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Nonlinear reaction-diffusion process models
improve inference for population dynamics
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Summary: Partial differential equations (PDEs) are a useful tool for modeling spatio-temporal dynamics

of ecological processes. However, as an ecological process evolves, we need statistical models that can adapt

to changing dynamics as new data are collected. We developed a model that combines an ecological diffusion

equation and logistic growth to characterize colonization processes of a population that establishes long-term

equilibrium over a heterogeneous environment. We also developed a homogenization strategy to statistically

upscale the PDE for faster computation and adopted a hierarchical framework to accommodate multiple

data sources collected at different spatial scales. We highlighted advantages of using a logistic reaction

component instead of a Malthusian component when population growth demonstrates asymptotic behavior.

As a case study, we demonstrated that our model improves spatio-temporal abundance forecasts of sea otters

in Glacier Bay, Alaska. Further, we predicted spatially-varying local equilibrium abundances as a result of

environmentally-driven diffusion and density-regulated growth. Integrating equilibrium abundances over the

study area in our application enabled us to infer the overall carrying capacity of sea otters in Glacier Bay,

Alaska.
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1. INTRODUCTION

The dynamics of ecological systems are complicated because the interaction between

organisms and their host environment may vary in space and time. Traditionally, generalized

linear mixed models (GLMM) have been favored to describe spatio-temporal ecological

processes (e.g., Banerjee et al., 2004). While such models enjoy a relatively large degree

of flexibility, they lack an explicit mechanistic interpretation of the underlying process.

Moreover, conventional GLMMs are often incapable of capturing the joint spatio-temporal

dependence that is characteristic of ecological processes (Wikle and Hooten, 2010). On the

other hand, mechanistic statistical models are increasingly popular because they allow us to

formally incorporate our knowledge of the system we seek to understand in latent processes

(Hilborn and Mangel, 1997). In particular, partial differential equations (PDEs) have been

commonly used to represent ecological processes due to their connections to physical laws

(Wikle, 2003; Cressie and Wikle, 2011). By embedding the PDEs in a hierarchical framework,

we can appropriately account for uncertainty in the data, our prior understanding of the

process, and parameters that influence the process (Berliner, 1996; Hobbs and Hooten, 2015).

In what follows, we present a hierarchical reaction-diffusion model that was motivated

by the case study of sea otter colonization in Glacier Bay, Alaska. Across their North

Pacific range, sea otter populations have undergone significant fluctuations over the past

two centuries. After being hunted to near extirpation during the maritime fur trade, 13

remnant colonies remained, and sea otter populations have subsequently recovered in many

areas due to a combination of conservation efforts and environmental changes (Larson et al.,

2014). In 1988, sea otters were first documented at the mouth of Glacier Bay, and have

expanded throughout much of the bay. The study of sea otter colonization in Glacier Bay

provides important insight into the ability of a species to recover from near extirpation, as

well as the impact of a changing climate on their recovery (Williams et al., 2019).

Reaction-diffusion models have long been used to describe the colonization or invasion of
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a species (e.g., Holmes et al., 1994). Past studies of reaction-diffusion models in a statistical

framework have focused on development of a spatially dynamic diffusion component, while

relying on a relatively simple reaction term (Wikle, 2003; Hooten and Wikle, 2008; Zheng and

Aukema, 2010; Williams et al., 2017). A commonly used model for reaction, the Malthusian

growth model, assumes that the per capita growth rate remains the same regardless of

population size (Turchin, 2003). This may be reasonable at initial stages of a colonization,

but as the species expands into the environment, the population can become resource-limited,

resulting in a decline in growth rate. Recently collected data indicate a slowing of sea otter

expansion in Glacier Bay; thus, we adopted a reaction model based on logistic growth that

assumes the per capita growth rate declines as the population size approaches a maximum

(i.e., carrying capacity) regulated by the amount of available resources. Logistic growth is

more realistic in characterizing population growth during colonization, and allows us to gain

insight about the system at its equilibrium. For example, we may learn about the spatially-

varying equilibrium abundances over a heterogeneous environment, as well as the overall

carrying capacity of the environment with associated uncertainty.

Fitting statistical reaction-diffusion models can be computationally challenging when

the scale of the process is fine in space and/or time. The approach we present induces

computational economy via the mathametical technique of homogenization. Using the

“method of multiple scales” (Holmes, 2013; Garlick et al., 2011), our implementation relies on

a solution to the PDE at a larger spatial scale, while maintaining the inference on parameters

at the original small scale (Hooten et al., 2013).

Furthermore, our method is useful for reconciling multiple data sources collected at different

spatial scales with varying degrees of accuracy. In our application, inconsistency in spatial

scales comes partly from improvements in aerial survey technology over time. Our modeling

framework is compatible with both the past and the more recent survey methodology for

monitoring sea otters in Glacier Bay, and is therefore useful for inference and forecasting
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based on ongoing data collection efforts.

The rest of the paper proceeds as follows. In section two, we develop a hierarchical

model and demonstrate that a homogenized reaction-diffusion process reduces computational

complexity. In section three, we illustrate the model through simulation and the sea otter case

study, thereby showing that the logistic reaction component improves parameter inference

and population forecast compared to the Malthusian reaction component. Finally, in section

four, we conclude the paper with a discussion of possible extensions and broader applications

of our model.

