
Data-driven Channel Learning for
Next-generation Communication Systems

A DISSERTATION

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

Donghoon Lee

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Prof. Georgios B. Giannakis, Advisor

October, 2019



c© Donghoon Lee 2019

ALL RIGHTS RESERVED



Acknowledgments

First and foremost, my deepest gratitude goes to my advisor Prof. Georgios B. Gian-

nakis. I would like to thank him for giving me a great opportunity to be a member

of the SPiNCOM research group, as well as a student of the University of Minnesota,

Twin Cities. Without his guidance and insightful suggestions, this thesis would never

been completed.

I would like to extend my appreciation to collaborators during my Ph.D. years, Prof.

Seung-Jun Kim and Prof. Daniel Romero. Their vast knowledge and insight helped lay

a cornerstone for this thesis. Special thanks go to Prof. Mostafa Kaveh, Prof. Mehmet
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Abstract

The turn of the decade has trademarked the ‘global society’ as an information so-

ciety, where the creation, distribution, integration, and manipulation of information

have significant political, economic, technological, academic, and cultural implications.

Its main drivers are digital information and communication technologies, which have

resulted in a “data deluge”, as the number of smart and Internet-capable devices in-

creases rapidly. Unfortunately, establishing information infrastructure to collect data

becomes more challenging particularly as communication networks for those devices be-

come larger, denser, and more heterogeneous to meet the quality-of-service (QoS) for the

users. Furthermore, scarcity in spectral resources due to an increased demand for mobile

devices urges the development of a new methodology for wireless communications possi-

bly facing unprecedented constraints both on hardware and software. At the same time,

recent advances in machine learning tools enable statistical inference with efficiency as

well as scalability in par with the volume and dimensionality of the data. These consid-

erations justify the pressing need for machine learning tools that are amenable to new

hardware and software constraints, and can scale with the size of networks, to facilitate

the advanced operation of next-generation communication systems.

The present thesis is centered on analytical and algorithmic foundations enabling

statistical inference of critical information under practical hardware/software constraints

to design and operate wireless communication networks. The vision is to establish a

unified and comprehensive framework based on state-of-the-art data-driven learning

and Bayesian inference tools to learn the channel-state information that is accurate yet

efficient and non-demanding in terms of resources. The central goal is to theoretically,

algorithmically, and experimentally demonstrate how valuable insights from data-driven

learning can lead to solutions that markedly advance the state-of-the-art performance

on inference of channel-state information.

To this end, the present thesis investigates two main research thrusts: i) channel-gain

cartography leveraging low-rank and sparsity; and ii) Bayesian approaches to channel-

gain cartography for spatially heterogeneous environment. The aforementioned research
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thrusts introduce novel algorithms that aim to tackle the issues of next-generation com-

munication networks. Potential of the proposed algorithms is showcased by rigorous

theoretical results and extensive numerical tests.
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obtained by using the full dataset (with 2, 380 measurements) via Alg. 7. 57
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Chapter 1

Introduction

1.1 Motivation and Context

Smart and Internet-capable devices have a ubiquitous presence in our daily lives. In the

first quarter of 2019, global mobile penetration is 104 percent, bringing the total num-

ber of mobile subscriptions to around 7.9 billion. Correspondingly, the global mobile

data traffic grew by 82 percent between 2018 and 2019 and reached 32 exabytes (equal

to 3.2 × 1018 bytes) per month [23], which is primarily fueled by viewing multimedia

content at increasingly higher resolution; see the mobile data traffic growth in Fig. 1.1.

While there is increasing demand for wireless connectivity, the spectrum particularly

between 500 MHz and 3 GHz is limited; and most of defined spectrum bands have al-

ready been allocated for governmental and commercial activities. Additionally, growing

interest in the Internet of things (IoT) puts a strain on the available unlicensed spectral

resources. Provided that the projected number of IoT devices in factories, businesses,

and healthcare reaches 200 billion by 2020 [41], the currently available spectrum will be

eventually overloaded and considerable interference issues will arise as a result.

Evident scarcity of spectral resources for (un)licensed bands has popularized mainly

two different ideas as potential remedies: i) spectrum sharing; and ii) utilization of

higher frequencies. As a manifestation of the former, cognitive radio networks (CRNs)

have arguably gained center-stage prominence. Cognitive radios (CRs) are a set of

devices equipped with cognition capabilities to learn the spatio-temporal and spectral

1
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Figure 1.1: Global mobile data traffic and year-on-year growth [23].

usage patterns of near by users and networks. Such a level of cognition allows op-

portunistic utilization of the unused (un)licensed spectrum via spectrum sensing and

dynamic spectrum access while avoiding interference in networks operating over the

same band. This is particularly appealing in a recent situation that the licensed RF

spectrum is often severely under-utilized depending on the time and location of commu-

nication [25]. While spectrum sharing has been proposed for more efficient use of exist-

ing spectral resources, utilization of higher frequencies addresses not only the spectral

scarcity, but also increasing demand for higher date rates. Millimeter wave (mmWave)

communications over the licensed spectrum between 30–300 GHz have recently gained

more attention from the standards organization, the Federal Communications Commis-

sion (FCC), and academia as a means to bring “5G” cellular systems into the future,

while those over the unlicensed spectrum were mainly studied to develop technologies

for a personal area network (PAN) to deliver uncompressed high definition (HD) video,

or standardized for a wireless local area network (WLAN); see e.g., WirelessHD [92]

and IEEE 802.11ad [1], respectively.

While the aforementioned solutions promise more efficient utilization of the spectral

resources and faster means of wireless communication, next-generation communication

systems face formidable challenges as outlined next.
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C1. Networks are ultra dense and heterogeneous. One differentiator of 5G

networks relative to legacy generations (1–4G) is heterogeneity, which is induced by

the convergence of “component” networks in various sizes operating over potentially

different frequency bands. These so-termed heterogeneous networks (HetNets) are key

enablers of 5G systems together with densification of the infrastructure to meet quality-

of-service (QoS) expected by users and satisfy different service coverage requirements,

provided that seamless interconnections among component networks are guaranteed.

While CRs are considered as a key technology to accommodate the HetNets by providing

adaptive handover between component networks [43], the successful operation of CRNs

hinges critically on channel state information (CSI) over space, time, and frequency

to find spectrum holes [47]. However, conventional point-to-point estimation methods

such as ray-tracing [87, 93] do not provide feasible solutions for extremely dense and

heterogeneous networks.

C2. Differences of mmWave channel relative to sub-6 GHz channel. Com-

pared to the channel at sub-6 GHz, the millimeter wave channel shows significantly

different characteristics due to the very short wavelength relative to the size of objects

located in the propagation environment. This results in high sensitivity of signals to

blockages, with consequently pronounced shadowing effects but relatively low diffrac-

tion [57]. For example, signal strength can be attenuated as much as 35dB by the

human body [54]. Furthermore, the signal propagating over mmWave bands experi-

ences higher path-loss than that at sub-6 GHz with omnidirectional antennas since

the path-loss is inversely proportional to the wavelength squared by the Friis’ law. In

other words, mmWave communications become feasible through either co-siting with

existing technologies, or directional transmissions and MIMO techniques with adaptive

beamforming, to compensate for severe signal attenuation.

C3. New hardware constraints on massive MIMO for mmWave commu-

nication. To implement mmWave communication systems by addressing C2, it is

inevitable to adopt MIMO techniques with antenna arrays having between 16 to 256

elements [37], which could be even larger at base stations in cellular networks. For such
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a large number of antenna elements, several hardware constraints arise from a practi-

cal point of view. Conventional digital MIMO architectures at sub-6 GHz frequencies

(generally with two antenna elements) entail a power amplifier (PA) and an RF chain

with analog-to-digital converter (ADC), or digital-to-analog converter (DAC), associ-

ated with each antenna on top of all baseband connections. As the number of antenna

elements increases, it becomes impractical to pack all these devices on a circuit board

with limited space while placing antennas very close to each other to avoid granting

lobes. Furthermore, power consumption is another critically limiting factor; e.g, power

hungry devices such as ADC or PA consume 15–795 (mW) per antenna [27, 20]. There-

fore, implementation of mmWave communications requires z beamforming architecture

with low-power consumption while providing a sufficient spatial multiplexing gain by

supporting a massive number of antenna arrays.

In this context, the present dissertation will leverage contemporary science and en-

gineering tools from diverse disciplines in order to put forth analytical and algorithmic

foundations to design and operate modern communication systems.

1.2 Channel-gain Cartography

The abiding goal of this thesis is to jointly address challenges C1–C3 under a prin-

cipled machine learning framework. To tackle C1 and C2, we put forth algorithmic

innovations for efficient and adaptive learning of global channel-state information for

next-generation communication systems via channel-gain cartography. On the other

hand, future research directions to address C3 will be discussed in Chapter 6.

Channel-gain cartography is a groundbreaking geostatistics-inspired application por-

traying the RF landscape impinging upon arbitrary spatial locations. The most appeal-

ing feature of this tool is the non-trivial capability of inferring channel-gain between

arbitrary transceiver locations, even where no sensor is deployed, based only on mea-

surements collected by a set of collaborating sensing radios. The vision of channel-gain

cartography is to utilize the resulting channel-gain atlas for cross-layer design and as-

sessment of the system-level performance of wireless networks; and to enhance hand-off,

routing, interference management, and resource allocation, without requiring a large

number of point-to-point channel estimates over wireless networks.
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Channel-gain cartography leverages the notion of spatial loss fields (SLFs), which

are maps quantifying the attenuation experienced by electromagnetic waves in radio

frequency (RF) bands at every spatial position. The SLF model is used to estimate

shadowing over an arbitrary radio link, and subsequently the associated channel gain as

well. This enables construction of a map depicting a landscape of channel-gain from any

point to a common end point in the region of interest. Considering that characterization

of the propagation environment is critical for obtaining the channel-state information

based on situational awareness, more accurate spectrum sensing and aggressive spatial

reuse can be expected from utilization of a channel-gain map, instead of adopting a

path-loss only model. Fig. 1.2 delineates spatial spectrum opportunity at a secondary

receiver marked by a black cross, obtained via the proposed channel-gain map and the

path-loss only model. For illustration purposes, the threshold to meet the QoS is set to

60dB and corresponding contour is drawn in red. Apparently, the spatial coverage of

the receiver obtained by using the channel-gain map expands more than that by using

the path-loss only model. This demonstrates nicely that more aggressive spatial reuse

becomes available due to site-specific interference management through the proposed

channel-gain map.

Such a non-trivial capability of inferring any-to-any channel-gain can be a key to

success of spectrum reuse over HetNets, and co-siting for mmWave communications

by enhancing hand-off, routing, and interference management. These considerations

motivate the innovative machine learning and Bayesian inference algorithms for channel-

gain cartography that will be developed in the following chapters and, accordingly,

a significant departure from conventional per-link channel-gain and interference level

estimation will be advocated.

1.3 Thesis Outline

The remainder of the thesis is organized as follows.

Chapter 2 reviews channel-gain cartography. The concept of channel-gain cartog-

raphy is introduced with its functionality. Prior works including radio tomography are

reviewed as well. Afterwards, the system model and problem statement are presented,

which are considered throughout the thesis.
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Figure 1.2: Spatial spectrum opportunity of a CR, obtained via (a) a path-loss only
model; and (b) a channel-gain map.

Chapter 3 puts forth channel-gain cartography leveraging low-rank and sparsity,

having as goal to construct a channel-gain map with a relatively small number of mea-

surements. The key idea is to postulate that the SLF has a low-rank structure poten-

tially corrupted by sparse outliers. Such a model is particularly appealing for urban and

indoor propagation scenarios, where regular placement of buildings and walls renders a

scene inherently of low-rank, while sparse outliers can pick up the artifacts that do not

conform to the low-rank model. We develop an efficient batch algorithm as well as its

online version via stochastic approximation (SA) [84, 48]. Performance of the proposed

algorithms is evaluated with a rigorous performance analysis and extensive numerical

tests on synthetic and real datasets.

Chapter 4 introduces a novel Bayesian framework for channel-gain cartography. To

take into account spatial heterogeneity of the propagation environment when learning

the SLF, we propose a two-layer Bayesian SLF model based on a binary hidden Markov

random field along with Markov chain Mote Carlo (MCMC) methods for inference [30].

Besides accounting for heterogeneous propagation environments, another contribution

here is a data-adaptive sensor selection technique, with the goal of reducing SLF uncer-

tainty, by cross-fertilizing ideas from the fields of experimental design [26] and active

learning [55]. Efficacy of the proposed solution is established through extended synthetic

and real data tests.
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Chapter 5 builds on the algorithms and results of Chapter 4, and devises a variational

Bayes approach to adaptive Bayesian channel-gain cartography. The aforementioned

Bayesian SLF model is generalized first by adopting a K-ary hidden Markov random

field, to address a richer class of environmental heterogeneity. Subsequently, variational

Bayes (VB) algorithms are developed to provide efficient field estimators at affordable

complexity. To bypass a novel but intractable sensor selection criterion, its efficient

proxy can be obtained thanks to the availability of an approximate posterior model from

the proposed VB algorithm. Numerical tests on synthetic and real data corroborate the

effectiveness of the proposed algorithms.

Finally, Chapter 6 presents a concluding discussion of the proposed approaches,

along with future research directions.

1.4 Notational Conventions

The following notation is used throughout the subsequent chapters. Bold uppercase

(lowercase) letters denote matrices (column vectors). Calligraphic letters are used for

sets; In is the n × n identity matrix; 0n denotes an n × 1 vector of all zeros, and

0n×n an n × n matrix of all zeros. Operators (·)>, tr(·), σi(·), and λmax(·) represent

the transposition, trace, the i-th largest singular value, and the largest eigenvalue of

a matrix, respectively; | · | is used for the cardinality of a set, the magnitude of a

scalar, and the determinant of a matrix. R � 0 signifies that R is positive semidefinite.

The `1-norm of X ∈ Rn×n is ‖X‖1 :=
∑n

i,j=1 |Xij |. The `∞-norm of X ∈ Rn×n is

represented by ‖X‖∞ := max{|Xij | : i, j = 1, . . . , n}. For two matrices X,Y ∈ Rn×n,

the matrix inner product is 〈X,Y〉 := tr(X>Y). The Frobenius norm of matrix Y

is ‖Y‖F :=
√

tr(YY>). The spectral norm of Y is ‖Y‖ := max‖x‖2=1 ‖Yx‖2, and

‖Y‖∗ :=
∑

i σi(Y) is the nuclear norm of Y. For a function h : Rm×n → R, the

directional derivative of h at X ∈ Rm×n along a direction D ∈ Rm×n is denoted by

h′(X; D) := limt→0+[h(X + tD)− h(X)]/t. vec(X) produces a column vector x ∈ Rmn

by stacking the columns of a matrix one after the other (unvec(x) denotes the reverse

process). For a vector y ∈ Rn and an n× n weight matrix ∆, the weighted norm of y

is ‖y‖2∆ := y>∆y.



Chapter 2

Channel-gain Cartography

2.1 Preliminaries and Motivation

Conventional acquisition of the channel-state information (CSI) on a per-link basis might

become inadequate for emerging wireless technologies, since needs for accounting situ-

ational awareness are unrelentingly demanded to accomplish dynamic spectral resource

control for spectrum sharing in next-generation communication systems [96, 75, 40].

To meet the demands for tools enabling aggressive and full opportunistic utilization

of the unused (un)licensed spectrum, radio frequency (RF) cartography was proposed

as an instrumental concept originally for cognitive radios (CRs) [46]. Based on the

measurements collected by spatially distributed sensing radios, RF cartography provides

tools to construct maps over the space, time, and frequency, portraying a RF landscape

in which a CR network is deployed. Notable RF maps that have been proposed include

a power spectral density (PSD) map, which acquires the ambient interference power

distribution, revealing the crowded regions that CR transceivers need to avoid [6]; and

a channel-gain (CG) map, which delineates the spatial distribution of channel-gain

in a given geographical region through a collaborative network of CRs, allowing CR

networks to perform accurate spectrum sensing and aggressive spatial reuse [47]. The

present thesis focuses on channel-gain cartography.

Given channel-gain measurements from sensing radios at known locations in a region

of interest, the goal of channel-gain cartography is to estimate or predict channel-gain

from any point to a deployed radio, which is henceforth termed as a local CG map; as

8
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(a) (b)

Figure 2.1: Illustration of channel-gain maps: (a) local; and (b) global maps.

well as that of an arbitrary wireless link from any point to any other point in space,

(i.e., links not having communication ending points in common with the links between

existing sensing radio pairs), which constitute a so-termed global CG map: local and

global CG maps are illustrated in Fig. 2.1. The vision of channel-gain cartography

is to utilize resultant channel-gain atlas for cross-layer design and assessment of the

system-level performance of wireless networks; and to provide the vital information for

interference management, resource allocation, and spectrum sensing. It is also notable

that channel-gain cartography relies on incoherent measurements containing no phase

information, e.g., the received signal strength (RSS). Such simplification saves costs

for synchronization needed to calibrate phase differences among waveforms received at

different sensors.

The key premise behind channel-gain cartography is that spatially close radio links

exhibit similar shadowing due to the presence of common obstructions. This shadowing

correlation is related to the geometry of objects present in the area that waves prop-

agate through [71, 2]. As a result, shadowing is modeled as the weighted line integral

of the underlying two-dimensional spatial loss field (SLF), which is a map quantify-

ing the attenuation experienced by electromagnetic waves in RF bands at every spatial

position [71]. The weights in the integral are determined by a function depending on

the transmitter-receiver locations [71, 33, 82], which models the SLF effect on shad-

owing over a link. Inspired by this SLF model, linear interpolation techniques such as

kriging were further employed to estimate shadowing based on spatially correlated mea-

surements [18], while spatio-temporal dynamics were tracked via Kalman filtering [47].

Instead of relying on heuristic criteria to choose the weight function, [82] provides blind
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algorithms to learn the weight function using a non-parametric kernel regression, while

estimating the SLF via regularized least-squares (LS) methods. Note that another body

of work leveraging the SLF model is radio tomographic imaging (RTI) [91]. Benefiting

from the ability of RF waves to penetrate physical structures such as trees and buildings,

RTI provides a means of device-free passive localization [94, 97], and has found diverse

applications in disaster response for e.g., detecting individuals trapped in buildings or

smoke [90]. To detect locations of changes in the propagation environment, one can

use the difference between the SLF across consecutive time slots [91, 89]. To cope with

multipath in a cluttered environment, multi-channel measurements can be utilized to

enhance localization accuracy [44]. Although these are calibration-free approaches, they

cannot reveal static objects in the area of interest. It is also possible to replace the SLF

with a label field indicating presence (or absence) of objects in motion on each voxel [90],

and leverage the influence that moving objects on the propagation path have, on the

variance of a RSS measurement. On the other hand, the SLF itself was reconstructed

in [32, 33] to depict static objects in the area of interest, but calibration was necessary

by using extra measurements (e.g., collected in free space). One can avoid extra data for

calibration by estimating the SLF together with pathloss components [8, 82]. Exploit-

ing the sparse occupancy of the target objects in a monitored area, sparsity-leveraging

algorithms for constructing obstacle maps were also developed [66, 45, 65].

The overarching contribution of the present thesis is to develop algorithmic founda-

tions for effective data-driven channel learning by capitalizing on the inherent structure

of measurement data, rather than relying heavily on the physics of RF propagation. RF

propagation environment is particularly taken into consideration as the prior informa-

tion to learn the shadowing model, inspired by a fact that absorption captured by the

SLF allows one to discern objects located in the area of interest. We propose two SLF

models: i) a low-rank plus sparse matrix model [16, 24, 59]; and ii) a hidden Markov

random field (MRF) model [38]. The former is appealing for urban and indoor propaga-

tion scenarios, where regular placement of buildings and walls renders a scene inherently

of low rank, while sparse outliers can pick up the artifacts that do not conform to the

low-rank model. On the other hand, the latter is useful when the propagation environ-

ment is spatially diverse due to a combination of free space and objects in different sizes

and materials, which subsequently induces statistical heterogeneity in the SLF. Efficient
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solution methods leveraging aforementioned SLF models will be developed, and their

efficacy is shown through extensive synthetic and real data tests.

2.2 System Model and Problem Statement

Consider a set of sensors deployed over a two-dimensional geographical area A ⊂ R2.

After averaging out small-scale fading effects, the channel-gain measurement over a

link between a transmitter located at x ∈ A and a receiver located at x′ ∈ A can be

represented (in dB) as

g(x,x′) = g0 − γ10 log10 d(x,x′)− s(x,x′) (2.1)

where g0 is the path gain at unit distance; d(x,x′) := ‖x−x′‖ is the Euclidean distance

between the transceivers at x and x′; γ is the pathloss exponent; and s(x,x′) is the

attenuation due to shadow fading.

A tomographic shadow fading model is [71, 33, 51]

s(x,x′) =

∫
A
w(x,x′, x̃)f(x̃)dx̃ (2.2)

where f : A → R denotes the spatial loss field (SLF) capturing the attenuation at

location x̃, and w : A × A × A → R is a weight function describing how the SLF at

x̃ contributes to the shadowing experienced over the link x–x′. Typically, w confers a

greater weight w(x,x′, x̃) to those locations x̃ lying closer to the link x–x′. Examples

of the weight function include the normalized ellipse model [89]

w(x,x′, x̃) :=

1/
√
d(x,x′), if d(x, x̃) + d(x′, x̃) < d(x,x′) + λ/2

0, otherwise
(2.3)

where λ > 0 is a tunable parameter. The value of λ is commonly set to the wavelength

to assign non-zero weights only within the first Fresnel zone. It is worth to mention

that the weight function can be learned via a non-parametric kernel regression, instead

of relying on on heuristic criteria to choose the weight function; see [82] for details. In
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practice, the integral in (2.2) is approximated by a finite sum as

s(x,x′) ' c
Ng∑
i=1

w(x,x′, x̃i)f(x̃i) (2.4)

where {x̃i}Ngi=1 is a grid of points over A and c is a constant that can be set to unity

without loss of generality by absorbing any scaling factor in f . Clearly, (2.4) shows that

s(x,x′) depends on f only through its values at the grid points.

The model in (2.2) describes how the spatial distribution of obstructions in the

propagation path influences the attenuation between a pair of locations. The usefulness

of (2.2) is twofold: i) as f represents absorption across space, it can be used for imag-

ing; and ii) once f and w are known, the gain between any two points x and x′ can

be recovered through (2.1) and (2.2), which is precisely the objective of channel-gain

cartography.

