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ABSTRACT

Performance of a newly developed decadal climate prediction system is examined using the low-resolution

Community Earth SystemModel (CESM). To identify key sources of predictability and determine the role of

upper and deeper ocean data assimilation, we first conduct a series of perfect model experiments. These

experiments reveal the importance of upper ocean temperature and salinity assimilation in reducing sea

surface temperature biases. However, to reduce biases in the sea surface height, data assimilation below 300m

in the ocean is necessary, in particular for high-latitude regions. The perfect model experiments clearly

emphasize the key role of combined three-dimensional ocean temperature and salinity assimilation in

reproducing mean state and model trajectories. Applying this knowledge to the realistic decadal climate

prediction system, we conducted an ensemble of ocean assimilation simulations with the fully coupled CESM

covering the period 1960–2014. In this system, we assimilate three-dimensional ocean temperature and

salinity data into the ocean component of CESM. Instead of assimilating direct observations, we assimilate

temperature and salinity anomalies obtained from the ECMWF Ocean Reanalysis version 4 (ORA-S4).

Anomalies are calculated relative to the sum of the ORA-S4 climatology and an estimate of the externally

forced signal. As a result of applying the balanced ocean conditions to themodel, our hindcasts show only very

little drift and initialization shocks. This new prediction system exhibits multiyear predictive skills for decadal

climate variations of the Atlantic meridional overturning circulation (AMOC) and North Pacific decadal

variability.

1. Introduction

Skillful forecasts on multiyear to decadal time scales

using a dynamical climate prediction system have po-

tential to provide useful information for sectors such as

agriculture, renewable energy, water resources, coastal
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communities, forestry, and fisheries (Meehl et al. 2014;

Meehl and Teng 2014; M. Chikamoto et al. 2015; Y.

Chikamoto et al. 2015a). Potential sources of multiyear

skill are often associated with slow ocean dynamical

processes (Teng andBranstator 2011; Robson et al. 2012;

Yeager et al. 2012; Chikamoto et al. 2013; Y. Chikamoto

et al. 2015a), as documented in recent studies focusing on

theAtlanticmeridional overturning circulation (AMOC;

Keenlyside et al. 2008; Teng et al. 2011; Matei et al. 2012;

Doblas-Reyes et al. 2013; Ham et al. 2014; Karspeck

et al. 2014) and the Pacific decadal oscillation (PDO;

Mochizuki et al. 2010, 2012; Chikamoto et al. 2013; Kim

et al. 2014).

Despite recent advances in initialization techniques,

many dynamical climate prediction systems still suffer

from model biases and initialization shocks, which can

severely contaminate model forecasts and may substan-

tially reduce predictive skills (Doblas-Reyes et al. 2011;

Magnusson et al. 2013; Smith et al. 2013; Hazeleger et al.

2013; Hawkins et al. 2014). In particular, systems that

rely on full data assimilation are likely to experience

such shocks, because models adjust in two ways to the

full initial conditions: 1) by responding to the difference

inmean state between observation andmodel simulation

(mean state bias) and 2) by adjusting to the unresolved

physical processes due to model deficiencies (systematic

error). Because the mean state biases present in all cli-

matemodels, the prediction systems will show seasonally

dependent drifts (Doblas-Reyes et al. 2011; Kim et al.

2012; Balmaseda 2017), which then needs to be removed

by empirically developed methods. Generally, the pre-

dictive skill for the remaining anomalies is a function

of the drift estimation method, ensemble size, and the

number of initial conditions tested in addition to the cli-

mate model and assimilation performance (Kim et al.

2012; Kharin et al. 2012; Narapusetty et al. 2014; Kimet al.

2014; Fu�ckar et al. 2014; Choudhury et al. 2017). Such a

posteriori correction can be particularly problematic for

non-Gaussian distributed variables, such as rainfall, river

runoff, and sea ice. Yet, full-field assimilation systems

are widely employed and have provided initial conditions

to skillful forecast systems, at least for seasonal outlooks

(Saha et al. 2014; Vialard et al. 2005). More recent sea-

sonal prediction studies use an online bias adjustment

method that estimates and corrects the bias during the

data assimilation process (Dee and Da Silva 1998; Bell

et al. 2004; Balmaseda et al. 2007). However, such meth-

ods would be computationally too demanding to be ap-

plied for decadal climate prediction experiments.

Another approach to manage model drift is anomaly

assimilation, in which the climate model is initialized

with the observed anomaly, instead of the fully observed

field. In this process, the model maintains its own

climatology during the assimilation process (Smith et al.

2007; Tatebe et al. 2012; Chikamoto et al. 2013). This

approach requires knowledge of both observed and

model simulated climatological conditions during the

assimilation process. The goal is to minimize the drift

that is otherwise induced by an initial condition mis-

match between observed and simulated mean climatol-

ogies (Doblas-Reyes et al. 2011; Meehl et al. 2014). This

approach shows a higher fidelity for non-Gaussian dis-

tributed climate variables (Y. Chikamoto et al. 2015b;

Chikamoto et al. 2017) compared to the full data as-

similation method with a posteriori drift removal.

However, the anomaly assimilation approach also has

disadvantages, associated with the fact that atmospheric

sensitivities to ocean forcing are calculated relative to a

biased model state, rather than the observedmean state.

Furthermore, the anomaly assimilation approach can

show localized model drifts during the predictions

(Chikamoto et al. 2012; Balmaseda 2017).

Decadal climate prediction systems also differ from

seasonal forecasting frameworks in the type of variables

that are being assimilated. Given the extensive spatiotem-

poral coverage of high-quality sea surface temperature

(SST) observations, it is appropriate to use these observa-

tions as a key component of a climate prediction system. In

fact, seasonal predictions using SST nudging show a rea-

sonable fidelity with skills that sometimes comparable with

more complex climate prediction and assimilation systems

(e.g., Alves et al. 2004; Luo et al. 2005). Whether SST

nudging is sufficient to initialize decadal climate states and

ocean circulation processes, such as the AMOC, is still a

matter of debate (Keenlyside et al. 2008; Swingedouw

et al. 2013; Dunstone and Smith 2010). The assumption is

that SST contains enough information to initialize even

subsurface ocean processes. If the atmospheric momen-

tum, freshwater, and heat flux anomalies were only a

function of the sea surface temperature anomaly, this

approach would be appropriate. However, a large frac-

tion of these fluxes, which also serve as drivers of thewind

and thermohaline circulation, is internally generated in

the atmosphere and is unrelated to the prevailing sea

surface temperature anomaly. To capture this variability,

either atmospheric data assimilation needs to be applied

(Karspeck et al. 2014) or the three-dimensional ocean

temperature and salinity fields that result from this forc-

ing need to be assimilated (Zhang et al. 2010).

The goal of this paper is 1) to determine the effect of

two- and three-dimensional temperature and salinity

assimilation on coupled model biases, model drift, and

predictability using a perfect modeling framework, and

2) to use this information to develop a new realistic

decadal climate prediction system for the Community

Earth System Model (CESM), which minimizes model
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drift and initialization shocks by assimilating three-

dimensional temperature and salinity anomaly fields

from the ECMWFOcean Reanalysis version 4 (ORA-S4)

(Balmaseda et al. 2013). Section 2 of the paper describes

the model setup and the key experiments. Section 3 as-

sesses the effect of assimilating temperature and salinity

at different depths on climate biases, drift, and pre-

dictability. In section 4, we introduce a new method to

minimize the effect of model biases on multiyear pre-

dictions. Section 5 discusses key results from our perfect

model and realistic hindcast experiments conducted with

CESM and a simple ocean data assimilation system

for the period from 1960–2014. We provide conclusions

in section 6.

2. Model and experiment

a. Climate model

In this study, we use a low-resolution version of the

fully coupled climate model CESM 1.0.3 (Shields et al.

