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Abstract 

Purpose: Neuroplasticity governs mechanisms of cortical reorganization, adaptation and 

recovery following neural injury. Paired associative stimulation (PAS) induces a long-

lasting change in neuroplasticity by pairing a peripheral nerve stimulus with a cortical 

stimulus and inducing a spike-timing-dependent-like plasticity. However, preceding a 

principal bout of PAS that intends to induce neuroplastic change in one direction (e.g. 

facilitatory) with a priming PAS treatment that intends to weight synaptic plasticity in the 

opposite direction (e.g. suppressive) may deploy homeostatic synaptic mechanisms 

resulting in a larger and more consistent change in cortical excitability. Exploring 

principles of homeostatic synaptic plasticity in human motor cortex using all 

combinations of priming and principal suppressive PAS (PASLTD), facilitatory PAS 

(PASLTP) and sham PAS (PASSHAM), this study explores the efficacy of primed PAS as a 

method of neuromodulation and investigates a relationship between physiological 

characteristics and an individual’s response to PAS.  

Methods: Thirty-one healthy individuals were randomized into and completed either 

Experiment 1 (n=15, age 23.60 ± 2.33 years) or Experiment 2 (n=16, age 22.25 ± 2.28 

years). Experiment 1 investigated priming of PASLTD using a cross-over of the following 

four interventions separated by at least one-week washout periods: 1. 

PASSHAM→PASLTD; 2. PASLTP→PASLTD;3. PASLTD→PASLTD;4. PASSHAM→PASSHAM. 

Experiment 2 investigated priming of PASLTP using a similar four-intervention cross-over 

of 1. PASSHAM→PASLTP;2. PASLTD→PASLTP;3. PASLTP→PASLTP;4. 

PASSHAM→PASSHAM. The primary outcome measure for both experiments was an 

average of 20 peak-to-peak motor evoked potentials (MEPs) recorded from the preferred 

abductor pollicis brevis collected at baseline and 0, 10, 20, 30, 40, 50 and 60 minutes 

following intervention. Mixed linear models assessed within- and between- intervention 

change from baseline comparisons within each experiment. Secondary outcome measures 

assessing individual characteristics included presence of the brain-derived neurotrophic 

factor (BDNF) Val66Met polymorphism and the average latency of MEPs collected 

using an anterior-posterior current flow across the central sulcus. 

Results: In Experiment 1, the PASLTP→PASLTD intervention produced a significant 

increase from baseline corticospinal excitability. Nonresponders had a significantly 

higher presence of the BDNF Val66Met polymorphism. In Experiment 2, no intervention 

produced a significant change from baseline excitability. Priming did not convert 

individual nonresponders to responders for any PAS intervention. 

Discussion: Our results highlight the complexity of synaptic plasticity and the difficulty 

in harnessing mechanisms of plasticity to augment neuromodulation strategies. Individual 

characteristics may influence response to PASLTD and optimal protocols may need to be 

established for stratified groups.  
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1.0.0 Introduction 

 

1.1.0 Identification of the Problem 

This dissertation on healthy individuals is intended to lend value to the development of 

new scientific approaches that ultimately will improve rehabilitation strategies for people 

with stroke. A stroke results from ischemia or hemorrhage and causes irreversible 

neuronal damage and altered activity in surviving neurons, which impacts a variety of 

physiologic functions. In the United States, nearly 795,000 individuals suffer a first 

(76.7%) or recurrent (23.3%) stroke each year.1 Stroke is currently the leading cause of 

long-term disability2 with 80% of survivors experiencing some level of motor 

impairment.3 Although conventional rehabilitation strategies aim to improve motor 

function following a stroke, less than 15% of those with a motor impairment achieve full 

motor recovery.4 As acute medical care improves, the percentage of stroke survivors will 

continue to increase thus creating a need for improved rehabilitation strategies that 

parallel advancements in our understanding of neuroplasticity and the development of 

medical devices.  

 

Non-invasively stimulating the brain provides new strategies for post-stroke motor 

recovery by recruiting dormant neurons in the penumbra following a stroke. The 

combination of non-invasive brain stimulation and conventional post-stroke therapy 

improves motor function.5,6 However, efficacy reports are inconsistent and many studies 

are plagued by highly variable within- and between-participant responses.7–11 Two meta-

analyses reporting on the efficacy of a common form of brain stimulation, repetitive 

transcranial magnetic stimulation (rTMS), oppose each other’s conclusions stating that 

rTMS is beneficial for motor recovery12 and that there is not enough evidence to support 

the use of rTMS for motor recovery.13 A more recent form of brain stimulation, paired 

associative stimulation (PAS), may improve excitability and motor function more than 

rTMS14 but it still elicits highly variable responses between individuals. The current array 

of efficacy findings and inability to predict who will or will not benefit from brain 
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stimulation interventions presents a barrier that significantly hinders the progression and 

translation of brain stimulation from the lab to the clinic. It is thus important to pursue the 

potential for more effective approaches (e.g. PAS) and explore different characteristics 

that may influence an individual’s response to brain stimulation. 

 

1.2.0 Neuroplasticity 

Neuroplasticity refers to intrinsic changes in the efficiency of communication (e.g. 

facilitation or suppression) along neural pathways. This property of the nervous system 

underlies fundamental functions including memory, learning and adaptation. In the 

context of neurorehabilitation, principles of neuroplasticity may drive the development of 

re-learning motor patterns through compensatory or restorative pathways. Mechanisms of 

neuroplasticity modify neural structures through changes in synaptic and non-synaptic 

properties, conferring changes in the strength of synaptic connections that underlie 

functions of learning and memory (see15 for review). Following a stroke, the balance 

between facilitation and suppression of neural communication changes causing 

exaggerated suppression of excitability in the ipsilesional hemisphere.16–18 However, 

understanding and implementing principles of neuroplasticity (e.g. experience-dependent 

plasticity, spike-timing-dependent plasticity and metaplasticity) enable strategic planning 

for more effective post-stroke motor recovery therapies that harness inherent mechanisms 

of motor-learning and facilitate communication from the ipsilesional primary motor 

cortex (M1) to the paretic limb.  

 

1.2.1 Synaptic & Non-Synaptic Neuroplasticity 

General mechanisms of neuroplasticity can be divided into two categories: synaptic 

plasticity and non-synaptic plasticity. Although both categories of neuroplasticity result 

in altered efficiency of communication between neurons, they differ in location and 

mechanism of action.19 Synaptic plasticity refers to changes that occur at a synapse 

between two neurons. Acting pre and/or post-synaptically, these changes typically 

include altered neurotransmitter release and/or uptake resulting from changes in pathway 
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activation patterns.20 Non-synaptic plasticity refers to changes that occur in areas remote 

from the synapse (e.g the soma, axon and dendrites). Unlike synaptic plasticity, these 

changes typically include altered resting or voltage-gated ion channel activity, 

influencing intrinsic neuronal excitability.20 Although mechanisms of learning, memory 

and adaptation have historically been attributed to synaptic plasticity, recent evidence 

suggests that both synaptic and non-synaptic plasticity work in tandem to facilitate the 

functions of learning and memory.19,22 

 

1.2.2 Experience-Dependent Plasticity 

Experience modifies synaptic properties leading to facilitation or suppression of specific 

neural pathways. This experience-dependent plasticity contributes to the development of 

a nervous system as it responds to environmental stimuli and situations that are unique to 

an individual.23 Dynamic processes of dendritic pruning and arborization24,25 as well as 

synaptic strengthening26 and weakening27 through experience-dependent learning allow 

for variations in behavior to meet basic needs (e.g. sources of food and shelter), and 

social rules (e.g. familiar hierarchy) to be tailored into an individual’s neural network. In 

the context of behavior modification, experience-dependent plasticity also explains why 

current behavior influences future behavior. Repetition of actions or thoughts reinforces 

specific neural pathways, lowering the threshold for those pathways to be used again in a 

similar situation.26 Alternatively, pathways for actions that are not used weaken by 

raising the threshold for their future use.27 The embedded principles of repetition, 

underscored by the “use it or lose it” mantra of forced use and learned non-use, are 

important concepts in understanding the origin, modification and restoration of motor 

patterns in people with stroke.28 

 

1.2.3 Spike-Timing-Dependent Plasticity 

Experience-dependent plasticity creates a relationship between behavior and neural 

pathway excitability. The cellular processes that support this relationship are described by 

spike-timing-dependent plasticity (STDP) and rely on the precise timing and order of 
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synaptic input to determine the direction of change in synaptic strength.26,27,29–31 

Facilitation of pathway excitability is characterized by the induction of long-term 

potentiation (LTP), defined as a long-lasting and reversible use-dependent increase in 

synaptic efficacy,32 whereas suppression is characterized by the induction of long-term 

depression (LTD), defined as a long-lasting and reversible use-dependent decrease in 

synaptic efficacy.33 Although mechanisms of LTD induction are less well understood, it 

is clear that the induction of either LTP or LTD depends on the speed and magnitude of 

the post-synaptic intracellular calcium influx.34,35 In the case of LTP, pre-synaptic 

glutamate release activates post-synaptic α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid receptors (AMPARs) which depolarize the post-synaptic 

membrane. This leads to a release of magnesium and a conformational change within N-

methyl-D-aspartate receptors (NMDARs) which opens cation channels allowing calcium 

to flow into the post-synaptic cell. The quick and transient rise in calcium leads to LTP 

through the insertion of additional post-synaptic AMPARs whereas a long and slow rise 

in calcium leads to LTD through the removal of post-synaptic AMPARs.  

 

The induction of either LTP or LTD resulting from STDP also depends on the post-

synaptic calcium influx. The timing and order of synaptic input influence post-synaptic 

calcium activity by creating a relationship between the initial AMPAR-mediated and 

secondary back-propagating action potential (bAP)-mediated calcium influx. 

Synchronous pre-synaptic spiking and post-synaptic depolarization create a single large 

influx in calcium due to a convergence of calcium from the AMPAR-mediated potential 

and bAP whereas asynchronous pre-synaptic spiking and post-synaptic depolarization 

create a weaker calcium influx due to overlap with a small afterdepolarization following 

the bAP as well as a calcium-mediated inactivation of NMDARs.36 Therefore, the 

purpose of precise order and timing is to establish the proper intracellular calcium 

concentration in the proper amount of time to direct AMPAR insertion or resection. The 

cellular recognition of synchronous or asynchronous activation is impressive and 
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supports the theory that certain pathways can be strengthened or weakened in a use-

dependent manner.  

 

The facilitation and suppression of neural pathways via LTP and LTD, respectively, are 

both important for the promotion of restorative motor function in people with motor 

impairment following stroke. Experience-dependent plasticity enables motor practice to 

result in the facilitation of preferred pathways and suppression of accessory pathways to 

create more efficient motor patterns. Indeed, motor rehabilitation in people with stroke 

benefits from therapies that incorporate principles of experience-dependent plasticity.28 

Thus, the induction of LTP or LTD through STDP, the candidate mechanism that 

underlies experience-dependent plasticity, may expand the success of motor rehabilitation 

efforts when applied in conjunction with motor learning tasks that are rooted in principles 

of neuroplasticity. This dissertation describes an investigation into the use of PAS as a 

non-invasive method of inducing STDP and aims to contribute to the translation of 

neuroscientific principles into feasible rehabilitation strategies. 

 

1.3.0 Metaplasticity & “Synaptic Wisdom” 

Metaplasticity refers to the “plasticity of plasticity” and describes the influence of prior 

synaptic activity on thresholds for inducing further changes in synaptic weight (i.e. LTP 

or LTD).37 The relationship between prior and future synaptic activity is described by the 

Bienenstock-Cooper-Munro theory whereby the time-average of prior post-synaptic 

activity alters thresholds for the induction of either LTP or LTD.38 The ease and 

magnitude of LTP or LTD induction depends on the previous direction of synaptic 

weighting such that if prior activity weights plasticity in one direction (e.g. LTD), the 

subsequent weighting of plasticity in the opposite direction (e.g. LTP) will be easier to 

achieve but the subsequent weighting of plasticity in the same direction (e.g. LTD) will 

be more difficult.38 
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1.3.1 Homeostatic Metaplasticity  

The relationship between prior and future synaptic activity is important for maintaining 

neural activity around a physiologically stable “set point.” Excessive weighting of 

synaptic activity in a single direction, without restraint, renders a network vulnerable to 

an out-of-control positive-feedback loop. Such a positive-feedback loop comes from the 

possibility that continued use of a specific pathway could theoretically lead to limitless 

induction of LTP.39 Without a complementary negative feedback system, damaging 

levels of LTP or LTD may be achieved within a system. This notion of impaired 

homeostatic metaplasticity is evidenced in individuals with writer’s cramp, a form of 

task-specific focal dystonia. Kang et. al (2011) assessed homeostatic interactions using 

motor practice and PAS in 10 individuals with writer’s cramp and 10 healthy individuals. 

Only those with writer’s cramp lacked a homeostatic suppression of practice-dependent 

plasticity. Authors attribute this finding to a deficiency in homeostatic regulation of 

plasticity that may underlie the exaggerated plasticity theorized to lead to task-specific 

focal dysontias.40 The Bienenstock-Cooper-Munro theory of sliding thresholds describes 

a homeostatic response that prevents an extreme and potentially damaging swing of 

synaptic weighting in a single direction.38 This homeostatic metaplasticity allows neural 

adaptations to occur within a safe range by balancing synaptic modification and 

stabilization. Homeostatic synaptic scaling provides a solution to the need for balance, 

termed the “stability problem,” by scaling current synaptic activity in response to 

previous activity thus maintaining activity around a certain set point.41,42 

 

The reaction of a synapse to its own previous activity resembles a form of wisdom 

termed “synaptic wisdom.43” It alters future activity based on evidence of recent history 

and modifies response properties to ensure that activity remains within physiological 

limits. This inherent wisdom can be used to establish a known history of synaptic activity 

and then direct and magnify subsequent changes to achieve a desired neuroplastic effect.  
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1.4.0 Altered Neuroplasticity Following a Stroke 

Mechanisms of metaplasticity create balance between suppression and facilitation of 

synaptic activity both within and between different regions of the brain. Following an 

acute stroke, a series of neurobiological events known as “the ischemic cascade” disrupts 

this balance and alters the excitability and viability of neurons affected by the infarct.18,44 

Consequently, during the post-infarct recovery period, physiological responsiveness and 

excitability levels change within the ipsilesional45,46 and contralesional46,47 hemispheres. 

The observed patterns of change are dynamic and complex making it difficult to pin a 

detailed timeline to the evolution of neuroplasticity following stroke.18 However, the 

existence of a complicated evolution exemplifies the capacity for networks to continue to 

undergo plastic changes from seconds to years after an injury and creates an inherent 

target for motor rehabilitation therapies. 

 

1.4.1 Diaschisis 

Diaschisis occurs when cortical regions remote from the lesion site exhibit decreased 

activation even though they are not directly impacted by the injury.16 These regions 

experience decreased blood flow and metabolic activity48 resulting from vasogenic 

edema,44 deafferentation,49 exaggerated interhemispheric inhibition17 and learned non-

use.50 The ensuing dysfunction and decreased excitability may contribute to decreased 

activity in response to motor and sensory stimuli.18 A reduced response to stimuli hinders 

spontaneous recovery and functional reorganization, or remapping, following a stroke. 

However, these regions contain viable, albeit suppressed, neurons that are a target for 

potentiation and subsequent restoration of function.  

 

In the early 1900’s, Von Monakow postulated that three forms of diaschisis exist: 

Diaschisis cortico-spinalis (affecting corticospinal tract pathways), Diaschisis associative 

(affecting areas within the same hemisphere) and Diaschisis commissuralis (affecting 

homologous areas in the opposite hemisphere).51 Each of these forms of diaschisis may 
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impact motor recovery by affecting spinal, ipsilesional and contralesional motor 

networks. 

 

1.4.2 Interhemispheric Inhibition 

Neurons within bilateral M1 areas communicate with each other through the corpus 

callosum.52,53 Interhemispheric inhibition (IHI) is a transcallosal inhibitory drive that 

occurs during motor movement and is exerted from the primarily activated M1 toward 

the opposite, less activated M1.54 In all individuals, IHI serves to prevent mirror 

movements.55 Following a stroke, IHI becomes imbalanced resulting in an exaggerated 

inhibitory drive from the contralesional to ipsilesional M1 and a suppressed inhibitory 

drive from the ipsilesional to contralesional M1.17 The excessive suppression of neural 

activity within ipsilesional M1 and diminished suppression of neural activity within 

contralesional M1 reduces the potential for use and functional reorganization of viable 

neurons in the ipsilesional M1. Thus, approaches that decrease excitability of the 

contralesional M1 may serve to decrease IHI exerted from the contralesional M1 to the 

ipsilesional M1 and effectively disinhibit the ipsilesional M1.  

 

1.4.3 Quadruple Disablement 

The direct damage and neuronal loss caused by a lesion is compounded by exaggerated 

ipsilesional inhibition resulting from imbalanced IHI. Together, these effects led to 

people with stroke being characterized as “doubly disabled.”56 However, IHI is a form of 

Von Monakow’s Diaschisis commissuralis whereby homologous regions in the opposite 

hemisphere are impacted via transcollosal fibers. With this understanding, it makes sense 

to include the other forms of diaschisis, Diaschisis cortico-spinalis and Diaschisis 

associative, which describe the effects of mechanisms of diaschisis (e.g. deafferentation) 

on the corticospinal tract and ipsilesional cortical regions. Particularly for lesions 

affecting M1, the initial insult causes (1) permanent neuronal loss and mechanisms of 

diaschisis lead to (2) IHI, (3) altered corticospinal tract excitability and recruitment and 

(4) hypoactive regions of nearby sensorimotor cortices leading to a complex and global 
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reduction of corticomotor pathway activation. “Quadruple disablement” comprises the 

direct loss of neurons from the ischemic insult and the three indirect causes of decreased 

activity affecting the penumbra via Von Monakow’s three forms of diaschisis, and thus, 

more completely describes the neurological impact of stroke. 

 

1.5.0 Neuromodulation 

Neuromodulation refers to a stimulus-driven change in neural activity through 

pharmacological agents, implanted electrodes or external, non-invasive stimuli.57 

Transcranial magnetic stimulation (TMS) is a form of non-invasive neuromodulation that 

directs a changing magnetic field toward a targeted cortical region and induces current 

flow within resident neurons.58 Single or paired pulses of TMS measure neuroplasticity 

through changes in intracortical, corticobulbar or corticospinal excitability59–61 whereas 

patterned repeated TMS pulses modulate neuroplasticity through the induction of LTP or 

LTD.62 

 

1.5.1 Neuromodulation using Paired Associative Stimulation 

Paired associative stimulation (PAS) is a method of non-invasive brain stimulation that 

pairs a cortical stimulus with a peripheral nerve stimulus (PNS). Specific to measurement 

or modulation of corticospinal excitability, a single TMS pulse targeting a region in M1 

is paired with an electrical stimulus targeting a nerve in the contralateral limb.63 The 

frequency and number of pairs of stimuli range from 0.05 - 0.25 Hz and 50 - 270 pairs of 

pulses, respectively, and a review of evidence suggests that frequencies between 0.05 – 

0.2 Hz are most effective.64 PAS is unique in that it uses peripheral and central input to 

induce lasting changes in synaptic plasticity (i.e. LTP or LTD). Critically dependent on 

the timing and order of the arrival of each input to the sensorimotor cortex (SMC), the 

direction of change follows rules of STDP65 whereby the arrival of TMS-induced 

followed by PNS-induced action potentials suppresses synaptic activity (PASLTD) and the 

arrival of PNS-induced followed by TMS-induced action potentials facilitates synaptic 

activity (PASLTP).63,66 PAS measures the capacity for STDP in human SMC and it 
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modulates corticomotor excitability for up to 120 minutes following PASLTD and up to 90 

minutes following PASLTP.64 The unidirectional, lasting yet reversible nature of this 

neuromodulation make it ideal as an investigational technique and the induction of 

STDP-like plasticity which underlies experience-dependent motor learning makes it an 

ideal technique for improving motor recovery in people with stroke. 

 

1.5.2 Priming with Paired Associative Stimulation 

In neuromodulation, priming is both a concept and a method. It describes the concept of 

priming neural pathways with exercise or external stimulation to augment subsequent 

motor rehabilitation and promote long-term changes in the efficiency of neural pathway 

communication. Priming also describes the method of applying two bouts of stimulation 

(i.e. the first bout is termed ‘priming’ PAS followed by a second bout termed ‘principal’ 

PAS) within minutes of each other to capitalize on mechanisms of metaplasticity.43,67 

Specifically, priming utilizes homeostatic metaplasticity and the sliding threshold theory 

described by Bienenstock, Cooper and Munro38 to either augment or suppress the 

aftereffects of the second, principal, bout of PAS. Priming PASLTD followed by principal 

PASLTP augments the facilitatory aftereffects of PASLTP whereas priming PASLTP 

followed by principal PASLTP suppresses facilitation which is theorized to result from a 

physiological ceiling-like effect.68 Thus, combinations that weight synaptic plasticity in 

opposite directions appear to augment aftereffects of the principal bout and those that 

weight synaptic plasticity in the same direction appear to suppress aftereffects of the 

principal bout. Although this relationship has been described for principal PASLTP, 

evidence is sparse and the influence of priming on principal PASLTD is yet unpublished. 

The potential for priming to create a known history of synaptic activity and then utilize 

inherent mechanisms of metaplasticity to direct and magnify aftereffects of a subsequent, 

principal, bout of stimulation establishes a new method of neuromodulation that may 

improve the predictability of response. The combination of priming and PAS creates a 

potent approach based in principles of metaplasticity, experience-dependent plasticity and 
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STDP that may reduce variability and augment excitability changes leading toward 

greater improvements in post-stroke motor recovery. 

 

1.6.0 Neuromodulation Using TMS for Post-Stroke Motor Recovery 

Non-invasive neuromodulation augments stroke rehabilitation strategies by targeting the 

hypoactive, yet viable neurons within ipsilesional M1. Two approaches are consistently 

used to increase activity of hypoactive neurons in the penumbra: direct LTP-induction 

within the ipsilesional M1 or indirect disinhibition of ipsilesional M1 through LTD-

induction within the contralesional M1. Either approach facilitates excitability within 

ipsilesional M1 and contributes to improved motor recovery.56 Recent evidence suggests 

that people with different levels of impairment may benefit from different approaches. 

Specifically, LTD-induction within contralesionsal M1 improves function in individuals 

with mild impairment whereas a new approach of LTP-induction within the 

contralesional dorsal pre-motor cortex improves function in individuals with severe 

impairment.69  

 

Neuromodulation that outlasts the stimulation period is important for post-stroke motor 

rehabilitation. Paretic limb exercises conducted following stimulation and during the 

period of altered excitability strengthen corticomotor pathways and improve motor 

recovery.5,6 Thus, development of an appropriate and effective care plan combining 

neuromodulation and motor practice relies on knowledge of the time course of 

neuroplastic change following intervention.  

 

1.6.1 Paired Associative Stimulation for Post-Stroke Motor Recovery 

Paired associated stimulation improves motor function in people with stroke.9,10,14,70,71 

The induction of STDP-like plasticity mimics natural mechanisms of experience-

dependent plasticity and the > 60 minutes of altered excitability provides time for post-

stroke motor therapies. In people with dysphagic stroke, PAS outperformed rTMS in 

measures of corticobulbar excitability and swallowing function when compared to their 
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sham counterparts.14 Previous studies show efficacy in neuromodulation of corticospinal 

pathways targeting the paretic upper limb when applying PASLTP to the ipsilesional M171 

as well as corticospinal pathways targeting the paretic and non-paretic lower limbs when 

applying PASLTD to the contralesional M1.70 Furthermore, motor recovery improvements 

in gait10 and swallowing14 demonstrate that PAS interventions successfully modulate 

pathway excitability and that this modulation contributes to improved motor function.  

