tests.

• 1 Business Analyst: This team member defined the business requirements.

• 1 Product Owner: Together with the Business Analyst, the Product Owner

prioritizes the use cases (user stories) in the backlog.

7.2.3 Project Course

In coordination with all project members, a sprint length of 2 weeks was defined at the

beginning. In the course of the project, a domain sprint was performed twice after the

PhD Thesis 160

initial sprint, followed by three value sprints each. A total effort of approx. 650 pd was

required for this pilot project. In detail, the workflow was as follows:

7.2.3.1 Initial Sprint

In the Initial Sprint, the infrastructure for model-driven development was prepared. This

included the specifications for the development environments, definition of the specified

tools for modeling and generation or transformation. This work step was relatively

simple, since corresponding tools (such as Enterprise Architect from Sparx Systems Inc.

for modeling or the generator framework) had already been used and adopted in the

previous environment. Thus, the first work concentrated on the development of a

prototype micro service for a first use case (the contract inquiry to a property insurance

contract from the inventory system). This was carried out by the Application Architect

and the Application Developers. On the basis of this prototype, the first framework

conditions and specifications for the software architecture were made. At the same time,

the Product Owner and the Business Analyst determined in the backlog which further use

cases should be developed and prioritized them together with the Process Lead for further

planning.

7.2.3.2 First Domain Sprint

In the first Domain Sprint, the Domain Architect determined which UML elements should

be used to describe the services (class and activity diagrams) and defined a corresponding

domain-specific language for the annotation of the UML models. The basis for this was

the UML model of the prototype. In addition, the necessary transformation rules were

derived on the basis of this model to match the development of the prototype. The first

artefacts defined were the implementation framework for the services, the API interface

PhD Thesis 161

with version information, the standardized call of internal services of the business

components, and a basic framework for the API documentation. Subsequently, the

manual development of the prototype was replaced by the generated artefacts. Thus it was

clear which part of the software artefacts was generated in the first step and at which parts

had to be coded manually. Thus, it was possible to explain to the Application Developers

how and which parts have to be supplemented accordingly. At the same time, the Domain

Architect explained to the Business Analyst the additional UML elements of the domain-

specific language for creating the business models for the further services.

7.2.3.3 Three Value Sprints

In the following three value sprints, two further services were modelled by the Business

Analyst in addition to a refinement of the first service. These services covered the query

of the product definition for an insurance contract as well as the checking of a contract

for the valid contract version at a specific point in time.

Parallel to the development, the Domain Architect and the Application Architect made

further additions and adaptations to the Domain Architecture and the software

architecture. Some of the work related to the exchange of used libraries (e.g. on Spring

Boot) and the determination of which (partly existing) tools should be used to test the

developed microservices.

At the end of each Value Sprint, a review of the created artefacts was done by the

Application Architect and the Domain Architect. These provided the essential input for

the adaptation and optimization of the Domain Architecture. In addition, a team meeting

was held for the retrospective at which the project participants discussed how to proceed

in the course of the project.

PhD Thesis 162

7.2.3.4 Second Domain Sprint

Due to the specifications and adaptations to the architecture regarding the tests, a second

domain sprint was performed after three value sprints. In doing so, adaptations were made

to the transformation regulations with regard to the architecture. In addition, new

transformation rules for the generation of tests against the service interfaces or API

definitions were integrated. The domain-specific language had to be extended

accordingly in the metamodel so that corresponding information could be included in the

business model. In addition, further modeling elements were added to differentiate

between types of services. Since Domain Architect and Domain Developer were united

in one person in this test project, this person was supported by the Application Developer

in adapting the transformation rules. This was possible because they had the expertise

from previous projects.

7.2.3.5 Three more Value Sprints

In the subsequent Value Sprints, services were implemented to report losses to property

insurance, to query existing loss reports and to upload image and document data as

information on the loss. These services replaced existing implementations in the existing

back-office system and are used in particular in the development of the field service app

for smartphones.

This test project was successfully completed with the development of these services. The

generated elements of the Domain Architecture will still be used to develop further

services on this basis. In the meantime, a third domain sprint has been done to make

further additions in the domain-specific language and to optimize the transformation

rules.

PhD Thesis 163

7.2.4 Project Experience

Subsequently, the participants of the project were asked about their experience with the

AMDM process model. The individual interviews can be found in the appendix of this

thesis.

The previous knowledge of the project members was very different. All project

participants knew agile procedural models from theory, most of them also knew them

from practice. There was less experience with model-driven development.

