
RESEARCH ARTICLE

An exploration of automated narrative

analysis via machine learning

Sharad JonesID
1*, Carly FoxID

2, Sandra Gillam3, Ronald B. Gillam3

1 Department of Mathematics and Statistics, Utah State University, Logan, Utah, United States of America,

2 Department of Special Education and Rehabilitation, Utah State University, Logan, Utah, United States of

America, 3 Department of Communication Disorders and Deaf Education, Utah State University, Logan, Utah,

United States of America

* sharad.k.jones@gmail.com

Abstract

The accuracy of four machine learning methods in predicting narrative macrostructure

scores was compared to scores obtained by human raters utilizing a criterion-referenced

progress monitoring rubric. The machine learning methods that were explored covered

methods that utilized hand-engineered features, as well as those that learn directly from the

raw text. The predictive models were trained on a corpus of 414 narratives from a normative

sample of school-aged children (5;0-9;11) who were given a standardized measure of narra-

tive proficiency. Performance was measured using Quadratic Weighted Kappa, a metric of

inter-rater reliability. The results indicated that one model, BERT, not only achieved signifi-

cantly higher scoring accuracy than the other methods, but was consistent with scores

obtained by human raters using a valid and reliable rubric. The findings from this study sug-

gest that a machine learning method, specifically, BERT, shows promise as a way to auto-

mate the scoring of narrative macrostructure for potential use in clinical practice.

Introduction

There has long been a need to have cost effective, efficient and reliable means for evaluating

student writing and language abilities. Automatic essay scoring (AES) technology was first

introduced by Ellis Page in 1966 when he developed Project Essay Grader, a software that pro-

duces computer-generated scores based on writing features such as grammaticality, essay

length and organization (PEG) [1–3]. AES systems, such as PEG, are developed to increase

the speed and ease of essay scoring, with the intention of either replacing or supplementing

human scorers [1, 4–6]. Such systems operate on predictive models, which analyze text and

output standardized scores at varying levels of predictive accuracy, as measured by their corre-

lation with human-produced scores [1]. Many other AES systems have been developed since

the introduction of PEG to increase both the accuracy of predictive models, as well as to offer

additional features, such as plagiarism checks and critical feedback [1, 7].

There are currently two main domains of AES systems: those that utilize hand-engineered

essay features and those that utilize raw-text approaches [1, 7]. Hand-engineered features have

long been the standard approach as they use knowledge provided by a domain expert to create
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numeric representations of the text, allowing for simple statistical modeling techniques to

identify relevant patterns for scoring. Raw text approaches use statistical models, often neural

networks, to map the space of possible words to a higher dimensional embedding space, which

typically encodes a more semantic understanding of the word. Using these vectors, machine

learning (ML) methods can be applied, either to the sequence of text in order or to the “bag-

of-words”, to construct a model for scoring the text. [7]

Limitations of AES in clinical scenarios

While there are seemingly a large number of applications of AES technologies, these systems

have primarily been developed for the purposes of scoring high-stakes written- assessments,

such as the SAT and GRE [1]. Well-known systems such as PEG, E-Rater and IntelliMetric are

proprietary technologies that are not open-sourced to the public, so while AES technology is

very useful, it is often not readily accessible. There is therefore a need for the development of

open-access AES technology if it is to be useful for clinical practitioners in various fields such

as psychology, speech language pathology or education.

An additional drawback of many AES systems is that they operate on holistic scoring meth-

ods, which attempt to judge the overall writing quality based on a 5-6 point scale [1]. While

this is the chosen design for scoring standardized tests like the GRE, rubric-based scoring sys-

tems can give more nuanced feedback by providing input on particular areas of strength or

weakness in an individual’s writing [8]. Rubric-based tools are often used by educators, psy-

chologists and clinicians, to assess changes in children’s language abilities overtime, as well as

indicate areas of language deficits [9]. In particular, clinicians such as Speech Language Pathol-

ogists (SLPs) are encouraged to collect language samples from their clients to diagnose areas of

strengths and weaknesses, and to monitor progress over the course of intervention. Narrative

language samples are the preferred elicitation context during the school-age years, however,

many clinicians do not use them because of time-constraints. [10, 11].