2012). The model physical component is largely based

on the Community Climate System Model version 4

(Gent et al. 2011). The atmospheric and land compo-

nents have T31 spectral resolution with hybrid sigma

pressure coordinate consisting of 26 atmospheric levels

from sea level to 1hPa and 15 soil levels from the surface

to a depth of 35m. The ocean component consists of

POP2 with 60 levels, which is coupled with a sea ice

module and is used with horizontal resolution of ap-

proximately 38 latitude–longitude grid. A configuration

with a displaced North Pole is chosen to avoid pole

singularities and short time steps. Details of the basic

model performance in this configuration can be found

in results of CESM described in Shields et al. (2012) and

Y. Chikamoto et al. (2015b).

b. Perfect model experiment

After a 100-yr coupled model spinup, we perform a

900-yr-long preindustrial control simulation (CTL) using

constant greenhouse gas conditions for year 1850 CE,

which was introduced in Y. Chikamoto et al. (2015b).

Following the perfect modeling framework idea, we in-

terpret this CTL simulation as a ‘‘surrogate reality’’ or

‘‘surrogate observations.’’ For the assimilation experiment

(ASSM) in the perfect modeling framework, we conduct a

climate model integration from an arbitrary initial condi-

tion (e.g., 1 January ofmodel year 500).We then assimilate

monthly ocean data from theCTL simulation (model years

100–200) into POP2. The polar sea ice regions are ex-

cluded from the assimilation.

These so-called monthly surrogate observations were

then linearly interpolated to the daily fields. Our as-

similation is based on the incremental analysis update

scheme (Bloom et al. 1996; Huang et al. 2002). Analysis

increments are estimated from a temporally, spatially,

and vertically invariant model-to-observation ratio in

analysis errors (1/2) and added as forcing into the

model’s temperature and salinity tendency equations

during an analysis interval of one day (Mochizuki et al.

2010; Tatebe et al. 2012). Using this simple approach, we

evaluate the impacts of different ocean variable config-

urations on decadal climate initialization by partially

assimilating the oceanic temperature and salinity at the

surface, upper (.300m) ocean, and deeper (,300m)

ocean. The model experiments conducted in this study

are summarized in Table 1.

c. Realistic decadal forecasting experiments

Based on the assimilation system developed and

tested for the perfect model configuration, we conducted

decadal climate predictions using estimates of global

three-dimensional ocean temperature and salinity data.

These data are obtained from the ECMWF ORA-S4

ocean reanalysis during 1958–2014 period. Overall our

decadal prediction runs follow the experimental design

of CMIP5 (Taylor et al. 2009; Murphy et al. 2010).

Our decadal climate predictions are based on three

model experiments: the uninitialized, assimilation, and

initialized runs. In the 10-member CESM ensemble

simulations of the uninitialized run, we prescribe natural

and anthropogenic radiative forcings for the period

1850–2030. Initial conditions for the uninitialized run

are obtained from 10 random years of the preindustrial

control simulation (i.e., the CTL run). The uninitialized

but radiatively forced run is used to determine the

model climatological biases relative to the observations

and to identify the externally forced component Xext of

the three-dimensional temperature and salinity fields.

TABLE 1. Assimilation experiments in the perfect model framework.

Name Depth Variables Ensemble Period

SST Surface Temperature 1 100–150

SST–SSS Surface Temperature and salinity 1 100–200

TS upper 0–300m Temperature and salinity 1 100–200

TS deeper 300–3000m Temperature and salinity 1 100–200

T full 0–3000m Temperature 1 100–150

TS full 0–3000m Temperature and salinity 1 100–200
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The ensemble also allows us to obtain estimates of the

model’s internally generated climate variability Xint.

Estimates of the observed internal variabilityXo
int added

onto the model climatology Xm
clm and an estimate of

model externally forced signal Xm
ext are then assimilated

back into POP2 (i.e., the ocean component of CESM).

This method is similar to the anomaly assimilation

conducted by previous studies (Mochizuki et al. 2010;

Chikamoto et al. 2013) but takes into account the fact

that themodel’s externally forced componentmay differ

from the real anthropogenic signal. Details for this es-

timation of internal variability and externally forced

component are described in section 4.

The estimated three-dimensional monthly ocean

temperature and salinity fields, obtained as the sum of

the internal variability in the observations Xo
int, the es-

timate of the externally forced signalXm
ext, and themodel

climatology Xm
clm: Xa 5Xo

int 1Xm
ext 1Xm

clm (outside sea

ice regions) are referred to as the assimilated signal Xa.

Then Xa is infused into POP2 using the incremental

analysis update scheme (Bloom et al. 1996; Huang et al.

2002). We apply strong and weak model-to-observation

ratios (1/2 and 1/3, respectively) in analysis errors with a

temporally and spatially invariant value and add analysis

increments as forcing terms into the model’s tempera-

ture and salinity tendency equations during an analysis

interval of one day (Mochizuki et al. 2010; Chikamoto

et al. 2013). The assimilation runs include five ensemble

members with strong and five with weak model-to-

observation ratios and cover the period from 1958–

2014. From the assimilation run, we first obtain a pair

of atmospheric and oceanic initial conditions from the

10-member ensemble and then conduct a 10-yr-long

ensemble hindcast experiment starting from 1 January

every year from 1960 to 2014, which we call the initial-

ized run. By assimilating anomalies relative to themodel

climatology, our initialized run has a negligible climate

drift during the prediction period, as will be documented

in subsequent sections. Therefore, no posteriori cor-

rections of model drift need to be applied to the actual

predictions.

3. Effect of different assimilation types in a perfect
model framework

To identify the impacts of surface and subsurface

temperature and salinity conditions on climatological

biases and initial errors in SST, sea surface height (SSH),

and the AMOC, we devised a set of perfect model

experiments:

d assimilation of SST field,
d assimilation of SST and SSS fields,

d assimilation of upper (0–300m) ocean temperature

and salinity fields,
d assimilation of deeper (300–3000m) temperature and

salinity fields,
d assimilation of full-depth three-dimensional tempera-

ture field, and
d assimilation of full-depth three-dimensional tempera-

ture and salinity fields.

The experiments are summarized in Table 1. Here we

demonstrate that the assimilation of insufficient in-

formation cannot only affect the predictability and error

growth, but can also influence the model mean state

through dynamical inconsistencies.

a. Climatological biases

Climatological biases during the assimilation are cal-

culated here as the SST difference between the control

simulation and the assimilation experiments averaged

for 40 years after the 10-yr model spinup (Fig. 1). When

we assimilate the 3D temperature and salinity from the

surface to 3000m (TS full run), the climatological SST

bias is smaller than 0.1K almost everywhere (Fig. 1f). A

comparable result is also obtained by assimilating upper

temperature and salinity from the surface to 300m (TS

upper run; Fig. 1c). In contrast, the climatological SST

bias is larger when assimilating only deeper ocean data

(TS deeper run; Fig. 1d), indicating a minor role of slow

adjustment processes in the deep ocean for affecting

surface conditions. Assimilating the SST field in the

surface assimilation experiments (SST and SST–SSS

runs; Figs. 1a,b), we still find considerable SST biases,

which suggests that the thermodynamical structure of

the mixed layer and thermocline play a crucial role in

constraining the dynamical and thermodynamical state

of the surface. The climatological SST biases increases

further when we assimilate the 3D temperature data

only (T full run; Fig. 1e). These results imply that as-

similation of not only upper temperature but also sa-

linity data is critical to accurately initializing the

coupled model.

Assimilating deeper ocean conditions also contributes

toward reducing SSH climatological biases (Fig. 2). In

the TS full run, the climatological SSH bias is mostly

smaller than 1 cm, except for the Kuroshio–Oyashio

Extension region and high latitudes of the Southern

Ocean (Fig. 2f). Sea surface height biases in the TS

deeper run are comparable to the TS full run (Fig. 2d),

whereas the TS upper run shows a larger SSH bias in the

AtlanticOcean (Fig. 2c). The SST–SSS run (Fig. 2b) also

shows a similar SSH bias pattern compared to the TS

upper run, indicating that upper ocean data are not

sufficient to reduce the SSH biases. Consistent with
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these global maps, globally averaged root-mean-square

errors (RMSEs) in TS full and TS deeper runs relative to

the perfect model control run are less than half of those

in the TS upper and the SST–SSS runs (0.673, 0.944,

1.908, and 1.973 cm, respectively). The RMSE values for

SSH in the TS full and TS deeper runs are on average

smaller compared to those of the TS upper and SST–SSS

runs, implying that the density fields in the deeper ocean

are essential to capture the large-scale barotropic flows.