The experiences with AMDM were described as positive throughout. The essential

statements are summarized:

• It is an advantage that AMDM's agile concepts are based on Scrum. By following

a widespread approach, it is easier to find one's way around the process.8

• The combination of model-driven development and agile approach was new for

all and was very positively rated. 9

• The presentation of the procedure model in the Initial Sprint helped to understand

the procedure.10

• The use of a domain-specific language for the modelling increases the

expressiveness of the models. However, higher quality demands are also placed

on the models, since code is generated on this basis.11

8 See Appendix e.g. A1, A2, A4
9 See Appendix e.g. A2
10 See Appendix e.g. A1, A6
11 See Appendix A3

PhD Thesis 164

• The approach was perceived as efficient because functional software was

delivered in short regular cycles, teamwork worked well, and the result was

completed on time. In addition, the process was found to be well structured.12

• The adaptation of the Domain Architecture to new technical conditions (e.g.

exchange of a technical framework) during development worked well. A large

initial effort could be avoided.13

Overall, however, the pilot project was limited in scope. Therefore, the evaluations made

with regard to efficiency, project success, dependencies between artefacts, etc. are only

meaningful to a limited extent. However, a larger project would have extended the time

frame for an evaluation too much.

Nevertheless, it can be summarised that AMDM has succeeded as an agile process model

for model-driven development in this context.

7.3 Agile Review

The fact that the Agile model-driven method supports and implements the technology of

model-driven development is undisputed. But, is AMDM also an agile procedure? To

clarify this, the principles from the agile manifest are used and interpreted in terms of

AMDM.

As explained in chapter 3.1.2, the following four factors of the agile manifesto are the

focus of agile software development:

12 See Appendix e.g. A2, A3, A6
13 See Appendix e.g. A2

PhD Thesis 165

• The early provision of functioning software.

• Daily collaboration and personal communication between all those involved.

• The willingness and ability to always accept new customer requirements and to

take them into account.

• The team organizes itself, and achieved efficiency gains.

These four points are also being pursued in AMDM. At the end of each value sprint, the

delivery of a functional partial result. And the evolutionary development of architecture

also supports this goal. A frequent personal communication of the team members is

supported by the daily standup meetings of all participants. New requirements can be

recorded at any time in the backlog and adapted in the models. Changes to the architecture

and its effects on code generation are also possible at any time and are fixed in the process.

And with regard to the last point, the self-organization, the retrospective mechanism is a

starting point through which process and team optimization can be discussed and

implemented at any time.

And what about the points that summoned Sommerville as a core statement on agility in

[89] (see chapter 3.1.1)? These are:

• Customer Involvement. In AMDM, the customer's interests are represented by the

Product Owner analogously to Scrum. This takes up new requirements, prioritizes

them and leads them to the development process.

• Incremental delivery. This aspect has already been discussed at the outset.

Frequent partial deliveries are supported.

PhD Thesis 166

• People not process. AMDM also focuses on the communication and efficient

collaboration of team members. However, due to the additional complexity of the

model-driven development, the process is more strongly emphasized than in other

agile approaches.

• Embrace change. Openness towards changes is also implemented in AMDM.

Functional and non-functional changes can be included in the development at any

time.

• Maintain simplicity: The preference for simple solutions is a basic principle in the

evolutionary development of software architectures. AMDM attaches great

importance to adapting the complexity of the architecture to the needs of the

respective requirements.

Looking at the sum of these criteria and comparing them to the Agile Model-Driven

Method, this can be justly described as agile.

7.4 Summary

In this chapter, the Agile Model-Driven Method was compared with the case studies for

model-driven development described above. This shows that the use of AMDM can

minimize the problems and risks addressed in the case studies. The early provision of

partial results increases the acceptance of model-driven development. And the

evolutionary development of architecture reduces the technical risks and makes

architectural principles comprehensible and acceptable for the entire team. This was also

shown by the evaluation in the described test project. With regard to the development

PhD Thesis 167

process, AMDM can be described as agile, since the applicable principles and principles

are taken into account and implemented.

PhD Thesis 168

8 Conclusions

8.1 Achievements

The Agile Model-Driven Method combines agile working techniques with the

development approach of model-driven development. For this, the elements of model-

driven development were first identified, and the existing limits and risks were

considered. The criticism and skepticism of the model-driven development, which has

often been expressed in practice, has also been analyzed. Case studies from specific

projects in the field of the author as well as case studies from other branches of industry

and business fields were used for this purpose. Thus potentials and criticisms of the

model-driven development could be identified.