All in all, the objective of channel-gain cartography is tantamount to estimating

f . To this end, N sensors located at {x1, . . . ,xN} ∈ A collaboratively obtain channel-

gain measurements. At time slot τ , the radios indexed by n(τ) and n′(τ) measure the

channel-gain ǧτ := g(xn(τ),xn′(τ))+ντ by exchanging training sequences known to both

transmitting and receiving radios, where n(τ), n′(τ) ∈ {1, . . . , N} and ντ denotes mea-

surement noise. It is supposed that g0 and γ have been estimated during a calibration

stage. After subtracting known components from ǧτ , the shadowing estimate is found

as

šτ := g0 − γ10 log10 d(xn(τ),xn′(τ))− ǧτ
= s(xn(τ),xn′(τ))− ντ . (2.5)

Having available št := [š1, . . . , št]
> ∈ Rt along with the known set of links {(xn(τ),xn′(τ))}tτ=1

and the weight function w at the fusion center, the problem is to estimate f , and thus

f := [f(x̃1), . . . , f(x̃Ng)]
> ∈ RNg using (2.4). Once f̂ is obtained, shadowing and

subsequently channel-gain across any link x–x′ can be estimated via (2.4) and (2.1) as

ŝ(x,x′) =

Ng∑
i=1

w(x,x′, x̃i)f̂(x̃i) (2.6)
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ĝ(x,x′) = g0 − γ10 log10 d(x,x′)− ŝ(x,x′). (2.7)



Chapter 3

Channel-gain Cartography

leveraging Low-rank and Sparsity

A task of channel-gain cartography is well-motivated to benefit operation of cognitive

radio networks (CRNs) by providing a means of site-specific interference management

and subsequently, spectrum sensing. Although more sophisticated methodologies for

channel modeling do exist including ray tracing [87, 93] to serve the same purpose, the

computational cost and requirements on various structural/geometric prior information

may hinder their use in CR applications. Capitalizing on experimentally validated

notion of the spatial loss field (SLF) [2], we will provide a computationally efficient

solution by leveraging the inherent structure of data, rather than relying heavily on the

physics of radio frequency (RF) signal propagation.

Our work interpolates the channel gains based on the SLF reconstructed from a

small number of measurements using a low-rank and sparse matrix model. The key

idea is to postulate that the SLF has a low-rank structure potentially corrupted by

sparse outliers. Such a model is particularly appealing for urban and indoor propagation

scenarios, where regular placement of buildings and walls renders a scene inherently of

low rank, while sparse outliers can pick up the artifacts that do not conform to the

low-rank model. While it is true that urban and indoor environments have distinct

profiles due to the different scales and density of obstacles, our data model can capture

the structural regularity of obstacles, possibly at different scales, as validated through

14



15

synthetic and real data examples in Section 3.3. The sparse term helps robustify this

model by filtering out the measurements that do not conform to the low-rank structure.

This is essentially the idea behind robust principal component analysis [16], which is a

powerful data model that has been used widely.

In fact, since a shadowing measurement is modeled as a linear tomographic mea-

surement of the SLF, the map recovery task reduces to an instance of compressive

principal component pursuit (CPCP) [95]. In general, the CPCP problem recovers the

low-rank and sparse matrices from a small set of linearly projected measurements. Our

algorithms are applicable to this general problem class.

We develop efficient batch and online algorithms for channel-gain cartography. By

replacing the nuclear norm-based regularizer with a bi-factorization surrogate, a block

coordinate descent (BCD) algorithm becomes available to avoid costly singular value

decomposition (SVD) per iteration. Although the resulting optimization problem is non-

convex, the batch solver can attain the global optimum under appropriate conditions.

For the online algorithm, a stochastic successive upper-bound minimization strategy is

adopted, leading to a stochastic gradient descent (SGD) update rule, which enjoys low

computational complexity. The iterates generated by the online algorithm are provably

convergent to the stationary point of the batch problem.

3.1 Channel-gain estimation using Low-rank and Sparsity

The goal of the present section is to estimate the SLF by leveraging its inherent low-

rank and sparse attribute. To this end, let matrix F := unvec(f) ∈ RNx×Ny denote

the SLF, sampled by the Nx-by-Ny grid, where Ng = NxNy. Let further define

w
(t)
nn′ := [w(xn(t),xn′(t), x̃1), . . . , w(xn(t),xn′(t), x̃Ng)]

> ∈ RNg . Then, the weight ma-

trix W
(t)
nn′ := unvec(w

(t)
nn′) ∈ RNx×Ny corresponding to link xn(t)–xn′(t) is constructed in

similar manner. Subsequently, the shadow fading over link xn(t)–xn′(t) in (2.4) can be

expressed as a linear projection of the SLF given by

s(xn(t),xn′(t)) ' 〈W(t)
nn′ ,F〉. (3.1)

In the following sections of Chapter 3, the measurement model in (3.1) will be specifically

considered.
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3.1.1 CPCP Problem formulation

The low-rank plus sparse structure has been advocated in various problems in machine

learning and signal processing [16, 24, 59]. Low-rank matrices are effective in capturing

slow variation or regular patterns, and sparsity is instrumental for incorporating robust-

ness against outliers. Inspired by these, we postulate that F has a low-rank-plus-sparse

structure as

F = L + E (3.2)

where matrix L is low-rank, and E is sparse. This model is particularly attractive in

urban or indoor scenarios where the obstacles often possess regular patterns, while the

sparse term can capture irregularities that do not conform to the low-rank model.

Redefine š
(t)
nn′ := š(xn(t),xn′(t)) for brevity. Let M(t) be the set of links, for which

channel gain measurements are made at time t, and collect those measurements in vector

š(t) ∈ R|M(t)|. Toward estimating F(t) that obeys (3.2), consider the cost

c(t)(L,E) :=
1

2

∑
(n,n′)∈M(t)

(
〈W(t)

nn′ ,L + E〉 − š(t)
nn′

)2
(3.3)

which fits the shadowing measurements to the model. Then, with T denoting the total

number of time slots taking measurements, we adopt the following optimization criterion

(P1) min
L,E∈RNx×Ny

T∑
τ=1

βT−τ
[
c(τ)(L,E) + µL‖L‖∗ + µE‖E‖1

]
(3.4)

where β ∈ (0, 1] is the forgetting factor that can be optionally put in to weigh the recent

observations more heavily. The nuclear norm regularization term promotes a low-rank

L, while the `1-norm encourages sparsity in E. Parameters µL and µE are appropriately

chosen to control the effect of these regularizers. Conditions for exact recovery through

a related convex formulation in the absence of measurement noise can be found in [95].

Problem (3.4) is convex, and can be tackled using existing efficient solvers, such as

the interior-point method. Once the optimal L̂ and Ê are found, the desired F̂ is ob-

tained as F̂ = L̂+ Ê. However, the general-purpose optimization packages tend to scale

poorly as the problem size grows. Specialized algorithms developed for related problems
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often employ costly SVD operations iteratively [95]. Furthermore, such an algorithm

might not be amenable for an online implementation. Building on [58] and [81], an

efficient solution is proposed next with reduced complexity.

3.1.2 Efficient batch solution

Without loss of generality, consider replacing L with the low-rank product PQ>, where

P ∈ RNx×ρ and Q ∈ RNy×ρ, and ρ is a pre-specified overestimate of the rank of L. It is

known that (e.g., [81])

‖L‖∗ = min
P,Q

1

2

(
‖P‖2F + ‖Q‖2F

)
subject to L = PQ>. (3.5)

Thus, a natural re-formulation of (3.4) is (see also [58])

(P2) min
P,Q,E

f(P,Q,E) :=
T∑
τ=1

βT−τ
[
c(τ)(PQ>,E) +

µL

2

(
‖P‖2F + ‖Q‖2F

)
+ µE‖E‖1

]
.

(3.6)

Instead of seeking the NxNy entries of L, the factorization approach (3.6) entails only

(Nx+Ny)ρ unknowns, thus reducing complexity and memory requirements significantly

when ρ� min{Nx, Ny}. Furthermore, adoption of the separable Frobenius norm regu-

larizer in (P2) comes with no loss of optimality as asserted in the following lemma.

Lemma 1: If {L̂, Ê} minimize (P1) and we choose ρ ≥ rank(L̂), then, (P2) is

equivalent to (P1) at the minimum.

Proof: It is clear that the minimum of (P1) is no larger than that of

min
P,Q,E

T∑
τ=1

βT−τ
[
c(τ)(PQ>,E) + µL‖PQ>‖∗ + µE‖E‖1

]
(3.7)

since the search space is reduced by the reparameterization L = PQ> with ρ ≤
min{Nx, Ny}. Now (3.5) implies that the minimum of (3.7) is no larger than that

of (P2). However, the inequality is tight since the objectives of (P1) and (P2) are

identical for E := Ê, P := ÛΣ̂
1/2

, and Q := V̂Σ̂
1/2

, where L̂ = ÛΣ̂V̂> is the SVD.
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Consequently, (P1) and (P2) have identical costs at the minimum. �

Although (P1) is a convex optimization problem, (P2) is not. Thus, in general,

one can obtain only a locally optimal solution of (P2), which may not be the globally

optimal solution of (P1). Interestingly, under appropriate conditions, global optimality

can be guaranteed for the local optima of (P2), as claimed in the following proposition.

Proposition 1: If {P̄, Q̄, Ē} is a stationary point of (P2), β̄ :=
∑T

τ=1 β
T−τ , and

‖f̃(P̄Q̄>, Ē)‖ ≤ µLβ̄ with

f̃(L̂, Ê) :=

T∑
τ=1

βT−τ

 ∑
(n,n′)∈M(τ)

(
〈W(τ)

nn′ , L̂ + Ê〉 − š(τ)
nn′

)
W

(τ)
nn′

 (3.8)

then {L̂ := P̄Q̄>, Ê := Ē} is a globally optimal solution to (P1).

Proof: See Appendix A.1.

A stationary point of (P2) can be obtained through a block coordinate-descent

(BCD) algorithm, where the optimization is performed in a cyclic fashion over one

of {E,P,Q} with the remaining two variables fixed. In fact, since the term µE‖E‖1 is

separable in the individual entries as well, the cyclic update can be stretched all the

way up to the individual entries of E without affecting convergence [86]. The proposed

solver entails an iterative procedure comprising three steps per iteration k = 1, 2, . . .

[S1] Update E:

E[k + 1] = arg min
E

T∑
τ=1

βT−τ
[
c(τ)(P[k]Q>[k],E) + µE‖E‖1

]
[S2] Update P:

P[k + 1] = arg min
P

T∑
τ=1

βT−τ
[
c(τ)(PQ>[k],E[k + 1]) +

µL

2
‖P‖2F

]
[S3] Update Q:

Q[k + 1] = arg min
Q

T∑
τ=1

βT−τ
[
c(τ)(P[k + 1]Q>,E[k + 1]) +

µL

2
‖Q‖2F

]
.

To update each block variable, the cost in (P2) is minimized while fixing the other

block variables to their up-to-date iterates. To detail the update rules, let W(t) ∈
RNxNy×|M(t)| be a matrix with columns equal to w

(t)
nn′ for (n, n′) ∈M(t). DefineW :=

[
√
βT−1W(1) . . .

√
β0W(T )], š := [

√
βT−1š(1)> . . .

√
β0š(T )>]>, and e := vec(E). Then,
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one can write
∑T

τ=1 β
T−τ c(τ)(PQ>,E) = ‖W>vec(PQ> + E)− š‖22. Let el denote the

l-th entry of e, and e−l represent the replica of e without its l-th entry. Similarly, let

ω>l denote the l-th row of the matrixW , andW−l denote the matrixW with its l-th

row removed. The soft-thresholding function soft th(·;µE) is defined as

soft th(x;µE) := sign(x) max{0, |x| − µE}. (3.9)

Minimization in [S1] proceeds sequentially over the individual entries of e. At iteration

k, each entry is updated via

el[k + 1] = arg min
el

1

2
‖elωl − ˇ̌s‖22 + µEβ̄|el|, l = 1, . . . , NxNy (3.10)

where ˇ̌sl[k] := š −W>vec(P[k]Q>[k]) −W>−le−l. The closed-form solution for el is

obtained as

el[k + 1] =
soft th(ω>l

ˇ̌sl[k];µEβ̄)

‖ωl‖22
. (3.11)

Matrices P and Q are similarly updated over their rows through [S2] and [S3]. Let

pi be the i-th row of P, transposed to a column vector; i.e., P := [p1,p2, . . . ,pNx ]>. De-

fine W̃(t)
i ∈ R|M(t)|×Ny to be the matrix whose rows are the i-th rows of {W(t)

nn′}(n,n′)∈M(t)

denoted as w̃
(t)>
nn′,i, and s̃

(t)
i ∈ R|M(t)| a vector with entries equal to

s̃
(t)
nn′,i := š

(t)
nn′ − 〈W

(t)
nn′ ,E[k + 1]〉 −

Nx∑
j 6=i

w̃
(t)>
nn′,jQ[k]pj (3.12)

for (n, n′) ∈ M(t). Define also W̃ i := [
√
βT−1W̃(1)>

i . . .
√
β0W̃(T )>

i ]> and s̃i :=

[
√
βT−1s̃

(1)>
i

. . .
√
β0s̃

(T )>
i ]>. Then, pi is updated by solving a ridge-regression problem as

pi[k + 1] = arg min
pi

[
1

2
‖W̃ iQ[k]pi − s̃i‖22 +

µLβ̄

2
‖pi‖22

]
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whose solution is given in closed form by

pi[k + 1] =
[
Q>[k]W̃>i W̃ iQ[k] + µLβ̄Iρ

]−1
Q>[k]W̃>i s̃i (3.13)

which involves matrix inversion of dimension only ρ-by-ρ. Likewise, let qi denote the

i-th row of Q, transposed to a column vector; i.e., Q := [q1, . . . ,qNy ]
>. Define also

W̆ i := [
√
βT−1W̆(1)>

i . . .
√
β0W̆(T )>

i ]> and s̆i := [
√
βT−1s̆

(1)>
i . . .

√
β0s̆

(T )>
i ]>, where

W̆(t)
i ∈ R|M(t)|×Nx is the matrix whose rows are the transpositions of the i-th columns

of {W(t)
nn′}(n,n′)∈M(t), denoted as w̆

(t)
nn′,i, and s̆

(t)
i ∈ R|M(t)| has entries

s̆
(t)
nn′,i := š

(t)
nn′ − 〈W

(t)
nn′ ,E[k + 1]〉 −

Ny∑
j 6=i

w̆
(t)>
nn′,jP[k + 1]qj (3.14)

for (n, n′) ∈ M(t). The update for qi is then given by solving another ridge regression

problem to obtain

qi[k + 1] = arg min
qi

[
1

2
‖W̆ iP[k + 1]qi − s̆i‖22 +

µLβ̄

2
‖qi‖22

]
whose solution is given also in closed form by

qi[k + 1] =
[
P>[k + 1]W̆>i W̆ iP[k + 1] + µLβ̄Iρ

]−1
P>[k + 1]W̆>i s̆i (3.15)

which again involves matrix inversion of dimension ρ-by-ρ. The overall algorithm is

tabulated in Alg. 1.

Although the proposed batch algorithm exhibits low computational and memory

requirements, it is not suitable for online processing, since (3.6) must be re-solved every

time a new set of measurements arrive, incurring major computational burden. Thus,

the development of an online recursive algorithm is well motivated.
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Algorithm 1 Batch solver of (P2) in (3.6)

Initialize E[1] := 0Nx×Ny , P[1] and Q[1] at random
1: for k = 1, 2, . . . do
2: [S1] Update E:
3: Set e = vec(E[k])
4: for l = 1, 2, . . . , NxNy do
5: Set ˇ̌sl[k] := š−W>vec(P[k]Q>[k])−W>−le−l
6: Compute el[k + 1] = soft th(ω>l

ˇ̌sl[k];µEβ̄)/‖ωl‖22
7: end for
8: Set E[k + 1] = unvec(e[k + 1])
9: [S2] Update P:

10: for i = 1, 2, . . . , Nx do
11: Set W̃ i and s̃i

12: Compute pi[k + 1] =
[
Q>[k]W̃>i W̃ iQ[k] + µLβ̄Iρ

]−1
(Q>[k]W̃>i s̃i)

13: end for
14: Update P[k + 1] = [p1[k + 1],p2[k + 1], . . . ,pNx [k + 1]]>

15: [S3] Update Q:
16: for i = 1, 2, . . . , Ny do

17: Set W̆ i and s̆i

18: Compute qi[k + 1] =
[
P>[k + 1]W̆>i W̆ iP[k + 1] + µLβ̄Iρ

]−1
P>[k + 1]W̆>i s̆i

19: end for
20: Update Q[k + 1] = [q1[k + 1],q2[k + 1], . . . ,qNy [k + 1]]>

21: end for
22: Set P̂ := P[k + 1], Q̂ := Q[k + 1], and Ê := E[k + 1]
23: return P̂, Q̂, and Ê

3.2 Online Algorithm

3.2.1 Stochastic approximation approach

In practice, it is often the case that a new set of data becomes available sequentially in

time. Then, it is desirable to have an algorithm that can process the newly acquired

data incrementally and refine the previous estimates, rather than re-computing the batch

solution, which may incur prohibitively growing computational burden. Furthermore,

when the channel is time-varying due to, e.g., mobile obstacles, online algorithms can

readily track such variations.
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Stochastic approximation (SA) is an appealing strategy for deriving online algo-

rithms [84, 48]. Recently, techniques involving minimizing majorized surrogate functions

were developed to handle nonconvex cost functions in online settings [58, 60, 56, 80].

An online algorithm to solve a dictionary learning problem was proposed in [56]. A

stochastic gradient descent algorithm was derived for subspace tracking and anomaly

detection in [58]. Here, an online algorithm for the CPCP problem is developed. The

proposed approach employs quadratic surrogate functions with diagonal weighting so

as to capture disparate curvatures in the directions of different block variables.

For simplicity, let the number of measurements per time slot t be constant M :=

|M(t)| for all t. Define X := (P,Q,E) ∈ X ⊂ X ′ := R(Nx×ρ)×R(Ny×ρ)×R(Nx×Ny), where

X is a compact convex set, and X ′ a bounded open set, and ξ(t) := [{š(t)
m }Mm=1, {W

(t)
m }Mm=1]

∈ Ξ , where Ξ is assumed to be bounded. Define with slight abuse of notation

g1(X, ξ(t)) = g1(P,Q,E, ξ(t)) :=
1

2

M∑
m=1

(
〈W(t)

m ,PQ> + E〉 − š(t)
m

)2
(3.16)

g2(X) = g2(P,Q,E) :=
µL

2

(
‖P‖2F + ‖Q‖2F

)
+ µE‖E‖1. (3.17)

A quadratic surrogate function for g1(X, ξ(t)) is then constructed as

ǧ1(X,X(t−1), ξ(t)) := g1(X(t−1), ξ(t))

+ 〈P−P(t−1),∇Pg1(X(t−1), ξ(t))〉+
η

(t)
P

2
‖P−P(t−1)‖2F

+ 〈Q−Q(t−1),∇Qg1(X(t−1), ξ(t))〉+
η

(t)
Q

2
‖Q−Q(t−1)‖2F

+ 〈E−E(t−1),∇Eg1(X(t−1), ξ(t))〉+
η

(t)
E

2
‖E−E(t−1)‖2F (3.18)

where η
(t)
P , η

(t)
Q , and η

(t)
E are positive constants, and with

˜̃
f

(t)
m (P,Q,E) := 〈W(t)

m ,PQ>+

E〉 − š(t)
m it can be readily verified that

∇Pg1(X(t−1), ξ(t)) =
M∑
m=1

˜̃
f (t)
m (P(t−1),Q(t−1),E(t−1))W(t)

m Q(t−1) (3.19)
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∇Qg1(X(t−1), ξ(t)) =

M∑
m=1

˜̃
f (t)
m (P(t−1),Q(t−1),E(t−1))W(t)

m

>
P(t−1) (3.20)

∇Eg1(X(t−1), ξ(t)) =

M∑
m=1

˜̃
f (t)
m (P(t−1),Q(t−1),E(t−1))W(t)

m . (3.21)

Let us focus on the case without the forgetting factor, i.e., β = 1. A convergent SA

algorithm for (P2) is obtained by considering the following surrogate problem

(P3) min
X

1

t

t∑
τ=1

[
ǧ1(X,X(τ−1), ξ(τ)) + g2(X)

]
. (3.22)

In fact, solving (P3) yields a stochastic gradient descent (SGD) algorithm. In particular,

since variables P, Q, and E can be separately optimized in (P3), the proposed algorithm

updates the variables in parallel in each time slot t as

P(t) = arg min
P

t∑
τ=1

[
〈P−P(τ−1),∇Pg1(X(τ−1), ξ(τ))〉+

η
(τ)
P

2
‖P−P(τ−1)‖2F +

µL

2
‖P‖2F

]
(3.23)

Q(t) = arg min
Q

t∑
τ=1

[
〈Q−Q(τ−1),∇Qg1(X(τ−1), ξ(τ))〉+

η
(τ)
Q

2
‖Q−Q(τ−1)‖2F +

µL

2
‖Q‖2F

]
(3.24)

E(t) = arg min
E

t∑
τ=1

[
〈E−E(τ−1),∇Eg1(X(τ−1), ξ(τ))〉+

η
(τ)
E

2
‖E−E(τ−1)‖2F + µE‖E‖1

]
.

(3.25)

By checking the first-order optimality conditions, and defining η̄
(t)
P :=

∑t
τ=1 η

(τ)
P and

η̄
(t)
Q :=

∑t
τ=1 η

(τ)
Q , the update rules for P and Q are obtained as

P(t) =
1

η̄
(t)
P + µLt

t∑
τ=1

[
η

(τ)
P P(τ−1) −∇Pg1(X(τ−1), ξ(τ))

]
(3.26)

Q(t) =
1

η̄
(t)
Q + µLt

t∑
τ=1

[
η

(τ)
Q Q(τ−1) −∇Qg1(X(τ−1), ξ(τ))

]
(3.27)
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which can be written in recursive forms as

P(t) = P(t−1) − 1

η̄
(t)
P + µLt

(
∇Pg1(X(t−1), ξ(t)) + µLP(t−1)

)
(3.28)

Q(t) = Q(t−1) − 1

η̄
(t)
Q + µLt

(
∇Qg1(X(t−1), ξ(t)) + µLQ(t−1)

)
. (3.29)

Due to the non-smoothness of ‖E‖1, the update for E proceeds in two steps. First,

an auxiliary variable Z(t) is introduced, which is computed as

Z(t) =
1

η̄
(t)
E

[
t∑

k=1

η
(k)
E E(k−1) −∇Eg1(X(k−1), ξ(k))

]
. (3.30)

Again defining η̄
(t)
E :=

∑t
τ=1 η

(τ)
E , matrix Z(t) can be obtained recursively as

Z(t) =
1

η̄
(t)
E

[
η

(t)
E E(t−1) + η̄

(t−1)
E Z(t−1) −∇Eg1(X(t−1), ξ(t))

]
. (3.31)

Then, E(t) is updated as

E(t) = soft th(Z(t);µEt/η̄
(t)
E ). (3.32)

The overall online algorithm is tabulated in Alg. 2.

