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(0, 1)-MATRICES, DISCREPANCY AND PRESERVERS
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Abstract. Letm and n be positive integers, and let R = (r1, . . . , rm) and S = (s1, . . . , sn)
be nonnegative integral vectors. Let A(R,S) be the set of all m × n (0, 1)-matrices with
row sum vector R and column vector S. Let R and S be nonincreasing, and let F (R) be
the m × n (0, 1)-matrix, where for each i, the ith row of F (R,S) consists of ri 1’s followed
by (n− ri) 0’s. Let A ∈ A(R,S). The discrepancy of A, disc(A), is the number of positions
in which F (R) has a 1 and A has a 0. In this paper we investigate linear operators mapping
m × n matrices over the binary Boolean semiring to itself that preserve sets related to the
discrepancy. In particular, we show that bijective linear preservers of Ferrers matrices are
either the identity mapping or, when m = n, the transpose mapping.

Keywords: Ferrers matrix; row-dense matrix; discrepancy; linear preserver; strong linear
preserver
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1. Introduction

Graph theory, or equivalently (0, 1)-matrix theory, plays an important role in the

analysis of biological networks. Some obvious ones are the prey-predator models, the

climate-growth models, the pollinator-plant models, etc. In the study of plant species

versus biological pollinators, a bipartite graph is an obvious tool for analysis. To

study the bipartite graph we often use the reduced adjacency matrix (a (0, 1)-matrix).

A nested bipartite network has a reduced adjacency matrix that is equivalent to

a Ferrers matrix, see [4], [6]. A measure of the “closeness” of a bipartite network to

a nested one is the discrepancy, defined as the number of ones in the reduced adja-

cency matrix that must be interchanged with a zero in the same row to yield a Ferrers

matrix. However, finding the discrepancy of a (0, 1)-matrix is an NP-Complete prob-

lem, see [3]. Finding the isomorphic discrepancy is not so difficult, see [2]. In order

to study such systems, one method is to identify a set of matrices with that property
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and apply transformations that preserve that property to expand the known set. In

this article we will characterize the linear operators that preserve some sets related

to the set of Ferrers matrices. For relevant definitions see the following section.

Let B denote the binary Boolean semiring. That is, B = {0, 1} with addition and

multiplication the same as for the reals except that 1 + 1 = 1. The semiring B is

equivalent to the Boolean algebra of subsets of the set of one element where ∅ = 0,

{a} = 1, + is union and × is intersection. We letMm,n(B ) denote the set of allm×n

matrices with entries from B . Then Mm,n(B ) is a semimodule with multiplication

and addition defined as usual.

Let Ei,j be the matrix inMm,n(B ) which has exactly one nonzero entry, a one in

the (i, j) position. The matrices Ei,j are called cells. Let Jm,n ∈ Mm,n(B ) denote

the matrix of all ones, Om,n ∈ Mm,n(B ) denote the zero matrix and In denote

the n × n identity matrix. If no confusion arises, we suppress the subscripts and

write J , O and I.

A linear operator onMm,n(B ) is a mapping T which is additive, that is T (A+B) =

T (A) + T (B), and homogeneous, T (αA) = αT (A). It is easily seen that a linear

operator over B is also any additive map such that T (O) = O.

Due to the fact thatMm,n(B ) is finite, the following proposition is easily estab-

lished (see [1]).

Proposition 1.1. Let T : Mm,n(B ) → Mm,n(B ) be a linear operator. Then the

following are equivalent:

(1) T is injective;

(2) T is surjective;

(3) T is bijective.

Let T : Mm,n(B ) → Mm,n(B ) be a linear operator. We say that T preserves a set

X ⊆ Mm,n(B ) if A ∈ X implies that T (A) ∈ X . The operator strongly preserves the

set X if

(1.1) A ∈ X if and only if T (A) ∈ X .

Thus, “T strongly preserves the set X” is equivalent to saying “T preserves the set X

and T preserves the complementMm,n(B ) \ X”.

