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Abstract 

Latent state-trait (LST) models are commonly applied to determine the extent to which observed 

variables reflect trait-like versus state-like constructs. Mixture distribution LST (M-LST) models 

(Courvoisier, Eid, & Nussbeck, 2007) relax the assumption of population homogeneity made in 

traditional LST models, allowing researchers to identify subpopulations (latent classes) with 

differing trait- and state-like attributes. Applications of M-LST models are scarce, presumably 

because of the analysis complexity. We present a step-by-step tutorial for evaluating M-LST 

models based on an application to mother, father, and teacher reports of children’s inattention (N 

= 811). In the application, we found three latent classes for mother and father reports and four 

classes for teacher reports. All reporter solutions contained classes with very low, low, and 

moderate levels of inattention. The teacher solution also contained a class with high inattention. 

Comparable mother and father (but not teacher) classes exhibited similar levels of trait and state 

variance.  

Keywords: latent state-trait, mixture distribution modeling, consistency, occasion-specificity, 

longitudinal modeling, latent classes  
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Teacher’s Corner: 

Applying and Interpreting Mixture Distribution Latent State-Trait Models 

 Longitudinal data analysis is increasingly applied in psychology and social science 

research, and numerous structural equation modeling (SEM) approaches to longitudinal data 

analysis have been proposed (e.g., Bollen & Curran, 2006; Cole & Maxwell, 2003; Grimm, 

Mazza, & Mazzocco, 2016; McArdle, 1986, 2009; Steyer, Mayer, Geiser, & Cole, 2015). Latent 

variable SEM techniques are advantageous for the analysis of longitudinal data because of their 

capabilities to flexibly model change and stability across time. Further, SEM techniques allow 

testing underlying model assumptions, evaluating change and stability using multiple indicators, 

and correcting for random measurement error.  

One question that researchers address with longitudinal data is whether psychological 

attributes (e.g., depression, anxiety, well-being, happiness, emotion, impulsivity) reflect stable, 

trait-like constructs or rather variable, state-like constructs. Latent state-trait (LST) models 

(Steyer, Ferring, & Schmitt, 1992; Steyer et al., 2015; Steyer, Schmitt, & Eid, 1999) are widely 

used to evaluate the stable trait- and variable state-like nature of psychological attributes across 

occasions and are increasingly applied in the social sciences (Geiser & Lockhart, 2012; 

Prenoveau, 2016).  

LST models decompose observed score variance into different components: trait 

variance, occasion-specific variance, and random measurement error variance (Steyer et al., 

2015). The trait component reflects intra-individual stability (i.e., consistency) across time. The 

occasion-specific component reflects momentary deviations of individuals’ true scores from their 

trait levels within each time point and characterizes effects of situations as well as person × 

situation interactions. Random measurement error is unsystematic variability in the measurement 

due to neither trait nor occasion-specific components. These three variance components are 
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fundamental for identifying the extent to which a variable is stable and trait-like versus more 

fluctuating and state-like. A variable containing more trait variance than occasion-specific 

variance is considered trait-like. In contrast, a variable containing more occasion-specific 

variance than trait variance is considered state-like. More complex LST models also allow 

identifying method (indicator-specific) variance components (Courvoisier, Nussbeck, Eid, 

Geiser, & Cole, 2008; Geiser & Lockhart, 2012). 

Conventional LST models assume that all individuals in a sample stem from a single 

homogenous population in which a single set of LST parameters (e.g., the trait, occasion-

specific, and measurement error variances) applies to all individuals. Courvoisier, Eid, and 

Nussbeck (2007) demonstrated that the assumption of population homogeneity can be violated in 

practice because of the presence of unknown subpopulations (latent classes) that show different 

trait means and/or that differ with regard to trait consistency, occasion-specificity, and reliability 

of the measures. When applied to a heterogeneous population, conventional (single-class) LST 

models may lead to inaccurate or misleading results about the true trait consistency and 

occasion-specificity of a particular construct for different individuals.  

For example, if individuals with lower levels of anxiety show more consistency in their 

symptoms across time than individuals with higher levels of anxiety – a potential violation of 

population homogeneity – then resulting trait and occasion-specific variance components from a 

single-class LST model would not reflect such heterogeneity. Should population heterogeneity 

truly exist in the data, parameter estimates and resulting conclusions about the trait- and state-

like nature of the attribute could be biased. Hypothesizing that anxiety is more consistent and 

trait-like for individuals with lower anxiety levels than individuals with higher anxiety levels is 

theoretically plausible, yet such a hypothesis cannot be tested using a single-class LST model 

(unless groups of individuals with low versus high anxiety were known beforehand). These 
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situations call for more advanced LST models since LST models assuming population 

homogeneity would be inappropriate.  

Mixture distribution LST (M-LST) models (Courvoisier et al., 2007) relax the 

assumption of population homogeneity and allow identifying subpopulations (latent classes) 

across which some or all LST model parameters differ. This allows researchers to identify 

subgroups of individuals who differ, for example, in their (1) mean trait values, (2) trait 

variances, (3) occasion-specific variances, and/or (4) measurement error variances (unreliability 

of measurement). The M-LST model is an extension of standard LST models and can be used to 

examine whether there are different, previously unknown subpopulations (latent classes) that 

differ with regard to consistency and variability. 

M-LST models are a special case of general factor mixture models (Lubke & Muthén, 

2005; 2007; Muthén, 2001). Although factor mixture modeling is widely used in other areas of 

longitudinal data analysis (e.g., growth mixture modeling; Muthén & Muthén, 2000), it has not 

been frequently applied to the analysis of state and trait components in social science constructs. 

The only application of M-LST models that we know of is the one presented in the original 

Courvoisier et al. (2007) article. We suspect that the lack of use of the M-LST approach by 

applied researchers may be due to the complex nature of M-LST models, which are not trivial in 

their application. 

The purpose of this paper is to present a step-by-step tutorial for applying M-LST models 

and interpreting the resulting output. Before discussing M-LST models, we provide a more in-

depth description of a prototypical single-class LST model. Subsequently, we show how the 

single-class LST model is extended to an M-LST model. Third, we discuss the application of the 

M-LST approach to a data set on children’s levels of inattention, using the software package 
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Mplus 8 (Muthén & Muthén, 1998-2017). Finally, we discuss some of the advantages and 

drawbacks of applying the M-LST approach. 

LST Models 

LST models are longitudinal models that can be used to partition observed variables into 

consistent trait, fluctuating occasion-specific, and measurement error components (e.g., Cole, 

Martin, & Steiger, 2005; Eid, Holtmann, Santangelo, & Ebner-Priemer, 2017; Geiser & 

Lockhart, 2012; Prenoveau, 2016; Schermelleh-Engel, Keith, Moosbrugger, & Hodapp, 2004; 

Steyer et al., 1992; 2015). These different components are used to determine the proportion of 

variability that is due to trait influences (stable dispositions), occasion-specific influences 

(situation and person-situation interactions), and measurement error influences, showing the 

extent to which each observed variable is trait-like versus state-like. To apply LST models, 

multiple observed variables (e.g., indicators, items) must each be measured at multiple (at least 

two) measurement occasions.1 More complex LST models with autoregressive effects (e.g., Cole 

et al., 2005; Eid et al., 2017; Kenny & Zautra, 1995; Prenoveau, 2016) require more than two 

measurement occasions to be identified.  

The basic decomposition of observed variables in LST theory is closely related to 

concepts of classical test theory (Lord & Novick, 1968; Novick, 1966). According to LST 

theory, each observed variable itY  can be decomposed into a latent state (true score) variable itτ  

and a measurement error variable itε : 

it it itY τ ε= + .          (1) 

                                                           
1 Kenny and Zautra (1995) presented a single-indicator LST model. In principle, the M-LST approach that we 
illustrate in this article could also be applied to Kenny and Zautra’s model. In this article, we focus on multiple-
indicator LST models, as these have been shown to result in fewer estimation problems compared to the Kenny and 
Zautra approach (Cole et al., 2005).  
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The subscripts i and t indicate the ith indicator (i = 1, …, m) and the tth time point (t = 1, … k). 

