

Altering Variables in the Half-Reaction for the Synthesis of **Selenium Nanoparticles on Supports**

Samantha Wheeler, John Brockgreitens, Snober Ahmed, and Abdennour Abbas*

University of Minnesota-Twin Cities, Department of Bioproducts and Biosystems Engineering

Background

- Materials containing selenium (Se) nanoparticles can be used to remove mercury (Hg) from water to prevent or control pollution.
- Members of the Abbas Lab have previously observed a color change to dark redbrown when elemental selenium is formed. The SEM image to the right depicts nanoparticles formed on treated ceramic to support this.
- The synthesis of elemental Se has been successful on polyurethane sponge, but expansion into ceramic materials would be useful for high-temperature industrial purposes.
- This synthesis is believed to be characterized by the half-reaction: $\text{SeO}_3^{2-} + 4e^- + 6\text{H}^+ \rightarrow \text{Se}^0 + 3\text{H}_2\text{O}$. The purpose of this project was to investigate whether this was true by varying each key reactant.

Results				
	Selenous acid, pH 1	Selenous acid, pH 8	Sodium selenite, pH 1	Sodium selenite, pH 8
Ceramic				
Ceramic with sucrose				
Ceramic with glucose				
Poly- urethane sponge				

*aabbas@umn.edu, http://abbaslab.com

Methods

- To understand and optimize the half-reaction, the following parameters of the previouslydeveloped synthesis process were varied:
 - Se-containing substance (Selenous acid and sodium selenite)
 - Source of electrons (polyurethane, ceramic, sucrose, and glucose)
 - Concentration of protons (pH 1 and pH 8)
- Color changes were compared for each • variation to analyze the success of the synthesis.

Conclusion

- Ceramic with no sugar treatment is not a suitable source of electrons.
- When sucrose or polyurethane is the electron source, synthesis is inhibited at a higher pH.
- The Se-containing substance did not have a definitive effect on the success of the synthesis, but selenous acid is favorable because it has a naturally lower pH.
- The half-reaction listed above is the mechanism for synthesizing elemental Se.

References

1. S. Ahmed, J. Brockgreitens, K. Xu, A. Abbas, A Nanoselenium Sponge for Instantaneous Mercury Removal to Undetectable Levels. Advanced Functional Materials 27, 1606572 (2017).

2. S. Ahmed, J. Brockgreitens, K. Xu, A. Abbas, Sponge-supported synthesis of colloidal selenium nanospheres. Nanotechnology 27, 465601 (2016).

3. Nancharaiah, Yarlagadda Venkata, and P. N. L. Lens. "Ecology and biotechnology of selenium-respiring bacteria." Microbiol. Mol. Biol. Rev. 79.1 (2015): 61-80.