When mapping monoids whose addition is union or Boolean sum, such as

in Mm,n(B ), if T maps the whole monoid to a single element, then T preserves

any set that contains that element, thus, in this case, to seriously investigate any set

of preservers, additional conditions must be placed on the operator such as being

bijective or strongly preserving the set.
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Example 1.2. Let T : Mn,n(B ) → Mn,n(B ) be defined by T (X) = In for all

X 6= O, and T (O) = O. Then T is linear and preserves the set of permutation matri-

ces. But T maps every matrix to a permutaion matrix (In) except O. Clearly T does

not strongly preserve any set exceptMn,n(B ) and the set {X ∈ Mm,n(B ) : X 6= O}.

Let f be a function on Mm,n(B ). We say that T preserves f if T preserves the

set {X ∈ Mm,n(B ) ; f(X) = r} for each r in the image of f . That is,

(1.2) T preserves f if and only if for each r in the image of f,

T (strongly) preserves f−1(r).

Given a (0, 1)-matrix, let ri be the number of nonzero entries in the ith row.

Similarly cj is the number of nonzero entries in the jth column. These are called

the ith row sum and the jth column sum whether the matrix has real or Boolean

entries.

The minimum and maximum value of the discrepancy of (0, 1)-matrices in A(R, S)

was investigated by Brualdi and Shen in [5]. In the next section we shall define several

subsets ofMm,n(B ) that are related to Ferrers matrices and discrepancy. In Section 3

we will discuss the discrepancy of (0, 1)-matrices. In Section 4 we will characterize

linear preservers of Ferrers matrices and the set of matrices defined in Section 2. In

the final section we will summarize the results of the previous sections and ask some

relevant questions and state some conjectures.

2. Sets of (0, 1)-matrices

There are several equivalent definitions for Ferrers matrices. The fact that they

are equivalent is easily established.

Definition 2.1. Ferrers matrices:

Ferrers # 1. An m × n matrix of zeros and ones is called a Ferrers matrix if it

has nonincreasing row sums and for each i = 1, . . . , m the ith row consists of ri ones,

followed by n − ri zeros.

Ferrers # 2. An m × n matrix A of zeros and ones is called a Ferrers matrix if

ai,j = 1 implies that for all k 6 i and l 6 j, ak,l = 1,

Ferrers # 3. An m × n matrix of zeros and ones is called a Ferrers matrix if it

is the reduced adjacency matrix of a nested bipartite network. (From ecology).

Note that every 2 × 2 matrix of zeros and ones which has nonincreasing row and

column sums is a Ferrers matrix, and the transpose of a Ferrers matrix is a Ferrers

matrix. So, henceforth we assume that 2 6 m 6 n and 3 6 n.
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Let Pk denote the set of all k × k permutation matrices.

Definition 2.2. Let FM denote the set of all Ferrers matrices inMm,n(B ).

Let IrFM = {PA : P ∈ Pm and A ∈ FM}. That is, IrFM is the set of all

matrices inMm,n(B ) which are row permutations of a matrix in FM .

Let IcFM = {AQ : Q ∈ Pn and A ∈ FM}. That is, IcFM is the set of all

matrices inMm,n(B ) which are column permutations of a matrix in FM .

Let IFM = {PAQ : P ∈ Pm, Q ∈ Pn and A ∈ FM}. That is, IFM is the set of

all matrices in Mm,n(B ) which are equivalent (via row and column permutations)

to a matrix in FM . That is, members of IFM are the reduced adjacency matrices

of graphs isomorphic to nested bipartite networks.

Let Z+ denote the set of all nonnegative integers so that Z
k
+ is the set of all k

tuples of nonnegative integers. Let Q(m,n) = {(R, S) ; R ∈ Z

m
+, S ∈ Z

n
+, n > r1 >

r2 > . . . > rm, m > s1 > s2 > . . . > sn}. That is, Q(m,n) is the set of ordered pairs of

nonincreasing sequences of length m and n from {0, 1, 2, . . . , n} and {0, 1, 2, . . . , m},

respectively.