2. METHODS

2.1. Hierarchical Model

2.1.1. Data Model

The goal of our model is to infer sea otter abundance in continuous space and time within

our study area given observed data on relative abundances at a subset of locations and

time points, and true abundances observed at a subsequent subset of locations and time

points. We let yi,t denote the observed relative abundance of sea otters at a site Si in year

t. Following the N -mixture framework (Royle, 2004), we modeled the relative abundance

using a binomial distribution conditioned on (latent) site-specific true abundance, Ni,t, and

detection probability, pt, as follows,

yi,t ∼ Binom (Ni,t, pt) . (1)

2.1.2. Process Model

We modeled the latent, true abundance, Ni,t, using a negative binomial distribution

conditioned on a dynamically evolving mean (population intensity), λi,t, and dispersion
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parameter τ , thereby providing the process model with more flexibility than other commonly

used count models, such as the Poisson model (Ver Hoef and Boveng, 2007). Population

intensity λ(s, t) with s ≡ (s1, s2)′ is modeled in continuous space and time, where integration

over a site Si results in the mean abundance λi,t. Assuming conditional independence of

latent, true abundances given population intensities, we have

Ni,t ∼ NB (λi,t, τ) , (2)

λi,t =

∫
Si
λ(s, t)ds. (3)

We then modeled the spatio-temporal dynamics of population intensities with the following

reaction-diffusion equation,

∂

∂t
λ(s, t) =

(
∂2

∂s2
1

+
∂2

∂s2
2

)
δ(s)λ(s, t)︸ ︷︷ ︸

(i)

+ γλ(s, t)

(
1− λ(s, t)

K

)
︸ ︷︷ ︸

(ii)

. (4)

The diffusion component in (i) of Equation 4 is known as a Fokker-Planck equation (Risken,

1989), and can be derived from individual movement processes following the convention

of Turchin (1998). The diffusion coefficients, δ(s), also known as motility coefficients, are

inversely related to residence time (Turchin, 1998; Hooten et al., 2013). With δ(s) inside the

second derivative, the Fokker-Planck equation allows population intensity to vary sharply

between neighboring locations at the transition of habitat types (Garlick et al., 2011; Hooten

et al., 2013; Hefley et al., 2017), which is useful for capturing the variability in sea otter

intensity due to their resting and foraging behaviors in different environments. We modeled

heterogeneity in diffusion coefficients as a log-linear function of a set of environmental

covariates such that log(δ(s)) = x(s)′β, where x(s) is a vector of ocean depth (indicator

of < 40 m), distance to shore, slope of the ocean floor, and shoreline complexity (Williams

et al., 2017).

The reaction component in (ii) of Equation 4 is modeled after logistic growth, where γ
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is the parameter for intrinsic growth rate and K is the local density-dependent parameter

regulating growth. We let the parameters γ and K be constant in space and time. Although

it is possible to model them as variable in space, heterogeneity in both the diffusion and the

reaction components may be unidentifiable. In what follows, we illustrate that although a

single parameter K is used to regulate growth, the resulting equilibrium abundances in our

study system are spatially heterogeneous due to the changing balance between ecological

diffusion and density dependence.

We used a scaled Gaussian kernel for the initial conditions of Equation 4,

λ(s, t0) =
θ exp

(
−|s−sd|2

κ2

)
∫
S exp

(
−|s−sd|2

κ2

)
ds
, (5)

where θ controls the magnitude of initial population intensity, and κ controls the initial

population range. The location sd = (s1d, s2d)
′ is an epicenter fixed to be near the mouth of

Glacier Bay, where sea otters were observed before the colonization initiated. The starting

time t0 was chosen to be year 1993 when the earliest data were collected. Following the

example by Williams et al. (2017), we used a no-flux spatial boundary condition (Cantrell

and Cosner, 2004) at locations adjacent to land, so that diffusive movement onto land will

be reflected back to water at such boundaries. We also assumed the study system is closed to

immigration because sea otters are protected inside the National Park, but not necessarily

outside.

2.1.3. Parameter Model

To complete the model hierarchy, we specified prior distributions for the data and process

model parameters. We used a uniform prior from 0 to 0.5 for intrinsic growth rate, γ, because

we had sufficient evidence that the population was expanding during the study period, and
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the study by Estes (1990) estimated the maximum reproductive rate of sea otters in south-

east Alaska to range from 0.196 to 0.237. We used a beta prior centered at 0.75 for the

detection probabilities, pt, as informed by previous studies (Williams et al., 2017). The rest

of the parameters were given vague priors. A full description of prior specifications can be

found in Appendix A.

The joint posterior distribution associated with our model is

[Nu,p, τ,β, θ, κ, γ,K|Y ,No] ∝

{
nt∏
i=1

T∏
t=1

[yi,t|Ni,t, pt]

}

×

{
nt−no,t∏
j=1

T∏
t=1

[Nj,t|β, θ, κ, γ,K, τ ]

}

× [p][τ ][β][θ][κ][γ][K][τ ], (6)

where No denotes the vector of observed true abundances, and Nu denotes the vector of

unobserved true abundances that are modeled as latent variables. We let nt represent the

total number of sites where relative abundance was observed in year t, and no,t represent the

number of sites where true abundance was observed in year t.

2.2. Homogenization

When the spatial domain is large and the spatial resolution is fine, solving Equation

4 repeatedly can be computationally demanding. The concept of homogenization is to

rewrite Equation 4 in terms of both large and small spatial scales, so that, under certain

approximation conditions, we can solve the PDE numerically at the large scale and recover

the small scale solutions through a downscaling transformation.