Remark 1.1 (Computational complexity). For the batch algorithm in Alg. 1,

the complexity orders for computing the updates for each of pi and qi are O(NyMT )

and O(NxMT ), respectively, due to the computation of W̃>s̃i and W̆>i s̆i. Thus, the

complexity orders for updating P and Q per iteration k are both O(NxNyMT ). The

update of el incurs complexity O(MT ) for computing ω>l
ˇ̌sl. Thus, the complexity order

for updating E per iteration k is O(NxNyMT ). Accordingly, the overall per-iteration

complexity of the batch algorithm becomes O(NxNyMT ). On the other hand, the

complexity of the online algorithm in Alg. 2 is dominated by the gradient computations,

which require O(ρNxNyM). Since ρ is smaller than Nx and Ny, and the per-iteration

complexity does not grow with T , the online algorithm has a much more affordable

complexity than its batch counterpart, and it is scalable for large network scenarios.
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Algorithm 2 Online SGD solver of (P2) in (3.6)

Initialize E(0) := 0Nx×Ny , P(0) and Q(0) at random
1: for t = 1, 2, . . . do

2: Set LP =
∑M

m=1

∥∥∥W(t)
m Q(t−1)

∥∥∥2

F
, LQ =

∑M
m=1

∥∥∥W(t)>
m P(t−1)

∥∥∥2

F

3: Set LE =
∑M

m=1

∥∥∥W(t)
m

∥∥∥2

F
and Lmin = min{LP, LQ, LE}

4: Set η
(t)
P ≥

L2
P

Lmin
, η

(t)
Q ≥

L2
Q

Lmin
, and η

(t)
E ≥

L2
E

Lmin

5: Set η̄
(t)
P =

∑t
τ=1 η

(τ)
P , η̄

(t)
Q =

∑t
τ=1 η

(τ)
Q , and η̄

(t)
E =

∑t
τ=1 η

(τ)
E

6: Update P(t) = P(t−1) − 1

η̄
(t)
P +µLt

(
∇Pg1(X(t−1), ξ(t)) + µLP(t−1)

)
7: Update Q(t) = Q(t−1) − 1

η̄
(t)
Q +µLt

(
∇Qg1(X(t−1), ξ(t)) + µLQ(t−1)

)
8: Update Z(t) = 1

η̄
(t)
E

[
η

(t)
E E(t−1) + η̄

(t−1)
E Z(t−1) −∇Eg1(X(t−1), ξ(t))

]
9: Set E(t) = soft th(Z(t);µEt/η̄

(t)
E )

10: end for

3.2.2 Convergence

The iterates {X(t)}∞t=1 generated from Alg. 2 converge to a stationary point of (P2), as

asserted in the following proposition. First define

Ct(X) :=
1

t

t∑
τ=1

[
g1(X, ξ(τ)) + g2(X)

]
(3.33)

Čt(X) :=
1

t

t∑
τ=1

[
ǧ1(X,X(τ−1), ξ(τ)) + g2(X)

]
(3.34)

C(X) := Eξ [g1(X, ξ) + g2(X)] . (3.35)

Note that Ct(X) is essentially identical to the cost of (P2). Furthermore, the minimizer

of Ct(X) approaches that of C(X) when t → ∞, provided ξ obeys the law of large

numbers, which is clearly the case when e.g., {ξ(t)} is i.i.d.

Assume that ∇Pg1(·,Q,E, ξ), ∇Q(P, ·,E, ξ) and ∇E(P,Q, ·, ξ) are Lipschitz with

respect to P, Q, and E, respectively, with constants LP, LQ, and LE, respectively

(which will be shown in Appendix A.2). Furthermore, let ᾱ
(t)
i := (

∑t
τ=1(η

(τ)
i + µL))−1

for i ∈ {P,Q}, and ᾱ
(t)
E := (η̄

(t)
E )−1 denote step sizes.

Proposition 2: If (a1) {ξ(t)}∞t=1 is an independent and identically distributed (i.i.d)
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random sequence; (a2) {X(t)}∞t=1 are in a compact set X ; (a3) Ξ is bounded; (a4) For

i ∈ {P,Q,E}, η̄i(t) ≥ ct ∀t for some c ≥ 0; and (a5) c′ ≥ η
(t)
i ≥ L2

i /Lmin ∀t for some

c′ > 0 and Lmin := min{LP, LQ, LE}, then the iterates {X(t)}∞t=1 generated by Alg. 2

converge to the set of stationary points of (P2) with β = 1, i.e.,

lim
t→∞

inf
X̄∈X̄

‖X(t) − X̄‖F = 0 a.s. (3.36)

where X̄ is the set of stationary points of C(X).

Proof: See Appendix A.2.

3.3 Numerical Tests

Performance of the proposed batch and online algorithms was assessed through numeri-

cal tests using both synthetic and real datasets. A few existing methods were also tested

for comparison. The ridge-regularized least-squares (LS) scheme estimates the SLF as

f̂ = (WW>+ωC−1
f )−1W š, where Cf is the spatial covariance matrix of the SLF, and

ω is a regularization parameter [89, 44, 33]. The total variation (TV)-regularized LS

scheme in [73] was also tested, which solves minf ‖š−W>f‖22 +ω
∑Nx−1

i=1

∑Ny
j=1 |Fi+1,j−

Fi,j | +
∑Nx

i=1

∑Ny−1
j=1 |Fi,j+1 − Fi,j | where Fi,j := [F]i,j . Finally, the LASSO estimator

was obtained by solving (P1) with µL = 0.

3.3.1 Test with synthetic data

Random tomographic measurements were taken by sensors deployed uniformly over

A := [0.5, 40.5] × [0.5, 40.5], from which the SLF with Nx = Ny = 40 was recon-

structed. Per-time slot, 10 measurements were taken, corrupted by zero-mean white

Gaussian noise with variance σ2 = 0.1. The regularization parameters were set to

µL = 0.05 and µE = 0.01 through cross-validation by minimizing the normalized error

‖F̂ − F0‖F /‖F0‖F , where F0 is the ground-truth SLF depicted in Fig. 3.1. Other pa-

rameters were set to ρ = 13, β = 1, and λ = 0.06; while Cf = INxNy and ω = 0.13 were

used for the ridge-regularized LS.

To validate the batch algorithm in Alg. 1, two cases were tested. In the first case,

the measurements were generated for T = 130 time slots using N = 52 sensors, while
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Figure 3.1: True SLF.
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Figure 3.2: Reconstructed SLFs F̂ via batch algorithms: (a) BCD (T = 130, N = 52);
(b) APG (T = 130, N = 52); (c) BCD (T = 260, N = 73); and (d) APG (T = 260,
N = 73).

in the second case, T = 260 and N = 73 were used. As a comparison, the accelerated

proximal gradient (APG) algorithm was also derived for (P1) [53]. Note that the APG

requires the costly SVD operation of an Nx-by-Ny matrix per iteration, while only the

inversion of a ρ-by-ρ matrix is necessary in the proposed BCD algorithm. Fig. 3.2 shows

the SLFs reconstructed by APG and BCD algorithms for the two cases. Apparently,

the reconstructed SLFs capture well the features of the ground-truth SLF in Fig. 3.1.

Note that (P2) is underdetermined when T = 130 since the total number of unknowns

in (P2) is 2, 640 while the total number of measurements is only 1, 300. This verifies

that the channel gain maps can be accurately interpolated with a small number of

measurements by leveraging the attributes of the low rank and sparsity. Fig. 3.3a shows

the convergence of the BCD and APG algorithms. The cost of (P2) from the BCD

algorithm converges to that of (P1) from APG after k = 550 iterations, showing that

the performance of solving (P1) directly is achievable by the proposed algorithm solving
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Figure 3.3: SLF reconstruction using the batch and online algorithms. (a) Cost ver-
sus iterations (batch). (b) Reconstruction error versus CR location error (batch). (c)
Average cost over time slots (online).

Table 3.1: Reconstruction error at T = 130 and computational complexity per iteration.

Algorithm Proposed (BCD) Ridge-reg. LS TV-reg. (ADMM) LASSO

‖F0 − F̂‖F /‖F0‖F 0.1064 0.1796 0.1196 0.1828

Per-iteratoin Complexity O(NxNyMT ) N/A O
(
(NxNy)

3 + (NxNy)
2MT

)
O(NxNyMT )

(P2) instead. This can also be corroborated from the reconstructed SLFs in Fig. 3.2 as

well.

Table 3.1 lists the reconstruction error when T = 130 and the per-iteration complex-

ity of the batch algorithms. It is seen that the proposed method outperforms benchmark

algorithms in terms of the reconstruction error. Note that the ridge-regularized LS has

a one-shot (non-iterative) complexity of O((NxNy)
3), but its reconstruction capability

is worse than the proposed algorithm as the true SLF is not smooth.

To test robustness of the proposed algorithm against imprecise CR location esti-

mates, the reconstruction error versus the maximum sensor location error is depicted in

Fig. 3.3b. To reconstruct F, W was computed via a set of erroneous sensor locations

x̌
(t)
n obtained by adding uniformly random perturbations to true locations x

(t)
n . It is

seen that the SLF could be accurately reconstructed when the location error was small.

The numerical tests for the online algorithm were carried out with the same param-

eter setting as the batch experiments with N = 317. Fig. 3.3c depicts the evolution of

the average cost in (3.33) for two sets of values for (η̄
(t)
P , η̄

(t)
Q , η̄

(t)
E ). The green dotted

curve corresponds to using η̄
(t)
P = η̄

(t)
Q = η̄

(t)
E = 300, while the blue solid curve is for

η̄
(t)
P = η̄

(t)
Q = 300, and η̄

(t)
E = 10. It can be seen that the uniform step sizes for all
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Figure 3.4: Reconstructed SLFs F̂ by the online algorithm with (a)-(b) η̄
(t)
P = η̄

(t)
Q = 300

and η̄
(t)
E = 10; and (c)-(d) η̄

(t)
P = η̄

(t)
Q = η̄

(t)
E = 300.

 

 

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40 −150

−100

−50

0

(a) t = 2, 400

 

 

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40 −150

−100

−50

0

(b) t = 3, 200

 

 

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40 −150

−100

−50

0

(c) t = 2, 400

 

 

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40 −150

−100

−50

0

(d) t = 3, 200

Figure 3.5: (a)-(b) True SLFs F
(t)
0 and (c)-(d) reconstructed SLFs F̂(t) at different time

slots.

variables result in convergence rate that is slower than that with the disparate step

sizes. Fig. 3.4 shows the SLFs reconstructed via the online algorithm at t = 1, 000 and

t = 5, 000 using the two choices of step sizes. It can be seen that for a given time slot

t, flexibly choosing the step sizes yields much more accurate reconstruction. As far as

reconstruction error, the online algorithm with disparate step sizes yields 6.3× 10−2 at

t = 5, 000, while its batch counterpart has 2.4 × 10−2. Although slightly less accurate

SLF is obtained by the online algorithm, it comes with greater computational efficiency.

To assess the tracking ability of the online algorithm, the slow channel variation

was simulated. The measurements were generated using the SLF in Fig. 3.1 with three

additional objects slowly moving in the rate of unit pixel width per 70 time slots. Fig. 3.5

depicts instances of the true and reconstructed SLFs at t = 2, 400 and t = 3, 200,

respectively, obtained by the online algorithm. The moving objects are marked by the

red circles. It is seen that the reconstructed SLFs correctly capture the moving objects,

while the stationary objects are estimated more clearly as t increases.
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Figure 3.6: Configuration of the testbed with N = 80 sensor locations marked with
crosses.
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Figure 3.7: Reconstructions by the proposed batch algorithm in Alg. 1.

3.3.2 Test with real data

To validate the performance of the proposed framework for SLF and channel gain map

estimation in realistic scenarios, real received signal strength (RSS) measurements were

also processed. The data were collected by a set of N = 80 sensors deployed in the

perimeter of a square-shaped testbed as shown in Fig. 3.6, where the crosses indicate

the sensor positions. Data collection was performed in two steps [33]. First, free-space

measurements were taken to obtain estimates of the path gain g0 and the pathloss

exponent γ via least-squares. The estimated γ was approximately 2, and g0 was found to

be 75. Then, tomographic measurements were formed with the artificial structure shown
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Figure 3.8: Reconstructions by the ridge-regularized LS.
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Figure 3.9: Reconstructions by the proposed online algorithm in Alg. 2.

in Fig. 3.6. For the both measurements, 100 measurements were taken per time slot,

in the 2.425 GHz frequency band, across 24 time slots. The shadowing measurements

were obtained by subtracting the estimated pathloss from the RSS measurements.

The SLFs of size Nx = Ny = 61 were reconstructed by the proposed batch algo-

rithm. The regularization parameters were set to µL = 4.5 and µE = 3.44, which were

determined by cross-validation. The parameter λ in (2.3) was set to 0.2 to capture the

non-zero weights within the first Fresnel zone, and ρ = 10 and β = 1 were used.

For comparison, the ridge-regularized LS estimator was also tested. To construct

Cf , the exponential decay model in [2] was used, which models the covariance between

points x̃i and x̃j as
[
Cf

]
ij

= σ2
s exp[−‖x̃i − x̃j‖2/κ], where σ2

s and κ > 0 are model

parameters. In our tests, σ2
s = κ = 1, and ω = 79.9 were used.

The SLF, shadow fading map, and channel gain map reconstructed by the proposed

BCD algorithm are depicted in Fig. 3.7. The shadow fading and channel gain maps
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Figure 3.10: NMSE of channel gain prediction by (a) the batch; and (b) online algo-
rithms.

portray the gains in dB between any point in the map and the fixed CR location at

(10.2, 7.2) (marked by the cross). Fig. 3.8 shows the results from the ridge-regularized

LS estimation. It can be seen from Fig. 3.7a and Fig. 3.8a that the proposed low-rank

plus sparse model produces a somewhat sharper SLF image than the ridge-regularized

LS approach. Although the latter yields a smooth SLF image, it produces more artifacts

near the isolated block and the boundary of the SLF. Such artifacts may lead to less

accurate shadowing and channel gain maps. For instance, Fig. 3.7b and Fig. 3.8b both

show that the shadow fading is stronger as more building material is crossed in the

communication path. However, somewhat strong attenuations are observed near the

cinder block location and the interior of the oriented strand board (OSB) wall only in

Fig. 3.8b, which seems anomalous.

The online algorithm was also tested with the real data. Parameters η̄
(t)
P = η̄

(t)
Q = 620

and η̄
(t)
E = 200 were selected, and 6× 105 measurements were uniformly drawn from the

original dataset with replacement to demonstrate the asymptotic performance. Fig. 3.9

depicts the reconstructed SLF, shadow fading and channel gain maps obtained from the

online algorithm. It can be seen that the SLF shown in Fig. 3.9a is close to that depicted

in Fig. 3.7a. Similar observations can be made for the shadow fading and channel gain

maps as well. Thus, the online algorithm is a viable alternative to the batch algorithm

with reduced computational complexity, and affordable memory requirement.
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Channel gain estimation performance of the proposed algorithms was assessed via 5-

fold cross-validation. Let ǧtest and ĝtest denote RSS measurement vectors in the test set

and its estimate, respectively. Prediction performance is measured by the normalized

mean-square error (NMSE) ‖ǧtest − ĝtest‖2/‖ǧtest‖2. Fig. 3.10a displays the NMSE of

batch algorithms with 480 test samples versus the number of training samples. It is

shown that the proposed algorithm outperforms competing alternatives, particularly

when a small number of training samples are available, validating the usefulness of the

proposed model. The online algorithm was also tested with 2.85 × 105 measurements

uniformly drawn from 1, 920 training samples with replacement. Fig. 3.10b depicts the

evolution of the NMSE measured on 480 test samples at every t. It is observed that the

online algorithm attains the batch performance as t increases.

3.4 Conclusion

A low-rank plus sparse matrix model was proposed for channel-gain cartography, which

is instrumental for various CR spectrum sensing and resource allocation tasks. The

channel gain was modeled as the sum of the distance-based path-loss and the tomo-

graphic accumulation of the underlying SLF for shadowing. The SLF was postulated

to have a low-rank structure corrupted by sparse outliers. Efficient batch and online

algorithms were derived by leveraging a bifactor-based characterization of the matrix nu-

clear norm. The algorithms enjoy low computational complexity and a reduced memory

requirement, without sacrificing the optimality, with provable convergence properties.

Tests with both synthetic and real measurement datasets corroborated the claims and

showed that the algorithms could accurately reveal the structure of the propagation

medium.



Chapter 4

Bayesian Approach to

Channel-gain Cartography

4.1 Motivation

Conventionally, the spatial loss field (SLF) f is learned via regularized least-squares

(LS) methods tailored to the propagation environment [33, 51, 89], by solving

min
f

t∑
τ=1

(
šτ −

Ng∑
i=1

w(xn(τ),xn′(τ), x̃i)f(x̃i)

)2

+ µfR(f) (4.1)

where R : RNg → R is a generic regularizer to promote a known attribute of f , and

µf ≥ 0 is a regularization scalar to reflect compliance of f with this attribute. Particu-

larly, a ridge-regularized solution can be interpreted as a maximum a posteriori (MAP)

estimator provided that the SLF is statistically homogeneous and modeled as a zero-

mean Gaussian random field. However, these approaches are less effective when the

propagation environment is spatially heterogeneous due to a combination of free space

and objects in different sizes and materials (e.g., as easily seen in urban areas), which

subsequently induces statistical heterogeneity in the SLF. To account for environmental

heterogeneity, the novel method here leverages the Bayesian framework to learn the

piecewise homogeneous SLF through a hidden Markov random field (MRF) model [38],

which captures spatial correlations of neighboring regions exhibiting related statistical

34



35

behavior. Efficient field estimators will be derived by using Markov chain Monte Carlo

(MCMC) sampling [30], which is a powerful tool for Bayesian inference when analytical

solutions of the minimum mean-square error (MMSE) or the MAP estimators are not

available. Furthermore, hyperparameters are estimated as well, instead of being fixed a

priori.

Besides accounting for heterogeneous propagation, another contribution here is a

data-adaptive sensor selection technique, with the goal of reducing SLF uncertainty, by

cross-fertilizing ideas from the fields of experimental design [26] and active learning [55].

The conditional entropy of the SLF is considered as an uncertainty measure in this work,

giving rise to a novel sensor selection criterion. Although such criterion is intractable

especially when the size of the SLF is large, its efficient proxy can be obtained thanks to

the availability of posterior samples from the proposed MCMC-based algorithm. Note

that the proposed technique is appealing for a practical scenario constrained to incur

low communication overhead, since the data collection cost can be reduced by using a

minimal number of selective measurements to learn the SLF.

4.2 Adaptive Bayesian Channel-gain Cartography

In this section, we view f as random, and forth propose a two-layer Bayesian SLF model,

along with an MCMC-based approach for inference. We further develop an adaptive

data acquisition strategy to select informative measurements.

4.2.1 Bayesian Model and Problem Formulation

Let A consist of two disjoint homogeneous regions A0 := {x|E[f(x)] = µf0 ,Var[f(x)] =

σ2
f0
,x ∈ A}, and A1 := {x|E[f(x)] = µf1 ,Var[f(x)] = σ2

f1
,x ∈ A}, giving rise to a

hidden label field z := [z(x̃1), . . . , z(x̃Ng)]
> ∈ {0, 1}Ng with binary entries z(x̃i) = k if

x̃i ∈ Ak ∀i, and k = 0, 1. The two separate regions can be used to model heteroge-

neous environments. For instance, if A corresponds to an urban area, A1 may include

densely populated regions with buildings, while A0 with µf0 < µf1 may capture the less

obstructive open spaces. In such a paradigm, we model the conditional distribution of

f(x̃i) as

f(x̃i)|z(x̃i) = k ∼ N (µfk , σ
2
fk

), (4.2)
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while the Ising prior [85], which is a binary version of the discrete MRF Potts prior [38],

is assigned to z in order to capture the dependency among spatially correlated labels. By

the Hammersley-Clifford theorem [34], the Ising prior of z follows a Gibbs distribution

p(z|β) =
1

C(β)
exp

β Ng∑
i=1

∑
j∈N (x̃i)

δ(z(x̃j)− z(x̃i))

 (4.3)

where N (x̃i) is a set of indices associated with 1-hop neighbors of x̃i on the rectangular

grid in Fig. 4.1, β is a granularity coefficient controlling the degree of homogeneity in

z, δ(·) is Kronecker’s delta, and

C(β) :=
∑
z∈Z

exp

β Ng∑
i=1

∑
j∈N (x̃i)

δ(z(x̃j)− z(x̃i))

 (4.4)

is the partition function with Z := {0, 1}Ng . By assuming conditional independence

of {f(x̃i)}Ngi=1 given z, the resulting model is referred to as the Gauss-Markov-Potts

model with two labels. The Gauss-Markov-Potts model for channel-gain cartography is

depicted in Fig. 4.2 with the measurement model in (2.2).

To describe priors of other parameters, let νt be independent and identically dis-

tributed (i.i.d.) Gaussian with zero mean and variance σ2
ν , and θ denote a hyperparam-

eter vector comprising σ2
ν , β, and θf := [µf0 , µf1 , σ

2
f0
, σ2

f1
]>. The weight matrix Wt ∈

RNg×t is formed with columns w
(n,n′)
τ := [w(xn(τ),xn′(τ), x̃1), . . . , w(xn(τ),xn′(τ), x̃Ng)]

> :=

[wτ,1, . . . , wτ,Ng ]
> ∈ RNg of the link xn(τ)–xn′(τ) for τ = 1, . . . , t. Assuming the inde-

pendence among entries of θ, p(θ) can be expressed as

p(θ) = p(σ2
ν)p(β)p(µfk)p(σ2

fk
) (4.5)

with p(µfk) = p(µf0)p(µf1) and p(σ2
fk

) = p(σ2
f0

)p(σ2
f1

), where the individual priors

p(σ2
ν), p(β), p(µfk), and p(σ2

fk
) are specified next.

1) Granularity coefficient β. To cope with the variability of β in accordance with

structural patterns of the propagation medium, β is viewed as an unknown random

variable that is to be estimated together with f and z under the Bayesian framework.
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Figure 4.1: Four-connected MRF with z(x̃i) marked red and its neighbors in N (x̃i)
marked blue.

Figure 4.2: The Gauss-Markov-Potts model with Ising prior for channel-gain cartogra-
phy, together with the measurement model for sensors located at (xn,xn′).

Similar to e.g., [72], the uniform distribution is adopted for the prior of β as

p(β) = U(0,βmax)(β) :=

1/βmax, if β ∈ [0, βmax]

0, otherwise.
(4.6)

2) Noise variance σ2
ν. In the presence of the additive Gaussian noise with fixed mean,

it is common to assign a conjugate prior to σ2
ν , which reproduces a posterior distribution

in the same family of its prior. The inverse gamma (IG) distribution serves this purpose



38

for σ2
ν ∈ R+ as follows:

p(σ2
ν) = IG(aν , bν) :=

baνν
Γ(aν)

(σ2
ν)−aν−1 exp

(
− bν
σ2
ν

)
(4.7)

where aν is referred to as the shape parameter, bν as the scale parameter, and Γ(·)
denotes the gamma function.