In addition to the deeper ocean assimilation run, we

find larger SSH biases in the SST and the T full runs

(Figs. 2a,e) compared to the other runs. This result also

highlights the importance of salinity initialization for

resolving large-scale ocean circulations as well as de-

cadal climate predictions. Specifically, the SSH bias

becomes worse when we assimilate temperature with-

out salinity in the deeper ocean (T full run), compared

to assimilations with only the surface fields (SST and

SST–SSS runs). This deterioration indicates that accu-

rate 3D salinity observations are required to realistically

initialize the seasonal to multiyear predictions.

b. Initial error

To evaluate how well the assimilated runs can re-

produce the perfect model trajectory of the control run,

we estimate the RMSE skill score between the control

and assimilated experiments as follows:

RMSE skill score (%)5

2
66664
12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
N

i51

(x0i 2 y0i)
2

�
N

i51

y02i

vuuuuuut

3
77775
3 100,

(1)

where x0 and y0 are anomalies in the assimilation and

control runs with a time i 5 1, . . . , N. Anomalies are

FIG. 1. Climatological biases of annual mean SST in partial assimilation experiments of (a) SST, (b) SST–SSS,

(c) TS upper, (d) TS deeper, (e) T full, and (f) TS full runs. Climatology is defined as the average from model year

110 to 150. Globally averaged RMSEs of climatological bias are denoted in upper-right corners.
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defined as deviations from the climatological mean for

40 years after the 10-yr spinup in each experiment. To

focus on the error of temporal variability, rather than on

the mean bias, we neglect the climatological biases in-

troduced by the assimilation and discussed in the pre-

vious section. Higher (lower) skill RMSE score values

indicate high (low) levels fidelity in reproducing the

trajectory of control run. These values are an indication

about how well certain physical variables constrain the

assimilation.

Figure 3 shows RMSE skill score of SST anomalies

in each assimilation experiment. Similar to the result

for the climatological SST biases, TS full and TS upper

(0–300m) runs show the highest RMSE skill scores of

SST anomalies in our experiments (Figs. 3c,f), which sug-

gest that upper ocean temperature variability contributes

to initializing SST anomalies through thermodynamical

processes, although SST anomalies are often disturbed

by atmospheric high-frequency noise. This upper ther-

modynamical contribution is confirmed by the T full run

(i.e., the 3D temperature without salinity assimilation):

high RMSE skill scores of SST anomalies, similar to

those found in the TS full run, except for the Oyashio

region and over the Labrador Sea (Fig. 3e). The surface

ocean assimilation also contributes to initializing SST

anomalies by buffering against atmospheric noise, par-

ticularly over the tropical Pacific andAtlantic (Figs. 3a,b),

but in general the constraints are relatively weak. Un-

derstandably, the assimilation of deep ocean TS does not

provide any constraints on the evolution of SST anoma-

lies (Fig. 3d).

Comparing the SSH skill score with the SST skill, we

find a stronger contribution from deeper ocean vari-

ability, as well as from the upper ocean (Fig. 4). Similar

FIG. 2. Climatological biases of annual mean SSH in partial assimilation experiments of (a) SST, (b) SST–SSS,

(c) TS upper, (d) TS deeper, (e) T full, and (f) TS full runs. Climatology is defined as the average from model year

110 to 150. Globally averaged RMSEs of climatological bias are denoted in upper-right corners.
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to our previous results, the TS full run shows the highest

skill of SSH anomalies globally (Fig. 4f). The TS upper

run also has the higher skill score, particularly in the

tropical oceans, whereas it is lower in the Southern

Ocean and the northwestern Pacific (Fig. 4c). Similar

features are found in the SST and SST–SSS runs: skill

scores are higher in the tropics and lower in the extra-

tropics (Figs. 4a,b). In contrast, the TS deeper run shows

higher skill scores outside the tropics (Fig. 4d). This

difference suggests that the deeper ocean initialization

contributes to improving decadal climate predictability

in the extratropical regions similarly to where deep ocean

assimilation ismost beneficial.We note that the SSH skill

score deteriorates in the tropical eastern Pacific when as-

similating the 3D temperature without salinity (T full run;

Fig. 4e) whereas the surface assimilation runs perform

better (Figs. 4a,b). Clearly, we should assimilate the 3D

temperature and salinity fields to most accurately ini-

tialize ocean density structures, which are critical for

successful decadal climate prediction. Impacts of tem-

perature and salinity assimilation onAMOC and Pacific

decadal variability are examined in the following two

subsections.

c. Atlantic meridional overturning circulation

Previous studies have demonstrated decadal pre-

dictive skill for the AMOC (Griffies and Bryan 1997;

Grötzner et al. 1999; Branstator and Teng 2010;

Keenlyside et al. 2008; Matei et al. 2012; Chikamoto

et al. 2013). The predictability originates from the long-

term adjustment processes of the thermohaline circula-

tion, which range from baroclinic wave to diffusive time

FIG. 3. RMSE skill score of SST anomalies in assimilation experiments of (a) SST, (b) SST–SSS, (c) TS upper,

(d) TS deeper, (e) T full and (f) TS full runs. A 12-month running mean is applied to anomalies. Anomalies are

calculated by deviations from the climatological mean for the model years 110–150. Globally averaged RMSE skill

scores are denoted in upper-right corners.
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scales. Still there is no consensus on how to optimally

initialize the AMOC state. Several mechanisms have

been proposed as key controlling factors for AMOC

variability: atmospheric wind forcing (Danabasoglu

et al. 2016), atmosphere–ocean interactions attributed

to SST variability (Keenlyside et al. 2008), 3D ocean

states (Dunstone and Smith 2010), and external forcing

such as aerosol concentration and volcanic eruption

(Booth et al. 2012; Swingedouw et al. 2013). In addition

to the issue of initializing the AMOC, there remains a

large model spread in simulating the AMOC and its

variability (Gregory et al. 2005; Cheng et al. 2013). This

situation is further exacerbated by incomplete obser-

vational constraints on the AMOC state (Keller et al.

2007). Using the partial assimilation approach and fol-

lowing the perfect model framework, we ascertain here

the effect of deeper ocean temperature and salinity data

in initializing AMOC variability.

Figure 5 shows the climatology and RMSE of annual

meanAMOCvariations in each assimilation experiment

relative to the perfect model control simulation.1 The

RMSE is obtained from difference of the annual mean

streamfunction between control and assimilation runs,

which include climatological biases. When we assimilate

3D temperature and salinity data from the control sim-

ulation from the surface to 3000m, the annual mean

AMOC variability is simulated well (Fig. 5f). A similar

FIG. 4. RMSE skill score of SSH anomalies in assimilation experiments of the (a) SST, (b) SST–SSS, (c) TS upper,

(d) TS deeper, (e) T full, and (f) TS full runs. A 12-month running mean is applied to anomalies. Anomalies are

calculated by deviations from the climatological mean for the model years 110–150. Globally averaged RMSE skill

scores are denoted in the upper-right corners.

1 The RMSE here is different from RMSE skill score in Figs. 4

and 5. High values of the RMSE indicate low reproducibility of the

control trajectory through assimilation.
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result (i.e., relatively small RMSE) is found in the

TS deeper run (Fig. 5d). When we assimilate the 3D

temperature without salinity, by contrast, the AMOC

structure is completely destroyed by unrealistic deep

convention, especially in low-latitude regions (Fig. 5e),

even though much of the decadal variability of the

AMOC is related to temperature variations. In par-

ticular by ignoring salinity anomalies, the density

structure of the ocean is severely altered and isopycnals

will shift dramatically, which will also lead to un-

realistic adjustment processes. Comparison of surface

assimilation with (Fig. 5b; lower RMSE) or without

salinity (Fig. 5a; higher RMSE) confirms the impor-

tance of salinity and freshwater fluxes in properly ini-

tializing the AMOC.