Suppose the diffusion coefficient, δ, depends on two spatial scales, varying quickly on a

small spatial scale, and much more slowly on a large spatial scale. We let s denote the

fine grain spatial variable in two-dimensions, and introduce the coarse grain spatial variable
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ω ≡ (ω1, ω2)′. Suppose ω = sε, where 0 < ε� 1 is the ratio between the two scales, such

that changes on the order of O(ε) in ω become changes on the order of O(1) in s (Powell

and Zimmermann, 2004). Although there have not been individual-level movement studies

of sea otters in Glacier Bay, in our application, we assumed sea otters exhibit relatively high

site-fidelity and daily movements on the scale of hundreds of meters based on studies from

other areas (e.g., Jameson, 1989), whereas the available environmental covariates in Glacier

Bay vary on the scale of kilometers, which indicates that ε ≈ 1/10. In addition, we let t

denote the temporal variable associated with ω. We consider Equation 4, which we outline

below as a reminder,

∂λ

∂t
=

(
∂2

∂s2
1

+
∂2

∂s2
2

)
δλ+ γλ

(
1− λ

K

)
.

By transforming derivatives on the spatial variables in each dimension, ∂2

∂s2i
→ 1

ε2
∂2

∂s2i
+

2
ε

∂2

∂si∂ωi
+ ∂2

∂ω2
i
, i = 1, 2, and writing λ as a power series in ε, λ = λ0 + ελ1 + ε2λ2 + · · · , we

obtain the following PDE,

ε2
∂

∂t

(
λ0 + ελ1 + ε2λ2 + · · ·

)
=

[
∂2

∂s2
1

+
∂2

∂s2
2

+ 2ε

(
∂2

∂s1∂ω1

+
∂2

∂s2∂ω2

)
+ ε2

(
∂2

∂ω2
1

+
∂2

∂ω2
2

)]
×

[
δ
(
λ0 + ελ1 + ε2λ2 + · · ·

)]
+ ε2γ

(
λ0 + ελ1 + ε2λ2 + · · ·

) [
1− λ0 + ελ1 + ε2λ2 + · · ·

K

]
.

Gathering terms of O(ε0), we have 0 =
(
∂2

∂s21
+ ∂2

∂s22

)
δλ0, which implies δλ0 = C0(ω, t).

Gathering terms of O(ε1), we have 0 =
(
∂2

∂s21
+ ∂2

∂s22

)
δλ1. Because λ1 satisfies the same

equation as λ0, no new information is provided, and without loss of generality we let λ1 = 0

(Garlick et al., 2011). Finally, gathering terms of O(ε2), we have

1

δ

∂

∂t
C0(ω, t) =

(
∂2

∂s2
1

+
∂2

∂s2
2

)
(δλ2) +

(
∂2

∂ω2
1

+
∂2

∂ω2
2

)
C0(ω, t) + γ

C0(ω, t)

δ

(
1− C0(ω, t)

δK

)
.
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A solvability condition for λ2 (Garlick et al., 2011) requires the non-homogeneous terms

(terms not involving λ2) integrate to zero on scales larger than s. Following Yurk and Cobbold

(2018) and Maciel and Lutscher (2018), we integrate over a region, Ω, which is intermediate

in scale between s and ω. This integration leads to the homogenized equation for C0,

∂

∂t
C0(ω, t) = D(ω)

(
∂2

∂ω2
1

+
∂2

∂ω2
2

)
C0(ω, t) + γC0(ω, t)

(
1− C0(ω, t)

K̃(ω)

)
, (7)

where the homogenized diffusion coefficients are

D(ω) =
|Ω|∫

Ω
1
δ
ds
,

and the homogenized density-dependence parameters are

K̃(ω) =
K|Ω|

D
∫

Ω
1
δ2ds

,

with |Ω| =
∫

Ω
1ds.

To obtain numerical solutions, we discretized Equation 7 using first-order forward

differences in time, and centered differences in space (Wikle, 2003; Zheng and Aukema,

2010; Hooten and Hefley, 2019), such that

∂

∂t
C0(ω, t) ≈ C0(ω, t)− C0(ω, t−∆t)

∆t
,

∂2

∂ω2
1

C0(ω, t) ≈ C0(ω1 + ∆ω1, ω2, t)− 2C0(ω, t) + C0(ω1 −∆ω1, ω2, t)

∆ω2
1

,

∂2

∂ω2
2

C0(ω, t) ≈ C0(ω1, ω2 + ∆ω2, t)− 2C0(ω, t) + C0(ω1, ω2 −∆ω2, t)

∆ω2
2

.

9



Environmetrics

As a result of applying the above differences, we have

C0(ω, t) ≈ C0(ω, t−∆t)

[
1− 2D(ω)

(
∆t

∆ω2
1

+
∆t

∆ω2
2

)
+ γ∆t

]
+ C0(ω1 −∆ω1, ω2, t−∆t)

[
∆t

∆ω2
1

D(ω)

]
+ C0(ω1 + ∆ω1, ω2, t−∆t)

[
∆t

∆ω2
1

D(ω)

]
+ C0(ω1, ω2 −∆ω2, t−∆t)

[
∆t

∆ω2
2

D(ω)

]
+ C0(ω1, ω2 + ∆ω2, t−∆t)

[
∆t

∆ω2
2

D(ω)

]
− C0(ω, t−∆t)2

(
γ

K̃(ω)
∆t

)
. (8)

We rewrite Equation 8 using matrix notation as

C0(t) ≈HC0(t−∆t)−C0(t−∆t)2

(
γ

K̃
∆t

)
, (9)

where H is a propagator matrix with five non-zero entries row-wise, except those related

to boundary conditions. The model described in Equation 9 fits into the class of general

quadratic nonlinear models developed by Wikle and Hooten (2010).

Solving Equation 7 numerically yields approximate solutions for λ(s, t) at the large spatial

scale. To retrieve the approximate small scale solutions, we use λ(s, t) ≈ C0(ω, t)/δ(s).