Narrative sample analysis

One benefit of narratives, or stories, are that they are a universal form of discourse, and are not

as subject to the cultural biases commonly seen in standardized assessment. Research on nar-

rative discourse shows that the same macrostructural elements, also referred to as “story gram-

mar” [12, 13], are consistent across many cultures [14, 15]. As is outlined in Stein and Glenn

[16], the basic elements of an episode include the initiating event, action and consequence,

which are linked by both causal and temporal connections (e.g. A bear appeared, and then she

ran way so that she would not be eaten). Stories are comprised of settings plus episodes. Narra-

tors can include other story elements into the macrostructure such as internal responses, plans

and reactions to elaborate on episodes. Prior research has shown that children with delayed or

impaired language abilities include these macrostructure elements less frequently, and in less

elaborated forms than their typically developing peers [17–19], making narrative sampling an

informative assessment tool. Narrative evaluation and progress-monitoring tools, such as the

Test of Narrative Language [20] and the Monitoring Indicators of Scholarly Language (MISL)

[9] provide standardized and criterion-referenced assessments of macrostructural elements

that allow clinicians to quantify the quality of a child’s narrative to make diagnostic and treat-

ment decisions.

Barriers to narrative sampling. In an ideal world, teachers and SLPs would use narrative

sampling and progress-monitoring tools on a regular basis. Unfortunately this is often not the

case. In a survey of 1,399 SLPs, the most frequently reported barrier to the use of non-stan-

dardized assessment tools, such as narrative language sampling, was time [10]. Most teachers
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and SLP’s work with large numbers of students, and operate under both time and resource

constraints. While narrative progress-monitoring tools are a valid source of information about

changes in a child’s language abilities after instruction, they are time-consuming to elicit and

score, and often require extensive training [9]. These barriers lessen the practicality of such

tools, making teachers and SLPs alike, less likely to use them. Though AES technology exists,

limited effort has been made to automate clinical tools for use in clinical settings.

Existing technology & gaps in the literature

Two of the most commonly used language analysis tools are the Systematic Analysis of Lan-

guage Transcripts (SALT) [21] and the Child Language Data Exchange System’s (CHILDES)

program CLAN [22]. These are both software programs that allow educators, clinicians and

psychologists to transcribe language samples while inserting various codes to obtain clinically

useful information about aspects of language including mean length of utterance, total number

of words, total number of different words, grammaticality, syntactic complexity and narrative

quality. Unfortunately, teachers and SLP’s report that even when required to obtain and use

language sampling techniques in their practices, they often do not do so because while valu-

able, these methods take more time to complete than they have available [10].

Coh-Metrix is a text-analysis tool that is open-access, and provides over one-hundred dis-

tinct measures of language features [23]. Though this is a useful tool for many contexts, it pro-

vides only a handful of measures that are directed towards narrative analysis, with a greater

focus on text cohesion [24]. In 2018, researchers working under ETS came close to creating a

clinically relevant automated narrative sample analysis system [25]. This work serves as an

important proof of concept, however it still leaves a number of gaps in the literature. For one,

while the system is rubric-based, it was teacher-developed and addressed only a few key mac-

rostructural components important for the development of complete, coherent and quality

narratives. In addition, their system was was not associated with good scoring reliability per-

haps due in part of their use of somewhat simple statistical techniques (i.e. linear regression).

This system was designed as an alternative to E-Rater, an AES system developed by ETS for

scoring narrative essays, and while it may be suitable to that purpose, it likely does not translate

to clinical assessment.

The current study

Given the limited technology available to clinicians and SLPs for completing automated scor-

ing of narrative language samples, we sought to investigate the feasibility of designing such a

system. In this study, we aimed to explore various methodologies in the development of a com-

puter-based narrative analysis system to automate the scoring of aspects of narrative macro-

structure to include the following elements: character, setting, initiating event, plan, action,

consequence and elaborated noun phrase. The current study was designed to answer whether

an automated narrative scoring system could generate scores at or above a reliability levels

achieved by human-raters.