The latent state variable itτ  represents systematic sources of score variability due to person (trait) 

and occasion (situation and/or person-situation interaction) effects, whereas the error variable itε  

represents unsystematic influences of measurement error.  

In conventional (single-class) LST models, the latent state variables itτ  are further 

decomposed into trait and occasion-specific (state) residual variables. Here, we present the 

multitrait-multistate (MTMS) model (Eid, 1996) as a prototypical LST model (see Figure 1). 

Due to differences in content, item wording, method effects, or other differences among 

indicators, the itY  variables may not measure a single homogenous trait factor. The MTMS model 

in Figure 1 therefore uses indicator-specific trait factors to account for indicator heterogeneity.  

Formally, the MTMS model decomposes the latent state variables itτ  into indicator-

specific trait iT  and occasion-specific residual tO  components: it i i tT O= +τ γ , where iγ  is a 

constant time-invariant scaling (factor loading) parameter. Substituting this decomposition into 

the basic LST Equation 1 shows that each observed variable can be partitioned into an indicator-

specific trait factor iT , an occasion-specific residual factor tO , and a measurement error variable 

itε : 

it i i t itY T Oγ ε= + + .         (2) 

The indicator-specific trait factors iT  represent the temporally stable aspects of a given 

observed variable, whereas the occasion-specific residual factors tO  reflect systematic deviations 

from the trait level due to the situation and/or person × situation interaction effects at time t that 

are shared across all indicators measured at the same time point. Being defined as residual 
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variables, the tO  factors have means of zero by definition. Therefore, latent means are only 

estimated for the trait factors iT .  

The trait factors are allowed to correlate with one another, but we assume in this article 

that trait factors do not correlate with occasion-residual factors or measurement error variables. 

We also assume that occasion residual factors are uncorrelated with each other and with all 

measurement error variables and that error variables are uncorrelated with each other. Not all of 

these restrictions are required, but they simplify the presentation of the M-LST approach (for a 

detailed discussion of LST models that relax some of the independence assumptions made here, 

see Eid et al., 2017). The factor loadings iγ  are typically assumed to be time-invariant for the 

same indicator to establish measurement equivalence across time.  

In summary, the single-class MTMS model estimates the following parameters: m trait 

factor means (where m indicates the total number of observed variables per occasion), m trait 

factor variances, m∙(m – 1)/2 trait factor covariances, k occasion-specific residual factor 

variances (where k indicates the total number of measurement occasions), m – 1 occasion-

specific factor loadings iγ  (one loading per occasion factor is fixed to one for identification and 

loadings are assumed to be time-invariant), and m∙k measurement error variances.  

The single-class MTMS model in Figure 1 is a good starting point for analyzing M-LST 

models because it often shows a decent fit in practical applications. Moreover, Geiser and 

Lockhart (2012) found that the MTMS model performed well in simulations with different levels 

of indicator heterogeneity. We therefore use the MTMS model as the baseline model to 

demonstrate the M-LST approach in the present paper. If the MTMS model does not fit well in 

an empirical application, one reason may be that there are autoregressive effects between 

adjacent occasion residual factors, for example, due to a short time lag between measurement 
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occasions. First-order autoregressive effects can be included for the occasion residual factors to 

reflect such effects of short-term stability (Cole et al., 2005; Eid et al., 2017; Prenoveau, 2016). 

 Another possible cause of misfit in the basic MTMS model may be that trait changes occurred 

across time. Trait means are assumed to remain stable and unchanging across time in the MTMS 

model. If it is likely that trait changes occurred in addition to a state variability process, 

researchers should empirically evaluate extended LST models that also include trait-change 

components (Eid & Hoffmann, 1998; Geiser et al., 2015; 2017; Steyer et al., 2015). The general 

procedures discussed below can be adapted for use with such more complex models.  

Extending Single-Class LST Models to M-LST Models  

Single-class LST models are suitable when individuals in a sample come from a single, 

homogeneous population. However, in the presence of population heterogeneity, a single-class 

LST model could lead to inaccurate or misleading results about the stable trait-like and 

fluctuating state-like nature of a psychological attribute. M-LST models relax the assumption of 

population homogeneity by allowing for several latent classes across which some or all model 

parameters may differ (McLachlan & Peel, 2000; Muthén, 2001). 

Within the M-LST framework, latent means, variances, and other model parameters may 

vary across latent classes C, leading to different latent variable distributions across classes. 

Mathematically, if C > 1, each within-class model is estimated jointly using a mixture 

distribution such that, 

 
1

( ) ( ; )
C

c c c
c

f Y f Yπ θ
=

=∑  ,         (3) 

where Y is the vector of observed variables, 𝜋𝜋𝑐𝑐 is the relative class size parameter, and 𝜃𝜃𝑐𝑐 is the 

vector of model parameters within the cth latent class (for more details, see McLachlan & Peel, 

2000). This mixture distribution equation suggests that observed variables are a function of a set 
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of model parameters, 𝜃𝜃𝑐𝑐, with values specific to a given latent class c. Consequently, this mixture 

distribution equation indicates that any model parameter, such as trait means, occasion-specific 

variances, and factor loadings may be class-specific. 

Within each class, the LST model and underlying assumptions are expected to hold, as is 

expressed by the following model equation: 

it ic ic tc itcY T Oγ ε= + + .         (4) 

Equation 4 is identical to the single-class LST model Equation 2 except for the addition of the 

subscript c. The subscript c indicates that parameters can now be class-specific (e.g., parameters 

such as the trait factor variances may differ across unknown subgroups c). The trait factor icT , 

occasion-specific factor tcO , and error variable itcε can be interpreted within each class as they 

would in a single-class model. 

The relative class size parameter 𝜋𝜋𝑐𝑐 is a probability parameter that indicates the 

proportion of individuals who are expected to fall within a given class. The class size parameters 

sum to 1 across the C classes: 
1

1
C

c
c=

=∑π . Therefore, the classes are mutually exclusive and 

exhaustive and there are only C – 1 independent class size parameters to estimate. 

The class in which an individual is placed is determined by their posterior probability 

within each class. A posterior probability value is assigned to each individual for each latent 

class, and the class for which each individual has the greatest posterior probability is the class to 

which each individual is assigned.  

All MTMS model parameters (i.e., the trait means, trait variances, trait covariances, 

occasion-specific variances, occasion-specific factor loadings, and measurement error variances) 

in an M-LST analysis may vary across classes. One important goal of an M-LST analysis is to 
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empirically evaluate which parameter estimates are class-specific versus class-invariant. We 

demonstrate this in our tutorial section below. 

Calculating LST model effect size coefficients. Because we assume the latent trait, 

occasion-specific, and error variables in the MTMS model to be uncorrelated, the observed 

variable variances can be additively decomposed into trait, occasion-specific state residual, and 

measurement error variance within each class. It is also possible to determine the amount of 

observed variance in each variable that is due to trait components (consistency) versus occasion-

specific state residual components (occasion-specificity).  