Let (R, S) ∈ Q(m,n) and define A(R, S) to be the subset ofMm,n(B ) consisting of

matrices with ri nonzero entries in row i and sj nonzero entries in column j, where ri

is the ith component of R and sj is the jth component of S. Note that in order that

A(R, S) 6= ∅, we must have that r1 + r2 + . . . + rm = s1 + s2 + . . . + sn.

3. Discrepancy

Given an m × n matrix A of zeros and ones which has nonincreasing row and

column sums, the discrepancy of A, disc(A) or BR(A), is a measure of how near that

matrix is to a Ferrers matrix.

Definition 3.1. Let B ∈ A(R, S) for some (R, S) ∈ Q(m,n). The discrepancy

of B, disc(B), is the minimum number of ones exchanged with zeros in the same

row of B that yields a Ferrers matrix. That is, if F (R, S) is the Ferrers matrix

whose row sums are the same as the row sums of B, then the discrepancy of B is

the number of entries of B that are zero and the corresponding entry of F (R, S) is

one.

As seen in the following example, the discrepancy of a (0, 1)-matrix is not inde-

pendent of permutation of columns which maintain the nonincreasing nature of the

columns.
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Example 3.2. Consider the two matrices:

A =



















1 0 1 1

1 0 1 1

1 1 0 1

1 1 0 0

1 1 0 0

1 0 1 0



















and A′ =



















1 0 1 1

1 0 1 1

1 1 1 0

1 1 0 0

1 1 0 0

1 0 0 1



















.

Both are in A((3, 3, 3, 2, 2, 2), (6, 3, 3, 3)) and both can be reduced to the Ferrers

matrix

F =



















1 1 1 0

1 1 1 0

1 1 1 0

1 1 0 0

1 1 0 0

1 1 0 0



















by exchanging the bold ones and zeros in each row. The discrepancy of A is 4 while

the discrepancy of A′ is 3. Note that A′ is achieved from A by permuting the last

two columns.

The discrepancy is only defined on the sets A(R, S) for (R, S) ∈ Q(m,n). We now

define a general discrepancy as a function of any member ofMm,n(B ). For matrices

not in A(R, S) for some (R, S) ∈ Q(m,n), let the discrepancy be ∞.

Definition 3.3. Let A ∈ Mm,n(B ) and let the general discrepancy of A be

Gdisc(A) = min{disc(PAQ) ; P ∈ Pm, Q ∈ Pn, and PAQ ∈ A(R, S) for some

(R, S) ∈ Q(m,n)}, that is, Gdisc(A) is the minimum of the discrepancies of PAQ,

where PAQ has nonincreasing row sums and column sums and P ∈ Pm and Q ∈ Pn.

Clearly, disc(A) > Gdisc(A) for any A ∈ Mm,n(B ).

The general discrepancy is equivalent to the isomorphic discrepancy in Berger

and Schreck [3] for matrices with nonincreasing row sums and nonincreasing column

sums.

4. Preservers

Note that for transformations T : Mm,n(B ) → K for K a monoid, saying T is

nonsingular means that T (X) = O only if X = O. Unlike transformations on vector

spaces (over a field), nonsingularity does not imply invertibility. In the following we

let Ri =
n
∑

j=1

Ei,j , the ith row of the J matrix, and Cj =
m
∑

i=1

Ei,j , the jth column of
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the J matrix. Let A, B ∈ Mm,n(B ). We say that A dominates B if aij = 0 implies

that bij = 0. This is denoted by A ⊒ B or B ⊑ A. The following proposition gives

some of the properties of linear operators on Boolean matrices that we shall find

useful.

Proposition 4.1. Let T : Mm,n(B ) → Mm,n(B ) be bijective.

(1) If T preserves a set X , then T strongly preserves X .

(2) The image of a cell is a cell.

(3) The image of a matrix A has the same number of nonzero entries as does A.

P r o o f. (1) Since T is injective, X is finite, and T (X ) ⊆ X , we have T (X ) = X .