3) Hyperparameters of the SLF θf . While the prior for µfk is assumed to be Gaus-

sian with mean mk and variance σ2
k ∈ R+ (see also [5]), the inverse Gamma distribution

parameterized by {ak, bk} is considered for the prior of σ2
fk

:

p(µfk) = N (mk, σ
2
k), k = 0, 1 (4.8)

p(σ2
fk

) = IG(ak, bk), k = 0, 1. (4.9)

Such choice of the conjugate priors in (4.8) and (4.9) provides analytical tractability for

estimating µfk . Note that a truncated Gaussian prior for µfk also can be adopted when

the support of µfk is known a priori.

Together with the priors for {f , z,θ}, our joint posterior becomes

p(f , z,θ|št) ∝ p(št|f , σ2
ν)p(f |z,θf )p(z|β)p(θ) (4.10)

where p(št|f , σ2
ν) ∼ N (W>

t f , σ
2
νIt) is the data likelihood with the weight matrix Wt ∈

RNg×t formed from columns w
(n,n′)
τ := [w(xn(τ),xn′(τ), x̃1), . . . , w(xn(τ),xn′(τ), x̃Ng)]

> :=

[wτ,1, . . . , wτ,Ng ]
> ∈ RNg of the link xn(τ)–xn′(τ) for τ = 1, . . . , t. Note that Fig. 4.3 sum-

marizes the proposed hierarchical Bayesian model for {št,f , z,θ} as a directed acyclic

graph, where the dependency between (hyper) parameters is indicated with an arrow.

We will pursue the the conditional MMSE estimator

f̂MMSE := E[f |z = ẑMAP, št] (4.11)

where the marginal MAP estimate is

ẑMAP := arg max
z

p(z|št). (4.12)
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Figure 4.3: Graphical representation of the hierarchical Bayesian model with Ising prior
for (hyper) parameters (those in boxes are fixed).

Furthermore, the marginal MMSE estimates of the θ entries are found as

σ̂2
νMMSE := E[σ2

ν |št] (4.13)

β̂MMSE := E[β|št] (4.14)

µ̂fkMMSE := E[µfk |št], k = 0, 1 (4.15)

σ̂2
fkMMSE

:= E[σ2
fk
|št], k = 0, 1. (4.16)

4.2.2 Approximate Inference via Markov Chain Monte Carlo

While approximate estimators have been proposed for Bayesian inference (see e.g., [42,

98]), analytical solutions to (4.11)−(4.16) are not tractable due to the complex form

of the posterior in (4.10) that does not permit marginalization or maximization. To

bypass this challenge, one can generate samples from (4.10), and then numerically

approximate the desired estimators from those samples. MCMC is a class of methods

used to generate samples from a complex distribution [30].

Among MCMC methods, Gibbs sampling [29] is particularly suitable for this work.

It draws samples following the target distribution (e.g., the posterior in (4.10)) by sweep-

ing through each variable to sample from its conditional distribution while fixing the

others to their up-to-date values. Although the samples at early iterations of Gibbs sam-

pling with random initialization are not representative of the desired distribution (such

duration is called the burn-in period NBurn-in), the theory of MCMC guarantees that
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Algorithm 3 Metropolis-within-Gibbs sampler for {f , z,θ}
Input: z(0), θ(0), št, Wt, NCL, NBurn-in, and NIter

1: for l = 1 to NIter do
2: Generate f (l) ∼ p(f |št, z(l−1),θ(l−1)) in (4.17)
3: Generate z(l) ∼ p(z|št,f (l),θ(l−1)) via Alg. 4

4: Generate β(l) ∼ p(β|št,f (l), z(l), σ2
ν

(l−1)
,θ

(l−1)
f ) via Alg. 6

5: Generate σ2
ν

(l)∼ p(σ2
ν |št,f (l), z(l), β(l),θ

(l−1)
f ) in (4.27)

6: Generate µ
(l)
fk
∼ p(µfk |št,f (l), z(l), σ2

ν
(l)
, β(l),σ

2(l−1)
fk

) in (4.29) for k = 0, 1

7: Generate σ
2(l)
fk
∼ p(σ2

fk
|št,f (l), z(l), σ2

ν
(l)
, β(l),µ

(l)
fk

) in (4.33) for k = 0, 1
8: end for
9: return S(t) :=

{
f (l), z(l),θ(l)

}NIter

l=NBurn-in+1

the stationary distribution of those samples matches with the target distribution [30].

Gibbs sampling requires only the conditional distribution within a proportionality

scale. When a given conditional distribution is not easy to simulate, one can resort to

a Metropolis-Hastings (MH) sampler [36], which generates a candidate from a simple

proposal distribution of such conditional distribution, and accepts (or rejects) the can-

didate as a sample of interest under a certain acceptance ratio α. The substitution of

MH sampling for some sampling steps inside the Gibbs sampler results in a Metropolis-

within-Gibbs (MwG) sampler, as listed in Alg. 3. Posterior conditionals considered in

this work and associated sampling methods will be described next.

1) Spatial loss field f . It is easy to show that

p(f |št, z,θ) ∝ p(št|f , σ2
ν)p(f |z,θf )

= N (µ̌f |z,θ,št ,Σf |z,θ,št) (4.17)

where

Σf |z,θ,št :=
(

(σ2
ν)−1WtW

>
t + Σ−1

f |z

)−1
(4.18)

µ̌f |z,θ,št := Σf |z,θ,št

(
(σ2
ν)−1Wtšt + Σ−1

f |zµf |z

)
(4.19)

since p(f |z,θf ) follows N (µf |z,Σf |z) by (4.2), with Σf |z := diag({Var[fi|zi]}Ngi=1) and

µf |z := E[f |z] where fi := f(x̃i) and zi := z(x̃i) (see Appendix B.1 for derivation).



41

Algorithm 4 Single-site Gibbs sampler for z

Input: f (l) and z(l−1)

1: Initialize ζ(l) := [ζ
(l)
1 , . . . , ζ

(l)
Ng

]> = z(l−1)

2: for i = 1 to Ng do

3: Obtain hi in (4.21) with z = ζ(l) and f = f (l)

4: Generate u ∼ U(0,1)

5: if u < (1 + hi)
−1 then

6: Set ζ
(l)
i = 1

7: else
8: Set ζ

(l)
i = 0

9: end if
10: end for
11: return z(l) = ζ(l)

Hence, f can be easily simulated by a standard sampling method.

2) Hidden label field z. A Gibbs sampler is required to simulate p(z|št,f ,θ) ∝
p(f |z,θf )p(z|β) while avoiding the intractable computation of C(β) in (4.4). Let z−i

and zN (x̃i) represent replicas of z without its i-th entry, and only with the entries of

N (x̃i), respectively. By the Markovianity of z and conditional independence between

fi and fj ∀i 6= j given z, the conditional distribution of zi is

p(zi|z−i, št,f ,θ) ∝ exp

`(zi) + β
∑

j∈N (x̃i)

δ(zj − zi)

 (4.20)

where `(zi) := ln p(fi|zi,θf ). After evaluating (4.20) for zi = 0, 1 and normalizing, one

can obtain p(zi = 1|z−i, št,f ,θ) = (1 + hi)
−1, where

hi := exp

[
`(zi = 0)− `(zi = 1) +

∑
j∈N (x̃i)

β(1− 2zj)

]
(4.21)

with δ(zj)−δ(zj−1) = 1−2zj . Then, the sample of z can be obtained via the single-site

Gibbs sampler by using (4.21), as summarized in Alg. 4. It is worth stressing that the

sampling criterion with hi in (4.21) does not require the evaluation of C(β).

3) Granularity coefficient β. The conditional distribution of β satisfies the following
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proportionality relation

p(β|št,f , z, σ2
ν ,θf ) ∝ p(z|β)p(β)

∝ 1

βmaxC(β)
exp

β Ng∑
i=1

∑
j∈N (x̃i)

δ(zj − zi)

 (4.22)

for β ∈ [0, βmax], simply by the Gibbs distribution in (4.3) and the uniform prior of β

in (4.6). Unfortunately, sampling of β is formidably challenging because evaluating the

partition function C(β) in p(z|β), incurs exponential complexity. To address this, one

may resort to auxiliary variable MCMC methods that do not require exact evaluation

of p(z|β), including the single auxiliary variable method (SAVM) [64] and the exchange

algorithm [68]. Those methods replace C(β) with its single-point importance sampling

estimate by using an auxiliary variable, which unfortunately must be generated via exact

sampling that is generally expensive for statistical models with intractable partition

functions. To bypass exact sampling for generating this auxiliary variable, we will

leverage a double-MH sampling method for β; also [52].

Let z∗ and β∗ denote the auxiliary variable of z and a candidate of β for MH

sampling, respectively. The idea behind the double-MH algorithm is to generate z∗

through NCL cycles of MH updates from the current sample z(l), instead of using exact

sampling from p(z∗|β∗). As the name suggests, the double-MH sampling includes two

nested MCMC samplers: the inner one to generate a chain of the auxiliary variable

at each step of the outer sampler for β. It is instructive to mention that NCL is not

necessarily large by initializing the chain with z(l) at the l-th iteration [72, 52], which

means that additional complexity to generate the auxiliary variable is not necessarily

high. In this work, z∗ is obtained via another single-site Gibbs sampler, as described in

Alg. 5:

p(z∗i |z∗−i, β∗) ∝ exp

β∗ ∑
j∈N (x̃i)

δ(z∗j − z∗i )

 ∀ i (4.23)

and a sample of z∗i is generated by utilizing p(z∗i = 1|z∗−i, β∗) = (1 + h∗i )
−1 with

h∗i := exp

[ ∑
j∈N (x̃i)

β(1− 2z∗j )

]
. (4.24)
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Algorithm 5 Single-site Gibbs sampler for z∗

Input: z(l), β∗, and NCL

1: Initialize ζ∗ := [ζ∗1 , . . . , ζ
∗
Ng

]> = z(l)

2: for m = 1 to NCL do
3: for i = 1 to Ng do
4: Obtain h∗i in (4.24) with z∗ = ζ∗

5: Generate u ∼ U(0,1)

6: if u < (1 + h∗i )
−1 then

7: Set ζ∗i = 1
8: else
9: Set ζ∗i = 0

10: end if
11: end for
12: end for
13: return z∗ = ζ∗

The overall double-MH sampler for β is summarized in Alg. 6. A proposal distribu-

tion of β∗ is the truncated Gaussian

q(β∗|β(l−1)) =

N (β(l−1), σ2
q )/c, if β∗ ∈ [0, βmax]

0, otherwise
(4.25)

with a tunable variable σ2
q and a normalizing constant

c :=

∫ βmax

0

1√
2πσ2

q

exp

[
− 1

2σ2
q

(
β∗ − β(l−1)

)2]
dβ∗. (4.26)

4) Noise variance σ2
ν . With p(σ2

ν) in (4.7), we have the posterior conditional of σ2
ν

satisfying

p(σ2
ν |št,f , z, β,θf ) ∝ p(št|f , σ2

ν)p(σ2
ν)

∝ IG(aν +
t

2
, bν +

1

2
‖št −W>

t f‖22). (4.27)

Therefore, a sample of σ2
ν can be generated by a standard sampling method.

5) Means of the SLF µfk . Let fk be the Nk×1 vector formed by concatenating f(x̃i)

for x̃i ∈ Ak, for k = 0, 1. By recalling the priori independence between the parameters of
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Algorithm 6 Double-MH sampler for β

Input: β(l−1), z(l), and NCL

1: Generate β∗ ∼ q(β∗|β(l−1)) in (4.25)
2: Generate z∗ ∼ p(z∗|β∗) via Alg. 5

3: Set α′ := p(β∗)q(β(l−1)|β∗)p(z∗|β(l−1))p(z(l)|β∗)
p(β(l−1))q(β∗|β(l−1))p(z(l)|β(l−1))p(z∗|β∗)

4: Obtain α = min {1, α′}
5: Generate u ∼ U(0,1)

6: if u < α then
7: β(l) = β∗

8: else
9: β(l) = β(l−1)

10: end if
11: return β(l)

disjoint homogeneous regions A0 and A1, the posterior conditional of µfk := [µf0 , µf1 ]>

can be expressed as

p(µfk |št,f , z, σ2
ν , β, σ

2
f0
, σ2

f1
) ∝ p(f |z,θf )p(µfk)

∝ p(µf0 |z,f0, σ
2
f0

)p(µf1 |z,f1, σ
2
f1

) (4.28)

with

p(µfk |z,fk, σ2
fk

) ∝ p(fk|z, µfk , σ2
fk

)p(µfk), ∀k. (4.29)

Since a sample of each µfk can be independently drawn according to p(µfk |z,fk, σ2
fk

)

in (4.29), the sampling method for µfk will be described.

To efficiently simulate a sample of µfk , the likelihood p(fk|z, µfk , σ2
fk

) is recast as

an univariate distribution with respect to the sample mean f̄k := (
∑

i fk,i)/Nk as

p(fk|z, µfk , σ2
fk

) ∝ exp

[
− 1

2σ2
fk

Nk∑
i=1

(fk,i − µfk)2

]

∝ exp

[
− 1

2σ2
fk

(−2µfk

Nk∑
i=1

fk,i +Nkµ
2
fk

)

]

∝ exp

[
− Nk

2σ2
fk

(f̄k − µfk)2

]
∝ N (µfk , 2σ

2
fk
/Nk). (4.30)
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Since p(µfk) is the Gaussian conjugate prior, one can show that p(µfk |z,fk, σ2
fk

) is

Gaussian as well, parameterized by

E
[
µfk |z,fk, σ2

fk

]
=

σ2
kf̄k

σ2
k + (σ2

fk
/Nk)

+
σ2
fk
/Nk

σ2
k + (σ2

fk
/Nk)

mk

Var
[
µfk |z,fk, σ2

fk

]
=

(
1

σ2
k

+
Nk

σ2
fk

)−1

. (4.31)

Therefore, a sample of µfk can be generated for k = 0, 1 by using a standard sampling

method.

6) Variances of the SLF σ2
fk

. Similar to µfk , the statistical independence between

A0 and A1 leads to the following proportionality of the posterior conditional for σ2
fk

:=

[σ2
f0
, σ2

f1
]>

p(σ2
fk
|št,f , z, σ2

ν , β,µfk) ∝ p(f |z,θf )p(σ2
fk

)

∝ p(σ2
f0
|z,f0, µf0)p(σ2

f1
|z,f1, µf1) (4.32)

where

p(σ2
fk
|z,fk, µfk) ∝ p(fk|z, µfk , σ2

fk
)p(σ2

fk
)

∝ IG(ak +
Nk

2
, bk +

1

2
‖fk − µfk1Nk‖22), ∀k. (4.33)

Therefore, a sample of each σ2
k can be independently drawn according to p(σ2

fk
|z,fk, µfk)

in (4.33).

4.2.3 Efficient Sample-based Estimators

In this section, efficient sample-based estimators for f , z, and θ are derived, by using

a set of samples S(t) from Alg. 3. Building on [42], the elementwise marginal MAP

estimator of z and its sample-based approximation are

ẑi,MAP = arg max
zi∈{0,1}

p(zi|št)
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' arg max
zi∈{0,1}

1

|S(t)|

NIter∑
l=NBurn-in+1

δ(z
(l)
i − zi) (4.34)

for i = 1, . . . , Ng. After obtaining ẑMAP, the sample-based elementwise conditional

MMSE estimator of f follows as

f̂i,MMSE '
1

|S(t)
i |

NIter∑
l=NBurn-in+1

f
(l)
i δ(z

(l)
i − ẑi,MAP), ∀i (4.35)

where S(t)
i ⊂ S(t) is a subset of samples such that z

(l)
i = ẑi,MAP for l = NBurn-in +

1, . . . , NIter. To estimate θ, the following marginal MMSE estimators are employed

β̂MMSE '
1

|S(t)|

NIter∑
l=NBurn-in+1

β(l) (4.36)

σ̂2
νMMSE '

1

|S(t)|

NIter∑
l=NBurn-in+1

σ2
ν

(l)
(4.37)

µ̂fkMMSE '
1

|S(t)|

NIter∑
l=NBurn-in+1

µ
(l)
fk
, k = 0, 1 (4.38)

σ̂2
fkMMSE

' 1

|S(t)|

NIter∑
l=NBurn-in+1

σ2
fk

(l)
, k = 0, 1. (4.39)

Remark 4.1 (Monitoring sampler-convergence). The proposed sampler in Alg. 3

generates a sequence of samples from the desired distribution in (4.10), after a burn-

in period to diminish the influence of initialization. By recalling that the stationary

distribution of those samples is matched with the desired distribution, monitoring con-

vergence of sample-sequences guides the choice of NBurn-in.

Let ψ denote a generic scalar random variable of interest. Suppose that NSeq parallel

sequences of length NIter are available, and let ψ(l,l′) denote the l-th sample of ψ in the

l′-th sequence for l = 1, . . . , NIter and l′ = 1, . . . , NSeq. Then, the following potential

scale reduction factor (PSRF) estimate is adopted for convergence diagnosis [30]

PSRF(ψ) :=
N ′Iter − 1

N ′Iter

+
σ2

Between

σ2
Within

(4.40)
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where N ′Iter := NIter −NBurn-in, the within-sequence variance:

σ2
Within :=

1

NSeq

NSeq∑
l′=1

1

N ′Iter − 1

NIter∑
l=NBurn-in+1

(
ψ(l,l′) − ψ̄(l′)

)2
(4.41)

with ψ̄(l′) :=
∑NIter

l=NBurn-in+1 ψ
(l,l′)/(N ′Iter − 1) ∀l′, and the between-sequence variance:

σ2
Between :=

1

NSeq

NSeq∑
l′=1

(
ψ̄(l′) − ψ̄

)2
(4.42)

with ψ̄ :=
∑NSeq

l′=1 ψ̄
(l′)/NSeq. As those sequences converge while NIter → ∞, the PSRF

declines to 1. In practice, each sequence is supposed to follow the desired distribution

when PSRF ≤ 1.2 [30, p. 138]. For synthetic data tests, NBurn-in and NIter were found

to have PSRF ≤ 1.06 for f , z, and θ over NSeq = 20 independent sequences. On the

other hand, NBurn-in and NIter for real data tests were found to have PSRF ≤ 1.04 for

f and z, while the PSRF < 1.5 for θ, over NSeq = 20 independent sequences. It allows

to have moderate-sized NBurn-in and NIter for real data tests. Note that elementwise

{PSNR(fi),PSNR(zi)}Ngi=1 were monitored for f and z.

Remark 4.2 (Computational complexity). For the proposed MCMC method in

Alg. 3, the complexity order to generate a sample of f is O(N3
g ) per iteration l to

compute Σf |z,θ,št in (4.18). While sampling of z incurs complexity O(Ng), that of θ has

complexity O(NgNCL) dominated by the sampling required for β via Alg. 6. Therefore,

the overall computational complexity per iteration l is O(N3
g +Ng(NCL + 1)) ≈ O(N3

g )

for NCL � Ng. Note that NCL = 2 is used for numerical tests, while Ng ≈ 1.6× 103.

For conventional methods to estimate f , the ridge regularized LS [33] has a one-shot

(non-iterative) complexity of O(N3
g ), while the total variation (TV) regularized LS via

the alternating direction method of multipliers (ADMM) in [73] incurs complexity of

O(N3
g ) per iteration l; see also [51, 82] for details. This shows that the computational

complexity per iteration of the proposed algorithm is comparable with that of the TV

regularized solution that relies on the ADMM. Extra complexity is needed to decide

NBurn-in by checking the PSRF as described in Remark 4.1, which is computed by using

multiple sample-sequences generated in parallel. However, sample-sequence generation

through parallel processing saves the delay from serially generating multiple sample
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sequences. Furthermore, the computational burden is kept low by the data-adaptive

sensor selection strategy, which will be introduced in Sec. 4.2.4, by reducing the number

of measurements to reconstruct the SLF.

4.2.4 Data-adaptive Sensor Selection

The proposed Bayesian channel-gain cartography accounts for the uncertainty of f ,

through the variance in (4.18). Using the latter, our idea is to adaptively collect a

measurement (or a mini-batch of measurements) from the set of available sensing radio

pairs, with the goal of reducing the uncertainty of f . To this end, we will rely on the

conditional entropy [17] that in our context is given by

Hτ (f |šτ , z,θ) =
∑
z′∈Z

∫
θ′,š′τ

p(š′τ , z
′,θ′) (4.43)

×Hτ (f |šτ = š′τ , z = z′,θ = θ′)dθ′dš′τ

where

Hτ (f |šτ = š′τ , z = z′,θ = θ′) := −
∫
p(f |š′τ , z′,θ′) ln p(f |š′τ , z′,θ′)df

=
1

2
ln(
∣∣∣Σf |z′,θ′,š′t

∣∣∣) +
Ng

2

(
1 + ln(2π)

)
(4.44)

and | · | denotes matrix determinant. To obtain šτ+1, one can choose a pair of sensors

(n∗, n′∗), for which w
(n∗,n′∗)
τ+1 minimizes Hτ+1(f |šτ+1, z,θ). Given šτ , we write

Hτ+1(f |šτ+1, z,θ) = Hτ (f |šτ , z,θ)

−
∑
z′∈Z

∫
θ′,š′τ+1

p(š′τ+1, z
′,θ′)h(z′,θ′,w

(n,n′)
τ+1 , šτ )dθ′dš′τ+1 (4.45)

with h(z,θ,w, št) := ln
(
1 + (σ2

ν)−1w>Σf |z,θ,štw
)
/2, and seek w

(n∗,n′∗)
τ+1 by solving

(P1) max
w

(n,n′)
τ+1 :

(n,n′)∈Mτ+1

Ez,θ|šτ [h(z,θ,w
(n,n′)
τ+1 , šτ )] =

∑
z′∈Z

∫
θ′
p(z′,θ′|šτ )h(z′,θ′,w

(n,n′)
τ+1 , šτ )dθ′

(4.46)
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where Mτ := {(n, n′)|∃(xn–xn′) at τ, (n, n′) ∈ {1, . . . , N}2} is a set of available sensing

radio pairs at time slot τ (see Appendix A.1 for derivation of (P1)). Note that solving

(P1) in (4.46) to find w
(n∗,n′∗)
τ+1 does not require p(z′,θ′|šτ+1), which means the joint

posterior in (4.10) does not need to be retrained for adaptive data acquisition.

Apparently, solving (P1) is not an easy task as evaluating Ez,θ|šτ [h(z,θ,w
(n,n′)
τ+1 , šτ )]

is intractable especially for large Ng since |Z| = 2Ng . Fortunately, the samples from

Alg. 3 can be used to approximate

Ez,θ|šτ [h(z,θ,w
(n,n′)
τ+1 , šτ )] ' 1

|S(τ)|

NIter∑
l=NBurn-in+1

h(z(l),θ(l),w
(n,n′)
τ+1 , šτ ) =: h̄(w

(n,n′)
τ+1 ).

