
ar
X

iv
:1

60
9.

07
76

6v
2

 [
cs

.C
G

]
 1

6
Fe

b
20

17

Separating Overlapped Intervals on a Line⋆

Shimin Li and Haitao Wang

Department of Computer Science
Utah State University, Logan, UT 84322, USA

shiminli@aggiemail.usu.edu, haitao.wang@usu.edu

Abstract. Given n intervals on a line ℓ, we consider the problem of moving these intervals on ℓ such
that after the movement no two intervals overlap and the maximum moving distance of the intervals
is minimized. The difficulty for solving the problem lies in determining the order of the intervals in
an optimal solution. By interesting observations, we show that it is sufficient to consider at most n

“candidate” lists of ordered intervals. Further, although explicitly maintaining these lists takes Ω(n2)
time and space, by more observations and a pruning technique, we present an algorithm that can
compute an optimal solution in O(n log n) time and O(n) space. We also prove an Ω(n log n) time
lower bound for solving the problem, which implies the optimality of our algorithm.

1 Introduction

Let I be a set of n intervals on a real line ℓ. We say that two intervals overlap if their intersection
contains more than one point. In this paper, we consider an interval separation problem: move the
intervals of I on ℓ such that no two intervals overlap and the maximum moving distance of these
intervals is minimized.

If all intervals of I have the same length, then after the left endpoints of the intervals are sorted,
the problem can be solved in O(n) time by an easy greedy algorithm [15]. For the general problem
where intervals may have different lengths, to the best of our knowledge, the problem has not been
studied before. In this paper, we present an O(n log n) time and O(n) space algorithm for it. We
also show an Ω(n log n) time lower bound for solving the problem under the algebraic decision tree
model, and thus our algorithm is optimal.

As a basic problem and like many other interval problems, the interval separation problem
potentially has many applications. For example, one possible application is on scheduling, as follows.
Suppose there are n jobs that need to be completed on a machine. Each job requests a starting
time and a total time for using the machine (hence it is a time interval). The machine can only
work on one job at any time, and once it works on one job, it is not allowed to switch to other
jobs until the job is finished. If the requested time intervals of the jobs have any overlap, then we
have to change the requested starting times of some intervals. In order to minimize deviations from
their requested time intervals, one scheduling strategy could be changing the requested starting
times (either advance or delay) such that the maximum difference between the requested starting
times and the scheduled starting times of all jobs is minimized. Clearly, the problem is an instance
of the interval separation problem. The problem also has applications in the following scenario.
Suppose a wireless sensor network has n wireless mobile devices on a line and each device has a
transmission range. We want to move the devices along the line to eliminate the interference such
that the maximum moving distance of the devices is minimized (e.g., to save the energy). This is
also an instance of the interval separation problem.

⋆ This research was supported in part by NSF under Grant CCF-1317143.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@USU

https://core.ac.uk/display/275574436?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1609.07766v2

1.1 Related Work

Many interval problems have been used to model scheduling problems. We give a few examples.
Given n jobs, each job requests a time interval to use a machine. Suppose there is only one machine
and the goal is to find a maximum number of jobs whose requested time intervals do not have any
overlap (so that they can use the machine). The problem can be solved in O(n log n) time by an
easy greedy algorithm [11]. Another related problem is to find a minimum number of machines
such that all jobs can be completed [11]. Garey et al. [10] studied a scheduling problem, which is
essentially the following problem. Given n intervals on a line, determine whether it is possible to
find a unit-length sub-interval in each input interval, such that no two sub-intervals overlap. An
O(n log n) time algorithm was given in [10] for it. An optimization version of the problem was also
studied [7,20], where the goal is to find a maximum number of intervals that contain non-overlapping
unit-length sub-intervals. Other scheduling problems on intervals have also been considered, e.g.,
see [6,10,11,12,13,19,21].

Many problems on wireless sensor networks are also modeled as interval problems. For example,
a mobile sensor barrier coverage problem can be modeled as the following interval problem. Given
on a line n intervals (each interval is the region covered by a sensor at the center of the interval)
and another segment B (called “barrier”), the goal is to move the intervals such that the union of
the intervals fully covers B and the maximum moving distance of all intervals is minimized. If all
intervals have the same length, Czyzowicz et al. [8] solved the problem in O(n2) time and later Chen
et al. [4] improved it to O(n log n) time. If intervals have different lengths, Chen et al. [4] solved
the problem in O(n2 log n) time. The min-sum version of the problem has also been considered. If
intervals have the same length, Czyzowicz et al. [9] gave an O(n2) time algorithm, and Andrews
and Wang [1] solved the problem in O(n log n) time. If intervals have different lengths, then the
problem becomes NP-hard [4]. Refer to [2,3,5,14,17,18] for other interval problems on mobile sensor
barrier coverage.

Our interval separation problem may also be considered as a coverage problem in the sense
that we want to move intervals of I to cover a total of maximum length of the line ℓ such that the
maximum moving distance of the intervals is minimized.

1.2 Our Approach

We consider a one-direction version of the problem in which intervals of I are only allowed to move
rightwards. We show (in Section 2) that the original “two-direction” problem can be reduced to
the one-direction problem in the following way: If OPT is an optimal solution of the one-direction
problem and δopt is the maximum moving distance of all intervals in OPT, then we can obtain an
optimal solution for the two-direction problem by moving each interval in OPT leftwards by δopt/2.

Hence, it is sufficient to solve the one-direction problem. It turns out that the difficulty is mainly
on determining the order of intervals of I in OPT. Indeed, once such an “optimal order” is known,
it is quite straightforward to compute the positions of the intervals in OPT in additional O(n) time
(i.e., consider the intervals in the order one by one and put each interval “as left as possible”). If
all intervals have the same length, then such an optimal order is obvious, which is the order of the
intervals sorted by their left endpoints in the input. Indeed, this is how the O(n) time algorithm in
[15] works.

However, if the intervals have different lengths, which is the case we consider in this paper, then
determining an optimal order is substantially more challenging. At first glance, it seems that we have

2

to consider all possible orders of the intervals, whose number is exponential. By several interesting
(and even surprising) observations, we show that we only need to consider at most n ordered lists
of intervals. Consequently, a straightforward algorithm can find and maintain these “candidate”
lists in O(n2) time and space. We call it the “preliminary algorithm”, which is essentially a greedy
algorithm. The algorithm is relatively simple but it is quite involved to prove its correctness. To
this end, we extensively use the “exchange argument”, which is a standard technique for proving
correctness of greedy algorithms (e.g., see [11]).

To further improve the preliminary algorithm, we discover more observations, which help us
“prune” some “redundant” candidate lists. More importantly, the remaining lists have certain
monotonicity properties such that we are able to implicitly compute and maintain them inO(n log n)
time and O(n) space, although the number of the lists can still be Ω(n). Although the correctness
analysis is fairly complicated, the algorithm is still quite simple and easy to implement (indeed, the
most “complicated” data structure is a binary search tree).

The rest of the paper is organized as follows. In Section 2, we give notation and reduce our
problem to the one-direction case. In Section 3, we give our preliminary algorithm, whose correctness
is proved in Section 4. The improved algorithm is presented in Section 5. In Section 6, we conclude
the paper and prove the Ω(n log n) time lower bound by a reduction from the integer element
distinctness problem [16,22].

2 Preliminaries

We assume the line ℓ is the x-axis. The one-direction version of the interval separation problem is
to move intervals of I on ℓ in one direction (without loss of generality, we assume it is the right
direction) such that no two intervals overlap and the maximum moving distance of the intervals
is minimized. Let OPT denote an optimal solution of the one-direction version and let δopt be the
maximum moving distance of all intervals in OPT. The following lemma gives a reduction from the
general “two-direction” problem to the one-direction problem.

Lemma 1. An optimal solution for the interval separation problem can be obtained by moving
every interval in OPT leftwards by δopt/2.

Proof. Let SOL be the solution obtained by moving every interval in OPT leftwards by δopt/2. Our
goal is to show that SOL is an optimal solution for our original problem. Let δ be the maximum
moving distance of all intervals in SOL. Since no intervals in OPT have been moved leftwards (with
respect to their input positions), we have δ = δopt/2.

Assume to the contrary that SOL is not optimal. Then, there exists another solution SOL′ for
the original problem in which the maximum interval moving distance is δ′ < δ. By moving every
interval of SOL′ rightwards by δ′, we can obtain a feasible solution SOL′′ for the one-direction
problem in which no interval has been moved leftwards (with respect to their input positions) and
the maximum interval moving distance of SOL′′ is at most 2δ′, which is smaller than δopt since
δ′ < δ. However, this contradicts with that OPT is an optimal solution for the one-direction case.

⊓⊔

By Lemma 1, once we have an optimal solution for the one-direction problem, we can obtain an
optimal solution for our original problem in additional O(n) time. In the following, we will focus
on solving the one-direction case.

3

We first sort all intervals of I by their left endpoints. For ease of exposition, we assume no
two intervals have their left endpoints located at the same position (otherwise we could break ties
by also sorting their right endpoints). Let I = {I1, I2, . . . , In} be the sorted intervals by their left
endpoints from left to right. For each (integer) i ∈ [1, n], denote by li and ri the (physical) left and
right endpoints of Ii, respectively. Denote by xli and xri the x-coordinates of li and ri in the input,
respectively. Note that for each i ∈ [1, n], the two physical endpoints li and ri may be moved during
the algorithm, but the two coordinates xli and xri are always fixed. Denote by |Ii| the length of Ii,
i.e., |Ii| = xri − xli.

For convenience, when we say the position of an interval, we refer to the position of the left
endpoint of the interval.

With respect to a subset I ′ of I, by a configuration of I ′, we refer to a specification of the
position of each interval of I ′. For example, in the input configuration of I, interval Ii is at xli
for each i ∈ [1, n]. Given a configuration C of I ′, for each interval Ii ∈ I ′, if li is at x in C, then
we call the value x − xli the displacement of Ii, denoted by d(i, C), and if d(i, C) ≥ 0, then we say
that Ii is valid in C. We say that C is feasible if the displacement of every interval of I ′ is valid
and no two intervals of I ′ overlap in C. The maximum displacement of the intervals of I ′ in C is
called the max-displacement of C, denoted by δ(C). Hence, finding an optimal solution for the one-
direction problem is equivalent to computing a feasible configuration of I whose max-displacement
is minimized; such a configuration is also called an optimal configuration.

For convenience of discussion, depending on the context, we will use the intervals Ii of I and
their indices i interchangeably. For example, I may also refer to the set of indices {1, 2, . . . , n}.

Let Lopt be the list of intervals of I in an optimal configuration sorted from left to right. We
call Lopt an optimal list. Given Lopt, we can compute an optimal configuration in O(n) time by an
easy greedy algorithm, called the left-possible placement strategy: Consider the intervals following
their order in Lopt, and for each interval, place it on ℓ as left as possible so that it does not overlap
with the intervals that are already placed on ℓ and its displacement is non-negative. The following
lemma formally gives the algorithm and proves its correctness.

Lemma 2. Given an optimal list Lopt, we can compute an optimal configuration in O(n) time by
the left-possible placement strategy.

Proof. We first describe the algorithm and then prove its correctness.

We consider the indices one by one following their order in Lopt. Consider any index i. If Ii is
the first interval of Lopt, then we place Ii at x

l
i (i.e., Ii stays at its input position). Otherwise, let

Ij be the previous interval of Ii in Lopt. So Ij has already been placed on ℓ. Let x be the current
x-coordinate of the right endpoint rj of Ij . We place the left endpoint li of Ii at max{xli, x}. If
Ii is the last interval of Lopt, then we finish the algorithm. Clearly, the algorithm can be easily
implemented in O(n) time.

Let C be the configuration of all intervals obtained by the above algorithm. Recall that δ(C)
denote the max-displacement of C. Below, we show that C is an optimal configuration.

Indeed, since Lopt is an optimal list, there exists an optimal configuration C′ in which the order
of the indices of I follows that in Lopt. Hence, the max-displacement of C′ is δopt. According to
our greedy strategy for computing C, it is not difficult to see that the position of each interval Ii
of I in C cannot be strictly to the right of its position in C′. Therefore, the displacement of each
interval in C is no larger than that in C′. This implies that δ(C) ≤ δopt. Therefore, C is an optimal
configuration. ⊓⊔

4

Case I Case II Case III

m

i i i

m m

m m

Fig. 1. Illustrating the three main cases. The (black) solid segments show intervals in their input positions and the
(red) dashed segments shows interval Im in CL.

Due to Lemma 2, we will focus on computing an optimal list Lopt.

For any subset I ′ of I, an (ordered) list of I ′ refers to a permutation of the indices of I ′. Let
L be a list of I and let L′ be a list of I ′ with I ′ ⊆ I. We say that L′ is consistent with L if the
relative order of indices of I ′ in L is the same as that in L′. If L′ is consistent with an optimal list
Lopt of I, then we call L′ a canonical list of I ′.

For any 1 ≤ i ≤ j ≤ n, we use I[i, j] to denote the subset of consecutive intervals of I from i
to j, i.e, {i, i+ 1, . . . , j}.

3 The Preliminary Algorithm

In this section, we describe an algorithm that can compute an optimal list in O(n2) time and space.
The correctness of the algorithm is mainly discussed in Section 4.

Our algorithm considers the intervals of I one by one by their index order. After each interval
Ii is processed, we obtain a set L of at most i lists of the indices of I[1, i], such that L contains
at least one canonical list of I[1, i]. For each list L ∈ L, a feasible configuration CL of the intervals
of I[1, i] is also maintained. As will be clear later, CL is essentially the configuration obtained by
applying the left-possible placement strategy on the intervals of I[1, i] following their order in L.
For each j ∈ [1, i], we let xlj(CL) and xrj(CL) respectively denote the x-coordinates of lj and rj in
CL (recall that lj and rj are the left and right endpoints of the interval Ij , respectively). Recall
that δ(CL) denotes the max-displacement of CL, i.e, the maximum displacement of the intervals of
I[1, i] in CL.

Initially when i = 1, we have only one list L = {1} and let CL consist of the single interval I1
at its input position, i.e., xl1(CL) = xl1. Clearly, δ(CL) = 0. We let L consist of the only list L. It is
vacuously true that L is a canonical list of I[1, 1].

In general, assume interval Ii−1 has been processed and we have the list set L as discussed above.
In the following, we give our algorithm for processing Ii. Consider a list L ∈ L. Note that CL has
been computed, which is a feasible configuration of I[1, i− 1]. The value δ(CL) is also maintained.
Let m be the last index in L. Note that m < i. Depending on the values of xli, x

r
i , x

r
m, and xlm(CL),

there are three main cases (e.g. see Fig. 1).

Case I: xri ≥ xrm (i.e., the right endpoint ri of Ii is to the right of rm in the input). In this case,
we update L by appending i to the end of L. Further, we update the configuration CL by placing
li at max{xrm(CL), x

l
i} (which follows the left-possible placement strategy). We let L′ denote the

original list of L before i is inserted and let CL′ denote the original configuration of CL. We update
δ(CL) by the following observation.

Observation 1 CL is a feasible configuration and δ(CL) = max{δ(CL′), xli(CL)− xli}.

5

Proof. By our way of setting Ii in CL, Ii is valid and does not overlap with any other interval in CL.
Hence, CL is feasible. Comparing with CL′ , CL has one more interval Ii. Therefore, δ(CL) is equal
to the larger value of δ(CL′) and the displacement of Ii in CL, which is xli(CL)− xli. ⊓⊔

The following lemma will be used to show the correctness of our algorithm and its proof is
deferred to Section 4.

Lemma 3. If L′ is a canonical list of I[1, i− 1], then L is a canonical list of I[1, i].

Case II: xri < xrm and xli ≤ xlm(CL). In this case, we update L by inserting i right before m. Let
x = xlm(CL). We update CL by setting li at x and setting lm at x+ |Ii|. We let L′ denote the original
list of L before inserting i and let CL′ denote the original CL. We update δ(CL) by the following
observation. Note that xlm(CL) now refers to the position of lm in the updated CL.

Observation 2 CL is a feasible configuration and δ(CL) = max{δ(CL′), xlm(CL)− xlm}.