Graphical illustrations of the homogenization procedure in our application can be found

in Appendix C. The homogenized solution we derived will only apply exactly when

consistent initial conditions are given. However, as shown by Garlick et al. (2011), solutions

with components not precisely aligned with the homogenization assumptions will decay

exponentially rapidly to the homogenized solution, and consequently, associated errors can

be safely neglected on the slow temporal scale. Homogenization in two-dimensional space

reduces computation complexity by an order ofO(ε) in each spatial dimension, and relaxation
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of the numerical stability requirement that temporal discretization scales with the square

of spatial discretization further reduces complexity by an order of O (ε2). Because ε ≈ 0.1,

our algorithm for solving Equation 4 using homogenization is about 104 times faster than

solving it without using homogenization.

3. APPLICATION

3.1. Data

To estimate spatio-temporal sea otter abundance in Glacier Bay, and to understand the

effect of environmental factors on their population dynamics, we fit our model using data

from three different sources of sea otter counts: aerial survey, intensive survey units (ISU),

and aerial photographic images.

The aerial survey data were collected during 1993, 1996-2006, 2009, 2010, and 2012, by

observers flying in an aircraft at an elevation of 300ft over 400m-wide transects systematically

placed across Glacier Bay. Sea otters were counted from the aircraft over contiguous

400m×400m regions.

The ISU data were collected during 1999-2004, 2006, and 2012, using the method developed

by Bodkin and Udevitz (1999). During an aerial survey, intensive searches were initiated

upon detection of sea otters, by observers flying repeatedly along the circumference of a

400m×400m region until no additional individuals were observed. The ISU data serve as a

direct observation of true abundances No.

The data collected in 2017 and 2018 reflected recent advancements in survey technology,

which include using aerial photographic surveys instead of observer-based methods. After

the survey, the sea otters in each image were counted by a trained observer. Each image

covers a 60m×90m region, with overlap between two consecutive images. To reconcile the

spatial scales of data collected during photographic surveys and observer-based surveys,
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we assumed homogeneous population intensity within a 400m×400m region, so that the

intensity over any 60m×90m sub-region is proportional to the intensity over the 400m×400m

region. In addition, we used only non-overlapping images that are conditionally independent

samples. Modeling dependence among overlapping images is beyond the scope of this paper;

however, see Williams et al. (2017) for a detailed discussion on using image overlap to

estimate detection probability. Lastly, we aggregated counts in images belonging to the same

400m×400m region, so that

yi,t =

ni,t∑
j=1

yi,j,t ∼ Binom(Ni,t, pt),

Ni,t ∼ NB(ni,tAλi,t, ni,tτ),

where yi,j,t denotes the observed relative abundance in the jth image at site i in year t, ni,t

denotes the number of non-overlapping images, and A = 60×90
400×400

denotes the ratio between

the two survey spatial scales.

3.2. Simulation

We conducted a simulation study to compare our model that includes the logistic reaction

component to a model with the Malthusian reaction component, when population dynamics

follow density-regulated growth. We denote our hierarchical model outlined in Section 2.1 as

the “logistic model,” and the model with the same hierarchy but the following process,

∂

∂t
λ(s, t) =

(
∂2

∂s2
1

+
∂2

∂s2
2

)
δ(s)λ(s, t) + γλ(s, t),

as the “Malthusian model.”

We simulated sea otter population intensities at 400m×400m spatial resolution over Glacier

Bay from 1993 to 2018 using the process model in Section 2.1.2. Then, we generated true

abundances and relative abundances using the data model in Section 2.1.1. We sampled
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relative and true abundances similar to the actual data collection procedure. That is, in

each year from 1993 to 2018, we first randomly sampled horizontal strips across Glacier Bay

as our transects, where we recorded observed relative abundances, Y . Then, we randomly

sampled ISU locations from these transects, where we recorded observed true abundances,

No. We summarized the true parameter values and their posterior distributions resulting

from the two model fits in Table 1.

[Table 1 about here.]

Table 1 shows that the logistic model was able to capture all true parameter values in their

respective 95% credible intervals. On the other hand, the Malthusian model overestimated

initial conditions for magnitude and range, and underestimated intrinsic growth rate based

on simulated data. The Malthusian model was also unable to provide inference on the density-

dependence parameter, K, due to misspecification.

An important quantity derived from spatio-temporal forecasts of sea otter abundance in

Glacier Bay is the total abundance through time, N(t) =
∫
S N(s, t)ds. A sample of total

abundance in year t is obtained by

N (r)(t) =

no,t∑
i=1

Ni,t +

nt−no,t∑
j=1

N̂
(r)
j,t +

n−nt∑
k=1

Ñ
(r)
k,t ,

where Ni,t is an observation of true abundance, N̂
(r)
j,t is a posterior sample of true abundance

where relative abundance was observed, and Ñ
(r)
k,t is a posterior predictive sample of true

abundance where no data were observed. Figure 1 indicates that the logistic model was able

to capture true total abundances in their respective 95% credible intervals; however, the

Malthusian model tended to overestimate abundance after year 2015. This demonstrates the

limitation of the Malthusian model when population growth is density regulated. Although

the exponential growth curve may mimic the behavior of the logistic growth curve before

total abundance reaches the inflection point (possibly by overestimating initial abundance

13



Environmetrics

and underestimating growth rate), it will nonetheless deviate from the truth as population

size approaches the asymptote.

[Figure 1 about here.]