(4.47)

Therefore, šτ+1 can be obtained from the pair of sensors corresponding to w
(n,n′)
τ+1 with

the maximum value of h̄(w
(n,n′)
τ+1 ) in (4.47).

The steps involved for adaptive Bayesian channel-gain cartography are listed in

Alg. 7.

Remark 4.3 (Mini-batch setup). The proposed adaptive sensor selection method

can be easily extended to a mini-batch setup of size NBatch per time slot τ as follows: i)

find weight vectors
{
w

(n(m),n′(m))
τ+1

}NBatch

m=1
for
{ (
n(m), n′(m)

) }NBatch

m=1
⊂ Mτ+1 associated

with NBatch largest values of h̄(w
(n,n′)
τ+1 ) in (4.47), and collect the corresponding measure-

ments {š(m)
τ+1}NBatch

m=1 (steps 7–8 in Alg. 7); and ii) aggregate those measurements below

šτ to construct šτ+1 := [š>τ , š
(1)
τ+1, . . . , š

(NBatch)
τ+1 ]> (step 9 in Alg. 7). Numerical tests will

be performed to assess the mini-batch operation of Alg. 7.

4.3 Numerical Tests

Performance of the proposed algorithms was assessed through numerical tests using both

synthetic and real datasets. A few existing methods were also tested for comparison, in-

cluding the ridge-regularized SLF estimate given by f̂LS = (WtW
>
t +µfC

−1
f )−1Wtšt [33],

where Cf is a spatial covariance matrix modeling the similarity between points x̃i and

x̃j in area A. We further tested the total variation (TV)-regularized LS scheme in [73],
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Algorithm 7 Adaptive Bayesian channel-gain cartography

Input: z(0), θ(0), š(0), W(0), g0, γ, NCL, NBurn-in, and NIter.
1: Set š0 = š(0) and W0 = W(0)

2: for τ = 0, 1, . . . do
3: Obtain S(τ) via Alg. 3(z(0),θ(0), šτ ,Wτ , NCL, NBurn-in, NIter)

4: Obtain ẑ
(τ)
MAP from (4.34) by using S(τ)

5: Obtain f̂
(τ)
MMSE from (4.35) by using ẑ

(τ)
MAP and S(τ)

6: Obtain θ̂
(τ)
MMSE from (4.36)–(4.39) by using S(τ)

7: Evaluate h̄(w
(n,n′)
τ+1 ) in (4.47) ∀(n, n′) ∈Mτ+1 by using S(τ)

8: Collect šτ+1 from (n∗, n′∗) associated with h̄(w
(n,n′)
τ+1 )

9: Construct šτ+1 = [š>τ , šτ+1]> and Wτ+1 := [Wτ ,w
(n∗,n′∗)
τ+1 ]

10: Set z(0) = ẑ
(τ)
MAP and θ(0) = θ̂

(τ)
MMSE

11: end for
12: Specify arbitrary locations of interest {x,x′} ∈ A
13: Estimate ŝ(x,x′) via (2.4) by using f̂MMSE

14: Estimate ĝ(x,x′) via (2.1) by using g0, γ, and ŝ(x,x′)

which solves the regularized problem in (4.1) with

R(f) =

Nx−1∑
i=1

Ny∑
j=1

|Fi+1,j − Fi,j |+
Nx∑
i=1

Ny−1∑
j=1

|Fi,j+1 − Fi,j |, (4.48)

where F := unvec(f) ∈ RNx×Ny and Fi,j := [F]i,j . As a competing alternative of the pro-

posed adaptive sampling, simple random sampling was considered for both regularized

LS estimators, by selecting {š(m)
τ+1}NBatch

m=1 ∀τ uniformly at random. Particularly, Alg. 7

after replacing steps 7–8 with random sampling is named as the non-adaptive Bayesian

algorithm, and will be compared with the proposed method throughout synthetic and

real data tests.

4.3.1 Test with synthetic data

This section validates the proposed algorithm through synthetic tests. Random shad-

owing measurements were taken by N = 120 sensors uniformly deployed on boundaries

of A := [0.5, 40.5] × [0.5, 40.5], from which the SLF defined over a grid {x̃i}1,600
i=1 :=

{1, . . . , 40}2 was reconstructed. To generate the ground-truth SLF f0, the hidden label
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Table 4.1: Hyper-hyperparameters of θ for synthetic tests.

βmax m0 m1 σ2
k, ∀k aν bν ak, ∀k bk, ∀k

10 0.5 4.5 0.1 0.1 0.1 0.1 0.1

field z0 was obtained first via the Metropolis algorithm [62] by using the prior of z

in (4.3) with β = 1.3. Afterwards, f0 was constructed to have f(x̃i) ∼ N (0.2, 1) ∀x̃i ∈
A0 and f(x̃j) ∼ N (5, 0.2) ∀x̃j ∈ A1 resulting in θf = [0.2, 5, 1, 0.2]>, respectively, based

on labels in z0. True F0 := unvec(f0) ∈ R40×40 and Z0 := unvec(z0) ∈ {0, 1}40×40

are depicted in Fig. 4.4 with sensor locations marked with crosses. The effects of cal-

ibration are not accounted for this section, meaning that g0 and γ are assumed to be

known, and the fusion center directly uses shadowing measurements šτ . Under the

mini-batch operation, each measurement š
(m)
τ ∀τ,m was generated according to (2.5),

where sτ was obtained by (2.4) with w set to the normalized ellipse model in (2.3),

while ντ was set to follow zero-mean Gaussian with σ2
ν = 5× 10−2. To constructMτ+1

per time slot τ , |Mτ+1| = 100 pairs of sensors were uniformly selected at random

with replacement. Then, NBatch = 40 shadowing measurements were collected from{ (
n(m), n′(m)

) }NBatch

m=1
⊂Mτ+1 to execute Alg. 7 for τ = 0, . . . , 15.

In all synthetic tests, the following simulation parameters were used: NCL = 2,

NBurn-in = 200, NIter = 500, and σ2
q = 0.03 were used to run the proposed algorithm;

and hyper-hyperparameters of θ were set as listed in Table 4.1. For initialization,

θ(0) was set to have β(0) = 0.1, µ
(0)
fk

= [m0,m1]>, and randomly initialized σ2
ν and

σ2
fk

. Vector z(0) was obtained by drawing z
(0)
i ∼ Bern(0.5) for i = 1, . . . , Ng, where

Bern(0.5) denotes the Bernoulli distribution with mean equal to 0.5. Furthermore, š(0)

was collected from randomly selected 100 pairs of sensors. To find µf of the competing

alternatives, the L-curve [49, Chapter 26] was used for the ridge regularization, while

the generalized cross-validation [31] was adopted for the TV regularization.

The first experiment was performed to validate the efficacy of Alg. 7. The esti-

mates F̂ = unvec(f̂) and Ẑ = unvec(ẑ) at τ = 15 are displayed in Figs. 4.5c and 4.5d,

respectively, together with the estimated SLFs from the regularized-LS estimators in

Figs. 4.5a and 4.5b. The most satisfactory result was obtained by the proposed method

since piecewise homogeneous regions of the SLF were separately reconstructed by intro-

ducing the hidden label field.
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Figure 4.4: True fields for synthetic tests: (a) hidden label field Z0 and (b) spatial loss
field F0 with N = 120 sensor locations marked with crosses.

To test the proposed adaptive sensor selection method, F̂ and Ẑ reconstructed by

the non-adaptive Bayesian algorithm are shown in Figs. 4.5e and 4.5f, respectively.

Comparison between Figs. 4.5c and 4.5e visually demonstrates that improved SLF re-

construction performance could be achieved through adaptive data acquisition with the

same number of measurements. Accuracy of ẑ was also quantitatively measured by

the labeling-error, defined as ‖z0 − ẑ‖1/Ng. Fig. 4.6 displays the progression of the

labeling-error averaged over 20 independent Monte Carlo runs. It shows that the pro-

posed adaptive method consistently outperforms the non-adaptive one, which implies

that selection of informative measurements to decrease uncertainty of f given current

estimates of z and θ could lead to more accurate estimates of f and z in the next time

slot. Meanwhile, average estimates of θ and associated standard deviation denoted with

± are listed in Table 4.2, where every hyperparameter was accurately estimated. To-

gether with the result in Fig. 4.5, the accurate estimates of the hyperparameters confirm

that the proposed method can faithfully capture patterns of objects in area of interest,

and also reveal the underlying statistical properties.

The next experiment tests robustness of the proposed algorithms against measure-

ment noise ντ . The normalized error ‖f0 − f̂‖2/‖f0‖2 and the labeling-error for z

averaged over sensor locations and realizations of {ντ}tτ=1 were used to quantify the

reconstruction performance. Fig. 4.7 depicts the progression of those errors as a func-

tion of σ2
ν averaged over 20 Monte Carlo runs. Note that Figs. 4.5c–4.5e and 4.5d–4.5f
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Figure 4.5: Estimated SLFs F̂ at τ = 15 (with 700 measurements) via (a) ridge-
regularized LS (µf = 8.9× 10−4 and Cf = I1,600); (b) TV-regularized LS (µf = 10−12);

(c) Alg. 7 through (d) estimated hidden label field Ẑ; and (e) non-adaptive Bayesian
algorithm, through (f) estimated Ẑ.

Table 4.2: True θ and estimated θ̂ via Alg. 7 (setting of Figs. 4.5c and 4.5d); and
non-adaptive Bayesian algorithm (setting of Figs. 4.5e and 4.5f ) averaged over 20 in-
dependent Monte Carlo runs.

θ True Est. (Alg. 7) Est. (non-adaptive)

β 1.3 1.309± 2× 10−2 1.309± 3× 10−2

σ2
ν 0.05 0.058± 10−2 0.053± 1.3× 10−2

µf0 0.2 0.289± 2× 10−2 0.289± 1.8× 10−2

µf1 5 4.996± 7× 10−3 4.996± 7× 10−3

σ2
f0

1 0.931± 5× 10−2 0.94± 9.8× 10−2

σ2
f1

0.2 0.198± 2× 10−2 0.193± 2.8× 10−2

correspond to the leftmost points of the x-axis of Figs. 4.7a and 4.7b, respectively. The

reconstruction performance is not severely degraded as σ2
ν increases, even in a high

noise regime when σ2
ν = 10, which suggests that the proposed algorithms are reasonably

robust to measurement noise.

To assess the tracking capability of the proposed algorithm, slow variations in the

SLF were simulated by introducing a moving object. The same setting used for Figs. 4.5c
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Figure 4.7: Reconstruction error vs. noise variance σ2
ν for (a) the SLF f ; and (b) the

hidden label field z.

and 4.5d was adopted. Measurements were generated with the SLF in Fig. 4.8a for

τ = 0, . . . , 5, and that in Fig. 4.8b for the rest. The change in the SLF was assumed

to happen once at τ = 6. The reconstructed SLFs at τ = 5 and τ = 15 are shown

in Figs. 4.8c and 4.8d, respectively. It is seen that only the SLF reconstructed at

τ = 5 correctly captures the moving object, while the stationary objects are estimated

more clearly as τ increases, which reveals the trade-off between spatial and temporal
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Figure 4.8: True SLFs for (a) τ ∈ {0, . . . , 5}; and (b) τ ∈ {6, . . . , 15}; and estimated
SLFs at (c) τ = 5 (300 measurements); and (d) τ = 15 (700 measurements) via Alg. 7.
Dynamic objects are marked with dotted circles.

resolution.

The rest of this section tests the performance of the proposed algorithm in channel-

gain estimation. To this end, the same setting used to produce Figs. 4.5c and 4.5d

was adopted. From the estimate f̂MMSE obtained through Alg. 7, an estimate of the

shadowing attenuation ŝ(x,x′) between two arbitrary points x and x′ in A is obtained

through (2.4) by replacing f with f̂MMSE. Subsequently, an estimate of the channel-gain

ĝ(x,x′) is obtained after substituting ŝ(x,x′) into (2.1).

Since g0 and γ are known, obtaining s(x,x′) amounts to finding g(x,x′); cf. (2.1).

This suggests adopting a performance metric quantifying the mismatch between s(x,x′)

and ŝ(x,x′), using the normalized mean-square error

NMSE :=
E
[ ∫
A
(
s(x,x′)− ŝ(x,x′)

)2
dxdx′

]
E
[ ∫
A s

2(x,x′)dxdx′
]

where the expectation is over the set {xn}Nn=1 of sensor locations and realizations of

{ντ}τ . Simulations estimated the expectations by averaging over 20 independent Monte

Carlo runs. The integrals are approximated by averaging the integrand over 300 pairs

of (x,x′) chosen independently and uniformly at random over the boundary of A.

Fig. 4.9 compares the NMSE of the proposed method with those of the competing

alternatives using the settings in Fig. 4.5. Evidently, the proposed method achieves

the lowest NMSE for every τ . Observe that both Bayesian approaches outperform the

regularized LS methods, which suggests the proposed method as a viable alternative of

a conventional solution adopted for channel-gain cartography.
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Table 4.3: Hyper-hyperparameters of θ for real data tests.

βmax m0 m1 σ2
k, ∀k aν bν ak,∀k bk,∀k

2 0 1 0.01 1 0.01 0.01 0.01

4.3.2 Test with real data

This section validates the proposed method using the real data set in [33]. The test

setup is depicted in Fig. 3.6, where A = [0.5, 20.5] × [0.5, 20.5] is a square with sides

of 20 feet (ft), over which a grid {x̃i}1,681
i=1 := {1, . . . , 41}2 of Ng = 1, 681 points is

defined. A collection of N = 80 sensors measure the channel attenuation at 2.425 GHz

between pairs of sensor positions, marked with the N = 80 crosses in Fig. 3.6. To

estimate g0 and γ using the approach in [33], a first set of 2, 400 measurements was

obtained before placing the artificial structure in Fig. 3.6. Estimates ĝ0 = 54.6 (dB)

and γ̂ = 0.276 were obtained during the calibration step. Afterwards, the structure

comprising one pillar and six walls of different materials was assembled, and T = 2, 380

measurements {ǧτ ′}Tτ ′=1 were acquired. Then, the calibrated measurements {šτ ′}Tτ ′=1

were obtained from {ǧτ ′}Tτ ′=1 by substituting ĝ0 and γ̂ into (2.5). In addition, {wτ ′}Tτ ′=1

were constructed with w in (2.3) by using known locations of sensor pairs. Note that τ ′

is introduced to distinguish indices of the real data from τ used to index time slots in

numerical tests.

We randomly selected 1, 380 measurements from {šτ ′}Tτ ′=1 to initialize š(0), and

used the remaining 1, 000 measurements to run the proposed algorithm under the
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Figure 4.10: Estimated SLFs F̂ at τ = 5 (with 1, 880 measurements) via (a) ridge-
regularized LS; (b) TV-regularized LS; (c) Alg. 7 through (d) estimated hidden label
field Ẑ; and (e) non-adaptive Bayesian algorithm, through (f) estimated Ẑ, together
with one-shot estimates (g) F̂full and (h) Ẑfull obtained by using the full dataset (with
2, 380 measurements) via Alg. 7.

mini-batch operation for τ = 0, . . . , 5, where every Wτ+1 was formed by uniformly

selecting |Wτ+1| = 200 weight vectors at random from {wτ ′}τ ′ associated with the

remaining 1, 000 measurements without replacement. Parameters of the proposed al-

gorithm were set to, NCL = 2, NBurn-in = 300, NIter = 1, 000, σ2
q = 10−5, and the

hyper-hyperparameters of θ used are listed in Table 4.3. For initialization, z(0) was

found by drawing z
(0)
i ∼ Bern(0.5) ∀i. Vector θ(0) was set to have β(0) = 0.1 and

µ
(0)
fk

= [m0,m1]>, while σ2
ν and σ2

fk
were initialized at random.

Following [2, 33], a spatial covariance matrix was used for Cf of the ridge-regularized

LS estimator, which models the similarity between points x̃i and x̃j as
[
Cf

]
ij

=

σ2
s exp[−‖x̃i − x̃j‖2/κ] [2], with σ2

s = κ = 1, and µf = 6 × 10−2; see also [82]. On

the other hand, the TV-regularized LS estimator was tested with µf = 4.3 used in [82].

Fig. 4.10 displays estimated SLFs F̂ and associated hidden fields Ẑ at τ = 5 obtained

by the proposed method and its competing alternatives. The pattern of the artificial

structure is clearly delineated on F̂ in Fig. 4.10c estimated by the proposed method,
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while the regularized LS estimators are not able to capture such pattern without post-

processing of the estimated SLFs in Figs. 4.10a and 4.10b. Although the non-adaptive

Bayesian algorithm reconstructed the visually satisfying SLF as shown in Fig. 4.10e, F̂

from the proposed method depicts the artificial structure more clearly; see e.g., object

patterns in Figs. 4.10c and 4.10e corresponding to the dry wall in Fig. 3.6. As a bench-

mark, an one-shot estimate of the SLF, denoted as F̂full, is also displayed in Fig. 4.10g,

which was obtained via Alg. 7 by using the entire set of 2, 380 measurements. Com-

parison of F̂ in Fig. 4.10c with F̂full shows that the proposed algorithm enables one

to reconstruct the SLF close to the benchmark by using fewer, but more informative

measurements.

The second experiment investigated the efficacy of the proposed adaptive data ac-

quisition method in estimating z. By considering Ẑfull = unvec(ẑfull) in Fig. 4.10h

as a benchmark, the labeling error ‖ẑfull − ẑ‖1/Ng was used as a performance metric.

Fig. 4.11 compares the labeling error of the proposed method with that of the non-

adaptive algorithm, which are averaged over 20 independent Monte Carlo runs. The

proposed method exhibits lower labeling errors than the non-adaptive one except when

τ = 2. This illustrates that the proposed data acquisition criterion delineates object

patterns more accurately while also reducing the measurement collection cost.

To corroborate the hyperparameter estimation capability of the proposed algorithm,

the estimates of θ averaged over 20 independent Monte Carlo runs were listed in Ta-

ble 4.4. The estimate θ̂ obtained by using the full dataset was considered as a bench-

mark, to demonstrate that the proposed method estimates θ closer to the benchmark.

The scale of σ̂2
ν in Table 4.4 is different from that in Table. 4.2. This can be explained

by that the high noise level in {šτ ′}Tτ ′=1 due to the imperfect data calibration present

in σ̂2
ν to produce visually pleasing SLFs as shown in Fig. 4.10.

The last simulation assesses the performance of the proposed algorithm and com-

peting alternatives for channel-gain cartography. The same set of shadowing measure-

ments and simulation setup as in first simulations of this section were used. A channel-

gain map is constructed to portray the gain between any point in the map, and a

fixed receiver location xrx. Particularly, the proposed algorithm is executed and esti-

mates {ŝ(x̃i,xrx)}Ngi=1 are obtained by substituting f̂ and w into (2.4). Subsequently,

{ĝ(x̃i,xrx)}Ngi=1 are obtained by substituting {ŝ(x̃i,xrx)}Ngi=1 into (2.1) with ĝ0 and γ̂.
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Table 4.4: Estimated θ̂ via benchmark algorithm (setting of Figs. 4.10g and 4.10h);
Alg. 7 (setting of Figs. 4.10c and 4.10d); and non-adaptive Bayesian algorithm (setting
of Figs. 4.10e and 4.10f), averaged over 20 independent Monte Carlo runs.

θ Est. (benchmark) Est. (Alg. 7) Est. (non-adaptive)

β 0.499± 2× 10−4 0.5± 5× 10−4 0.5± 6× 10−4

σ2
ν 9.984± 0.05 10.60± 0.20 9.957± 0.23

µf0 −0.275± 0.02 −0.278± 0.02 −0.301± 0.03

µf1 0.463± 0.03 0.447± 0.03 0.504± 0.03

σ2
f0

0.629± 0.12 0.457± 0.13 0.456± 0.22

σ2
f1

0.171± 0.10 0.145± 0.10 0.325± 0.43

After defining ĝ := [ĝ(x̃1,xrx), . . . , ĝ(x̃Ng ,xrx)]>, one can construct the channel-gain

map Ĝ := unvec(ĝ) with the receiver located at xrx.

Let Ŝ := unvec(ŝ) denote the shadowing map with ŝ := [ŝ(x̃1,xrx), . . . , ŝ(x̃Ng ,xrx)]>.

Fig. 4.12 displays the estimated shadowing maps Ŝ and corresponding channel-gain maps

Ĝ, obtained via various methods, when the receiver is located at xrx = (10.3, 10.7) (ft)

marked by the cross. In all channel-gain maps in Fig. 4.12, stronger attenuation is

observed when a signal passes through either more building materials (bottom-right

side of Ĝ), or the concrete wall (left side of Ĝ). In contrast, only the channel-gain maps

in Figs. 4.12f and 4.12h reconstructed by the Bayesian methods exhibit less attenuation

along the entrance of the artificial objects (top-right side of Ĝ), while channel-gain tends

to drop quickly within the vicinity of the receiver in the channel-gain maps obtained by

the regularized LS estimators, as shown in Figs. 4.12b and 4.12d. This stems from the
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Figure 4.12: Estimated shadowing maps Ŝ and corresponding channel-gain maps Ĝ at
τ = 5 via (a)-(b) ridge-regularized LS (setting of Fig. 4.10a); (c)-(d) TV-regularized LS
(setting of Fig. 4.10b); (e)-(f) Alg. 7 (setting of Fig. 4.10c); and (g)-(h) non-adaptive
Bayesian algorithm (setting of Fig. 4.10e), with the receiver location at xrx = (10.3, 10.7)
(ft) marked with the blue cross.

fact that free space and objects are more distinctively delineated in F̂ by the Bayesian

approaches. Note that slightly different observations were made in Figs. 4.12f and 4.12h

since the shadowing map in Fig. 4.12g introduces stronger attenuation in free space

below the receiver, which would disagree with intuition. All in all, the simulation

results confirm that our approach could provide more specific CSI of the propagation

medium, and thus endow the operation of cognitive radio networks with more accurate

interference management.

4.4 Conclusion

This paper developed a novel channel-gain cartography algorithm that estimates the

spatial loss field of the radio tomographic model, which is of interest in channel-gain
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cartography and radio tomographic imaging applications, by using measurements adap-

tively collected based on the uncertainty sampling criterion. Different from conven-

tional approaches, leveraging a hidden label field contributed to effectively account for

inhomogeneities of the spatial loss field. The effectiveness of the novel algorithm was

corroborated through extensive synthetic and real data experiments.



Chapter 5

A Variational Bayes Approach to

Channel-gain Cartography

5.1 Motivation

To account for environmental heterogeneity, we introduced in Chapter 4 a Bayesian ap-

proach to learn a piecewise homogeneous spatial loss field (SLF) through a binary hidden

Markov random field (MRF) model [38] via Markov chain Monte Carlo (MCMC) [30].