Proof. Since xli ≤ x and li is at x in CL, Ii is valid in CL. Comparing with its position in CL′ , Im has
been moved rightwards; since Im is valid in CL′ , Im is also valid in CL. Note that no two intervals
overlap in CL. Therefore, CL is a feasible configuration.

Comparing with CL′ , CL has one more interval Ii and Im has been moved rightwards in CL.
Therefore, δ(CL) is equal to the maximum of the following three values: δ(CL′), the displacement
of Ii in CL, and the displacement of Im in CL. Observe that the displacement of Ii is smaller than
that of Im. This is because lm is to the left of li in the input (since m < i) while lm is to the right
of li in CL. Thus, it holds that δ(CL) = max{δ(CL′), xlm(CL)− xlm}. ⊓⊔

The proof of the following lemma is deferred to Section 4.

Lemma 4. If L′ is a canonical list of I[1, i− 1], then L is a canonical list of I[1, i].

Case III: xri < xrm and xli > xlm(CL). In this case, we first update L by appending i to the end of
L and update CL by placing the left endpoint of Ii at x

r
m(CL). Let L

′ be the original list L before
we insert i and let CL′ be the original configuration of CL.

Further, we create a new list L∗, which is the same as L except that we switch the order of i
and m. Thus, m is the last index of L∗. Correspondingly, the configuration CL∗ is the same as CL
except that li is at x

l
i, i.e., its position in the input, and lm is at xri . We say that L∗ is the new list

generated by L′. We do not put L∗ in the set L at this moment (but L is in L).

Observation 3 Both CL and CL∗ are feasible; δ(CL) = max{δ(CL′), xli(CL) − xli} and δ(CL∗) =
max{δ(CL′), xlm(CL∗)− xlm}.

Proof. By a similar argument as in Observation 1, CL is feasible and δ(CL) = max{δ(CL′), xli(CL)−
xli}. By a similar argument as in Observation 2, CL∗ is feasible and δ(CL∗) = max{δ(CL′), xlm(CL∗)−
xlm}. We omit the details. ⊓⊔

The proof of the following lemma is deferred to Section 4.

Lemma 5. If L′ is a canonical list of I[1, i− 1], then one of L and L∗ is a canonical list of I[1, i].

After each list L of L is processed as above, let L∗ denote the set of all new generated lists in
Case III. Recall that no list of L∗ has been added into L yet. Let L∗

min be the list of L∗ with the
minimum value δ(CL∗

min
). The proof of the following lemma is deferred to Section 4.

6

Lemma 6. If L∗ has a canonical list of I[1, i], then L∗

min is a canonical list of I[1, i].

Due to Lemma 6, among all lists of L∗, we only need to keep L∗

min. So we add L∗

min to L and
ignore all other lists of L∗. We call L∗

min a new list of L produced by our algorithm for processing
Ii and all other lists of L are considered as the old lists.

Remark. Lemma 6 is a key observation that helps avoid maintaining an exponential number of
lists.

This finishes our algorithm for processing the interval Ii. Clearly, L has at most one more new
list. After In is processed, the list L of L with minimum δ(CL) is an optimal list.

According to our above description, the algorithm can be easily implemented in O(n2) time and
space. The proof of Theorem 1 gives the details and also shows the correctness of the algorithm
based on Lemmas 3, 4, 5, and 6.

Theorem 1. An optimal solution for the one-direction problem can be found in O(n2) time and
space.

Proof. To implement the algorithm, we can use a linked list to represent each list of L. Consider a
general step for processing interval Ii.

For any list L ∈ L, inserting i to L can be easily done in O(1) time for each of the three cases.
The configuration CL and the value δ(CL) can also be updated in O(1) time. If L generates a new
list L∗, then we do not explicitly construct L∗ but only compute the value δ(CL∗), which can be
done in O(1) time by Observation 3. Once every list L ∈ L has been processed, we find the list
L∗

min ∈ L∗. Then, we explicitly construct L∗ and CL∗ , in O(n) time.

Hence, each general step for processing Ii can be done in O(n) time since L has at most n lists.
Thus, the total time and space of the algorithm is O(n2).

For the correctness, after a general step for processing Ii, Lemmas 3, 4, 5, and 6 together
guarantee that the set L has at least one canonical list of I[1, i]. After In is processed, since CL is
essentially obtained by the left-possible placement strategy for each list L ∈ L, if L is the list of L
with the smallest δ(CL), then L is an optimal list and CL is an optimal configuration by Lemma 2.

⊓⊔

4 The Correctness of the Preliminary Algorithm

In this section, we establish the correctness of our preliminary algorithm. Specifically, we will prove
Lemmas 3, 4, 5, and 6. The major analysis technique is the exchange argument, which is quite
standard for proving correctness of greedy algorithms (e.g., see [11]).

Let L be a list of all indices of I. For any two indices j, k ∈ [1, n], let L[j, k] denote the sub-list
of all indices of L between j and k (including j and k).

For any 1 ≤ j < k ≤ n, we say that (j, k) is an inversion of L if xrj ≤ xrk and k is before j in
L (k and j are not necessarily consecutive in L; e.g., see Fig. 2 with L = Lopt). For an inversion
(j, k), we further introduce two sets of indices L1[j, k] and L2[j, k] as follows (e.g., see Fig. 2 with
L = Lopt). Let L

1[j, k] consist of all indices i ∈ L[j, k] such that i < k and i 6= j; let L2[j, k] consist
of all indices i ∈ L[j, k] such that i ≥ k. Hence, L1[j, k], L2[j, k], and {j} form a partition of the
indices of L[j, k].

We first give the following lemma, which will be extensively used later.

7

j = 6
k = 10

Lopt : · · · · · · , k = 10, 8, 14, 5, 4, 12, j = 6, · · · · · ·

L1

opt[j, k] = {8, 5, 4} L2

opt[j, k] = {k = 10, 14, 12}

L′
opt : · · · · · · , 8, 5, 4, j = 6, 14, k = 10, 12, · · · · · ·

Fig. 2. Illustrating an inversion (j, k) of Lopt and an example for Lemma 7: the intervals j and k are shown in their
input positions.

Lemma 7. Let Lopt be an optimal list of all indices of I. If Lopt has an inversion (j, k), then there
exists another optimal list L′

opt that is the same as Lopt except that the sublist Lopt[j, k] is changed
to the following: all indices of L1

opt[j, k] are before j and all indices of L2
opt[j, k] are after j (in

particular, k is after j, so (j, k) is not an inversion any more in L′

opt), and further, the relative
order of the indices of L1

opt[j, k] in L′

opt is the same as that in Lopt (but this may not be the case
for L2

opt[j, k]). E.g., see Fig. 2.

Many proofs given later in the paper will utilize Lemma 7 as a basic technique for “eliminating”
inversions in optimal lists. Before giving the proof of Lemma 7, which is somewhat technical, lengthy,
and tedious, we first show that Lemma 3 can be easily proved with the help of Lemma 7.

4.1 Proof of Lemma 3.

Assume L′ is a canonical list of I[1, i− 1]. Our goal is to prove that L is a canonical list of I[1, i].
Since L′ is a canonical list, by the definition of a canonical list, there exists an optimal config-

uration C in which the order of the intervals of I[1, i− 1] is the same as that in L′. Let Lopt be the
list of indices of the intervals of I in C. If i is after m in Lopt, then L is consistent with Lopt and
thus is a canonical list of I[1, i]. In the following, we assume i is before m in Lopt.

Since m < i, xrm ≤ xri , and i is before m in Lopt, (m, i) is an inversion in Lopt. Let L′

opt be
another optimal list obtained by applying Lemma 7 on (m, i). Refer to Fig. 3. We claim that L is
consistent with L′

opt, which will prove that L is a canonical list. We prove the claim below.

m

i

Lopt : · · · · · · , i, · · · ,m, · · · · · ·

L′

opt : · · · · · · , L
1

opt[i,m],m, · · · , i, · · · · · ·

Fig. 3. Illustrating the proof of Lemma 3. The intervals m and i are shown in their input positions.

Indeed, note that L′ is consistent with Lopt. Comparing with Lopt, by Lemma 7, only the indices
of the sublist Lopt[m, i] have their relative order changed in L′

opt. Since all indices of L′ are smaller
than i, by definition, all indices of L′ that are in Lopt[m, i] are contained in L1

opt[m, i]. By Lemma 7,
the relative order of the indices of L1

opt[m, i] in L′

opt is the same as that in Lopt, and further, all
indices of L1

opt[m, i] are still before m in L′

opt. This implies that the relative order of the indices
of L′ does not change from Lopt to L′

opt. Hence, L
′ is consistent with L′

opt. On the other hand,
by Lemma 7, i is after m. Thus, L is consistent with L′

opt. This proves the claim and thus proves
Lemma 3.

8

j

k

S0

S1

S2

Fig. 4. Illustrating the intervals of Lopt[j, k] in their input positions. The two (red) dotted intervals are in S0 =
L1

opt[j, k]; the two (green) dashed intervals are in S1; the two (blue) dashed-dotted intervals are in S2.

L0 : · · · , k, S0, S1, S2, j, · · ·

L1 : · · · , S0, k, S1, S2, j, · · ·

L2 : · · · , S0, k, S1, j, S2, · · ·

L3 : · · · , S0, j, S1, k, S2, · · ·

Fig. 5. Illustrating the relative order of k, j, S0, S1, S2 in the four lists L0, L1, L2.L3.

4.2 Proof of Lemma 7

In this section, we give the proof of Lemma 7.
We partition the set L2

opt[j, k] \ {k} into two sets S1 and S2, defined as follows (e.g., see Fig. 4).
Let S1 consists of all indices t of L2

opt[j, k] \ {k} such that xrt ≤ xrj (i.e., rt is to the left of rj in

the input). Let S2 consists of all indices of L2
opt[j, k] \ {k} that are not in S1. Note that Lopt[j, k] =

L1
opt[j, k] ∪ S1 ∪ S2 ∪ {j, k}. To simplify the notation, let S = Lopt[j, k] and S0 = L1

opt[j, k] (e.g., see
Fig. 4).

We only consider the general case where none of S0, S1, and S2 is empty since other cases can
be analyzed by similar but simpler techniques.

In the following, from Lopt, we will subsequently construct a sequence of optimal lists L0, L1, L2, L3,
such that eventually L3 is the list L′

opt specified in the statement of Lemma 7 (e.g., see Fig. 5).

4.2.1 The List L0

For any adjacent indices h and g of Lopt[j, k] \ {j, k} such that h is before g in Lopt, we say that
(h, g) is an exchangeable pair if one of the three cases happen: g ∈ S0 and h ∈ S1; g ∈ S1 and
h ∈ S2; g ∈ S0 and h ∈ S2.

In the following, we will perform certain “exchange operations” to eliminate all exchangeable
pairs of Lopt, after which we will obtain another optimal list L0 in which for any i0 ∈ S0, i1 ∈ S1,
i2 ∈ S2, i0 is before i1 and i2 is after i1, and all other indices of L0 have the same positions as in
Lopt (e.g., see Fig. 5).

Consider any exchangeable pair (h, g) of Lopt. Let L′ be another list that is the same as Lopt

except that h and g exchange their order. We call this an exchange operation. In the following, we
show that L′ is an optimal list.

Since Lopt is an optimal list, there is an optimal configuration C in which the order of the intervals
is the same as Lopt. Consider the configuration C′ that is the same as C except that we exchange
the order of h and g in the following way (e.g., see Fig 6): xlg(C

′) = xlh(C) and xrh(C
′) = xrg(C), i.e.,

the left endpoint lg of Ig in C′ is at the same position as lh in C and the right end point rh of Ih in
C′ is at the same position as rg in C. Clearly, the order of intervals in C′ is the same as that in L′. In

9

the following, we show that C′ is an optimal configuration, which will prove that L′ is an optimal
list.

h g

hg

C

C ′

· · · · · · · · · · · ·

· · · · · · · · · · · ·h

g

Fig. 6. Left: Illustrating the intervals g and h at their input positions. Right: Illustrating the two intervals h and g

in the configurations C and C′ (note that h and g do not have to be connected).

We first show that C′ is feasible. Recall that intervals h and g are adjacent in Lopt and also in
L′. By our way of setting Ig and Ih in C′, The segments of ℓ “spanned” by Ih and Ig in both C and
C′ are exactly the same (e.g., the segments between the two vertical dotted lines in Fig. 6). Since
no two intervals of I overlap in C, no two intervals overlap in C′ as well.

Next, we show that every interval of I is valid in C′. To this end, it is sufficient to show that Ih
and Ig are valid in C′ since other intervals do not change positions from C to C′. For Ih, comparing
with its position in C, Ih has been moved rightwards in C′, and thus Ih is valid in C′. For Ig, since
(h, g) is an exchangeable pair, g is either in S0 or in S1. In either case, xlg ≤ xrk. On the other hand,

Ik is to the left of Ig in C′, which implies that xrk(C
′) ≤ xlg(C

′). Since Ik does not change position
from C to C′ and Ik is valid in C, we have xrk ≤ xrk(C) = xrk(C

′). Combining the above discussion,
we have xlg ≤ xrk ≤ xrk(C) = xrk(C

′) ≤ xlg(C
′). Thus, Ig is valid in C′. This proves that C′ is a feasible

configuration.

We proceed to show that C′ is an optimal configuration by proving that the max-displacement
of C′ is no more than the max-displacement of C, i.e., δ(C′) ≤ δ(C). Note that δ(C) = δopt since
C is an optimal configuration. Comparing with C, Ig has been moved leftwards and Ih has been
moved rightwards in C′. Therefore, to prove δ(C′) ≤ δopt, it suffices to show that the displacement
of Ih in C′, i.e., d(h, C′), is at most δopt. Since (h, g) is an exchangeable pair, h is either in S1 or in
S2. In either case, xlj ≤ xlh. On the other hand, Ij is to the right of Ih in C′, which implies that

xlh(C
′) ≤ xlj(C

′). Consequently, we have d(h, C′) = xlh(C
′) − xlh ≤ xlj(C

′) − xlj = d(j, C′). Since Ij
does not change position from C to C′, d(h, C′) ≤ d(j, C′) = d(j, C) ≤ δopt. This proves that C

′ is an
optimal configuration and L′ is an optimal list.

If L′ still has an exchangeable pair, then we keep applying the above exchange operations until
we obtain an optimal list L0 that does not have any exchangeable pairs. Hence, L0 has the following
property: for any it ∈ St for t = 0, 1, 2, i0 is before i1 and i2 is after i1, and all other indices of L0

have the same positions as in Lopt. Further, notice that our exchange operation never changes the
relative order of any two indices in St for each 0 ≤ t ≤ 2. In particular, the relative order of the
indices of S0 in Lopt is the same as that in L0.

4.2.2 The List L1

Let L1 be another list that is the same as L0 except that k is between the indices of S0 and the
indices of S1 (e.g., see Fig. 5). In the following, we show that L1 is also an optimal list. This can
be done by keeping performing exchange operations between k and its right neighbor in S0 until
all indices of S0 are to the left of k. The details are given below.

10

Let g be the right neighboring index of k in L0 and g is in S0. Let L′ be the list that is the
same as L0 except that we exchange the order of k and g. In the following, we show that L′ is an
optimal list.

Since L0 is an optimal list, there is an optimal configuration C in which the order of the indices
of the intervals is the same as L0. Consider the configuration C′ that is the same as C except that
we exchange the order of k and g in the following way: xlg(C

′) = xlk(C) and xrk(C
′) = xrg(C) (e.g., see

Fig. 7; similar to that in Section 4.2.1). In the following, we show that C′ is an optimal solution,
which will prove that L′ is an optimal list.

k g

kg

C

C ′

· · · · · · · · · · · ·

· · · · · · · · · · · ·k

j

g

Fig. 7. Left: Illustrating the intervals j, k, and g at their input positions. Right: Illustrating the two intervals k and
g in the configurations C and C′.