Materials and methods

Ethics statement

This study was conducted under full written institutional review board (IRB) approval by the

Utah State University IRB under protocol # 9802 and approval number FWA#00003308,

which was assessed as minimal risk.
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The approval statement is as follows: Your proposal has been reviewed by the Institutional

Review Board and is approved under expedite procedure #6 (based on the Department of

Health and Human Services (DHHS) regulations for the protection of human research sub-

jects, 45 CFR Part 46, as amended to include provisions of the Federal Policy for the Protection

of Human Subjects, November 9, 1998): Collection of data from voice, video, digital, or image

recordings made for research purposes.

Corpus

The corpus included in this study consisted of 414 oral narratives from a normative sample of

school-aged children (5;0-9;11). Narratives were elicited in response to the Alien Story prompt

from the Test of Narrative Language-2, which is single-scene used to elicit a story [20]. Narra-

tives produced by the children were digitally recorded and transcribed, using Systematic Anal-

ysis of Language Transcripts, based on the conventions outlined in Miller & Chapman [21].

Transcription was completed verbatim by a team of trained research assistants, all of whom

were blinded to the purpose of the study. Reliability between transcribers was determined

by examining 20% of the transcripts and was calculated as percentage agreement for both

C-Units (i.e. number of independent clauses and their attached dependent clauses within a

narrative) and mazing (i.e. segments of transcript that were excluded from analysis), averaging

at 96%.

Narrative macrostructure hand-scores

The MISL is a rubric-based progress-monitoring tool designed to assess the quality of school-

aged children’s narratives, based on both macrostructural (i.e. story grammar) and microstruc-

tural (i.e. sentence level) elements [9]. For the purposes of this study, primarily macrostruc-

tural elements were included. Each of the transcripts within the corpus had been previously

hand-scored with the MISL rubric. MISL hand-scores for all 414 transcripts were completed

by a group of trained undergraduates scorers, whom had previously reached or surpassed an

inter-rater reliability level of 85%. An additional 50 transcripts were randomly selected and

double-scored by an expert scorer; a doctoral student with more than three years of MISL scor-

ing experience. Each narrative within the corpus was given a MISL overall macrostructure

score that was calculated by adding each individual element.

There are a total of six macrostructure elements contained in the MISL that are discussed in

this study, including character, setting, initiating event, plan, action and consequence. We also

included one element from the microstructure section of the MISL, elaborated noun phrase

(ENP). ENP is a measure of the number of modifiers that precede a noun, such as in the sen-

tence the large yellow house. While ENP does not fall under macrostructure, it was determined

to be less suited to hard-coded automation than the other microstructure elements on the

MISL (i.e. subordinating conjunctions, adverbs, etc.). ENP requires both the classification of

individual words within a narrative (i.e. verb, noun, adjective) and identifying the proper

sequence of words prior to a noun (i.e. article + adjective + noun, etc.). In a separate study

which evaluated the hard-coded automation of microstructure scoring, ENP had the lowest

accuracy level. ENP was therefore included in this study in an attempt to improve its auto-

mated scoring accuracy.

Full definitions of all elements can be found below in Table 1. Each element is scored on a

scale of 0 to 3, where 0 indicates that the element is not present and 3 indicates that it has been

mastered. The elements of character and setting are scored based on their degree of elabora-

tion, whereby naming the main character(s)and describing both the specific place and time of

the setting, will result in a higher score than simply stating: There was a boy in a house. The
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scores for the remaining elements are dependent on the initiating event. If a child does not

include an initiating event (receiving a score of 0 or 1), then the maximum score for plan,

action and consequence is 1. Further, in order to score a 2 or higher on each element, they

must state an explicit causal link between the initiating event and the actions and consequences

that follow. This was an important consideration in the development of our predictive models,

because low QWK in the prediction of initiating event would likely result in low performance

on nearly all other measures.

Data cleaning

Prior to analysis, the corpus was read into R, an open-source statistical computing software,

where all unwanted characters were removed or “cleaned”. The corpus had been previously

transcribed in SALT software and thus contained a large number of unwanted characters,

including backslashes, asterisks, parentheses and time stamps. Rules for determining the

characters to remove were hard-coded in R using “if-then” logic (i.e. if “/” then replace with

“”) that was written into a string manipulation function. The function operated by analyzing

individual transcripts as a string of text, searching for the designated unwanted characters,

and finally replacing them line by line with either a new character or blank space. The func-

tion was further written into a for-loop, allowing the entire corpus to be automatically

cleaned within one execution of the code. The code for this function can be found doi:

https://OSF.IO/BCZPQ under app.R. Cleaned transcripts were then combined into one data-

set, with each transcript tagged with an unique identifier matching its corresponding MISL

scores.