To further evaluate the role of surface versus sub-

surface temperature and salinity assimilation in repro-

ducing the trajectory of the AMOC in the control

simulation, we calculate the empirical orthogonal func-

tion (EOF) of the annual mean streamfunction anom-

alies in the control run. The first leading EOF mode

represents changes in deep convection strength around

FIG. 5. Annual mean climatology (contours) and RMSE (shaded) of AMOC in (a) SST, (b) SST–SSS, (c) TS

upper, (d) TS deeper, (e) T full, and (f) TS full assimilation experiments. AMOC is derived from the zonal mean

streamfunction (Sv) in the Atlantic. Line contours are at 5-Sv intervals, and zero contours are thickened.
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458N and explains 31.2% of the streamfunction variance

(Fig. 6a). Principal components projected onto this

pattern show that the decadal AMOC variability is

simulated well in the TS full and TS deeper runs (cor-

relation coefficients R are 0.58 and 0.48, respectively;

Figs. 6c,e). In contrast, the principal component in the

control run is poorly correlated with those in the

SST–SSS or TS upper runs (R 5 20.24 and 20.02, re-

spectively; Figs. 6b,d). These partial assimilation ex-

periments in the perfect model framework clearly show

that deeper ocean density assimilation constrains de-

cadal AMOC variability.

d. Pacific decadal variability

The North Pacific Ocean is home to considerable

amount of decadal climate variability, which can be

partly attributed to the slow Rossby wave adjustment

processes of the oceanic gyre circulation (Trenberth and

Hurrell 1994; Mantua et al. 1997; Di Lorenzo et al. 2008;

Meehl et al. 2009). By applying EOF analysis to the

FIG. 6. (a) Regressionmap associated with the first leading EOFmode of annual meanAMOC variability in the

control simulation. Time series projected onto this eigenvector of first EOFmode in the control (black lines) and

assimilation experiments (red lines) for the (b) SST–SSS, (c) TS full, (d) TS upper, and (e) TS deeper runs.

Correlation coefficients of time series in the assimilation experiments with the control are denoted in the upper-

right corner of (b)–(e).
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North Pacific SSH variability in the control run (Figs.

7 and 8), we identify two leading modes, which have

patterns similar to the observed Pacific decadal oscilla-

tion (PDO; Mantua et al. 1997) and the North Pacific

GyreOscillation (NPGO;Di Lorenzo et al. 2008). These

two modes explain together 43.2% of the total annual

mean SSH variance. To evaluate the impact of ocean

assimilation on the simulation of Pacific decadal vari-

ability, we projected the SSH anomalies in the TS full

run onto these EOF patterns. Consistent with the

RMSE skill score of SSH anomalies in Fig. 4, the TS full

run simulates temporal variations of these two leading

modes (Figs. 7c and 8c) well. Correlation coefficients of

the first and secondEOFmodes betweenCTLandTS full

runs attain values of R 5 0.90 and 0.96, respectively.

To further evaluate impacts of surface, upper, and

deeper ocean assimilation of temperature and salinity

on the generation of Pacific decadal variability, we

compared partial assimilation experiments in SST–SSS,

TS upper, and TS deeper runs. Although the SST–SSS

run captures some decadal variations in these two

leading modes, correlations of the first and second

FIG. 7. (a) Regression map associated with the first leading EOF mode of North Pacific SSH variability in the

control simulation. Time series projected onto this eigenvector of first EOF mode in the control (black lines) and

assimilation experiments (red lines) for the (b) SST–SSS, (c) TS full, (d) TS upper, and (e) TS deeper runs. Cor-

relation coefficients of time series in the assimilation experiments with the control are denoted in the upper-right

corner of (b)–(e).
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principal components with the control run are markedly

diminished (R 5 0.38 and 0.38, respectively; Figs. 7b

and 8b) compared to the TS full run. Better performance

is found when assimilating upper temperature and salinity

in addition to the surface observations (R5 0.79 and 0.86,

respectively; Figs. 7d and 8d), supporting previous find-

ings that upper ocean thermodynamics strongly influence

the Pacific decadal variability (Schneider et al. 1999;

Alexander et al. 1999; Xie et al. 2000; Schneider and

Cornuelle 2005). In contrast, there are notable differences

between the two leadingEOFmodes for the deeper ocean

assimilation. The first principal component in the TS

deeper run is weakly correlated with that in the control

run (R5 0.40 in Fig. 7e), which corresponds to that in the

SST–SST run. On the other hand, the second principal

component exhibits a high correlation between the con-

trol and TS deeper runs (R 5 0.74 in Fig. 8e), which is

almost comparable to the TS upper run (R 5 0.86 in

Fig. 8d). Results of the partial assimilation experiment

indicate that accurate initialization for Pacific decadal

variability requires deeper ocean dynamics as well as

upper ocean thermodynamical processes. This finding is

FIG. 8. (a) Regression map associated with the second leading EOFmode of North Pacific SSH variability in the

control simulation. Time series projected onto this eigenvector of first EOF mode in the control (black lines) and

assimilation experiments (red lines) for the (b) SST–SSS, (c) TS full, (d) TS upper, and (e) TS deeper runs. Cor-

relation coefficients of time series in the assimilation experiments with the control are denoted in the upper-right

corner of (b)–(e).
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also consistent with previous observational and model-

ing studies that suggested a physical interpretation of

the connection between North Pacific SSH variability and

equivalent barotropic Rossby waves (Qiu 2003; Qiu and

Chen 2005; Taguchi and Schneider 2014).

e. Summary of the perfect model experiments

To identify the impacts of surface and subsurface

temperature and salinity conditions on climatological

biases and initial errors in SST, SSH, and AMOC, we

examined six partial assimilation experiments under the

perfect model framework (Table 1). By assimilating the

3D temperature and salinity from surface to 3000m into

the model (i.e., TS full run), we minimized climatologi-

cal biases and initial errors in SST, SSH, and AMOC.

Whereas the upper ocean data assimilation (0–300m) is

crucial for initializing SST and SSH conditions inmost of

the global ocean, the deeper ocean data assimilation

(300–3000m) also plays a role for initializing SSH vari-

ability, especially in higher-latitude regions and related

to AMOC variability. From the perspective of which

ocean observations are available, SST is the most prev-

alent variable in terms of spatial coverage, number of

samplings, and data period. However, our perfect model

experiments suggest that the SST-only assimilation is

not good enough to initialize ocean conditions for

skillful decadal climate predictions. Furthermore, sa-

linity assimilation is also required to stabilize the model

simulation. When we assimilated 3D temperature

without salinity (i.e., the T full run), the simulated SSH

and AMOC conditions were completely destroyed.

Therefore, our results in perfect model experiment in-

dicate that the 3D ocean temperature and salinity ob-

servations are required to initialize the climate model

for skillful decadal climate predictions.

4. Realistic decadal climate prediction experiments
using CESM

For the perfect modeling framework, we demon-

strated that combined 3D temperature and salinity as-

similation provides more realistic initial conditions for

ensemble predictions. In reality, wemust often deal with

considerable biases between the observed climatology

and the model simulated climatology (see section 1).

Assimilating full observed fields into a global climate

model and then launching predictions leads to the un-

fortunate situation that the model has to adjust to both a

new climatological state and the actual initial errors.

Attempts to overcome this issue using observed anom-

aly assimilation (relative to the simulated model clima-

tology) have proven promising (Doblas-Reyes et al.

2011; Chikamoto et al. 2012; Magnusson et al. 2013).