We first show that C′ is feasible. By the similar argument as in Section 4.2.1, no two intervals
overlap in C′. Next we show that every interval is valid in C. It is sufficient to show that both Ik
and Ig are valid. For Ik, comparing with its position in C, Ik has been moved rightwards in C′ and
thus Ik is valid in C′. For Ig, since g ∈ S0, by the definition of S0, x

l
g ≤ xlk (e.g., see the left side of

Fig. 7). Since xlk ≤ xlk(C) = xlg(C
′), we obtain that xlg ≤ xlg(C

′) and Ig is valid in C′.

We proceed to show that C′ is an optimal configuration by proving that δ(C′) ≤ δ(C) = δopt.
Comparing with C, Ig has been moved leftwards and Ik has been moved rightwards in C′. Therefore,
to prove δ(C′) ≤ δopt, it suffices to show that d(k, C′) ≤ δopt. Recall that lj is to the left of lk in the
input. Note that k is to the left of j in L′. Hence, lk is to the left of lj in C′. Thus, d(k, C′) ≤ d(j, C′).
Note that d(j, C′) = d(j, C) since the position of Ij does not change from C to C′. Therefore, we
obtain d(k, C′) ≤ d(j, C) ≤ δopt. This proves that C

′ is an optimal configuration and L′ is an optimal
list.

If the right neighbor of k in L′ is still in S0, then we keep performing the above exchange until
all indices of S0 are to the left of k, at which moment we obtain the list L1. Thus, L1 is an optimal
list.

4.2.3 The List L2

Let L2 be another list that is the same as L1 except that j is between the indices of S1 and the
indices of S2 (e.g., see Fig. 5). This can be done by keeping performing exchange operations between
j and its left neighbor in S2 until all indices of S2 are to the right of j, which is symmetric to that
in Section 4.2.2. The details are given below.

Let h be the left neighbor of j in L1 and h is in S2. Let L′ be the list that is the same as L1

except that we exchange the order of h and j. In the following, we show that L′ is an optimal list.

Since L1 is an optimal list, there is an optimal configuration C in which the order of the indices
of the intervals is the same as L1. Consider the configuration C′ that is the same as C except that
we exchange the order of j and h in the following way: xlj(C

′) = xlh(C) and xrh(C
′) = xrj(C) (e.g.,

see Fig. 8). In the following, we show that C′ is an optimal solution, which will prove that L′ is an
optimal list.

11

h j

hj

C

C ′

· · · · · · · · · · · ·

· · · · · · · · · · · ·
k

j

h

Fig. 8. Left: Illustrating the intervals j, k, and h at their input positions. Right: Illustrating the two intervals h and
j in the configurations C and C′.

We first show that C′ is feasible. By the similar argument as before, no two intervals overlap in
C′. Next we show that every interval is valid in C′. It is sufficient to show that both Ij and Ih are
valid. For Ih, comparing with its position in C, Ih has been moved rightwards in C′ and thus Ih is
valid in C′. For Ij , since h ∈ S2, by the definition of S2, x

l
j ≤ xlh. Since xlh ≤ xlh(C) = xlj(C

′), we

obtain that xlj ≤ xlj(C
′) and Ij is valid in C′.

We proceed to show that C′ is an optimal configuration by proving that δ(C′) ≤ δ(C) = δopt.
Comparing with C, Ij has been moved leftwards and Ih has been moved rightwards in C′. Therefore,
to prove δ(C′) ≤ δopt, it suffices to show that d(h, C′) ≤ δopt. Since h is in S2, x

r
j ≤ xrh. Since

xrh(C
′) = xrj(C), we deduce d(h, C′) = xrh(C

′)− xrh ≤ xrj(C)− xrj = d(j, C) ≤ δopt. This proves that C
′

is an optimal configuration and L′ is an optimal list.
If the left neighbor of j in L′ is still in S2, then we keep performing the above exchange until all

indices of S2 are to the right of j, at which moment we obtain the list L2. Thus, L2 is an optimal
list.

4.2.4 The List L3

Let L3 be the list that is the same as L2 except that we exchange the order of k and j, i.e., in L3,
the indices of S1 are all after j and before k (e.g., see Fig. 5). In the following, we prove that L3 is
an optimal list.

Since L2 is an optimal list, there is an optimal configuration C in which the order of the indices of
intervals is the same as L2. Consider the configuration C′ that is the same as C except the following
(e.g., see Fig. 9): First, we set xlj(C

′) = xlk(C); second, we shift each interval of S1 leftwards by
distance |Ik| − |Ij | (if this value is negative, we actually shift rightwards by its absolute value);
third, we set xrk(C

′) = xrj(C) (i.e., rk is at the same position as rj in C). Clearly, the interval order
of C′ is the same as L3. In the following, we show that C′ is an optimal configuration, which will
prove that L3 is an optimal list.

k j

kj

C

C ′

· · · · · · · · · · · ·

· · · · · · · · · · · ·

k

j

g
h

g h

g h

Fig. 9. Left: Illustrating the intervals j, k, g and h at their input positions, where S1 = {g, h}. Right: Illustrating the
intervals of S1 ∪ {j, k} in the configurations C and C′.

We first show that C′ is feasible. By our way of setting positions of intervals in S1 ∪ {j, k}, One
can easily verify that no two intervals of C′ overlap. Next we show that every interval is valid in
C′. It is sufficient to show that all intervals in S1 ∪ {j, k} are valid. Comparing with C, Ik has been
moved rightwards in C′. Thus, Ik is valid in C′. Recall that xlj ≤ xlk and xlj(C

′) = xlk(C). Since

xlk ≤ xlk(C) (because Ik is valid in C), we obtain that xlj ≤ xlj(C
′) and Ij is valid in C′. Consider any

index t ∈ S1. By the definition of S1, x
l
t ≤ xrj . Since j is to the left of t in C′, we have xrj(C

′) ≤ xlt(C
′).

12

Since xrj ≤ xrj(C
′) (because Ij is valid in C′), we obtain that xlt ≤ xrj ≤ xrj(C

′) ≤ xlt(C
′) and thus It

is valid in C′. This proves that C′ is feasible.

We proceed to show that C′ is an optimal configuration by proving that δ(C′) ≤ δ(C) = δopt.
It is sufficient to show that for any t ∈ S1 ∪ {j, k}, d(t, C′) ≤ δopt. Comparing with C, Ij has been
moved leftwards in C′, and thus, d(j, C′) ≤ d(j, C) ≤ δopt. Recall that x

r
j ≤ xrk and xrk(C

′) = xrj(C).
We can deduce d(k, C′) = xrk(C

′) − xrk ≤ xrj(C) − xrj ≤ d(j, C) ≤ δopt. Consider any t ∈ S1. By

the definition of S1, x
l
t ≥ xlk. On the other hand, since t is to the left of k in C′, xlt(C

′) ≤ xlk(C
′).

Therefore, we obtain that d(t, C′) = xlt(C
′) − xlt ≤ xlk(C

′) − xlk = d(k, C′). We have proved above
that d(k, C′) ≤ δopt, and thus d(t, C′) ≤ δopt. This proves that C

′ is an optimal configuration and L3

is an optimal list.

Notice that L3 is the list L′

opt specified in the lemma statement. Indeed, in all above lists from
Lopt to L3, the relative order of the indices of S0 (which is L1

opt[j, k]) never changes. This proves
Lemma 7.

4.3 Proof of Lemma 4

In this section, we prove Lemma 4. Assume L′ is a canonical list of I[1, i− 1]. Our goal is to prove
that L is also a canonical list of I[1, i].

Since L′ is a canonical list, there exists an optimal configuration C in which the order the
intervals of I[1, i − 1] is the same as that in L′. Let Lopt be the list of indices of the intervals of I
in C. If, in Lopt, i is before m and after every index of I[1, i − 1] \ {m}, then L is consistent with
Lopt and thus is a canonical list of I[1, i], so we are done with the proof.

In the following, we assume L is not consistent with Lopt. There are two cases. In the first case,
i is after m in Lopt. In the second case, i is before j in Lopt for some j ∈ I[1, i − 1] \ {m}. We
analyze the two cases below. In each case, by performing certain exchange operations and using
Lemma 7, we will find an optimal list of all intervals of I such that L is consistent with the list
(this will prove that L is an canonical list of I[1, i]).

4.3.1 The First Case

Assume i is after m in Lopt. Let S denote the set of indices strictly between m and i in Lopt (so
neither m nor i is in S). Since all indices of I[1, i− 1] are before m in Lopt, it holds that j > i for
each index j ∈ S. Let S′ be the set of indices j of S such that xrj ≥ xri . Note that for each j ∈ S′,
the pair (i, j) is an inversion. We consider the general case where neither S nor S′ is empty since
the analysis for other cases is similar but easier.

Let j be the rightmost index of S′. Again, (i, j) is an inversion. By Lemma 7, we can obtain
another optimal list L′

opt such that j is after i and positions of the indices other than those in S
are the same as before in Lopt. Further, the indices strictly between m and i in L′

opt are all in S. If
there is an index j between m and i in L′

opt such that (i, j) is an inversion, then we apply Lemma 7
again. We do this until we obtain an optimal list L0 in which for any index j strictly between m
and i, (i, j) is not an inversion, and thus xrj < xri (this further implies that Ij is contained in Ii in
the input as i < j). Let S0 denote the set of indices strictly between m and i in L0.

Consider the list L1 that is the same as L0 except that we exchange the positions of m and i,
i.e., the indices of S0 are now after i and before m. In the following, we prove that L1 is an optimal
list. Note that L is consistent with L1, and thus once we prove that L1 is an optimal list, we also

13

prove that L is a canonical list of I[1, i]. The technique for proving that L1 is an optimal list is
similar to that in Section 4.2.4. The details are given below.

Since L0 is an optimal list, there is an optimal configuration C in which the order of the indices of
intervals is the same as L0. Consider the configuration C′ that is the same as C except the following
(e.g., see Fig. 10): First, we set xli(C

′) = xlm(C); second, we shift each interval of S0 leftwards by
distance |Im| − |Ii| (again, if this value is negative, we actually shift rightwards by its absolute
value); third, we set xrm(C′) = xri (C). Clearly, the interval order in C′ is the same as L1. In the
following, we show that C′ is an optimal configuration, which will prove that L1 is an optimal list.

m i

mi

C

C ′

· · · · · · · · · · · ·

· · · · · · · · · · · ·

m
i

g
h

g h

g h

Fig. 10. Left: Illustrating the intervals j, k, g and h at their input positions, where S0 = {g, h}. Right: Illustrating
the intervals of S0 ∪ {m, i} in the configurations C and C′.

We first show that C′ is feasible. As in Section 4.2.4, no two intervals of C′ overlap. Next, we
show that every interval is valid in C′. It is sufficient to show that all intervals in S0 ∪ {m, i} are
valid since other intervals do no change positions from C to C′. Comparing with its position in C, Im
has been moved rightwards in C′. Thus, Im is valid in C′. Recall that in Case II of our algorithm, it
holds that xli ≤ xlm(CL′), where CL′ is the configuration of only the intervals of I[1, i− 1] following
their order in L′. Since CL′ is the configuration constructed by the left-possible placement strategy
and the order of the indices of I[1, i − 1] in C is the same as L′, it holds that xlm(CL′) ≤ xlm(C).
Hence, we obtain xli ≤ xlm(C). Since xli(C

′) = xlm(C), xli ≤ xli(C
′) and Ii is valid in C′. Consider any

index j ∈ S0. Recall that Ij is contained in Ii in the input. Thus, xlj ≤ xri . Since i is to the left

of j in C′, we have xri (C
′) ≤ xlj(C

′). Since xri ≤ xri (C
′) (because Ii is valid in C′), we obtain that

xlj ≤ xlj(C
′) and Ij is valid in C′. This proves that C′ is feasible.

We proceed to show that C′ is an optimal configuration by proving that δ(C′) ≤ δ(C) = δopt.
It suffices to show that for any j ∈ S0 ∪ {m, i}, d(j, C′) ≤ δopt. Comparing with C, Ii has been
moved leftwards in C′, and thus d(i, C′) ≤ d(i, C) ≤ δopt. Since xri ≤ xrm and xrm(C′) = xri (C), we
can deduce d(m, C′) = xrm(C′)− xrm ≤ xri (C)− xri = d(i, C) ≤ δopt. Consider any j ∈ S0. Recall that
xlj ≥ xli ≥ xlm. On the other hand, since j is to the left of m in C′, xlj(C

′) ≤ xlm(C′). Therefore,

d(j, C′) = xlj(C
′) − xlj ≤ xlm(C′) − xlm = d(m, C′). We have proved above that d(m, C′) ≤ δopt, and

thus d(j, C′) ≤ δopt.

This proves that C′ is an optimal configuration and L1 is an optimal list. As discussed above,
this also proves that L is a canonical list of I[1, i]. This finishes the proof of the lemma in the first
case.

4.3.2 The Second Case

In the second case, i is before j in Lopt for some j ∈ I[1, i− 1] \ {m}. We assume there is no other
indices of I[1, i−1] strictly between i and j in Lopt (otherwise, we take j as the leftmost such index
to the right of i).

Let L̂0 be the list of indices of I[1, i] following their order in Lopt. Therefore, L̂0 is a canonical

list. Let L̂1 be the list the same as L̂0 except that the order of i and j is exchanged. In the following,

14

we first show that L̂1 is also a canonical list of I[1, i]. The proof technique is very similar to the
above first case.

Let S denote the set of indices strictly between i and j in Lopt. By the definition of j, k > i > j
holds for each index k ∈ S. Let S′ be the set of indices k of S such that xrk ≥ xrj . Hence, for each
k ∈ S′, the pair (j, k) is an inversion of Lopt. We consider the general case where neither S nor S′

is empty (otherwise the proof is similar but easier).
As in Section 4.3.1, starting from the rightmost index of S′, we keep applying Lemma 7 to the

inversion pairs and eventually obtain an optimal list L0 in which for any index k of L0 strictly
between i and j, (j, k) is not an inversion and thus xrk < xrj (hence Ik ⊆ Ij in the input as j < k).
Let S0 denote the set of indices strictly between i and j in L0.

Consider the list L1 that is the same as L0 except that we exchange the positions of i and j,
i.e., the indices of S0 are now after j and before i. In the following, we prove that L1 is an optimal
list, which will also prove that L̂1 is a canonical list of I[1, i] since L̂1 is consistent with L1.

Since L0 is an optimal list, there is an optimal configuration C in which the order of the intervals
is the same as L0. Consider the configuration C′ that is the same as C except the following (e.g.,
see Fig. 11): First, we set xlj(C

′) = xli(C); second, we shift each interval of S0 leftwards by distance
|Ii| − |Ij |; third, we set xri (C

′) = xrj(C). Clearly, the interval order of C′ is the same as L1. Below,
we show that C′ is an optimal configuration, which will prove that L1 is an optimal list.

i j

ij

C

C ′

· · · · · · · · · · · ·

· · · · · · · · · · · ·

i
j

g
h

g h

g h

m

Fig. 11. Left: Illustrating five intervals at their input positions, where S0 = {g, h}. Right: Illustrating the intervals
of S0 ∪ {i, j} in the configurations C and C′.

We first show that C′ is feasible. As before, no two intervals of C′ overlap. Next we prove that all
intervals in S0∪{i, j} are valid in C′. Comparing with its position in C, Ii has been moved rightwards
in C′ and thus is valid. Since j < i, xlj < xli. Since xlj(C

′) = xli(C) and xli ≤ xli(C) (because Ii is

valid in C), we obtain xlj ≤ xlj(C
′) and Ij is valid in C′. Consider any index k ∈ S0. Recall that

xlk ≤ xrk ≤ xrj . Since k is to the right of j in C′, we have xrj(C
′) ≤ xlk(C

′). Since xrj ≤ xrj(C
′), we

obtain that xlk ≤ xlk(C
′) and Ik is valid in C′. This proves that C′ is feasible.