The consistency coefficient Con  represents the proportion of observed variance that is 

due to the stable trait component: 

2

( )
( ) ( ) ( )

ic

ic ic tc itc

Var TCon
Var T Var O Var

=
+ +γ ε

.      (5) 

The occasion-specificity coefficient OSpe  represents the proportion of observed variance 

that is due to momentary deviations from the trait level: 

2

2

( )
( ) ( ) ( )

ic tc

ic ic tc itc

Var OOSpe
Var T Var O Var

=
+ +
γ
γ ε

.      (6) 

The reliability coefficient Rel  represents the proportion of observed variance that is due 

to either consistency or occasion-specificity – the two systematic sources of variance – and not 

due to measurement error: 

2

2

( ) ( )
( ) ( ) ( )

ic ic tc

ic ic tc itc

Var T Var ORel
Var T Var O Var

+
=

+ +
γ

γ ε
.      (7) 

In summary, the consistency and occasion-specificity coefficients represent systematic 

proportions of variance (i.e., portions of true score variance; variance that is not due to 

measurement error) that sum to reliability. In practice, these coefficients are often used to 
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quantify the degree of stability (trait effects), variability (situational influences and person-

situation interactions) as well as reliability (overall precision) of the measures. Greater levels of 

consistency indicate that a measure reflects a more trait-like construct. Greater levels of 

occasion-specificity indicate that a measure reflects a more state-like construct. Greater levels of 

reliability indicate that a measure contains less measurement error. An advantage of M-LST 

models is that they can be used to identify subpopulations that differ with regard to their levels of 

consistency, occasion-specificity, and/or reliability. Using the M-LST framework, the 

coefficients can be computed separately for each measure and each class. 

M-LST Tutorial  

Empirical Example 

We now present an illustrative application of an M-LST analysis to parent and teacher 

reports of children’s inattention. The inattention construct represents a subset of symptoms of the 

larger attention deficit hyperactivity disorder (ADHD) and is characterized by age-inappropriate 

behaviors, including difficulty listening, failing to pay attention to details in various settings, 

difficulty organizing tasks, failing to finish tasks, and becoming easily distracted (American 

Psychiatric Association, 2013). 

Sample. Data on inattention were gathered from first-grade children from 30 elementary 

schools across the Balearic Islands and Madrid, Spain. Children’s levels of inattention were 

evaluated by mothers, fathers, and teachers across three waves of assessment. Overall, N = 811 

children had at least partial data at one of the three time points. For mother reports, n = 801; for 

father reports, n = 728; and for teacher reports, n = 790. The sample consisted of 54% boys with 

the average age of the children at the first assessment being 7 years. Children were excluded 

from the study if they had an official diagnosis by a school or health official of a learning or 

behavior disorder at the initial assessment. The study had low levels of missingness (93%, 92% 
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and 89% of participants had partially complete data at the first, second, and third assessments). 

For the purposes of the present tutorial, we ignored the nested structure of the data. In an actual 

substantive application, researchers should account for the clustering of observations by using 

multilevel or other appropriate modeling techniques. 

Measure. The measure of inattention used in this tutorial is a nine-item ADHD-

inattention subscale of the Child and Adolescent Disruptive Behavior Inventory (CADBI; Burns 

& Lee, 2010, 2011).  Parents and teachers were asked to evaluate children’s symptoms on a 6-

point Likert scale, where 0 = nearly occurs none of the time (e.g., 2 or fewer times per month) 

and 5 = nearly occurs all the time (e.g., many times per day). Items were combined to create 

three composite, continuous parcels, each containing three items, with a composite score ranging 

from 0 to 5 with 16 possible values (0, 0.33, 0.67, 1, … 5; Burns et al., 2014). Because the 

MTMS model assumes indicators are continuous, researchers should use continuous indicators. 

If indicators are item-level, we recommend following appropriate methods for parceling item-

level data (see Little, Cunningham, Shahar, & Widaman, 2002; Little, Rhemtulla, Gibson, 

Schoemann, 2013) to create continuous indicators.2 Wave 1 was collected toward the end of 

spring semester of the first grade, wave 2 was collected six weeks later, and wave 3 was 

collected 10.5 months later at the end of the second grade.  

Data were positively skewed, such that the sample contained more children with lower 

levels of inattention than children with higher levels of inattention. Full information maximum 

likelihood estimation (Enders, 2010) with robust standard errors (MLR) was used to include all 

available data and to account for non-normality. 

                                                           
2 LST models have been developed to account for polytomous indicators (Eid, 1996). These models have not yet 
been applied to a mixture distribution framework. 
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 This dataset is well-suited to illustrate the M-LST approach for various reasons. First, 

trait levels of inattention among young children have been shown to be relatively stable across 

short time spans, such as one-year (Faraone et al, 2006; Willcutt et al., 2012). The M-LST 

approach assumes that trait scores do not change across time for each latent subgroup. This is 

because in each class, an MTMS model is specified. The MTMS model assumes stability of 

means across time.3 

Second, the dataset contains three waves of data and three indicators of inattention in 

each wave, which fulfills the requirement of having multiple measurement occasions with 

multiple indicators within each measurement occasion. Third, the data is from a large 

community-based sample, where some children in the sample are expected to have higher levels 

of inattention than others (i.e., some children were expected to have inattention scores in the 

clinical range on the ADHD-inattention symptom dimension while other children were expected 

to have inattention scores in the moderate range and others were expected to have inattention 

scores in the very low range, thus no inattention problems). This provides the opportunity to 

uncover subgroups of children with different symptom levels of inattention, as well as determine 

whether levels of consistency and occasion-specificity differ or remain the same across these 

subgroups. Finally, reports of inattention were available from three different methods (mother, 

father, and teacher reports), which allowed us to examine the replicability of latent classes across 

different methods. 

Modeling Approach 

                                                           
3 In cases in which constructs show mean change across time, an extended model with a trait-change component 
would have to be specified in some or all classes. Such hybrid models are beyond the scope of the present tutorial, 
but have been presented, for example, by Eid & Hoffmann (1998); Geiser et al. (2017); and Steyer et al. (2015) for 
the single-class case.  
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 Applying M-LST models requires comparing a large number of nested models. Given the 

complexity of the approach, we present a three-step procedure to evaluate M-LST models. Step 1 

is the simplest step and involves estimating a well-fitting and preferably parsimonious single-

class LST model. Step 2 serves to determine the number of classes needed to account for 

population heterogeneity (if any). In addition, Step 2 is used to determine which LST parameters 

should be assumed to be class-specific versus class-invariant.  Step 3 is a replication step, in 

which additional M-LST models are evaluated across different methods (e.g., sources; in the 

present project, different methods refer to father and teacher report) to ensure replicability of the 

class structures found in Step 2. If different methods are not available in a given study, another 

possibility to examine the replicability of the findings could be to use a second, independent 

sample for cross-validation. 

Table 1 provides a general outline of all possible steps in the modeling approach. Below, 

we describe each step in detail and also discuss troubleshooting within each step where 

applicable. 

Step 1: Fitting a single-class MTMS model. In Step 1, we evaluated a single-class 

MTMS model to determine an appropriate baseline model for the M-LST analyses using mother 

reports of inattention.4 We chose mother reports because mothers theoretically spend the most 

time with children as compared to fathers and teachers. Furthermore, mothers evaluated 

relatively more children (n = 801) than either fathers (n = 728) or teachers (n = 790) in this 

study. Three manifest indicators (m = 3) were each measured across three occasions (k = 3) per 

trait. We fit an MTMS model corresponding to Equation 2 (see also Figure 1) to the data. The 

Mplus syntax and data for this model is provided in online supplemental materials Appendix A. 

                                                           
4 Father and teacher models will be discussed in Step 3. 
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The online supplemental materials can be found at https://osf.io/kj9eg/. This model showed good 

to excellent fit according to conventional fit statistics, 2χ (31, 801)N = = 42.7, p = .08, BIC = 

10,285 as well as equivalence testing approaches, CFIt = .99, RMSEAt = .04 (Marcoulides & 

Yuan, 2017; Yuan et al., 2016), which are inferential rather than descriptive methods for 

assessing model fit. Results suggest that an LST process accurately described the longitudinal 

process of the inattention construct in this sample. We therefore used the MTMS model as the 

baseline model in subsequent M-LST analyses.  