3.3. Case Study

We fit our model to the data described in Section 3.1. For homogenization, we defined the

small computational scale in space to be 400m×400m, and the large computational scale

in space to be 4000m×4000m, at which we solved the discretized PDE in Equation 8. We

calculated the homogenized coefficients over areas Ω = 6000m× 6000m centered on each

large-scale cell. The homogenization scale and the small and large computational scales

were selected based on previous implementations to balance between desired accuracy and

available computational resources. We ran the MCMC algorithm in R version 3.0.2 (R Core

Team, 2019) with 15,000 iterations, and used a burn-in of 7,500 and a thinning rate of 1/10.

Table 2 summarizes posterior distributions of model parameters. All four coefficients for

environmental covariates have 95% credible intervals that did not include zero, suggesting

that sea otter diffusion is significantly influenced by habitat. Specifically, high motility

is related to deep water, areas away from the shore, steep bottom slopes, and complex

shorelines. The posterior mean intrinsic growth rate of 0.24 is close to the estimate reported

by Estes (1990), which is reasonable to expect during colonization. Figure 2 shows that the

estimated total abundances from our model agreed with the design-based estimates available

during 1999-2004, 2006, and 2012 (Bodkin and Udevitz, 1999). Maps of the log of posterior

predictive mean abundances and the table summarizing posterior predictive total abundances

can be found in Appendix B.

[Table 2 about here.]

[Figure 2 about here.]
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To demonstrate that the logistic model improves forecasts of sea otter abundance in Glacier

Bay, we conducted a 5-fold cross-validation using the posterior predictive score (Gelman

et al., 2014; Hooten and Hobbs, 2015)

M∑
m=1

log

(∑R
r=1[Nm

o |Y ,N−mo ,θ(t)]

R

)
,

whereNm
o andN−mo are the observed true abundances for validation and training in the mth

fold, respectively. The vector θ(r) =
(
p(r), τ (r),β(r), θ(r), κ(r), γ(r), K(r)

)
is the rth posterior

sample of parameters. The score for the logistic model (-2880) showed an improvement in

forecast ability over the score for the Malthusian model (-2896).

The logistic model also allowed us to investigate the equilibrium abundance of sea otters in

Glacier Bay. Population dynamics at equilibrium satisfy ∂
∂t
λ(s, t) = 0, and we can determine

the state of equilibrium numerically using posterior predictive samples of abundances, such

that for 0 < u� 1, ∣∣∣∣∣ 1

R

R∑
r=1

(
Ñ

(r)
k,te
− Ñ (r)

k,te−∆t

)∣∣∣∣∣ < u, for k = 1, . . . , n.

We denote Te, the smallest te that satistfies the above condition, as the time of equilibrium.

In our case study, we found Te = 2050 to provide an acceptable approximation. Alternatively,

because analytical solutions to Equation 7, C0(ω, t), converges to K̃(ω) away from

boundaries as t goes to infinity, the homogenization procedure suggests that λ (s, Te) ≈

K̃(ω)/δ(s) at system equilibrium. Therefore, we obtained a posterior predictive realization

of local equilibrium abundance by sampling from the predictive full-conditional distribution,

Ñ
(r)
k,Te
∼ NB

(
K̃(r)(ω)

δ(r)(s)
, τ (r)

)
.

We mapped mean equilibrium abundances with associated uncertainties in Figure 3.

Our analysis shows that, while K may be perceived as a parameter that regulates local
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abundance through intraspecific competition, local abundance at equilibrium is not bounded

by K (Yurk and Cobbold, 2018). The solution to ∂
∂t
λ (s, Te) = 0 leads to the equation

γ
K
λ (s, Te) (K − λ (s, Te)) =

(
∂2

∂s21
+ ∂2

∂s22

)
δ(s)λ (s, Te), and λ (s, Te) will exceed K when the

second derivatives on the right hand side are negative.

Further, we refer to the total abundance at equilibrium as the “effective carrying capacity,”

and it is unlikely to reach the “nominal carrying capacity” obtained by integrating K over the

study area (Figure 4). When diffusion coefficients are constant in space, the local equilibrium

intensities will approach K asymptotically, and the effective carrying capacity will converge

to the nominal carrying capacity in probability. However, when diffusion coefficients are

spatially heterogeneous, Jensen’s inequality implies that

K̃(ω)

D(ω)
=

K|Ω|∫
Ω

1
δ2ds

·
(

1

|Ω|

∫
Ω

1

δ
ds

)2

<
K(∫

Ω
1
δ
ds
)2 ·

(∫
Ω

1

δ
ds

)2

= K,

and because C0(ω, t)→ K̃(ω), we can infer an upper bound on population intensities,

λ(s, t) ≈ C0(ω, t)

δ(s)
→ K̃(ω)

δ(s)
<
D(ω)K

δ(s)
.

Integrating the above inequality over the entire study domain results in

∫
S
λ (s, Te) ds < K

∫
S

D(ω)

δ(s)
ds = K|S|,

which indicates that the mean effective carrying capacity is bounded above by the nominal

carrying capacity. In fact, the more spatial variability there exists in δ(s), the further the

mean effective carrying capacity will be bounded away from the nominal carrying capacity.

[Figure 3 about here.]

[Figure 4 about here.]
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4. DISCUSSION

We demonstrated that using logistic growth in the reaction-diffusion model improved forecast

of sea otter abundance in Glacier Bay. The logistic reaction component allowed us to infer

spatially-varying local equilibrium abundances, and it also enabled us to study the effect of

heterogeneous diffusion on the carrying capacity of the system. Logistic growth is a relatively

simple model for population growth that demonstrate long-term equilibrium (Turchin, 2003).