While the proposed MCMC solution outperformed competing alternatives in literature,

this approach does not scale as the resolution of the SLF increases, because MCMC

becomes computationally demanding due to resulting higher burn-in period for the

sampler-convergence.

Aiming at efficient field estimators at affordable complexity, we will propose a vari-

ational Bayes (VB) framework for channel-gain cartography to approximate the analyt-

ically intractable MMSE or MAP estimators. Instead of considering the binary hidden

MRF to model statistical heterogeneity in the SLF as in Chapter 4, we further general-

ize the SLF model by considering K-ary piecewise homogeneous regions for K ≥ 2, to

address a richer class of environmental heterogeneity. Besides developing efficient and

affordable solutions for Bayesian channel-gain cartography, another contribution here is

a data-adaptive sensor selection technique, with the goal of reducing uncertainty in the

SLF, under the active learning framework [55]. Similar to Chapter 4, the conditional

entropy of the SLF is considered as an uncertainty measure, giving rise to a novel sensor

62
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selection criterion. Although this criterion is intractable especially when the size of the

SLF and K are large, its efficient proxy can be obtained thanks to the availability of an

approximate posterior model from the proposed VB algorithm.

5.2 Bayesian Model and Problem Formulation

Let A consist of K disjoint homogeneous regions Ak := {x|E[f(x)] = µfk ,Var[f(x)] =

σ2
fk
} for k = 1, . . . ,K, giving rise to a latent random label field z := [z(x̃1), . . . , z(x̃Ng)]

>

∈ {1, . . . ,K}Ng with K-ary entries z(x̃i) = k if x̃i ∈ Ak ∀i, k. The K separate regions

will model heterogeneous environments. For such a paradigm, we model the conditional

distribution of f(x̃i) as

p(f(x̃i)|z(x̃i) = k) = N (µfk , σ
2
fk

) ∀k . (5.1)

We further assign the Potts prior to z in order to capture the dependency among

spatially correlated labels. By the Hammersley-Clifford theorem [34], the Potts prior of

z follows a Gibbs distribution

p(z;β) =
1

C(β)
exp

 Ng∑
i=1

∑
j∈N (x̃i)

βδ(z(x̃j)− z(x̃i))

 (5.2)

where N (x̃i) is a set of indices comprising 1-hop neighbors of x̃i on the rectangular grid

in Fig. 4.1, β is a granularity coefficient controlling the degree of homogeneity in z, δ(·)
is Kronecker’s delta, and the normalization constant

C(β) :=
∑
z∈Z

exp

 Ng∑
i=1

∑
j∈N (x̃i)

βδ(z(x̃j)− z(x̃i))

 (5.3)

is the partition function with Z := {1, . . . ,K}Ng . Note that the Ising prior in (4.3) in is

a special case of (5.2) when K = 2. To ease exposition, β is assumed known or fixed a

priori; see e.g., [19, 61, 50] for a means of estimating β. If {f(x̃i)}Ngi=1 are conditionally

independent given z, the model reduces to the Gauss-Markov-Potts model [5]. Such a

model with K = 3 is depicted in Fig. 5.1 with the measurement model in (2.4).
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Noise νt in (2.5) is assumed independent and identically distributed (i.i.d.) Gaussian

with zero mean and variance σ2
ν . Here, we correspondingly consider precisions of νt

and {fk}Kk=1 that are denoted as ϕν := 1/σ2
ν and ϕfk := 1/σ2

fk
∀k, respectively. Let

also θ be a hyperparameter vector comprising ϕν and θf := [µ>fk ,ϕ
>
f ]> with µfk :=

[µf1 , . . . , µfK ]> ∈ RK and ϕf := [ϕf1 , . . . , ϕfK ]> ∈ RK . Assuming the independence

among entries of θ, we deduce that

p(θ) = p(ϕν)p(µfk)p(ϕf ) = p(ϕν)
K∏
k=1

p(µfk)p(ϕfk) (5.4)

where the priors p(ϕν), p(µfk), and p(ϕf ) are as follows.

1) Noise precision ϕν. With additive Gaussian noise having fixed mean, it is common

to assign a conjugate prior to ϕν that can reproduce a posterior in the same family of

its prior. The gamma distribution for ϕν ∈ R+ serves this purpose, as

p(ϕν) = G(aν , bν) :=
1

Γ(aν)baνν
(ϕν)aν−1e−ϕν/bν (5.5)

where aν is referred to as the shape parameter, bν as the scale parameter, and Γ(·)
denotes the gamma function.

2) Hyperparameters θf of the SLF. is the Gamma distribution parameterized by

{ak, bk}; that is,

p(µfk) = N (mk, σ
2
k), k = 1, . . . ,K (5.6)

p(ϕfk) = G(ak, bk), k = 1, . . . ,K. (5.7)

We stress that analytical tractability is the main motivation behind selecting the con-

jugate priors in (5.5)–(5.7).

Our goal of inferring f , relies on the following posterior distribution that can be

factored (within a constant) as

p(f , z,θ|št) ∝ p(št|f , ϕν)p(f |z,θf )p(z;β)p(θ) (5.8)

where p(št|f , ϕν) ∼ N (W>
t f , σ

2
νIt) is the data likelihood with the weight matrix Wt ∈

RNg×t formed from columns w
(n,n′)
τ := [w(xn(τ),xn′(τ), x̃1), . . . , w(xn(τ),xn′(τ), x̃Ng)]

> :=
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Figure 5.1: Gauss-Markov-Potts model for channel-gain cartography with K = 3, to-
gether with the measurement model for sensors located at (xn,xn′).

[wτ,1, . . . , wτ,Ng ]
> ∈ RNg of the link xn(τ)–xn′(τ) for τ = 1, . . . , t. Fig. 5.2 depicts our

hierarchical Bayesian model for {št,f , z,θ} as a directed acyclic graph, where the de-

pendence between (hyper) parameters is indicated with an arrow.

Given the posterior in (5.8), the conditional minimum mean-square error (MMSE)

estimator of the field is

f̂MMSE := E[f |z = ẑMAP, št] (5.9)

where the maximum a posteriori (MAP) label estimator is

ẑMAP := arg max
z

p(z|št) (5.10)

and the MMSE estimators of θ entries are

ϕ̂νMMSE := E[ϕν |št] (5.11)

µ̂fkMMSE := E[µfk |št], k = 1, . . . ,K (5.12)

ϕ̂fkMMSE := E[ϕfk |št], k = 1, . . . ,K. (5.13)

5.3 Channel-gain Cartography via variational Bayes

Although the estimator forms in (5.9)-(5.13) have been considered also in [42], obtain-

ing estimates in practice is not tractable because the complex posterior in (4.10) is not
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Figure 5.2: Graphical model representation of the hierarchical Bayesian model for (hy-
per) parameters (those in dashed boxes are fixed).

amenable to marginalization or maximization. To overcome this hurdle, one can resort

to approximate Bayesian inference methods such as MCMC [30] that relies on samples

of {f , z,θ} drawn from a complex distribution. Although MCMC can asymptotically

approach an exact target distribution, such as the sought one in (4.10), it can be com-

putationally demanding and thus does not scale well. Aiming at a scalable alternative,

we will adopt the so-termed variational Bayes (VB) approach.

VB is a family of techniques to approximate a complex distribution by a tractable

one termed variational distribution. A typical choice of an approximation criterion is

to find the variational distribution q minimizing the Kullback-Leibler (KL) divergence

(DKL(q‖p)) to a target distribution q. The variational distribution q is further assumed

to belong to a certain family Q of distributions possessing a simpler form of depen-

dence between variables than the original one; see also [70] for the so-termed mean-field

approximation.

Tailored to the posterior in (4.10) the variational one, solves

min
q(f ,z,θ)∈Q

DKL (q(f , z,θ)‖p(f , z,θ|št)) (5.14)

Using that DKL (q‖p) := −Eq[ln(p/q)], the latter reduces to

(P1) max
q(f ,z,θ)∈Q

Eq(f ,z,θ)

[
ln

(
p(f , z,θ, št)

q(f , z,θ)

)]
︸ ︷︷ ︸

=:ELBO(q(f ,z,θ))

(5.15)
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where we drop the constant p(št) from the posterior that resulted in the so-termed evi-

dence lower bound (ELBO) in (P1), which involves the joint p(f , z,θ, št) factored as in

the right-hand side (RHS) of (4.10). We choose the family Q as

Q :=

{
q : q(f , z,θ) := q(f |z)q(z)q(θ) =

Ng∏
i=1

q(fi|zi)
Ng∏
i=1

q(zi)q(θ)

}
(5.16)

where fi := f(x̃i) and zi := z(x̃i) ∀i for simplicity, and

q(θ) := q(ϕν)q(µfk)q(ϕf ) = q(ϕν)

K∏
k=1

q(µfk)

K∏
k=1

q(ϕfk). (5.17)

Following the general VB steps [67], we will solve (P1) in (5.15) here via coordinate

minimization among factors of q(f , z,θ). Within a constant c, the optimal solutions

have the form

ln q∗(fi|zi) = E−q(fi|zi) [ln p(f , z,θ, št)] + c ∀i (5.18)

ln q∗(zi) = E−q(zi) [ln p(f , z,θ, št)] + c ∀i (5.19)

ln q∗(θ) = E−q(θ) [ln p(f , z,θ, št)] + c (5.20)

where the expectation in (5.18) is over the variational pdf of f−i, z, and θ, that is∏
j 6=i q(fj |zj)q(z)q(θ). Similar expressions are available for (5.19) and (5.20). The

solutions in (5.18)–(5.20) are intertwined since the evaluation of one requires the others.

We show in Appendices C.1–C.5 that the optimal solutions can be obtained iteratively;

that is, per iteration ` = 1, 2, . . ., we have

q(`)(fi|zi = k) = N (µ̆
(`)
fk

(x̃i), σ̆
2(`)
fk

(x̃i))∀k (5.21)

q(`)(zi = k) =: ζ̆
(`)
k (x̃i) =

˘̆
ζ

(`)
k (x̃i)∑K

k=1
˘̆
ζ

(`)
k (x̃i)

∀k (5.22)

q(`)(ϕν) = G(ăν , b̆
(`)
ν ) (5.23)

q(`)(µfk) = N (m̆
(`)
k , σ̆

2(`)
k ) ∀k (5.24)

q(`)(ϕfk) = G(ă
(`)
k , b̆

(`)
k ) ∀k (5.25)
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with variational parameters

σ̆
2(`)
fk

(x̃i) =

(
ϕ̃(`−1)
ν

t∑
τ=1

w2
τ,i + ϕ̃

(`−1)
fk

)−1

∀k (5.26)

µ̆
(`)
fk

(x̃i) = f̄
(`−1)
i

+ σ̆
2(`)
fk

(x̃i)

[(
m̆

(`−1)
k − f̄ (`−1)

i

)
ϕ̃

(`−1)
fk

+ ϕ̃(`−1)
ν

t∑
τ=1

wτ,i

(
šτ − s(`−1)

τ

)]
∀k

(5.27)

˘̆
ζ

(`)
k (x̃i) = exp

{
−
ϕ̃

(`−1)
fk

2

[
σ̆

2(`)
fk

(x̃i) +
(
µ̆

(`)
fk

(x̃i)
)2
− 2m̆

(`−1)
k µ̆

(`)
fk

(x̃i) + σ̆
2(`−1)
k

+
(
m̆

(`−1)
k

)2
]

+
1

2

[
ψ
(
ă

(`−1)
k

)
+ ln b̆

(`−1)
k

]
+

∑
j∈N (x̃i)

βζ̆
(`−1)
k (x̃j)

}
∀k (5.28)

ăν = aν +
t

2
(5.29)

b̆(`)ν =

{
1

bν
+

1

2

t∑
τ=1

š2
τ − 2šτs

(`)
τ +

Ng∑
i=1

w2
τ,i

[
K∑
k=1

ζ̆
(`)
k (x̃i)

(
σ̆

2(`)
fk

(x̃i) +
(
µ̆

(`)
fk

(x̃i)
)2
)

−
(
f̄

(`)
i

)2
]

+
(
s(`)
τ

)2
}−1

(5.30)

σ̆
2(`)
k =

 1

σ2
k

+

Ng∑
i=1

ζ̆
(`)
k (x̃i)ϕ̃

(`−1)
fk

−1

∀k (5.31)

m̆
(`)
k = σ̆

2(`)
k

mk

σ2
k

+

Ng∑
i=1

ζ̆
(`)
k (x̃i)ϕ̃

(`−1)
fk

µ̆
(`)
fk

(x̃i)

 ∀k (5.32)

ă
(`)
k = ak +

1

2

Ng∑
i=1

ζ̆
(`)
k (x̃i)∀k (5.33)

b̆
(`)
k =

[
1

bk
+

1

2

Ng∑
i=1

ζ̆
(`)
k (x̃i)

(
σ̆

2(`)
fk

(x̃i) +
(
µ̆

(`)
fk

(x̃i)
)2
− 2µ̆

(`)
fk

(x̃i)m̆
(`−1)
k + σ̆

2(`−1)
k

+
(
m̆

(`−1)
k

)2
)]−1

∀k (5.34)

where ψ (·) is the digamma function, f̄
(`)
i :=

∑K
k=1 ζ̆

(`)
k (x̃i)µ̆

(`)
fk

(x̃i) ∀i, s(`)
τ :=

∑Ng
i=1wτ,if̄

(`)
i
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∀τ , ϕ̃
(`)
ν := Eq(`)(ϕν)[ϕν ] = ăν b̆

(`)
ν , and ϕ̃

(`)
fk

:= Eq(`)(ϕfk )[ϕfk ] = ă
(`)
k b̆

(`)
k ∀k; see Appen-

dices C.1–C.5 for detailed derivation of the variational factors and parameters in (5.21)–

(5.34).

Upon convergence of the iterative solvers, the (approximate) MAP estimator of z

can be obtained as

ẑMAP,i = arg max
zi∈1,...,K

q∗(zi) ∀i, (5.35)

and then the (approximate) MMSE estimator of f as

f̂MMSE,i ' Eq∗(fi|ẑMAP,i) [fi] = µ̆∗fẑMAP,i
(x̃i) ∀i (5.36)

while θ is estimated using the marginal MMSE estimators

ϕ̂νMMSE ' Eq∗(ϕν) [ϕν ] = ă∗ν b̆
∗
ν (5.37)

µ̂fkMMSE ' Eq∗(µfk ) [µfk ] = m̆∗k ∀k (5.38)

ϕ̂fkMMSE ' Eq∗(ϕfk ) [ϕfk ] = ă∗k b̆
∗
k ∀k. (5.39)

The VB algorithm to obtain {f̂MMSE,i}Ngi=1, {ẑMAP,i}Ngi=1, θ̂MMSE, and q∗(f , z,θ) is

tabulated in Alg. 8.

Remark 5.1 (Assessing convergence). The steps of Alg. 8 guarantee that the ELBO

monotonically increases across iterations ` [7]. Hence, convergence of the solution can

be assessed by monitoring the change in the ELBO of (P1) in (5.15), which for a

preselected threshold ξ > 0 suggests stopping at iteration ` if ELBO
(
q(`)(f , z,θ)

)
−

ELBO
(
q(`−1)(f , z,θ)

)
≤ ξ.

Remark 5.2 (Computational complexity). For Alg. 8, the complexity order to

update q(fi|zi = k) ∀i, k per iteration ` is O(tKNg) to compute µ̆fk(x̃i) in (5.27), while

updating ζ̆k(x̃i) ∀i, k via (5.22) incurs complexity O(KNg). In addition, updating q(θ)

has complexity O(tKNg) that is dominated by the computation of b̆ν in (5.30). Overall,

the per-iteration complexity of Alg. 8 is O ((2t+ 1)KNg).

Note that a sample-based counterpart of Alg. 8 via MCMC in [50] incurs complexity

in the order of O(N3
g ). For conventional methods to estimate f , the ridge regularized

LS [33] has a one-shot (non-iterative) complexity of O(N3
g ), while the total variation

(TV) regularized LS via the alternating direction method of multipliers (ADMM) in [73]
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Algorithm 8 Field estimation via variational Bayes

Input: št, Wt,

{
aν , bν ,

{
mk, σ

2
k, ak, bk

}K
k=1

}
, and NIter.

1: Initialize q(0)(f , z,θ) and set ` = 0
2: Obtain ăν with (5.29)
3: while ELBO has not converged and ` ≤ NIter do
4: Set `← `+ 1
5: Obtain σ̆

2(`)
fk

(x̃i) ∀i, k via (5.26)

6: Obtain µ̆
(`)
fk

(x̃i) ∀i, k via (5.27)

7: Obtain q(`)(zi = k) ∀i, k via (5.22)

8: Obtain b̆
(`)
ν via (5.30)

9: Obtain σ̆
2(`)
k ∀k via (5.31)

10: Obtain m̆
(`)
k ∀k via (5.32)

11: Obtain ă
(`)
k ∀k via (5.33)

12: Obtain b̆
(`)
k ∀k via (5.34)

13: end while
14: Set q∗(fi|zi) = q(`)(fi|zi) and q∗(zi) = q(`)(zi) ∀i
15: Set q∗(θ) = q(`)(θ)
16: Estimate ẑMAP,i = arg maxzi∈{1,...,K} q

∗(zi) ∀ i
17: Estimate f̂i,MMSE = µ̆∗fẑMAP,i

(x̃i) ∀ i
18: Estimate θ̂MMSE = Eq∗(θ)[θ] via (5.37)–(5.39)

19: return f̂MMSE, ẑMAP, θ̂MMSE, q∗(f |z), q∗(z), and q∗(θ)

incurs complexity of O(N3
g ) per iteration `; see also [51, 82] for details. This means that

Alg. 8 incurs the lowest per-iteration complexity, which becomes more critical as Ng

increases.

5.4 Data-adaptive Sensor Selection

Here we deal with cost-effective channel-gain cartography as new data are collected by

interactively querying the location of sensing radios to acquire a minimal but most infor-

mative measurements. To this end, a measurement (or a mini-batch of measurements)

can be adaptively collected using a set of available sensing radio pairs, with the goal of

reducing the uncertainty of f . Since the proposed Bayesian framework accounts for the

uncertainty through σ̆2
fk

(x̃i) in (5.32), we adopt the conditional entropy [17] to serve as
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an uncertainty measure of f at time slot τ , namely,

H(f |z, šτ ; θ̂τ ) =
∑
z′∈Z

∫
p(z′, š′τ ; θ̂τ )H(f |z = z′, šτ = š′τ ; θ̂τ )dš′τ , (5.40)

where θ̂τ is the estimate obtained via (5.37)–(5.39) per slot τ , and

H(f |z = z′, šτ = š′τ ; θ̂τ ) := −
∫
p(f |z = z′, šτ = š′τ ; θ̂τ ) ln p(f |z = z′, šτ = š′τ ; θ̂τ )df

=
1

2
ln
∣∣∣Σf |z′,š′τ ;θ̂τ

∣∣∣+
Ng

2

(
1 + ln 2π

)
(5.41)

as p(f |z, šτ ; θ̂τ ) is Gaussian with covariance matrix Σf |z,šτ ;θ̂τ
:=
(
ϕ̂νWτW

>
τ + Φ̂f |z

)−1

with Φ̂f |z := diag
(
{ϕ̂fzi}

Ng
i=1

)
[50]. Then, using the matrix determinant identity

lemma [35, Chap. 18], it is not hard to show that

H(f |z, šτ+1; θ̂τ ) = H(f |z, šτ ; θ̂τ )− 1

2

∑
z′∈Z

∫
p(z′, š′τ ; θ̂τ )

× ln

(
1 + ϕ̂νw

(n,n′)
τ+1

>
Σf |z′,š′τ ;θ̂τ

w
(n,n′)
τ+1

)
dš′τ . (5.42)

To obtain šτ+1, we choose a pair of sensors (n∗, n′∗), or equivalently find w
(n∗,n′∗)
τ+1

minimizing H(f |z, šτ+1; θ̂τ ).

Given šτ , we then find w
(n∗,n′∗)
τ+1 by solving

(P2) max
w

(n,n′)
τ+1 :

(n,n′)∈Mτ+1

Ep(z|šτ ;θ̂τ )

[
h(z, šτ ,w

(n,n′)
τ+1 ; θ̂τ )

]
(5.43)

where h(z, šτ ,w; θ̂τ ) := ln
(

1 + ϕ̂νw
>Σf |z,šτ ;θ̂τ

w
)

and Mτ :=
{

(n, n′)|∃(xn–xn′) at

τ, (n, n′) ∈ {1, . . . , N}2
}

denotes the set of available sensing radio pairs at slot τ .

Clearly, (P2) in (5.43) cannot be directly solved because p(z|šτ ; θ̂τ ) is not tractable

e.g., by marginalizing the posterior in (5.8). Hence, evaluating the cost of (P2) is

intractable for large Ng as |Z| = 2Ng . Fortunately, we show next how (P2) can be

approximately reformulated using the variational distribution q(f , z,θ). Consider first
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that

p(f |z, šτ ,θ) =
p(f , z,θ|šτ )

p(z,θ|šτ )
≈ q(f , z,θ)

q(z,θ)
= q(f |z), (5.44)

which yields the approximation of H(f |z = z′, šτ = š′τ ; θ̂τ ) in (5.41), as

H(f |z = z′, šτ = š′τ ; θ̂τ ) ≈ 1

2
ln
∣∣∣Σ̆f |z′,š′τ ;θ̂τ

∣∣∣+
Ng

2

(
1 + ln 2π

)
(5.45)

with Σ̆f |z,šτ ;θ̂τ
:= diag

(
{σ̆2

fzi
(x̃i)}Ngi=1

)
; and subsequently, that of H(f |z, šτ ; θ̂τ ) by

substituting (5.45) into (5.40).

Similar to (5.42), we then show in Appendix C.6 that

H(f |z, šτ+1; θ̂τ ) ≈ H(f |z, šτ ; θ̂τ )

− 1

2

∑
z′∈Z

∫
p(z′, š′τ ; θ̂τ ) ln

∣∣∣∣INg + ϕ̃ν∆wτ+1Σ̆f |z′,š′τ ;θ̂τ

∣∣∣∣dš′τ (5.46)

where ∆wτ+1 := diag
(
w

(n,n′)
τ+1 ◦w

(n,n′)
τ+1

)
, with ◦ denoting the Hadamard product. Given

šτ , and using the approximation p(z|šτ ; θ̂τ ) ≈ q(z), we can reformulate (P2) as (cf. (5.46))

(P2’) max
w

(n,n′)
τ+1 :

(n,n′)∈Mτ+1

Ng∑
i=1

Eq(zi)
[
ln
(

1 + ϕ̃ν σ̆
2
fzi

(x̃i)w
2
τ+1,i

)]
︸ ︷︷ ︸

=:h̄(w
(n,n′)
τ+1 )

.