Step 2: Fitting the data to multi-class MTMS models. In Step 2, we evaluated various 

multi-class MTMS models to 1) determine the number of classes to properly account for 

population heterogeneity (if any), and 2) simultaneously determine which parameters differed 

across latent classes. The simultaneous aspect of estimating multi-class models required a rather 

large and comprehensive set of nested analysis models that include various numbers of latent 

classes (c = {2, …, C}) as well as various constraints to parameter estimates (i.e., trait means, 

trait covariances, trait variances, occasion-specific variances, and error variances) across classes.  

Nested multi-class models were compared using primarily Bayesian Information Criteria 

(BIC), which is commonly used when evaluating which mixture model has the best relative fit 

(Lubke & Muthén, 2005; Lubke & Luningham, 2017; McLachlan & Peel, 2000; Nylund, 

Asparouhov, & Muthén, 2007). BIC was chosen as the model fit criterion due to its asymptotic 

property of correctly selecting the true model if the true model is amongst the set of specified 

models (Vrieze, 2012). Further, BIC appropriately selects the correct number of classes in sets of 

more general factor mixture models (Nylund, Asparouhov, & Muthén, 2007) which are related to 

the present M-LST approach.   

https://osf.io/kj9eg/
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Our approach for comparing different models was as follows. We began with a 2-class 

version of the best-fitting single-class MTMS model. In the first 2-class model, we allowed the 

trait factor means to vary freely across classes. We constrained all other parameters in this model 

to be equal across classes. This relatively parsimonious 2-class model differed from the single-

class model only in its estimation of two underlying subpopulations with different means.  

In the second 2-class model, we additionally allowed the trait factor covariances to vary 

across classes to determine whether the relationship among the indicator-specific traits differed 

across classes. In the third, fourth, and fifth 2-class models, we additionally allowed the trait 

factor variances, occasion-specific factor variances, and error variances to vary across classes, 

respectively. We followed this same sequence for evaluating 3- and 4-class models. 

We recommend terminating the model fitting procedure when the best-fitting c-class 

model fits worse than all c – 1 class models, unless there is a theory-driven reason to continue 

estimating additional classes. Further, researchers may consider stopping the model fitting 

approach if entire sets of models (e.g., all 3-class models) become unstable (i.e., when the best 

loglikelihood value cannot be replicated for multiple sets of starting values, when models do not 

converge after a large number of iterations, or when parameter estimates become uninterpretable 

or have large standard errors). 

Step 2a: Fitting 2-class M-LST models. The first multi-class model we fit was a 2-class 

MTMS model with all parameters constrained equal across classes except for the trait factor 

means, which were allowed to differ across classes. This model fit the data better than the single-

class model in terms of BIC (see Table 2), illustrating heterogeneity within the sample, at least 

with regard to the trait factor means. Next, we fit a model where both the trait means and the trait 

covariances were allowed to be class-specific. This model fit better than the model with only 

class-specific trait means, indicating that the relationship among the indicator-specific traits also 
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differed across classes. We then continued to estimate 2-class models with class-specific trait 

factor variances, occasion-specific factor variances, and error variances, respectively. 

The best fitting 2-class solution in our application was Model 6. In Model 6, trait means, 

trait covariances, trait variances, occasion-specific variances, and error variances were all class-

specific. Such a model suggests that there are two distinct subpopulations that differ with regard 

to their average inattention trait levels as well as relative amounts of trait, occasion-specific, and 

error variance. However, there may be more than two underlying subpopulations in the data. 

Therefore, we also evaluated models with three classes. 

Step 2b: Fitting 3-class M-LST models. We evaluated the same sequence of models for 

the 3-class solutions. We first evaluated a 3-class model with all parameters constrained equal 

across classes except for the trait means. This model fit better than the 2-class model with class-

specific trait means but did not fit better than any of the other 2-class models. In order to 

determine whether any of the remaining 3-class models fit the data better than the 2-class 

models, we continued evaluating 3-class models with class-specific parameter estimates of trait 

covariances, trait variances, occasion-specific variances, and error variances, respectively. 

For the 3-class models using mother reports, the best-fitting model was Model 11, which 

freely estimated trait means, trait covariances, trait variances, occasion-specific variances, and 

error variances across classes. Model 11 fit better than all 2-class models, suggesting the 

presence of at least three distinct subpopulations in the data, all with unique trait factor means 

and covariances as well as unique trait, occasion-specific, and error variances.  

Step 2c: Fitting 4-class M-LST models. Next, we evaluated 4-class M-LST models in the 

same manner as the 2- and 3-class models. Some of the 4-class solutions did not show proper 

convergence. In addition, the best loglikelihood value did not replicate for the least restrictive 4-

class model even with 15,000 sets of random starting values. Solutions with loglikelihood values 
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that cannot be replicated should not be interpreted (Bauer & Curran, 2003), as such solutions are 

likely to represent a local likelihood maximum. Local likelihood solutions may not be 

trustworthy and may return invalid parameter estimates (for a discussion on proper, yet local 

solutions, see Li, Harring, & MacReady, 2014). When the best loglikelihood value cannot be 

replicated for a model, this may also be a sign that too many classes are being extracted and that 

a simpler class solution is preferable.  

Collectively, the estimation problems encountered for some of the 4-class solutions may 

indicate that a fourth class was not needed for the given data. This interpretation was supported 

by the fact that none of the 4-class models that showed proper convergence fit better than the 

best-fitting 3-class model. We therefore report detailed outcomes for the best fitting 3-class 

model, which was Model 11.5 

Best-fitting model estimates. The parameter estimates for Model 11 revealed the 

following classes: one class with very low inattention trait means and non-significant trait and 

occasion-specific variances (12%), a low inattention trait means class with small but significant 

trait and occasion-specific variances (57%), and a moderate inattention trait means class with 

moderate and significant trait and occasion-specific variances (31%; see Table 3). Furthermore, 

the output revealed a negative occasion-specific variance estimate in the very low trait means 

class. The occasion-specific variance estimate in question was very close to zero (–.001) and 

non-significant (p = .601). We therefore assumed this value was truly 0 (Chen, Bollen, Paxton, 

Curran, & Kirby, 2001), and evaluated Model 11a, which constrained this value to 0. Model 11a 

                                                           
5 It is possible that a single parameter (e.g., one trait mean or one error variance) differs across classes in the M-
LST approach. Further, partial measurement invariance (e.g., Byrne, Shavelson, & Muthén, 1989; Lubke & Neal, 
2008) is possible with the M-LST approach.  We have not presented a step to examine differences of a single 
parameter across classes nor a step to examine partial measurement invariance, but it is possible to examine such 
differences using the present approach. We recommend examining such models only if there is a theoretical or 
practical reason to do so.  
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fit slightly better than Model 11. A thorough examination of parameter estimates revealed no 

practical differences between Models 11 and 11a with regard to class structure or parameter 

estimates. Mplus syntax for Model 11a is in online supplemental materials Appendix B. 

Model entropy and classification probabilities. Before discussing the parameter 

estimates of Model 11a, we examined whether this solution contained well separated classes by 

inspecting model entropy and classification probabilities. Larger values of model entropy, 

typically values greater than 0.8, indicate well-separated classes (Celeux & Soromenho, 1996). 

Diagonal classification probabilities approaching 1.0 also support class separation, and provide 

evidence that observations (i.e., individuals) are placed into their most likely latent class with 

high certainty. 6 For Model 11a, model entropy was .82, indicating that classes were well 

separated. Classification probabilities for the most likely class membership were .98 (very low 

means class), .94 (low means class), and .86 (moderate means class), providing further evidence 

that the classes were well separated and individuals placed in appropriate latent classes. We thus 

proceeded to interpret the parameter estimates for Model 11a. 