 

1.6.2 Variability in Response  

Although studies of PAS in people with stroke demonstrate efficacy in neuromodulation 

and motor improvement, they also demonstrate high variability within- and between- 

individual responses.9,10,70 Not only does the time course of change in corticospinal 

excitability differ between individuals70 but the direction of change in excitability differs 

to the extent that only ~50% of individuals respond in the predicted manner following a 

given PAS intervention.10 Considering that the point of using PAS in people with stroke 

is to alter corticomotor excitability and promote neural communication during subsequent 

motor training, the need to weight excitability in a desired direction is clear. The high 

response variability weakens efficacy interpretations and makes it difficult to determine 

which protocols to pursue. This variability is not unique to populations of people with 

stroke as it is also seen in healthy individuals where only 35-52% respond in a predicted 

manner.8,72 Studies into variables that may explain an individual’s response to PAS have 

identified the Val66Met polymorphism of brain-derived neurotrophic factor (BDNF), 

resting motor threshold, 1mV threshold, short intracortical inhibition (SICI) and age as 

potential factors.8,72–74 However, the influences of these factors are currently ill-defined 

and do not create a detailed or whole characterization of those who will or will not 

benefit from intervention. 

 

1.7.0 Healthy Participants 

With the intended purpose to improve motor recovery following a stroke, the ability of 

PAS to predictably alter corticospinal excitability must first be characterized and 
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optimized. Although the recent push in neuromodulation research has been to define an 

effect of PAS in functional recovery, the high variability in response to neuromodulation 

plagues these studies with deceptively low effect sizes.8,11 An inability to predict an 

individual’s response also stifles the progression of PAS as a conventional clinical tool. 

Thus, the development of a more effective and predictive model of intervention is 

warranted. Primed PAS (PPAS) may augment changes in excitability thus capturing more 

individuals as responders to intervention. The following dissertation is the first study 

known to address all combinations of priming and principal PASLTP and PASLTD. Due to 

the increased number of factors that may contribute to variability in people with stroke 

(e.g. lesion size and location, time since stroke, severity of deficits) as well as the novelty 

of this investigation, it was conducted in people with no neurological disease or disorder 

and thus focuses on the influence of PPAS in healthy participants.  

 

1.8.0 Statement of Purpose 

The purpose of this dissertation was to assess the influence of PPASLTD and PPASLTP on 

corticospinal excitability and to investigate potential characteristics (e.g. the BDNF 

Val66Met polymorphism) that may indicate whether an individual will or will not benefit 

from brain stimulation.  

 

1.9.0 Specific Aims 

Specific Aim 1: Compare the effect of PASLTP priming followed by principal PASLTD 

(PASLTP→PASLTD) to sham-primed PASLTD (PASSHAM→PASLTD) on corticospinal 

excitability in healthy individuals. 

Experimental hypothesis: 

PASLTP→PASLTD will utilize homeostatic mechanisms of synaptic plasticity, 

resulting in a greater decrease in corticospinal excitability compared to 

PASSHAM→PASLTD as evidenced by a reduction in peak-to-peak amplitude of 

motor evoked potentials.  
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Specific Aim 2: Compare the effect of PASLTD priming followed by principal PASLTP 

(PASLTD→PASLTP) to sham-primed PASLTP (PASSHAM→PASLTP) on corticospinal 

excitability in healthy individuals. 

Experimental hypothesis: 

PASLTD→PASLTP will utilize homeostatic mechanisms of synaptic plasticity, 

resulting in a greater increase in corticospinal excitability compared to 

PASSHAM→PASLTP as evidenced by an increase in peak-to-peak amplitude of 

motor evoked potentials. 

 

Specific Aim 3: Compare the ratio of responders to nonresponders between 

PASLTP→PASLTD and PASSHAM→PASLTD and between PASLTD→PASLTP and 

PASSHAM→PASLTP.  

Experimental hypothesis: 

Priming will weight synaptic plasticity in a known direction, making it easier to 

weight synaptic plasticity in the opposite direction. This will result in an increased 

ratio of responders to nonresponders following PPASLTD and PPASLTP 

interventions.  

 

Specific Aim 4: Compare the presence of the BDNF Val66Met polymorphism and the 

latency of MEP onset between responders and nonresponders for both PASSHAM→PASLTD 

and PASSHAM→PASLTP.  

Experimental hypothesis: 

Presence of the Val66Met polymorphism will alter plasticity and thus be higher in 

individuals categorized as nonresponders. The MEP onset latency from MEPs 

collected with the induction of anterior-poster current flow will differ between 

individuals categorized as responders and those categorized as nonresponders. 
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2.0.0 Review of Literature 

 

2.1.0 Neuroplasticity  

2.1.1 A Cellular Basis for Learning, Memory & Adaptation 

Neuroplasticity refers to the malleability of individual neurons, synapses and entire 

networks. This property of the nervous system underlies fundamental functions including 

memory, learning and adaptation. Understanding the mechanisms of neuroplasticity 

begins with development of the neuron doctrine. Set forward by Santiago Ramon y Cajal 

(1894), the neuron doctrine is the first to state that the neuron is the basic anatomical and 

physiological unit of the nervous system. Confirmed in the 1950s with the advent of 

electron microscopy and subsequent images of the synaptic cleft,76 this doctrine laid the 

groundwork for investigating how a network of connected yet separate neurons could 

communicate to sustain functions of the nervous system. Although theories of 

neuroplasticity may be traced as far back as the psychologist William James (1890), a 

well-documented connection between cellular mechanisms, synaptic plasticity and 

behavior did not occur until the 1960s and 1970s when Eric Kandel and colleagues 

studied learning and memory in the simplified model of Aplysia.15 By observing 

differences in behavior (the gill-withdrawal reflex), neural activity and synaptic strength 

following three types of learning (sensitization, habituation and classical conditioning), 

Kandel and colleagues demonstrated that pre-existing synapses within sensorimotor 

pathways are plastic and modifiable.78–80 Further studies identified serotonin, PKA, 

cAMP, MAPK and CREB as key components influencing the observed presynaptic 

changes.15 The findings that molecular substrates are influenced by previous activity, 

contribute to changes in synaptic weighting and subsequently change behavior 

established the foundation for neural correlates of learning and memory.  

 

In a seminal paper by Bliss and Lomo (1973), a form of synaptic plasticity, now termed 

long-term potentiation (LTP), was discovered by stimulating the perforant pathway in the 

hippocampus of anesthetized rabbits. As an ideal model of long-term information storage, 



16 
 

LTP has been credited with functions underlying development and different forms of 

experience-dependent plasticity including learning and memory.81 Because of its 

demonstrated importance, LTP has been extensively studied. Remarkable investigations 

into the mechanisms of LTP conducted by Morris (1986) and Malenka (1988) drew 

connections between post-synaptic NMDAR activity, post-synaptic calcium activity and 

the evolution of LTP within a synapse. Further studies by Morris (1986) demonstrate that 

blocking NMDAR activity not only altered LTP induction but also blocked memory 

storage. Thus, NMDAR activity and LTP could be directly linked to a functional 

consequence. It is now widely accepted that LTP induction relies on a quick post-

synaptic calcium rise following strong or frequent stimuli. Briefly, the process of LTP 

induction begins with a presynaptic glutamate release and subsequent post-synaptic 

AMPAR activation enabling depolarization of the post-synaptic membrane. This 

depolarization results in the release of a magnesium blockade from NMDAR channel 

pores.84 In the presence of glutamate, the release of this blockade and a glutamate-

induced conformational change open the NMDAR cation channel allowing calcium to 

flow into the post-synaptic cell. Following high frequency or strong stimuli, the 

subsequent calcium influx will be fast, triggering a cascade involving CaMKII, PKC and 

protein synthesis. This results in the insertion of AMPARs within the post-synaptic 

membrane, increasing sensitivity to glutamate in future synaptic transmissions.85 

Although it is known that LTP induction, expression, and maintenance occur in three 

mechanistically distinct phases, the conversion to and maintenance of late-phase LTP 

remains under investigation.86  

 

Long-term depression (LTD) complements LTP by weakening synaptic efficiency and 

maintaining bi-directional balance at a synapse. Discovered by Levy and Steward (1979), 

LTD, like LTP, was first observed in the hippocampus. Stimulation of entorhinal cortical 

pathways and recordings from the dentate gyrus of anesthetized rats demonstrated that 

when ipsilateral pathways were stimulated, crossed pathways exhibited a decrease in 

evoked response amplitudes. Authors concluded that potentiation could be reversed and 
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that a potentiated synapse could be depotentiated dependent on stimulation patterns.87 

Although the mechanism is not as well understood as that for LTP, LTD is thought to 

depend on a slow rise in post-synaptic intracellular calcium and activation of calcium-

dependent phosphatases, resulting from low-frequency stimulation.35 Subsequent 

AMPAR removal from the post-synaptic membrane provides the hallmark characteristic 

of LTD, a decrease in sensitivity to glutamate.85 

 

As discussed above, glutamate is a neurotransmitter that governs activity (e.g. LTP and 

LTD) at excitatory synapses. Another neurotransmitter, γ-Aminobutyric acid (GABA), 

governs activity at inhibitory synapses. Although the discussion of learning and memory 

centers around the induction of LTP and LTD in excitatory networks, the role of GABA-

mediated inhibitory circuitry in these functions is equally important. Until the mid-1960s, 

the role of GABA as a neurotransmitter was highly debated. Krnjevic and Schwartz 

(1967) showed that GABA may be the primary inhibitory neurotransmitter in the 

mammalian central nervous system by applying extracellular GABA to cortical neurons 

in anesthetized cats. By comparing neuron properties (e.g. membrane potential and 

resistance) following the application of GABA to those same properties during an 

inhibitory post-synaptic potential (IPSP), authors found that the actions of GABA, 

namely reversible hyperpolarization, mimic those that occur during an IPSP and thus 

concluded that GABA acts like a physiological inhibitory neurotransmitter.88 Subsequent 

research discovered and characterized two distinct GABA receptor types, GABAA and 

GABAB, that respectively mediate fast and slow hyperpolarization to accomplish different 

goals through inhibitory synaptic activity.89  The balance between excitation and 

inhibition of cortical circuitry is critical. When this balance is disrupted, abnormal 

cortical activity may affect muscle or cognitive abilities. For this reason, several 

pharmacological agents have been developed to interfere with GABA signaling for 

management of conditions including spasticity and epilepsy.90 

  

 



18 
 

2.1.2 Applications to Post-Stroke Motor Recovery: Experience-Dependent Plasticity 

Experience and activity alter network activity by “rewiring” the brain so that pathways 

that are frequently used become more easily used and those that are less frequently used 

become less easily used. This ensures efficient communication along neural networks to 

make tasks like grabbing a cup of coffee or recalling a piece of information a quick and 

less wasteful process. Mechanisms of learning and memory, i.e. LTP and LTD, are thus 

prime candidates for foundational mechanisms of this experience-dependent plasticity. 

Experience-dependent plasticity is operationally defined separately from experience-

expectant plasticity whereby experience-expectant plasticity defines the neural response 

to and storage of information derived from ubiquitous experiences (e.g. visual processing 

of contrast) and experience-dependent plasticity defines the neural response to and 

storage of unique experiences (e.g. sources of food, shelter or social order).23 Experience 

itself may be thought of as a collection of neural input that allows an individual to create 

an interpretation of its surroundings. Conceptually, experience-dependent plasticity 

encompasses the ability of the nervous system to remodel by strengthening and 

weakening specific neural connections in response to patterns of neural input.23,28 

  

Early studies of experience-dependent plasticity focused on the use-dependency of 

cortical neurons in the visual cortex of cats. A series of classic studies by Hubel and 

Wiesel went from describing visual cortical neuron receptive fields91,92 to demonstrating 

their capacity for use-dependent change.93 When kittens underwent monocular 

deprivation from birth, they exhibited a pronounced lack of visual cortical neuron activity 

when the deprived eye was stimulated.93 This finding was one of the first to support the 

idea that neural connections may be intact at birth and rendered defective by a lack of 

use. Another classic study being conducted around the same time by Held and Hein 

(1963) supported the importance of movement-produced sensory feedback in the 

development of visually-guided behavior in kittens. By comparing two kittens, one with 

its legs free to walk and the other in a basket so that it could not walk, authors created a 

scenario in which the two kittens, joined by a freely rotating bar, would experience the 
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same visual stimulation but one would be actively moving and the other would be 

passively moving. As demonstrated by various tasks (e.g. paw placement, visual cliff, 

blink response), the actively moving kittens outperformed the passively moving kittens in 

visually-guided behaviors and the passively moving kittens appeared functionally blind. 

The use-dependency of cortical circuitry highlights the need for specific and appropriate 

collections of neural input to effectively drive proper and efficient development of 

functional behaviors.  

 

Physiological mechanisms of neural remodeling rely on changes in the number and 

strength of synaptic connections through dendritic pruning and arborization24,25 as well as 

changes in protein expression95 and neurotransmitter release or uptake. These changes 

provide structural evidence of functional changes observed in motor learning and 

memory. Importantly, the act of learning is critical to the structural changes observed in 

experience-dependent learning. Kleim et al. (1996) compared structural and protein 

measures in rats that were active in a complex environment (i.e. learned to run a complex 

obstacle course) to those that were active in a simple environment and those that were 

inactive. Layer II/III of the motor cortex of rats that were exposed to the challenge of a 

complex environment displayed increased synaptogenesis and Fos protein expression.95 

Furthermore, the synaptogenesis observed in rats that were active in a complex 

environment persisted without the need for continuous training.96 Thus, the component of 

cognitive challenge that occurs during learning of complex motor tasks significantly 

impacts the structural changes that underlie experience-dependent plasticity and the 

complex tasks that are learned over the course of a training period may persist once 

training is completed.  

 

The importance of experience-dependent remodeling following neural injury is clearly 

established.97–99 Studies of cortical reorganization following stroke indicate that white 

matter tract integrity, functional connectivity, interhemispheric inhibition and 

sensorimotor representations shift following stroke.17,97,100,101 In a series of studies 
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performed by Nudo et al. (1996a; 1996b; 1996c), cortical mapping with intracortical 

microstimulation demonstrated that functional remapping can occur in areas surrounding 

a lesion and that this remapping is associated with training as well as behavioral 

improvement. The foundational concepts derived from these studies are that (1) networks 

remain plastic following injury (2) the representation of a given cortical region can 

change and (3) mechanisms of experience-dependent plasticity can be used to improve 

functional recovery.  

 

Enforcing the view that experience-dependent plasticity is a critical concept in 

neurorehabilitation for humans, Kleim and Jones (2008) highlight the theory that premier 

rehabilitation not only utilizes principles of experience-dependent plasticity but can be 

equated with the task of relearning. “Use-it or Lose-it” and “Use-it and Improve-it” are 

principles of experience-dependent plasticity that drive the widely-recognized strategy of 

forced-use through constraint-induced movement therapy (CIMT). This technique forces 

use of the more affected limb by effectively casting the less-affected limb for a variable 

length of time. As demonstrated by improved motor performance and increased neural 

excitability in the ipsilesional hemisphere of people with chronic stroke104 as well as 

increased activation of the ipsilesional M1105 and a better balance of bilateral 

sensorimotor network activity,106 several studies support the efficacy of CIMT for post-

stroke motor recovery. A recent review107 questions this efficacy by highlighting 

evidence that other principles of experience-dependent plasticity such as the timing108 

and dosage109 of a CIMT intervention may be as important as the foundational principles 

driving forced-use. Rehabilitation of motor function in people with stroke appears to 

mimic motor learning and benefits from incorporating multiple principles of experience-

dependent learning and plasticity. Synaptogenesis, cortical remapping and improved 

paretic limb function are influenced by parameters that are easily adjusted and controlled 

(e.g. intensity, repetition and complexity of a behavior) by the individual assigning and 

the individual providing therapy. The next remodel of neurorehabilitation should pay 

special attention to the promotion and use of experience-dependent plasticity.  
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2.2.0 Hebb’s Postulate 

Donald Hebb (1949) postulated the theory that if a presynaptic cell, A, consistently and 

reliably fires and elicits a response (spiking) from a postsynaptic cell, B, the synaptic 

efficiency from A to B will be strengthened. Conversely, if presynaptic cell A 

consistently and reliably fires without eliciting a response from postsynaptic cell B, the 

strength of the synapse from A to B will be weakened.27 This principle, now known as 

Hebb’s Postulate, has defined the concepts of timing and order-dependent changes in 

synaptic plasticity, thus conferring a causal nature to synaptic weighting. Using whole 

cell voltage recordings from pyramidal neurons, Markram et al. (1997) confirmed Hebb’s 

postulate, showing that the magnitude and sign of LTP and LTD changed depending 

upon stimulation (spike) timing and order.  

 

2.2.1 Spike-Timing-Dependent Plasticity 

Spike-timing-dependent plasticity (STDP)  refers to the requirement of precise timing and 

order between pre and postsynaptic potentials resulting in a unidirectional modification 

of synaptic strength (either LTP or LTD) within a given time window.29–31 Foundational 

studies by Markam et al. (1997) and Bi and Poo (1998) characterized the timing and 

order-dependency of STDP, contributing knowledge to the actual triggers for synaptic 

modifications that occur between neurons. Markram et al. (1997) demonstrated that 

potentiation occurred when presynaptic potentials led postsynaptic potentials by ~20ms 

and depression occurred when postsynaptic potentials led presynaptic potentials by 20-

100ms. Using electrophysiological recordings in rat hippocampal pyramidal neurons, Bi 

and Poo (1998) demonstrated that the precise window for potentiation or depression was 

5ms and noted that this window agreed with that observed in models of experience-

dependent plasticity. Furthermore, these studies confirmed the roles of NMDARs and 

voltage-gated calcium channels in the potentiation and depression of synaptic weighting, 

indicating the recruitment of mechanisms of LTP and LTD. Functionally, these studies 

also support principles of experience-dependent plasticity by implying causality and 

sequence-effect in the relationship between neuronal use and the resulting strengthening 
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or weakening of neural pathways.28 Thus, the use of Hebbian principles to induce LTP or 

LTD may strengthen strategies that capitalize on experience-dependent plasticity to 

promote motor learning and functional recovery. 

 

Although initial studies have been in agreement with Hebb’s postulate, defining Hebbian 

STDP, other forms of STDP exist and can act in an Anti-Hebbian manner, where pre-

leading postsynaptic firing results in LTD, or in manners that unusually favor LTD 

(either Hebbian or Anti-Hebbian).36 Understanding that the result of STDP is either LTP 

or LTD, it is logical that the mechanisms underlying the synaptic weighting following 

Hebbian STDP are the same as those previously discussed for NMDAR-depended LTP 

and LTD.36 However, the importance of timing and order can be further defined 

mechanistically by understanding the influence of the back-propagating action potential 

(bAP) in the postsynaptic neuron. Because the magnitude of the intracellular calcium 

signal directs the induction of either LTP or LTD,35 the temporal relationship between 

calcium influx from the initial, AMPAR-mediated postsynaptic potential and the 

secondary bAP is critical. As described by Feldman et al. (2013), the pre-leading post 

sequence of events results in a large influx of calcium due to a convergence of calcium 

influx from the AMPAR-mediated potential and bAP whereas the post-leading pre 

sequence results in a weaker calcium influx due to overlap with a small 

afterdepolarization following the bAP as well as a calcium-mediated inactivation of 

NMDARs. Therefore, the purpose of precise order and timing is to establish the proper 

intracellular calcium concentration in the proper amount of time to direct AMPAR 

insertion or resection. 

 

Strategies that purposefully alter synaptic plasticity to promote post-stroke functional 

recovery may prefer induction using STDP over induction using high/low frequency 

driven changes in plasticity for several reasons. First, STDP more directly reflects 

physiologic mechanisms underlying changes in synaptic strength and may better mimic 

experience-dependent plasticity.29,110 Second, the relationship between pre and 
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postsynaptic potentials may encode causality of external events, thus enforcing specific 

input/output sequences.111 Finally, the short critical time window may enforce neural 

synchronization by forcing millisecond precision of input selection.110   

 

2.3.0 Metaplasticity 

2.3.1 Homeostatic Metaplasticity 

Although Hebbian synaptic plasticity provides a well-accepted model of how information 

is stored in neural circuits, this model does not include checks or balances to prevent an 

extreme weighting of synaptic plasticity in a single direction. On its own, Hebb’s 

Postulate states that repeated synchronous pre-synaptic spiking and post-synaptic 

depolarization will increase synaptic strength. Thus, there is no limit to the amount of 

strengthening that could occur which renders this model unstable. The capacity of neural 

circuitry to undergo experience-dependent modifications of synaptic activity requires a 

complementary balance between modification and stability.112 One of the first studies to 

investigate changes in plasticity across an entire neuron and not just a single synapse 

demonstrated that all synapses associated with a neuron proportionally scale properties in 

response to neural activity.42 This study of rat visual cortical pyramidal neurons found 

that average firing rates changed immediately following intervention and then showed a 

compensatory return toward baseline, reminiscent of a return to homeostasis.42 The 

ability for neurons to alter intrinsic properties based on previous activity illustrates the 

capacity for neurons to use their own activity as a feedback signal. This “synaptic 

scaling” contributes to homeostatic control of neural properties to prevent limitless 

synaptic weighting. Although multiple feedback pathways and biological mechanisms 

have been suggested, the definitive roles of these pathways have not yet been elucidated. 

It is currently thought that intracellular calcium concentrations may direct receptor 

trafficking and that a calcium “sensor” may mediate synaptic scaling around a specific set 

point to maintain homeostasis (see 41,112 for reviews). 

 

 



24 
 

2.3.2 Bienenstock-Cooper-Munro Theory 

The concept of homeostasis is not unique to synaptic plasticity, but homeostatic 

metaplasticity is supported by a unique theoretical mathematical framework that may 

explain changes in the ability to induce LTP or LTD. The term metaplasticity refers to the 

“changeability of change” and captures the property of changing neuroplasticity. 

Specifically, homeostatic metaplasticity governs the homeostatic balance between LTP 

and LTD induction at a given synapse. Introduced by Abraham and Bear (1996), the 

functional role of metaplasticity is to alter thresholds for LTP or LTD induction. A 

theoretical mathematical framework known as the Bienenstock-Cooper-Munro Theory 

provides a theory of sliding thresholds for the induction of LTP or LTD that is based 

upon the time-average of prior post-synaptic activity. This theory states that as a synapse 

undergoes LTP, the threshold for inducing LTD decreases (i.e. it becomes easier to 

induce LTD) and the threshold for inducing further LTP increases (i.e. it becomes more 

difficult to continue induction of LTP). Conversely, as a synapse undergoes LTD, the 

threshold for inducing LTP decreases (i.e. it becomes easier to induce LTP) and the 

threshold for inducing further LTD increases (i.e. it becomes more difficult to continue 

induction of LTD).38 The seminal concept of a sliding threshold for induction is key to 

understanding the theoretical use of homeostatic metaplasticity to direct changes in 

neuroplasticity using tools of non-invasive neuromodulation. 

 

2.3.3 Gating & Anti-Gating 

Gating is a method of controlling changes in synaptic plasticity by decreasing 

intracortical inhibitory network activity or enhancing post-synaptic depolarization 

concurrently with motor training.113 This concept differs from homeostatic metaplasticity 

because it does not rely on prior induction of LTP or LTD to alter the induction threshold 

for subsequent LTP or LTD. Instead, gating relies on the concurrent activity within 

intracortical inhibitory networks. An example of gating in people with stroke was 

accomplished through regional anesthesia which effectively led to deafferentation-

deefferentation of the ipsilesional M1 while the participant was completing a thumb-
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index finger pinch task.114 Authors found that the regional anesthesia plus motor practice 

enhanced motor function of the paretic limb more than motor practice alone suggesting 

that the disinhibition resulting from regional anesthesia effectively gated, or augmented, 

the concurrent induction of LTP.114 This method of gating allows LTP induction to occur 

at a lower threshold because of a lack of GABAergic-mediated network activity and thus, 

increasing the probability of NMDAR ion channel activity. Furthermore, the influence of 

intracortical inhibitory network activity provides a potential explanation for why a single 

protocol may result in an extensive variety of plasticity responses.  