Modeling methods

Given that our data consist of labeled observations (i.e. each narrative has associated known

scores), there existed a large number of possible supervised learning techniques in machine

learning which we could explore. To constrain the search of possible methods, we chose four

methods that not only span the range of complexity in Natural Language Processing (NLP),

but also take distinctly different approaches to quantifying text data. Two of these methods use

hand-engineered features to preprocess the data, Coh-Metrix with Random Forests (CMRF)

and TF-IDF with Random Forest (TIRF), and two directly handle the raw text, GloVe Embed-

dings with LSTM’s (GVEL) and Bidirectional Encoder Representations from Transformers

(BERT). Each method proposes a different approach to the same end, predicting the macro-

structure MISL scores, and also follows a common pattern: Take as input the raw text or pre-

Table 1. Definition of MISL macrostructure elements and ENP.

MISL Element Definition

Character The who or what in the story acting as the agent

Setting The time and/or place the story or episode takes place

Initiating Event An event or problem that causes the story to “take-off”

Plan The idea the character(s) has to fix the problem in the story

Action The action taken by the character in response to the initiating event

Consequence A causally linked event following the character’s action

Elaborated Noun Phrase The number of modifiers following a given noun, that serve to describe the noun

For full definitions of macrostructure elements reference [9].

https://doi.org/10.1371/journal.pone.0224634.t001
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processed narratives, train a model that maps inputs to outputs (i.e. MISL scores) using a ML

algorithm, and then use the trained model to predict outputs on unseen data.

Coh-Metrix with Random Forests (CMRF) & TF-IDF with Random Forests (TIRF).

The first two approaches explored, CMRF and TIRF, provide a simple and easily reproduced

baseline through the utilization of Random Forests (RF) [26]. While there are many other via-

ble choices of learning algorithms (e.g. Linear Regression, Support Vector Machines, Gradient

Boosting Machines, etc.), RF’s were specifically selected due to their strength and flexibility as

a learning algorithm, while being very robust to hyperparameter selections. This minimizes

the possibility of overfitting our solution given that we have a relatively small data set. RF’s

take as input a numeric matrix consisting of rows, representing narratives, and columns, rep-

resenting variables. The two methods vary in the way they generate the variables in this matrix.

Coh-Metrix is a tool developed to quantify the cohesion and coherence across many differ-

ent metrics, through dimensionality reduction techniques (e.g. PCA and LSA) and the identifi-

cation of specific syntactical structures, resulting in 108 unique measures or variables [23].

TF-IDF takes a simpler approach, in that the variables of the matrix represent all unique words

across the corpus of narratives and each row is an individual narrative. The entries of this

matrix are a calculation of the frequency of a given word in a single narrative divided by the

frequency of that word across all narratives. This has the effect of down-weighting common

words in a given set of texts, while upweighting words in a text that may not be used as often.

Conceptually, this should allow a machine learning method to identify sets of words that con-

tribute to specific scores (if any pattern exists).

While the RF based methods provide a strong baseline, most modern NLP methods employ

some form of a neural network. The main motivation for this, is the need to consider the

ordering and context of words in a given narrative. This is especially true when trying to auto-

matically predict macrostructure elements, which often contain long term or contextual

dependencies. Also, RF’s are only provided with some abstracted form of the narratives from

our corpus and must use the 400+ narratives to identify the differences in a given macrostruc-

ture element, with no prior knowledge of the English language. To this end, GVEL and BERT,

both use pre-processing techniques that try to inject outside “knowledge” of the language and

utilize neural network architectures that allow for contextual and sequential representations of

words in the narratives.

GloVe embeddings with LSTM’s (GVEL). GVEL pre-processes the raw text by represent-

ing each word with its Global Vectors for Word Representation (GloVe) embedding, a

300-dimensional embedding vector of numbers that is learned through pre-training on mil-

lions of Wikipedia articles [27]. This provides the model with a numeric representation (a 300

dimensional real valued vector) of each word, where many semantic relationships are encoded.