We proceed to show that C′ is an optimal configuration by proving that for any k ∈ S0 ∪ {i, j},
d(k, C′) ≤ δ(C) = δopt. Comparing with C, Ij has been moved leftwards in C′, and thus d(j, C′) ≤
d(j, C) ≤ δopt. Since m < i, lm is to the left of ri in the input. Since Im is to the right of Ii in C′, lm
is to the right of ri in C′. This implies that d(i, C′) ≤ d(m, C′). Since Im does not change position
from C to C′, d(m, C′) = d(m, C) ≤ δopt. Thus, we obtain d(i, C′) ≤ δopt. Consider any k ∈ S0. Since
i < k, xli ≤ xlk. On the other hand, since k is to the left of i in C′, xlk(C

′) ≤ xli(C
′). Therefore, we

deduce d(k, C′) = xlk(C
′) − xlk ≤ xli(C

′) − xli = d(i, C′). We have proved above that d(i, C′) ≤ δopt,
and thus d(k, C′) ≤ δopt.

This proves that C′ is an optimal configuration and L1 is an optimal list. As discussed above,
this also proves that L̂1 is a canonical list of I[1, i].

If the right neighbor j of i in L̂1 is not m, then by the same analysis as above, we can show
that the list obtained by exchanging the order of i and j is still a canonical list of I[1, i]. We keep

applying the above exchange operation until we obtain a canonical list L̂2 of I[1, i] such that the

15

right neighbor of i in L̂2 is m. Note that L̂2 is exactly L, and thus this proves that L is a canonical
list of I[1, i]. This finishes the proof for the lemma in the second case.

Lemma 4 is thus proved.

4.4 Proof of Lemma 5

We prove Lemma 5. Assume that L′ is a canonical list of I[1, i−1]. Our goal is to prove that either
L or L∗ is a canonical list of I[1, i].

As L′ is a canonical list, there exists an optimal list Lopt of I whose interval order is consistent

with L′. Let L̂0 be the list of indices of I[1, i] following the same order in Lopt. If L̂0 is either

L or L∗, then we are done with the proof. Otherwise, i must be before j in L̂0 for some index
j ∈ I[1, i−1]\{m}. By using the same proof as in Section 4.3.2, we can show that L∗ is a canonical
list of I[1, i]. We omit the details.

4.5 Proof of Lemma 6

In this section, we prove Lemma 6. Assume L∗ has a canonical list L0 of I[1, i]. Recall that L∗

min is
the list of L∗ with the smallest max-displacement. Our goal is to prove that L∗

min is also a canonical
list of I[1, i].

Recall that for each list L ∈ L∗, i and m are the last two indices with m at the end, and further,
in the configuration CL (which is obtained by the left-possible placement strategy on the intervals
in I[1, i] following their order in L), xli(CL) = xli and xlm(CL) = xri . Also, each list of L∗ is generated
in Case III of the algorithm and we have Ii ⊆ Im in the input.

Since L0 is a canonical list of I[1, i], there is an optimal list Lopt of I that is consistent with
L0. Let S be the set of indices of I[i+ 1, n] before i in Lopt. We consider the general case where S
is not empty (otherwise the proof is similar but easier). Let j be the rightmost index of S in Lopt.
Let L′

opt be the list that is the same as Lopt except that we move j right after i. In the following,
we show that L′

opt is also an optimal list.
Since Lopt is an optimal list, there is an optimal configuration C in which the order of the indices

of intervals is the same as Lopt. Recall that Lopt[j, i] is consists of indices of Lopt between j and
i inclusively. Consider the configuration C′ that is the same as C except the following (e.g., see
Fig. 12): First, for each index k ∈ Lopt[j, i] \ {j}, move Ik leftwards by distance |Ij |; second, move
Ij rightwards such that lj is at ri (after Ii is moved leftwards in the above first step, so that Ii is
connected with Ij). Note that the order of intervals of I in C′ is exactly L′

opt. In the following, we
show that C′ is an optimal configuration, which will also prove that L′

opt is an optimal list.

j i

j
i

C

C ′

· · · · · · · · · · · ·

· · · · · · · · · · · ·

i

j

g
h

g h

g h

m

Fig. 12. Left: Illustrating five intervals at their input positions, where Lopt[j, i] = {j, g, h, i}. Right: Illustrating the
intervals of Lopt[j, i] in the configurations C and C′. (Interval i is shifted downwards in order to visually separate it
from interval j.)

We first show that C′ is feasible. By our way of setting the positions of intervals in Lopt[j, i],
no two intervals overlap in C′. Next, we show that every interval is valid in C′. It is sufficient to

16

show that Ik is valid in C′ for every index k in Lopt[j, i] since all other intervals do not move from
C to C′. Comparing with its position in C, Ij has been moved rightwards in C′ and thus is valid.
Suppose k 6= j. By the definition of j, k < j and thus xlk ≤ xlj. By our way of constructing C′,

xlj(C) ≤ xlk(C
′). Since Ij is valid in C, it holds that xlj ≤ xlj(C). Thus, we obtain that xlk ≤ xlk(C

′)
and Ik is valid. This proves that C′ is feasible.

We proceed to show that C′ is an optimal configuration by proving that δ(C′) ≤ δ(C) = δopt. It is
sufficient to show that for any index k ∈ Lopt[j, i], d(k, C

′) ≤ δopt. If k is not j, then comparing with
C, Ik has been moved leftwards, and thus d(k, C′) ≤ d(k, C) ≤ δopt. In the following, we show that
d(j, C′) ≤ δopt. Indeed, since m < i < j, it holds that xlm ≤ xlj. On the other hand, Im is to the right

of Ij in C′, and thus, xlj(C
′) ≤ xlm(C′). Therefore, we have d(j, C′) = xlj(C

′) − xlj ≤ xlm(C′) − xlm =
d(m, C′). Since the position of Im is the same in C and C′, d(m, C′) = d(m, C) ≤ δopt. Thus, we have
d(j, C′) ≤ δopt. This proves that C

′ is an optimal configuration and L′

opt is an optimal list.

If there are still indices of I[i+1, n] before i in L′

opt, then we keep applying the above exchange
operations until we obtain an optimal list L′′

opt that does not have any index of I[i+ 1, n] before i,
and in other words, the indices of L′′

opt before i are exactly those in I[1, i− 1] \ {m}.
Since L′′

opt is an optimal list, there is an optimal configuration C′′ whose interval order is the
same as L′′

opt. Let C′′′ be a configuration that is the same as C′′ except the following: For each
interval Ik with k ∈ I[1, i − 1] \ {m}, we set its position the same as its position in CL∗

min
(which

is the configuration obtained by our algorithm for the list L∗

min). Recall that the position of Ii
in CL∗

min
is the same as that in the input. On the other hand, xli ≤ xli(C

′′). Therefore, C′′′ is
still a feasible configuration. We claim that C′′′ is also an optimal configuration. To see this, the
maximum displacement of all intervals in I[1, i − 1] \ {m} in C′′′ is at most δ(CL∗

min
). Recall that

δ(CL∗

min
) ≤ δ(CL0

). Further, since L0 is a canonical list, it holds that δ(CL0
) ≤ δopt. Thus, we obtain

δ(CL∗

min
) ≤ δopt. Consequently, the maximum displacement of all intervals in I[1, i− 1] \ {m} in C′′′

is at most δopt. Since only intervals of I[1, i − 1] \ {m} in C′′′ change positions from C′′ to C′′′, we
obtain δ(C′′′) ≤ δopt and thus C′′′ is an optimal configuration.

According to our construction of C′′′, the order of the intervals of I[1, i] in C′′′ is exactly L∗

min.
Therefore, L∗

min is a canonical list of I[1, i]. This proves Lemma 6.

5 The Improved Algorithm

In this section, we improve our preliminary algorithm to O(n log n) time and O(n) space. The key
idea is that based on new observations we are able to prune some “redundant” lists from L after
each step of the algorithm (actually Lemma 6 already gives an example for pruning redundant lists).
More importantly, although the number of remaining lists in L can still be Ω(n) in the worst case,
the remaining lists of L have certain monotonicity properties such that we are able to implicitly
maintain them in O(n) space and update them in O(log n) amortized time for each step of the
algorithm for processing an interval Ii.

In the following, we first give some observations that will help us to perform the pruning
procedure on L.

5.1 Observations

In this section, unless otherwise stated, let L be the set after a step of our preliminary algorithm
for processing an interval i. Recall that for each list L ∈ L, we also have a configuration CL that

17

is built following the left-possible placement strategy. We use x(CL) to denote the x-coordinate of
the right endpoint of the rightmost interval of L in CL.

For any two lists L1 and L2 of L, we say that L1 dominates L2 if the following holds: If L2 is a
canonical list of I[1, i], then L1 must also be a canonical list of I[1, i]. Hence, if L1 dominates L2,
then L2 is “redundant” and can be pruned from L.

The subsequent two lemmas give ways to identify redundant lists from L. In general, Lemma 8
is for the case where two lists have different last indices while Lemma 9 is for the case where two
lists have the same last index (notice the slight differences in the lemma conditions).

Lemma 8. Suppose L1 and L2 are two lists of L such that the last index of L1 is m′, the last index
of L2 is m (with m 6= m′), and xrm′ ≤ xrm. Then, if δ(CL1

) ≤ d(m, CL2
) and x(CL1

) ≤ x(CL2
), then

L1 dominates L2.

Proof. Assume L2 is a canonical list of I[1, i]. Our goal is to prove that L1 is also a canonical list of
I[1, i]. It is sufficient to construct an optimal configuration in which the order the intervals of I[1, i]
is L1. We let h denote the left neighboring index of m′ in L1 and let g denote the left neighboring
index of m in L2.

Since L2 is a canonical list, there is an optimal list Q that is consistent with L2. Let S denote
the set of indices of I[i + 1, n] before g in Q. We consider the general case where S is not empty
(otherwise the proof is similar but easier).

By the similar analysis as in the proof of Lemma 6 (we omit the details), we can obtain an
optimal list Q1 that is the same as Q except that all indices of S are now right after g in Q1 (i.e.,
all indices of Q before g except those in S are still before g in Q1 with the same relative order, and
all indices of Q after g are now after indices of S in Q1 with the same relative order). Therefore, in
Q1, the indices before g are exactly those in I[1, i] \ {m}.

Recall that Q1[g,m] denote the sublist of Q1 between g and m including g and m. If there is
an index j in Q1[g,m] such that (m, j) is an inversion, then as in the proof of Lemma 3, we keep
applying Lemma 7 on all such indices j from right to left to obtain another optimal list Q2 such
that for each j ∈ Q2[g,m], (m, j) is not an inversion. Note that the indices before and including g
in Q1 are the same as those in Q2. Let S

′ denote the set of indices of Q2[g,m] \ {g,m}. Again, we
consider the general case where S′ is not empty. Note that S′ ⊆ I[i + 1, n]. For each j ∈ S′, since
(m, j) is not an inversion and m < j, it holds that xrj < xrm.

Let Q3 be another list that is the same as Q2 except the following (e.g., see Fig 13): First, we
move m′ right after the indices of S′ and move m before the indices of S′ (i.e., the indices of Q3

from the beginning to m′ are indices of I[1, i] \ {m′}, indices of S′, and m′); second, we re-arrange
the indices of I[1, i] \ {m′} (which are all before indices of S′ in Q3) in exactly the same order as
in L1. In this way, L1 is consistent with Q3. In the following, we show that Q3 is an optimal list,
which will prove that L1 is a canonical list of I[1, i] and thus prove the lemma.

Q2 : · · · · · · g, S
′,m, k, · · · · · ·

Q3 : · · · · · · h, S
′,m′, k, · · · · · ·

Fig. 13. Illustrating the two lists Q2 and Q3, where k is the right neighboring index of m in Q2 and k is also right
neighboring index of m′ in Q3. In Q2 (resp., Q3), the indices strictly before S′ are exactly those in I[1, i]\{m} (resp.,
I[1, i] \ {m′}).

18

Since Q2 is an optimal list, there is an optimal configuration C2 whose interval order is Q2.
Consider the configuration C3 whose interval order follows Q3 and whose interval positions are the
same as those in C2 except the following: First, for each index j ∈ I[1, i] \ {m′}, we set the position
of Ij in the same as its position in CL1

(i.e., the configuration obtained by our algorithm for L1);
second, we place the intervals of S′ such that they do not overlap but connect together (i.e., the
right endpoint co-locates with the left endpoint of the next interval) following their order in Q2 and
the left endpoint of the leftmost interval of S′ is at the right endpoint of Ih (recall that h is the left
neighbor of m′ in L1, which is also the rightmost interval of I[1, i] \ {m′} in Q3; e.g., see Fig. 13);
third, we set the left endpoint of Im′ at the right endpoint of the rightmost interval of S′. Therefore,
all intervals before and including m′ do not have any overlap in C3, and the intervals of S′∪{h,m′}
essentially connect together. In the following, we show that C3 is an optimal configuration, which
will prove that Q3 is an optimal list.

We first show that C3 is feasible. We begin with proving that no two intervals overlap. Let
k be the right neighboring interval of m in Q2 (e.g., see Fig. 13), and k now becomes the right
neighboring interval of m′ in Q3. To prove no two intervals of C3 overlap, it is sufficient to show that
Im′ and Ik do not overlap, i.e., xrm′(C3) ≤ xlk(C3). Note that xlk(C3) = xlk(C2) and xrm(C2) ≤ xlk(C2).
Hence, it suffices to prove xrm′(C3) ≤ xrm(C2).

We claim that in the configuration CL1
, lm′ is at rh. Indeed, since xrm′ ≤ xrm and Im is to the

left of Im′ in CL1
, it holds that xlm′ ≤ xlm′(CL1

). Since CL1
is constructed based on the left-possible

placement strategy, we have xlm′(CL1
) = xrh(CL1

), which proves the claim.
Recall that by the definition of x(CL1

), we have x(CL1
) = xrm′(CL1

).
Let l be the total length of all intervals of S′. By our way of constructing C3, it holds that

xrm′(C3) = xrm′(CL1
) + l = x(CL1

) + l. On the other hand, since L2 is consistent with Q2 and CL2
is

constructed based on the left-possible placement strategy, it holds that x(CL2
)+ l ≤ xrm(C2). By the

lemma condition, x(CL1
) ≤ x(CL2

). Hence, we obtain xrm′(C3) = x(CL1
) + l ≤ x(CL2

) + l ≤ xrm(C2).
Thus, Im′ and Ik do not overlap in C3.

We proceed to prove that every interval of C3 is valid. For any interval before h and including
h in Q3, since its position in C3 is the same as that in CL1

, it is valid. For interval m′, since it is
valid in CL1

and xrm′(C3) = xrm′(CL1
) + l, it is also valid in C3. Consider any interval j ∈ S′. Recall

that xrj < xrm. Since Im is to the left of Ij in C3, comparing with its input position, Ij must have
been moved rightwards in C3. Thus, Ij is valid. For any interval after m′, its position is the same
as in C2, and thus it is valid.

The above proves that C3 is feasible. In the following, we show that C3 is an optimal configuration
by proving that δ(C3) ≤ δ(C2) = δopt. It is sufficient to show that for any interval j before and
including m′ in C3, d(j, C3) ≤ δopt.

– Consider any interval j before and including h in C3. We have d(j, C3) = d(j, CL1
) ≤ δ(CL1

).
By lemma condition, δ(CL1

) ≤ d(m, CL2
) ≤ δ(CL2

). Since L2 is consistent with Q2 and CL2
is

constructed based on the left-possible placement strategy, it holds that δ(CL2
) ≤ δopt. Therefore,

d(j, C3) ≤ δopt.
– Consider interval m′. In the following, we show that d(m′, C3) ≤ d(m, C2), which will lead to

d(m′, C3) ≤ δopt since d(m, C2) ≤ δopt.
By lemma condition, d(m′, CL1

) ≤ δ(CL1
) ≤ d(m, CL2

). As discussed above, xrm′(C3) = xrm′(CL1
)+

l. Therefore, d(m′, C3) = d(m′, CL1
) + l. On the other hand, as discussed above, xrm(C2) ≥

xrm(CL2
) + l. Therefore, d(m, C2) ≥ d(m, CL2

) + l. Due to d(m′, CL1
) ≤ d(m, CL2

), we obtain
d(m′, C3) ≤ d(m, C2).