One way to extend our model is to modify the reaction component by allowing more

complicated population dynamics, such as an Allee effect or multiple population equilibria

(Estes, 1990). We are exploring such extensions in ongoing research.

Our model is helpful for understanding the impact of preferential dispersion on system

equilibrium, and can be applied to ecological processes beyond colonization. For example,

our model can be extended to study dispersal-mediated coexistence of multiple species,

where population diffusion and growth are driven by predator-prey interactions (Holmes

et al., 1994). Further, learning about spatially-varying local equilibirum abundances over a

heterogeneous environment will be important for developing future ecological models of the

nearshore benthic food web in Glacier Bay, particularly given the relatively small-scales at

which sea otters move, their high site-fidelity, and small home-ranges.

The formulation of a homogenized PDE was essential for model implementation in the

Glacier Bay study system associated with our example because it enabled us to obtain

inference at a fine spatial resolution with feasible computation time. The homogenized

coefficients in the form of harmonic means also provided an alternative way to consider

dimension reduction. Although homogenization theory suggests that the small and large

spatial scales associated with implementation should be set based on empirical properties

(periodicities) of the covariates, in practice, the study system may not be perfectly periodic

and the coefficients associated with the influence of the covariates on diffusion are unknown.

Thus, the implementation scales are often driven by the availability of data, the amount
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of computation resources, and the requirements for inference. Because homogenization uses

approximation by power series and the order of approximation error is the same as the ratio

of small-to-large spatial scales, faster computation will come at the cost of less accuracy.

Finally, the ongoing collection of aerial imagery provides an incentive for developing

statistical sampling methods to optimally combine supervised and unsupervised object

classification approaches (Seymour et al., 2017). It also motivates the development of a

statistically rigorous georectification procedure, whose uncertainty will be measured in a

hierarchical framework, so that we can better account for replications and detectabilities

using image overlaps.
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APPENDIX A: PRIOR DISTRIBUTIONS

[pt] = Beta(30, 10) for t = 1, . . . , T

[β] = N(0, 102I)

[θ] = TN(100, 2002)∞0

[κ] = TN(10, 1002)∞0

[γ] = Unif(0, 0.5)

[K] = Unif(0, 100)

[τ ] = Unif(0, 1)

APPENDIX B: SUMMARY OF POSTERIOR PREDICTIVE ABUNDANCES

FOR THE SEA OTTER CASE STUDY

Table 3 summarizes the posterior predictive distributions of the total sea otter abundances

in Glacier Bay, Alaska, from 1993 to 2018.

[Table 3 about here.]

Figure 5 maps the log of posterior predictive mean sea otter abundances in Glacier Bay,

Alaska, from 1993 to 2018.

[Figure 5 about here.]

APPENDIX C: GRAPHICAL ILLUSTRATIONS OF HOMOGENIZATION

Figure 6 illustrates the three computational scales in the homogenization procedure.

[Figure 6 about here.]
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Figure 7 gives an example of the original and homogenized surfaces during one MCMC

iteration.

[Figure 7 about here.]

APPENDIX D: MARKOV CHAIN MONTE CARLO ALGORITHM FOR

PARAMETER ESTIMATION

1. Define initial values for β(0), γ(0), K(0), θ(0), κ(0), τ (0), and p(0).

2. Initialize population intensity surface λ(0) and true abundance N
(0)
i,t where not observed:

(a) Calculate the diffusion surface, δ(0) = exp
(
Xβ(0)

)
.

(b) Calculate the homogenized diffusion coefficients, D(ω). From this point on, spatial

indices will be used with subscripts to imply discretization. For each grid cell ωj

at the large computation scale, let the homogenization region Ωj be centered at ωj

and consist of c2 grid cells, si, at the small computation scale. Let c be slightly

larger than 1/ε. Then, D(ωj)
(0) = c2∑

si∈Ωj
1/δ(si)(0) .

(c) Calculate the homogenized density dependence parameters, K̃(ωj)
(0) =

K(0)c2

D(ωj)(0)
∑

si∈Ωj
1/δ2(si)(0) .

(d) Calculate the propagator matrix H(0) as described in Equation 8.

(e) Calculate C0(ωj, 0)(0) =
θ(0) exp

(
−
|ωj−sd|

2

κ2(0)

)
∑

si∈S
exp

(
− |si−sd|2

κ2(0)

) , and propagate the homogenized

solutions, C0(t)(0) = H(0)C0(t− 1)(0) −C2
0(t− 1)(0) γ(0)

K̃(0) for t = 2, . . . , T .

(f) Retrieve the original solutions, λ
(0)
i,t = C0(ωj, t)/δ(si), where si ∈ A(ωj).

(g) If true abundance is not observed at si in year t, sample N
(0)
i,t ∼ NB

(
λ

(0)
i,t , τ

(0)
)

;

otherwise, fix Ni,t to be the observed value.

3. Set k = 1

4. Update β
(k−1)
r for r = 0, . . . , 4 using Metropolis-Hastings. Sample β

(∗)
r ∼

N
(
β

(k−1)
r , σ2

β,tune

)
. Calculate the new propagator matrix H(∗) following Steps 2(a) -
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(d), and then calculate the Metropolis-Hastings ratio as

mhβr =

 ∏nt
i=1

∏T
t=1 NB

(
N

(k−1)
i,t ;λ

(∗)
i,t , τ

(k−1)
)

∏nt
i=1

∏T
t=1 NB

(
N

(k−1)
i,t ;λ

(k−1)
i,t , τ (k−1)

)
×

 N
(
β

(∗)
r ;µβ, σ

2
β

)
N
(
β

(k−1)
r ;µβ, σ2

β

)
 .