However, anomaly assimilation is not sufficient to reduce

artificial climate drift during the actual decadal prediction

(Chikamoto et al. 2012; Smith et al. 2013), because

additional uncertainties exist with respect to the model

sensitivity to natural and anthropogenic radiative forc-

ings (Andrews et al. 2012). In this section, we describe a

new initialization approach for decadal climate predic-

tion, which tries to address this issue by assimilating

climate anomalies in the context of a gradually changing

and externally forced climate background field.

a. The externally forced component and model drift

Here we estimate the externally forced component in

the following way: We first decompose the observed 3D

temperature and salinity fields Xo into a mean clima-

tology Xo
clm (reference period: 1971–2000), internally

generated variability Xo
int, and an externally forced

component Xo
ext. Thus, we have Xo 5Xo

clm 1Xo
int 1Xo

ext.

Instead of using raw observational data, we have de-

cided to use an existing ocean data assimilation product

as an estimate of the gridded observational state. We

have chosen the ORA-S4 reanalysis conducted by the

ECMWF (Balmaseda et al. 2013). To estimate Xo
ext, we

perform a singular value decomposition (SVD) of the

ORA-S4 monthly mean temperature and salinity

anomalies (i.e., Xo
anm 5Xo 2Xo

clm 5Xo
int 1Xo

ext) and the

ensemble mean anomalies from the uninitialized run

(i.e., Xm
anm 5Xm 2Xm

clm 5Xm
int 1Xm

ext) at each depth for

the 1960–2005 period. The two fields of the leading SVD

mode are then used as an estimate for Xo
ext and Xm

ext

because the global warming trend associated with the

external forcings is the dominant variation in the en-

semble mean of the uninitialized run (Mochizuki et al.

2012; Chikamoto et al. 2013). Our estimation assumes

that the internally generated variability is negligible for

the multimember ensemble mean of the uninitialized

run (i.e., Xm
int ’ 0) and that covariance between in-

ternally generated variability and the externally forced

component is much smaller than the covariance of the

externally forced components between observation and

simulation of the uninitialized run (i.e., [Xo
int, X

m
ext] �

[Xo
ext, X

m
ext] where [a, b] denotes symbolically the matrix

norm of the covariance tensor between a and b).

Figure 9 shows the first SVD modes of monthly SST

and SSS anomalies between the reanalysis (ORA-S4)

and the 10-member ensemble mean of the uninitialized

run, which explains 92.2% and 56.5% of total co-

variances, respectively. We observe a dominant warm-

ing trend almost globally in both reanalysis and the

model, although SST cooling events briefly occur after

major volcanic eruptions (particularly the 1963/64

Agung, 1982 El Chichon, and 1991 Mount Pinatubo

events) (Figs. 9e,f). Temporal evolutions of the first
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leading SVDmodes for SSS also show positive trends in

both reanalysis and the model. This first SSS SVDmode

also captures a freshening in the tropical western Pacific

as reported by observational analysis of a 50-yr record

(Durack and Wijffels 2010; Pierce et al. 2012). These

results suggest that our approach is reasonable to esti-

mate the observed and simulated externally forced

components of climate variability. Results for other

depth levels are not shown here but the first SVDmodes

of temperature and salinity at each depth between the

reanalysis and the ensemble mean of the historical run

explain more than 80% of total covariances in deeper

ocean (,1 km).

In spite of overall good correspondence in estimated

trend amplitudes between the uninitialized ensemble

mean model simulation and observations represented

FIG. 9. First leading SVD modes of (left) SST and (right) SSS anomalies between (a),(b) observations and

(c),(d) the ensemble mean of the uninitialized run. The squared covariance fractions (SCF) explained by the first

leading SVD modes of SST and SSS and their temporal correlation coefficients R between the expansion

coefficients for the observation and the model are indicated above (a) and (b). Anomalous patterns are estimated

from regression maps with the expansion coefficients. Color units are denoted in the upper-right corner. (bottom)

Time coefficients for the first SVDmodes of (e) SST and (f) SSS in the observation (black) and the ensemble mean

of uninitialized runs (red).
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here by the ORA-S4 state estimate, we find also im-

portant discrepancies. In the North Pacific, particularly,

the first SVD mode of SST anomalies shows cooling in

the reanalysis but large warming in the model (Figs.

9a,c). In addition to this SST discrepancy, SSS anomalies

in the North Pacific and large areas of the Arctic show

opposite signs between the reanalysis and the model

(Figs. 9b,d). Such externally forced differences due to

Xo
ext 2Xm

ext may still represent a potential source of

prediction errors. To mitigate this effect, our approach

removes these biases estimated from the first SVD

modes of anomalous temperature and salinity fields at

each depth between the reanalysis and the ensemble

mean of the uninitialized runs. From the difference be-

tween Xo
anm and our SVD-based analysis of Xo

ext, we

then calculate Xo
int. The final data assimilated into the

CESM ocean model using the incremental analysis up-

date technique described above are calculated from

Xo
int 1Xm

ext 1Xm
clm.

Our decadal forecasts are then initialized once a year

on 1 January, from the bias-adjusted trajectory for the

period 1960–2014 (see section 2). Figure 10 shows SST

and SSH ratios of the model drifts in the initialized run

to the RMSE between the assimilation and the unini-

tialized runs for various lead times. Small values (in-

dicated by darker red values) represent a small forecast

drift. Because of our bias adjusted assimilation method,

the RMSE should be comparable in magnitude to the

standard deviation of observed internal variability. The

model drift is estimated from the initialized run on

FIG. 10. Ratios between the magnitude of model climate drift during prediction and the RMSE of the uninitialized

run relative to the ASSM run in (left) SST and (right) SSH for (a),(b) 1-, (c),(d) 3-, and (e),(f) 5-yr lead time.
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the basis of Chikamoto et al. (2012), that is, by calcu-

lating the sum of anomaly differences between the

assimilation and initialized runs (ensemble mean) for all

hindcast cases. The ratio of SST and SSH drifts in Fig. 10

is less than one everywhere at all lead times, indicating

that drift in our system for various lead times is less than

the magnitude of observed internal variability.

b. Predictive skills in the drift-free prediction system

To assess the predictive skills in our newly developed

drift-free prediction system, we evaluate the anomaly

correlation coefficient (ACC) of surface air temperature

(SAT), ocean heat content from the surface to 300m

(OHC300), and SSH between the observations and the

ensemble mean of initialized/uninitialized runs (Figs.

11–13 ). Observation-based datasets for SAT, OHC300,

and SSH are obtained from NASAGISTEMP version 3

(Hansen et al. 2010), an ocean objective analysis named

ProjD version 7.2 (Ishii et al. 2017), and ORA-S4

(Balmaseda et al. 2013), respectively. Anomalies are

defined as deviation from the climatological mean for

1960–2014 in both observations and the uninitialized run,

whereas for the initialized run, the climatological mean is

calculated based on a function of lead time. The impact of

FIG. 11. (left) Predictive skills of surface air temperature anomalies and (right) the impact of initialization for

(a),(b) 1-, (c),(d) 2-, and (e),(f) 2–5-yr lead time. Predictive skills aremeasured by anomaly correlation coefficients of the

initialized and the uninitialized runs compared to the observation (NASA GISTEMP v3; Hansen et al. 2010). Corre-

lation coefficients of 0.18 correspond to the statistical significance at 90% levels with 50 degrees of freedom on the basis

of a one-sided Student’s t test. The impact of initialization is estimated by the difference in predictive skills between the

initialized and the uninitialized runs.Dotted areas indicate the statistically significant ($90%) difference in the anomaly

correlation skill between the initialized and the uninitialized runs, as measured by Fisher’s z score.
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initialization is estimated by assessing the difference of

ACC between initialized and uninitialized runs.