19

– Consider any index j ∈ S′. Recall that m′ ≤ i < j as S′ ⊆ I[i+ 1, n]. Therefore, xlm′ ≤ xlj. On
the other hand, lm′ is to the right of lj in C3. Thus, it holds that d(j, C3) ≤ d(m′, C3). We have
proved above that d(m′, C3) ≤ δopt. Hence, we also obtain d(j, C3) ≤ δopt.

This proves that C3 is an optimal configuration. As discussed above, the lemma follows. ⊓⊔

Lemma 9. Suppose L1 and L2 are two lists of L whose last indices are the same. Then, if δ(CL1
) ≤

δ(CL2
) and x(CL1

) ≤ x(CL2
), then L1 dominates L2.

Proof. Assume L2 is a canonical list of I[1, i]. Our goal is prove that L1 is also a canonical list
of I[1, i]. To this end, it is sufficient to construct an optimal configuration in which the order the
intervals of I[1, i] is L1. The proof techniques are similar to (but simpler than) that for Lemma 8.

Let m be the last index of L1 and L2. Let h (resp., g) be the left neighboring index of m in L1

(resp., L2).

Since L2 is a canonical list, there is an optimal list Q that is consistent with L2. By the definition
of g, all indices (if any) strictly between g and m in Q are from I[i+ 1, n]. Let S denote the set of
indices of I[i+ 1, n] before g in Q. We consider the general case where S 6= ∅.

As in the proof of Lemma 8, we can obtain an optimal list Q1 that is the same as Q except
that all indices of S are now right after g in Q1 (i.e., all indices of Q before g except those in S are
still before g in Q1 with the same relative order, and all indices of Q after g are now after indices
of S in Q1 with the same relative order; e.g., see Fig. 14). Therefore, in Q1, the indices before and
including g are exactly those in I[1, i] \ {m}.

Let Q2 be another list that is the same as Q1 except the following (e.g., see Fig. 14): We re-
arrange the indices before and including g such that they follow exactly the same order as in L1.
Note that L1 is consistent with Q2. In the following, we show that Q2 is an optimal list, which will
prove the lemma.

Q1 : · · · · · · g, S,m, · · · · · ·

Q2 : · · · · · · h, S,m, · · · · · ·

Fig. 14. Illustrating the two lists Q1 and Q2. In Q1 (resp., Q2), the indices strictly before S are exactly those in
I[1, i] \ {m}.

Since Q1 is an optimal list, there is an optimal configuration C1 whose interval order is the same
as Q1. Consider the configuration C2 that is the same as C1 except the following: For each interval k
before and including g, we set the position of Ik the same as its position in CL1

. Hence, the interval
order of C2 is the same as Q2. In the following, we show that C2 is an optimal configuration, which
will prove that Q2 is an optimal list.

We first show that C2 is feasible. For each interval k before and including h, its position in C2 is
the same as that in CL1

, and thus interval k is still valid in C2. Other intervals are also valid since
they do not change their positions from C1 to C2. In the following, we show that no two intervals
overlap in C2. Based on our way of constructing C2, it is sufficient to show that xrh(C2) ≤ xlt(C2),
where t is the right neighboring index of h in Q2. Note that xrh(C2) = xrh(CL1

) and xlt(C2) = xlt(C1).
In the following, we prove that xrh(CL1

) ≤ xlt(C1). Depending on whether xrh(CL1
) ≤ xrg(CL2

), there
are two cases.

20

1. If xrh(CL1
) ≤ xrg(CL2

), then since L2 is consistent with Q1 and CL2
is constructed based on the

left-possible placement strategy, we have xrg(CL2
) ≤ xrg(C1), and thus, xrh(CL1

) ≤ xrg(C1).
On the other hand, note that t is also the right neighboring index of g in Q1. Since C1 is feasible,
xrg(C1) ≤ xlt(C1). Thus, we obtain xrh(CL1

) ≤ xlt(C1).
2. Assume xrh(CL1

) > xrg(CL2
). By the lemma condition, we have xrm(CL1

) = x(CL1
) ≤ x(CL2

) =
xrm(CL2

). Since xrh(CL1
) > xrg(CL2

) and both CL1
and CL2

are constructed by the left-possible

placement strategy, it must be that xlm(CL1
) = xlm(CL2

) = xlm, i.e., the positions of Im in both
CL1

and CL2
are the same as that in the input.

Since t is in I[i + 1, n] and m ≤ i, xlm ≤ xlt. Since xlt ≤ xlt(CL1
) ≤ xlt(C1), it holds that

xlm ≤ xlt(C1). Since Im is to the right of Ih in the configuration CL1
, xrh(CL1

) ≤ xlm(CL1
) = xlm.

Consequently, we obtain xrh(CL1
) ≤ xlt(C1).

This proves that C2 is feasible. In the sequel we show that C2 is an optimal configuration by
proving that δ(C2) ≤ δ(C1) = δopt. Since the intervals strictly after g do not change their positions
from C1 to C2, it is sufficient to show that d(k, C2) ≤ δopt for any index k before and including g in
C2.

Since xlk(C2) = xlk(CL1
), d(k, C2) = d(k, CL1

) ≤ δ(CL1
). By lemma condition, δ(CL1

) ≤ δ(CL2
).

Since L2 is consistent with Q1 and CL2
is constructed based on the left-possible placement strategy,

it holds that δ(CL2
) ≤ δ(C1) = δopt. Combining the above discussions, we obtain d(k, C2) ≤ δ(CL1

) ≤
δ(CL2

) ≤ δopt.

This proves that C2 is an optimal configuration. The lemma thus follows. ⊓⊔

Let E(L) denote the set of last intervals of all lists of L. Our preliminary algorithm guarantees
the following property on E(L), which will be useful later for our pruning algorithm given in
Section 5.2.

Lemma 10. E(L) has at most two intervals. Further, if |E(L)| = 2, then one interval of E(L)
contains the other one in the input.

Proof. We prove the lemma by induction. Initially, after I1 is processed, L consists of the only list
L = {1}. Therefore, E(L) = {1} and the lemma trivially holds.

We assume that the lemma holds after interval Ii−1 is processed. Let L be the set after Ii is
processed. For differentiation, we let L′ denote the set L before Ii is processed.

Depending on whether the size of E(L′) is 1 or 2, there are two cases.

The case |E(L′)| = 1. Let m be the only index of E(L′). Hence, for each list L ∈ L′, m is the last
index of L. Depending on whether xrm ≤ xri , there are two subcases.

1. If xrm ≤ xri , then according to our preliminary algorithm, Case I of the algorithm happens on
every list L ∈ L′, and i is appended at the end of L for each L ∈ L′. Therefore, the last indices
of all lists of L are i, and the lemma statement holds for E(L).

2. If xrm > xri , then note that Ii ⊆ Im in the input. Consider any list L ∈ L′. According to our
preliminary algorithm, if xli ≤ xlm(CL), then i is inserted into L right before m; otherwise, i is
appended at the end of L, and further, a new list L∗ is produced in which m is at the end.

Therefore, in this case, E(L) has either one index or two indices. If |E(L)| = 2, then E(L) =
{i,m}. Since Ii ⊆ Im in the input, the lemma statement holds on E(L).

21

The case |E(L′)| = 2. By induction hypothesis, one interval of E(L′) contains the other one in the
input. Let m and m′ be the two indices of E(L′), respectively, such that Im′ ⊆ Im in the input.
Hence, we have m < m′ and xrm′ ≤ xrm.

Depending on the x-coordinates of right endpoints of Ii, Im, and Im′ in the input, there are
three subcases: xrm ≤ xri , x

r
m′ ≤ xri < xrm, and xri < xrm′ .

1. If xrm ≤ xri , then for each list L ∈ L′, Case I of the algorithm happens, and i is appended at the
end of L. Therefore, the last indices of all lists of L are i, and the lemma statement holds for
E(L).

2. If xrm′ ≤ xri < xrm, then consider any list L ∈ L′. If m′ is at the end of L, then Case I happens
and i is appended at the end of L. If m is at the end of L, then either Case II or Case III of the
algorithm happens. Hence, either i or m will be the last index of L; if a new list L∗ is produced
in Case III, then its last index is m.

Therefore, after every list of L′ is processed, the last index of each list of L is either m or i, i.e.,
E(L) = {m, i}. Note that Ii is contained in Im in the input. Hence, the lemma statement holds
for E(L).

3. If xri < xrm′ , then Ii is contained in both Im and Im′ in the input. Consider any list L ∈ L′.
Regardless of whether the last index is m or m′, Case I does not happen.

We claim that Case III does not happen either. We prove the claim only for the case where the
last index of L is m (the other case can be proved similarly). Indeed, in the configuration CL,
it holds that xrm′ ≤ xrm′(CL). Since m is the last index of L, we have xrm′(CL) ≤ xlm(CL). Since
xri < xrm′ , we obtain xli ≤ xri < xrm′ ≤ xrm′(CL) ≤ xlm(CL). This implies that Case III of the
algorithm cannot happen.

Hence, Case II happens, and i is inserted into L right before the last index. Therefore, the last
indices of all lists of L are either m or m′. The lemma statement holds for E(L).

This proves the lemma. ⊓⊔

5.2 A Pruning Procedure

Based on Lemmas 8 and 9, we present an algorithm that prunes redundant lists from L after each
step for processing an interval Ii. In the following, we describe the algorithm, whose implementation
is discussed in Section 5.3.

By Lemma 10, E(L) has at most two indices. If E(L) has two indices, we let m and m′ denote
the two indices, respectively, such that Im′ ⊆ Im in the input. If E(L) has only one index, let m
denote it and m′ is undefined. Let L1 (resp., L2) denote the set of lists of L whose last indices are
m′ (resp., m), and L1 = ∅ if and only if m′ is undefined.

Our algorithm maintains several invariants regarding certain monotonicity properties, as follows,
which are crucial to our efficient implementation.

1. L contains a canonical list of I[1, i].
2. For any two lists L1 and L2 of L, x(CL1

) 6= x(CL2
) and δ(CL1

) 6= δ(CL2
).

3. If L1 6= ∅, then for any lists L1 ∈ L1 and L2 ∈ L2, x(CL1
) < x(CL2

).

4. For any two lists L1 and L2 of L, x(CL1
) < x(CL2

) if and only if δ(CL1
) > δ(CL2

). In other words,
if we order the lists L of L increasingly by the values x(CL), then the values δ(CL) are sorted
decreasingly.

22

1

· · · · · · · · ·

· · · · · · · · ·

2

a1
a1 + 1

a

i

Fig. 15. Illustrating the definition of a1. The black segments show the positions of interval m in the configurations
CL′

j
for j ∈ [1, a], and the numbers on the left side are the indices of the lists. The red segment shows the interval i

in the input position.

After In is processed, by the algorithm invariants, if L is the list of L with minimum δ(CL),
then L is an optimal list and δopt = δ(CL).

Initially after the first interval I1 is processed, L has only one list L = {1}, and thus, all
algorithm invariants trivially hold. In general, suppose the first i− 1 intervals have been processed
and all algorithm invariants hold on L. In the following, we discuss the general step for processing
interval Ii.

For differentiation, we let L′ refer to the original set L before interval i is processed. Similarly,
we use L′

1 and L′

2 to refer to L1 and L2, respectively. Let L′

1, L
′

2, . . . , L
′

a be the lists of L′ sorted
with x(CL′

1
) < x(CL′

2
) < · · · < x(CL′

a
), where a = |L′|. By the third invariant, we have δ(CL′

1
) >

δ(CL′

2
) > · · · > δ(CL′

a
). If L′

1 = ∅, let b = 0; otherwise, let b be the largest index such that L′

b ∈ L′

1,
and by the third algorithm invariant, L′

1 = {L′

1, . . . , L
′

b} and L′

2 = {L′

b+1
, . . . , La}. Depending on

whether L′

1 = ∅, there are two main cases.

5.2.1 The Case L′

1
= ∅

In this case, for each list L′ ∈ L′, its last index is m. Depending on whether xrm ≤ xri , there are two
subcases.

The first subcase xrm ≤ xri . In this case, according to the preliminary algorithm, for each list
L′

j ∈ L′, Case I happens and i is appended at the end of L′

j , and we use Lj to refer to the updated

list of L′

j with i. According to our left-possible placement strategy, xli(CLj
) = max{x(CL′

j
), xli}.

Thus, x(CLj
) = xli(CLj

) + |Ii| and d(i, CLj
) = xli(CLj

)− xli.

As the index j increases from 1 to a, since the value x(CL′

j
) strictly increases, xli(CLj

) (and

thus x(CLj
) and d(i, CLj

)) is monotonically increasing (it may first be constant and then strictly

increases after some index, say, a1). Formally, we define a1 as follows. If x(CL′

1
) > xli, then let a1 = 0;

otherwise, define a1 to be the largest index j ∈ [1, a] such that x(CL′

j
) ≤ xli (e.g., see Fig. 15). In

the following, we first assume a1 6= 0. As discussed above, as j increases in [1, a], xli(CLj
) is constant

on j ∈ [1, a1] and strictly increases on j ∈ [a1, a].
Now consider the value δ(CLj

), which is equal to max{δ(CL′

j
), d(i, CLj

)} by Observation 1. Recall

that δ(CL′

j
) is strictly decreasing on j ∈ [1, a]. Observe that d(i, CLj

) is 0 on j ∈ [1, a1] and strictly

increases on j ∈ [a1, a]. This implies that δ(CLj
) on j ∈ [1, a] is a unimodal function, i.e., it first

strictly decreases and then strictly increases after some index, say, a2. Formally, let a2 be the largest
index j ∈ [a1 + 1, a] such that δ(CLj−1

) > δ(CLj
), and if no such index j exists, then let a2 = a1.

The following lemma is proved based on Lemma 9.

Lemma 11. 1. If a1 > 1, then for each j ∈ [1, a1 − 1], La1 dominates Lj .

23

2. If a2 < a, then for each j ∈ [a2 + 1, a], La2 dominates Lj.

Proof. 1. Let k = a1 and assume k > 1. Consider any j ∈ [1, k − 1]. By the definition of a1,
xli(CLj

) = xli(CLk
) = xli. Therefore, x(CLj

) = x(CLk
) = xli + |Ii|. Since d(i, CLj

) = d(i, CLk
) = 0,

we have δ(CLj
) = δ(CL′

j
) and δ(CLk

) = δ(CL′

k
). Since j < k, δ(CL′

j
) > δ(CL′

k
). Thus, we obtain

δ(CLj
) > δ(CLk

).
Since x(CLj

) = x(CLk
), δ(CLj

) > δ(CLk
), and the last indices of Lj and Lk are both i, by

Lemma 9, Lk dominates Lj .
2. Let k = a2 and assume k < a. Consider any j ∈ [k + 1, a]. As discussed before, x(CLj

) is
monotonically increasing on j ∈ [1, a]. Thus, x(CLk

) ≤ x(CLj
). By the definition of a2 and since

δ(CLj
) is a unimodal function on j ∈ [1, a], it holds that δ(CLk

) ≤ δ(CLj
). By Lemma 9, Lk

dominates Lj.
This proves the lemma. ⊓⊔

By Lemma 11, we let L = {Lj | a1 ≤ j ≤ a2}. The above is for the general case where a1 6= 0.
If a1 = 0, then we let L = {Lj | 1 ≤ j ≤ a2}.

Observation 4 All algorithm invariants hold for L.

Proof. By Lemma 11, the lists that have been removed are redundant. Hence, L contains a canonical
list of I[1, i] and the first algorithm invariant holds.

By our definitions of a1 and a2, when j increases in [a1, a2], x(CLj
) strictly increases and δ(CLj

)
strictly decreases. Therefore, the last three algorithm invariants hold. ⊓⊔

The following lemma will be quite useful for the algorithm implementation given later in Sec-
tion 5.3.

Lemma 12. If a1 < a2, then for each j ∈ [a1 + 1, a2], x(CLj
) = x(CL′

j
) + |Ii|. For each list Lj ∈ L

with j 6= a2, δ(CLj
) = δ(CL′

j
).

Proof. By the definition of a1, for any j ∈ [a1 + 1, a], it always holds that x(CLj
) = x(CL′

j
) + |Ii|.