(2) If E is a cell and T (E) is not, then T (E) dominates at least two cells since T

is nonsingular. Thus, there exist at most mn − 2 cells, E1, E2, . . . , Ej (j 6 mn − 2)

such that T (J) = T (E +(E1 + . . .+Ej)), and E +(E1 + . . .+Ej) 6= J , contradicting

the injectivity of T .

(3) This follows from case (2) and from the facts that T is bijective andMm,n(B )

is finite. �

Theorem 4.2. Let T : Mm,n(B ) → Mm,n(B ) be a bijective linear operator that

maps FM to itself. Then either:

(1) T is the identity; or

(2) m = n and T is the transpose operator.

P r o o f. Since T is bijective, by Proposition 4.1, T (E1,1) = Er,s for some r

and s. But the only member of FM that has only one nonzero entry is E1,1. Thus,

T (E1,1) = E1,1.

Consider T (E1,2). Since the only two members of FM with exactly two nonzeros

are E1,1 + E1,2 and E1,1 + E2,1, suppose that m < n and T (E1,2) = E2,1. Then

T (E1,3) must be E3,1 because T is bijective and by Proposition 4.1 T strongly pre-

serves FM , for the only possible other choice would be E1,2 which is impossible

because then T (E1,1 +E1,3) would be a member of FM contracting Proposition 4.1,

case (1). Following this pattern, we arrive at T (R1) ⊑ C1, an impossibility, since T

is bijective on the set of cells and m < n. It now follows that T (E1,2) = E1,2 and

that T (R1) = R1. Parallel to this we get that T (C1) = C1, and since T (Ej,1) = Ej,1,

we get that T (Ri) = Ri and T (Cj) = Cj . That is, T is the identity.

If m = n, it is possible to have that T (E1,2) = E2,1 and substituting rows for

columns, following the above proof, we get that T is the transpose operator. �

Given an arbitrary matrix Q ∈ Mm,n(B ) we shall use the notation J \Q to denote

the matrix whose entries are zero wherever Q has entry one and one wherever Q
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has entry zero. So J \ Em,n is the matrix all of whose entries are one except the

(m, n)-entry which is zero.

Theorem 4.3. Let T : Mm,n(B ) → Mm,n(B ) be a linear operator that maps FM

into itself. Then T strongly preserves FM if and only if T is bijective.

P r o o f. If T is bijective, then T strongly preserves FM by Proposition 4.1,

case (1). Thus, suppose that T strongly preserves FM .

Suppose T (Em,n) = O. Since E1,1 ∈ FM and E1,1 + Em,n /∈ FM , T (E1,1) ∈ FM

and T (E1,1 + Em,n) /∈ FM . However, T (Em,n) = O, so T (E1,1) = T (E1,1 + Em,n),

a contradiction. Thus T (Em,n) 6= O.

Now suppose that T (J) = T (Z) for some Z 6= J . Starting with Em,n, add cells

F1, . . . , Fj such that T (J) = T (Em,n+F1 + . . .+Fj). Since T (J) = T (Z) and Z 6= J ,

we have that j 6 mn− 2. Thus, there is some cell Q such that T (J) = T (J \Q) and

Q 6= Em,n, a contradiction since J ∈ FM and J \ Q /∈ FM .

If the image of a cell is O or if the image of a cell has more than one nonzero entry,

then for some cell Q, T (J) = T (J \ Q) and Q 6= Em,n. Thus, T maps cells to cells

and T (J) = J , so T is bijective. �

Corollary 4.4. Let T : Mm,n(B ) → Mm,n(B ) be a linear operator that preserves

the discrepancy of every matrix inMm,n(B ). Then either:

(1) T is the identity; or

(2) m = n and T is the transpose operator.

P r o o f. If T preserves the discrepancy of every matrix in Mm,n(B ), then T

strongly preserves the set of matrices of discrepancy zero, the Ferrers matrices FM .

The corollary follows by applying Theorem 4.3 to Theorem 4.2. �

Theorem 4.5. Let T : Mm,n(B ) → Mm,n(B ) be a bijective linear operator.