Consistency, occasion-specificity, and reliability estimates. Consistency and occasion-

specificity coefficients were calculated to determine whether the construct was more trait- or 

state-like within each of the classes. Reliability was calculated to evaluate the amount of 

variance that was not due to measurement error. Estimates of consistency, occasion-specificity, 

and reliability are shown in Table 3. 

In the very low means class (12%), the average reliability estimate was .22, indicating 

that most variance (.78) in this class was due to random measurement error. A more thorough 

investigation of results suggested that this class was essentially homogeneous with mean values 

                                                           
6 For additional classification diagnostics that could be reported using a mixture modeling approach, see Masyn 
(2013). 



MIXTURE LST  21 

close to zero and very small true state (i.e., trait and occasion-specific factor) variance estimates. 

In fact, all systematic variance components in this class were statistically non-significant. 

Although consistency and occasion-specificity estimates from this class are shown in Table 3, 

these estimates should be interpreted with caution as there was very little systematic variance in 

this class—indicating very high class homogeneity. The consistency, occasion-specificity, and 

reliability coefficients as defined in LST theory depend on the presence of a non-zero amount of 

true score variance. Therefore, these coefficients are uninterpretable in a perfectly or close-to-

perfectly homogenous subpopulations as the one found here. 

In the low means class (57%), the average reliability estimate was .73, and all variances 

in this class were statistically significant. The average consistency estimate was .40, whereas the 

average occasion-specificity estimate was .33. Approximately 55% of the true state variance (.55 

= .40 / .73) was due to trait effects, whereas 45% of the true state variance (.45 = .33 / .73) was 

due to occasion-specific effects. These results suggest that mother reports of children’s 

inattention levels reflected a slightly more trait-like than state-like construct in this class. 

The moderate means class (31%) showed an average reliability estimate of .84, indicating 

that this class had the most systematic variance of the three estimated classes. Average 

consistency was .46 and average occasion-specificity was .38. Both of these values were slightly 

higher than the low means class estimates of consistency and occasion-specificity. However, in 

relative terms, approximately 55% of the true state variance was due to trait influences, whereas 

45% of the true state variance was due to occasion-specific influences, which mimics the results 

from the low means class. 

In summary, two noteworthy findings emerged from these results. First, the very low 

means class consisted of a highly homogeneous group of individuals with no significant true 

inter-individual differences (no variability in the true scores between individuals). The only 



MIXTURE LST  22 

source of variability in this class was random measurement error. Second, the moderate means 

class had a slightly higher amount of reliability, consistency, and occasion-specificity than the 

low means class, but the relative proportion of variance due to consistency and occasion-

specificity was equal across the two classes. These results suggest that, in both the low and 

moderate means classes, inattention was more “trait-like” than “state-like.” 

Step 3. Replication using multiple methods. Given that mixture modeling is in part an 

exploratory method, conclusions drawn from M-LST models should be replicated with data from 

other observers or independent samples. Replication is a necessary confirmatory step in the M-

LST approach, as it is in other mixture modeling approaches (e.g., Lubke & Luningham, 2017). 

The aim of Step 3 was therefore to replicate the results from Steps 1 and 2 using father and 

teacher reports of inattention to ensure we obtained similar class structures with similar 

parameter estimates. Using data from different reporters evaluating the same participants enabled 

us to cross-tabulate class membership to examine whether participants would be classified 

similarly across reporters. If a researcher does not have access to multiple sources, an 

independent sample of participants should be used to replicate the results. 

Replication of step 1. The same approach to evaluating mixture LST models was applied 

to both father and teacher reports of inattention. First, a single-class LST model was fit to both 

father and teacher reports, resulting in adequate to excellent model fit using conventional fit 

statistics and fit statistics derived from equivalence testing methods (Marcoulides & Yuan, 2017; 

Yuan et al., 2016) [fathers: 2χ (31, 728)N = = 62.3, p = .001, BIC = 8,615, RMSEAt = .05, CFIt = 

.98; teachers: 2χ (31, 790)N = = 82.3, p < .001, BIC = 10,334, RMSEAt = .06, CFIt = .98].  
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Replication of step 2. Next, 2-class, 3-class, and 4-class models were evaluated for father 

and teacher reports of inattention in the same manner as mother reports of inattention. Applicable 

models that were evaluated for father and teacher reports can be found in Table 2. 

Father report results and best-fitting model estimates. For father reports, the model that 

resulted in the best relative fit was Model 27: a 3-class solution with class-specific trait means, 

trait covariances, trait variances, occasion-specific variances, and error variances. This was the 

same model structure that was found for mother reports.  

However, unlike the best-fitting model for mother reports, Model 27 contained one very 

small class (3%) with high means and significantly negative variance estimates. We therefore 

could not use Model 27 results and instead re-evaluated the model fixing the negative variance 

estimates to zero. While this high means class was rather interesting from a substantive point of 

view (i.e., this may represent individuals with clinically significant levels of inattention), 

significant negative variance estimates are improper parameter estimates. In this smallest class, 

one trait variance and one occasion-specific residual variance were estimated to be negative and 

statistically significant. Two error variances were also negative, but not significantly so.  

We speculated that the negative variance estimates may indicate the presence of a class of 

highly homogenous individuals with zero trait and zero systematic occasion-specific variance. 

Thus, instead of using Model 27 as the final model, we evaluated two variations of Model 27: 

one in which the trait variance estimates were constrained to 0 in one class (Model 27a), and one 

in which both the trait and occasion-specific variances were constrained to 0 in one class (Model 

27b). Model 27a resulted in the best relative fit and did not produce improper parameter 

estimates. Thus, we concluded that the final best-fitting M-LST model using father reports was 

Model 27a. 
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The parameter estimates in Model 27a showed a relatively similar 3-class solution 

relative to the best-fitting mother report model: a very low means class (15%) with mostly non-

significant trait and occasion-specific variances, a low means class (39%) with small yet 

significant occasion-specific variances (but zero trait variances), and a moderate means class 

(46%) with moderate and significant trait and occasion-specific variances (see Table 3). This 

solution contained a different set of classes than Model 27 in that it did not contain a class with 

high inattention means. 

In Model 27a, entropy was .80, indicating that the classes were well separated. 

Classification probabilities for the most likely class membership were .96 (very low means 

class), .90 (low means class), and .90 (moderate means class), providing further evidence that 

classes were well separated and that individuals were placed into their most likely latent class 

with high certainty. 

In the very low means class (15%), only one trait variance and four error variances were 

statistically significant. Average reliability was .46, indicating that slightly more than half of 

variance (.54) in this class was due to random measurement error (see Table 3). Due to the lack 

of significant trait and occasion-specific variance estimates, we exercised caution when 

interpreting the average consistency (.24) and occasion-specificity (.22). Similar to the very low 

means class for mother reports, this class was highly homogeneous with levels of inattention that 

were practically zero and essentially no systematic variability.  

The low means class (39%) was the class with trait variances constrained to zero. All 

systematic, reliable variance in this class was due to occasion-specificity only. Average 

reliability (and therefore occasion-specificity) was estimated as .53. Reliability was slightly 

lower in the father than in the mother low means class. 
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Results from the moderate means class (46%) showed statistically significant trait, 

occasion-specific, and error variances. This class had the highest reliability, with an average 

estimate of .84, mimicking the results from the mothers’ moderate means class. Average 

consistency was .50 while average occasion-specificity was .34. The percentage of reliable 

variance due to consistency was 60%, which was slightly higher than the percentage of reliable 

consistency (55%) for the equivalent mother class. 

Overall, the father report solution showed a similar class structure compared to the 

mother report solution: a very low means class that was essentially homogeneous and contained 

no or very little systematic variability, a low means class with moderately low reliability, and a 

moderate means class with the highest relative reliability estimates and slightly higher levels of 

consistency than occasion-specificity. The father report solution, however, also contained no trait 

variance in the low means class, which was different relative to the mother report solution. 