Our initialized run shows significant predictive skills

of SAT anomalies across the entire globe at the first year

lead time, except for the Antarctic region (Fig. 11a), and

becomes gradually lower at the second year lead time

(Fig. 11c). Whereas this significant predictive skill of

SAT is mostly contributed from the long-term warming

trend associated with the externally forced component,

we still find the impact of ocean initialization for skill

enhancement particularly over the ocean, such as in the

tropical central and eastern Pacific, the higher-latitude

North and South Pacific, the North Atlantic around

the Labrador Sea, and the Indian Ocean (Figs. 11b,d).

Because of the large contribution from the long-term

warming trend, theACCpredictive skills in the initialized

run become much higher at 2–5-yr lead time (Figs. 11e,f)

compared to the annual mean predictions. These char-

acteristics of SAT predictive skills in our initialized run

are consistent with results from decadal prediction experi-

ments fromphase 5 of theCoupledModel Intercomparison

Project (CMIP5) (Boer et al. 2016).

FIG. 12. (left) Predictive skills of ocean heat content averaged from the surface to 300m and (right) the impact of

initialization for (a),(b) 1-, (c),(d) 2-, and (e),(f) 2–5-yr lead times. Predictive skills are measured by anomaly

correlation coefficients of the initialized and the uninitialized runs compared to the observation (ProjDv7.2; Ishii

et al. 2017). Correlation coefficients of 0.18 correspond to the statistical significance at 90% levels with 50 degrees of

freedom on the basis of a one-sided Student’s t test. The impact of initialization is estimated by the difference in

predictive skills between the initialized and the uninitialized runs. Dotted areas indicate the statistically significant

($90%) difference in the anomaly correlation skill between the initialized and the uninitialized runs, as measured

by Fisher’s z score.

15 SEPTEMBER 2019 CH IKAMOTO ET AL . 5983



Our ocean assimilation approach also exhibits signif-

icant predictive skills in the OHC300 (Fig. 12). Consis-

tent with the SAT predictive skills, the initialized run

shows high ACC predictive skills of OHC300 in the

global ocean at the first year lead time (Fig. 12a). For

these significant predictive skills, initialization enhances

the skill particularly in the Pacific Ocean, the North

Atlantic Subpolar Gyre region, and the Indian Ocean

(Fig. 12b). The ACC predictive skills and the initializa-

tion impacts at 2- and 2–5-yr lead times also show similar

patterns to those at 1-yr lead time, although the corre-

lations have smaller amplitude (right panels in Fig. 12).

Whereas predictive skill of the OHC300 in the equato-

rial Pacific diminishes greatly beyond 1-yr lead time,

primarily due to the predictable limit of El Niño
Southern Oscillation (Timmermann et al. 2018), the

slow ocean dynamics may be prolonging predictive skills

in the mid- and high-latitude regions. In the North At-

lantic, especially, the high predictive skills of OHC300

around the Labrador Sea may be related to pre-

dictability of AMOCas described in the next subsection.

Figure 13 shows the ACC predictive skills of SSH in

the initialized and the uninitialized runs compared to the

detrended SSH anomalies in the ORA-S4. Because of

FIG. 13. Predictive skills of SSH anomalies in the (left) initialized and (right) uninitialized runs for (a),(b) 1-,

(c),(d) 2-, and (e),(f) 2–5-yr lead times. Anomalies are defined from the deviation of the climatological mean for

1960–2015, and the estimated trends by the least squares quadratic are removed in each grid point. Predictive skills

are measured by anomaly correlation coefficients of the initialized and the uninitialized runs compared to the

reanalysis (ORA-S4; Balmaseda et al. 2013). Correlation coefficients of 0.18 correspond to the statistical signifi-

cance at 90% levels with 50 degrees of freedom on the basis of a one-sided Student’s t test.
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the Boussinesq approximation in the POP2, our model

cannot account for the observed long-term SSH trend

(Jordà and Gomis 2013). Therefore, the SSH predictive

skills estimated here relate to the internally generated

climate predictability rather than the combination of

the internally generated variability and the externally

forced component. As a result, SSH predictive skills in

the uninitialized run are almost negligible (right panels

in Fig. 13), whereas the initialized run exhibits signifi-

cant predictive skills globally at 1-yr lead time (Fig. 13a).

Skills are persistent at 2- and 2–5-yr lead times in the

North Pacific, the Southern Ocean, and parts of the

Atlantic Ocean (Figs. 13c,e). The longer predictive skills

in the North Atlantic and North Pacific imply that the

AMOC and the North Pacific decadal variability, re-

spectively, are predictable in our system.

c. The Atlantic meridional overturning circulation

To quantify the forced and internally generated vari-

ability of the AMOC, we calculated the leading EOF of

the annual mean Atlantic meridional streamfunction

(Fig. 14) using the reanalysis (ORA-S4) and the assim-

ilated and uninitialized CESM simulations. The first

mode for the reanalysis and the corresponding principal

component (Fig. 14a, and colored bars in Fig. 14d)

document a slowing down of the large-scale AMOC

structure over the observational period. The assimila-

tion run captures these temporal variations well. How-

ever, the structure of the corresponding overturning

circulation changes is more confided to higher latitudes

of the North Atlantic. Yet, we see that the 3D temper-

ature and salinity assimilation is successful in re-

producing key feature of the AMOC in the ORA-S4.

Interestingly, we find also a weakening trend of the

AMOC in the uninitialized run (Figs. 14c,d), thus

suggesting a potential, albeit weak, contribution from

external forcings to the dynamics of the AMOC during

the past 60 years. External forcing of the AMOC has

also been found in previous studies (Cheng et al. 2013).

To quantify the potential multiyear predictability of

AMOC variations, we project the predicted stream-

function anomalies simulated by the initialized and

FIG. 14. Regression maps associated with the first leading EOF mode of annual mean streamfunction anomalies

in the Atlantic for (a) reanalysis ORA-S4, (b) assimilation, and (c) uninitialized run. (d) Principal components in

observation (color bars), assimilation (black line), and uninitialized run (red line). Parentheses in (d) denoteRMSE

of time series compared to the observation.
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uninitialized runs onto the EOF1 pattern in the as-

similation run (Fig. 15). Even though the uninitialized

run shows the weakening AMOC trend (red lines in

Figs. 15b–e), its contribution to the AMOC predict-

ability is quite limited, yielding only 20% improvement

(RMSE 5 0.80). The initialized run outperforms the

predictive skills in the uninitialized run considerably dur-

ing the initial 4-yr lead time (black lines in Figs. 15b–e),

and we see a high degree of predictability and persis-

tence in the AMOC index used here. In particular, the

initialized run captures the pronounced AMOC weak-

ening since 2005, even at a 4-yr lead time, which is con-

sistent with Keenlyside et al. (2008). Our multiyear

AMOCpredictability originates from the slow baroclinic

adjustment process of the AMOC in response to wind

and density forcings. Some previous studies have sug-

gested that external forcings related to aerosol emissions

and volcanic eruptions can further extend the long-

term predictability of the AMOC (Booth et al. 2012;

Swingedouw et al. 2013). Regardless of the underlying

FIG. 15. (a) Regressionmap associatedwith the first EOFmode for AMOC variability in the assimilation run and

time coefficients projected onto that pattern in the assimilation (color), uninitialized (red), and initialized runs

(black) for (b) 1-, (c) 2-, (d) 3-, (e) 4-yr lead times. Correlation coefficient between the assimilation and initialized

runs is denoted at the upper-right corner of (b)–(e). Parentheses in legends are RMSE of time coefficients with the

assimilation run (see Table 2).
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mechanisms, our CESMdecadal prediction runs indicate

that the 3D ocean temperature and salinity initialization

is important to skillfully predict AMOC variability.