 

Gating has been discussed as its own concept,113 as a form of homeostatic 

metaplasticity,115 and as a complement to non-homeostatic plasticity.116 Although the 

classification of gating is inconsistent, it is important to note that homeostatic plasticity, 

gating and non-homeostatic plasticity are three separate concepts. Recently, a discussion 

of non-homeostatic plasticity has led to the development of another concept called “Anti-

Gating.” A study of plasticity in human motor cortex assessed the effect of two 

consecutive interventions, a very-low frequency (0.1 Hz) rTMS intervention followed by 

a PAS intervention. The very-low frequency rTMS did not alter corticospinal excitability 

on its own but it did increase intracortical inhibition. Futhermore, the very-low frequency 

rTMS occluded both LTP and LTD after-effects of PASLTP and PASLTD, respectively.115 

An editorial opinion suggests that this finding resembles a type of “anti-gating” caused 

by the activation of intracortical inhibitory networks which may interfere with the 

subsequent induction of associative plasticity using PAS.117 A potential mechanism of 

action, as demonstrated in animal models, suggests that increased GABA-ergic inhibition 

prevents the influx of calcium by hyperpolarizing the post-synaptic membrane, thus 

leaving the NMDAR magnesium blockade in place.118 Thus, further efforts to induce 

LTP or LTD may be occluded secondary to a lack of calcium influx. 
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2.4.0 Neuromodulation using Non-Invasive Brain Stimulation 

The concepts of neuroplasticity described above can be assessed in human motor cortex 

using non-invasive brain stimulation (NIBS). NIBS is composed of a variety of 

techniques that can both measure and modulate neuroplasticity. Unlike the surgically 

invasive nature of earlier brain stimulation techniques used to map the sensory and motor 

cortices,119,120 NIBS provides methods of studying neuroplasticity in the awake human 

brain through a fully intact skull. Discoveries in the 1980s established the two primary 

categories of NIBS, transcranial electric stimulation (TES)121 and transcranial magnetic 

stimulation (TMS).58 Although methods of TES, namely transcranial direct current 

stimulation (tDCS), can modulate corticospinal excitability and improve functional 

recovery,122 the focus of this dissertation is to investigate a particular approach using 

TMS. The primary reason for this is the desire to investigate mechanisms of synaptic 

plasticity induced by TMS, and not mechanisms of non-synaptic plasticity induced by 

tDCS. Thus, the following section will focus on the development and roles of TMS as 

they relate to measurement and modulation of synaptic plasticity. 

 

2.4.1 Transcranial Magnetic Stimulation 

Anthony Barker (1984) developed a transcranial magnetic method of brain stimulation 

known as transcranial magnetic stimulation (TMS). Using principles of Ampere’s and 

Faraday’s Laws, TMS acts by passing an electric current through a hand-held coil. This 

changing current induces a perpendicular, changing magnetic field (Ampere’s Law) that 

can pass unimpeded through the skull and in turn, induces current flow (Faraday’s Law) 

in the underlying cortex.123 Each TMS pulse can be thought of as a brief yet powerful 

electric current lasting 100-200 µs, inducing a 1.5-2.0 T changing magnetic field.62 When 

applied at a stimulus intensity that is suprathreshold, the result from the induced current 

flow within primary motor cortex is axonal depolarization leading to a direct 

corticospinal signal cascade (D-wave) followed by interneuron-mediated cascades (I-

waves).124 Early studies of motor cortical stimulation in cats and monkeys recorded the 

first traces and coined the terms for the resultant D- and I-waves. Patton and Amassian 
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(1953) found that stimulation of bulbar pyramidal cells in the ipsilateral motor cortex 

produced an initial stable trace, termed the D-wave, which was reliably present. The D-

wave was followed by a series of subsequent low-frequency traces, termed I-waves, that 

depended on the integrity of nearby cortex.125 It is now recognized that the D-wave 

occurs quickly and is theorized to represent a synchronous pyramidal volley resulting 

from direct pyramidal axon activation whereas the less understood I-waves may represent 

asynchronous delayed activity resulting from di- or monosynaptic activation of pyramidal 

neurons.125,126 

 

2.4.2 TMS Coil Orientation 

A relationship between coil orientation and motor pyramidal activation can be understood 

by re-visiting Ampere’s and Faraday’s laws with the addition of Lenz’s law. The neurons 

that lie within a given cortical area may be represented by electrical wires that are 

oriented in a specific direction. When a changing magnetic field creates an electric field 

that surrounds these wires, the induced electrical current will flow in a direction that 

creates a magnetic field that will oppose the direction of the first-order induced magnetic 

field (Lenz’s law). Thus, to produce an electrical current that ideally follows the anatomy 

of a series of connected neurons, it would make sense to orient the first-order induced 

magnetic field in a direction that opposes the magnetic field that will be created by the 

desired direction of current flow. Investigations confirm that the optimal coil orientation 

aligns with current flow through the underlying anatomy. Mills et al. (1992) studied the 

influence of coil orientation using a figure-of-eight coil by stimulating the hand area of 

the motor cortex and recording from the first dorsal interosseous muscle. Tests at each 

45° increment through a circle of 360° demonstrated that that the largest MEPs elicited 

from the left M1 occurred at an angle of about 50° from the parasagittal line.127 Another 

study conducted by Brasil-Neto et al. (1992) found 236.3° (corresponding to about 56.6° 

from the parasagittal line) to elicit the largest MEPs from the right M1. Recent modeling 

studies confirm that the coil orientation is an important factor that affects the depth and 

strength of penetration of the electrical field induced by a single TMS pulse.129 An 
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extensive review of potential TMS mechanisms argues that the optimal coil orientation 

induces current flow in a posterior to anterior direction across the central sulcus and 

excites horizontal fibers preferentially at a site where the fibers bend down into the 

central sulcus.130 Thus most TMS studies that target intrinsic hand muscles refer to 

holding the coil at a 45⁰ angle to the parasagittal line with the handle pointing 

posterolaterally to induce a current flow in the posterior to anterior direction across the 

central sulcus.  

 

2.4.3 TMS Measures of Corticospinal & Intracortical Excitability 

The D- and I-waves elicited by TMS provide evidence that cortical pyramidal neurons 

can be directly or indirectly activated by an external stimulus. With contributions from 

extrapyramidal pathways as well as mono and poly-synaptic activation of alpha 

motoneurons in the spinal cord, the D-wave contributes to the creation of a motor-evoked 

potential (MEP). The MEP is a biphasic trace captured using electromyography (EMG) 

recordings from a muscle of interest. Resulting from suprathreshold single-pulse TMS, 

the MEP is an easily accessible measure of corticomotor pathway excitability. Alterations 

in the average peak-to-peak amplitude of a group of MEPs provide measures of 

facilitation (i.e. an increase in amplitude) or suppression (i.e. a decrease in amplitude).  

  

The primary method of measuring neuroplasticity in the human motor cortex is through 

changes in neural pathway excitability as measured by paired- or single-pulse TMS.110,131 

Several questions can be answered by using either technique to assess the change in peak-

to-peak MEP amplitude. Research questions of mechanism (e.g. what networks are 

modulated by PAS?) benefit from paired-pulse measures whereas questions of gross 

influence and change in corticospinal excitability benefit from single-pulse measures. 

Common paired-pulse techniques provide measures of intracortical excitability by testing 

glutamatergic or GABAergic network activity. Tests of intracortical facilitation (ICF) use 

a subthreshold TMS pulse followed 10-15 ms later by a suprathreshold TMS pulse to 

measure glutamatergic network activity.59,60 Tests of short intracortical inhibition (SICI) 
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use the same unilateral paired-pulse set-up but the interval is typically 1-6 ms which 

primarily tests GABAA network activity.59 Another test known as the contralateral or 

cortical silent period (CSP) measures GABAB network activity by assessing the length of 

interruption of corticospinal motor activity when a suprathreshold TMS pulse is given 

during voluntary muscle contraction.132 Finally, interhemispheric inhibition (IHI) is 

tested using a bilateral paired-pulse technique where a coil is held over the primary motor 

area (M1) of each hemisphere. The most common test for IHI uses an interstimulus 

interval of 10 ms and assesses the transcallosal GABAB-mediated inhibitory influence 

exerted by the first M1 onto the second M1.54  Several variations of the aforementioned 

tests exist (see133 for a review). However, this dissertation focuses on a question of gross 

change in corticospinal excitability and thus utilizes single-pulse TMS measures only. 

 

2.4.4 Reliability of TMS Measures 

Paired-pulse TMS measures provide information regarding the potential mechanisms of 

action that underlie neurotransmitter-mediated changes in neuroplasticity. However, the 

reliabilities of ICF, SICI and IHI are inconsistent. A study conducted by Du et al. (2013) 

tested a range of interstimulus intervals for SICI and ICF in twenty-three healthy 

individuals at two different time points. Both measures exhibited moderate-good test 

retest reliability indicating low within-individual variability but the optimal interstimulus 

interval to elicit peak SICI or ICF values differed considerably between individuals. 

Another study supports the reproducibility of within-individual SICI measures but not 

ICF.135 Yet two other studies indicate poor test-retest reliability for SICI measures.136,137 

With the inconsistent reliability findings, measures of SICI and ICF are difficult to 

interpret. Cassidy et al. (2016) investigated the reliability of IHI in people with stroke and 

found that measures of IHI from contralesional M1 to ipsilesional M1 had moderate-

strong reliability whereas measures from ipsilesional M1 to contralesional M1 had poor 

or invalid reliability. Unlike paired-pulse measures, single-pulse measures of MEP 

amplitude garner more agreement from reliability studies. Peak-to-peak MEP amplitudes 

show good test-retest reliability139 and groups of 10, 15 and 20 MEPs collected at 120% 
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resting motor threshold in healthy individuals show a good reliability which is stronger 

than those collected at 1mV threshold.140 

 

2.4.5 Neuronavigation and TMS 

Neuronavigation is a method of guiding neurological procedures or measures with the 

help of imaging and/or 3D motion capture. Uses include pre- and intra-operative 

navigation (e.g. during the resection of brain tumors), navigated TMS testing, navigated 

TMS interventions and navigated TMS motor mapping.141 The primary argument for 

using neuronavigation with TMS is to decrease variability of MEP measures. However, 

the evidence for reducing MEP variability with the use of neuronavigation is mixed. 

Julkunen et al. (2009) compared navigated and non-navigated motor thresholds and MEP 

amplitudes recorded from the right abductor pollicis brevis muscle in eight healthy 

individuals across two sessions. Although motor thresholds were similar regardless of 

navigation, MEPs had consistently higher amplitudes and shorter latencies with 

navigation.142 Jung et al. (2010) conducted a similar study but took a stronger approach to 

address MEP variability by assessing reproducibility and coefficients of variance for 

MEP amplitudes. MEP amplitudes recorded from abductor pollicis brevis were assessed 

using navigated and non-navigated TMS at three different sessions in eight healthy 

individuals. There was no difference in MEP amplitudes or coefficients of variance 

between sessions or between navigated and non-navigated TMS use. Furthermore, MEP 

amplitudes were stable and reproducible with navigated and non-navigated TMS. 

Authors concluded that navigation does not reduce variability or improve reproducibility 

of MEP amplitudes.143 Another study conducted by Gugino et al.(2010) assessed MEP 

amplitudes, areas and coefficients of variance following navigated and non-navigated 

TMS targeting the first dorsal interosseous muscle in five healthy individuals. Similar to 

Julkunen et al. (2009), Gugino et al. (2010) found that MEP amplitudes and areas were 

larger with navigated TMS but, importantly, the coefficients of variance did not differ 

between navigated and non-navigated TMS. Thus, the use of neuronavigation did not 

reduce the variability of MEP amplitudes.144 Although the claim that neuronavigation can 
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reduce variability of TMS evoked MEPs is so far unsubstantiated, it is still the desired 

approach for the publication of results using TMS testing. Despite limitations of 

unconfirmed benefits, time-consuming procedures and extra equipment and training 

needed for neuronavigation, investigators and reviewers are drawn by the ~2mm coil 

placement accuracy and tend to feel more confident when neuronavigation is used for 

TMS procedures.  

 

2.4.6 Using TMS to Modulate Excitability 

In addition to measuring changes in corticospinal excitability, TMS can be used to induce 

changes in excitability by promoting LTP- or LTD-like plastic changes within neural 

networks. Two common methods of neuromodulation using TMS are rTMS and theta 

burst stimulation (TBS). These methods each use repeated cortical stimuli to drive 

changes in neuroplasticity but they differ in frequencies and patterns of stimulation. In 

the early 1990s, rTMS was developed as a means of investigating hemispheric language 

dominance and finding the epicenter of epileptogenic activity. An early study conducted 

by Pascual-Leone et al. (1994) described the influence of different frequencies and 

intensities of rTMS on motor activity in fourteen healthy individuals and laid the 

groundwork for protocol development and safety guidelines. Subsequent studies defined 

the suppressive influence of rTMS on corticospinal excitability following low frequency 

stimulation (e.g. 1 Hz)146 as well as the facilitatory influence on excitability following 

high frequency stimulation (e.g. ≥1 Hz).147 TBS is considered a form of patterned rTMS. 

Unlike the effects of rTMS which are primarily frequency-dependent, the effects of TBS 

are primarily pattern-dependent where continuous stimulation suppresses corticospinal 

excitability and intermittent patterns facilitate excitability.148  

 

The neuromodulation induced by repeated TMS protocols appears to result from changes 

in LTP- and LTD-like neuroplasticity. A pharmacological study conducted by Huang et 

al. (2007) found that memantine, an NMDAR blocker, abolished the facilitatory and 

suppressive effects of TBS. The NMDAR-dependency of TBS after-effects suggests that 
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the underlying mechanism of action involves LTP- and LTD-like changes in 

neuroplasticity. A Cochrane Review of rTMS investigations supports the strength of 

evidence that TMS-induced changes in neuroplasticity are mediated by LTP- and LTD-

like mechanisms.13 Although rTMS and TBS both demonstrate an ability to alter 

corticospinal excitability and induce LTP- or LTD-like plasticity, their transition to the 

clinic has been fraught with challenges partially due to the lack of a clear understanding 

of how they work and how they may be influenced by unknown variables.150 The 

development of a third method of TMS-induced neuromodulation called paired 

associative stimulation (PAS) provides another option for the induction of LTP- and 

LTD-like neuroplasticity that may be more effective and better harness natural 

mechanisms of experience-dependent plasticity. 

 

2.4.7 Paired Associative Stimulation 

In an effort to mimic protocols inducing associative LTP in animal models, Stefan et al. 

(2000) paired a peripheral nerve electrical stimulus with TMS and created a new method 

of NIBS, PAS. Similar to rTMS and TBS, PAS induces LTP- and LTD-like uni-

directional changes in synaptic plasticity that are either facilitatory or suppressive. 

However, PAS differs in the mechanism of induction underlying plastic changes. 

Critically dependent on the timing between and order of peripheral and cortical stimuli, 

PAS is theorized to induce LTP-like and LTD-like changes through Hebbian STDP.65 

Thus, a TMS pulse applied to the motor cortex shortly before the arrival of a sensory 

action potential, resulting from peripheral nerve stimulation, tends to induce a 

suppressive aftereffect, whereas a TMS pulse shortly after the arrival of a sensory action 

potential tends to induce a facilitatory aftereffect.66 Early studies demonstrated this 

hallmark characteristic of PAS-induced plasticity by testing the effect of different 

interstimulus intervals (ISIs) between peripheral and cortical stimuli on corticospinal 

excitability. The first study conducted by Stefan et al. (2000) tested ISIs ranging from 25 

ms to 5000 ms and found that an ISI of 25 ms facilitated excitability and those above 100 

ms had no effect. A subsequent study performed by Wolters et al. (2003) was the first to 
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demonstrate the ability of PAS to suppress corticospinal excitability using an ISI of 10 

ms. The importance of timing between cortical and peripheral stimuli indicate that a 

Hebbian-like STDP may underlie the effects of PAS. Further evidence derived from 

pharmacological studies support the likelihood that PAS is STDP-mediated. Application 

of the NMDAR antagonist dextromethorphan blocks the facilitatory and suppressive 

effects of PAS, suggesting that the neuromodulatory effects are NMDA-dependent and 

thus LTP- and LTD-like.66,151 The timing-dependent induction of LTP- and LTD-like 

plasticity strongly aligns with the nature of STDP and thus supports STDP as the leading 

candidate mechanism for PAS. The location of STDP is also theorized to be at the level 

of the cortex. Stefan et al. (2002) conducted a series of experiments that tested the F-

wave, a measure of spinal motoneuron excitability, before and after facilitatory PAS. 

Following intervention, MEP amplitude increased but the F-wave (elicited using median 

nerve stimulation) was unchanged suggesting that cortical and not spinal input primarily 

drove the increase in MEP amplitude.151 An extensive review of evidence65 supports the 

argument that PAS induces STDP in the motor cortex. This finding is important for the 

potential applications of PAS because STDP underlies motor learning and thus motor 

recovery through principles of experience-dependent plasticity. The ability to measure or 

augment an individual’s capacity for STDP may provide prognostic information or 

improve motor recovery strategies.  

 

2.4.8 PAS for Neurorehabilitation 

Since the inception of PAS, it has been used to measure or modulate neuroplasticity in 

people with stroke,14,71,152 Parkinson’s disease,153 and focal hand dystonia.40 In a recent 

study, the use of PAS in people with dysphagic stroke outperformed rTMS in both 

excitability and behavioral measures. Michou, et al. (2014) compared peripheral 

electrical stimulation only, PAS and rTMS in 18 dysphagic stroke patients. Results 

indicated that corticobulbar excitability and swallowing function increased to a greater 

extent following the two protocols providing afferent input (peripheral electrical 

stimulation only and PAS) compared to repeated cortical input only (rTMS).14 Further 
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evidence comparing PAS to sensory input only (vibration) and motor practice (thumb 

movements) demonstrated that PAS enhances corticospinal excitability more than 

sensory input alone.154 Thus, the combination of both cortical and peripheral stimuli in 

the form of PAS appears to be a more potent approach to neuromodulation compared to 

repeated cortical or peripheral stimuli alone.  

 

In the context of neurorehabilitation, primary somatosensory cortical function is known 

to influence motor recovery. Recent reviews highlight neuroanatomical substrates, 

pathways and potential mechanisms of plasticity within the primary sensory cortex (S1) 

that may influence motor function.155,156 Borich et al.(2015) and Fox et al. (2009) argue 

that further characterization of S1 and its role in motor control are needed to progress 

neurorehabilitation practices. Findings from studies investigating PAS corroborate these 

arguments by demonstrating improved motor function14 and motor learning157 following 

PAS intervention, but there is no clear indication of what sensorimotor pathways are 

being utilized. Although the importance of sensory input, in combination with a primary 

motor cortical stimulus, is evident, the mechanisms supporting this advantage are unclear. 

Carson and Kennedy (2013) highlight a number of candidate pathways including cortico-

cortico, cerebello-thalamo-cortical and thalamo-cortical pathways that may mediate 

observed changes in primary motor cortex excitability induced by PAS, but no firm 

consensus has been reached.  

 

Based on the arguments that PAS asserts its effect using Hebbian STDP and capitalizes 

on afferent input, its potential as a safe and effective NIBS approach to improve motor 

function and learning is clear. In addition to the evidence from individuals with 

dysphagic stroke, several groups have investigated the ability of PAS to alter excitability 

of corticomotor pathways targeting the paretic lower and upper limbs of people with 

stroke. Jayaram and Stinear (2008, 2009) conducted a series of studies assessing the 

influence of suppressive PAS targeting the contralesional tibialis anterior muscle in ten 

followed by nine individuals with chronic stroke. MEP recordings from the ipsilesional 
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and contralesional tibialis anterior confirmed that suppressive PAS decreased excitability 

of the ipsilesional muscle and increased excitability of the contralesional muscle.70,152  Uy 

et al. (2003) investigated the alternative approach of applying facilitatory PAS to the 

ipsileional M1 and paretic tibialis anterior. Although group analyses showed no effect, 

individual analyses showed that five out of nine individuals exhibited an increase in 

corticospinal excitability targeting the paretic tibialis anterior. Furthermore, functional 

measures of cadence, stride length and time to heel strike improved by the fourth week of 

intervention.10 No point is made regarding the correlation between individuals with 

significantly increased excitability and those with significantly increased functional 

measures but the improvement in both excitability and function is a promising trait for 

PAS as an adjunct to neurorehabilitation. Castel-Lacanal et al. (2007, 2009) studied the 

influence of facilitatory PAS on corticospinal projections to the upper limb of individuals 

with stroke. In two studies, authors found that corticospinal excitability increased 

following facilitatory PAS at 5 months and, to a lesser extent, 12 months following 

subcortical stroke.71,159 Thus, time since stroke may impact the efficacy of PAS 

interventions. The ability for PAS to alter excitability and improve function in people 

with stroke is established. However, certain characteristics of intervention (e.g. the 

optimal protocol, timing of intervention, number of sessions) still need to be elucidated. 

The challenge of defining PAS for applications to neurorehabilitation begins with 

exploring different protocols that capitalize on natural mechanisms of neuroplasticity. 

  

2.5.0 NIBS & Metaplasticity 

The ability to capitalize on metaplasticity to improve efforts of neuromodulation and 

motor recovery is under investigation in human motor cortex using NIBS. Recent reviews 

illustrate the usefulness of priming motor cortex using rTMS, PAS and tDCS.43,160 

Developing a method of priming synaptic plasticity with rTMS began in healthy 

individuals. By providing a facilitatory (6 Hz) session of rTMS immediately followed by 

a depressive (1 Hz) session of rTMS, Iyer et al. (2003) demonstrated a method of priming 

that resulted in an increase of suppression of corticospinal excitability when compared to 
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suppressive (1 Hz) rTMS alone. This seminal study supports the argument that priming 

may be a better method of neuromodulation because of its enhanced effect on 

corticospinal excitability compared to unprimed rTMS. Subsequent studies used methods 

of priming to test homeostatic mechanisms of plasticity. Siebner et al. (2004) applied 

facilitatory (anodal) tDCS followed by suppressive (1 Hz) rTMS, finding excessive 

suppression of excitability. Authors also applied suppressive (cathodal) tDCS followed 

by suppressive (1 Hz) rTMS and found excessive facilitation.161 These results indicate 

that homeostatic mechanisms do exist within primary motor cortex and that there is a 

limit to their physiological range, as demonstrated for suppression. Importantly, these 

studies also illustrate the influence that previous levels of synaptic activity may have on 

response to neuromodulation. Thus, priming to capitalize on metaplasticity may, in a 

sense, standardize the state of the brain, increasing the predictability of response to 

neuromodulation.  