Agility promises to counter some of the criticisms expressed. Therefore, the first question

in this thesis is whether and how modeling plays an important role in agile process

models. In this case, approaches such as the MIDAS framework or the agile modeling of

Scott Ambler were considered. Agile action models with a strong orientation to modeling

as well as feature-driven development have also been considered. From this, it was

concluded that there are individual promising approaches for an agile model-driven

development, but these are not a complete solution approach.

For the definition of an agile model-driven development methodology it was necessary

to characterize the project phases of an MDD project, the involved roles and artefacts. On

this basis and taking into account appropriate agile modeling techniques, the Agile

Model-Driven Method has been defined. It enables an agile model-driven development

of business applications in a continuous process, from the specification of the

requirements to the implementation. It fulfills the criteria of an agile approach and is

PhD Thesis 169

designed to minimize the problems and criticisms encountered in the investigated case

studies.

AMDM is based on established agile process models such as Scrum. In addition to the

process, AMDM also defines the involved roles and their tasks. AMDM distinguishes

between technical and business content. This separation is derived from the examined

procedures for model-driven development described in the literature. The relevant

artefacts of domain architecture are also described and adapted in this environment.

The evaluation of AMDM was based on the investigated case studies as well as on a test

project carried out under real conditions with a small team of 7 persons.

8.2 Limitations

What are the limits of the developed approach? The focus in the definition of Agile

Model-Driven Method was on the development of small to medium-sized business

applications, which can be built using similar software components or services. Their

problem domain can be well structured, which makes it easier to break down the

requirements and define the domain-specific language. In addition, the experience with

agile software development is quite broad in practice in this environment. The same

applies to model-driven development based on MDA or MDSD. The limits of AMDM

are reached when the application requires specialized business logic or algorithms. Here,

manual implementation and optimization will always be the means of choice. In this

environment, therefore, both the model-driven development is also not an agile

procedure. Difficult is probably a scaling to larger or distributed teams. For this, the role

of a mediator is recommended.

PhD Thesis 170

8.3 Suggestions for Future Research

For further research, the Agile Model-Driven Method should be used in practice in other

projects. The use in small and medium-sized projects as well as showcases leads to more

experience and further questions regarding the development cycles and the corresponding

language scope of the domain-specific language. Another open point, which can only be

answered by appropriate experience, is the effort estimation and thus the planning of the

sprints: How does the combination of modeling, generation and manual coding affect the

effort involved in implementing a user story? Is the assumed time frame of the typical

two weeks for a sprint sufficient or even too long in this case?

In addition, another field of research in connection with modelling is interesting. This

concerns the quality assurance of models. How can they be validated and verified? This

is an independent field of research, but the results could be interesting for AMDM to carry

out reviews according to these proposals.

The classification of domain-specific languages is another field. These are no longer only

used as graphical modelling languages, but increasingly also as text-based domain-

specific languages. In this case, it would be helpful to examine the different types of DSL

and assess their suitability for different problems.

Appendix 171

References

[1] Abrahamsson, Pekka (2002): Agile software development methods. Review and

analysis. Espoo: VTT (VTT publications, 478).

[2] Agile Alliance (2001): Manifesto for Agile Software Development. Available

online at http://www.agilealliance.org, checked on 15/10/2010.

[3] Agile Alliance (2001): Principles behind the Agile Manifesto. Available online at

http://www.agilealliance.org/principles.html, checked on 15/10/2010.

[4] Ambler, Scott W.; Jeffries, R. (2002): Agile modeling. Effective practices for

eXtreme programming and the Unified Process. New York, NY: Wiley.

[5] Ambler, Scott W. (2004): THE OBJECT PRIMER. Agile model-driven development

with UML 2.0. 3rd Edition. New York: Cambridge University Press.

[6] Ambler, Scott W. (2005): Feature Driven Development (FDD) and Agile Modeling.

Available online at http://www.agilemodeling.com/essays/fdd.htm, checked on

10/10/2012.

[7] Asadi, Mohsen; Ramsin, Raman (2008): MDA-Based Methodologies: An

Analytical Survey. In: Ina Schieferdecker, Alan Hartman (Eds.): Model Driven

Architecture – Foundations and Applications: Springer Berlin / Heidelberg

(Lecture Notes in Computer Science, vol 5095), pp. 419–431.

[8] Asadi, Mohsen; Ravakhah, Mahdy; Ramsin, Raman (2008): An MDA-Based

System Development Lifecycle. In: 2nd Asia International Conference on

Modeling & Simulation (AICMS), pp. 836–842.