If mhβr > u, where u ∼ Unif(0, 1), let β
(k)
r = β

(∗)
r and update λ(k−1) = λ(∗); otherwise,

let β
(k)
r = β

(k−1)
r .

5. Update γ(k−1) using Metropolis-Hastings. Sample γ(∗) ∼ N
(
γ(k−1), σ2

γ,tune

)
. If γ(∗) ∈

[0, 0.5], calculate the new propagator matrix and solve for λ(∗) following Steps 2(d)

- (f). Calculate the Metropolis-Hastings ratio as

mhγ =

∏nt
i=1

∏T
t=1 NB

(
N

(k−1)
i,t ;λ

(∗)
i,t , τ

(k−1)
)

∏nt
i=1

∏T
t=1 NB

(
N

(k−1)
i,t ;λ

(k−1)
i,t , τ (k−1)

) .
If mhγ > u, where u ∼ Unif(0, 1), let γ(k) = γ(∗) and update λ(k−1) = λ(∗); otherwise,

let γ(k) = γ(k−1).

6. Update K(k−1) using Metropolis-Hastings. Sample K(∗) ∼ N
(
K(k−1), σ2

K,tune

)
. If K(∗) ∈

[0, 100], calculate the new homogenized density dependence parameters and solve for

λ(∗) following Steps 2(c) - (f). Calculate the Metropolis-Hastings ratio as

mhK =

∏nt
i=1

∏T
t=1 NB

(
N

(k−1)
i,t ;λ

(∗)
i,t , τ

(k−1)
)

∏nt
i=1

∏T
t=1 NB

(
N

(k−1)
i,t ;λ

(k−1)
i,t , τ (k−1)

) .
If mhK > u, where u ∼ Unif(0, 1), let K(k) = K(∗) and update λ(k−1) = λ(∗); otherwise,

let K(k) = K(k−1).

7. Update θ(k−1) using Metropolis-Hastings. Sample θ(∗) ∼ N
(
θ(k−1), σ2

θ,tune

)
. If θ(∗) > 0,

calculate the new initial conditions and solve for λ(∗) following Step 2(e). Calculate the
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Metropolis-Hastings ratio as

mhθ =

 ∏nt
i=1

∏T
t=1 NB

(
N

(k−1)
i,t ;λ

(∗)
i,t , τ

(k−1)
)

∏nt
i=1

∏T
t=1 NB

(
N

(k−1)
i,t ;λ

(k−1)
i,t , τ (k−1)

)
×( TN

(
θ(∗);µθ, σ

2
θ

)∞
0

TN (θ(k−1);µθ, σ2
θ)
∞
0

)
.

If mhθ > u, where u ∼ Unif(0, 1), let θ(k) = θ(∗) and update λ(k−1) = λ(∗); otherwise, let

θ(k) = θ(k−1).

8. Update κ(k−1) using Metropolis-Hastings. Sample κ(∗) ∼ N
(
κ(k−1), σ2

κ,tune

)
. If κ(∗) > 0,

calculate the new initial conditions and solve for λ(∗) following Step 2(e). Calculate the

Metropolis-Hastings ratio as

mhκ =

 ∏nt
i=1

∏T
t=1 NB

(
N

(k−1)
i,t ;λ

(∗)
i,t , τ

(k−1)
)

∏nt
i=1

∏T
t=1 NB

(
N

(k−1)
i,t ;λ

(k−1)
i,t , τ (k−1)

)
×( TN

(
κ(∗);µκ, σ

2
κ

)∞
0

TN (κ(k−1);µκ, σ2
κ)
∞
0

)
.

If mhκ > u, where u ∼ Unif(0, 1), let κ(k) = κ(∗) and update λ(k) = λ(∗); otherwise, let

κ(k) = κ(k−1).

9. Update τ (k−1) using Metropolis-Hastings. Sample τ (∗) ∼ N
(
τ (k−1), σ2

τ,tune

)
. If τ (∗) ∈

[0, 1], calculate the Metropolis-Hastings ratio as

mhτ =

∏nt
i=1

∏T
t=1 NB

(
N

(k−1)
i,t ;λ

(k)
i,t , τ

(∗)
)

∏nt
i=1

∏T
t=1 NB

(
N

(k−1)
i,t ;λ

(k)
i,t , τ

(k−1)
) .

If mhτ > u, where u ∼ Unif(0, 1), let τ (k) = τ (∗); otherwise, let τ (k) = τ (k−1).

10. Update p
(k−1)
t using Gibbs sampling for years when true abundances were observed:

p
(k)
t ∼ Beta

∑
i∈no,t

yi,t + ap,
∑
i∈no,t

(Ni,t − yi,t) + bp

 ,

where no,t is a vector of cell indices where true abundances were observed in year t. If

no true abundance was observed in year t, let p
(k)
t = p

(k−1)
t .
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11. Update N (k−1):

(a) If relative abundance yi,t was observed, update N
(k−1)
i,t using Metropolis-Hastings.

Sample N
(∗)
i,t ∼ Pois

(
N

(k−1)
i,t + 0.5

)
. Calculate the Metropolis-Hastings ratio as

mhn =

 Binom
(
yi,t;N

(∗)
i,t , p

(k)
t

)
Binom

(
yi,t;N

(k−1)
i,t , p

(k)
t

)
×

 NB
(
N

(∗)
i,t ;λ

(k)
i,t , τ

(k)
)

NB
(
N

(k−1)
i,t ;λ

(k)
i,t , τ

(k)
)


×

Pois
(
N

(k−1)
i,t ;N

(∗)
i,t + 0.5

)
Pois

(
N

(∗)
i,t ;N

(k−1)
i,t + 0.5

)
 .