 

2.5.1 Priming with Paired Associative Stimulation 

Purposeful priming of synaptic plasticity to induce a stronger change in synaptic 

weighting has been investigated using PAS. Although the earliest studies of priming and 

PAS used motor learning tasks as the method of priming and followed this with a bout of 

(principal) PAS, they demonstrate an ability of previous synaptic activity to influence 

response to neuromodulation.162,163 Currently, two studies have investigated homeostatic 

metaplasticity through the use of PAS as the method to both prime and condition motor 

cortex. Muller et al. (2007) investigated primed versus unprimed facilitatory PAS by 

priming with (1) PASLTD, (2) PASLTP and (3) PASSHAM. The principal treatment was 

always PASLTP. From these studies, investigators found increased corticospinal 

excitability following PASLTD priming and PASLTP principal when compared to all other 

conditions. Similar to Siebner et al. (2004), this study also found a decrease in 

excitability following PASLTP priming and PASLTP principal, indicating a physiological 

limit of homeostatic plasticity, this time demonstrated in facilitation. Opie et al. (2017) 

investigated the effect of PAS priming and principal in young (20-27 years) and old (61-
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79 years) healthy individuals. Again, the combinations began with a priming bout of PAS 

that was either (1) PASLTP, (2) PASLTD or (3) control and always ended with principal 

PASLTP. Interestingly, the PASLTP priming followed by PASLTP principal intervention 

resulted in the largest MEPs for the younger individuals and the PASLTD priming 

followed by PASLTP intervention was no different from the unprimed PASLTP (i.e. 

control) intervention. Older adults exhibited the opposite response to PASLTP priming 

followed by PASLTP principal in that MEPs were significantly smaller compared to the 

other conditions.164 These results indicate that priming with PASLTP augmented MEP 

amplitudes in younger adults but not older adults. Thus, age may influence response to 

PAS. Furthermore, the increased amplitude in younger adults following PASLTP priming 

of PASLTP principal PAS is unexpected and opposes previous evidence that further 

facilitatory intervention results in a suppression of excitability. 

 

Two other studies assessed priming and principal PAS but did not assess the opposing 

interactions of PASLTD followed by PASLTP. Each of these studies applied two sessions of 

PASLTP. One study varied the time between priming and principal (10, 30, 60 and 180 

minutes) and found that after 30 minutes, a principal session of PASLTP will augment 

corticospinal excitability.165 The other study compared two sessions of PASLTP (60 

minutes apart) to (1) sham priming followed by PASLTP and (2) PASLTP followed by 

sham PAS. The results of this study indicate that two sessions of PASLTP, separated by 60 

minutes, augmented corticobulbar plasticity in dysphagic stroke patients more so than a 

single bout of PASLTP. Of note, this study also found that more subjects responded (as 

defined by an increase in corticobulbar excitability) following the two sessions of PASLTP 

compared to a single session.166 Although a secondary finding of the study, this 

underscores the argument that priming to standardize a brain-state may not only improve 

an individual’s response to neuromodulation, but increase the likelihood of an individual 

responding in a predicable manner. 
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Although each study investigating priming of motor cortex significantly contributes to 

the understanding of homeostatic and non-homeostatic mechanisms that may underlie 

observed changes in neuroplasticity, a large gap in the literature exists. Only two studies 

have addressed the hypothesis that opposing directions of priming and principal PAS may 

capitalize on homeostatic mechanisms of metaplasticity and improve the magnitude of 

response to neuromodulation. Furthermore, no published study addresses the question of 

how priming with PASLTP may influence the after-effects of PASLTD. 

 

2.6.0 Variables Influencing Response to NIBS 

Although it is widely accepted that certain NIBS protocols induce facilitation or 

suppression of corticospinal excitability, it is also clear that variability in response 

reduces predictability and observed effect sizes. A recent study found that only 51.9% of 

healthy participants responded to PAS in the predicted manner (i.e. increased excitability 

following PASLTP) whereas the remaining 48.1% responded in the opposite manner.167 A 

similar study investigating inter-individual variability in response to PAS, tDCS and TBS 

found that only 39%, 45% and 43% of people, respectively, responded in the predicted 

manner.8 These studies identified resting motor threshold, 1mV threshold, SICI and age 

as influential variables in determining an individual’s response. However, these variables 

alone do not provide a detailed enough measure of underlying variables that may 

influence measures of resting motor threshold and 1 mV threshold. In a letter to the editor 

of Brain Stimulation, Ulf Ziemann (2015) argues that the low to moderate effect sizes 

reported in NIBS literature are a result of high inter-subject or inter-session variability. 

The inability to correctly predict that an intervention will work (e.g. that PASLTP will 

increase excitability) diminishes confidence in published NIBS results and slows 

progression of NIBS as a clinical tool. To strengthen the argument for PAS and other 

forms of NIBS, variables informing individual profiles of likelihood of being a responder 

need to be defined.  
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Considering that TMS interventions act to modulate synaptic plasticity through LTP- and 

LTD-like mechanisms, it is logical to begin with an assessment of variables known to 

influence synaptic plasticity. Prior studies have established factors such as age,164,167 prior 

synaptic activity,168 time of day (i.e. cortisol levels),169 menstrual cycle,170 medication,171 

attention172 and BDNF73 as factors that may explain an individual’s response to TMS. Of 

particular interest to the investigation of responders and nonresponders following PAS, 

the presence of a BDNF Val66Met single nucleotide polymorphism may explain why 

some individuals respond predictably to PAS whereas others do not. Cheeran et al., 

(2008) demonstrated that individuals without the Val66Met polymorphism exhibited 

significantly different changes from baseline MEP amplitude following PAS and those 

with the polymorphism did not exhibit any significant changes. Considering that the 

Val66Met polymorphism is fairly common in the Caucasian population (35%) and that 

many PAS studies to-date are conducted in Caucasian-dominant populations, it is 

possible that a portion of the reported high variability in response may be explained by 

genetic differences. Research conducted in cultured rat visual cortical cells provides 

foundational rationale for the role of BDNF in neuroplasticity. Rutherford et al. (1998) 

showed that the activity-dependent release of BDNF influences synaptic scaling and thus 

plays a role in the regulation of homeostatic plasticity. Further studies by Desai et al. 

(1999) show that BDNF mediates the activity-dependent regulation of intrinsic 

excitability of pyramidal neurons and interneurons possibly by altering the activity of 

sodium and potassium channels. A change in BDNF activity due to a genetic 

polymorphism may influence intrinsic excitability and thus establish a completely 

different pattern of response to neuromodulation efforts. The Val66Met polymorphism is 

demonstrated to influence responses to PAS73 as well as MEP amplitudes and cortical 

reorganization following motor training.175 Further characterization of variables like 

BDNF that are easily measured, reported and interpreted is a strong and viable route for 

beginning the creation of a portfolio of individual measures that will inform providers of 

who may or may not benefit from NIBS interventions.   
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Hamada et al. (2012) identified MEP latency as a factor that may describe an individual’s 

response to neuromodulation. Authors defend the rationale that variability in response to 

TMS interventions may not be due to differences in synaptic plasticity. Instead, they may 

be a result of differences in populations of cortical neurons that are excited due to 

differences in the excitability of different neural populations. MEPs were collected with 

the typical coil orientation (inducing posterior-anterior current flow), the coil turned 

around 180° (inducing anterior-posterior current flow) and the coil at a 90° angle with the 

mid-sagittal line (inducing lateral-medial current flow). Two different interventions were 

applied: inhibitory TBS and facilitatory TBS. Although responses to each intervention 

were highly variable, 50% of this variability was explained by the difference between 

MEP onset latencies resulting from anterior-posterior stimulation and lateromedial 

stimulation. Because this difference in onset latencies depicts a difference in the 

recruitment of early I-waves vs. later I-waves, authors conclude that this difference is 

likely due to differences in the pools of interneurons that are recruited.176 

 

2.7.0 Summary 

Neuroplasticity is a driving force that supports learning of motor tasks. When individuals 

undergo rehabilitation to recover lost or impaired motor function, they are effectively re-

learning motor patterns and motor tasks. Although the neural environment is altered 

following a cortical or sub-cortical injury, the brain remains plastic and events like 

cortical reorganization allow for continued compensation or restoration of re-learned 

motor patterns. However, current rehabilitation strategies are less than phenomenal, 

leaving a high percentage of individuals with impairments that impact activities of daily 

living. Progression of technologies that measure and modulate cortical activity as well as 

a better collective understanding of principles of experience-dependent plasticity led to 

the development of neuromodulation therapies as an adjunct to motor rehabilitation. PAS 

specifically stands out as a promising neurorehabilitative tool because it induces STDP 

which underlies experience-dependent plasticity and the addition of sensory input is 

shown to be more effective than cortical stimuli alone. Currently, high inter-individual 
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variability is reported following PAS in people with stroke as well as healthy individuals. 

This variability makes it difficult to interpret the efficacy of PAS. Furthermore, 

characteristics of who does and does not benefit from PAS have not been clearly defined. 

One proposed solution is to incorporate primed PAS (PPAS) to capitalize on mechanisms 

of homeostatic synaptic plasticity and augment response to PAS. Although primed 

facilitatory PAS (PPASLTP) has been thinly addressed, investigations into primed 

suppressive PAS (PPASLTD) are even less thorough. Thus, a complete investigation into 

the efficacy of all combinations of PPASLTP and PPASLTD and the exploration of 

characteristics that may influence an individual’s response to each protocol is warranted. 
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3.0.0 Methods 

 

3.1.0 Study Design 

This study was composed of two Experiments. Experiment 1 assessed the effect of 

priming on suppressive PAS (PPASLTD) and Experiment 2 assessed the effect of priming 

on facilitatory PAS (PPASLTP). Enrolled participants were randomly assigned to a four-

intervention cross-over within either Experiment 1 or Experiment 2. Each experiment 

was identical in design yet differed in the type of intervention that was given. Thus, two 

single-blinded, sham-controlled, two-factor repeated-measures cross-over designs were 

used to assess the PPASLTD (Experiment 1) and PPASLTP (Experiment 2) in healthy 

individuals. Participants came to the Noninvasive Neuromodulation Lab at the University 

of Minnesota – Twin Cities Delaware Clinical Research Unit on four separate days. Each 

day, the participant received baseline TMS testing, a randomly assigned intervention and 

one hour of TMS post-testing. A total of four interventions were applied to each 

individual with at least one week of washout between interventions (Figure 1). 

Regardless of assigned experiment, the sham-primed intervention was the first 

intervention for every participant due to the desire to ensure that adequate numbers of 

both responders and nonresponders to sham-primed PAS were enrolled. The remaining 

three interventions were randomized. A third-party individual randomized intervention 

orders and assigned labels (e.g. 1A, 1B, 1C and 1D) using Microsoft Excel. Table 1 lists 

the interventions for Experiment 1 and for Experiment 2. The participants and the 

individual completing TMS baseline testing and posttesting (i.e. the tester) were blinded 

to the assigned intervention. The same individual conducted all baseline tests and 

posttests. The individuals delivering the intervention were not blinded to the nature of the 

assigned intervention.  
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Experiment 1: PPASLTD 

PAS Interventions 
1A: PASSHAM→PASLTD 

1B: PASLTP→PASLTD  
1C: PASLTD→PASLTD 

1D: PASSHAM→PASSHAM 

 
Intervention Order 
Visit 1: 1A 
Visits 2-4: Random 
order of 1B, 1C and 1D 

Baseline 
TMS 
testing 

 

PAS 
Intervention 

Posttest 
TMS testing 

 

SINGLE VISIT 

Repeat until all four 

interventions are completed 

One 
week 
washout  

 

PAS Interventions 
2A: PASSHAM→PASLTP  
2B: PASLTD→PASLTP  
2C: PASLTP→PASLTP 

2D: PASSHAM→PASSHAM 

 
Intervention Order 
Visit 1: 2A 
Visits 2-4: Random 
order of 2B, 2C and 2D 

Baseline 
TMS 
testing 

 

PAS 
Intervention 

Posttest 
TMS testing 

 

SINGLE VISIT 

Repeat until all four 

interventions are completed 

One 
week 
washout  

 

Experiment 2: PPASLTP 

Figure 1. Study design for Experiment 1 (top) and Experiment 2 (bottom). 
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Table 1. List of Interventions 

 Experiment 1 Experiment 2 

Sham-primed 

Intervention 

Sham priming of PASLTD 

(PASSHAM→PASLTD) 

Sham priming of PASLTP 

(PASSHAM→PASLTP) 

   

Primed Intervention 1  PASLTP priming of PASLTD 

(PASLTP→PASLTD) 

PASLTD priming of PASLTP 

(PASLTD→PASLTP) 

   

Primed Intervention 2 PASLTD priming of PASLTD 

(PASLTD→PASLTD) 

PASLTP priming of PASLTP 

(PASLTP→PASLTP) 

   

Sham Intervention Sham priming of Sham PAS 

(PASSHAM→PASSHAM) 

Sham priming of Sham PAS 

(PASSHAM→PASSHAM) 

 

3.2.0 Prospective Power Analyses 

This study was a novel exploratory investigation of the effect of priming on PAS. 

Considering the few published PPASLTP and zero published PPASLTD studies, 

determining a prospective sample size to achieve 80% power required a broad approach. 

Normative data regarding the percent change from baseline of MEP amplitude following 

unprimed PAS in healthy individuals have been established 64. These data specify the 

effect size (cohen’s d) for PASLTP and PASLTD at 0-5, 10, 15, 20, 30, 60, 90 and 120 

minutes following intervention. However, they do not specify the effect size for a 

difference between primed and unprimed PAS. At the time of the prospective analyses, 

one previous study had investigated priming with PASLTD followed by principal PASLTP. 

This study found that PASLTP alone increased peak-to-peak MEP amplitude by 26% 

whereas priming with PASLTD followed by PASLTP principal resulted in a 43% increase. 

This is a difference of 17%, but no standard error or deviation of this difference were 

reported.68 
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Two power analyses were conducted using G*Power (Heinrich Heine Universitat, 

Dusseldorf, DE). The input for these power analyses were based on the previous study 

finding a difference of 17% for primed PASLTP and the normative data described by 

Wishcnewski et al. (2015). The standard deviation for each analysis was derived from 

normative data established for the unprimed intervention PASLTD for Experiment 1 and 

PASLTP for Experiment 2.  Analysis using the repeated measures ANOVA was chosen 

based on the primary question of this study which is the effect of Primed Intervention 1  

and Primed Intervention 2 compared to the Sham Intervention. G*Power input and output 

variables are available in Appendix A. Results from these analyses indicate that a sample 

size of 6 individuals per group (i.e. per intervention and thus per cross-over experiment) 

are needed for PASLTP and a sample size of 6 per group are needed for PASLTD. Due to 

the exploratory nature of this study as well as the studies from which these power 

analyses are based, the sample size was increased to at least 15 people per experiment in 

an effort to find a potentially smaller effect size and to account for a roughly 50-50 mix 

of responders and nonresponders in each experiment.  

 

3.3.0 Participants 

3.3.1 Recruitment & Eligibility Screening 

Recruitment efforts included flyers posted in buildings at the University of Minnesota – 

Twin Cities campus and in-class presentations given through the University of Minnesota 

Division of Physical Therapy. Interested individuals were encouraged to provide an e-

mail address or to send an e-mail to the Student Principal-Investigator. To screen 

individuals for eligibility, the investigator e-mailed an eligibility survey through the 

University of Minnesota’s Research Electronic Data Capture (REDCap) system. REDCap 

is a secure system that was used to track the number of interested individuals, the number 

of surveys sent, the number of surveys completed and the nature of survey responses. The 

survey itself was composed of questions to screen each potential participant for 

inclusion/exclusion criteria and general TMS safety guidelines 177,178 (Appendix B). 
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3.3.2 Inclusion & Exclusion Criteria 

Inclusion criteria: 

• ≥ 18 and ≤ 30 years of age 

• Elicitable motor evoked potential from the motor cortex contralateral to 

the preferred hand 

• Elicitable N20 sensory evoked potential 

 

Exclusion criteria: 

• History of neurological disease 

• Seizure within the past 2 years 

• Currently taking epileptogenic medication 

• Peripheral neuropathy 

• Cognitive impairment and/or major psychiatric disorder 

• Metal in the head (dental permitted) 

• Pacemaker or other indwelling devices 

• Pregnancy 

 

3.3.4 Consent Process 

Eligible individuals were invited to the University of Minnesota’s Noninvasive 

Neuromodulation Lab for an in-person consent process. At this visit, the investigator 

described the purpose of the study and the procedures that would be required. To ensure 

that the potential participant was adequately informed, the investigator and the participant 

talked through each section of the consent form (Appendix C). If the participant chose to 

enroll in the study, the participant and the investigator signed and dated the consent form. 

Once enrolled, the participant was given a copy of the consent form for his/her record.  
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3.3.5 On-site Surveys & Authorization Forms 

Following the consent process, surveys and authorization forms were discussed and 

completed. The Edinburgh Handedness Survey 179 (Appendix D) assessed for the 

preferred hand of each participant. The Health Insurance Portability and Accountability 

Act authorization form (Appendix E) ensured that the participant understood that the 

information we were collecting could be considered protected health information 

however we did not obtain medical records for any individual. The Photograph Release 

Form (Appendix F) was signed only if an individual consented to the taking of photos 

and the potential use of photos taken of that individual for scientific purposes. Individuals 

could participate in this study without signing this form.  

 

3.4.0 Responder & Nonresponder Characteristic Testing 

3.4.1 Responder & Nonresponder Classifications 

Individuals were categorized as responders or nonresponders to the sham-primed 

intervention. For Experiment 1 (PPASLTD), responders were classified as having a ratio of 

grand average post-intervention to average baseline MEP amplitude of ≤0.9. All other 

individuals were classified as nonresponders. For Experiment 2 (PPASLTP), responders 

had a ratio of ≥1.1.165 Unless otherwise noted, responder and nonresponder classifications 

for analyses were based on the response to the sham-primed intervention for each 

experiment. 

 

3.4.1 MEP Onset Latency 

The MEP onset latency may relate to an individual’s response to NIBS because of a 

difference in the pools of neurons that are stimulated. Following the TMS pretest of the 

first visit only, 10 MEPs were collected using the same TMS testing and EMG set-up 

described in section 3.5 but the TMS coil was turned 180° so that the tail pointed 

anteromedially and the induced current flow across the central sulcus was anterior-

posterior. The onset latency was defined as the amount of time (ms) from the TMS 

stimulus artifact to the beginning of the take-off of the MEP using the EMG recording. 
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3.4.2 Saliva Sample for Genotyping 

During the consent process, participants agreed to provide a saliva sample that would be 

tested for the presence of the BDNF Val66Met single-nucleotide polymorphism. At the 

end of the first visit, each participant provided a ~2 mL saliva sample using Oragene 

Discover 500 Saliva Tubes and Sample Kits (DNA Genotek, subsidiary of OraSure 

Technologies, Inc., PA,USA). At the end of the study, all samples were sent to the 

University of Minnesota Genomics Center where DNA was extracted and a subsequent 

Taqman Assay assessed presence of the Val66Met polymorphism (see Appendices G and 

H for DNA extraction quality control and Taqman results reports, respectively). 

 

3.5.0 Corticospinal Excitability Testing 

The primary outcome measure for both Experiment 1 and Experiment 2 is change from 

baseline corticospinal excitability. Change from baseline corticospinal excitability was 

assessed using the average peak-to-peak amplitude of 20 MEPs collected from the 

abductor pollicis brevis (APB) of the preferred hand. Single-pulse TMS elicited MEPs at 

baseline and 0, 10, 20, 30, 40, 50 and 60 minutes following intervention (Figure 2). 

 

 

M
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Figure 2. Example EMG 

recording of a motor-evoked 

potential recorded from 

abductor pollicis brevis 

following a single 

transcranial magnetic 

stimulus. The yellow 

brackets illustrate the peak-

to-peak amplitude (2,970 

µV) 
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3.5.1 Single-pulse TMS Instrumentation & Methodology 

During TMS testing and PAS intervention, the participant sat in a chair in a semi-reclined 

position. The participant was offered ear plugs to reduce the level of noise experienced 

from the TMS coil. TMS was applied with a D702 TMS coil connected to a Magstim 

2002 stimulator with a Bistim2 connecting module (Magstim Co., Whitland, UK). The 

cortical hotspot for the APB was defined as the location where single-pulse TMS 

produced at least 5 out of 10 MEPs with a peak-to-peak amplitude of at least 50µV at the 

lowest possible stimulator output. The corresponding stimulator output defines the resting 

motor threshold (RMT) in percent maximum stimulator output (%MSO). All testing and 

interventions were completed with a TMS intensity of 130% RMT. To collect 20 MEPs 

at each baseline and posttest time point, single-pulse TMS (0.1 Hz, 130% RMT) was 

delivered to the hotspot for APB corresponding to the preferred hand.180 MEPs that were 

compromised by neuromuscular pre-innervation were discarded. 

 

3.5.2 Neuronavigation 

All TMS testing and interventions were completed with the guidance of neuronavigation. 

Because we did not have access to individual anatomical magnetic resonance images, 

BrainSight neuronavigation was used in conjnction with a template brain (Rogue, 

Toronto, CA). At the beginning of each session, a coil-tracker was placed on the coil and 

calibrated using the BrainSight calibration block (Figure 3A). In anticipation of coil-

overheating and the need for the use of a second coil, a second coil-tracker was placed on 

a back-up coil and calibrated. A subject-tracker was also placed on the forehead of the 

participant. With the subject-tracker in place, the dimensions of the participant’s head 

were registered with the template brain. The TMS coil locations, in reference to the 

subject-tracker, were saved for each hotspot and testing location (Figure 3B).  
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3.5.3 EMG Set-up 

The skin over the preferred APB was abraded and cleansed with an alcohol pad. Two 

stainless steel disc electrodes were placed in a belly-tendon montage on the skin 

overlying APB (Figure 4). EMG signals were amplified using a bipolar EMG amplifier 

(Y03-2, Motion Lab Systems, Inc., Baton Rouge, Louisiana, USA) (Gain: 300, band-pass 

filter: 20-2000Hz), then digitized by a NI 9234 analog-to-digital convertor (National 

Instruments, Austin, Texas, USA) with a 24-bit resolution at a sampling rate of 6.4kHz. 

EMG data were displayed in real time to monitor muscle activity during each session. All 

data were stored by a custom LabVIEW program (v2012, National Instruments, Austin, 

Texas, USA) in a laptop computer.  

B A 

Figure 3. BrainSight neuronavigation set-up 

includingTMS coil calibration (A) and 

example screen capture (B) depicting saved 

locations (left) and coil target (right). 

Figure 4. EMG set-up with the 

peripheral stimulating bar 

electrode shown secured under a 

ground strap at the wrist. 
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3.6.0 PAS Intervention Instrumentation and Methodology 

PAS pairs a central stimulus with a peripheral nerve stimulus. For this study, the central 

stimulus was cortical stimulation applied using single-pulse TMS and the peripheral 

nerve stimulus was applied using an electrical stimulator (Grass S88, SIU5 and CCU1, 

Natus Neurology Inc., Warwick, Rhode Island, USA) and a stimulating bar electrode 

(cathode proximal) over the median nerve at the wrist of the preferred hand68 (Figure 5). 

Two different ISIs were used: N20+2ms (PASLTP) and N20-5ms (PASLTD). Table 1 lists 

the priming and principal combinations for each experiment. Each bout of active PAS 

consisted of 180 pairs of peripheral (3x perceptual threshold, 200 µs duration) and 

cortical (130% RMT) stimulation delivered at a rate of 0.2 Hz.181 PPAS interventions 

consisted of two sequential bouts of PAS within the same session separated by ~3-5 

minutes.  

 

     

 

 

 

Figure 5. Active PAS set-up. 

Transcranial magnetic stimulation 

is paired with contralateral median 

nerve stimulation. 
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3.6.1 Sham PAS Intervention 

To ensure a full sham intervention, no cortical or pheripheral stimulation were given. A 

novel approach for sham PAS was applied whereby a sham air-film rTMS coil connected 

to Magstim Rapid2 device (Magstim Co., Whitland, UK) replaced the active D702 coil 

and single-pulse TMS (Figure 6). The rate of stimulation was set at 0.2 Hz and the 

instensity was 75% MSO, high enough to mimic the level of sound and tactile sensation 

of single-pulse TMS. The sham air-film coil mimics the sound of the active coil yet does 

not produce a magnetic pulse and therefore does not provide any stimulation. 

Furthermore, the peripheral stimulator was turned off so that no peripheral stimulation 

was given. To maintain blindednes of the participant and the tester, all other procedures 

(e.g. hotspot finding, pretesting, neuronavigation, N20) were performed at each session. 