This proves the first lemma statement.
Recall that δ(CLj

) = max{δ(CL′

j
), d(i, CLj

)} for each j ∈ [1, a].

Consider any list Lj with j 6= a2. Assume to the contrary that δ(CLj
) 6= δ(CL′

j
). Then, δ(CLj

) =

d(i, CLj
). Since δ(CLj

) = d(i, CLj
) < d(i, CLa2

), we obtain δ(CLj
) ≤ δ(CLa2

), which contradicts with
δ(CLj

) > δ(CLa2
). ⊓⊔

The second subcase xrm > xri . In this case, for each list L′

j ∈ L′, according to our preliminary

algorithm, depending on whether xli ≤ xlm(CL′

j
), either Case II or Case III can happen. If xli ≤

xlm(CL′

1
), then let c = 0; otherwise, let c be the largest index j such that xli > xlm(CL′

j
) (e.g., see

Fig. 16). In the following, we first consider the general case where 1 ≤ c < a.
For each j ∈ [1, c], observe that xlm(CL′

j
) = x(CL′

j
) − |Im| ≤ x(CL′

c
) − |Im| = xlm(CL′

c
) < xli.

According to our preliminary algorithm, Case III happens, and thus L′

j will produce two lists:
the list Lj by appending i at the end of L′

j , and the new list L∗

j by inserting i in front of m

in L′

j. Further, according to our left-possible placement strategy, xli(CLj
) = x(CL′

j
) in CLj

, and

xli(CL∗

j
) = xli and xlm(CL∗

j
) = xri in CL∗

j
. By Observation 3, δ(CLj

) = max{δ(CL′

j
), d(i, CLj

)} and

δ(CL∗

j
) = max{δ(CL′

j
), d(m, CL∗

j
)}.

24

1

· · · · · · · · ·

· · · · · · · · ·

2

c
c+ 1

a

i

Fig. 16. Illustrating the definition of c. The black segments show the positions of interval m in the configurations
CL′

j
for j ∈ [1, a], and the numbers on the right side are the indices of the lists. The red segment shows the interval i

in the input position.

Observation 5 δ(CL∗

c
) ≤ δ(CL∗

j
) for any j ∈ [1, c].

Proof. For any j ∈ [1, c], note that d(m, CL∗

j
) = xlm(CL∗

j
) − xlm = xri − xlm. Therefore, d(m, CL∗

j
) is

the same for all j ∈ [1, c]. On the other hand, we have δ(CL′

j
) ≥ δ(CL′

c
). Thus, δ(CL∗

c
) ≤ δ(CL∗

j
). ⊓⊔

By the above observation and Lemma 6, among the new lists L∗

j with j = 1, 2, . . . , c, only L∗

c

needs to be kept.
For each j ∈ [1, c], note that x(CLj

) = x(CL′

j
) + |Ii|. Since x(CL′

j
) is strictly increasing on

j ∈ [1, c], x(CLj
) is also strictly increasing on j ∈ [1, c]. Since d(i, CLj

) = xli(CLj
)− xli = x(CL′

j
)− xli

for any j ∈ [1, c], d(i, CLj
) also strictly increases on j ∈ [1, c]. Further, since δ(CL′

j
) strictly decreases

on j ∈ [1, c], δ(CLj
), which is equal to max{δ(CL′

j
), d(i, CLj

)}, is a unimodal function (i.e., it first

strictly decreases and then strictly increases). Let c1 be the smallest index j ∈ [1, c − 1] such that
δ(CLj

) ≤ δ(CLj+1
), and if such an index j does not exist, then let c1 = c.

Lemma 13. If c1 < c, then Lc1 dominates Lj for any j ∈ [c1 + 1, c].

Proof. Consider any j ∈ [c1+1, c]. Since δ(CLj
) is a unimodal function on j ∈ [1, c], by the definition

of c1, δ(CLc1
) ≤ δ(CLj

). Recall that x(CLc1
) ≤ x(CLj

). Since the last indices of Lc1 and Lj are both
i, by Lemma 9, Lc1 dominates Lj. ⊓⊔

By the preceding lemma, if c1 < c, then we do not have to keep the lists Lc1+1, . . . , Lc in L. Let
S1 = {L1, . . . , Lc1}.

Consider any index j ∈ [c + 1, a]. By the definition of c and also due to that x(CL′

k
) is strictly

increasing on k ∈ [1, a], it holds that xlm(CL′

j
) ≥ xli, and thus Case II of the preliminary algorithm

happens on L′

j and Lj is obtained by inserting i right before m in L′

j. By Observation 2, δ(CLj
) =

max{δ(CL′

j
), d(m, CLj

)}. Note that x(CLj
) = x(CL′

j
) + |Ii| and xrm(CLj

) = x(CLj
). As j increases in

[c + 1, a], since x(CL′

j
) strictly increases, both x(CLj

) and d(m, CLj
) strictly increase. Since δ(CL′

j
)

is strictly decreasing on j ∈ [c+1, a], we obtain that δ(CLj
) is a unimodal function on j ∈ [c+1, a]

(i.e., it first strictly decreases and then strictly increases).
Let S = {L1, . . . , Lc, L

∗

c , Lc+1, . . . , La}. For convenience, we use Lc+0.5 to refer to L∗

c (and L′

c+0.5

refers to L′

c); in this way, the indices of the ordered lists of S are sorted. Consider the subsequence
of the lists of S from Lc+0.5 to the end (including Lc+0.5). Define c2 to be the index of the first list
Lj such that δ(CLj

) ≤ δ(CL), where L is the right neighboring list of Lj in S; if such a list Lj does
not exist, then we let c2 = a.

Observation 6 As j increases in [1, a], x(CLj
) is strictly increasing except that x(CLc+0.5

) =
x(CLc+1

) may be possible.

25

Proof. Recall that x(CLj
) is strictly increasing on j ∈ [1, c] and j ∈ [c + 1, a], respectively. Let

l = |Ii|+ |Im|. Note that x(CLc) = xlm(CL′

c
) + l, x(CL∗

c
) = xli + l, and x(CLc+1

) = xlm(CL′

c+1
) + l. By

our definition of c, xlm(CL′

c
) < xli ≤ xlm(CL′

c+1
). Thus, x(CLc) < x(CL∗

c
) ≤ x(CLc+1

). This shows that

x(CLj
) is strictly increasing on j ∈ [1, a] except that x(CL∗

c
) = x(CLc+1

) may be possible. ⊓⊔

Lemma 14. 1. If c2 < a, then Lc2 dominates Lj for any Lj ∈ S with j > c2.
2. If c2 ≥ c+ 1 and x(CLc+0.5

) = x(CLc+1
), then Lc+1 dominates Lc+0.5.

Proof. We first show that δ(CLj
) is a unimodal function on j ∈ [c+ 0.5, a].

Recall that for each j ∈ [c+1, a], δ(CLj
) = max{δ(CL′

j
), d(m, CLj

)}, and δ(CL∗

j
) = max{δ(CL′

j
), d(m, CL∗

j
)}.

For each j ∈ [c + 0.5, a], since m is the last index of Lj , we have d(m, CLj
) = x(CLj

) − xrm. By
Observation 6, d(m, CLj

) is strictly increasing on [c+0.5, a] except that d(m, CLc+0.5
) = d(m, CLc+1

)
may be possible. Since δ(CL′

j
) on j ∈ [1, a] is strictly decreasing, δ(CLj

) is a unimodal function on

j ∈ [c+ 0.5, a].
By the definition of c2, δ(CLj

) is strictly decreasing on [c+0.5, c2] and monotonically increasing
on [c2, a].

Consider any list Lj ∈ S with j > c2. By our previous discussion, δ(CLc2
) ≤ δ(CLj

) and
x(CLc2

) ≤ x(CLj
). Since the last indices of both Lc2 and Lj are m, by Lemma 9, Lc2 dominates Lj .

If c2 ≥ c+ 1 and x(CLc+0.5
) = x(CLc+1

), by the definition of c2, δ(CLc+0.5
) > δ(CLc+1

). Since the
last indices of both Lc+0.5 and Lc+1 are m, by Lemma 9, Lc+1 dominates Lc+0.5. The lemma thus
follows. ⊓⊔

Let S2 = {Lc+0.5, Lc+1, . . . , Lc2} and we remove Lc+0.5 from S2 if c2 ≥ c + 1 and x(CLc+0.5
) =

x(CLc+1
). In the following, we combine S1 and S2 to obtain the set L. We consider the lists of S2

in order. Define c′ to be the index j of the first list Lj such that δ(CLc1
) > δ(CLj

), and if no such
list Lj exists, then let c′ = c2 + 1.

Lemma 15. If Lc′ is not the first list of S2 or c′ = c2 + 1, then for each list Lj of S2 with j < c′,
Lc1 dominates Lj .

Proof. We assume that Lc′ is not the first list of S2 or c′ = c2 + 1.
Note that we have proved in the proof of Lemma 14 that δ(CLj

) on j ∈ [c + 0.5, c2] is strictly
decreasing. By the definition of c′, it holds that δ(CLc1

) ≤ δ(CLj
) for any Lj ∈ S2 with j < c′.

Consider any list Lj of S2 with j < c′.
Recall that δ(CLj

) = max{δ(CL′

j
), d(m, CLj

)}. We claim that δ(CLj
) = d(m, CLj

). Indeed, note

that δ(CL′

j
) ≤ δ(CL′

c1
) ≤ δ(CLc1

). Since δ(CLc1
) ≤ δ(CLj

), we obtain δ(CL′

j
) ≤ δ(CLj

), and thus,

δ(CLj
) = d(m, CLj

).
Consequently, we have δ(CLc1

) ≤ d(m, CLj
) and x(CLc1

) ≤ x(CLj
) (by Observation 6). Further,

the last index of Lc1 is i and the last index of Lj is m, with xri ≤ xrm. By Lemma 8, Lc1 dominates
Lj.

The lemma thus follows. ⊓⊔

We remove from S2 all lists Lj with j < c′, and let L = S1 ∪ S2. In general, if c′ 6= c2 + 1, then
L = {L1, . . . , Lc1 , Lc′ , . . . , Lc2}; otherwise, L = {L1, . . . , Lc1}.

The above discussion is for the general case where 1 ≤ c < a. If c = 0, then L∗

c , c1 and c′ are all
undefined, and we have L = {L1, . . . , Lc2}. If c = a, then L = {L1, . . . , Lc1} if δ(Lc1) ≤ δ(L∗

c) and
L = {L1, . . . , Lc1 , L

∗

c} otherwise.

26

Observation 7 All algorithm invariants hold on L.

Proof. We only consider the most general case where 1 ≤ c < a and c′ 6= c2 + 1, since other cases
can be proved in a similar but easier way.

By Lemmas 13, 14, and 15, all pruned lists are redundant and thus L contains a canonical list
of I[1, i]. The first algorithm invariant holds.

If x(CLc+0.5
) = x(CLc+1

), then Lc+0.5 and Lc+1 cannot be both in L by Lemma 14(2). Thus, by
Observation 6, x(CLj

) strictly increases in [1, a]. Recall that for any list Lj ∈ L, the last index of
Lj is i if j ≤ c1 and m otherwise. Recall that Ii is contained in Im in the input. Thus, the fourth
algorithm invariant holds.

Further, our definitions of c1, c
′, and c2 guarantee that δ(CL) on all lists L following their order

in L is strictly decreasing. Therefore, the other two algorithm invariants also hold. ⊓⊔

The following lemma will be useful for the algorithm implementation.

Lemma 16. For each list Lj ∈ L, if Lj 6= L∗

c , then x(CLj
) = x(CL′

j
) + |Ii|; if Lj 6∈ {L∗

c , Lc1 , Lc2},

then δ(CLj
) = δ(CL′

j
).

Proof. If Lj 6= L∗

c , then we have discussed before that x(CLj
) = x(CL′

j
)+ |Ii| always holds regardless

of whether the last index of Lj is i or m.
If Lj 6∈ {L∗

c , Lc1 , Lc2}, assume to the contrary that δ(CLj
) 6= δ(CL′

j
). Then, since δ(CLj

) =

max{δ(CL′

j
), d(k, CLj

)}, we obtain that δ(CLj
) = d(k, CLj

), where k is the last index of CLj
(k is i if

j ≤ c and m otherwise). Note that j is either in [1, c1] or [c
′, c2]. We discuss the two cases below.

1. If j ∈ [1, c1], then the last index of Lj is i. Since Lj 6= Lc1 , j < c1 holds. We have discussed
before that d(i, CLj

) ≤ d(i, CLc1
). Thus, we can deduce δ(CLj

) = d(i, CLj
) ≤ d(i, CLc1

) ≤ δ(CLc1
).

However, we have already proved that δ(CLj
) > δ(CLc1

). Thus, we obtain contradiction.
2. If j ∈ [c′, c2], the analysis is similar. In this case the last index of Lj is m and j < c2. Since

j < c2, we have discussed before that d(m, CLj
) ≤ d(m, CLc2

). Thus, we can deduce δ(CLj
) =

d(m, CLj
) ≤ d(m, CLc2

) ≤ δ(CLc2
). However, we have already proved that δ(CLj

) > δ(CLc2
).

Thus, we obtain contradiction.

The lemma thus follows. ⊓⊔

5.2.2 The Case L′

1
6= ∅

We then consider the case where L′

1 6= ∅. In this case, recall that L′

1 = {L′

1, . . . , L
′

b} and L′

2 =
{L′

b+1
, . . . , L′

a}. For each L′

j ∈ L′, the last index of L′

j is m′ if j ≤ b and m otherwise. Recall
that Im′ ⊆ Im in the input. As in the proof of Lemma 10, there are three subcases: xri ≥ xrm,
xrm′ ≤ xri < xrm, and xri < xrm′ .

The first subcase xri ≥ xrm. In this case, for each L′

j ∈ L′, Case I of the preliminary algorithm
happens and Lj is obtained by appending i at the end of L′

j. Our pruning procedure for this
subcase is similar to the first subcase in Section 5.2.1, and we briefly discuss it below.

First, for each L′

j ∈ L′, xli(CLj
) = max{x(CL′

j
), xli} and δ(CLj

) = max{δ(CL′

j
), d(i, CLj

)}. We

define a1 and a2 in exactly the same way as in the first subcase of Section 5.2.1, and further,
Lemma 11 still holds. Similarly, we let L consist of only those lists Lj with j ∈ [a1, a2]. By the
similar analysis, Observation 4 and Lemma 12 still hold. We omit the details.

27

The second subcase xrm′ ≤ xri < xrm. In this case, we first apply the similar pruning procedure for
the first (resp., second) subcase of Section 5.2.1 to set L′

1 (resp., L′

2), and then we combine the
results. The details are given below.

For set L′

1, the last indices of all lists of L′

1 are m′. Since xrm′ ≤ xri , for each L′

j ∈ L′

1, Case I of
the preliminary algorithm happens and Lj is obtained by appending i at the end of L′

j . We define
a1 and a2 in the similar way as in the first subcase of Section 5.2.1 but with respect to the indices
in [1, b]. In fact, since xri < xrm, it holds that xli ≤ xri ≤ xrm ≤ x(CL′

1
), and consequently, a1 = 0.

Similarly, Lemma 11 also holds with respect to the indices of [1, b]. Further, as j increases in [1, a2],
x(CLj

) is strictly increasing and δ(CLj
) is strictly decreasing. Let S′

1 = {L1, L2, . . . , La2}.
For set L′

2, the last indices of all its lists are m. Since xri < xrm, for each list L′

j ∈ L2, either Case
II or Case III of the algorithm happens. We define c in the similar way as in the second subcase of
Section 5.2.1 but with respect to the indices of [b + 1, a]. Specifically, if xli ≤ xlm(CL′

b+1
), then let

c = b; otherwise, let c be the largest index j ∈ [b + 1, a] such that xli > xlm(CL′

j
). We consider the

most general case where b+ 1 ≤ c < a (other cases are similar but easier).