Then

(1) T preserves IrFM if and only if T (X) = PX for some P ∈ Pm;

(2) T preserves IcFM if and only if T (X) = XQ for some Q ∈ Pn; and

(3) T preserves IFM if and only if

(a) T (X) = PXQ for some P ∈ Pm and Q ∈ Pn or

(b) m = n and T (X) = PXtQ for some P, Q ∈ Pn.

P r o o f. (1) If T (X) = PX for some P ∈ Pm, then clearly T preserves IrFM .

So assume that T preserves IrFM .

Consider T (Ei,1). Since T is bijective, T (Ei,1) is a cell and is in IrFM , so that the

nonzero entry l is in the first column. Let T (Ei,1) = Eσ(i),1. Then σ is a permutation

since T is bijective. Now consider T (Ei,2). Since T (Ei,1+Ei,2) must be in IrFM , we
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must have T (Ei,2) = Eσ(i),2. Continuing in this way we get that T (Ei,j) = Eσ(i),j for

all i and j. That is, T (X) = PX for all X ∈ Mm,n(B ), where P is the permutation

matrix corresponding to the permutation σ.

(2) The proof is parallel to the proof of case (1), arguing on the columns instead

of rows.

(3) The proof is parallel to the proof of case (1) since if T (Ei,j) = Er,s, then the

image of any cell in row i is mapped to a cell in row r and the image of any cell in

column j is mapped to a cell in column s, unless m = n in which case we may have

that the image of any cell in row i is mapped to a cell in column s and the image of

any cell in column j is mapped to a cell in row r. �

Theorem 4.6. Let T : Mm,n(B ) → Mm,n(B ) be a linear operator. Then

(1) T strongly preserves IrFM if and only if T (X) = PX for some P ∈ Pm;

(2) T strongly preserves IcFM if and only if T (X) = XQ for some Q ∈ Pn; and

(3) T strongly preserves IFM if and only if

(a) T (X) = PXQ for some P ∈ Pm and Q ∈ Pn or

(b) m = n and T (X) = PXtQ for some P, Q ∈ Pn.

P r o o f. The proof of each part is parallel to the proof of Theorem 4.3. �

Corollary 4.7. Let T : Mm,n(B ) → Mm,n(B ) be a linear operator that preserves

the function Gdisc. Then either:

(1) T (X) = PXQ for some P ∈ Pm and Q ∈ Pn or

(2) m = n and T (X) = PXtQ for some P, Q ∈ Pn.

P r o o f. If T preserves Gdisc, then T strongly preserves the set of matrices of

generalized discrepancy zero, the set of matrices IFM . �

5. Summary, Questions and Conjectures

We know that in general disc(A) and Gdisc(A) may be different as seen in Ex-

ample 3.2. In fact, for A =
[

1 1 0 1

1 0 1 0

]

, which has discrepancy 2, if one interchanges

columns 3 and 4, we get B =
[

1 1 1 0

1 0 0 1

]

, which has discrepancy 1. We also know that

if disc(A) = 0, then Gdisc(A) = 0. This leads to some questions:

Question 5.1. Given a matrix A ∈ Mm,n(B ) whose general discrepancy is k,

what is the largest value of disc(A)?

Question 5.2. Given A ∈ A(R, S) for some (R, S) ∈ Q(m,n), if disc(A) = k and

Gdisc(A) = l, is there a matrix B ∈ A(R, S) such that disc(B) = q for any k 6 q 6 l?
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And concerning linear preservers, we make the following question and conjecture:

Question 5.3. The discrepancy of a real matrix can be defined, relating

a weighted bipartite graph to a reduced real adjacency matrix. What are the

preservers of the corresponding matrix sets?

Conjecture 5.4. Let k > 0 be “small”. If T : Mm,n(B ) → Mm,n(B ) is bijective

and preserves the set of matrices of discrepancy k, then either

(1) T is the identity; or

(2) m = n and T is the transpose operator.

Acknowledgements. The author wishes to thank the referee whose many sug-

gestions improved the presentation.
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