Further efforts were made during the description of the study whereby participants were 

told that the effect of different machines (i.e. the Magstim 2002 and the Magstim Rapid2) 

would be tested and thus they were to expect the use of different machines, coils and 

intensities. 

 

 

 

 

 

Figure 6. Sham 

PAS set-up. A sham 

air-film coil mimics 

the tactile and 

auditory traits of 

active TMS. The 

bar electrode is 

placed at the wrist 

but provides no 

stimulation during 

intervention. 
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3.6.2 N20 Measurement  

At the start of each session, the participant’s N20 latency, defined as the latency of arrival 

of a sensory evoked potential resulting from median nerve stimulation at the wrist, was 

measured using electroencephalogry (EEG). To acquire the EEG signal, a Precision EEG 

Cap (Brain Vision LLC., Morrisville, North Carolina, USA) and gelled EEG electrodes 

were placed on the scalp through holes provided in the cap at Cp3/Cp4 with Cz as the 

reference.182 An electrode impedance checker (El-Check, BIOPAC Systems, Inc., Goleta, 

California, USA) was used to confirm that the impedance for each electrode was <10 

kOhms (Figure 7). A stimulating (bar) electrode was placed over the median nerve 

(cathode proximal) of the preferred hand at the wrist. To determine the N20 latency, three 

hundred trials of suprathreshold (3x perceptual threshold, 200 µs duration) constant 

current electrical stimuli were applied to the median nerve at 2.0 Hz using an electrical 

stimulator (Grass S88, SIU5 and CCU1, Natus Neurology Inc., Warwick, Rhode Island, 

USA). The latency was defined as the amont of time (ms) between the peripheral nerve 

stimulus artifact and the highest positive peak (Figure 8). 

 

Figure 7. EEG Set-up. (A) EEG equipment includes an EEG cap, 

abrasive gel, electrodes and an impedence checker. (B) N20 measurement 

set-up with median nerve stimulation at the preferred wrist and EEG 

recording from the contralateral primary sensory cortex. 

A B 
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3.7.0 Participant Report of Symptoms 

To ensure that single-pulse TMS or PAS intervention did not result in any level of 

adverse event, investigators used a questionnaire to survey for possible symptoms and 

adverse events that have been reported in previous NIBS literature.183 This questionnaire 

was completed at the beginning, middle and end of each visit (Appendix I). 

 

3.8.0 Data Analysis 

Each participant received four separate interventions. At each intervention, 20 peak-to-

peak MEP amplitudes were collected at baseline and 7 post-intervention time points (0, 

10, 20, 30, 40, 50 and 60 minutes following intervention). The peak-to-peak amplitude 

served as the primary outcome measure. Amplitudes were assessed using the grand 

average change from baseline (i.e. the average change from baseline MEP amplitude over 

all 7 post-intervention time points) and the linear trend across each individual post-

intervention time point.  

 

The original peak-to-peak MEP amplitudes collected from each individual at each time 

point for each intervention were highly skewed right for both Experiment 1 and 

Figure 8. Example EEG recording of the N20 SEP. The red crosshairs 

mark the measurement of the N20 latency (18.4ms).  
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Experiment 2 (Appendix J: A & B). Values were log-transformed using log10 which 

resulted in normal distributions for Experiment 1 as well as Experiment 2 (Appendix J: C 

& D). 

 

All analyses used the log-transformed data. The log-transformed MEP amplitudes were 

averaged at each time point for each intervention for each individual. Two statistical 

models were created using these averages. One assessed Whole Group effects for each 

experiment and the other assessed Responder, Nonresponder effects for each experiment. 

 

All analyses were done using JMP (v. 13 Pro, SAS Institute, Cary, NC).  

 

3.8.1 Whole Group Model 

A Mixed Linear Model (Standard Least Squares Regression) assessed main effects of 

three fixed within-subject factors: Time, Session ID (i.e. intervention) and the 

Time*Session ID interaction. Three random effects: Participant, the Participant*Session 

ID interaction and the Participant*Time interaction and the residual error (three-way 

interaction between Participant*Session ID*Time) were included in the model (Appendix 

K). 

 

3.8.2 Responder, Nonresponder Model 

This model only differs from the Whole Group Model because of the addition of a fourth 

variable, Responder (Y/N). A Mixed Linear Model (Standard Least Squares Regression) 

assessed main effects of seven fixed within-subject factors: Time, Session ID, Responder, 

the Time*Session ID interaction, the Session ID*Responder interaction, the 

Time*Responder interaction and the Time*Session ID*Responder interaction. Three 

random effects: Participant, the Participant*Session ID interaction and the 

Participant*Time interaction and the residual error (three-way interaction between 

Participant*Session ID*Time) were included in the model (Appendix L). 
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3.8.3 Contrasts 

Within each model, the grand average change from baseline and linear trend analyses 

were carried out using contrasts in the Session ID*Time interaction (Whole Group 

Model) or the Session ID*Time*Responder interaction (Responder, Nonresponder 

Model). Example contrasts are presented in Appendix M. Because this is an exploratory 

study, p-values were not adjusted for multiple comparisons.184,185 

 

Results are presented as percent change from baseline which was derived from the back-

transformed ratio using the following steps:  

1) Log10(posttest) – log10(baseline) = log10(posttest/baseline) 

2) 10^(log10(posttest/baseline)) = posttest/baseline 

3) ((Posttest/baseline) – 1)*100 = percent change from baseline 

 

3.8.4 Secondary Data Analyses 

MEP Onset Latency 

The difference in average MEP onset latency between responders and nonresponders was 

analyzed separately for Experiment 1 and Experiment 2. Due to unequal sample sizes 

between the two independent samples, the Mann-Whitney U test was used to assign ranks 

and assess a difference in onset latency between responders and nonresponders 

(Appendix N). 

 

BDNF Val66Met 

The proportions of those with the Val66Met polymorphism were compared between 

responders and nonresponder for both Experiment 1 and Experiment 2. The z-test for a 

difference between proportions assessed for a significant difference in this proportion 

between the two groups within each experiment.  
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3.8.5 Sub-Analyses 

MEP Reliability 

Test-retest reliability of baseline peak-to-peak MEP measures was assessed using the 

Measurement Systems Analysis feature of JMP statistical software. Intraclass correlation 

coefficients (ICCs) were set-up to determine the proportion of variability described by the 

Session ID within an individual. Thus, the baseline measures for each of the four 

interventions were compared within each individual and a single ICC value is reported 

for each experiment. The JMP input is available as Appendix O. 

 

Carry-over 

Potential carry-over of neuromdoulatory effects may influence baseline values and 

intervention effects in subsequent sessions. Thus, the possibility of carry-over was 

determined by creating contrasts (see Section 3.8.3) to statistically compare baseline 

MEP measures between the four interventions within each individual. Contrasts were 

created using the Participant ID*Session ID*Time Least Squares Means table within the 

Whole Group Model.  
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4.0.0 Results 

 

4.1.0 Participants 

4.1.1 Recruitment & Enrollment 

Recruitment took place through flyers posted on the University of Minnesota – 

Minneapolis campus and through in-class presentations given to students in the Division 

of Physical Therapy. Forty-two people completed eligibility surveys. Thirty-two people 

subsequently enrolled in this study. One enrolled individual dropped out due to 

scheduling complications. Thirty-one people successfully completed this study (including 

all four data collection sessions and provision of a saliva sample). The consort diagram 

illustrates recruitment and drop-outs prior to and after enrollment (Figure 9).      

   
Figure 9. Consolidated Standards of Reporting Trials (CONSORT) Diagram 

Included in Final Analyses 

(n=15) 

Did not enroll (n=10) 

Reasons:  

Unable to commit to all 

sessions (n=9) 

Unknown (n=1) 

Randomized into Experiment 1 or 2 (n=32) 

Dropout (n=1) 

Reason: Unable to commit 

time to finish all sessions 

Assigned Randomized 

Treatment Order (n=15) 

Included in Final Analyses 

(n=16) 

Did not complete 

survey (n=1) 

Reason: Unknown 

Eligibility Survey Sent 

(n=43) 

Completed Eligibility Survey 

(n=42) 

Enrolled (n=32) 

Experiment 2 (n=17) Experiment 1 (n=15) 

Assigned Randomized 

Treatment Order (n=17) 

Completed All Interventions 

(n=16) 

Completed All Interventions 

(n=15) 
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4.1.2 Individual Characteristics & Demographics 

Fifteen individuals (6 males, 9 females; average age 23.6 ± 2.3 years) completed 

Experiment 1. Sixteen individuals (7 males, 9 females; average age 22.3 ± 2.3 years) 

completed Experiment 2. Due to the substantial amount of demographics and 

neurophysiological data collected for each individual, tables of this information are 

available as Appendix P (Experiment 1) and Appendix Q (Experiment 2).  

 

4.2.0 Experiment 1 (PPASLTD) 

The primary aim for Experiment 1 was to compare the effect of PASLTP priming followed 

by principal PASLTD (PASLTP→PASLTD) to sham-primed PASLTD (PASSHAM→PASLTD) 

on corticospinal excitability in healthy individuals. The results that follow are broken into 

two sections, Whole Group Analyses and Responder & Nonresponder Analyses. Results 

from the Grand Average Change from Baseline and Linear Trend analyses will be 

described separately within each section. 

 

4.2.1 Experiment 1 (PPASLTD): Whole Group Analyses 

Grand Average Change from Baseline 

The PASLTP→PASLTD intervention resulted in a significant increase from baseline peak-

to-peak MEP amplitude (p=0.0149) (Figure 10 & Table 2). Notably, the increase from 

baseline opposes the hypothesized direction of change. This increase from baseline 

excitability significantly differs from the non-significant change produced by the sham-

primed intervention, PASSHAM→PASLTD (p=0.0067) (Figure 10).  
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Table 2. Whole Group Grand Average Percent Change from Baseline Peak-to-Peak MEP 

Amplitude for each Intervention (Experiment 1: PPASLTD) 

 PASSHAM→PASLTD PASLTP→PASLTD PASSHAM→PASSHAM PASLTD→PASLTD 

Grand 

Average 

-14.30 30.35* 0.60 -0.23 

95% CI (-30.71%, 6.00%) (5.39%, 61.22%) (-18.66%, 24.43%) (-19.34%, 23.40%) 

p-value 0.158 0.0149 0.9558 0.982 

* Significant change from baseline p<0.05  

 

 

 

Figure 10. Grand average (average of all posttests) percent 

change from baseline excitability for the whole group (n=15). 

MEPAmp refers to peak-to-peak motor-evoked potential 

amplitude. Striped circle indicates significant change from 

baseline (p<0.05). Asterisk (*) indicates significant difference 

between interventions (p<0.05). Error bars are 95% CIs. 
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Linear Trend 

No intervention resulted in a significant linear trend in change from baseline corticospinal 

excitability over the 60-minute post-intervention period. Between-intervention 

comparisons show that the trends in change from baseline excitability produced by 

PASLTP→PASLTD and PASSHAM→PASSHAM significantly differ from each other 

(p=0.0424) with the decreasing slope produced by PASSHAM→PASSHAM trending toward 

significance at p=0.067 (Figure 11). 

           

The average percent changes from baseline corticospinal excitability at each post-

intervention time point for each intervention are listed below in Table 3. These describe 

the average increase or decrease in corticospinal excitability measured from all 15 

individuals in Experiment 1. The PASLTP→PASLTD intervention significantly increased 

excitability at 10, 20, 50 and 60 minutes following intervention. These increases range 

from 32.6% to 41.5% and oppose the hypothesized direction of change. 

PASLTP→PASLTD significantly increased excitability compared to the sham-primed 

Figure 11. Whole group (n=15) time course of percent change from baseline 

excitability at each posttest. MEPAmp refers to peak-to-peak motor-evoked 

potential amplitude. Linear trend analyses do not reveal significance at p<0.05 

but the decreasing trend of PASSHAM→PASSHAM reaches p=0.067. 
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intervention, PASSHAM→PASLTD, at 0, 20, 50 and 60 minutes, the PASSHAM→PASSHAM 

intervention at 50 and 60 minutes and the PASLTD→PASLTD intervention at 20 minutes. 

Table 3. Whole Group Percent Change from Baseline Peak-to-Peak MEP Amplitude for 

each Intervention at each Time Point (Experiment 1: PPASLTD) 

Time since 

intervention 

(minutes) 

PASSHAM→PASLTD PASLTP→PASLTD PASSHAM→ 

PASSHAM 

PASLTD→PASLTD 

0 -24.32b 13.71a 8.72% -4.72% 

10 -9.22 32.62* -2.73% -2.28% 

20 -12.90b 39.96ad 10.26% -7.53%b 

30 -8.17 25.34 24.65% 4.54% 

40 -10.46 25.81 -9.84% 7.80% 

50 -14.10b 41.45ac -8.17%b 0.42% 

60 -19.28b 35.89*ac -13.31%b 0.86% 

Values are estimates of the average 

* Significant change from baseline p<0.05  

a Significant change from PASSHAM→PASLTD p<0.05 

b Significant change from PASLTP→PASLTD p<0.05 

c Significant change from PASSHAM→PASSHAM p<0.05 

d Significant change from PASLTD→PASLTD p<0.05 

 

4.2.2 Experiment 1 (PPASLTD): Responder & Nonresponder Analyses 

Responder to Nonresponder Ratios 

The third, exploratory aim of this dissertation was to assess the ratio of responders to 

nonresponders for each intervention. The ratio of responders to nonresponders changed 

for each intervention in Experiment 1 (Table 4). The sham-primed intervention resulted 

in the highest number of responders with 8/15 (53.33%) individuals that exhibited a 

suppression of grand average excitability by ≥10%. The PASLTP→PASLTD intervention 

produced the fewest number of responders to a suppressive intervention. This finding 

contradicts the hypothesis that priming may augment changes in excitability resulting in a 

higher number of individuals who respond to intervention. Interestingly, the 
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PASSHAM→PASSHAM intervention with no stimulation still resulted in a suppressive 

response in 33.33% of individuals. When the responder or nonresponder categorization 

for each individual was determined following each intervention, no pattern of response 

emerged (e.g. those that were nonresponders to sham-primed PAS did not convert to 

responders following a PPAS intervention).  

 

Table 4. Responder to Nonresponder Ratios for each Intervention (Experiment 1: 

PPASLTD) 

 PASSHAM→PASLTD PASLTP→PASLTD PASSHAM→PASSHAM PASLTD→PASLTD 

R:NR 8:7 3:12 5:10 4:11 

Responder (R); Nonresponder (NR) 

 

 

Responders: Grand Average Change from Baseline 

The PASSHAM→PASLTD intervention resulted in a significant decrease from baseline 

excitability (p=0.0013) (Figure 12 & Table 5). This decrease is expected because 

responders were categorized based on a suppressive response to PASSHAM→PASLTD. No 

other intervention produced a significant change from baseline for those that were 

categorized as responders to PASSHAM→PASLTD. For this group, the response to 

PASLTP→PASLTD significantly differed from PASSHAM→PASLTD (p=0.0022) but those 

that responded significantly to PASSHAM→PASLTD did not appear to respond significantly 

to any other intervention.  
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Table 5. Responders Only Grand Average Percent Change from Baseline Peak-to-Peak MEP 

Amplitude for each Intervention (Experiment 1: PPASLTD) 

 PASSHAM→PASLTD PASLTP→PASLTD PASSHAM→PASSHAM PASLTD→PASLTD 

Grand 

Average 

-34.23%* 25.23% -14.49% -8.59% 

95% CI (-50.80%, -12.09%) (-6.31%, 67.39%) (-36.03%, 14.30%) (-31.61%, 22.19%) 

p-value 0.0048 0.1294 0.2901 0.5495 

* Significant change from baseline p<0.05  

 

Figure 12. Grand average (average of all posttests) percent 

change from baseline excitability for responders only (n=8). 

MEPAmp refers to peak-to-peak motor-evoked potential 

amplitude. Striped circle indicates significant change from 

baseline (p<0.05). Asterisk (*) indicates significant difference 

from another intervention (p<0.05). Error bars are 95% CIs. 
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Responders: Linear Trend 

When separated from the whole group, responders still did not exhibit a significant linear 

trend in change from baseline excitability following any intervention. However, 

PASSHAM→PASLTD produced a consistently suppressed change from baseline excitability 

during the entire 60-minute post-test period (Figure 13).  

           

           

The average percent change from baseline in peak-to-peak MEP amplitude for responders 

to the sham-primed intervention (n=8) are shown in Table 6. The sham-primed 

intervention, PASSHAM→PASLTD is the only intervention to produce significant changes 

from baseline in this sub-group. These occur at 0, 10, 20, 50 and 60 minutes following 

intervention and range from -42.5% to -32.2%. The PASLTP→PASLTD intervention 

creates a 43.5% and a 45.0% increase from baseline excitability at 10 and 20 minutes, 

respectively but these do not reach significance (p=0.06, p=0.09, respectively). The 

PASSHAM→PASLTD intervention significantly decreased excitability compared to 

PASLTP→PASLTD at all time points except 40 minutes following intervention. 

Figure 13. Responders only (n=8) time course of percent change from 

baseline excitability at each posttest. MEPAmp refers to peak-to-peak motor-

evoked potential amplitude. Linear trend analyses do not reveal significance 

but the PASSHAM→PASLTD intervention remains steadily suppressed. Open 

markers indicate significant difference from baseline (p<0.05). 
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PASLTP→PASLTD significantly increased excitability compared to PASSHAM→PASSHAM 

at 10 minutes and PASLTD→PASLTD at 20 minutes (Table 6). 

 

Table 6. Responders Only Percent Change from Baseline Peak-to-Peak MEP Amplitude 

for each Intervention at each Time Point (Experiment 1: PPASLTD) 

Time since 

intervention 

(minutes) 

PASSHAM→PASLTD PASLTP→PASLTD PASSHAM→

PASSHAM 

PASLTD→PASLTD 

0 -42.46%*b 26.89%a -12.50% -7.32% 

10 -35.43%*b 43.52%ac -19.65%b -15.47% 

20 -33.93%*b 40.99%ad 8.97% -24.50%b 

30 -29.21%b 24.34%a 1.88% 10.71% 

40 -28.71% 2.68% -23.26% -9.22% 

50 -32.08%*b 18.71%a -27.56% -4.50% 

60 -37.19%*b 24.08%a -23.09% -5.81% 

Values are estimates of the average 

* Significant change from baseline p<0.05  

a Significant change from PASSHAM→PASLTD p<0.05 

b Significant change from PASLTP→PASLTD p<0.05 

c Significant change from PASSHAM→PASSHAM p<0.05 

d Significant change from PASLTD→PASLTD p<0.05 

 

Nonresponders: Grand Average Change from Baseline 

Those categorized as nonresponders to PASSHAM→PASLTD exhibited no significant grand 

average change in baseline excitability following any intervention (Figure 14 & Table 7). 

However, the increase in excitability following PASLTP→PASLTD came close to 

significance at p=0.0501. 
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Table 7. Nonresponders Only Grand Average Percent Change from Baseline Peak-to-Peak 

MEP Amplitude for each Intervention (Experiment 1: PPASLTD) 

 PASSHAM→PASLTD PASLTP→PASLTD PASSHAM→PASSHAM PASLTD→PASLTD 

Grand 

Average 
16.44% 36.49% 21.34% 10.15% 

95% CI (-14.64%, 58.84%) (0.10%, 86.10%) (-11.05%, 65.52%) (-19.21%, 50.19%) 

p-value 0.3377 0.0501 0.2211 0.544 

 

Nonresponders: Linear Trend 

The PASLTP→PASLTD intervention produced a significantly increasing trend in 

corticospinal excitability over the 60-minute post-intervention period (p=00087) (Figure 

15). The increasing trend in excitability produced by PASLTP→PASLTD significantly 

Figure 14. Grand average (average of all posttests) percent 

change from baseline excitability for nonresponders only (n=7). 

MEPAmp refers to peak-to-peak motor-evoked potential 

amplitude. Error bars are 95% CIs. 
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differs from those produced by the PASSHAM→PASLTD (p=0.0367) and 

PASSHAM→PASSHAM (p=0.005) interventions. 

 

            

            

 

The average percent change from baseline corticospinal excitability for each timepoint is 

given in Table 8. PASLTP→PASLTD significantly increased corticospinal excitability at 40 

and 50 minutes. Interestingly, the PASSHAM→PASSHAM intervention significantly 

increased excitability (57%) at 30 minutes following intervention. Change from baseline 

excitability did not differ between interventions at the same time point.  

 

 

 

Figure 15. Nonresponders only (n=7) time course of percent change from 

baseline excitability at each posttest. MEPAmp refers to peak-to-peak motor-

evoked potential amplitude. Dotted line indicates significant (p<0.05) trend. 

Open markers indicate significant (p<0.05) difference from baseline. 
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Table 8. Nonresponders Only Percent Change from Baseline Peak-to-Peak MEP 

Amplitude for each Intervention at each Time Point (Experiment 1: PPASLTD) 

Time since 

intervention 

(minutes) 

PASSHAM→PASLTD PASLTP→PASLTD PASSHAM→

PASSHAM 

PASLTD→PASLTD 

0 4.30% 0.30% 41.48% -1.60% 

10 34.09% 21.20% 21.17% 15.37% 

20 19.32% 38.77% 11.74% 16.28% 

30 23.72% 26.47% 56.96%* -2.05% 

40 16.44% 58.67%* 8.59% 31.04% 

50 12.36% 72.78%* 20.28% 6.22% 

60 7.37% 50.76% -0.92% 8.89% 

Values are estimates of the average 

* Significant change from baseline p<0.05  

 

 

4.3.0 Experiment 2 (PPASLTP) 

The primary aim for Experiment 2 was to compare the effect of PASLTD priming 

followed by principle PASLTP (PASLTD→PASLTP) to sham-primed PASLTP 

(PASSHAM→PASLTP) on corticospinal excitability in healthy individuals. Like the 

previous section, the results that follow are broken into two sections, Whole Group 

Analyses and Responder & Nonresponder Analyses. Results from the Grand Average 

Change from Baseline and Linear Trend analyses will be described separately within 

each section. 
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4.3.1 Experiment 2 (PPASLTP): Whole Group Analyses 

Grand Average Change from Baseline 

No intervention resulted in a significant change from baseline excitability (Figure 16 & 

Table 9). 

 

 

  

Table 9. Whole Group Grand Average Percent Change from Baseline Peak-to-Peak MEP 

Amplitude for each Intervention (Experiment 2 :PPASLTP) 

 PASSHAM→PASLTP PASLTD→PASLTP PASSHAM→PASSHAM PASLTP→PASLTP 

Grand 

Average 

10.31% 0.16% 2.97% -2.73% 

95% CI (-11.42%, 37.36%) (-19.57%, 24.73%) (-17.31%, 28.22%) (-21.88%, 21.13%) 

p-value 0.381 0.9878 0.7938 0.7254 

 

Figure 16. Grand average (average of all posttests) percent 

change from baseline excitability for the whole group (n=16). 

MEPAmp refers to peak-to-peak motor-evoked potential 

amplitude. Error bars are 95% CIs. 



71 
 

Linear Trend Analyses 

No intervention resulted in a significant linear trend in change from baseline corticospinal 

excitability over the 60-minute post-intervention period. There were no significant 

differences between trends in change in excitability following any intervention (Figure 

17). 

               

               

 

The average percent change from baseline excitability at each time point for each 

intervention are listed in Table 10. No intervention elicited a significant change from 

baseline at any time point during the 60-minute post-test period. Furthermore, no 

intervention produced a change in excitability that significantly differed from another 

intervention at the same time point (Table 10). 