Consistent with the potential AMOC predictability,

our initialized run also shows comparable predictive

skills compared to the observational estimates for

AMOC index and OHC300 variability in the North

Atlantic Subpolar Gyre (SPG) (Tables 2 and 3 ). Here,

the AMOC index and SPG OHC300 are defined as the

maximum streamfunction at 458N (Sv; 1 Sv[ 106m3 s21)

and the area average of OHC300 (458–658N 608–108W),

respectively. Note that the strengthened (weakened)

AMOC index accompanies the upper ocean tempera-

ture cooling (warming) in the North Atlantic, which is

simulated well in the assimilation run (Figs. 16a,b). For

these observation-based AMOC and SPG OHC300 in-

dices, our initialized run outperforms the ACC pre-

dictive skills in the uninitialized run for 3-yr lead time

(Figs. 16c–f and Table 3). These results also verify the

importance of 3D ocean temperature and salinity initial-

ization for AMOC predictability.

d. North Pacific decadal variability

To determine decadal predictability in the North Pa-

cific Ocean, we first calculate the EOFs of annual mean

SSH anomalies in the assimilation runs (Figs. 17 and 18).

Consistent with the CTL run, the first and second lead-

ing EOF modes show PDO-like and NPGO-like SSH

patterns, respectively (Figs. 17a and 18a). These two

modes together explain 40.5% of total variance. In the

first EOF mode, the uninitialized run captures a large

phase change from 1991 to 1992 associated with the Mt.

Pinatubo eruption (red lines in Figs. 17b–e), indicating

the contribution of externally forced radiative changes

to PDO-like SSH variability. However, the low pre-

dictive skills in the uninitialized run (15% and 5% skill

improvements in the first and second EOF modes

compared to the standard deviation, respectively) sug-

gest that the long-term trend associated with the

externally forced component plays only a minor role in

the generation of Pacific decadal variability (red lines in

Figs. 17 and 18).

In contrast to the uninitialized run, the initialized run

shows higher predictive skill for the two leading EOF

modes, even at several years lead time. We also identify

a typical 2–4-yr damping time scale of the predicted

anomalies in the initialized run toward the uninitialized

prediction (black lines in Figs. 17b–e and 18b–e). This

damping toward the uninitialized simulation is much

larger for the first EOF mode compared to the second

mode. In summary, the initialized run, compared to the

uninitialized run, exhibits higher predictive skills for the

first EOFmode for lead time up to 3 years (black lines in

Figs. 17b–e) and for the second mode up to 4 years

(black lines in Figs. 18b–e).

5. Discussion

We have demonstrated that our decadal climate pre-

diction system exhibits multiyear predictive skills for

variations of the AMOC and for North Pacific decadal

SSH variability. Because our skill assessment is based on

the comparison between initialized prediction runs and

the assimilation run, we expect the true skill (compari-

son against observations) to be less. In fact, the ACC

predictive skills of the AMOC index in the initialized

run compared to the reanalysis are slightly less than the

EOF-based predictive skills, except for 2-yr lead time

(Tables 2 and 3). The reduction of skill when evaluating

against observations would originate from additional

discrepancies between observations and the initialized

runs, such as differences in the externally forced com-

ponent, resolution, spatiotemporal sampling, data cov-

erage, period, and other inconsistencies. Therefore, our

skill estimates indicate the current upper limit of pre-

dictive skills in our system, although the current pre-

dictive skills could be further enhanced by improving

our prediction system (e.g., increasing the ensemble size

and applying a more sophisticated assimilation scheme).

Nevertheless, our results in the perfect model and the

real hindcast experiments provide an encouraging per-

spective on the feasibility of decadal climate predictions

TABLE 2. Potential predictive skills of the first EOF mode in the

AMOC, the first EOF mode in the North Pacific SSH (PDO), and

the second EOF mode in the North Pacific SSH (NPGO). The

predictive skills are measured by the ACC and RMSE between the

assimilation and the uninitialized/initialized runs.

Initialized run

Uninitialized run 1 yr 2 yr 3 yr 4 yr

AMOC ACC 0.71 0.92 0.76 0.72 0.69

RMSE 0.80 0.41 0.65 0.70 0.74

PDO ACC 0.56 0.93 0.81 0.62 0.56

RMSE 0.85 0.37 0.64 0.81 0.85

NPGO ACC 0.31 0.95 0.79 0.59 0.35

RMSE 0.95 0.31 0.61 0.77 0.91

TABLE 3. Predictive skills of OCH300 anomalies in the North

Atlantic SPG region and AMOC index measured by the anomaly

correlation coefficient between the observation-based estimates

and the uninitialized/initialized run.

Initialized run

Variable Uninitialized run 1 yr 2 yr 3 yr 4 yr

SPG OHC300 0.36 0.62 0.48 0.37 0.40

AMOC index 0.61 0.91 0.83 0.72 0.58
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that are achievable even with lower-resolution climate

models, such as the CESM configuration used here.

Recent studies confirm that AMOC variations are pre-

dictable on interannual to decadal time scales (Griffies

and Bryan 1997; Grötzner et al. 1999; Keenlyside et al.

2008; Pohlmann et al. 2009; Teng and Branstator 2011;

Branstator and Teng 2010; van Oldenborgh et al. 2012;

Teng et al. 2011; Robson et al. 2012; Chikamoto et al.

FIG. 16. Correlation maps of OHC300 with the AMOC index (defined as the maximum of the streamfunction at

458N) in (a) the observation-based estimate and (b) the assimilation run. The observation-based estimates of

OHC300 and AMOC index are obtained from ProjDv7.2 and ORA-S4. Also shown are temporal evolutions and

predictions for (c),(e) the SPG OHC300 (458–658N, 608–108W) and (d),(f) the AMOC index for 1- and 2-yr lead

times. Black solid and dashed lines denote the observation-based estimates and the assimilation runs, respectively.

The blue line and red marks correspond to the uninitialized and initialized runs, respectively. Red error bars

represent the minimum to maximum range of ensemble members in the initialized run. The ACC predictive skills

are denoted at the upper-right corner in each panel (see also Table 3).
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2013; Matei et al. 2012; Yeager et al. 2012; Doblas-Reyes

et al. 2013; Swingedouw et al. 2013; Ham et al. 2014;

Karspeck et al. 2014). However, it still remains unclear

how to best initialize AMOC variations in global climate

models (Dunstone and Smith 2010; Meehl et al. 2014).

This debate arises from insufficient observations, lack of

knowledge of the actual drivers of AMOC variability,

large model diversity in representing the AMOC, and

short data coverage to evaluate the AMOC decadal var-

iability. According to our 90-yr-long perfect model

experiments, the SST assimilation is insufficient to ini-

tialize AMOC states appropriately. In fact, our SST as-

similation run in the perfect model framework shows

large climatological biases in both SST and SSH fields in

the North Atlantic (Figs. 1a and 2a). Furthermore, our

surface and upper ocean data assimilation runs (above

300m) fail to capture the AMOC variability (Figs. 6b,d).

In contrast to these upper ocean assimilation runs, the

complete 3D ocean temperature and salinity assimilation

run simulates well the targeted and observed AMOC

FIG. 17. (a) Regression map associated with the first EOF mode for North Pacific SSH variability in the as-

similation run and time coefficients projected onto that pattern in the assimilation (color), uninitialized (red), and

initialized runs (black) for (b) 1-, (c) 2-, (d) 3-, (e) 4-yr lead times. Correlation coefficient between the assimilation

and initialized runs is denoted at the upper-right corner of (b)–(e). Parentheses in legends are RMSE of time

coefficients with the assimilation run (see Table 2).
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variability in the perfect model and the real world, as

represented here by the ORA-S4 ocean reanalysis es-

timate (Figs. 6c and 15). These results support the hy-

pothesis by Dunstone and Smith (2010), in which 3D

ocean temperature and salinity assimilation is crucial

for AMOC initialization. Using the SST nudging ap-

proach, Swingedouw et al. (2013) argued that a volcanic

eruption contributes to the AMOC decadal predictabil-

ity. However, our results show only a minor impact of

volcanic eruptions on the AMOC predictive skill in the

uninitialized run (Figs. 14 and 15). Because of the pre-

vailing model uncertainty in how climate models react to

external radiative forcings, further studies need to be

conducted to clarify the AMOC response to external

forcing factors.