Appendix 172

[9] Baker, Paul; Loh, Shiou; Weil, Frank (2005): Model-Driven Engineering in a Large

Industrial Context - Motorola Case Study. In: Model Driven Engineering

Languages and Systems, 8th International Conference, MoDELS 2005: Springer,

Berlin / Heidelberg (Lecture Notes in Computer Science, vol. 3713), pp. 476 – 491.

[10] Basili, V.R; Rombach, H.D (1991): Support for comprehensive reuse. In: Software

Engineering Journal 6 (5), pp. 303–316.

[11] Baskerville, R. & Pries-Heje, J. (2004): Short cycle time systems development, in:

Information Systems Journal, 14 (3), pp. 237-264.

[12] Beck, Kent (2002): Test Driven Development: By Example. Boston: Addison-

Wesley.

[13] Beck, Kent (2003): Extreme programming explained. Embrace change. 8th print.

Boston: Addison-Wesley.

[14] Bell, Alex E. (2004): Death by UML Fever. Queue, 2 (1), 2004, pp. 72-80. DOI:

10.1145/9844458.984495.

[15] Bien, Adam (2009): Real World Java EE Patterns - Rethinking Best Practices.

press.adam-bien.com.

[16] Booch, Grady (2006): Blog: On Design, 03/03/2006. Available online at

www.ibm.com/developerworks/mydeveloperworks/blogs/gradybooch/entry/on_de

sign, checked on 13/09/2012.

[17] Brambilla, Marco; Cabot, Jordi; Wimmer, Manuel (2012): Model-Driven Software

Engineering in Practice (Synthesis Lectures on Software Engineering). Morgan &

Claypool Publishers.

[18] Brown, Alan W.; Conallen, Jim; Tropeano, Dave (2005): Introduction: Models,

Modeling, and Model-Driven Architecture (MDA). In: Sami Beydeda, Matthias

Book, Volker Gruhn (Eds.): Model-Driven Software Development. 1st ed. Berlin,

Heidelberg: Springer, pp. 1–16.

Appendix 173

[19] Brown, Alan W.; Conallen, Jim; Tropeano, Dave (2005): Practical Insights into

Model-Driven Architecture: Lessons from the Design and Use of an MDA Toolkit.

In: Sami Beydeda, Matthias Book, Volker Gruhn (Eds.): Model-Driven Software

Development. 1st ed. Berlin, Heidelberg: Springer, pp. 403–431.

[20] Cáceres, Paloma; Diaz, Francisco; Marcos, Esperanza (2004): Integrating an Agile

Process in a Model Driven Architecture. In: GI Jahrestagung 2004, pp. 265–270.

[21] Chitforoush, F.; Yazdandoost, M.; Ramsin, R. (2007): Methodology Support for

the Model Driven Architecture. In: Software Engineering Conference, 2007.

APSEC 2007. 14th Asia-Pacific, pp. 454–461.

[22] Chowdhary, Pawan et al. (2006): Model Driven Development for Business

Performance Management. In: IBM Systems Journal (Vol. 45, No 3), pp. 587–605.

[23] Clements, Paul; Felix Bachmann; Len Bass; David Garlan; James Ivers; Reed

Little; Paulo Merson; Robert Nord; Judith Stafford (2010). Documenting Software

Architectures: Views and Beyond, Second Edition. Boston: Addison-Wesley.

[24] Coad, Peter; Lefebvre, Eric; Luca, Eric de (1999): Java modeling in color with

UML. Enterprise components and process. Upper Saddle River, NJ: Prentice Hall

PTR.

[25] Cockburn, Alistair (2001): Agile Software Development. Reading, Massachusetts:

Addison-Wesley.

[26] Cockburn, Alistair (2004): Crystal Clear: A Human-Powered Methodology for

Small Teams. Boston: Addison-Wesley.

[27] Cohn, Mike (2004): User Stories Applied. For Agile Software Development.

Boston: Addison-Wesley Professional.

[28] Cohn, Mike (2010): Succeeding with Agile. Software development using Scrum.

Upper Saddle River, NJ: Addison-Wesley.

Appendix 174

[29] Coram, Michael; Bohner, Shawn (2005): The Impact of Agile Methods on Software

Project Management. In: Engineering of Computer-Based Systems, 2005. ECBS

'05. 12th IEEE International Conference and Workshops on the, pp. 363–370.

[30] Davis, Christopher W.H. (2015): Agile Metrics in Action. How to measure and

improve team performance. New York: Manning Publications Co.

[31] Derby, Ester; Larsen, Diana (2012): Agile Retrospectives. Making Good Teams

Great. Dallas, Raleigh: The Pragmatic Bookshelf.