 

 

Figure 17. Whole group (n=16) time course of percent change from 

baseline excitability at each posttest. MEPAmp refers to peak-to-peak 

motor-evoked potential amplitude. Linear trend analyses do not reveal 

significance at p<0.05. 
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Table 10. Whole Group Percent Change from Baseline Peak-to-Peak MEP Amplitude for 

each Intervention at each Time Point (Experiment 2: PPASLTP) 

Time since 

intervention 

(minutes) 

PASSHAM→PASLTP PASLTD→PASLTP PASSHAM→

PASSHAM 

PASLTP→PASLTP 

0 4.83% -6.89% -20.75% -15.86% 

10 -2.28% -4.28% -3.83% -21.48% 

20 10.64% -4.72% 7.62% 7.67% 

30 10.28% -2.50% 18.33% 23.23% 

40 20.64% 9.62% 28.65% -3.17% 

50 14.82% 11.63% -1.37% 5.12% 

60 14.74% 0.003% -0.46% -8.17% 

Values are estimates of the average 

 

4.3.2 Experiment 2 (PPASLTP): Responder & Nonresponder Analyses 

Responder to Nonresponder Ratios 

The ratio of responders to nonresponders varied from 7:9 to 10:6 for the four different 

interventions (Table 11). Similar to Experiment 1, the sham-primed intervention resulted 

in the highest number of responders with 10 out of 16 (62.5%) individuals that exhibited 

a facilitation of grand average excitability by ≥10%. The PASLTD→PASLTP intervention 

produced 50% responders and the PASLTP→PASLTP intervention produced 56.25% 

responders. Although the PASSHAM→PASSHAM intervention produced the fewest number 

of responders, it still elicited a ≥10% increase from baseline excitability in 7 out of 16 

individuals. Again, there was no pattern in individual response to each intervention. 

 

Table 11. Responder to Nonresponder Ratios for each Intervention (Experiment 2: 

PPASLTP) 

 PASSHAM→PASLTP PASLTD→PASLTP PASSHAM→PASSHAM PASLTP→PASLTP 

R:NR 10:6 8:8 7:9 9:7 

Responder (R); Nonresponder (NR) 
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Responders: Grand Average Change from Baseline 

The PASSHAM→PASLTP intervention resulted in a significant increase from baseline 

excitability (p=0.0009) (Figure 18 & Table 12). This increase in excitability is expected 

because responders were categorized based on a facilitatory response to 

PASSHAM→PASLTP. No other intervention produced a significant change from baseline. 

The increase from baseline excitability following PASSHAM→PASLTP significantly 

differed from PASSHAM→PASSHAM (p=0.0226).  

 

 

 

 

Figure 18. Grand average (average of all posttests) percent change 

from baseline excitability for responders only (n=10). MEPAmp 

refers to peak-to-peak motor-evoked potential amplitude. Striped 

circle indicates significant change from baseline (p<0.05). Asterisk 

(*) indicates significant difference between interventions (p<0.05). 

Error bars are 95% CIs. 
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Table 12. Responders Only Percent Change from Baseline Peak-to-Peak MEP Amplitude for 

each Intervention (Experiment 2: PPASLTP) 

 PASSHAM→PASLTP PASLTD→PASLTP PASSHAM→PASSHAM PASLTP→PASLTP 

Grand 

Average 

59.81%* 12.62% 6.07% 12.80% 

95% CI (21.57%, 110.08%) (-14.37%, 48.11%) (-19.31%, 39.44%) (-14.23%, 38.35%) 

p-value 0.0009 0.3959 0.6973 0.4732 

* Significant change from baseline p<0.05  

 

Responders: Linear Trend Analyses 

PASLTP→PASLTP and PASSHAM→PASSHAM produced significant linear trends in change 

from baseline excitability over time (p=0.0271 and p=0.0067, respectively) (Figure 19). 

No other significant trends or differences between trends were revealed. 

       

 

 

 

 

 

 

Figure 19. Responders only (n=10) time course of percent change from 

baseline excitability at each posttest. MEPAmp refers to peak-to-peak motor-

evoked potential amplitude. Dotted line represents significant linear trend 

(p<0.05). Open markers indicate significant difference from baseline 

(p<0.05).  
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The average percent change from baseline in peak-to-peak MEP amplitude for responders 

(n=10) are shown in Table 13. PASSHAM→PASLTP significantly increased corticospinal 

excitability at 10, 20, 30, 40, 50 and 60 minutes following intervention.  Contrary to the 

hypothesis, PASLTP→PASLTP also significantly increased excitability at 30 minutes 

following intervention. PASSHAM→PASLTP more effectively increased excitability at 10 

and 40 minutes compared to PASLTP→PASLTP but only increased excitability at 10 

minutes compared to the PASSHAM→PASSHAM intervention. 

 

Table 13. Responders Only Percent Change from Baseline Peak-to-Peak MEP Amplitude 

for each Intervention at each Time Point (Experiment 2: PPASLTP) 

Time since 

intervention 

(minutes) 

PASSHAM→PASLTP PASLTD→PASLTP PASSHAM→

PASSHAM 

PASLTP→PASLTP 

0 37.56%c 5.85% -25.87% -9.22% 

10 44.74%*cd -0.46% -9.01%a -14.49%a 

20 55.20%* 6.91% 10.71% 22.07% 

30 64.32%* 8.47% 25.95% 48.90%* 

40 87.37%*d 22.07% 24.02% 14.29%a 

50 63.68%* 33.60% 9.62% 35.08% 

60 71.00%* 15.21% 18.11% 6.78% 

Values are estimates of the average 

* Significant change from baseline p<0.05  

a Significant change from PASSHAM→PASLTD p<0.05 

c Significant change from PASSHAM→PASSHAM p<0.05 

d Significant change from PASLTD→PASLTD p<0.05 

 

Nonresponders: Grand Average Change from Baseline 

PASSHAM→PASLTP significantly decreased excitability in the nonresponder group 

(p=0.0042). This change from baseline excitability significantly differs from that 

produced by PASSHAM→PASSHAM (p=0.0315) (Figure 20 & Table 14). 
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Table 14. Nonresponders Only Percent Change from Baseline Peak-to-Peak MEP Amplitude 

for each Intervention (Experiment 2: PPASLTP) 

 PASSHAM→PASLTP PASLTD→PASLTP PASSHAM→PASSHAM PASLTP→PASLTP 

Grand 

Average 
-40.57%* -17.40% -2.05% -24.14% 

95% CI (-58.26%, -15.38%) (-41.99%, 17.62%) (-31.21%, 39.47%) (-42.32%, -0.24%) 

p-value 0.0042 0.2874 0.9116 0.1249 

* Significant change from baseline p<0.05  

 

 

 

 

 

Figure 20. Grand average (average of all posttests) percent change 

from baseline excitability for nonresponders only (n=6). MEPAmp 

refers to peak-to-peak motor-evoked potential amplitude. Striped 

circle indicates significant change from baseline (p<0.05). Asterisk 

(*) indicates significant difference between interventions (p<0.05). 

Error bars are 95% CIs. 
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Nonresponders: Linear Trend Analyses 

No significant linear trends were observed following any intervention (Figure 21).  

          

             

 

The average change from baseline excitability for each intervention at each time point is 

listed in Table 15. PASSHAM→PASLTP significantly decreased excitability in the 

nonresponder group at 10, 30, 40 and 60 minutes following intervention. At 10, 30 and 

40 minutes, this decrease in excitability significantly differs from the average change 

produced by PASSHAM→PASSHAM.  

 

 

 

 

Figure 21. Nonresponders only (n=6) time course of percent change from 

baseline excitability at each posttest. MEPAmp refers to peak-to-peak motor-

evoked potential amplitude. Linear trend analyses do not reveal significance at 

p<0.05. Open markers indicate significant difference from baseline. 
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Table 15. Nonresponders Only Percent Change from Baseline Peak-to-Peak MEP 

Amplitude for each Intervention at each Time Point (Experiment 2: PPASLTP) 

Time since 

intervention 

(minutes) 

PASSHAM→PASLTP PASLTD→PASLTP PASSHAM→

PASSHAM 

PASLTP→PASLTP 

0 -33.32% -24.32% -11.28% -25.87% 

10 -49.18%*c -10.46% 5.71%a -31.77% 

20 -37.05% -21.48% 2.64% -12.70% 

30 -43.25%*c -18.15% 6.64%a -10.05% 

40 -42.06%*c -8.38% 36.71%a -26.38% 

50 -36.47% -17.21% -17.21% -30.82% 

60 -40.98%* -20.93% -25.18%d -29.04%c 

Values are estimates of the average 

* Significant change from baseline p<0.05  

a Significant change from PASSHAM→PASLTD p<0.05 

c Significant change from PASSHAM→PASSHAM p<0.05 

 

4.4.0 Responder & Nonresponder Characteristics 

The fourth, exploratory, aim of this study investigated the possibility that there exists a 

relationship between individual characteristics (MEP onset latency and presence of the 

BDNF Val66Met polymorphism) and an individual’s categorization as a responder or 

nonresponder to sham-primed PAS.  

  

4.4.1 Experiment 1 (PPASLTD) 

MEP Onset Latency 

The induction of posterior-anterior current flow across the central sulcus resulted in 

elicitable MEPs from five responders and six nonresponders. The average MEP onset 

latencies were 25.07 ± 0.24 ms and 25.65 ± 0.51 ms for responders and nonresponders, 

respectively. This difference was not significant (p=0.7482) (Figure 22).  
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Figure 22. Average motor-evoked potential (MEP) 

onset latencies for responders and nonresponders.  

Error bars are SEM 

Figure 23. Frequency of individuals with (dark) and 

without (light) the Val66Met polymorphism for both 

responders and nonresponders. 

                          

  

   

 

 

Val66Met polymorphism 

Five out of 15 individuals (33.33%) had the Val66Met BDNF polymorphism. Presence of 

the polymorphism was significantly higher among nonresponders (4 out of 7) compared 

to responders (1 out of 8) (p<0.0001) (Figure 23).  
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Figure 24. Average motor-evoked potential 

(MEP) onset latencies for responders and 

nonresponders. Error bars are SEM 

4.4.2 Experiment 2 (PPASLTP) 

MEP Onset Latency 

The posterior-anterior current flow elicited MEPs from nine responders and four 

nonresponders. The average latencies were 25.62 ± 1.12 ms and 24.36 ± 0.96 ms for 

responders and nonresponders, respectively. This difference was not significant 

(p=0.4875) (Figure 24). 

 

                              

 

 

 

 

Val66Met Polymorphism 

Six out of 16 individuals (37.5%) had the Val66Met BDNF polymorphism. Unlike 

Experiment1, presence of the polymorphism appears slightly higher among responders (4 

out of 10) compared to nonresponders (2 out of 6) but this difference is not significant 

(p=0.790) (Figure 25). 



81 
 

Figure 25. Frequency of individuals with (dark) 

and without (light) the Val66Met polymorphism 

for both responders and nonresponders. 

                        

 

 

 

 

4.5.0 MEP Test-Retest Reliability 

The ICCs revealed low between-session test-retest reliability across all four baseline 

sessions within individuals for Experiment 1 (0.07) and Experiment 2 (0.005). Between-

session variability is expected and was accounted for in the study design by re-

establishing the motor hotspot and RMT each session and by using a percentage of RMT 

(i.e. 130% RMT) for testing and interventional intensities. 

 

4.6.0 Carry-over 

Although significant differences were found between average baseline measures (within 

an individual), these differences did not differ systematically across individuals. Thus, we 

conclude that there was no carry-over effect between sessions and that the one-week 

washout period was sufficient. 
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4.7.0 Alternative Exploratory Analyses 

Several alternative analyses were completed in an exploratory attempt to view the data 

from multiple perspectives. Although the detailed methodology and results of these 

analyses will not be described in this dissertation, it is important to continue a multi-

faceted approach to neuromodulation data analysis because investigators do not yet know 

which approach is favorable and it appears that the landscape of analyses is shifting 

toward recognition of individual analyses and the important roles that these may play in 

designing individualized treatment plans. 

 

4.7.1 Individual Visual Analyses 

Bar graphs and linear trend plots were created to depict the grand average change from 

baseline excitability for each individual following each intervention. A visual assessment 

was used to look for systematic variations in individual responses that correlated with 

gender, age, MEP onset latency or presence of the Val66met polymorphism. No 

systematic variations were found.  

 

4.7.2 Responders vs. Nonresponders 

Contrasts were created to compare the average change from baseline following each 

intervention between responders and nonresponders. This type of analysis may provide 

an estimate for how much more or less an intervention influences responders compared to 

nonresponders. Because there were no significant differences from baseline excitability 

(except for the expected difference following sham-primed intervention) for responders 

or nonresponders, finding a difference in response between responders and 

nonresponders is statistically irrelevant. However, nonresponders may be considered a 

type of control group (i.e. no predictable response to neuromodulation) thus a statistical 

difference in response may describe the influence that an intervention has on those who 

would benefit from intervention compared to those who do not. For Experiment 1, 

responders and nonresponders significantly differed (p<0.05) at 0, 10 and 20 minutes 

following PASSHAM→PASLTD. No other differences were found. For Experiment 2, the 
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response of responders and nonresponders significantly differed (p<0.05) at each post-

test time point following PASSHAM→PASLTP. No other differences were found. 

 

4.8.3 Sham-Removal 

Corticospinal excitability is inherently variable.11,186 Theoretically, measures taken 

following PASSHAM→PASSHAM represent normal variations in excitability. Because of 

this, the values of corticospinal excitability at each time point following 

PASSHAM→PASSHAM may be subtracted from the values of excitability at each time point 

following each other intervention. This provides a value that seemingly accounts for 

inherent variability and represents the true difference in excitability caused by the 

intervention. However, the statistical estimates for excitability following 

PASSHAM→PASSHAM are actually an unknown combination of true value and error. When 

these estimates are subtracted from estimates of another intervention, the uncertainty of 

the amount of error increases. Thus, it provides an estimate with more uncertainty and 

effectively a lower “signal-to-noise” ratio. Despite this limitation, analyses were 

completed to see if sham-removal affected previously established results. The removal of 

sham estimates did not change the significance of any findings in grand average change 

from baseline for the Whole Group, Responders and Nonresponders for both 

experiments. 

 

4.8.4 Raw MEP Values 

Although the raw MEP values were highly skewed left and thus log10 transformed for the 

primary analyses, some argue that transforming data may not reduce variability and that 

results of statistical tests performed on transformed data do not translate to the raw 

data.187 Furthermore, most statistical tests are more robust to non-normal distributions 

than what is commonly believed. Thus, the same statistical analyses that were performed 

on the transformed data were also performed with the raw data. When compared to 

results from the transformed analyses, the raw analyses did not produce any differences 

in statistical significance findings.  
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4.7.5 BDNF Val66Val and Val66Met 

Presence of the Val66Met polymorphism of BDNF may influence response to PAS.73 

Each participant in this study provided a saliva sample from which DNA was extracted 

and assessed for either the Val66Val (no polymorphism) or the Val66Met 

(polymorphism) sequence. Within-intervention grand average change from baseline 

analyses for each group (Val66Val and Val66Met) in each experiment may explain 

differences in response to PAS intervention better than responder and nonresponder 

categorizations. Thus, a model similar to the Responder, Nonresponder model was 

developed and contrasts were created to assess within-intervention grand average change 

from baseline for Val66Val and Val66Met individuals. No difference from baseline 

excitability was found for either group in Experiment 1. A significant increase from 

baseline excitability was found in individuals with no polymorphism (Val66Val) 

following PASLTP→PASLTD in Experiment 2 (p=0.018). This was the only significant 

finding. Thus, those without the Val66Met BDNF polymorphism did not exhibit a 

significant change in excitability following PPASLTP interventions but they did exhibit an 

increase in excitability following PASLTP→PASLTD. As expected, those with the 

Val66Met polymorphism did not exhibit a significant change from baseline excitability 

following any intervention. Due to the exploratory nature of this analytical approach as 

well as the lack of statistically significant change from baseline excitability findings, 

between-intervention and between-group analyses were not pursued. 
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5.0.0 Discussion 

The purpose of this study was to assess the influence of PPASLTD and PPASLTP on 

corticospinal excitability and to investigate potential characteristics that may indicate 

whether an individual will or will not benefit from brain stimulation. Thirty-two healthy 

participants were randomized into and completed one of two experiments. The first 

experiment assessed changes in corticospinal excitability following PPASLTD 

interventions: PASSHAM→PASLTD, PASLTP→PASLTD, PASLTD→PASLTD and 

PASSHAM→PASSHAM. The second experiment assessed changes in corticospinal 

excitability following PPASLTP interventions: PASSHAM→PASLTP, PASLTD→PASLTP, 

PASLTP→PASLTP and PASSHAM→PASSHAM. The interest in using PAS to alter 

excitability stems from evidence that the addition of peripheral input augments motor 

function and changes in corticomotor pathway excitability in people with stroke.14 

Furthermore, the mechanism of action appears to be the induction of STDP which 

primarily drives experience-dependent motor learning.65 Therefore, the clinical potential 

of PAS lies in its ability to mimic natural mechanisms of motor learning and enhance the 

use of previously dormant motor pathways. Although PAS has a demonstrated ability to 

alter excitability, it is not yet possible to foresee who will respond predictably and who 

will not. Priming is hypothesized to improve the predictability of response by inducing a 

larger change from baseline corticospinal excitability through the use of sliding 

thresholds. To date, this study is the first to assess the effects of all combinations of 

PPASLTP and PPASLTD on corticospinal excitability. A summary of major findings along 

with a discussion of considerations, limitations, and future implications for each 

experiment follow.   

 

5.1.0 Summary of Findings: Specific Aims 

Across both experiments, the primary finding is that PASLTP→PASLTD significantly 

increased excitability in healthy young adults. Furthermore, presence of the BDNF 

Val66Met polymorphism was significantly higher in individuals that did not respond 

predictably to PASSHAM→PASLTD compared to those who did respond predictably. 
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Although categorization of responders and nonresponders may help to identify 

individuals who will benefit from unprimed or sham-primed PAS interventions, this 

categorization does not seem to influence response to PPAS interventions. The primary 

findings for each specific aim are listed below: 

 

5.1.1 Specific Aim #1 (Experiment 1: PPASLTD) 

Compare the effect of PASLTP priming followed by principal PASLTD (PASLTP→PASLTD) to 

sham-primed PASLTD (PASSHAM→PASLTD) on corticospinal excitability in healthy 

individuals. 

 

Experimental hypothesis: 

PASLTP→PASLTD will utilize homeostatic mechanisms of synaptic plasticity, 

resulting in a greater decrease in corticospinal excitability as evidenced by a 

reduction in peak-to-peak amplitude of motor evoked potentials.  

 

Findings:  

PASLTP→PASLTD significantly increased excitability over a 60-minute post-

intervention period in healthy young adults and the excitability following 

PASLTP→PASLTD was significantly higher than that resulting from 

PASSHAM→PASLTD. Within the 60-minute period following PASLTP→PASLTD, 

excitability was greatest at 10, 20, 50 and 60 minutes. At 50 and 60 minutes, 

change from baseline excitability was significantly greater than that resulting 

from the control and sham interventions, PASSHAM→PASLTD and 

PASSHAM→PASSHAM. These findings oppose our hypothesis stating that the 

PASLTP priming would decrease the threshold for suppression thus leading to a 

greater amount of suppression following PASLTD principal.  
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5.1.2 Specific Aim #2 (Experiment 2: PPASLTP) 

Compare the effect of PASLTD priming followed by principal PASLTP (PASLTD→PASLTP) to 

sham-primed PASLTP (PASSHAM→PASLTP) on corticospinal excitability in healthy 

individuals. 

 

Experimental hypothesis: 

PASLTD→PASLTP will utilize homeostatic mechanisms of synaptic plasticity, 

resulting in a greater increase in corticospinal excitability as evidenced by an 

increase in peak-to-peak amplitude of motor evoked potentials. 

 

Finding:  

No significant within- or between- intervention differences in corticospinal 

excitability were observed. This does not support our hypothesis that PASLTD 

priming will decrease the threshold for inducing facilitation thus increasing 

facilitatory effects of PASLTP principal. 

 

5.1.3 Specific Aim #3 

Compare the ratio of responders to nonresponders between PASLTP→PASLTD and 

PASSHAM→PASLTD and between PASLTD→PASLTP and PASSHAM→PASLTP.  

 

Experimental hypothesis: 

Priming will weight synaptic plasticity in a known direction, making it easier to 

weight synaptic plasticity in the opposite direction. This will result in an increased 

ratio of responders to nonresponders following PPASLTD and PPASLTP 

interventions.  

 

Findings:  

PASLTP→PASLTD produced fewer responders and thus a smaller ratio (3:12) 

compared to PASSHAM→PASLTD (8:7). PASLTD→PASLTP resulted in a slightly 
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smaller ratio of responders to nonresponders (8:8) compared to 

PASSHAM→PASLTP (10:6). Both of these findings oppose our hypothesis that 

priming will increase the number of responders by increasing the aftereffects of 

PAS.  

 

5.1.4 Specific Aim #4  

Compare the presence of the BDNF Val66Met polymorphism and the latency of MEP 

onset between responders and nonresponders for both PASSHAM→PASLTD and 

PASSHAM→PASLTP.  

 

Experimental hypothesis: 

Presence of the Val66Met polymorphism will alter plasticity and thus be higher in 

individuals categorized as nonresponders. The MEP onset latency from MEPs 

collected with the induction of anterior-poster current flow will differ between 

individuals categorized as responders and those categorized as nonresponders. 

 Findings: 

MEP Onset Latency: Results indicate that the MEP onset latency did not differ 

between responders and nonresponders for PASLTP or PASLTD. 

 

BDNF Val66Met Polymorphism: Over 1/3 of the individuals in this study had 

the Val66Met polymorphism. Nonresponders following PASLTD had a 

significantly higher proportion of individuals with the Val66Met polymorphism 

compared to those that were categorized as responders. Interestingly, there was no 

difference in the presence of the Val66Met polymorphism between nonresponders 

and responders following PASLTP.  

 

 

 

 



89 
 

5.2.0 Considerations & Limitations  

The two experiments within this study are technically identical except for the nature of 

the intervention (i.e. the ISI between the peripheral and cortical stimuli). Thus, common 

decisions regarding the protocol may influence the interpretation of findings from either 

experiment.  

 

Study Design & Primary Outcome Measure 

The cross-over design of this study allows for individual responses to be compared 

following each intervention. This design enables a smaller sample size and strengthens 

the interpretation of between-intervention variability by assigning less variability to 

differences between participants. Although carry-over of effects is a concern when using 

a cross-over design, our analysis found no evidence of carry-over suggesting that the one-

week washout period was sufficient. For this study, a cross-over design is especially 

important for the interpretation of responder and nonresponder ratios following each 

intervention. Because each individual received each intervention, investigators could 

track who was categorized as a nonresponder to sham-primed PAS and see if this 

assignment changed following active-primed interventions. There was no pattern of 

change in those who converted from responders to nonresponders or in those who 

converted from nonresponders to responders following PPAS for either experiment. This 

finding provides evidence that priming does not convert nonresponders to responders 

and, in conjunction with our corticospinal excitability, supports the conclusion that PPAS 

does not improve response to PAS by augmenting excitability changes and capturing 

more individuals as responders.  

 

This study only had one primary outcome measure which was the average of 20 peak-to-

peak MEP amplitudes. Other measures of intracortical excitability including SICI and 

ICF would have provided a stronger interpretation of which networks may have been 

modulated by each PPAS intervention. These measures could have also provided 

evidence of neuromodulation in networks that may not be obvious in gross measures like 
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MEP amplitude. However, a recent review of evidence suggests that the influence of PAS 

on SICI is highly inconsistent and that PAS exerts no influence on ICF.158 The use of 

MEP amplitude is more common and the influence of PAS is more consistent which 

makes this an outcome measure that is more easily compared between studies. 

Furthermore, the reliability of SICI and ICF is less consistent than that of MEP 

amplitude. Although our ICC values exhibit low test-retest reliability, several other 

studies139,140 support the reliability of MEP amplitude. Due to the novelty of this study, 

the apparent lack of a consistent influence on intracortical measures and the higher 

reliability of MEP amplitude measures, MEP amplitude was chosen as the sole primary 

outcome measure.  