Teacher report results and best-fitting model estimates. For teacher reports, all 2-, 3-, and 

4-class models with at least class-specific trait variances showed estimation problems. 

Specifically, these models did not terminate normally even with 15,000 sets of random starting 

values. Error messages indicated that there may not have been enough variability to estimate 2-, 

3-, or 4-classes while simultaneously estimating class-specific variances.  

To further examine this issue, we hypothesized that some of the latent classes were 

essentially homogeneous with regard to trait variance, similar to what we found for mother and 

father reports. We evaluated this hypothesis by constraining trait variances to zero within latent 

classes.  

In the first model variation, we evaluated the 2-class model that first showed estimation 

problems, Model 36, and added a constraint that set the trait variances to zero in one class 

(Model 36a). Because occasion-specific variances were still constrained equal across the two 
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classes, we did not evaluate a model that constrained both trait and occasion-specific variances to 

zero. Model 36a terminated normally and fit better than all other 2-class models. 

In the second set of model variations, we evaluated the 3-class model that first showed 

estimation problems, Model 39, and constrained the trait variances to zero in one class (Model 

39a). Model 39a terminated normally, but the loglikelihood value was not replicated even with 

15,000 sets of random starting values. We therefore evaluated a second model variation that 

constrained the trait variances to zero in two latent classes (Model 39b). Model 39b terminated 

normally and showed a better fit than all other 3-class models. 

We finally evaluated the 4-class model that first showed estimation problems, Model 42, 

with the constraint of trait variances set to zero in one class (Model 42a). This model did not 

converge. We therefore evaluated a second model variation that constrained the trait variances to 

zero in two latent classes (Model 42b). This model also did not converge. We then evaluated a 

third model variation that constrained the trait variances to zero in three latent classes (Model 

42c). This model terminated normally and had the best relative fit of all teacher M-LST models.  

Due to the estimation problems we encountered with many of the 4-class models, we did 

not examine more complex 4-class or 5-class models. Thus, the best-fitting teacher model that 

converged to a proper solution was Model 42c, a 4-class model with trait means and trait 

covariances freely estimated across classes, occasion-specific and error variances set equal 

across classes, and trait variances set to zero in all but one class. 

In Model 42c, entropy was .80, indicating that classes were well separated. Classification 

probabilities for most likely class membership for were .96 (very low means class), .72 (low 

means class), .86 (moderate means class), and .94 (high means class). The very low, moderate, 

and high means classes had high classification probabilities while the low means class had a 
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lower classification probability, indicating that this class may not be as clearly defined as the 

other classes. Overall, these results provide evidence that classes were mostly well separated. 

Unlike the mother and father report solutions, the best fitting teacher model was a 4-class 

solution that contained a very low means class (50%), a low means class (16%), a moderate 

means class (32%), and a high means class (3%). The very low, low, and high means classes 

constrained trait variance estimates to 0. These three classes therefore all contained the same 

average estimates of reliability (.61) and occasion-specificity (.61).  

The moderate means class for teachers showed higher indicator reliability (.93) than 

either the mother or father moderate means class. This class also showed higher average levels of 

consistency (.73) and lower average levels of occasion specificity (.20) than either the mother or 

father moderate means class. Relatively speaking, 78% of the true state variance in this class was 

due to trait influences, whereas only 22% was due to occasion-specific influences.  

Summarizing and Comparing the Best-Fitting Model Results across Informants 

 Table 3 summarizes the class solutions for the three types of informants (for the entire set 

of unstandardized parameter estimates, see online supplemental materials Appendix C). Three 

classes with similar trait means and trait variances emerged across informants: (1) a class with 

very low trait means and non-significant (or constrained to 0) trait variances, (2) a class with low 

trait means and low (or constrained to 0) trait variances, and (3) a class with moderate trait 

means and moderate trait variances. The M-LST solution for teacher reports also contained a 

class with high trait means, and trait variances constrained to 0.  

Most children in the estimated mother report solution fell into either the low means class 

(57%) or moderate means class (31%), while the fewest children were assigned to the very low 

means class (12%). Similar to the mother report solution, most children in the father report 

models fell into either the low means class (39%) or the moderate means class (46%), whereas 
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the fewest children were assigned to the very low means class (15%). Unlike the mother and 

father report solutions, most children in the teacher report solution fell into the very low trait 

means class (50%), and fewer children were assigned to classes with higher levels of inattention 

(see Table 3). Notably, the teacher solution was the only final solution to estimate a fourth class 

that contained a very small percentage of children (3%) with high inattention trait means. Results 

seem to indicate that the estimated M-LST solutions between mothers and fathers were relatively 

similar. In contrast, the estimated M-LST solutions for parents versus teachers seemed less 

comparable, as indicated by differences in the estimated number of latent classes as well as the 

class sizes.  

 Cross-tabulation of predicted class membership. To determine whether the M-LST 

solutions for mother, father, and teacher reports showed a significant amount of convergent 

validity, we estimated class membership for all individuals based on their most likely class 

assignment in each of the three solutions. Table 4 shows the results from a cross-tabulation 

analysis. Results showed a strong and highly significant association of the class membership 

between mother and fathers, 2
MFχ (4, N = 724) = 361.5, p < .001, Cramér’s V = .50, mothers and 

teachers, 2
MTχ (6, N = 780) = 119.8, p < .001, Cramér’s V = .28, and fathers and teachers, 2

FTχ (6, 

N = 712) = 125.4, p < .001, Cramér’s V = .30. Further examination of the cross-tabulation results 

led to the following conclusions: 

1. Children who were assigned to the mothers’ very low symptoms class were likely to be 

assigned to the fathers’ or teachers’ very low symptoms classes. 

2. Children who were assigned to the fathers’ very low symptoms class were likely to be 

assigned to the teachers’ very low symptom class. 
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3. Children who were assigned to the teachers’ moderate symptoms class were likely to be 

assigned to the fathers’ moderate symptoms class. 

4. Children who were assigned to the teachers’ high symptoms class were likely to be 

assigned to the mothers’ and fathers’ moderate symptoms classes. 

5. Children who were assigned to the fathers’ very low symptoms class were unlikely to be 

assigned to the mothers’ or teachers’ moderate symptoms classes. 

6. Children who were assigned to the fathers’ moderate symptoms class were unlikely to be 

assigned to the mothers’ very low symptoms class. 

7. Children who were assigned to the teachers’ high symptoms class were unlikely to be 

assigned to the mothers’ or fathers’ low symptoms classes. 

8. Children who were assigned to the teachers’ low, moderate, or high symptoms classes 

were unlikely to be assigned to the mothers’ or fathers’ very low symptoms classes. 

These results seem to support the notion that mother and father solutions are quite 

comparable. The results also support the notion that parent and teacher solutions are relatively 

comparable, despite the fact that one additional class emerged based on teacher reports. 

Comparing reliability, consistency, and occasion-specificity across reporters. Across 

mother, father, and teacher solutions, reliability, consistency, and occasion-specificity contained 

some notable similarities. In the very low means classes, both the mother and father solutions 

showed very low reliability and uninterpretable consistency and occasion-specificity. In the low 

means classes, father and teacher solutions contained somewhat low levels of reliability and zero 

trait variance due to necessary model constraints. In the moderate means class, mother, father, 

and teacher solutions all contained relatively high levels of reliability, the mother and father 

solutions contained similar levels of consistency and occasion-specificity, and all three solutions 

showed that inattention was more trait- than state-like. 
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Although results were for the most part similar across reporters, there was one notable 

difference across the mother, father, and teacher solutions with regard to consistency, occasion-

specificity, and reliability estimates. Namely, the teacher moderate means class had relatively 

higher levels of consistency than either the father or mother moderate means class. 