[32] Dijkstra, Edsger W (1982): On the role of scientific thought. In: Selected writings

on Computing: A Personal Perspective. New York, NY, USA: Springer-Verlag. pp.

60–66.

[33] Dingsøyr, Torgeir; Dybå, Tore; Moe, Nils Brede (2010): Agile Software

Development: An Introduction and Overview. In: Torgeir Dingsøyr, Tore Dybå,

Nils Brede Moe (Eds.): Agile Software Development. Current Research and Future

Directions. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, pp. 1–12.

[34] Eckstein, Jutta (2004): Agile software development in the large. Diving into the

deep. New York: Dorset House Pub.

[35] Eckstein, Jutta (2010): Agile software development with distributed teams. Staying

agile in a global world. New York: Dorset House Pub.

[36] Elmqvist, Jonas; Nadim-Tehrani, Simin (2005): Intents and Upgrades in

Component-Based High-Assurance Systems. In: Sami Beydeda, Matthias Book,

Volker Gruhn (Eds.): Model-Driven Software Development. 1st ed. Berlin,

Heidelberg: Springer, pp. 289–303.

[37] Engels, G.; Hess, A.; Humm, B.; Juwig, O.; Lohmann, M.; Richter, J.-P. (2008):

Quasar Enterprise: Anwendungslandschaften serviceorientiert gestalten.

Heidelberg: Dpunkt Verlag.

Appendix 175

[38] Fowler, Martin (1996): Analysis Patterns: Reusable Object Models. 1st Edition.

Boston: Addison-Wesley.

[39] Fowler, Martin; Beck, Kent (2010): Refactoring. Improving the design of existing

code. 24th ed. Boston: Addison-Wesley.

[40] Frankel, David S. (2003): Model driven architecture. Applying MDA to enterprise

computing. Indianapolis: Wiley (OMG Press).

[41] FZI Forschungszentrum Informatik (2010): Umfrage zu Verbreitung und Einsatz

modellgetriebener Softwareentwicklung. Abschlussbericht. Freiburg, FZI

Forschungszentrum Informatik, Karlsruhe. Available online at http://www.mdsd-

umfrage.de/mdsd-report-2010.pdf, checked on 03/02/2013.

[42] Gavras, Anastasius; Belaunde, Mariano; Pires, Luís Ferreira; Almeida, João Paulo

A. (2004): Towards an MDA-Based Development Methodology. In: Flavio

Oquendo, Brian Warboys, Ron Morrison (Eds.): Software Architecture: Springer

Berlin / Heidelberg (Lecture Notes in Computer Science, vol. 3047), pp. 230–240.

[43] Gervais, Marie-Pierre (2002): Towards an MDA-Oriented Methodology. In:

Proceedings of the 26th International Computer Software and Applications

Conference on Prolonging Software Life: Development and Redevelopment.

Washington, DC, USA: IEEE Computer Society (COMPSAC ‘02), pp. 265‐270.

[44] Gervais, Marie-Pierre (2003): ODAC: An Agent-Oriented Methodology Based on

ODP. In: Autonomous Agents and Multi-Agent Systems 7, pp. 199–228.

[45] Giang, Vivian (2013): The ‘Two Pizza Rule’ Is Jeff Bezos’ Secret To Productive

Meetings. Available online at https://www.businessinsider.com/jeff-bezos-two-

pizza-rule-for-productive-meetings-2013-10?IR=T, checked on 2019/05/18.

[46] Guelfi, Nicolas; Razavi, Reza; Romanovsky, Alexander; Vandenbergh, Sébastien

(2004): DRIP Catalyst: An MDE/MDA Method for Fault-tolerant Distributed

Appendix 176

Software Families Development. In: OOPSLA and GPCE Workshop on Best

Practices for Model Driven Software Development.

[47] Hailpern, B.; Tarr, P. (2006): Model-driven development: the good, the bad, and

the ugly. In: IBM Systems Journal 45, pp. 451‐461.

[48] Hammarberg, Marcus; Sundén, Joakim (2014): Kanban in Action. Shelter Island:

Manning Publications.

[49] Heijstek, Werner; Chaudron, Michel R.V (2010): The Impact of Model Driven

Development on the Software Architecture Process. In: Software Engineering and

Advanced Applications (SEAA), 2010 36th EUROMICRO Conference on, pp. 333–

341.

[50] Highsmith, J. (2000): Adaptive Software Development: A Collaborative Approach

to Managing Complex Systems. New York: Dorset House.