For each j ∈ [b+ 1, c], there is also a new list L∗

j . Similar to Observation 4, δ(CL∗

c
) ≤ δ(CL∗

j
) for

any j ∈ [b + 1, c]. Hence, among the new lists L∗

j with j = b + 1, . . . , c, only L∗

c needs to be kept.
Let S′ = {Lb+1, . . . , Lc, L

∗

c , Lc+1, . . . , La}. We also use Lc+0.5 to refer to L∗

c . We define the three
indices c1, c2, and c′ in the similar way as in the second subcase of Section 5.2.1 but with respect
to the ordered lists in S′. Similarly, Observation 6, Lemmas 13, 14, and 15 all hold with respect to
the lists in S′. Let S′

2 = {Lb+1, . . . , Lc1 , Lc′ , . . . , Lc2}.
Finally, we combine the lists of the two sets S′

1 and S′

2 to obtain L, as follows. Recall that La2

is the last list of S′

1. We consider the lists of S′

2 in order. Define b′ to be the index j of the first list
Lj of S′

2 such that δ(CLa2
) > δ(CLj

), and if no such list Lj exists, then let b′ = c2 + 1.

Lemma 17. 1. x(CLa2
) < x(CLb+1

).

2. If b′ > b+ 1, then La2 dominates Lj for any list Lj ∈ S′

2 with j < b′.

Proof. For La2 , since a1 = 0, we have x(CLa2
) = x(CL′

a2
) + |Ii|. For Lb+1, it holds that x(CLb+1

) =

x(CL′

b+1
)+|Ii|. Since x(CL′

a2
) < x(CL′

b+1
), we have x(CLa2

) < x(CLb+1
). This proves the first statement

of the lemma.

Next we prove the second lemma statement. Assume b′ > b+ 1. Consider any list Lj ∈ S′

2 with
j < b′. In the following, we show that La2 dominates Lj .

Recall that the values δ(L) of the lists L of S′

2 are strictly decreasing following their order in
S′

2. By the definition of b′, δ(CLa2
) ≤ δ(CLj

). Note that the last index of Lj can be either i or m,
and the last index of La2 is i.

If the last index of Lj is i, then since δ(CLa2
) ≤ δ(CLj

) and x(CLa2
) < x(CLb+1

) ≤ x(CLj
), by

Lemma 9, La2 dominates Lj.

If the last index of Lj is m, then δ(CLj
) = max{δ(CL′

j
), d(m, CLj

)}. Recall that δ(CLa2
) =

max{δ(CL′

a2
), d(i, CLa2

)} and δ(CL′

a2
) > δ(CL′

j
). Due to δ(CLa2

) ≤ δ(CLj
), we can deduce δ(CL′

j
) <

δ(CL′

a2
) ≤ δ(CLa2

) ≤ δ(CLj
). Therefore, δ(CLa2

) ≤ δ(CLj
) = d(m, CLj

). Again, x(CLa2
) < x(CLb+1

) ≤

x(CLj
). Since the last index of La2 is i and that of Lj is m, with Ii ⊆ Im in the input, by Lemma 8,

La2 dominates Lj . ⊓⊔

By Lemma 17, we let L be the union of the lists of S′

1 and the lists of S′

2 after and including b′

(if b′ = c2 + 1, then L = S′

1).

28

Observation 8 All algorithm invariants hold on L.

Proof. As the analysis in Section 5.2.1, S′

1 ∪ S′

2 must contain a canonical list of I[1, i]. In light of
Lemma 17(2), L also contains a canonical list.

Also, the values of x(CL) for all lists L of S′

1 (resp., S
′

2) are strictly increasing. By Lemma 17(1),
the values of x(CL) for all lists L of L are also strictly increasing. On the other hand, the values of
δ(CL) for all lists L of S′

1 (resp., S′

2) are strictly decreasing. The definition of b′ makes sure that the
values of δ(CL) for all lists L of L must be strictly decreasing. Also, note that the lists of L whose
last indices are i are all before the lists whose last indices are m.

Hence, all algorithm invariants hold on L. ⊓⊔

The following lemma will be useful for the algorithm implementation.

Lemma 18. For each list Lj ∈ L, if Lj 6= L∗

c , then x(CLj
) = x(CL′

j
)+|Ii|; if Lj 6∈ {La2 , L

∗

c , Lc1 , Lc2},

then δ(CLj
) = δ(CL′

j
).

Proof. Consider any list Lj ∈ L.
If Lj 6= L∗

c , then since a1 = 0, x(CLj
) = x(CL′

j
) + |Ii| always holds regardless whether the last

index of Lj is i or m.

Assume Lj 6∈ {La2 , L
∗

c , Lc1 , Lc2}. To prove that δ(CLj
) = δ(CL′

j
), if j ≤ b, then we can apply the

analysis in the proof of Lemma 12; otherwise, we can apply the analysis in the proof of Lemma 16.
We omit the details. ⊓⊔

The third subcase xri < xrm′ . In this case, for each list L′

j ∈ L′, as analyzed in the proof of Lemma 10,
only Case II of our preliminary algorithm happens, and thus Lj is obtained from L′

j by inserting
i into L′

j right before the last index. Further, it holds that x(CLj
) = x(CL′

j
) + |Ii| regardless of

whether the last index of L′

j is m or m′. Since x(CL′

j
) is strictly increasing on j ∈ [1, a], x(CLj

) is

also strictly increasing on j ∈ [1, a].

Consider any list L′

j ∈ L′ with j ≤ b. Recall that the last index of L′

j is m′. By Observation 2,
δ(CLj

) = max{δ(CL′

j
), d(m′, CLj

)}, and d(m′, CLj
) = xrm′(CLj

)−xrm′ = x(CLj
)−xrm′ . Thus, d(m′, CLj

)

strictly increases on j ∈ [1, b]. Since δ(CL′

j
) strictly decreases on j ∈ [1, b], δ(CLj

) is a unimodal

function on j ∈ [1, b] (i.e., it first strictly decreases and then strictly increases). If δ(CL1
) ≤ δ(CL2

),
then let e1 = 1; otherwise, define e1 to be the largest index j ∈ [2, b] such that δ(CLj−1

) > δ(CLj
).

Hence, δ(CLj
) is strictly decreasing on j ∈ [1, e1].

Lemma 19. If e1 < b, then Le1 dominates Lj for any j ∈ [e1 + 1, b].

Proof. Assume e1 < b and let j be any index in [e1 + 1, b]. By our definition of e1 and since δ(CLj
)

is unimodal on [1, b], it holds that δ(CLe1
) ≤ δ(CLj

). Recall that x(CLe1
) < x(CLj

). Since the last
indices of both Le1 and Lj are m′, by Lemma 9, Le1 dominates Lj . ⊓⊔

Due to Lemma 19, let S1 = {L1, L2, . . . , Le1}.
Consider any list L′

j ∈ L′ with j > b. Recall that the last index of L′

j is m. Similarly as above,
δ(CLj

) = max{δ(CL′

j
), d(m, CLj

)} and d(m, CLj
) = x(CLj

) − xrm. Similarly, δ(CLj
) is a unimodal

function on j ∈ [b+ 1, a]. If δ(CLb+1
) ≤ δ(CLb+2

), then we let e2 = b+ 1; otherwise, define e2 to be
the largest index j ∈ [b + 1, a] such that δ(CLj−1

) > δ(CLj
). Hence, δ(CLj

) is strictly decreasing on

29

j ∈ [b+1, e2]. By a similar proof as Lemma 19, we can show that if e2 < a, then Le2 dominates Lj

for any j ∈ [e2 + 1, a]. Let S2 = {Lb+1, Lb+2, . . . , Le2}.
We finally combine S1 and S2 to obtain L as follows. Define b′ to be the smallest index j of

[b+ 1, e2] such that δ(CLe1
) > δ(CLj

), and if no such index exists, then let b′ = e2 + 1.

Lemma 20. If b′ > b+ 1, then Le1 dominates Lj of S2 for any j ∈ [b+ 1, b′ − 1].

Proof. Assume b′ > b+1 and let j be any index in [b+1, b′ − 1]. Since δ(CLj
) is strictly decreasing

on j ∈ [b+ 1, e2], by the definition of b′, δ(CLe1
) ≤ δ(CLj

).

Recall that δ(CLj
) = max{δ(CL′

j
), d(m, CLj

)}, δ(CLe1
) = max{δ(CL′

e1
), d(m′, CLe1

)}, and δ(CL′

j
) <

δ(CL′

e1
). Hence, we obtain δ(CL′

j
) < δ(CL′

e1
) ≤ δ(CLj

), and thus δ(CLj
) = d(m, CLj

). Since δ(CLe1
) ≤

δ(CLj
), δ(CLe1

) ≤ d(m, CLj
). Further, recall that x(CLe1

) < x(CLj
). Then, Lemma 8 applies since

the last index of Le1 is m′ and that of Lj is m, with xrm′ ≤ xrm. By Lemma 8, Le1 dominates Lj. ⊓⊔

In light of Lemma 20, we let L = S1 ∪ {Lb′ , . . . , Le2} if b′ 6= e2 + 1 and L = S1 otherwise. By
similar analysis as before, we can show that all algorithm invariants hold on L, and we omit the
details. The following lemma will be useful for the algorithm implementation.

Lemma 21. For each list Lj ∈ L, x(CLj
) = x(CL′

j
)+ |Ii|; if Lj 6∈ {Le1 , Le2}, then δ(CLj

) = δ(CL′

j
).

Proof. We have shown that x(CLj
) = x(CL′

j
) + |Ii| for any j ∈ [1, a].

Consider any list Lj ∈ L and j 6∈ {e1, e2}. By the similar analysis as in Lemma 16, we can show
that δ(CLj

) = δ(CL′

j
). The details are omitted. ⊓⊔

5.3 The Algorithm Implementation

In this section, we implement our pruning algorithm described in Section 5.2 in O(n log n) time and
O(n) space. We first show how to compute the optimal value δopt and then show how to construct
an optimal list Lopt in Section 5.4.

Since L may have Θ(n) lists and each list may have Θ(n) intervals, to avoid Ω(n2) time, the key
idea is to maintain the lists of L implicitly. We show that it is sufficient to maintain the “x-values”
x(CL) and the “δ-values” δ(CL) for all lists L of L, as well as the list index b and the interval indices
m′ and m. To this end, and in particular, to update the x-values and the δ-values after each interval
Ii is processed, our implementation heavily relies on Lemmas 12, 16, 18, and 21. Intuitively, these
lemmas guarantee that although the x-values of all lists of L need to change, all but a constant
number of them increase by the same amount, which can be updated implicitly in constant time;
similarly, only a constant number of δ-values need to be updated. The details are given below.

Let L = {L1, L2, . . . , La} such that x(CLj
) strictly increases on j ∈ [1, a], and thus, δ(CLj

)
strictly decreases on j ∈ [1, a] by the algorithm invariants.

We maintain a balanced binary search tree T whose leaves from left to right correspond to the
ordered lists of L. Let v1, . . . , va be the leaves of T from left to right, and thus, vj corresponds to
Lj for each j ∈ [1, a]. For each j ∈ [1, a], vj stores a δ-value δ(vj) that is equal to δ(CLj

), and vj
stores another x-value x(vj) that is equal to x(CLj

)−R, where R is a global shift value maintained
by the algorithm.

In addition, we maintain a pointer pb pointing to the leaf v(b) of T if b 6= 0 and pb = null if
b = 0. We also maintain the interval indices m and m′. Again, if pb = null, then m′ is undefined.

30

Initially, after I1 is processed, L consists of the single list L = {1}. We set R = 0, m = 1, and
pb = null. The tree T consists of only one leaf v1 with δ(v1) = 0 and x(v1) = xr1.

In general, we assume Ii−1 has been processed and T , m, m′, pb, and R have been correctly
maintained. In the following, we show how to update them for processing Ii. In particular, we show
that processing Ii takes O((k+1) log n) time, where k is the number of lists removed from L during
processing Ii. Since our algorithm will generate at most n new lists for L and each list will be
removed from L at most once, the total time of the algorithm is O(n log n).

As in Section 5.2, we let L′ = {L′

1, L
′

2, . . . , L
′

a} denote the original set L before Ii is processed.
Again, if b 6= 0, then L′

1 = {L′

1, . . . , L
′

b} and L′

2 = {L′

b+1
, . . . , L′

a}. We consider the five subcases
discussed in Section 5.2.

5.3.1 The Case L′

1
= ∅

In this case, the last indices of all lists of L′ are m.

The first subcase xrm ≤ xri . In this case, in general we have L = {Lj | a1 ≤ j ≤ a2}. We first find
a1 and remove the lists L1, . . . , La1−1 if a1 > 1 as follows.

Starting from the leftmost leaf v1 of T , if x(v1)+R (which is equal to x(CL′

1
)) is larger than xli,

then a1 = 0 and we are done. Otherwise, we consider the next leaf v2. In general, suppose we are
considering leaf vj . If x(vj)+R > xli, then we stop with a1 = j− 1. Otherwise, we remove leaf vj−1

(not vj) from T and continue to consider the next leaf vj+1 if j 6= a (if j = a, then we stop with
a1 = a).

If a1 6= 0, then the above has found the leaf va1 . In addition, we update x(va1) = xri − R− |Ii|
(we have minus |Ii| here because later we will increase R by |Ii|).

Next we find a2 and remove the lists La2+1, . . . , La (by removing the corresponding leaves from
T) if a2 < a, as follows. Recall that for each j ∈ [a1 + 1, a], δ(CLj

) = max{δ(CL′

j
), d(i, CLj

)}, with

δ(CL′

j
) = δ(vj) and d(i, CLj

) = xli(CLj
) − xli = x(CL′

j
) − xli = x(vj) + R − xli. Hence, we have

δ(CLj
) = max{δ(vj), x(vj) +R− xli}.

If a1 = a, then we have a2 = a1 and we are done. Otherwise we do the following. Starting from
the rightmost leaf va of T , we check whether max{δ(va−1), x(va−1)+R−xli} ≤ max{δ(va), x(va)+
R−xli}. If yes, we remove va from T and continue to consider va−1. In general, suppose we are consid-
ering vj . If j = a1, then we stop with a2 = a1. Otherwise, we check whether max{δ(vj−1), x(vj−1)+
R−xli} ≤ max{δ(vj), x(vj)+R−xli}. If yes, we remove vj from T and proceed on vj−1. Otherwise,
we stop with a2 = j.

Suppose the above procedure finds leaf vj with a2 = j. We further update δ(vj) = max{δ(vj), x(vj)+
R− xli}. By Lemma 12, we do not need to update other δ-values.

The above has updated the tree T . In addition, we update R = R+|Ii|, which actually implicitly
updates all x-values by Lemma 12. Finally, we update m = i since the last indices of all updated
lists of L are now i.

This finishes our algorithm for processing Ii. Clearly, the total time is O((k + 1) log n) since
removing each leaf of T takes O(log n) time, where k is the number of leaves that have been removed
from T .

The second subcase xrm > xri . In this case, roughly speaking, we should compute the set L =
{L1, . . . , Lc1 , Lc′ , Lc′+1, . . . , Lc2}.

31

We first compute the index c, i.e., find the leaf vc of T . This can be done by searching T in
O(log n) time as follows. Note that for a list L′

j , to check whether xli > xlm(CL′

j
), since xlm(CL′

j
) =

x(CL′

j
)− |Im| = x(vj) +R− |Im|, it is equivalent to checking whether xli > x(vj) +R− |Im|, which

is equivalent to xli − R + |Im| > x(vj). Consequently, vc is the rightmost leaf v of T such that
xli −R+ |Im| > x(v), and thus vc can be found by searching T in O(log n) time.

Next, we find c1, and remove the leaves vj with j ∈ [c1 + 1, c] if c1 < c, as follows (note that if
the above step finds c = 0, then we skip this step).

Recall that for each j ∈ [1, c], δ(CLj
) = max{δ(CL′

j
), d(i, CLj

)}, with δ(CL′

j
) = δ(vj) and

d(i, CLj
) = xli(CLj

)−xli = x(CL′

j
)−xli = x(vj)+R−xli. Hence, we have δ(CLj

) = max{δ(vj), x(vj)+

R− xli}.