A famous example of this is the vector difference between the embeddings for the words

“King” and “man” is similar to the vector difference between “Queen” and “woman”. These

vectors are then fed in sequentially to a Long Short-Term Memory Network (LSTM) [28], a

neural network architecture that maintains a sort of “memory” state and, through the use of

multiple logic gates, allows each update step to consider past actions as well as the current

word vector presented. LSTMs have shown promise on many language based applications

such as neural machine translation [29], video captioning [30], and text classification [31]. The

success and widespread utilization of LSTMs motivates them as a viable approach to narrative

scoring.

BERT. Bidirectional Encoder Representation from Transformer (BERT), a method devel-

oped by a team at Google in late 2018 [32], has shown state of the art results in a variety of

NLP tasks including sentence pair classification, single sentence classification, question

answering, and single sentence tagging, all described in detail in the original paper. A strength
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of BERT is that it takes this idea of learning embeddings one step further, by learning each

embedding vector directly in the context of the sequence. While GloVe embeddings are

learned through extensive pre-training and simply downloaded as-is for later classification

tasks, BERT embeddings are learned within the process of training the specific task. This subtle

but important difference, which allows homonyms and other ill-defined words to be disambig-

uated based on the surrounding context. BERT is still pretrained on a large corpus, however,

in the process of training on our data, the whole model architecture is downloaded and modi-

fied for the specific downstream task, in our case MISL score prediction.

At its core, BERT utilizes the Transformer architecture, introduced in the paper Attention is
All You Need by Vaswani et al. in 2017 [33]. The Transformer architecture considers an entire

sequence, which we’ve defined as the entire narrative, as input and forms positionally encoded

word embeddings for each word in the sequence. These embeddings are then fed into an

encoding block all at once, unlike LSTM’s which take inputs sequentially. The encoding block

contains a self-attention layer followed by a simple feed-forward neural network. This archi-

tecture allows each word embedding to pass through the encoding block, while acquiring rele-

vant contextual information from surrounding words through the use of the self-attention

layer. Each updated embedding is then passed on to subsequent encoding blocks before

moving on to the decoder layers. Rather than performing the standard sequence-to-sequence

prediction though, we instead predicted the label of a special “[CLS]” token in the output

sequence. This [CLS] token represented a single score for the relevant MISL element, repre-

sented as a continuous value between 0 and 3, and was passed into the mean squared error loss

function. For our final evaluations, we rounded this value to the nearest integer and calculated

the quadratic weighted kappa. To summarize, we treated an entire narrative as input and pre-

dicted a single score for a given MISL element. A separate BERT model was trained for each

MISL Macrostructure element.

Hyperparamter tuning. A key component of any ML based study is the aspect of hyper-

parameter tuning. In this context, hyperparameter tuning is defined as the task of choosing the

parameters of the ML algorithm, which are not learned directly, but instead dictate either the

architecture of the algorithm or the way in which the algorithm proceeds in learning. The diffi-

culty of this process comes in that rigorous tuning is necessary for constructing an accurate

model, but careless tuning can easily result in overfitting of the model to the training data or,

in the worst case, overfitting to the test data. To avoid any information leakage in the tuning

process, the data were either split into separate training and validation sets (both disjoint from

the final test set) or, where it was feasible, full 10-fold cross-validation was performed on the

test set for tuning the hyperparameters.

To be more specific, for Random Forests (both with Coh-Metrix and TF-IDF), effectively

no tuning was done. It is well studied that Random Forests are fairly robust to their tuning

parameters (number of trees and number of variables drawn at each node) and often the

default parameters are sufficient for a strong tree [26]. Given that we grew these Forests in R,

this meant each Forest consisted of 500 trees and, since it was a regression tree, a third of the

variables were randomly selected at each node and the best split among them was taken.

For LSTM’s, an exhaustive grid search with cross-validation was carried out on the learn-

ing rate, number of layers, number of nodes, and the optimizer used. There was a bit of man-

ual exploration performed to minimize the amount of searching required to set the bounds

of the grid search effectively. The limited amount of data (� 400 observations) meant that

the results from similar hyperparameter choices tended to vary greatly, making this search

very unstable. Consistent results were eventually achieved but we do not claim that these

choices in hyperparameters were optimal, given that tuning was kept to a minimum to avoid

overfitting our limited training set. As discussed in our future directions, we hope that with
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more data, a more robust LSTM model can be constructed for a more fair comparison to the

other methods.