[51] Highsmith, J.; Cockburn, A. (2001): Agile software development: the business of

innovation. In: Computer 34 (9), pp. 120–127.

[52] Hildebrand, Tobias; Korthaus, Axel (2004): A Model-Driven Approach to Business

Software Engineering. In: Proceedings of the 8th World Multi-Conference on

Systemics. Cybernetics and Informatics. Orlando, USA, pp. 74–79.

[53] Hummel, Oliver; Atkinson, Colin (2007): Supporting Agile Reuse Through

Extreme Harvesting. In: Giulio Concas, Ernesto Damiani, Marco Scotto, Giancarlo

Succi (Eds.): Agile Processes in Software Engineering and Extreme Programming:

Springer Berlin / Heidelberg (Lecture Notes in Computer Science, vol. 4536), pp.

28–37.

[54] Hunt, John (2006): Agile Software Construction. London: Springer.

[55] IEEE Standard Glossary of Software Engineering Terminology (1990). In: IEEE

Std 610.12-1990, p. 1.

Appendix 177

[56] ISO/IEC Standard for Systems and Software Engineering - Recommended Practice

for Architectural Description of Software-Intensive Systems (2007). In: ISO/IEC

42010 IEEE Std 1471-2000 First edition 2007-07-15, pp. c1 -24.

[57] ISO, IS 10746-x (1995): ODP Reference Model Part x.

[58] Jacobson, Ivar; Booch, Grady; Rumbaugh, James (1999): The Unified Software

Development Process. Reading: Addison Wesley Publishing.

[59] Jones, C. (2008): Applied Software Measurement: Global Analysis of Productivity

and Quality 3rd ed., New York: Mcgraw-Hill Professional

[60] Kent, Stuart (2002): Model Driven Engineering. In: Proceedings of the 3rd

International Conference on Integrated Formal Methods. London, UK, UK:

Springer (IFM ’02), pp. 286‐298.

[61] Kleppe, Anneke; Warmer, Jos; Bast, Wim (2003): MDA explained. The model

driven architecture: practice and promise. Boston: Addison-Wesley.

[62] Komus, Ayelt (2014): Status Quo Agile 2014. Study on success and forms of usage

of agile methods. University of Applied Sciences Koblenz. Available online at

http://www.hs-koblenz.de/en/rmc/fachbereiche/wirtschaft/forschung-projekte-

weiterbildung/forschungsprojekte/status-quo-agile-en/, checked on 10/09/2016

[63] Larman, C. (2002): Applying UML and Patterns: An Introduction to Object-

oriented Analysis and Design and the Unified Process. Englewood Cliffs, NJ:

Prentice Hall.

[64] Larrucea, Xabier; Diez, Ana belen Garcia; Mansell, Jason Xabier (2004): Practical

Model Driven Development Process. In: D. H. Akehurst (Ed.): Second European

Workshop on Model Driven Architecture (MDA) with an emphasis on

Methodologies and Transformations. Canterbury, UK, 7th-8th September 2004.

University of Kent, pp. 99–108.

Appendix 178

[65] Lindvall, M.; Muthig, D.; Dagnino, A.; Wallin, C.; Stupperich, M.; Kiefer, D. et al.

(2004): Agile Software Development in Large Organizations. In: Computer 37 (12),

pp. 26–34.

[66] Martin, Robert C. (2003): Agile Software Development, Principles, Patterns, and

Practices. Upper Saddle River: Prentice Hall.

[67] Meyer, Bertrand (2014): Agile! The Good, the Hype and the Ugly. Zurich: Springer

International Publishing Switzerland.

[68] Miller, Joaquin; Mukerji, Jishnu (Ed.) (2003): MDA Guide Version 1.0.1. Object

Management Group (OMG). Available online at http://www.omg.org/cgi-

bin/doc?omg/03-06-01, checked on 16/04/2011.

[69] Mohagheghi, Parastoo; Dehlen, Vegard (2008): Where Is the Proof? - A Review of

Experiences from Applying MDE in Industry. In: Ina Schieferdecker, Alan

Hartman (Eds.): Model Driven Architecture – Foundations and Applications:

Springer Berlin / Heidelberg (Lecture Notes in Computer Science, vol. 5095), pp.

432–443.

[70] Nandhakumar, J. and Avison J. (1999): The fiction of methodological development:

a field study of information systems development. In: Information Technology &

People 12 (2), pp. 176–191.

[71] Object Management Group (OMG) (2011): Meta-Object Facility (MOF)

Specification, Version 2.4.1 (August 2011). Available online at

http://www.omg.org/spec/MOF/2.4.1, checked on 20/10/2011.