If mhn > u, where u ∼ Unif(0, 1), let N
(k)
i,t = N

(∗)
i,t ; otherwise, let N

(k)
i,t = N

(k−1)
i,t .

(b) If relative abundance yi,t was not observed, sample N
(k)
i,t from its posterior predictive

distribution NB
(
λ

(k)
i,t , τ

(k)
)

.

12. Save β(k), γ(k), K(k), θ(k), κ(k), τ (k), p(k), λ(k), and N (k).

13. Set k = k + 1 and return to Step 4. Iterate the algorithm through Steps 4 to 12 until

the sample size is large enough to approximate the posterior distributions.
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Figure 1. Estimated posterior predictive means and 95% credible intervals for total abundances, N(t), from the logistic and the

Malthusian models, overlaid with true total abundances, for the simulated data.
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Figure 2. Estimated posterior predictive mean total abundances, N(t), and their 95% credible intervals, overlaid with design-based

estimates and their uncertainties, for the sea otter case study.
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Figure 3. (a) Log of estimated posterior predictive mean equilibrium abundances, Ñk,Te , for the sea otter case study. (b) Log of

estimated posterior predictive equilibrium variance for the sea otter case study.
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Figure 4. Posterior predictive distributions of the effective carrying capacity, N(Te), versus the nominal carrying capacity, K|S|, for

the sea otter case study.
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Figure 5. Log of estimated posterior predictive mean sea otter abundances, Ni,t, in Glacier Bay, from 1993 to 2018.
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Figure 6. Different scales in homogenization: the black dots represent the small scale spatial variables, s, and the blue diamonds

represent the large scale spatial variables, ω. The homogenized coefficients associated with each large scale spatial variable are obtained

over a homogenization region, Ω, centered at that variable, as is demonstrated by the gray box for the top left blue diamond.
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(a) (b) (c) (d)

Figure 7. This series of figures from left to right conceptually illustrate the homogenization surfaces at one time point, t, in one MCMC

iteration. In (a) we have the small scale diffusion coefficients, δ(s), from which we obtain the homogenized diffusion coeficients, D(ω),

in (b). We then solve the homogenized PDE and map the large scale solutions, C0(ω, t), in (c), and finally in (d) we obtain the small

scale solutions, λ(s, t), to the original PDE by C0(ω, t)/δ(s).
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TABLES

Parameter True Logistic Malthusian
τ (dispersion) 0.5 0.49 (0.47, 0.51) 0.48 (0.46, 0.50)
β0 (intercept) 18 17.95 (17.59, 18.29) 18.12 (17.61, 18.55)
β1 (depth) -1.5 -1.49 (-1.54, -1.43) -1.52 (-1.57, -1.47)
β2 (distance to shore) 0.8 0.76 (0.72, 0.80) 0.75 (0.72, 0.79)
β3 (bottom slope) -0.3 -0.29 (-0.34, -0.24) -0.29 (-0.34, -0.23)
β4 (shoreline complexity) 1 0.97 (0.93, 1.01) 0.98 (0.94, 1.01)
θ (magnitude) 500 467 (412, 517) 786 (728, 845)
κ (range) 60 60 (47, 74) 81 (67, 98)
γ (growth rate) 0.25 0.25 (0.24, 0.26) 0.18 (0.17, 0.19)
K (density dependence) 5 4.79 (4.25, 5.38) -

Table 1. True parameter values and estimated posterior means (95% credible intervals) from
the logistic and the Malthusian models, for the simulated data.
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Parameter Posterior Mean 95% CI
τ (dispersion) 0.032 (0.030, 0.034)
β0 (intercept) 16.09 (15.91, 16.32)
β1 (depth) -1.12 (-1.30, -0.95)
β2 (distance to shore) 0.18 (0.08, 0.27)
β3 (bottom slope) -0.79 (-0.91, -0.64)
β4 (shoreline complexity) 0.81 (0.71, 0.91)
θ (magnitude) 649 (515, 801)
κ (range) 8.07 (7.07, 9.19)
γ (growth rate) 0.25 (0.23, 0.27)
K (carrying capacity) 6.12 (4.41, 8.74)

Table 2. Estimated posterior means and 95% credible intervals of model parameters, for the
sea otter case study.
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Total Abundance (Year) Posterior Predictive Mean 95% CI
N(1993) 893 (599, 1363)
N(1994) 749 (485, 1112)
N(1995) 915 (667, 1251)
N(1996) 1165 (907, 1495)
N(1997) 1020 (746, 1367)
N(1998) 1667 (1371, 2046)
N(1999) 647 (488, 878)
N(2000) 450 (323, 624)
N(2001) 1635 (1408, 1956)
N(2002) 1505 (1381, 1683)
N(2003) 2174 (1969, 2477)
N(2004) 1886 (1659, 2196)
N(2005) 4823 (4028, 5882)
N(2006) 2646 (2312, 3114)
N(2007) 4076 (3060, 5505)
N(2008) 4623 (3479, 6232)
N(2009) 7321 (6077, 8966)
N(2010) 6810 (5495, 8607)
N(2011) 6417 (4875, 8479)
N(2012) 7592 (6621, 9009)
N(2013) 7724 (5937, 10213)
N(2014) 8454 (6480, 11131)
N(2015) 9138 (7015, 11962)
N(2016) 9889 (7661, 12916)
N(2017) 7100 (5586, 9086)
N(2018) 8108 (6374, 10456)

Table 3. Estimated posterior predictive means and 95% credible intervals of total sea otter
abundances, N(t), in Glacier Bay, from 1993 to 2018.
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