Our perfect model experiments demonstrate that as-

similating salinity in addition to temperature is impor-

tant for skillful initialization of the model, especially to

resolve well the AMOC variability. When we assimilate

the 3D ocean temperature without salinity, the model

FIG. 18. (a) Regression map associated with the second EOF mode for North Pacific SSH variability in the

assimilation run and time coefficients projected onto that pattern in the assimilation (color), uninitialized (red), and

initialized runs (black) for (b) 1-, (c) 2-, (d) 3-, (e) 4-yr lead times. Correlation coefficient between the assimilation

and initialized runs is denoted at the upper-right corner of (b)–(e). Parentheses in legends are RMSE of time

coefficients with the assimilation run (see Table 2).
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simulated AMOC is severely degraded (Fig. 5e). Tem-

perature constraint on the AMOC, in the absence of

salinity data assimilation, is also reported by pacemaker

experiments in the CMIP6 Decadal Climate Prediction

Project-Component C (Boer et al. 2016). Model drift in

the AMOC is sensitive to the strength of SST restoring

time scales and it appears that the additional SSS re-

storing contributes to reducing the unrealistic model

drift. Temperature and salinity assimilation helps to

maintain the appropriate density condition.

The importance of temperature and salinity contri-

butions to density implies a disadvantage of anomaly

assimilation. Since ocean density is a nonlinear function

of temperature and salinity, model mean-state biases of

temperature and salinity may cause unrealistic simula-

tion of the ocean density structure. As a result, the

anomaly assimilation approach may have poorer pre-

dictive skills of density-driven ocean circulations com-

pared to the prediction system that utilizes full-field

assimilation. An example of the disadvantage of our

anomaly assimilation approach is during the mid-1990s

when the initialized run failed to predict the rapid

warming of OHC300 in the SPG region (Figs. 16c,e)

even though some prediction systems using full-field

ocean assimilation successfully predicted this warming

several years in advance (Robson et al. 2012; Yeager

et al. 2012; Msadek et al. 2014).

Concerning North Pacific SSH variability, we identi-

fied two leading decadal modes that resemble the ob-

served PDO and NPGO modes (Figs. 7, 8, 17, and 18).

Our perfect model experiments indicate that the 3D

ocean temperature and salinity assimilation reproduces

the temporal variations of PDO, which is defined as the

first EOF mode of SSH variability (Fig. 7c). This PDO-

like SSH variability is mainly attributed to upper ocean

thermodynamics and dynamics (Fig. 7d), whereas sur-

face or deeper ocean data assimilation play only second-

ary roles in constraining the PDO-like SSH variability

(Figs. 7b,e).

Because the full depth ocean assimilation includes

upper ocean data, our real hindcasts showed multiyear

predictive skills for PDO-like SSH variability (Fig. 17).

Kim et al. (2014) assessed the PDO predictability using

six prediction systems in the CMIP5 decadal hindcast

experiments and found that half of those systems show

high predictive skills over the North Pacific Ocean.

Consistent with our results showing the importance of

assimilating the full ocean depth, those three well-

performing prediction systems incorporate not only

SST, but also 3D ocean temperature and salinity ob-

servations, in their initialization approaches (Meehl

et al. 2014). Moreover, Kim et al. (2014) demonstrated

that PDO predictions further improve by correcting

model systematic errors. Our SVD analysis between

observations and the uninitialized run also highlights

large model biases of the externally forced component

over the North Pacific Ocean (Fig. 9). Therefore, higher

predictive skills of the PDO may be achieved by ini-

tializing 3D ocean data, as well as taking into account

the model biases associated with the climate response to

radiative forcings.

Our decadal prediction experiments also document

multiyear predictive skill for NPGO variability. Com-

pared to the PDO, NPGO SSH predictability is enhanced

more by accounting for deeper ocean assimilation (Fig. 8),

but we find a smaller role of the externally forced com-

ponent (Fig. 18). Whereas PDO predictive skill is con-

taminated by many high-frequency atmosphere–ocean

phenomena (Schneider and Cornuelle 2005; Mochizuki

et al. 2014), our model experiments suggest that the long-

term memory of NPGO is mainly attributed to low-

frequency ocean dynamics in the North Pacific. Because

of the strong connection between the NPGO andmarine

nutrient variations (Di Lorenzo et al. 2008), our suc-

cessful NPGO prediction could be beneficial for marine

ecosystem predictions (M. Chikamoto et al. 2015).

However, our findings are inconsistent with Lienert and

Doblas-Reyes (2013), who suggested that the long-term

SST trend is the main contributor to the NPGO pre-

dictive skills, whereas the benefits of initialization are

limited to two years lead. Further intermodel compari-

son of decadal climate prediction may yield better un-

derstanding of such discrepancies.

6. Conclusions

We developed a new decadal climate prediction sys-

tem for CESM, which employs a new bias adjustment

approach to reduce unrealistic climate drift and initiali-

zation shocks. Decadal climate predictions are per-

formed in two steps: 1) we adjust the observations by

removing model biases in the climatology and exter-

nally forced component, and 2) then initialize the cli-

mate model based on those adjusted observations. This

paper focuses on the second step to explore how to

initialize the climate model for decadal climate pre-

dictions using both a perfect model framework and a

real world setting. By estimating model biases in cli-

matological states and the externally forced compo-

nent, our initialization approachminimizes climate drift

during the prediction. This approach is readily adapt-

able to evaluating predictability of non-Gaussian dis-

tribution variables such as precipitation and soil water

content (Chikamoto et al. 2017). Our technique to es-

timate the externally forced component is also appli-

cable to evaluate uncertainties of the climate response
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to radiative forcings in ocean reanalyses as well as the

forthcoming CMIP6 climate models (Boer et al. 2016).

For the perfect model framework, our assimilation

experiments demonstrate that initialization with the full

depth ocean temperature and salinity is crucial for

proper initialization of the model, particularly in the

extratropics. Although some previous studies demon-

strated considerable skill in regions such as the North

Atlantic by nudging model data to the observed SST

(Luo et al. 2005; Keenlyside et al. 2008; Swingedouw

et al. 2013), our partial assimilation experiments in-

dicate that 3D temperature and salinity initialization is

superior to surface initialization methods, as it signifi-

cantly reduces climatological and anomalous errors for a

variety of ocean dynamical states. Specifically, deeper

ocean temperature and salinity fields are required to

initialize the low-frequency AMOC variations. We also

find contributions of deeper ocean states to the domi-

nant decadal SSH variability in the midlatitude North

Pacific. Therefore, essential activities to improve de-

cadal climate predictability include development, main-

tenance, and operational monitoring for the temperature

and salinity observations from the surface to deeper

ocean, such as the Moored Buoy Array and Argo floats.

This result may also provide an implication for the design

of ocean reanalyses: how to impose multivariate and

spatial correlations under the limited observations as well

as estimate the uncertainty associated with the lack of

observations in order to avoid spurious circulations.

To conduct realistic decadal climate predictions of the

observational period, we initialized the CESM climate

model using 3D temperature and salinity fields esti-

mated from ocean reanalysis data (i.e., ORA-S4). Even

though there is a model discrepancy between the ocean

reanalysis products and our assimilation system, our

initialized experiments show multiyear predictive skills

of ocean dynamical variations in the North Atlantic

and North Pacific. We expect that decadal predictions

could become beneficial in future for fisheries man-

agement and perhaps additional marine planning ac-

tivities (Mantua et al. 1997; Di Lorenzo et al. 2008; M.

Chikamoto et al. 2015).

A limitation of our decadal climate prediction ap-

proach is that we rely on an existing 3D ocean reanalysis

dataset. To become operational, the data assimilation

system will need to handle ocean profiles with both

spatially and temporally inhomogeneous observational

network, especially for the multidecadal time scales. It

remains challenging to apply such an ocean assimilation

system to fully coupled climate models such as CESM

because of the large climatological biases and systematic

errors in the models. By utilizing an anomaly assimila-

tion approach, we provide an interim option to skillfully

predict decadal climate variability, which may be espe-

cially useful until climate model biases are improved.
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