[72] Object Management Group (OMG) (2001): UML Profile for Enterprise Distributed

Object Computing. Document ptc/2001-12-04.

[73] Palmer, S.R.; Felsing, J.M. (2002): A Pracitcal Guide to Feature-Driven

Development. Englewood Cliffs, NJ: Prentice Hall.

Appendix 179

[74] Parsons, David; Ryu, Hokyoung; Lal, Ramesh (2007): The Impact of Methods and

Techniques on Outcomes from Agile Software Development Projects. In: Tom

McMaster, David Wastell, Elaine Ferneley, Janice DeGross (Eds.): Organizational

Dynamics of Technology-Based Innovation: Diversifying the Research Agenda,

vol. 235: Springer Boston (IFIP International Federation for Information

Processing), pp. 235–249.

[75] Parviainen, Päivi; Takalo, Juha; Teppola, Susanna; Tihinen, Maarit (2009): Model-

Driven Development. Processes and practices. Available online at

http://www.vtt.fi/inf/pdf/workingpapers/2009/W114.pdf.

[76] Patton, Jeff; Economy, Peter (2014): User Story Mapping. Sebastopol: O’Reilly.

[77] Pei-Breivold, Hongyu; Sundmark, Daniel; Wallin, Peter; Larsson, Stig (2010):

What Does Research Say About Agile and Architecture? In: The Fifth International

Conference on Software Engineering Advances (ICSEA 2010): IARIA.

[78] PENTASYS (2012): Agile Softwareentwicklung. Die wichtigsten Methoden.

Statusreport 2012. Munich: PENTASYS AG

[79] Putman, J.R. (2001): Architecting with RM-ODP. Upper Saddle River, New Jersey:

Prentice Hall PTR.

[80] Ramesh, Balasubramaniam; Cao, Lan; Mohan, Kannan; Xu, Peng (2006): Can

distributed software development be agile? In: Communications of the ACM 49, pp.

41‐46.

[81] Reggio, Gianna; Leotta, Maurizio; Ricca, Filippo (2014): Who Knows/Uses What

of the UML: A Personal Opinion Survey. In: Dingel, Juergen; Schulte, Wolfram;

Ramos, Isidro; Abrahao, Silvia; Insfran, Emilio (Eds.): Model-Driven Engineering

Languages and Systems. Proceedings of the 17th Internat. Conference MODELS

2014, 8th Internat. Conference SAM 2014: Springer (Lecture Notes in Computer

Science, vol. 8767), pp. 149-165.

Appendix 180

[82] Rüpping, Andreas (2003): Agile Documentation. Chichester: John Wiley & Sons.

[83] Scacchi, Walt (2001): Process Models in Software Engineering. In: J.J Marciniak

(Ed.): Encyclopedia of Software Engineering. 2nd Edition. New York: John Wiley

and Sons, Inc.

[84] Schmidt, D.C (2006): Model-Driven Engineering. In: Computer 39 (2), pp. 25–31.

[85] Schwaber, K. (2004): Agile Project Management with Scrum. Seattle: Microsoft

Press.

[86] Schwaber, K.; Beedle, M. (2002): Agile Software Development with Scrum.

Englewood Cliffs, NJ: Prentice Hall.

[87] Software Engineering Institute (SEI)/CarnegieMellon (2012): Architecture

Tradeoff Analysis Method. Available online at

http://www.sei.cmu.edu/architecture/tools/ evaluate/atam.cfm, checked on

07/09/2012.

[88] Singh, Yashwant; Sood, Manu (2009): Model Driven Architecture: A Perspective.

In: International Advance Computing Conference (IACC 2009). Patiala, India, 6-7

March 2009. IEEE.

[89] Sommerville, Ian (2011): Software Engineering. 9th ed. Boston, Massachusetts:

Pearson.

[90] Soo Dong Kim; Hyun Gi Min; Jin Sun Her; Soo Ho Chang (2005): DREAM: A

Practical Product Line Engineering Using Model Driven Architecture. In:

Information Technology and Applications, 2005. ICITA 2005. Third International

Conference on, vol. 1, pp. 70–75.

[91] Stahl, Thomas; Völter, Markus; Bettin, Jorn; Czarnecki, Krzysztof; Stockfleth,

Bettina von (2006): Model-Driven Software Development. Technology,

Engineering, Management. Chichester: Wiley.

Appendix 181

[92] Stapleton, J. (1997): DSDM Dynamic Systems Development Method. Harlow, UK:

Pearson Education.