BERT required very minimal tuning to attain consistent and strong results. In our study,

we limited the modifications of the original BERT hyperparameters to a few tweaks in the

learning rate schedule. This was completed manually, on a holdout validation set (disjoint

from the test set). The selected settings for the learning rates for each separate MISL macro-

structure element are provided in the submitted code, the link to which is found under the

Supplementary Code section. As with LSTMs, more tuning could have been performed, and we

make no guarantees of optimality. However, as discussed in the results, the performance of

these BERT models on the validation set far exceeded any of the other methods. This alone

was used as justification in the acceptance of the final hyperparameter settings.

Quadratic Weighted Kappa. Evaluating performance of the various ML models required

selection of a performance metric. While simple accuracy does provide some insight into how

well these models classified the narratives to MISL scores, they do not factor in the degree of

mistakes made. In other words, scoring a narrative as a 3 when it is actually a 0, is just as incor-

rect as scoring it as a 1 when using accuracy. Quadratic Weighted Kappa (QWK) is another

performance metric that directly addresses this issue and is therefore widely used in the AES

literature [34, 35]. It is calculated by taking the inner product of the confusion matrix, of pre-

dicted and actual scores, with a weight matrix where there are 0’s on the diagonal and the

squared difference of predicted and actuals on the off diagonals. This is divided by the inner

product of the expected value and the same weight matrix as before. This fraction of inner

products is subtracted from 1, giving a single value constrained between 0 and 1. A “1” would

indicate perfect agreement between raters, or in our case between the model and human scor-

ers, and a 0 would be no agreement. An accepted baseline in the literature for strong agree-

ment is 0.6, though we would like to see QWK between our models and a human on par with

or exceeding human to human QWK.

To train our models to optimize QWK, we adapted each method to perform regression,

which is equivalent to minimizing the mean squared error between predicted and actual

results. This has the effect of penalizing larger misclassifications in our predictions more than

smaller errors, but unfortunately outputs a real valued number between 0 and 3, instead of a

discrete integer value from 0 to 3. For simplicity, we rounded our regression results from each

method to the nearest integer and, while we found strong results using this approach, an argu-

ment could be made for using a smoothed form of QWK as the loss function.

Results

The QWK for each ML model compared to an US, on either a holdout test set (TS) (80% train-

ing, 20% test set) or through 10-fold cross-validation (CV), is shown in Table 2. Of the first 3

methods (CMRF, TIRF, GVEL), none exceeded the accepted standard of agreement with the

undergraduate scorers (0.60 or above) on any element of the MISL tool. Surprisingly, BERT

dramatically surpassed the performance of the other methods, with all QWK’s greater than 0.9

except for “Consequence”, which still achieved a respectable 0.790. This is very strong agree-

ment by any AES standard and shows that it is possible to construct a ML model that can con-

sistently match the scoring ability of a trained undergraduate scorer on the MISL tool.

To compare these results with human-to-human QWK, we compared the BERT to under-

graduate scorer results to the QWK of undergraduate scorers to an expert scorer on 50 ran-

domly selected narratives of the same prompt. We also compared BERT to expert scores to see

if we get results comparable to the undergraduate to expert QWK. From Table 3, we can see

that BERT achieving high agreement to undergraduate scorers resulted in a similar pattern of
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agreement to the expert scores, when compared to undergraduate to expert. The relatively low

QWK between undergraduate and expert scores reiterates the need for a consistent scoring

system, as this is indicative of rater error in the US. It also confirms that to create an effective

and reliable scoring system, it would be beneficial to train BERT on only ES data. Given

enough data (� 400 narratives as with the US data), we expect that we can achieve similarly

high QWK from BERT to expert as we achieved from BERT to undergraduates. It may even

require less data than with the undergraduate scorers data as we’d expect the expert scores to

be more consistent (i.e. higher signal to noise ratio).

Discussion

In this study, we aimed to investigate if machine learning methods could accurately score nar-

rative macrostructure elements, as defined by the MISL tool, as well as if an automated narra-

tive scoring system could generate scores at or exceeding the reliability level of human scorers.