 

Attention 

Stefan et al (2004) showed that attention may influence an individual’s response to 

PASLTP. By attending to the peripheral nerve stimulus at the wrist, participants focused 

attention on a specific task which resulted in a larger change in peak-to-peak MEP 

amplitudes. Although this is a viable approach to account for attentional differences and 

potentially reduce variability in response, it has only been tested for PASLTP. It is possible 

that attending to a task serves to increase excitability, thus contributing to the increase in 

peak-to-peak MEP amplitudes. If this is true, it would counteract the attempt to suppress 

excitability using PASLTD. The purpose of this study was not to address the effect of 

attention on response to PAS so participants were not directed to attend to a specific task. 

Because this study was separated into two experiments, it would have been possible to 

ask participants within Experiment 2 (PPASLTP) to attend to a task without concern about 

how attention would influence interventions with principal PASLTD. However, the tester 

was blinded to the assignment of each participant and having only one group of 

participants attend to a task would unblind the tester. 
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Other Variables  

Variables other than attention may influence an individual’s response thus contributing to 

the observed variability and large SEM values. Cortisol levels are known to fluctuate 

throughout the day according to a circadian rhythm. These fluctuations may influence 

corticospinal excitability.169 Investigators addressed this concern by scheduling 

participants at the same time of day and the same day of the week each week. Although 

some sessions strayed from this pattern due to scheduling conflicts, most adhered to the 

same weekly time and day thus reducing variability from circadian cortisol levels. The 

influence of caffeine appears to be minimal or non-existent188 so caffeine intake was not 

monitored and participants were only asked to keep caffeine intake consistent prior to 

each session. A woman’s menstrual cycle is known to influence measures of 

corticospinal excitability.189 This is relevant to our findings because over half (58%) of 

participants were women of child-bearing age and each individual returned for a session 

on one day a week for four weeks. Thus, the duration of an individual’s participation in 

this study spans the average 28-day cycle of menstruation and captures a woman at each 

week within this cycle. Further evidence is needed to determine what impact sex 

hormones have on corticospinal excitability and if stage of menstrual cycle should be 

controlled for in future neuromodulation studies. 

 

Number of Pulses 

This study was designed with comparisons between active-primed, sham-primed and 

sham-sham interventions. Sham priming allows participants to remain blinded to the 

nature of the intervention (primed or unprimed) and allows for the same amount of time 

to pass between pretest and posttest measures regardless of the intervention so the length 

of time between pretest and posttest did not differ between interventions. However, the 

nature of our sham intervention caused the number of cortical and peripheral pulses to 

differ between interventions. Earlier studies have constructed sham interventions to 

utilize an interstimulus interval of N20+100 ms157 or an alternation between different 

intervals.167 It is argued that this provides the same number of stimuli without inducing 
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STDP-like changes in neuroplasticity. However, it is possible that peripheral nerve or 

cortical stimulation alone still alter excitability. To avoid the possibility that an active-

sham intervention would influence excitability, we used a sham air-film coil which 

provides no cortical stimulation and did not apply peripheral stimuli. This provides a true 

period of time without externally-influenced neuromodulation. A limitation of this 

approach is that a different number of stimuli are delivered between interventions. 

Although this would not have an impact on the interpretation of within-intervention 

analyses, it may impact the interpretation of comparisons between the sham-primed and 

active-primed interventions because the active-primed interventions provide twice the 

number of stimuli. Increasing the number of TMS pulses is known to impact 

corticospinal excitability by increasing MEP amplitudes.190 The influence of increasing 

pairs of transcranial magnetic and peripheral nerve stimuli is unknown. If the increased 

number of TMS pulses in active-primed PAS increases excitability, all active-primed 

PAS interventions (facilitatory and suppressive) should increase excitability more than 

their sham-primed counterparts. This study did not find that relationship. Thus the effect 

of different numbers of pairs of pulses during PAS may be more complicated. Yet it is 

interesting to consider the impact that multiple TMS pulses may have on outcome 

measures during the 60-minute post-intervention period. Applying 20 pulses at a rate of 

0.1 Hz every 10 minutes may influence excitability through mechanisms like anti-gating. 

Our study did not find significant positive or negative trends in whole group analyses 

however a visual analysis of linear trends shows that most are either near zero for 

PPASLTD interventions or slightly positive for PPASLTP interventions. It remains possible 

that the repeated TMS pulses given during post-intervention testing may suppress 

suppressive effects and/or augment facilitatory effects.  

 

Length of Time between Priming and Principal PAS 

The existence of multiple PAS and PPAS protocols allows a variety of parameters to be 

defined but it reduces the number of reproduced PAS studies thus challenging the 

interpretation of general efficacy. The priming protocol for this study mimics previous 
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studies whereby the principal bout of PAS occurs 3-5 minutes after the priming bout of 

PAS. Our findings do not support this protocol as an effective method of priming. Recent 

evidence suggests that the length of time between priming and principal may be a 

significantly influential parameter. A 10 minute break between bouts increases the 

duration of PPASLTP effects whereas a break of 30 minutes actually increases both the 

magnitude and duration of PPASLTP effects.165 The shorter break (less than 5 minutes) 

used in this study may not have given sufficient time for the aftereffects of priming PAS 

to be captured during the application of principal PAS. 

 

Unintended Interruption of Priming or Principal PAS 

This study used the Magstim 2002 stimulator and a D702 coil for TMS delivery. During 

PPAS, we experienced technical errors that included coil overheating and machine error 

codes E86, E80 and E74 indicating grounding faults, capacitor errors and stimulator 

overheating. These errors caused the machine to automatically shut down requiring 5-30 

minutes of machine cooling, coil switching or investigator problem solving to resolve the 

issue. This occurred in ~7.5% of sessions. Because this introduced a variable length of 

time between priming and principal PAS for some individuals and caused an unintended 

interruption of priming or principal PAS, investigators conducted an outlier analysis by 

marking these sessions as outliers and comparing analyses that included these outliers to 

those that excluded potential outliers. This comparison found no differences in results 

that included the potential outlier sessions compared to those without the outlier sessions. 

Thus, the sessions with unintended interruptions were not treated as outliers. 

 

5.2.1 Considerations for Experiment 1: PPASLTD 

This is the first known investigation of PPASLTD. We tested the influence of two different 

PPASLTD interventions: PASLTP→PASLTD and PASLTD→PASLTD on corticospinal 

excitability. The observed increase in corticospinal excitability following 

PASLTP→PASLTD was unexpected. According to the Bienenstock-Cooper-Munro theory 

of sliding thresholds, the application of priming PASLTP should have decreased the 
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threshold of induction of LTD which makes it easier to induce LTD and suppress 

excitability. Our findings indicate that principal PASLTD did not suppress excitability 

more when primed with PASLTP compared to when it is sham-primed (i.e. unprimed). 

Instead, principal PASLTD significantly increased excitability when primed with PASLTP. 

When responders and nonresponders to sham-primed PASLTD were analyzed separately, 

the trend in change from baseline excitability following PASLTP→PASLTD was 

significantly positive for nonresponders only. Thus, it appears that the unexpected 

facilitatory influence of PASLTP→PASLTD primarily occurs in those who do not respond 

predictably to PASLTD. Considering the short window of efficacy for PASLTD (<4.5 

ms),191 it is possible that the N20-5ms interstimulus interval does not optimally suppress 

excitability for all individuals. Investigators controlled for individual differences in 

afferent pathways by measuring the N20 latency for each individual on each day. 

However, other differences in cortical anatomy (e.g. motor pathways) or activation of 

different groups of neurons176 by TMS may contribute to delays and altered signaling 

patterns that cause peripheral and central potentials to reach the sensorimotor cortex 

outside of the window of efficacy. Furthermore, the use of N20-5ms may not be ideal. 

Others have successfully suppressed excitability using intervals as short as 10 ms.66,191 

Thus, the problem may lie in the protocol and the solution may be to either stratify 

individuals into groups that respond best to certain protocols or to individualize each 

protocol for each participant. 

 

Nonresponders to sham-primed PASLTD also had a higher proportion of individuals with 

the BDNF Val66Met polymorphism which may explain the unexpected increase in 

excitability following PASLTP→PASLTD. A previous study found a relationship between 

presence of the Val66Met polymorphism and response to PAS whereby those that had the 

polymorphism did not exhibit any significant changes in excitability following PASLTP.73 

This may result from an alteration of mechanisms that regulate homeostatic plasticity173 

leading to an abnormal response to neuromodulation. Because the theory behind priming 

relies on homeostatic plasticity, it is logical to theorize that the Val66Met polymorphism 
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impacts an individual’s response to PPAS and that the next step would be to understand 

how. Aside from an exploratory analysis, our study did not compare data between those 

with and those without the polymorphism because the design focused on whole group 

effects and responder, nonresponder effects. With our finding that 35% of participants 

have this polymorphism, studies can now be designed to focus on the influence of this 

polymorphism without hesitation regarding the need to enroll an excessive number of 

individuals.  

 

Although the influence of two consecutive identical bouts of PAS (PASLTD→PASLTD) 

was not a primary aim of this study, it is of interest because the double-dose of 

suppression may capitalize on homeostatic plasticity by reaching the bottom of the 

physiologic range of LTP and LTD. This has been demonstrated using two bouts of 

anodal (facilitatory) tDCS where a separation of 3 minutes led to a significant decrease in 

corticospinal excitability. Authors hypothesized that the top of the physiologic range for 

LTP was reached which led to the activation of homeostatic mechanisms and thus a 

significant suppression of excitability.192 In our attempt to reach the bottom of this range, 

we applied two bouts of PASLTD separated by 3-5 minutes. In each analysis model 

(Whole Group and Responder, Nonresponder), we found no significant within or between 

intervention differences. We did not assess excitability during either bout (priming or 

principal) of PAS so we cannot say whether or not excitability was suppressed after 

priming, then reached a low point and began to climb, thus appearing like no change 

from baseline excitability by the time post-intervention tests took place. Future studies of 

homeostatic plasticity using PPAS would benefit from assessing excitability during each 

bout of PAS (e.g. by measurement of peak-to-peak MEP amplitudes elicited by the TMS 

pulse during PAS) to better define the timeline of the induction of homeostatic 

metaplasticity. 
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5.2.2 Considerations for Experiment 2: PPASLTP 

Our findings indicate no significant effect of priming with either PASLTD or PASLTP on a 

principal bout of PASLTP. One previous study supports the hypotheses that 

PASLTD→PASLTP significantly increases excitability and that PASLTP→PASLTP 

significantly decreases excitability when compared to PASLTP alone.68 The primary 

difference between this study and our own is the length of time between principal and 

priming bouts. Muller et al. (2007) allowed 30 minutes between bouts whereas our 

protocol only allowed 3-5 minutes. As discussed earlier, a 30-minute break between 

priming and principal may provide sufficient time for neuroplastic mechanisms to take 

place following PAS and shorter, 3-5 minute breaks may not be long enough. Opie et al. 

(2017) allowed 10 minutes between priming and principal bouts and also found no 

differences between PASLTD→PASLTP and PASCONTROL→PASLTP for groups stratified 

into younger and older age brackets. However, authors did find an age-dependent 

difference in response to PASLTP→PASLTP whereby younger individuals exhibited a 

significant increase in excitability following PASLTP→PASLTP and older individuals 

exhibited a significant decrease.164 Our study only assessed effects in younger (18-30 yrs) 

adults and found a similar significant increase in linear trend in change from baseline 

excitability for PASLTP→PASLTP in those who were categorized as responders to 

PASSHAM→PASLTP. The interpretation of this finding is complicated by a significant 

linear trend in the same group of individuals following PASSHAM→PASSHAM indicating 

that those who exhibit a ≥10% increase in excitability following PASSHAM→PASLTP may 

have a variable range of excitability that skews more toward facilitation than suppression. 

Our method of PASSHAM utilized a sham air-film coil and no peripheral nerve stimulation 

to ensure that no external modulation of excitability would occur. The increase in 

excitability can only be attributed to internal factors which may be influenced by 

attention or other inherent internal processes that are not yet elucidated. The explanation 

for this variability and the significant response to PASSHAM→PASSHAM is unclear which 

makes it unwise to draw strong conclusions regarding the positive trend in excitability 

following PASLTP→PASLTP in this experiment.  
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Presence of the Val66Met polymorphism did not have a clear influence on the response 

to PPASLTP. Nearly an equal percentage of responders and nonresponders (40% and 

33.34%, respectively) have the polymorphism thus it does not appear to influence 

response to PASSHAM→PASLTP. This contradicts findings by Cheeran et al. (2008) where 

individuals with the Val66Met polymorphism did not exhibit a significant increase in 

excitability following PASLTP. We may have seen significant increases in excitability in 

individuals with the polymorphism that were confounded by variability as noted in the 

significant increase of excitability following PASSHAM→PASSHAM. Another possibility is 

that we did not restrict the time frame of PAS delivery. Cheeran et al. (2008) only applied 

PAS to individuals within a 4 hour window each day which was an attempt to reduce 

inter-individual variability by controlling for the time of day and thus circadian variations 

in neuromodulators (e.g. cortisol). Although we restricted each individual to the same 

time of day and same day of the week (e.g. 8:00am-11:00am on Mondays), different 

individuals received PAS at different times of the day. For some individuals, the 

difference between appointment times was as large as 12 hours. We addressed this 

difference by using post-MEP amplitude to pre-MEP amplitude ratios for data analysis 

however it remains possible that a difference in the level of neuromodulators leads to a 

difference in the magnitude of change from baseline excitability and thus contributes to 

the large amount of variability in response between individuals.  

 

5.2.3 Sham-primed PAS 

The whole group analyses for each experiment found no difference between sham-primed 

PAS and PASSHAM→PASSHAM. Across both experiments, PASLTP→PASLTD was the only 

intervention to elicit a change in excitability that differed from PASSHAM→PASSHAM (an 

increase in excitability at 50 and 60 minutes following intervention). This suggests that 

PASLTP→PASLTD was the only intervention to modulate excitability and that this 

modulation did not occur until 50 and 60 minutes following intervention. Although this 

may be true, the sources of variability and considerations previously discussed likely 

obscured some neuromodulatory effects. It is also possible that the low-frequency (0.1 
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Hz) TMS testing that occurred prior to PPAS activated inhibitory networks and blocked 

the effects of PAS in a manner similar to that described by Delvendahl et al. (2010) for 

anti-gating. This finding spotlights major concerns regarding the unknowns of 

neuromodulation. These include the unknown influence that TMS pre-testing may exert 

on GABA-ergic or glutamatergic network activity, the unknown contribution to 

variability in response by factors like attention and hormone levels as well as the 

unknown sources of variability that lead to significant findings following full sham 

interventions. The future of PAS research is bright with directions toward refining ideal 

protocols, defining influential variables and translating this knowledge into clinical tools 

for altering motor pathway excitability. 

 

5.3.0 Future Directions 

The recent push toward individualized medicine will expand from chemotherapy 

treatments to rehabilitation techniques. Not every body is physiologically identical and 

thus it is illogical to assume that a single treatment will not only work for everyone but 

that it will also affect everyone in the same way. Neuromodulation therapies need to 

adopt this mindset and shift focus to understand the sources of within- and between-

individual differences in response to the same intervention. If investigators can begin to 

identify influential factors, they can define efficacy of different protocols and recommend 

different protocols for specific individuals or stratified groups of individuals. 

 

From this study, we have learned that the protocol for PPAS will benefit from further 

investigation into the length of time between priming and principal PAS, the influence of 

attention on PASLTD and the influence of circadian variations of neuromodulators. We 

have also learned that non-modifiable individual characteristics like the BDNF Val66Met 

polymorphism may be an easy way to begin a portfolio of measures that aid clinicians in 

the identification of who will and will not benefit from certain PAS interventions. Further 

investigation into the influence of modifiable lifestyle factors (e.g. exercise, 

psychological stress, sleep) may help to clarify unknown sources of variability and 
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provide clinicians with evidence supporting recommendations for lifestyle changes that 

can augment neurorehabilitation strategies. 

 

Although this study was conducted in healthy individuals, it is meant to provide evidence 

and contribute to the development of neuromodulation therapies that can improve motor 

recovery in people with stroke. There were no adverse events reported in this study which 

supports the safety of PPAS and encourages a more quick and easy transition into 

feasibility studies in people with stroke. The lack of significant effects observed in 

healthy individuals may result from an attempt to alter excitability in an uninjured brain. 

Repeating this study in people with stroke allows for an exact comparison of protocols 

between healthy individuals and those with stroke which provides insight into how PPAS 

differs, if at all, between the two groups. Furthermore, the addition of motor function 

testing and the completion of a motor task during the 60-minute post-intervention period 

would provide evidence regarding the influence of PPAS on motor function in people 

with motor impairment. Thus, the translation of PPAS to people with stroke is warranted 

and our findings suggest that if the exact protocol is not repeated for the sake of a direct 

comparison, some protocol parameters (e.g. length of time between priming and principal 

PAS) should be reconsidered. 

 

5.4.0 Conclusions 

The purpose of this study was to assess the influence of priming on PASLTD (PPASLTD) 

and PASLTP (PPASLTP) on corticospinal excitability in healthy individuals and to 

investigate potential characteristics that may indicate whether an individual will or will 

not benefit from brain stimulation. We found no significant decrease in excitability in the 

whole group analyses for PPASLTD. However, PASLTP→PASLTD caused an unexpected 

significant increase in excitability. We found no significant differences in whole group 

analyses for PPASLTP. Responders exhibited a significant increase in linear trend 

following PASLTP→PASLTP but the interpretation of this finding is confounded by a 

significant increase in linear trend for PASSHAM→PASSHAM in the same group of 
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individuals. Further characterization of non-modifiable factors (e.g. presence of the 

BDNF Val66Met polymorphism) and modifiable factors (e.g. attention, protocol 

parameters) will improve future neuromodulation efforts by unveiling variables that 

influence response to neuromodulation, identifying those who will benefit from 

neuromodulation therapies and defining the optimal method of applying PAS so that a 

range of individuals will benefit from its safe approach to neuromodulation.  
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7.0.0 Appendices 

Appendix A. Prospective Power Analyses: G*Power Input and Output 

 

Experiment 1 (PPASLTD): 

 

 

 

Experiment 2 (PPASLTP): 
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Appendix B. REDCap Survey
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Appendix C. Consent Form 

Consent to Participate in a Research Study 

Primed vs. Unprimed Facilitatory and Depressive Paired Associative Stimulation 

 

 

You are invited to participate in a research study exploring different methods of brain 

stimulation and how they may influence brain excitability. You were selected as a possible 

participant because you responded to a flyer or a presentation and you completed the online 

REDCap survey. We ask that you read this form carefully and ask any questions you may have 

before agreeing to be in this study. 

 

This study is being conducted by Kate Frost, Ph.D. Candidate and James Carey, Ph.D., P.T. 

(faculty advisor) from the Rehabilitation Science Graduate Program of the University of 

Minnesota as well as Dr. LeAnn Snow, M.D. from the Department of Physical Medicine and 

Rehabilitation at the University of Minnesota. This study is funded internally by Physical Therapy 

Program funds.  

 

Study Purpose 

New developments in technology allow researchers to measure and influence brain activity 

without needing participants to undergo invasive procedures. These non-invasive methods of 

brain stimulation are driving the development of new rehabilitation approaches that might help 

people recover motor function following a brain injury. The purpose of this study is to explore 

the most effective method of applying paired associative stimulation to influence the excitability 

of the brain. Paired associative stimulation is a method of non-invasively influencing brain 

activity by applying an electrical stimulus to a nerve at the wrist followed soon thereafter by a 

transcranial magnetic stimulation (TMS) stimulus to the brain. It is known that this combination 

of two stimuli can change the brain’s excitability, which can be helpful to promote functional 

recovery following brain injury. Because this study is investigating a new method of applying this 

stimulation, we want to see if it is effective in healthy individuals before moving on to 

populations of people with brain injury.  

 

TMS is a way to stimulate the brain without surgery. We will use a special magnetic coil that we 

will hold on your head in a specific spot. The use of the Magstim 200^2 device in this study is an 

“investigational use.” This means it is being tested and the device is not cleared for sale for this 

use in the United States by the U.S. Food and Drug Administration (FDA). 
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How it works is that the study device creates a magnetic effect, which goes through bone and 

creates an electrical current inside the head. This current may change brain activity, but we do 

not know the most effective way to change brain activity and that is why we are doing this 

study.  As described below, all people will receive four different non-invasive brain stimulation 

interventions. 

If we learn any new information that might change your mind about continuing in the study, we 

will tell you about it. 

 

Participation Criteria 

We are not allowed to enroll pregnant females or females currently breast-feeding in this study, 

so we need to give a pregnancy test to each female. We need to do this because pregnant 

females and unborn children need extra protection for their safety. If you have a neurological 

disorder, cardiac pacemaker, or metal in your head (such as cochlear implants, aneurysm clips, 

etc.) you cannot be in the study. If you’ve had a seizure or take medications that make you more 

likely to have a seizure, you cannot participate in this study.  Furthermore, if we are unable to 

elicit responses from stimuli applied to a nerve at your wrist or from stimuli applied to your 

head using TMS, you cannot participate in this study. 

 

If you are eligible to participate and would like to participate, all testing and non-invasive brain 

stimulation sessions will occur at the Clinical Translational Science Institute at the University of 

Minnesota.  

 

Study Duration 
You will be enrolled in this study for four weeks. Visits will take place one day a week for four 

weeks (you will come for four visits total). Each visit will last approximately two to three hours 

(total of 8-12 hours). We would like to see you at the same time of day on the same day of the 

week for each visit.  

 

Study Procedures 
If you agree to participate in this study, we would ask you to do the following.  

 

First Visit: 

 

• Investigators will measure your blood pressure, heart rate and your weight. 
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• Investigators will ask you a set of questions to see how you have been feeling over the 
last week and you will fill out a form that asks questions to determine which hand is 
your preferred hand. 

• Investigators will collect a saliva sample from you by having you spit into a tube.  This 
saliva will be used to analyze your genetic material. Studies have indicated that people 
without a certain gene are less likely to show changes in brain excitability during TMS 
than people with this gene.  Whether you have this gene or not will not influence the 
procedures you get in this study or any other medical treatments you get in the future.  
The genetic test will only be used to help us learn the possible factors that might 
influence how people respond to TMS.  This procedure will be done only once. You will 
read more about genetic testing later in this form 

• Investigators will check the responsiveness of the hemisphere of your brain that is 
responsible for moving your preferred hand. You will be seated in a reclining chair and 
we will use an alcohol swab to clean an area of you preferred hand. Electromyography 
(EMG) electrodes will be attached to a muscle in your preferred hand to check whether 
a response can be detected in that muscle when a TMS pulse is applied to the 
corresponding hemisphere. Earplugs will be inserted into your ears to diminish the 
loudness of the TMS coil's clicking noise. Marks will be made on your head and a device 
called Brainsight will be positioned on your head to aid in reliable placement of the TMS 
coil. The investigator will position the coil over the desired hemisphere and apply a 
single pulse of stimulation. You will hear a click and you may feel a tap on your head.  If 
no response is observed, a stimulus of higher intensity will be applied. The stimulation 
intensity and coil position will be continually adjusted to try to produce a response on 
the EMG screen with a pulse given once every 10 seconds. The lowest intensity that 
produces an EMG response will be recorded as an indication of your responsiveness. If 
no response is observed after about 15 attempts (about 3 minutes), we will then record 
that no response was found. If we are unable to find a response, you cannot participate 
further in the study. However, you will still receive compensation for this visit.  