Conclusions from the application. Overall, results supported the replicability of the M-

LST solution across methods. However, there were also notable differences between the three 

different solutions, particularly differences in (1) the number of estimated latent classes between 

teacher and mother/father solutions, (2) the class probabilities of the very low means class 

between teacher and mother/father solutions, and (3) the consistency and occasion-specificity of 

the moderate means class between the teacher and mother/father solutions. Although the specific 

estimates between mother and teacher solutions seemingly differed, the overall placement of 

individuals within different classes was relatively consistent across mother and teacher solutions. 

Further, results were replicated to a large extent between mothers and fathers.  

Discussion 

In order to evaluate the trait- and state-like aspects of psychological attributes, 

researchers often employ LST models (Cole et al., 2005; Courvoisier et al., 2007; Geiser & 

Lockhart, 2012; Prenoveau, 2016; Schermelleh-Engel et al, 2004) which are derived from LST 

theory (Steyer et al., 1992; Steyer et al., 1999; Steyer et al., 2015). An extension of LST models 

to heterogeneous populations are M-LST models. M-LST models (Courvoisier et al., 2007) 

allow researchers to evaluate differences in trait means, trait variances, occasion-specific 

variances, and error variances across previously unknown latent subpopulations. Thus, M-LST 

models have the potential to uncover subgroups of individuals who differ with regard to 

consistency, occasion-specificity, and reliability. Other mixture models that evaluate longitudinal 

processes are readily used by applied researchers (e.g., growth mixture models; Bauer & Curran, 
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2008; Muthen & Muthen, 2000), but M-LST models, to our knowledge, have not been applied 

beyond their initial presentation by Courvoisier et al. (2007). 

The M-LST approach requires estimating many latent variable models and comparing 

model fit indices, which can be cumbersome and requires knowledge of how to implement latent 

variable models using appropriate software (e.g., Mplus). In this article, we described a multi-

step approach that facilitates the application of the M-LST approach. We also provide Mplus 

syntax in online supplemental materials Appendices A and B that researchers can use in their 

own applications.  

 We provided a step-by-step modeling procedure to evaluate M-LST models with 

guidelines for applying M-LST models, troubleshooting M-LST models, replicating M-LST 

models, and a general structure for reporting M-LST model results beyond what was provided in 

the original Courvoisier et al. (2007) article. In our application of the M-LST approach, we found 

that the guidelines provided by Courvoisier et al. (2007) were relatively clear, but did not instruct 

on 1) comparing nested models to evaluate class-specific versus class-invariant parameters, 2) 

how to model essentially homogeneous subpopulations, 3) what steps to take if a model does not 

converge, and 4) how to meaningfully replicate results. We have addressed these topics 

throughout the modeling approach to more directly guide researchers in their application of the 

M-LST approach.  

To illustrate the step-by-step procedure, we applied the M-LST approach to a dataset 

containing mother, father, and teacher reports of children’s levels of inattention. We found that 

the M-LST solution could be replicated well across mother and father solutions. The best fitting 

teacher solution showed some differences in class sizes as well as differences in the relative 

amounts of reliability, consistency, and occasion-specificity when compared to the mother report 

solution. A cross-tabulation analysis of class membership showed a significant association 
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between the class assignments for different informants, indicating that class membership in the 

mother solution was related to class membership in the father and teacher solutions. In spite of 

the differences between solutions (especially between mother and teacher solutions), individuals 

were likely to be placed into similar classes across reporters. If we had found highly discrepant 

results across our replications, we would not have trusted that our results showed a true mixture 

solution, and we recommend not interpreting models for which solutions cannot be replicated. 

Troubleshooting 

Some challenges researchers may face when using the M-LST approach include non-

replicated log-likelihood values, obtaining output that includes improper parameter estimates, or 

encountering models that do not converge to a solution at all. We ran into each of these 

challenges in our example of the M-LST approach, more often with a larger number of classes 

containing class-specific parameters. We propose a few strategies researchers may use to address 

these challenges. 

Loglikelihood non-replication. Many models estimated for the present tutorial required 

several additional runs due to non-replicated loglikelihood values. Models cannot be 

meaningfully interpreted (and should thus not be included in the comparison procedure) without 

a replication of the best loglikelihood value (Bauer & Curran, 2003). For most of the 2- and 3-

class models that we evaluated, the loglikelihood value was replicated after 1,000 or 5,000 starts. 

However, with the more complex 3-class and many of the 4-class models, the loglikelihood 

value was often not replicated even after 15,000 starts.  

Non-replicated loglikelihood values are often a result of too few start values or an 

unidentifiable model. We recommend researchers increase the number of starts up to 15,000 (the 

maximum used in this paper), which is easily done in Mplus using the starts command. If the 



MIXTURE LST  33 

best loglikelihood value is still not replicated, this may indicate that the model is not well-

defined for the data at hand and that simpler models should be used.  

Improper parameter estimates. Should an improper parameter estimate occur, we 

encourage researchers to examine their data, as well as the theory driving their research, to 

determine why such a result might have occurred. Improper solutions can occur for various 

reasons, including sampling fluctuations, empirical underidentification, and model 

misspecification (Chen et al., 2001). Improper estimates should be appropriately addressed in M-

LST models. We implemented model constraints with mother, father, and teacher models to 

estimate solutions that contained proper parameter estimates. Specifically, when we encountered 

negative variance estimates, we evaluated the potential cause of the improper estimate and 

whether the estimate was significant or non-significant. For non-significant negative estimates, 

we simply constrained that specific variance estimate to zero. For significant negative variance 

estimates, we determined whether the negative variance estimate was due to within-class 

homogeneity. It is likely that some classes will contain no trait or systematic (trait + occasion-

specific) variance because of perfect within-class homogeneity. We encourage researchers to 

examine both the resulting parameter estimates in addition to theory to guide how best to handle 

improper parameter estimates. 

Non-Convergence. Model misspecification may lead to models not converging. Should a 

model not converge, this may indicate that the model is over-parameterized or otherwise 

misspecified. We recommend incrementally simplifying the model by reducing the number of 

parameters if appropriate. If even a relatively parsimonious M-LST model does not converge, 

researchers should consider the possibility that the data may not be well-suited for the M-LST 

approach. Perhaps there is no substantial population heterogeneity to model.  

Conclusion 
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With the rise of mixture modeling approaches in addition to the more prominent use of 

LST models in the social science literature (Geiser & Lockhart, 2012), it seems reasonable that 

researchers would ask questions that only M-LST models can answer. M-LST models are unique 

in their ability to determine whether trait- and state-like influences differ across unknown 

subgroups. The application of M-LST models does not come without challenges, many of which 

we address in this tutorial. We present this tutorial not as a perfect example of M-LST analysis, 

but rather as an instructive guide to aide researchers in applying M-LST analyses to their own 

data. We hope that readers will find this tutorial and our stepwise modeling approach helpful in 

applying M-LST models to their own data. 
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Table 1. Applying Mixture LST Models: A Step-by-Step Guide 

Step Description 

1 Determine a well-fitting single-class LST model. 

2 Evaluate c-class (where c = {2, …, C}) versions of the best-fitting single-class LST 

model. Simultaneously determine whether estimates of trait means, trait covariances, 

trait variances, occasion-specific variances, and/or error variances differ across 

classes. 

    2a Evaluate 2-class models.  

    2b Evaluate 3-class models.  

    2c Evaluate additional c-class models. End the Step 2 when no c-class model fits better 

than the best-fitting c-1-class model. 

    2d Troubleshooting: Re-evaluate any model which did not have a replicated 

loglikelihood value, did not converge, or contained improper parameter estimates. 

3 Apply Steps 1 and 2 using a different method measuring the same construct. 

    3a Compare the best-fitting models from Steps 2 and 3. 

    3b Cross-tabulate most likely class membership from best-fitting models. 