BERT was the most successful method for calculating each macrostructure element, given the

constraints of our dataset, with all QWKs well above 0.6 and all but one above 0.9. A possible

explanation for the success of BERT is that it is pre-trained on a very large corpus, affording it

a great deal of familiarity with the English language, a technique known as transfer learning.

This approach also allows the model to learn each word embedding in the context of its

sequence, potentially clarifying semantically ambiguous words. Finally, BERT as well as

GVEL’s usage of word embeddings allow them to handle unseen words in training, since the

word embeddings form a semantically related lower dimensional space, in which unseen

words can still be represented given their relationships to known words.

Table 2. QWK of machine learning models trained on undergraduate scored data.

MISL Element CMRF w/ CV TIRF w/ CV GVEL w/ CV BERT w/ TS

Character 0.504 0.595 0.317 0.975

Setting 0.239 0.348 0.459 0.911

Initiating Event 0.498 0.533 0.485 0.945

Plan 0.423 0.536 0.335 0.953

Action 0.466 0.503 0.522 0.942

Consequence 0.494 0.500 0.493 0.790

Elaborated Noun Phrase 0.480 0.437 0.454 0.908

QWK of the various ML models to the undergraduate scorers either through 10-fold cross-validation (CV) or a holdout test set (TS) as compute time permitted.

https://doi.org/10.1371/journal.pone.0224634.t002

Table 3. QWK of BERT to US, BERT to ES, and US to ES.

MISL Element BERT to US BERT to ES US to ES

Character 0.975 0.938 0.956

Setting 0.911 0.591 0.601

Initiating Event 0.945 0.593 0.547

Plan 0.953 0.427 0.400

Action 0.942 0.396 0.417

Consequence 0.790 0.651 0.410

Elaborated Noun Phrase 0.908 0.724 0.780

Results of comparing the QWK of BERT to undergraduate scores (US) to that of BERT to expert scores (ES) and US

to ES.

https://doi.org/10.1371/journal.pone.0224634.t003
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Alternatively, CMRF and TIRF methods were both forced to model patterns in the narra-

tives to score these various elements from the ground up with no pre-training. For example,

to score “Initiating Event”, CMRF and TIRF had to learn all of the possible ways an initiating

event could be stated from only a small sample of 400 narratives, while not having any struc-

tures to handle the sequential nature of text. In practice, these models are even more limited

in that they have no way to handle words that were not seen in the original training set,

which could have also contributed to their poor performance on the unseen test set. These

constraints severely hinder the ability of both CMRF and TIRF to handle such complex tex-

tual relationships.

GVEL on the other hand utilizes some principles of transfer learning and, through the

LSTM, natively handles sequences. Given the success of LSTM’s in the literature, an LSTM

trained with sufficient data could possibly perform comparably to BERT. However, with only

400 narratives to learn these types of patterns and dependencies, training an LSTM from ran-

dom parameter weights was shown to be very difficult and ultimately, in our experiments, not

feasible.

As the quantity of data increases though, we hope to return to LSTM’s as an alternative to

BERT for a few reasons. Most importantly, while they are still not quite at the level of classical

statistical learning methods (e.g. regression, decision trees, etc.) for interpretability, the liter-

ature on interpreting the results on LSTM’s is much more rich than the recently introduced

Transformer models, such as BERT. While interpretation of predictions does not limit the

usability of these models in a clinical setting, it may be of academic interest to understand

the relationship between the ML based predictions and the rubric upon which it is based, the

MISL. Also, Transformer models are notoriously large computationally with BERT-base (the

model used in this paper), weighing in at 110M parameters. The scale of these models not

only hinders their interpretability, but also makes them intractable for use in resource con-

strained environments. Two recent works [36][37] propose methods for distilling the knowl-

edge–for lack of a better term–of BERT models down to much smaller neural networks,

often LSTMs. This is a promising research direction and one we hope to explore in the

future.

As stated, BERT achieved reliability levels with undergraduate scorers that were well above

an acceptable threshold, as well as at or above the reliability levels of undergraduates to an

expert scorer, as shown in Table 3. This confirmed that, for our specific prompt and popula-

tion, it was possible to train a machine learning model to score narratives in a fashion that was

on par with trained human raters.