[93] Stapleton, J. (2003): DSDM: Business Focused Development, 2nd ed. Harlow, UK:

Pearson Education.

[94] Staron, Miroslaw (2006): Adopting Model Driven Software Development in

Industry - A Case Study at Two Companies. In: Oscar Nierstrasz, Jon Whittle,

David Harel, Gianna Reggio (Eds.): Model Driven Engineering Languages and

Systems, 9th International Conference, MoDELS 2006, Genova, Italy, October 1-6,

2006, Proceedings: Springer (Lecture Notes in Computer Science, vol. 4199), pp.

57–72.

[95] Strahringer, Susanne (1996): Metamodellierung als Instrument des

Methodenvergleichs: Eine Evaluierung am Beispiel objektorientierter

Analysemethoden. Aachen, Shaker Verlag GmbH.

[96] Streitferdt, Detlef; Wendt, Georg; Nenninger, Philipp; Nyßen, Alexander; Lichter,

Horst (2008): Model Driven Development Challenges in the Automation Domain.

In: Computer Software and Applications, 2008. COMPSAC '08. 32nd Annual IEEE

International Conference, pp. 1372–1375.

[97] The Middleware Company (2003): Model Driven Development for J2EE Utilizing

a Model Driven Architecture (MDA) Approach. Productivity Analysis. Available

online at http://www.omg.org/mda/mda_files/MDA_Comparison-TMC_final.pdf,

checked on 10/11/2011.

[98] Turk, Daniel; France, Robert; Rumpe, Bernhard (2002): Limitations of Agile

Software Processes. In: Third International Conference on eXtreme Programming

and Agile Processes in Software Engineering (XP 2002), pp. 43–46.

Appendix 182

[99] Turk, Daniel; France, Robert; Rumpe, Bernhard (2005): Assumptions Underlying

Agile Software-Development Processes. In: Journal of Database Management 16

(4), pp. 62–87.

Appendix 183

Appendix: Interviews from the Pilot Project

A1: Interview Product Owner

Appendix 184

A2: Interview Domain Architect/Domain Developer

Appendix 185

Appendix 186

A3: Interview Business Analyst

Appendix 187

Appendix 188

A4: Interview Application Architect

Appendix 189

Appendix 190

A5: Application Developer 1

Appendix 191

A6: Application Developer 2

Appendix 192

Publications

In English:

• Mairon, Klaus et al. (2018). Making MDD Agile: The Agile Model-Driven

Method. In: Proceedings of the 5th International Conference on Computer Science

and Information Technology (CSIT 2018), pp 105-118. DOI:

https://doi.org/10.5121/csit.2018.80508

• Mairon, Klaus et al. (2010): Agile Limitations and Model-Driven Opportunities

for Software Development Projects. In: Proceedings of the Sixth Collaborative

Research Symposium on Security, E-learning, Internet and Networking (SEIN

2010), University of Plymouth, UK, pp 43-52. ISBN: 978-1-84102-269-7

In German:

• Mairon, Klaus (2010): Agile und modellgetriebene Projekte. Voraussetzungen für

ein erfolgreiches Zusammenspiel im verteilten Projektumfeld. In: Linssen, Oliver;

Greb, Thomas; Kuhrmann, Marco; Lange, Dietmar; Höhn, Reinhard (Hg.):

Integration von Vorgehensmodellen und Projektmanagement. 17. Workshop der

Fachgruppe WI-VM der Gesellschaft für Informatik e.V. (GI), 1. Aufl. Aachen:

Shaker (Berichte aus der Wirtschaftsinformatik), S. 122–131. ISBN 978-3-8322-

9220-1, DNB: http://d-nb.info/100407039X

Appendix 193

Biographical Information

Klaus Mairon, born 1967 in Freiburg, Germany, studied business informatics at the

Hochschule Furtwangen University in 1994 as a Diploma in Informatics (FH). In 2005

and 2006, he completed the Master’s Degree course Application Architectures, which he

completed with distinction.

He works as a software architect and IT consultant at msg systems ag in the Products &

Development division for the insurance industry. Since 1997 he is additionally active as

lecturer for programming, architectures and object-oriented system analysis. In the

beginning at the Hochschule Furtwangen University, since 2009 at the Baden-

Wuerttemberg Cooperative State University in Villingen-Schwenningen. Klaus Mairon

is a co-author of a textbook on object-oriented system analysis and a member of various

university examination committees.

Privately, Klaus Mairon is a youth director of the Weigheim Football Club and member

of the town council of his hometown. Klaus Mairon has been married since 1999 and has

a son.