Note. This modeling approach is recommended in the application of M-LST models unless 

researchers have reason to evaluate different models. We do not present here how to find the 

most appropriate single-class LST model and refer interested readers to Steyer et al. (2015) for 

an overview of LST modeling approaches.
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Table 2. M-LST Model Fit Information 

Model # Model Description  BIC 
  Mother Reports 

1 1-class model  10285 

 2-class models   

2  - Trait means vary  10103 

3  - Trait means and correlations vary  9978 

4  - Trait means, correlations, and trait variances vary  9847 

5  - Trait means, correlations, trait variances, and occasion-

specific variances vary  9507 

6  - Trait means, correlations, trait variances, and occasion-

specific variances, and error variances vary  9217 

 3-class models   

7  - Trait means vary  10024 

8  - Trait means and correlations vary  9882 

9  - Trait means, correlations, and trait variances vary  9731 

10  - Trait means, correlations, trait variances, and occasion-

specific variances vary  9168 

11  - Trait means, correlations, trait variances, and occasion-

specific variances, and error variances vary  8742 a 

 4-class models   

12  - Trait means vary  9997 

13  - Trait means and correlations vary  9851 

14  - Trait means, correlations, and trait variances vary  9708 
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15  - Trait means, correlations, trait variances, and occasion-

specific variances vary  9708 

16  - Trait means, correlations, trait variances, and occasion-

specific variances, and error variances vary 

 LL 

 Troubleshooting: Addressing non-significant negative 

variance estimates 

  

11a  - Model 11 with negative occasion-specific variance set to 0 

in one class  8735 

  Father Reports 

17 1-class model  8615 

 2-class models   

18  - Trait means vary  8470 

19  - Trait means and correlations vary  8409 

20  - Trait means, correlations, and trait variances vary  8288 

21  - Trait means, correlations, trait variances, and occasion-

specific variances vary  8031 

22  - Trait means, correlations, trait variances, and occasion-

specific variances, and error variances vary  7840 

 3-class models   

23  - Trait means vary  8489 

24  - Trait means and correlations vary  8366 

25  - Trait means, correlations, and trait variances vary  8207 
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26  - Trait means, correlations, trait variances, and occasion-

specific variances vary  8057 

27  - Trait means, correlations, trait variances, and occasion-

specific variances, and error variances vary  7861a 

 4-class models   

28  - Trait means vary  8407 

29  - Trait means and correlations vary  8356 

30  - Trait means, correlations, and trait variances vary  8206 

31  - Trait means, correlations, trait variances, and occasion-

specific variances vary 

 LL 

32  - Trait means, correlations, trait variances, and occasion-

specific variances, and error variances vary 

 LL 

 Troubleshooting: Addressing significant negative variance 

estimates 

  

27a  - Model 27 with trait variances set to 0 in one class  7619 

27b  - Model 27 with trait and occasion-specific variances set to 0 

in one class  7798 

  Teacher Reports 

33 1-class model  10334 

 2-class models   

34  - Trait means vary  9945 

35  - Trait means and correlations vary  9906 

36  - Trait means, correlations, and trait variances vary  DNT* 
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 3-class models   

37  - Trait means vary  9739 

38  - Trait means and correlations vary  LL 

39  - Trait means, correlations, and trait variances vary  DNT 

 4-class models   

40  - Trait means vary  9628 

41  - Trait means and correlations vary  9570 

42  - Trait means, correlations, and trait variances vary  DNT 

 Troubleshooting: Addressing no within-class variation   

36a  - Model 36 with trait variances set to 0 in one class  9385 

39a  - Model 39 with trait variances set to 0 in one class  LL 

39b  - Model 39 with trait variances set to 0 in two classes  9310 

42a  - Model 42 with trait variances set to 0 in one class  DNT 

42b  - Model 42 with trait variances set to 0 in two classes  DNT 

42c  - Model 42 with trait variances set to 0 in three classes  9294 

Note. All parameters were constrained equal across classes unless otherwise noted in the Model 

Description. a = This model contained improper estimates and was the best-fitting model, so it 

was re-evaluated in the troubleshooting section with appropriate model constraints (see text for 

more details); Bold = final best fitting model; DNT = model did not terminate; LL = 

loglikelihood not replicated after a maximum of 15,000 starts.  
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Table 3. Consistency, Occasion-Specificity, and Reliability Estimates across Classes for Each 
Method. 

Class Description % Trait Means 

Trait 

Consistency 

Con 

Occasion-

Specificity 

OSpe 

Reliability 

Rel 

  Mother Report 

Very low means 12% .07 [.06, .08] .07 [.03, .14]b .15 [.00, .36]b .22 [.04, .43] 

Low means 57% .74 [.65, .81] .40 [.34, .49] .33 [.27, .40] .73 [.61, .86] 

Moderate means 31% 1.96 [1.75, 2.15] .46 [.37, .57] .38 [.31, .45] .84 [.75, .93] 

  Father Report 

Very low means 15% .11 [.09, .14] .24 [.03, .50]b .22 [.03, .59]b .46 [.08, .85] 

Low meansa 39% .59 [.50, .64] .00 [.00, .00] .53 [.40, .70] .53 [.40, .70] 

Moderate means 46% 1.71 [1.56, 1.85] .50 [.41, .66] .34 [.21, .44] .84 [.76, .92] 

  Teacher Report 

Very low meansa 50% .15 [.07, .19] .00 [.00, .00] .61 [.16, .93] .61 [.16, .93] 

Low meansa 16% .79 [.54, .98] .00 [.00, .00] .61 [.16, .93] .61 [.16, .93] 

Moderate means 32% 1.75 [1.38, 2.11] .73 [.55, .91] .20 [.02, .41] .93 [.89, .97] 

High meansa 3% 4.38 [4.22, 4.60] .00 [.00, .00] .61 [.16, .93] .61 [.16, .93] 

Note. Reported values represent the average estimates with the range in brackets. a = Estimated 

trait variances were constrained to 0 within this class. b = Variance estimates to calculate these 

values were all or mostly non-significant; caution should be taken when interpreting these 

results. Model entropy for the mother solution = 0.82. Model entropy for the father solution = 

0.80. Model entropy for the teacher solution = .80.
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Table 4. Crosstab Results Comparing Mother, Rather, and Teacher M-LST Most Likely Class 

Membership 

Class 

Description   

Very low 

means 

Low 

means 

Moderate 

Means 

High 

Means Total 

 
  Fathers   

Very low means 

Mothers 

60 (.67) 24 (.27) 5 (.06) 
 

89 

Low means 45 (.11) 233 (.55) 150 (.35) 
 

426 

Moderate means 5 (.02) 27 (.13) 175 (.85) 
 

209 

Total 
 

110 284 330 
 

724 

 
  Teachers   

Very low means 

Mothers 

74 (.79) 7 (.07) 13 (.14) 0 (.00) 94 

Low means 248 (.55) 74 (.17) 122 (.27) 3 (.01) 447 

Moderate means 65 (.27) 39 (.16) 114 (.48) 21 (.09) 239 

Total   387 120 249 24 780 

 
  Teachers   

Very low means 

Fathers 

88 (.84) 8 (.08) 9 (.09) 0 (.00) 105 

Low means 171 (.61) 44 (.16) 65 (.23) 2 (.01) 282 

Moderate means 98 (.30) 57 (.18) 150 (.46) 20 (.06) 325 

Total 357 109 224 22 712 

Note. Values represent the raw number of estimated individuals within each latent class. Values 

in parentheses represent the proportion of individuals per row. Bolded values indicate the cell 

with the highest proportion per row. 
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Figure Captions 

Figure 1. Single-Class Multitrait-Multistate Latent State-Trait Model. The model includes three 

indicators measured across three occasions, though more or less indicators and occasions can be 

implemented in practice.  
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Figure 1 

 

 

 