Solving (P2’) using a greedy search, we obtain the pair of sensors (n∗, n′∗) associated

with w
(n∗,n′∗)
τ+1 , based on which we collect the informative measurement šτ+1.

The overall algorithm for adaptive channel-gain cartography via VB is tabulated in

Alg. 9.

Remark 5.3 (Mini-batch setup). The proposed data-adaptive sensor selection

scheme can be easily extended to a mini-batch setup of size NBatch per time slot τ as

follows: i) find weight vectors
{
w

(n(m),n′(m))
τ+1

}NBatch

m=1
for
{ (
n(m), n′(m)

) }NBatch

m=1
⊂ Mτ+1

associated with NBatch largest values of h̄(w
(n,n′)
τ+1 ) in (P2’), and collect {š(m)

τ+1}NBatch
m=1

from pairs of sensors revealed from those weight vectors (steps 4–5 in Alg. 9); and ii)

aggregate those measurements below šτ to construct šτ+1 := [š>τ , š
(1)
τ+1, . . . , š

(NBatch)
τ+1 ]>

(step 6 in Alg. 9). Numerical tests are presented next to assess the mini-batch operation
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Algorithm 9 Adaptive channel-gain cartography via variational Bayes

Input: š(0), W(0),

{
aν , bν ,

{
mk, σ

2
k, ak, bk

}K
k=1

}
, and NIter.

1: Set š0 = š(0) and W0 = W(0)

2: for τ = 0, 1, . . . do
3: Obtain f̂MMSE, θ̂MMSE, and q∗(f , z,θ)}

via Alg. 8

(
šτ ,Wτ ,

{
aν , bν ,

{
mk, σ

2
k, ak, bk

}K
k=1

}
, NIter

)
4: Evaluate h̄(w

(n,n′)
τ+1 ) in (P2’) ∀{n, n′} ∈ Mτ+1

5: Collect šτ+1 from (n∗, n′∗) with max h̄(w
(n,n′)
τ+1 )

6: Set šτ+1 = [š>τ , šτ+1]> and Wτ+1 = [Wτ ,w
(n∗,n′∗)
τ+1 ]

7: end for
8: Specify arbitrary locations of interest {x,x′} ∈ A
9: Estimate ŝ(x,x′) via (2.4) by using f̂MMSE

10: Estimate ĝ(x,x′) via (2.1) by using g0, γ, and ŝ(x,x′)

of Alg. 9.

5.5 Numerical Tests

Performance of the proposed algorithms was assessed through numerical tests using

Matlab on synthetic and real datasets. Comparisons were carried out with exist-

ing methods, including the ridge-regularized SLF estimate given by f̂LS = (WtW
>
t +

µfC
−1
f )−1Wtšt [33], where Cf is a spatial covariance matrix modeling the similarity

between points x̃i and x̃j in area A. We further tested the TV-regularized LS scheme

in [73], which solves the problem in (4.1) with R(f) in (4.48). We also tested an

MCMC-based counterpart of Alg. 9 for estimating the posterior in (4.10), and solving

(P2) in (5.43); see e.g., [50, 72] for details.

We further compared the proposed data-adaptive sensor selection with simple ran-

dom sampling for both regularized LS estimators, by selecting
{ (
n(m), n′(m)

) }NBatch

m=1

uniformly at random to collect {š(m)
τ+1}NBatch

m=1 ∀τ . Alg. 9 after replacing steps 4–5 with

random sampling is termed non-adaptive VB algorithm, and will be compared with the

proposed method throughout synthetic and real data tests.
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Figure 5.3: True fields for synthetic tests: (a) hidden label field Z0 and (b) spatial loss
field F0 with N = 200 sensor locations marked with crosses.

5.5.1 Test with synthetic data

This section validates the proposed algorithm using synthetic datasets. Random to-

mographic measurements were collected from N = 200 sensors uniformly deployed on

the boundary of A := [0.5, 60.5] × [0.5, 60.5]. Using these measurements, the SLF was

reconstructed over the grid {xi}3,600
i=1 := {1, . . . , 60}2 . To generate the ground-truth

SLF f0, the ground-truth label field z0 was generated via Gibbs sampling [29] by using

the Potts prior of z in (5.2) with β = 1.5 and K = 4. Given θf := [µ>fk ,ϕ
>
f ]> with

µfk = [0, 1, 2.5, 5.5]> and ϕf = [10, 10, 2, 2]>, vector f0 was constructed to have f(xi) ∼
N (µfk , ϕ

−1
fk

) ∀xi ∈ Ak, ∀k conditioned on the labels in z0. The resulting hidden label

field Z0 := unvec(z0) ∈ {1, 2, 3, 4}60×60, and the true SLF F0 := unvec(f0) ∈ R60×60

are depicted in Fig. 5.3 with sensor locations marked by crosses. The effects of cali-

bration are not accounted for, meaning that g0 and γ are assumed to be known, and

the fusion center directly uses shadowing measurements šτ . Under the mini-batch op-

eration, each measurement š
(m)
τ ∀τ,m was generated according to (2.5), where sτ was

obtained using (2.4) with w set to the normalized ellipse model in (2.3) with λ = 0.39,

while ντ was set to follow a zero-mean Gaussian pdf with ϕν = 20. To construct

Mτ+1 per time slot τ , |Mτ+1| = 200 pairs of sensors were uniformly selected at ran-

dom with replacement. Then, NBatch = 100 shadowing measurements were collected at{ (
n(m), n′(m)

) }NBatch

m=1
⊂Mτ+1 to run Alg. 9 for τ = 0, 1, . . . , 8.
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In all synthetic tests, the simulation parameters were set to NIter = 3, 000 and ξ =

10−6; hyper-hyper parameters of νt were set to aν = 1, 300 and bν = 2; and those of θf

were set as listed in Table. 5.1. To execute Alg. 8, variational parameters of q(0)(f , z,θ)

were initialized as follows:
{
µ̆

(0)
fk

(x̃i)
}Ng
i=1
∀k, b̆

(0)
ν ,

{
σ̆

2(0)
k

}4

k=1
, and

{
ă

(0)
k , b̆

(0)
k

}4

k=1
were

drawn from the uniform distribution U(0, 1), while m̆
(0)
k = mk ∀k; and it was set to

ζ̆
(0)
k (x̃i) = 1/4 ∀i, k. Furthermore, š(0) was collected from 800 pairs of sensors selected

at random, which determined W(0). To find µf of the competing alternatives, the L-

curve [49, Chapter 26] was used for the ridge regularization, while the generalized cross-

validation [31] was adopted for the TV regularization. The hyper-hyper parameters of θ

used for the proposed algorithm were also adopted to run its MCMC-based counterpart.

The first experiment is performed to validate Alg. 9. Estimates of SLFs F̂ :=

unvec(f̂) and the associated hidden label fields Ẑ := unvec(ẑ) at time slot τ = 8

obtained via Alg. 9, and the competing alternatives, are depicted in Figs. 5.4a–5.4j.

One-shot estimates of the SLF and associated hidden field, denoted as F̂full and Ẑfull,

respectively, are also displayed in Figs. 5.4k and 5.4l, which were obtained via Alg. 9

by using the entire set of 2, 400 measurements collected till τ = 8. Clearly, satisfactory

results were obtained only by teh approximate Bayesian inference methods including

MCMC and VB because every piecewise homogeneous region was accurately classified

through the hidden label field. As discussed in Remark 5.2 however, the proposed

algorithm is computationally much more efficient than the ones using MCMC. Per-

iteration execution time was 0.04 (sec) for Alg. 9 on average, while that was 3.64 (sec)

for the MCMC method. On the other hand, the regularized LS solutions were unable

to accurately reconstruct the SLF, as depicted in Figs. 5.4a and 5.4b.

To test the proposed sensor selection method, F̂ and Ẑ found using the non-adaptive

VB algorithm are depicted in Figs. 5.4e and 5.4f. Visual comparison of Figs. 5.4c

and 5.4e reveals that the reconstruction performance for F can be improved with the

same number of measurements by adaptively selecting pairs of sensors. Accuracy of

ẑ was also quantitatively measured by the labeling-error, defined using the entrywise

Kronecker delta δ(·), as ‖δ(z0− ẑ)‖1/Ng. Progression of the labeling error averaged over

20 Monte Carlo (MC) runs is displayed in Fig. 5.5a, where the proposed method con-

sistently outperforms the non-adaptive one. This shows that informative measurements

adaptively collected to decrease uncertainty of f given a current estimate of θ improve
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Table 5.1: Hyper-parameters of θf for synthetic data tests.

m1 m2 m3 m4 σ2
1 σ2

2 σ2
3 σ2

4

0 0.9 2.7 5.3 10−4 10−4 10−4 10−4

a1 a2 a3 a4 b1 b2 b3 b4
0.8 0.8 0.8 0.8 1 1 0.5 0.5

accuracy of f̂ and ẑ in the next time slot. As a result, the SLF reconstruction accuracy

of Alg. 9 improves accordingly with fewer measurements, as confirmed by comparing

Figs. 5.4c and 5.4k.

The next experiment tests robustness of the proposed algorithms against measure-

ment noise ντ . We adopted the labeling-error for z averaged over sensor locations and

realizations of {ντ}tτ to quantify the reconstruction performance. Fig. 5.5b shows the

progression of the labeling error at τ = 8 as a function of the noise precision ϕν averaged

over 20 MC runs. Note that Figs. 5.4d and 5.4f correspond to the rightmost point of the

x-axis of Fig. 5.5b. Clearly, the reconstruction performance does not severely decrease

as ϕν decreases, or equivalently σ2
ν increases. This confirms that the proposed algorithm

is reasonably robust against measurement noise.

Averaged estimates of θ and associated standard deviation denoted with ± are listed

in Table 5.2. Together with Fig. 5.4, the high estimation accuracy of hyperparameters

implies that the proposed method can effectively reveal patterns of objects in A by

correctly inferring the underlying statistical properties of each piecewise homogeneous

region in the SLF. Note that ϕf entries are overestimated in Table 5.2. This can be

intuitively understood in the sense that minimizing the KL divergence in (5.14) leads to

q(θf ) avoiding regions in which p(f |z,θf )p(θf ) is small by setting each ϕfk to a large

value ∀k, which corroborates the result in [10, p. 468].

Next, we will validate the efficacy of Alg. 9 for channel estimation. Since g0 and γ

are known, obtaining s(x,x′) is equivalent to finding g(x,x′); cf. (2.1). This suggests

adopting a performance metric quantifying the mismatch between s(x,x′) and ŝ(x,x′),

using the normalized mean-square error

NMSE :=
E
[∫
A
(
s(x,x′)− ŝ(x,x′)

)2
dxdx′

]
E
[∫
A s

2(x,x′)dxdx′
] (5.47)
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Figure 5.4: SLF estimates F̂ at τ = 8 (with 1, 600 measurements) via; (a) ridge-
regularized LS (µf = 0.015 and Cf = I3,600); (b) TV-regularized LS (µf = 10−11);

(c) Alg. 9 through (d) estimated hidden field Ẑ; (e) non-adaptive VB algorithm through
(f) Ẑ; (g) adaptive MCMC algorithm through (h) Ẑ; (i) non-adaptive MCMC algorithm
through (j) Ẑ; and (k) F̂full and (l) Ẑfull obtained by using the full data (with 2, 400
measurements) via Alg. 9.

where the expectation is over the set {xn}Nn=1 of sensor locations and realizations of

{ντ}τ . The integrals are approximated by averaging the integrand over 500 pairs of

(x,x′) chosen independently and uniformly at random on the boundary of A. The

expectations are estimated by averaging simulated deviates over 20 MC runs.

Fig. 5.6 depicts the NMSE of the proposed method and those of competing alterna-

tives. Clearly, the approximate Bayesian inference methods outperform the regularized

LS solutions. Furthermore, the performance of the VB methods is comparable to those

of the MCMC methods. Noticeably, the adaptive VB method consistently exhibits
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Figure 5.5: Progression of estimation error of z versus (a) time τ ; and (b) noise precision
ϕν , averaged over 20 MC runs.

Table 5.2: True θ and estimated θ̂ via Alg. 9 (setting of Fig. 5.4c); and non-adaptive
VB algorithm (setting of Fig. 5.4e) averaged over 20 independent MC runs.

θ True Est. (Alg. 9) Est. (non-adaptive)

ϕν 20 18.329± 6× 10−3 18.461± 4.6× 10−3

µf1 0 0.022± 1.2× 10−2 0.018± 1.9× 10−2

µf2 1 0.957± 1.7× 10−2 0.962± 1.6× 10−2

µf3 2.5 2.573± 1.7× 10−2 2.578± 2.6× 10−2

µf4 5.5 5.399± 2.7× 10−2 5.374± 7× 10−3

ϕf1 10 40.178± 3× 10−3 42.352± 2× 10−3

ϕf2 10 14.634± 1.4× 10−2 15.845± 1.2× 10−2

ϕf3 2 7.712± 2.7× 10−2 7.493± 2.2× 10−2

ϕf4 2 4.620± 6.1× 10−2 5.451± 4× 10−2

lower NMSE than both non-adaptive ones, which highlights the efficacy in estimating

channel-gain via the data-adaptive sensor selection. This suggests that the proposed

VB framework is a viable solution for channel-gain cartography, while enjoying low

computational complexity.

5.5.2 Test with real data

This section validates the proposed method using the real dataset in [33]. The test

setup is depicted in Fig. 3.6, where A = [0.5, 20.5]× [0.5, 20.5] is a square with sides of



79

0 1 2 3 4 5 6 7 8

10−4

10−3

Time (τ )

N
M
S
E

Non-adaptive VB

Adaptive VB

Non-adaptive MCMC

Adaptive MCMC

Ridge reg.-LS

TV reg.-LS

Figure 5.6: Progression of channel-gain estimation error.

20 feet (ft), over which a grid {x̃i}3,721
i=1 := {1, . . . , 61}2 of Ng = 3, 721 points is defined.

A collection of N = 80 sensors measure the RSS at 2.425 GHz between pairs of sensor

positions, marked with the N = 80 crosses in Fig. 3.6. To estimate g0 and γ using the

approach in [33], a first set of 2, 400 measurements was obtained before placing objects.

Estimates ĝ0 = 54.6 (dB) and γ̂ = 0.276 were obtained during the calibration phase.

Afterwards, the structure comprising one pillar and six walls of different materials was

assembled as shown in Fig. 3.6, and T = 2, 380 measurements {ǧτ ′}Tτ ′=1 were collected.

Calibrated measurements {šτ ′}Tτ ′=1 were then obtained from {ǧτ ′}Tτ ′=1 after substituting

ĝ0 and γ̂ into (2.5). The weights {w(n,n′)
τ ′ }Tτ ′=1 were constructed with w in (2.3) by using

known locations of sensor pairs. Note that τ ′ is introduced to distinguish indices of the

real data from τ used to index time slots in numerical tests.

We randomly selected 1, 380 measurements from {šτ ′}Tτ ′=1 to initialize š(0) and W(0),

and used the remaining 1, 000 measurements to run the proposed algorithm under the

mini-batch operation for τ = 0, 1, . . . , 5. At each time slot τ ,Mτ+1 was formed by sen-

sors corresponding to |Mτ+1| = 200 weight vectors uniformly selected at random from

{w(n,n′)
τ ′ }τ ′ associated with the remaining 1, 000 measurements without replacement.

Then, NBatch = 100 measurements were chosen from {šτ ′}τ ′ associated with Mτ+1.

Simulation parameters were set to NIter = 3, 000, ξ = 10−6, and K = 3; and hyper-

hyper parameters of θ were set to aν = bν = 10−3, [m1,m2,m3]> = [0, 0.035, 0.05]>,

σ2
k = 10−4 ∀k, and ak = bk = 0.1 ∀k, respectively. To execute Alg. 8, variational

parameters of q(0)(f , z,θ) were initialized as follows:
{
µ̆

(0)
fk

(x̃i)
}Ng
i=1
∀k, b̆

(0)
ν ,
{
σ̆

2(0)
k

}3

k=1
,
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and
{
ă

(0)
k , b̆

(0)
k

}3

k=1
were drawn from the uniform distribution U(0, 1), while m̆

(0)
k =

mk ∀k and ζ̆
(0)
k (x̃i) = 1/3 ∀i, k.

Following [2, 33], a spatial covariance matrix was used for Cf of the ridge-regularized

LS estimator, which models the similarity between points x̃i, and x̃j as
[
Cf

]
ij

=

σ2
s exp[−‖x̃i − x̃j‖2/κ] [2] with σ2

s = κ = 1, and µf = 0.015 found with the L-curve [49,

Chapter 26]. For the TV-regularized LS estimator, it was set to µf = 6 found through

the generalized cross validation [31]. To assess the efficacy of our Bayesian model with

the K-ary hidden label field, we tested the adaptive MCMC method in [50] with K = 2.

Figs. 5.7a–5.7h depict SLF estimates F̂ and associated hidden fields Ẑ at τ = 5

obtained via the proposed algorithms and competing alternatives. As a benchmark,

one-shot estimates of the SLF F̂full and associated hidden field Ẑfull are also displayed

in Figs. 5.7i and 5.7j obtained via Alg. 9 by using the entire set of 2, 380 measure-

ments. Comparing Figs. 5.7e and 5.7i (or Figs. 5.7f and 5.7j) shows that the proposed

method accurately reveals the structural pattern of the testbed by using fewer number

of measurements; e.g., the cinder block in the testbed was not captured by the SLF in

Fig. 5.7g, but that in Fig. 5.7e. For competing alternatives, the testbed structure was

not captured through the SLFs in Figs. 5.7a and 5.7b estimated via both regularized LS

methods. On the other hand, the MCMC method reveals the structure through F̂ and

Ẑ in Figs. 5.7c and 5.7d, although they are less accurately delineated than those from

the proposed method. This illustrates the benefits of considering a general Bayesian

model with K ≥ 2 addressing a richer class of spatial heterogeneity.

Efficacy of the data-driven sensor selection scheme is further analyzed. Specifically,

the accuracy of ẑ measured by the labeling error ‖δ(ẑfull−ẑ)‖1/Ng with ẑfull := vec(Ẑfull)

was used as performance metric. Progression of the labeling error for Alg. 9 is depicted

in Fig. 5.8 with that for the non-adaptive VB algorithm, where the proposed method

consistently outperforms the non-adaptive one for every τ . This implies that the pro-

posed sensor selection strategy helps to reveal object patterns more accurately while

reducing data collection costs.

To corroborate the hyperparameter estimation capability of the proposed algorithm,

estimates of θ averaged over 20 MC runs are listed in Table 5.3. Estimated θ̂ obtained

by using the full data was considered as a benchmark, to demonstrate that Alg. 9 yields

estimates θ closer to the benchmark than its non-adaptive counterpart (except ϕν).
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Figure 5.7: SLF estimates F̂ at τ = 5 (with 1, 880 measurements) via; (a) ridge-
regularized LS (µf = 0.015 and Cf = I3,600); (b) TV-regularized LS (µf = 6); (c)

adaptive MCMC algorithm in [50] with K = 2 through (d) estimated hidden field Ẑ;
(e) Alg. 9 through (f) Ẑ; (g) non-adaptive VB algorithm through (h) Ẑ; and (i) F̂full

and (j) Ẑfull obtained by using the full data (with 2, 380 measurements).

Note that the level of measurement noise is high since σ̂2
ν = ϕ̂ν

−1 ≈ 15. This can

be justified because the testbed structure was accurately revealed in F̂ and Ẑ from

the proposed method by incorporating imperfect calibration effects in the measurement

noise.

The last simulation assesses performance of the proposed algorithms for channel-gain

map construction. The set of shadowing measurements and setup was the one used in

the first simulated tests of this section. A channel-gain map is constructed to portray the



82

0 1 2 3 4 5
0.16

0.18

0.2

0.22

0.24

Time (τ )

E
[‖δ

(ẑ
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channel-gain between every point in the map x, and a fixed receiver location xrx. Specifi-

cally, Alg. 9 is executed and estimates {ŝ(x̃i,xrx)}Ngi=1 are obtained by substituting f̂ and

w into (2.4). Subsequently, {ĝ(x̃i,xrx)}Ngi=1 are obtained by substituting {ŝ(x̃i,xrx)}Ngi=1

into (2.1) with ĝ0 and γ̂. Upon defining ĝ := [ĝ(x̃1,xrx), . . . , ĝ(x̃Ng ,xrx)]> ∈ RNg , we

construct the channel-gain map Ĝ := unvec(ĝ) with the receiver located at xrx.

Let Ŝ := unvec(ŝ) denote a shadowing map with ŝ := [ŝ(x̃1,xrx), . . . , ŝ(x̃Ng ,xrx)]> ∈
RNg . Fig. 5.9 displays estimated shadowing maps and corresponding channel-gain maps

constructed via Alg. 9 and the competing alternatives, when the receiver is located at

xrx = (10.3, 10.7) (ft) marked by the cross. In every channel-gain map of Fig. 5.9,

stronger attenuation is observed when signals propagate through either more building

materials (bottom-right side of Ĝ), or the concrete wall (left side of Ĝ). On the other

hand, only the channel-gain maps in Figs. 5.9f, 5.9h, 5.9j, and 5.9l constructed by the

approximate Bayesian inference methods exhibit less attenuation along the entrance

of the structure (top-right side of Ĝ); this cannot be seen through the channel-gain

maps in Figs. 5.7a and 5.7b constructed by both regularized LS methods. The reason

is that free space and objects are more distinctively delineated in F̂ by the proposed

method. All in all, the simulation results confirm that our approach could provide more

site-specific information of the propagation medium, and thus endows the operation of

cognitive radio networks with more accurate interference management.
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Table 5.3: Estimated θ̂ via benchmark algorithm (setting of Fig. 5.7i); Alg. 9 (setting
of Fig. 5.7e); and non-adaptive VB algorithm (setting of Fig. 5.7g), averaged over 20
independent MC runs.

θ Benchmark Est. (Alg. 9) Est. (non-adaptive)

ϕν 0.075± 10−16 0.068± 0.13 0.071± 0.24

µf1 −0.001± 10−17 −0.001± 10−7 −0.001± 10−7

µf2 0.032± 10−17 0.032± 10−8 0.032± 10−8

µf3 0.045± 10−17 0.046± 10−8 0.046± 10−8

ϕf1 5.524± 10−18 4.951± 10−3 4.789± 1.9× 10−3

ϕf2 5.524± 10−18 4.942± 10−3 4.782± 1.7× 10−3

ϕf3 5.524± 10−18 4.935± 10−3 4.775± 1.7× 10−3

5.6 Conclusion

This section developed a variational Bayes approach to adaptive channel-gain cartogra-

phy, which estimates the spatial loss field of the tomographic model at affordable com-

plexity by using measurements collected from sensing radio pairs that are adaptively

chosen with an uncertainty sampling criterion. Extensive synthetic and real data tests

corroborated the efficacy of the proposed novel algorithm for channel-gain cartography

and tomographic imaging applications.
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Figure 5.9: Estimated shadowing maps Ŝ and corresponding channel-gain maps Ĝ at
τ = 5 via (a)-(b) ridge-regularized LS (setting of Fig. 5.7a); (c)-(d) TV-regularized LS
(setting of Fig. 5.7b); (e)-(f) adaptive MCMC algorithm in [50] with K = 2 (setting of
Fig. 5.7c); (g)-(h) Alg. 9 (setting of Fig. 5.7e); and (i)-(j) non-adaptive VB algorithm
(setting of Fig. 5.7g); and (k)–(l) benchmark algorithm (setting of Fig. 5.7i), with the
receiver location at xrx = (10.3, 10.7) (ft) marked with the black cross.