Rater error

As can be seen from Table 3, the QWK between undergraduate and expert scores on certain

elements, particularly elements related to the initiating event (i.e. plan, consequence and

action), were quite low with plan reaching a QWK of 0.400, action 0.417 and consequence

0.410. The low QWK seen between undergraduate and expert scores can likely be attributed to

sources of rater error, such as rater drift and/or fatigue. Rater drift is a common issue in hand-

scoring whereby the scoring “style”, or a scorer’s understanding of a concept, shifts overtime,

thus causing their scoring patterns to become more lenient or severe [38]. Fatigue is another

common issue, where scorers make errors in scoring simply due to becoming tired and losing

focus [9]. Both of these issues likely contributed to the lower than expected agreement found

between scorers, but this is precisely what will be remedied by training BERT on expert

scored narratives, as it won’t be susceptible to these types of rater errors. A similar pattern was

observed between expert and BERT scores.
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Clinical implications

The results of this study show great promise for the automation of narrative macrostructure

scoring. While BERT will require some additional training with a greater number of expert

scores to increase the scoring reliability, our results have shown that BERT can score aspects of

narratives accurately with acceptable levels of reliability. These scores are consistent with those

of human raters, particularly when those raters are highly experienced in using the rubric.

Automating the scoring of important aspects of narratives enables more professionals to utilize

narrative analysis in their respective settings. While educators, psychologists and clinicians

will still at this point be required to transcribe their audio recordings, no coding of transcripts

will be necessary, which will add additional time savings. Given that clinicians’ most com-

monly reported barrier to conducting language sample analyses was time, we feel that this

technology may be helpful in overcoming that obstacle. BERT may help to breach a research-

to-practice gap by allowing more consistent, reliable and authentic monitoring of narrative

discourse development for student whose goals include this important milestone. Moving for-

ward, it is our intention to make this technology open-access to the public, through the use of

a simple web based applet. This applet will allow users to upload narrative transcripts and

obtain automated MISL scores for various aspects of macrostructure and microstructure.

Limitations

Given that BERT was trained exclusively on narratives elicited from the Alien Story picture

prompt, there is currently a limitation in the generalizability of the scoring. The accuracy of

MISL scores produced by BERT for different prompts is not yet known, but likely lower than

narratives elicited in the same context. In addition, BERT was trained on a corpus of children

aged 5-9, which may affect its generalizability to other age groups. Training BERT on a corpus

of older children will be necessary to ensure that BERT can accurately predict scores for chil-

dren above the age of 9.

Future directions

While the question of how BERT made its correct (or incorrect) predictions was not answered

in this work, we feel that this work provides evidence that ML is a viable alternative to human

based holistic scoring of narratives, given the constraints of our data. In future work, we would

like to train BERT exclusively on narratives scored by expert scorers. As we saw, BERT effec-

tively replicated the scoring of non-expert (trained undergraduate) scorers, though this had

the effect of replicating their mistakes as well. We believe that training a BERT based model on

a comparable amount of narratives scored by experts would give a more reliable and consistent

scoring experience to clinicians and users of the MISL rubric.

Also, as discussed in the limitations, we would like to extend our study to other narrative

prompts. It is not yet known whether a single model can handle the scoring of MISL macro-

structure elements across multiple prompts or if multiple distinct models will be needed. This

will almost certainly impact the clinical practicality of our approach and is therefore a priority

in our research.

Finally, we believe a more detailed error analysis is warranted to explore the mistakes made

by our BERT based model. While the mistakes were minimal, the edge cases may provide a

deeper insight into the patterns in narratives most relevant to scoring. In parallel, this research

will also naturally explore the question of interpreting results from a large Transformer model.

The landscape of research in this field is expanding quickly, but the context of our work may

provide a shortcut to understanding, given that the scores in our data are based off of a rubric

that is theoretically grounded on a well-established theory of narrative structure [16]. In the
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future we hope to leverage this feature of our data to contribute in the understanding of how

these “black box” models understand language.

Supplementary code

The code for the final successful BERT model can be found here: https://github.com/sharadkj/

BERT_QWK_MISL/blob/master/BERT_QWK.ipynb. Instruction for running the code are in

the notebook.
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