• Next, electroencephalogram (EEG) testing will occur to determine the time between a 
stimulation to the nerve at your wrist and when that signal arrives at your brain. For this 
you will wear an EEG cap. Stimulation electrodes will be placed at the wrist of your 
preferred hand (targeting the median nerve). A strong electrical stimulus will be applied 
to the median nerve using an electrical stimulator. There may be some slight discomfort 
with this nerve stimulation at the wrist. If we are unable to find a response to this 
stimulation, you cannot participate further in the study. However, you will still receive 
compensation for this visit. 

• Investigators will then conduct the baseline test, which will consist of approximately 20 
TMS pulses at an intensity just above the threshold determined earlier, but they will still 
be painless. We will measure the excitability of the brain by determining the size of the 
muscle response to these 20 pulses on the EMG screen. This concludes the baseline test. 

• Investigators will apply one of four different interventions that involve pairs of 
stimulation (i.e. stimulation to the median nerve followed by stimulation to the brain). 
You will receive all four interventions, but only one will be applied during each visit. 
There will be a one week break between each visit. Thus, the duration of your 
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participation will be four weeks. For each of these interventions, the following 
procedures will take place: 

o With the median nerve stimulation electrodes in place, we will apply a fairly 
strong stimulus to the nerve, which could be mildly painful. 

o The brain stimulation that follows will occur at an intensity that was the same 
for baseline testing (not painful). 

o You will receive a series of these paired stimulations for a total of 30 minutes. 
This concludes the intervention applied on each of the four days you come in. 

• Posttesting will begin immediately after the intervention. The same procedures as 
described for baseline testing (collection of 20 responses following single TMS pulses) 
will occur at 0, 10, 20, 30, 40, 50 and 60 minutes following interventions. 

• Immediately following this visit, investigators will assess your response to the 
intervention. If your response is the same as 10 other people in your randomly assigned 
study group, you cannot participate further in the study. However, you will still receive 
compensation for this visit.  

 

 

 

Visits 2-4: 

These visits will be very similar to your first visit, but you will not have to spit into a tube or fill 

out a form to determine your preferred hand.  

• Investigators will measure your blood pressure, heart rate and your weight. 

• Investigators will ask you a set of questions to see how you have been feeling since your 
last visit.  

• Investigators will use EMG, Briansight and TMS to determine the responsiveness of the 
same location on your brain as the first visit. This procedure will be identical to your first 
visit. 

• All following procedures (i.e. EEG, baseline testing, intervention and posttesting) will be 
identical to your first visit as described above.  

 

Risks of Study Participation 

Likely Risks for TMS testing (30-40%) 

 Headache 

The TMS testing and/or the EEG cap that you wear during the visits may cause a 

mild headache. If this happens, please inform the study investigators and/or 

doctors. We will stop the session if this pain occurs. 
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Unlikely Risks for TMS testing (< 5%) 

 Seizure 

 People with brain injury may have a higher risk of seizure from TMS testing. If 

seizure does occur, an immediate 911 phone call will be placed and study 

personnel will take measures to ensure immediate safety. All of the test 

sessions will occur in the Clinical Translational Science Institute, where there is 

ready access to life-support equipment including oxygen, suction, blood 

pressure monitoring, CPR equipment, and antiepileptic drugs.   

  

 Fainting 

 The TMS testing may cause fainting possibly associated with jerking movements 

of the limbs (i.e. convulsive syncope).  We will measure your blood pressure at 

the start of each visit. To avoid fainting, we will encourage you to eat a full meal 

and drink extra decaffeinated fluids before study visits. You will also sit in a 

reclining chair. If you feel faint or lightheaded, we will stop the testing and lay 

you on a flat, comfortable surface. Once you feel better, you may return home.  

 

 

 Hearing Impairment 

 The TMS testing makes a clicking sound, which could cause permanent hearing 

loss without protective measures. To prevent this, you will wear earplugs during 

TMS testing. We will monitor the position of your earplugs but, in addition, you 

should immediately report to the investigator any loosening or detachment of 

an earplug during TMS.  We will immediately stop TMS if you report or if an 

investigator observes that an earplug has loosened or has fallen out and we will 

resume TMS once the earplug has been re-secured. 

 

Temporary numbness or twitching of the face 

 The TMS may cause temporary numbness or twitching of the face for up to one 

hour.  The investigators will watch your face closely for any signs of twitching.  

We will ask you to let us know right away if you have any changes in your face, 

like sensation, during the stimulation.  If this occurs, we will stop the stimulation 

immediately. 
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Temporary mania or intense mood 

 Past studies reported mood swings in patients being treated with TMS for 

bipolar disorder, post-traumatic stress disorder, and depression. Symptoms 

varied across patients and included feelings of joy, sensitivity to criticism, anger, 

restlessness, elevated confidence, high-flying ideas, and reduced sleeping. The 

duration of these symptoms lasted for hours up to five days. 

 

Temporary thinking problems 

 Past studies reported difficulty in concentrating in patients receiving TMS for 

bipolar disorder, post-traumatic stress disorder, and depression. Symptoms 

lasted for hours up to five days. 

 

Temporary difficulty with movement or motor control impairment 

 Possible movement problems include a tingly feeling, stiffness, or twitching of 

muscles in the arm that may last minutes to hours. 

 

Temporary neck pain 

 Stiffness or a dull ache in the neck may last for minutes to hours. 

 

Temporary visual changes 

 One study reported on two cases of people who had impaired vision before 

beginning TMS that was applied to the front part of the left side of the brain 

which is directly connected to the visual system. This was done to study the 

effects of TMS for major depression. One case involved a temporary worsening 

of her near and distance vision after TMS, whereas the other case involved a 

temporary improvement in her visual field.  We will minimize the risk of any 

visual changes in our study by applying TMS to a different region of the brain 

that is not directly connected to the visual system. 

  

 

Rare Risks for TMS (< 1%) 

 Dental pain 
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One person receiving TMS treatment for depression experienced pain in the 

teeth of the left upper jaw. The pain stopped after the treatment. 

 

Risks with Pregnancy 

The effect of TMS on the unborn fetus is not known and participating females should not be 

pregnant. Women of child-bearing potential will have pregnancy tests at the start of each visit.  

If you become pregnant, you may no longer participate in this study.  

 

Other risks 

There may be other risks associated with TMS that are not known at this time. Risks of surface 

EMG are rare and minimal, but may include redness or allergic reactions of the skin caused by 

the tape or electrode gel used in this study. As with any testing, there may be unanticipated side 

effects. It is important to talk to the research doctor if you wish to stop participating in the study 

so that you may stop the study safely.  Answering some of the interview questions might make 

you feel uncomfortable. If there are any questions that you do not want to answer, let us know 

and we can skip them. Feel free to ask the study team any questions that you have about the 

possible side effects and risks involved in your participation in this study. 

 

Social implications of seizure and convulsive syncope 

Because of the loss of consciousness and associated convulsions (jerking movements) that occur 

with a seizure or convulsive syncope, the possibility exists that others may erroneously interpret 

such features as epilepsy.  This could lead to risk of loss or denial of employability, motor vehicle 

licensure and insurability.  To minimize this risk, if a seizure or convulsive syncope does occur, 

we will provide you with a letter stating that the event was experimentally produced. 

 

Discontinuation without Subject Consent 

The possibility exists that under certain conditions, we will discontinue your participation in the 

study without consent.  These conditions would be for your safety.  One condition would be if 

your behavior/mood becomes abnormal during TMS (confused, nonresponsive, fainting, etc).  

Another condition would be if you show abnormal muscle activity on the EMG screen during the 

TMS test session.  Normally, the EMG screen will show no activity or some sporadic activity.  But 

bursting activity or continuous activity that cannot be stopped when we request so, may signal 

that a seizure could soon occur; thus, we would need to stop the study immediately and 

discontinue future participation. 
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Benefits of Study Participation 

If you agree to take part in this study, there may or may not be direct medical benefit to you.  

 

Research-Related Injury 

In the event that this research activity results in an injury, treatment will be available, including 

first aid, emergency treatment, and follow-up care as needed. Care for such injuries will be 

billed in the ordinary manner, to you or your insurance company. If you think that you have 

suffered a research-related injury, please let us know right away. 

 

Compensation 

For completing the total of four weeks in the study (one day per week), you will receive $100 (in 

Visa Gift Cards) in compensation for time/travel/parking. If you do not complete all visits, you 

will receive $25 for each visit that you attend (i.e. if you attend 3 visits, you will receive $75 in 

Visa Gift Cards). You will not be charged for any of the tests. 

 

Confidentiality 

The records of this study will be kept private; however, the U.S. Food and Drug Administration 

may inspect subjects’ records to insure safety. In any publications or presentations, we will not 

include any information that will make it possible to identify you as a subject. Your record for 

the study may, however, be reviewed by departments at the medical center with appropriate 

regulatory oversight. This information will not be recorded in your medical record. To these 

extents, confidentiality is not absolute. 

 

 

 

Protected Health Information (PHI) 

Your PHI created or received for the purposes of this study is protected under the federal 

regulation known as HIPAA. Refer to the attached HIPPAA authorization for details concerning 

the use of this information. 

 

Voluntary Nature of the Study 
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Participation in this study is voluntary. Your decision whether or not to participate in this study 

will not affect current or future relations with the University or the University of Minnesota 

Medical Center-Fairview. If you decide to participate, you are free to withdraw at any time 

without affecting those relationships. 

  

Genetic Testing 

We will ask you to spit into a tube.  The saliva will be used for genetic analysis. This analysis will 

determine if you have a certain gene that might influence your response to TMS. 

 

Genes are in your blood and tissue, and they are what make you different from anyone else. 

Some genes control things like the color of your hair or eyes. Other genes might make you more 

likely to get certain diseases or affect whether a drug helps you and/or gives you side effects. 

 

You have to have this genetics testing if you want to be in the study. 

The study personnel will not use your tissue for any other tests without your permission. No one 

other than the employees of the University of Minnesota Genomics Center will test your 

samples. 

 

What are the risks of genetic testing? 

The risks to you and your family from genetic research are very low. Your samples will be 

identified only with your study code number. In the event of an unexpected breach of 

confidentiality, a recent federal law (Genetic Information Non-Discrimination Act, GINA) will 

help protect you from health insurance or employment discrimination based on genetic 

information obtained about you through research such as this. If you have questions about GINA 

or the risks of research on genetic information, plase ask study staff.  

 

Will getting this genetic testing help me? 

This testing will not help you. Information from this testing may help researchers understand 

brain activity and how people respond to TMS, and come up with new ways to help others in the 

future. 
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Costs and payment 

You will not have to pay for the genetic testing. You will also not be paid for having this testing 

done.   

 

Where will my samples go?  How long will they be kept? 

Your tissue sample will be stored in a secure laboratory at the University of Minnesota 

Genomics Center. Your sample will be stored for no more than 2 years, and then the study 

personnel and/or employees of the University of Minnesota Genomics Center will destroy your 

sample. 

 

Your saliva sample will have a code that connects the sample to you. The study personnel will be 

able to find your name from the code so they can destroy your sample or instruct the University 

of Minnesota Genomics Center to destroy your sample if you change your mind later. If you 

change your mind about being in this genetics study later, you must tell the investigator you 

want the University of Minnesota Genomics Center to stop testing your sample(s). The study 

personnel or employees of the University of Minnesota Genomics Center will then destroy your 

sample(s). If the University of Minnesota Genomics Center did any testing before you changed 

your mind, the study personnel will still use the test results. 

 

If you tell the investigator you want the University of Minnesota Genomics Center to stop 

testing your tissue, this is not the same as canceling your authorization (permission) to use and 

share your records.  You must follow the directions in the separate HIPAA document to cancel 

your authorization to use and share your records. 

 

What results may be expected from this study? 

NO results will be shared with you, even if a medically significant result should be discovered 

and even if the testing reveals information that could be used by you to make healthcare of 

lifestyle choices that could prolong your life or prevent or delay the development of a life 

threatening condition. 

 

Photographs and Videos 

Photographs and videos may be taken of you during your study participation. These may include 

photographs and videos of you while the EMG, EEG, peripheral nerve stimulator and/or TMS are 
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in place or in use. Only study personnel will be taking these photographs and videos. 

Photographs and videos are used to help describe the methods of this study. They may be used 

in publications or presentations at scientific or educational meetings. 

  

To ensure your privacy, study personnel will take measures to avoid capturing your full face in 

photographs and videos. If your full face is captured, it will be blurred out or covered within one 

week of capture. If only a portion of your face (e.g. the side of your face) is captured, this may 

be left un-altered in the use of that image or video.  

 

Photographs and videos will be de-identified within one week of capture. This means that your 

full face will not be identifiable and your name will not be attached to these images and videos. 

De-identified files will be kept as long as study personnel deem appropriate for the previously 

indicated uses. 

 

You have the option to separately consent to the use of photographs and videos in the separate 

form entitled “Photography Release Statement.” If you do not wish for study personnel to take 

and use photographs and videos of you, your participation in this study or future studies will not 

be affected. 

   

Participation in Future Studies 

We would like to know if you are interested in being contacted for any future studies. These 

studies may or may not involve TMS. Your answer will not affect your participation in this 

current study. Your answer will also not affect your relationship with the University of 

Minnesota. If you are contacted for future studies, you are not obligated to participate in those 

studies. Please indicate below whether or not you wish to be contacted in the future in regards 

to potential study participation. 

 

□ Yes, I would like to be contacted as a potential participant in future studies 

 

□ No, I would not like to be contacted as a potential participant in future studies. 

 

Contact People 
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You may ask questions now. If you have questions later, you are encouraged to contact Dr. 

James Carey (612-626-2746) or Kate Frost (612-626-0637). If you have any questions or 

concerns regarding the study and would like to talk to someone other than the researcher(s), 

you are encouraged to contact the Fairview Research Helpline at telephone number 612-672-

7692 or toll free at 866-508-6961.  You may also contact this office in writing or in person at 

Fairview Research Administration, 2344 Energy Park Drive, St. Paul, MN, 55108.  

A description of this clinical trial will be available on http://www.ClinicalTrials.gov, as 

required by U.S. Law.  The specific identifier for this study is NCT02619643. This 

website will not include information that can identify you.  At most, the website will 

include a summary of the results.  You can search this website at anytime. 
 

Subject signature:__________________________Date:_______Time of Day:________ 

Subject printed name:______________________________________________________ 

 

Signature of Person Obtaining Consent:_____-

________________________________Date:_______ Time of Day:________ 

  

http://www.clinicaltrials.gov/
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Appendix D. Edinburgh Handedness Survey 
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Appendix E. HIPAA Form 
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Appendix F. Photograph Release Form 

 

Photograph Release Statement 

 
I, ____________________(participant), hereby give James Carey, PhD, PT and Kate 

Frost, PhD Candidate, permission to use photographs or a video of me performing tests or 

receiving treatment related to my participation in the study, “Primed vs. Unprimed 

Facilitatory and Depressive Paired Associative Stimulation.” I understand that this 

information may be shown at a scientific meeting for the purpose of explaining the study 

to clinicians and scientists. 

 

 

__________________________ __________________________ _____________ 

    (Printed Name Participant)  (Signature Participant)       (Date) 

 

 

 

__________________________ __________________________ _____________ 

    (Printed Name Investigator)          (Signature Investigator)                (Date) 
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Appendix G. Genotyping: DNA Extraction Quality Control Results 
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Appendix H. Genotyping: Taqman Results 
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Appendix I. Participant Report of Symptoms 

 

Visit 1: Participant Report of Symptoms 

 

Participant initials: _____  Participant ID#: ______ 

 

 

Comments: 

  

Symptom  Before 

TMS/PAS 

During 

TMS/PAS 

Immediately 

After 

TMS/PAS 

Seizure (Y/N)    

Headache (Y/N; 

0-10) 

   

Neck Pain 

(Y/N; 0-10) 

   

Dental Pain 

(Y/N; 0-10) 

   

Hearing 

Abnormality 

(Y/N) 

   

Nausea (Y/N)    

Abnormal 

Muscle 

Contractions 

(Y/N) 

   

Dizziness (Y/N)    

Abnormal sleep 

(Y/N) 

   

Difficulty 

concentrating 

(Y/N) 

   

Abnormal 

Anxiety (Y/N) 

   

Abnormal 

Memory 

Problems (Y/N) 

   

Abnormal 

Mood (Y/N) 

   

Balance Issues 

(Y/N) 

   

Impaired Use of 

either hand 

   

Other (describe 

below) 
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Appendix J. MEP Variable Distributions 

 

   

  

Distribution of raw peak-to-peak MEP amplitudes for (A) Experiment 1 and (B) 

Experiment 2. (C) and (D) show normalization of each distribution following 

Log10 transformation for each experiment respectively. 
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Appendix K. Methods: JMP Whole Group Fit Model Set-up 
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Appendix L. Methods: JMP Responder, Nonresponder Fit Model Set-up 
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Appendix M. Methods: Example JMP Contrast Test Detail & Results 

Example contrast development using JMP to assess for statistical significance between 

interventions at a specific time point. This contrast is specific to Experiment 2, Whole 

Group and compares change from baseline values between PASSHAM→PASLTP (A1) and 

PASLTD→PASLTP (A2) at time point 0 minutes following intervention. 
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The following is an example contrast created to assess the Whole Group linear trend for 

PASSHAM→PASLTP in Experiment 1. 
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The following is an example contrast that was set up to compare the grand average 

change from baseline between PASSHAM→PASLTP and PASLTD→PASLTP for Experiment 

1. 
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Appendix N. JMP Input and Output for Mann-Whitney U (Wilcoxon Rank Sum) 

Test of MEP Onset Latency 

JMP Input: 
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JMP Output for Experiment 1: 
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JMP Output for Experiment 2: 
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Appendix O. JMP Input and Output for MEP Intraclass Correlation Coefficients 

JMP Input: 
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JMP Output for Experiment 1: 
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JMP Output for Experiment 2: 
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Table. Participant Demographics (Experiment 1 – PPASLTD) 

   

Participant 

ID 

Age 

(Years) 

Gender Handedness Intervention RMT 

(%MSO) 

PT 

(mA) 

N20 

Latency 

(ms) 

K02 24 F R 0/- 36 2.7 19.4 

    0/0 40 3 19.1 

    -/- 41 2.9 19.1 

    +/- 38 2.7 19.5 

        

K03 19 F R 0/- 50 2.8 18.9 

    0/0 52 3.2 17.8 

    -/- 49 2.6 19.2 

    +/- 47 2.6 18 

        

K06 24 F R 0/- 60 2.3 17.8 

    +/- 60 2.8 19.2 

    -/- 59 1.9 18.1 

    0/0 61 2.2 N/A 

        

K08 21 M R 0/- 50 4.6 19.5 

    +/- 50 3 19.7 

    -/- 50 3.7 19.4 

    0/0 46 3.7 19.5 

        

K09 21 M R 0/- 39 2.4 18.4 

    -/- 40 3.4 18.4 

    0/0 43 2.9 18.1 

    +/- 45 4.4 17.7 

        

Appendix P. Participant Demographics for Experiment 1 
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K10 24 F L 0/- 44 1.9 18.1 

    0/0 41 3.5 18.1 

    -/- 41 2 17.8 

    +/- 42 2 17.8 

        

K12 24 F R 0/- 34 2.9 17.8 

    -/- 38 2.2 17.7 

    +/- 37 3.2 18.1 

    0/0 34 3.2 18.1 

        

K13 25 M R 0/- 33 2.7 19.7 

    0/0 34 2.9 19.4 

    +/- 33 3.7 19.5 

    -/- 32 2.6 19 

        

K14 24 F R 0/- 29 3.6 18.9 

    +/- 32 3 18.6 

    0/0 33 3 18.4 

    -/- 32 3 19.1 

        

K16 27 M R 0/- 55 2.7 18.9 

    -/- 48 2.4 18.6 

    0/0 44 2.5 18.9 

    +/- 50 2.2 18.9 

        

K17 29 M R 0/- 47 3.8 20 

    0/0 46 3.1 20 

    -/- 51 2.8 19.7 

    +/- 46 2.6 19.7 
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RMT resting motor threshold, MSO maximum stimulator output, PT perceptual threshold 

  

        

K19 24 F R 0/- 45 2 17.3 

    0/0 43 3.4 NA 

    -/- 45 1.7 17.8 

    +/- 45 1.8 17.3 

        

K20 23 F R 0/- 44 2.6 18 

    -/- 43 2 17.7 

    0/0 42 1.8 17.8 

    +/- 37 2.6 17.5 

        

K22 22 F R 0/- 34 2.9 18.9 

    +/- 35 2.2 18.8 

    -/- 32 2.9 18.9 

    0/0 33 2.4 18.8 

        

K24 23 F R 0/- 52 2.6 17.8 

    0/0 49 2.6 18.4 

    +/- 52 2.7 18.4 

    -/- 49 2.8 18.1 
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Appendix Q. Table of Participant Demographics for Experiment 2 

Table. Participant Demographics (Experiment 2 – PPASLTP)    

Participant 

ID 

Age 

(Years) 

Gender Handedness Intervention RMT 

(%MSO) 

PT 

(mA) 

N20 

Latency 

(ms) 

K01 22 M R 0/+ 35 3 19.7 

    -/+ 37 2.6 18.4 

    +/+ 35 3.1 18.9 

    0/0 36 3.7 18.1 

        

K04 27 F L 0/+ 49 3.1 17.3 

    +/+ 49 2.2 17.3 

    -/+ 52 3 17.2 

    0/0 54 3.3 17.8 

        

K05 21 M R 0/+ 32 2.5 19.7 

    -/+ 37 3.6 19.8 

    +/+ 34 2.4 19.5 

    0/0 31 3.1 19.5 

        

K07 26 F R 0/+ 59 4.2 17 

    0/0 59 2.6 16.9 

    -/+ 64 2.6 20.3 

    +/+ 60 3 17 

        

K11 23 F R 0/+ 41 3 18.9 

    -/+ 36 4.6 18.1 

    +/+ 34 2.8 18.8 

    0/0 38 3 18.4 
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K15 22 M R 0/+ 45 2.4 19.7 

    0/0 52 3 NA 

    -/+ 48 2 19.8 

    +/+ 47 2.2 19.5 

        

K18 23 F R 0/+ 47 4.2 18.9 

    +/+ 47 2.5 18.8 

    0/0 48 4.2 18.9 

    -/+ 45 3.5 18.6 

        

K21 23 F R 0/+ 46 3.3 18 

    0/0 46 1.9 18.1 

    -/+ 42 2.5 18.6 

    +/+ 43 2.6 18.4 

        

K23 23 F R 0/+ 45 3.4 19.1 

    0/0 48 2.3 19.5 

    -/+ 39 3 19.2 

    +/+ 42 2.3 19.1 

        

K25 22 F R 0/+ 39 2.5 17.3 

    +/+ 41 1.8 17.7 

    -/+ 42 2.1 18.4 

    0/0 42 2 18 

        

K27 25 M R 0/0 33 2.4 19.8 

    +/+ 33 2.6 19.7 

    0/+ 32 2.3 19.4 



162 
 

    -/+ 32 2.9 19.8 

        

K28 23 M R 0/0 43 2.3 18.9 

    0/+ 44 2.5 18.8 

    -/+ 45 2.4 19.4 

    +/+ 46 2.9 18.9 

        

K29 25 F R 0/+ 28 2.1 18.3 

    -/+ 30 2.2 17.8 

    0/0 29 1.6 17.7 

    +/+ 30 2 18 

        

K30 26 M R 0/+ 40 3.4 18.6 

    +/+ 40 4 19.5 

    0/0 39 4 19.4 

    -/+ 40 4 19.5 

        

K31 18 F  0/+ 36 3.2 17.0 

    0/0 36 2.1 17.5 

    -/+ 35 2.3 17.3 

    +/+ 34 2.5 16.6 

        

K32 20 M R 0/+ 40 2.3 18.9 

    +/+ 39 2.2 18.9 

    -/+ 40 2.8 19.2 

    0/0 38 2.1 18.6 

RMT resting motor threshold, MSO maximum stimulator output, PT perceptual threshold 
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