Starting from vc, we first check whether δ(CLc−1
) > δ(CLc), by computing δ(CLc−1

) and δ(CLc)
as above. If yes, then c1 = c and we stop. Otherwise, we remove vc and proceed on considering
vc−1. In general, suppose we are considering vj. If j = 1, then we stop with c1 = 1. Otherwise, we
check whether δ(CLj−1

) > δ(CLj
). If yes, then c1 = j; otherwise, we remove vj and proceed on vj−1.

In addition, after vc1 is found as above, we update δ(vc1) = max{δ(vc1), x(vc1) +R− xli}.

Next, consider the new list L∗

c , which is Lc+0.5. We have δ(CL∗

c
) = max{δ(CL′

c
), d(m, CL∗

c
)} =

max{δ(CL′

c
), xlm(CL∗

c
)−xlm}. Since δ(CL′

c
) = δ(vc) and xlm(CL∗

c
) = xri , we have δ(CL∗

c
) = max{δ(vc), x

r
i−

xlm} (if the above has removed vc, then we temporarily keep the value δ(vc) before vc is removed).
Also, recall that x(CL∗

c
) = xri + |Im|. Therefore, we can compute both δ(CL∗

c
) and x(CL∗

c
) in con-

stant time. We insert a new leaf vc+0.5 to T corresponding to L∗

c , with δ(vc+0.5) = δ(CL∗

c
) and

x(vc+0.5) = x(CL∗

c
)−R− |Ii| (the minus |Ii| is due to that later we will increase R by |Ii|).

Next, we determine c2, and remove the leaves vj with j ∈ [c2 + 1, a] if c2 < a, as follows.
Recall that for each j ∈ [c + 1, a], δ(CLj

) = max{δ(CL′

j
), d(m, CLj

)}, with δ(CL′

j
) = δ(vj) and

d(m, CLj
) = xrm(CLj

)− xrm = x(CL′

j
) + |Ii| − xrm = x(vj) + R+ |Ii| − xrm. Hence, we have δ(CLj

) =

max{δ(vj), x(vj) +R+ |Ii| − xrm}, which can be computed in constant time once we access the leaf
vj .

Starting from the rightmost leaf va, in general, suppose we are considering a leaf vj. If j = c+0.5,
then we stop with c2 = c + 0.5. Otherwise, let vh be the left neighboring leaf of vj (so h is either
j − 1 or j − 0.5). We check whether δ(CLh

) > δ(CLj
) (the two values can be computed as above). If

yes, we stop with c2 = j; otherwise, we remove vj from T and proceed on considering vh.

If the above procedure returns c2 ≥ c + 1, then we further check whether x(CL∗

c
) = x(CLc+1

).
If yes, then we remove the leaf vc+0.5 from T . If c2 ≥ c + 1, we also need to update δ(vc2) =
max{δ(vc2), x(vc2) +R+ |Ii| − xrm}.

Finally, we determine c′ and remove all leaves strictly between vc1 and vc′ , as follows. Recall
that given any leaf vj of T , we can compute δ(CLj

) in constant time. Starting from the right
neighboring leaf of vc1 , in general, suppose we are considering a leaf vj. If δ(CLc1

) ≤ δ(CLj
), then

we remove vj and proceed on the right neighboring leaf of vj . This procedure continues until either
δ(CLc1

) > δ(CLj
) or vj is the rightmost leaf and has been removed.

In addition, we update R = R+ |Ii|. In light of Lemma 16 and by our way of setting the value
x(vc+0.5), this updates all x-values. Also, the above has “manually” set the values δ(vc1), δ(vc2),
and δ(vcc+0.5

), by Lemma 16, all δ-values have been updated. Finally, we update m, m′, and pb as
follows.

In the general case where 1 ≤ c < a and c′ 6= c2 + 1, we set m′ = i and pb to the leaf vc1 . If
c′ = c2+1, then the last indices of all lists of L are i, and thus we set m = i and pb = null. If c = 0,

32

then the last indices of all lists of L are m, then we do not need to update anything. If c = a, then
if L∗

c 6∈ L, then the last indices of all lists of L are i and we set m = i and pb = null, and if L∗

c ∈ L,
then we set m′ = i and pb to vc1 .

This finishes processing Ii. The total time is again as claimed before.

5.3.2 The Case L′

1
6= ∅

In this case, L′

1 = {L′

1, . . . , L
′

b} and L′

2 = {L′

b+1
, . . . , L′

a}. The last indices of all lists of L′

1 (resp.,
L′

2) are m′ (resp., m). Note that the pointer pb points to the leaf vb.

The first subcase xri ≥ xrm. In this case, the implementation is similar to the first subcase of
Section 5.3.1, so we omit the details.

The second subcase xrm′ ≤ xri < xrm. As our algorithm description in Section 5.2.2, we first ap-
ply the similar implementation as the first subcase of Section 5.3.1 on the leaves from v1 to vb,
and then apply the similar implementation as the second subcase of Section 5.3.1 on the leaves
from vb+1 to va. So the leaves of the current tree corresponding to the lists in S′

1 ∪ S′

2, i.e.,
{L1 . . . , La2 , Lb+1, . . . , Lc1 , Lc′ , . . . , Lc2}, as defined in the second subcase of Section 5.2.2.

Next, we determine b′ and remove all leaves from T strictly between va2 and vb′ . Starting from
the right neighboring leaf of va2 , in general, suppose we are considering a leaf vj. If δ(CLa2

) ≤ δ(CLj
)

(as before, these two values can be computed in constant time once we have access to va2 and vj),
then we remove vj and proceed on the right neighboring leaf of vj . This procedure continues until
either δ(CLa2

) > δ(CLj
) or vj is the rightmost leaf and has been removed.

Finally, we update R = R+ |Ii|. To update pb, m, and m′, depending on the values c, c′ and b′,
there are various cases. In the general case where b + 1 ≤ c < a, c′ 6= c2 + 1, and b′ 6= c2 + 1, we
update pb = vc1 and m′ = i. We omit the discussions for other special cases.

The third subcase xri < xrm′ . In this case, starting from vb, we first remove all leaves from ve1+1

to vb. The algorithm is very similar as before and we omit the details. Then, starting from va, we
remove all leaves from ve2+1 to va. Finally, starting from ve1 , we remove all leaves strictly between
ve1 to vb′ . In addition, we update R = R + |Ii|. In the general case where b′ 6= e2 + 1, we set pb
pointing to leaf ve1 ; otherwise, we set m = m′ and pb = null.

This finishes processing Ii for all five subcases. The algorithm finishes once In is processed, after
which δopt = δ(v), where v is the rightmost leaf of T (as δ(v) is the smallest among all leaves of
T). Again, the total time of the algorithm is O(n log n). Clearly, the space used by our algorithm
is O(n).

5.4 Computing an Optimal List

As discussed above, after In is processed, the list (denoted by Lopt) corresponding to the rightmost
leaf (denoted by vopt) of T is an optimal list, and δopt = δ(vopt). However, since our algorithm
does not maintain the list Lopt explicitly, Lopt is not available after the algorithm finishes. In
this section, we give a way (without changing the complexity asymptotically) to maintain more
information during the algorithm such that after it finishes, we can reconstruct Lopt in additional
O(n) time.

We first discuss some intuition. Consider a list L ∈ L before interval Ii is processed. During
processing Ii for L, observe that the position of i in the updated list L is uniquely determined

33

by the input position of the last interval Im of L (i.e., depending on whether xri ≥ xrm). However,
uncertainty happens when L generates another “new” list L∗. More specifically, suppose L is a
canonical list of I[1, i− 1]. If there is no new list L∗, then by our observations (i.e., Lemmas 3 and
4), the updated L is a canonical list of I[1, i]. Otherwise, we know (by Lemma 5) that one of L
and L∗ is a canonical list of I[1, i], but we do not know exactly which one is. This is where the
uncertainty happens and indeed this is why we need to keep both L and L∗ (thanks to Lemma 6,
we only need to keep one such new list). Therefore, in order to reconstruct Lopt, if processing Ii
generates a new list L∗ in L, then we need to keep the relevant information about L∗. The details
are given below.

Specifically, we maintain an additional binary tree T ′ (not a search tree). As in T , the leaves of
T ′ from left to right correspond to the ordered lists of L. Consider a leaf v of T ′ that corresponds
to a list L ∈ L. Suppose after processing Ii, L generates a new list L∗ in L. Let m be the last index
of the original L (before Ii is processed). According to our algorithm, we know that the last two
indices of the updated L are m and i with i as the last index and the last two indices of L∗ are i
and m with m as the last index. Correspondingly, we update the tree T ′ as follows. First, we store i
at v, e.g., by setting A(v) = i, which means that there are two choices for processing Ii. Second, we
create two children v1 and v2 for v and they correspond to the lists L and L∗, respectively. Thus,
v now becomes an internal node. Third, on the new edge (v, v1), we store an ordered pair (m, i),
meaning that m is before i in L; similarly, on the edge (v, v2), we store the pair (i,m). In this way,
each internal node of T ′ stores an interval index and each edge of T ′ stores an ordered pair.

After the algorithm finishes, we reconstruct the list Lopt in the following way. Let π be the path
from the root to the rightmost leaf vopt of T

′. We will construct Lopt by considering all intervals
from I1 to In and simultaneously considering the nodes in π. Initially, let Lopt = {1}. Then, we
consider I2 and the first node of π (i.e., the root of T ′). In general, suppose we are considering Ii
and a node v of π. We first assume that v is an internal node (i.e., v 6= vopt).

If i < A(v), then only Case I or Case II of our preliminary algorithm happens, and we insert i
into Lopt based on whether xri ≥ xrm (specifically, if xri ≥ xrm, then we append i at the end of Lopt;
otherwise, we insert i right before the last index of Lopt) and then proceed on Ii+1.

If i ≥ A(v) (in fact, i must be equal to A(v)), then we insert i into Lopt based on the ordered
pair of the next edge of v in π (specifically, if i is at the second position of the pair, then i is
appended at the end of Lopt; otherwise, i is inserted right before the last index of Lopt) and then
proceed on the next node of π and Ii+1.

If v = vopt, then we insert i into Lopt based on whether xri ≥ xrm as above, and then proceed on
Ii+1. The algorithm finishes once In is processed, after which Lopt is constructed. It is easy to see
that the algorithm runs in O(n) time and O(n) space.

Once Lopt is computed, we can apply the left-possible placement strategy to compute an optimal
configuration in additional O(n) time.

Theorem 2. Given a set of n intervals on a line, the interval separation problem is solvable in
O(n log n) time and O(n) space.

6 Conclusions

In this paper, we present an O(n log n) time and O(n) space algorithm for solving the interval sep-
aration problem. By a linear-time reduction from the integer element distinctness problem [16,22],

34

we can obtain an Ω(n log n) time lower bound for the problem under the algebraic decision tree
model, which implies the optimality of our algorithm.

Given a set of n integers A = {a1, a2, . . . , an}, the element distinctness problem is to ask whether
there are two elements of A that are equal. The problem has an Ω(n log n) time lower bound under
the algebraic decision tree model [16,22]. We create a set I of n intervals as an instance of our
interval separation problem as follows. For each ai ∈ A, we create an interval Ii centered at ai with
length 0.1. Let I be the set of all intervals. Since all elements of A are integers, it is easy to see that
no two elements of A are equal if and only if no two intervals of I intersect. On the other hand, no
two intervals of I intersect if and only if the optimal value δopt in our interval separation problem
on I is equal to zero. This completes the reduction. This reduction actually shows that even if all
intervals have the same length, the interval separation problem still has an Ω(n log n) time lower
bound.

References

1. A.M. Andrews and H. Wang. Minimizing the aggregate movements for interval coverage. In Proc. of the
14th Algorithms and Data Structures Symposium (WADS), pages 28–39, 2015. Full version published online in
Algorithmica, 2016.

2. A. Bar-Noy, D. Rawitz, and P. Terlecky. Maximizing barrier coverage lifetime with mobile sensors. In Proc. of
the 21st European Symposium on Algorithms (ESA), pages 97–108, 2013.

3. B. Bhattacharya, B. Burmester, Y. Hu, E. Kranakis, Q. Shi, and A. Wiese. Optimal movement of mobile sensors
for barrier coverage of a planar region. Theoretical Computer Science, 410(52):5515–5528, 2009.

4. D.Z. Chen, Y. Gu, J. Li, and H. Wang. Algorithms on minimizing the maximum sensor movement for barrier
coverage of a linear domain. Discrete and Computational Geometry, 50:374–408, 2013.

5. D.Z. Chen, X. Tan, H. Wang, and G. Wu. Optimal point movement for covering circular regions. Algorithmica,
69:379–399, 2015.

6. M. Chrobak, C. Dürr, W. Jawor, L. Kowalik, and M. Kurowski. A note on scheduling equal-length jobs to
maximize throughput. Journal of Scheduling, 9(1):71–73, 2006.

7. M. Chrobak, W. Jawor, J. Sgall, and T. Tichý. Online scheduling of equal-length jobs: Randomization and
restarts help. SIAM Journal of Computing, 36(6):1709–1728, 2007.

8. J. Czyzowicz, E. Kranakis, D. Krizanc, I. Lambadaris, L. Narayanan, J. Opatrny, L. Stacho, J. Urrutia, and
M. Yazdani. On minimizing the maximum sensor movement for barrier coverage of a line segment. In Proc. of
the 8th International Conference on Ad-Hoc, Mobile and Wireless Networks, pages 194–212, 2009.

9. J. Czyzowicz, E. Kranakis, D. Krizanc, I. Lambadaris, L. Narayanan, J. Opatrny, L. Stacho, J. Urrutia, and
M. Yazdani. On minimizing the sum of sensor movements for barrier coverage of a line segment. In Proc. of the
9th International Conference on Ad-Hoc, Mobile and Wireless Networks, pages 29–42, 2010.

10. M.R. Garey, D.S. Johnson, B.B. Simons, and R.E. Tarjan. Scheduling unit-time tasks with arbitrary release
times and deadlines. SIAM Journal on Computing, 10:256–269, 1981.

11. J. Kleinberg and E. Tardos. Algorithm Design, chapter 4. Addison-Wesley, Boston, MA, USA, 2005.

12. T. Lang and E.B. Fernández. Scheduling of unit-length independent tasks with execution constraints. Information
Processing Letters, 4:95–98, 1976.

13. E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys. Sequencing and scheduling: Algorithms and
complexity, in Handbooks in Operations Research and Management Science 4, S.C. Graves, A.H.G. Rinnooy Kan
and P.H. Zipkin (eds.). Elsevier, 1993.

14. M. Li, X. Sun, and Y. Zhao. Minimum-cost linear coverage by sensors with adjustable ranges. In Proc. of the
6th International Conference on Wireless Algorithms, Systems, and Applications, pages 25–35, 2011.

15. S. Li and H. Wang. Algorithms for minimizing the movements of spreading points in linear domains. In Proc. of
the 27th Canadian Conference on Computational Geometry (CCCG), 2015.

16. A. Lubiw and A. Rácz. A lower bound for the integer element distinctness problem. Information and Computation,
94:83–92, 1991.

17. M. Mehrandish. On Routing, Backbone Formation and Barrier Coverage in Wireless Ad Doc and Sensor Net-
works. PhD thesis, Concordia University, Montreal, Quebec, Canada, 2011.

35

18. M. Mehrandish, L. Narayanan, and J. Opatrny. Minimizing the number of sensors moved on line barriers. In
Proc. of IEEE Wireless Communications and Networking Conference (WCNC), pages 653–658, 2011.

19. B. Simons. A fast algorithm for single processor scheduling. In Proceedings of the 19th Annual Symposium on
Foundations of Computer Science, pages 246–252, 1978.

20. N. Vakhania. A study of single-machine scheduling problem to maximize throughput. Journal of Scheduling,
16(4):395–403, 2013.

21. N. Vakhania and F. Werner. Minimizing maximum lateness of jobs with naturally bounded job data on a single
machine in polynomial time. Theoretical Computer Science, 501:72–81, 2013.

22. A.C. Yao. Lower bounds for algebraic computation trees with integer inputs. SIAM Journal on Computing,
20:655–668, 1991.

36

	Separating Overlapped Intervals on a Line