Chapter 6

Summary and Future Directions

Leveraging recent advances in statistical signal processing and machine learning, this

thesis contributed novel algorithms that help realize the goal of data-driven channel

learning to design and operate next-generation wireless communication networks. The

following subsections provide a summary of the work presented in this thesis, as well as

possible future research directions.

6.1 Thesis Summary

After the review on channel-gain cartography in Chapter 2, a low-rank plus sparse

matrix model was presented for channel-gain cartography in Chapter 3, which is instru-

mental for spectrum sensing and resource allocation tasks to operate cognitive radio

networks. Channel-gain was modeled as the aggregate effect (in dB) of distance-based

pathloss and shadowing expressed as tomographic accumulation of the underlying spa-

tial loss field (SLF). The SLF was postulated to have a low-rank structure corrupted

by sparse outliers. Efficient batch and online algorithms were developed by leveraging a

bilinear characterization of the matrix nuclear norm. The algorithms enjoy low compu-

tational complexity and a reduced memory requirement, without sacrificing optimality,

and with provable convergence properties. Tests with both synthetic and real datasets

corroborated the claims and showed that the algorithms could accurately reveal the

structure of propagation medium.

Chapter 4 dealt with the development of a novel Bayesian framework for adaptive
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channel-gain cartography that estimates the SLF by using measurements collected by

a set of sensing radio pairs chosen based on the uncertainty sampling criterion. Dif-

ferent from conventional approaches, leveraging a binary hidden label field accounted

for heterogeneity of the SLF. The effectiveness of the novel Markov chain Monte Carlo

(MCMC) algorithm was corroborated through extensive synthetic and real data exper-

iments.

Finally, Chapter 5 was built upon the Bayesian framework and the results of Chap-

ter 4. The proposed Bayesian SLF model was further generalized to have K-ary piece-

wise homogeneous regions, which accounts for a richer class of environmental hetero-

geneity. As an alternative to the computationally expensive MCMC algorithms, we

developed the variational Bayes (VB) solution for channel-gain cartography, which es-

timates the SLF at affordable complexity by using measurements acquired by sensing

radio pairs chosen by another data-adaptive sensor selection strategy. Extensive syn-

thetic and real data tests corroborated the efficacy of the proposed novel algorithm for

channel-gain cartography and radio tomographic imaging applications.

6.2 Future Research

The promising results in this thesis open up interesting directions for a number of future

research topics. The following subsections discuss a few of these directions.

6.2.1 Online Bayesian channel-gain cartography

The proposed method in Chapter 5 outperformed conventional solutions for channel-

gain cartography and radio tomography. When it comes to the scenario of streaming

data however, the current setup is not fully suitable since a proxy of the posterior

p(f , z,θ|št) needs to be updated in a batch fashion every time a new datum št+1 arrives.

This issue is frequently encountered particularly in large-scale learning via approximate

Bayesian inference. To bypass this limitation while efficiently coping with streaming

datasets, we propose using online approximate Bayesian inference algorithms. Examples

of such algorithms include the stochastic variational inference [39] and the streaming

variational Bayes [13], which updates variational parameters in the spirit of stochastic

approximation (SA) [48, 84] utilizing natural gradients of the evidence lower bound.
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6.2.2 Variational massive MIMO channel estimation

Hybrid analog and digital beamforming (HBF) with low-resolution ADCs (1–3 bits) is

a key enabler of mmWave communication via massive MIMO techniques, by addressing

the associated hardware issues of costly implementation and power consumption of

devices. Designing the HBF architecture requires knowing the channel-state information

to configure the precoder and combiner in analog and digital domains. Unfortunately, it

is challenging to obtain the channel information in a massive MIMO system with HBF

for several reasons: i) the channel matrix has large dimension; ii) low receive-SNR; and

iii) indirect access to the channel matrix. These factors prevent one from using channel

estimation techniques for conventional beamforming. These considerations motivate

developing tools for scalable, yet accurate channel estimation in accordance with the

pressing needs of the HBF structure.

By leveraging the sparse nature of mmWave channel [3, 4, 37], a large body of works

casts the channel estimation problem as an instance of noisy quantized compressed sens-

ing. To tackle the latter, approximate message passing (AMP)-based methods, including

generalized AMP (GAMP) [76] and vector AMP (VAMP) [78], have been widely em-

ployed. AMP methods were originally developed to efficiently solve the basis pursuit or

LASSO problem [21], and provide MMSE solutions for channel estimation in the large

system limit with a regressor matrix having i.i.d. (sub-) Gaussian entries. Otherwise,

AMP-based algorithms trade-off convergence guarantees for computational complexity.

To bypass such limitations, one can resort to approximate Bayesian inference tech-

niques, including variational Bayes expectation-maximization (VBEM) methods, whose

convergence does not suffer from (sub-)Gaussianity of the regressor matrix. To lever-

age the sparsity present in the mmWave channel, the posterior model can be designed

with proper sparsity inducing priors such as i) the Bernoulli-Gaussian (BG); or the ii)

Bernoulli Gaussian-mixture (BGM) oner [63].

6.2.3 Angular pattern reconstruction of mmWave channel

Directional transmissions and MIMO techniques with adaptive beamforming gain at-

tentions as a means of compensating severe signal attenuation at mmWave bands. To

efficiently construct a beam steering vector, it is essential to know angle-of-arrivals
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and angular-power distribution. Conventionally, empirical approaches based on field

measurements have been used to model mmWave propagation [79, 83, 77] to analyze

path-loss or to estimate angle-of-arrivals. Unfortunately, the resulting performance

might be limited since angular resolution of the antenna highly depends on its effec-

tive beamwidth, which leads to angular spread estimation under simplified assumption.

Otherwise, data collection might be too expensive due to necessity of the antenna with

highly directive beam such as the pencil-beam. To overcome aforementioned limita-

tion, we propose a data-driven approach to infer angular response of channel in high

resolution, given a non-coherent power-angular measurement at a receiver with its an-

tenna radiation pattern. Therefore, the reconstructed angular pattern of channel can

provide sufficient granularity to accurately reveal angle-of-arrivals, or to localize users,

depending on applications of interest.

One can formulate this task as a instance of the phase retrieval (PR) problem.

Consider an antenna measuring the received signal amplitude at every Azimuth angle

φn ∈ [0, 2π) for n = 1, . . . , 360, with unit angular resolution (in degrees). Let a ∈ C360

denote the known antenna pattern with the n-th element a(φn) := an = |an| exp(jθan),

where |an|2 and θan are the n-th antenna power and phase, respectively. With these

notational conventions, the antenna measurement can be expressed as [74]

y = |a~ h+ ν| (6.1)

where h ∈ CN is the channel in the angular domain with the n-th element h(φn) :=

hn = |hn| exp(jθhn); and ν ∈ CN is noise. Given y, the goal is to estimate h, which is

precisely a PR problem. However, the performance of conventional solutions [15, 74, 88]

can be limited because the global optimum is not always guaranteed due to the structure

of a. This limitation also leads to slow convergence. As an alternative of the existing PR

solutions, one venue of future research is to investigate a Bayesian framework based on

a hierarchical graphical model by utilizing approximate Bayesian inference techniques.
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Appendix A

Proofs for Chapter 3

A.1 Proof of Proposition 1

A stationary point P̄, Q̄ and Ē of (P2) must satisfy the following first-order optimality

conditions [12]

0Nx×Ny ∈ ∂Ef(P̄, Q̄, Ē) =
{
f̃(P̄Q̄>, Ē) +µEβ̄

[
sign(Ē) + Ẽ

] ∣∣∣∣Ē� Ẽ = 0, ‖Ẽ‖∞ ≤ 1

}
(A.1)

∇Pf(P̄, Q̄, Ē) = f̃(P̄Q̄>, Ē)Q̄ + µLβ̄P̄ = 0Nx×ρ (A.2)

∇Q>f(P̄, Q̄, Ē) = P̄>f̃(P̄Q̄>, Ē) + µLβ̄Q̄> = 0ρ×Ny (A.3)

where� denotes the element-wise (Hadamard) product. Through post-multiplying (A.2)

by P̄> and pre-multiplying (A.3) by Q̄, one can see that

f̃(P̄Q̄>, Ē) = −µEβ̄(sign(Ē) + Ẽ)

tr
(
f̃(P̄Q̄>, Ē)Q̄P̄>

)
= −µLβ̄tr(P̄P̄>) = −µLβ̄tr(Q̄Q̄>). (A.4)
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Define now κ(R1,R2) := 1
2 (tr(R1) + tr(R2)), and consider the following convex prob-

lem

(P4) min
L,E∈RNx×Ny ,
R1∈RNx×Nx ,
R2∈RNy×Ny

T∑
τ=1

βT−τ c(τ)(L,E) + µLβ̄ κ(R1,R2) + µEβ̄ ||E||1

subject to R :=

(
R1 L

L> R2

)
� 0 (A.5)

which is equivalent to (P1). Equivalence can be easily inferred by minimizing (P4) with

respect to {R1,R2} and noting an alternative characterization of the nuclear norm given

by [81]

‖L‖∗ = min
R1,R2

κ(R1,R2)

subject to R � 0. (A.6)

In what follows, the optimality conditions of the conic program (P4) are explored.

Introducing a Lagrange multiplier matrix M ∈ R(Nx+Ny)×(Nx+Ny) associated with the

conic constraint in (A.5), the Lagrangian is first formed as

L(L,E,R1,R2; M) =

T∑
τ=1

βT−τ c(τ)(L,E) + µLβ̄ κ(R1,R2) + µEβ̄ ‖E‖1 − 〈M,R〉.

(A.7)

For notational convenience, partition M as

M :=

(
M1 M2

M4 M3

)
(A.8)

in accordance with the block structure of R in (A.5), where M1 ∈ RNx×Nx and M3 ∈
RNy×Ny . The optimal solution to (P4) must satisfy: (i) the stationarity conditions

∇LL(L,E,R1,R2; M) = f̃(L,E)−M2 −M>
4 = 0 (A.9)
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0 ∈ ∂EL(L,E,R1,R2; M) =

{
f̃(L,E) + µEβ̄

[
sign(E) + Ẽ

] ∣∣∣∣E� Ẽ = 0, ‖Ẽ‖∞ ≤ 1

}
(A.10)

∇R1L(L,E,R1,R2; M) =
µLβ̄

2
INx −M1 = 0 (A.11)

∇R2L(L,E,R1,R2; M) =
µLβ̄

2
INy −M3 = 0 (A.12)

(ii) complementary slackness condition 〈M,R〉 = 0; (iii) primal feasibility R � 0; and

(iv) dual feasibility M � 0.

Using the stationary point P̄, Q̄ and Ē of (P2), construct a candidate solution for

(P4) as L̂ := P̄Q̄>, Ê := Ē, R̂1 := P̄P̄>, and R̂2 := Q̄Q̄>, as well as M̂1 := µLβ̄
2 INx ,

M̂2 := 1
2 f̃(P̄Q̄>, Ē), M̂3 := µLβ̄

2 INy , and M̂4 := M̂>
2 . After substituting these

into (A.9)–(A.12), it can be readily verified that condition (i) holds. Condition (ii)

also holds since

〈M̂, R̂〉 = 〈M̂1, R̂1〉+ 〈M̂2, L̂〉+ 〈M̂3, R̂2〉+ 〈M̂4, L̂
>〉

=
µLβ̄

2
tr(P̄P̄> + Q̄Q̄>) + tr

(
f̃(P̄Q̄>, Ē)Q̄P̄>

)
= 0 (A.13)

where the last equality follows from (A.4). Condition (iii) is met since R can be rewritten

as

R =

(
P̄P̄> P̄Q̄>

Q̄P̄> Q̄Q̄>

)
=

(
P̄

Q̄

)(
P̄

Q̄

)>
� 0. (A.14)

For (iv), according to the Schur complement condition for positive semidefinite matrices,

M � 0 holds if and only if

M̂3 − M̂4M̂
−1
1 M̂2 � 0 (A.15)

which is equivalent to λmax(M̂>
2 M̂2) ≤ (µLβ̄/2)2, or ||f̃(P̄Q̄>, Ē)|| ≤ µLβ̄. �

A.2 Proof of Proposition 2

The proof uses the technique similar to the one employed in [56], where the convergence

of online algorithms for optimizing objectives involving non-convex bilinear terms and
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sparse matrices was established in the context of dictionary learning.

In order to proceed with the proof, three lemmata are first established. The first

lemma concerns some properties of g(X, ξ(t)) := g1(X, ξ(t))+g2(X), and ǧ(X,X(t−1), ξ(t))

:= ǧ1(X,X(t−1), ξ(t)) + g2(X).

Lemma 2: If the assumptions (a1)–(a5) in Proposition 2 hold, then

(p1) ǧ1(X,X(t−1), ξ(t)) majorizes g1(X, ξ(t)), i.e., ǧ1(X,X(t−1), ξ(t)) ≥ g1(X, ξ(t)) ∀X ∈
X ′;

(p2) ǧ1 is locally tight, i.e., ǧ1(X(t−1),X(t−1), ξ(t)) = g1(X(t−1), ξ(t));

(p3) ∇ǧ1(X(t−1),X(t−1), ξ(t)) = ∇g1(X(t−1), ξ(t));

(p4) ǧ(X,X(t−1), ξ(t)) := ǧ1(X,X(t−1), ξ(t)) + g2(X) is uniformly strongly convex in X,

i.e., ∀(X,X(t−1), ξ(t)) ∈ X × X × Ξ , it holds that

ǧ(X + D,X(t−1), ξ(t))− ǧ(X,X(t−1), ξ(t)) ≥ ǧ′(X,X(t−1), ξ(t); D) +
ζ

2
||D||2F

where ζ > 0 is a constant and ǧ′(X,X(t−1), ξ(t); D) is a directional derivative of ǧ

at X along the direction D;

(p5) g1 and ǧ1, their derivatives, and their Hessians are uniformly bounded;

(p6) g2 and its directional derivative g′2 are uniformly bounded; and

(p7) there exists ḡ ∈ R such that |ǧ(X,X(t−1), ξ(t))| ≤ ḡ.

Proof: For (p1), let us first show that ∇Pg1(P,Q,E, ξ(t)), ∇Qg1(P,Q,E, ξ(t)), and

∇Eg1(P,Q,E, ξ(t)) are Lipschitz continuous for X := (P,Q,E) ∈ X ′ and ξ(t) ∈ Ξ. For

arbitrary X1 := (P1,Q1,E1), X2 := (P2,Q2,E2) ∈ X ′, the variation of ∇g1 in (3.19)

can be bounded as

‖∇Pg1(P1,Q,E, ξ
(t))−∇Pg1(P2,Q,E, ξ

(t))‖F =

∥∥∥∥∥
M∑
m=1

〈W(t)
m , (P1 −P2)Q>〉W(t)

m Q

∥∥∥∥∥
F

(i1)

≤
M∑
m=1

|〈W(t)
m , (P1 −P2)Q>〉|‖W(t)

m Q‖F
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(i2)

≤
M∑
m=1

‖P1 −P2‖F ‖W(t)
m Q‖2F

where (i1) and (i2) are due to the triangle and Cauchy-Schwarz inequalities, respectively.

Since X ′ and Ξ are assumed to be bounded,
∑M

m=1 ‖W
(t)
m Q‖2F is bounded. Therefore,

there exists a positive constant LP such that

‖∇Pg1(P1,Q,E, ξ
(t))−∇Pg1(P2,Q,E, ξ

(t))‖F ≤ LP‖P1 −P2‖F (A.16)

meaning that ∇Pg1(P,Q,E, ξ(t)) is Lipschitz continuous with constant LP. Similar

arguments hold for ∇Qg1(P,Q,E, ξ(t)) and ∇Eg1(P,Q,E, ξ(t)) as well, with Lipschitz

constants LQ and LE, respectively. Then, upon defining

‖X‖∆ :=
√
L2

P‖P‖2F + L2
Q‖Q‖2F + L2

E‖E‖2F ,

it is easy to verify

‖∇g1(X1, ξ
(t))−∇g1(X2, ξ

(t))‖F ≤ ‖X1 −X2‖∆. (A.17)

On the other hand, the proof of the Descent Lemma [9] can be adopted to show

g1(X, ξ(t))− g1(X(t−1), ξ(t)) ≤ 〈X−X(t−1),∇g1(X(t−1), ξ(t))〉+

∫ 1

0
‖X−X(t−1)‖F

× ‖∇g1(X(t−1) + α(X−X(t−1)), ξ(t))−∇g1(X(t−1), ξ(t))‖Fdα. (A.18)

Note that

‖X‖F ≤
1

Lmin
‖X‖∆ (A.19)

where Lmin := min{LP, LQ, LE}. Then, substitution of (A.17) into (A.18) with X1 =

X(t−1) + α(X−X(t−1)) and X2 = X(t−1) yields

g1(X(t−1), ξ(t)) + 〈X−X(t−1),∇g1(X(t−1), ξ(t))〉+
1

2Lmin
‖X−X(t−1)‖2∆ ≥ g1(X, ξ(t))

(A.20)

which completes the proof by the construction of ǧ1, provided that η
(t)
i ≥ L2

i /Lmin for
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all i ∈ {P,Q,E}.
To show (p2) and (p3), let us first denote

∇g1(X, ξ(t)) =
(
∇Pg1(X, ξ(t)),∇Qg1(X, ξ(t)),∇Eg1(X, ξ(t))

)
(A.21)

∇ǧ1(X,X(t−1), ξ(t)) =
(
∇Pg1(X, ξ(t)) + η

(t)
P (P−P(t−1)),

∇Qg1(X, ξ(t)) + η
(t)
Q (Q−Q(t−1)),

∇Eg1(X, ξ(t)) + η
(t)
E (E−E(t−1))

)
. (A.22)

Then, it suffices to evaluate ǧ1(X, ξ(t)) and ∇ǧ1(X,X(t−1), ξ(t)) at X(t−1) to see that

(p2) and (p3) hold.

To show (p4), let us first find ǧ′1 and g′2. Along a direction D := (DP,DQ,DE) ∈ X ′,
it holds that ǧ′1(X,X(t−1), ξ(t); D) = 〈∇ǧ1(X,X(t−1), ξ(t)),D〉 since ǧ1 is differentiable.

Similarly, g′2(X; D) = µL(〈P,DP〉 + 〈Q,DQ〉) + µEh
′(E; DE) where h(E) := ‖E‖1,

dE := vec(DE) with its l-th entry being dE,l, and

h′(E; DE) := lim
t→0+

h(E + tDE)− h(E)

t

= lim
t→0+

∑
l,el 6=0(|el + tdE,l| − |el|) +

∑
l,el=0 |tdE,l|

t

=
∑
l,el 6=0

sign(el)dE,l +
∑
l,el=0

|dE,l|. (A.23)

On the other hand, the variation of ǧ can be written as

ǧ(X + D,X(t−1), ξ(t))− ǧ(X,X(t−1), ξ(t)) = ǧ′1(X,X(t−1), ξ(t); D) +
∑

i∈{P,Q,E}

η
(t)
i

2
‖Di‖2F

+ g2(X + D)− g2(X). (A.24)

Note that
∑

i
η

(t)
i
2 ‖Di‖2F ≥ Lmin

2 ||D||2F since η
(t)
i ≥ L2

i /Lmin by algorithmic construction.

Furthermore, g2(X+D)−g2(X) ≥ g′2(X; D) since g2 is convex [69]. Then, the variation

of ǧ in (A.24) can be lower-bounded as

ǧ(X + D,X(t−1), ξ(t))− ǧ(X,X(t−1), ξ(t)) ≥ ǧ′(X,X(t−1), ξ(t); D) +
Lmin

2
||D||2F

(A.25)
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where ǧ′(X,X(t−1), ξ(t); D) = ǧ′1(X,X(t−1), ξ(t); D) + g′2(X; D). Therefore, (p4) holds

for a positive constant ζ ≤ Lmin.

By the compactness of X and boundedness of Ξ by (a3), (p5) is automatically

satisfied since g1 and ǧ1 are continuously twice differentiable in X [80]. In addition, one

can easily show (p6) since g2 and g′2 are also uniformly bounded by the compactness of

X .

Let K1 and K2 denote constants where |ǧ1| ≤ K1 and |g2| ≤ K2, respectively, by

(p5) and (p6). Then, (p7) readily follows since

|ǧ(X,X(t−1), ξ(t))| = |ǧ1(X,X(t−1), ξ(t)) + g2(X)|
≤ |ǧ1(X,X(t−1), ξ(t))|+ |g2(X)|
≤ K1 +K2 =: ḡ. � (A.26)

The next lemma asserts that a distance between two subsequent estimates asymp-

totically goes to zero, which will be used to show limt→∞ Č1,t(X
(t)) − C1,t(X

(t)) = 0,

almost surely.

Lemma 3: If (a2)–(a5) hold, then ||X(t+1) −X(t)||F = O(1/t).

Proof: See [80, Lemma 2]. A proof of Lemma 3 is omitted to avoid duplication of the

proof of [80, Lemma 2]. Hence, it suffices to mention that Lemma 2 guarantees the

formulation of the proposed work satisfying the general assumptions on the formulation

in [80]. �

Lemma 3 does not guarantee convergence of the iterates to the stationary point of

(P2). However, the final lemma asserts that the overestimated cost sequence converges

to the cost of (P2), almost surely. Before proceeding to the next lemma, let us first

define

C1,t(X) :=
1

t

t∑
τ=1

g1(X, ξ(τ)) (A.27)

Č1,t(X) :=
1

t

t∑
τ=1

ǧ1(X,X(τ−1), ξ(τ)) (A.28)

and C2(X) := g2(X). Note also that Čt(X)− Ct(X) = Č1,t(X)− C1,t(X).

Lemma 4: If (a1)–(a5) hold, Čt(X
(t)) converges almost surely, and limt→∞ Č1,t(X

(t))−
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C1,t(X
(t)) = 0, almost surely.

Proof: See [80, Lemma 1]. A proof of Lemma 4 is omitted to avoid duplication of the

proof of [80, Lemma 1]. Instead, a sketch of the proof is following. It is firstly shown

that the sequence {Čt(X(t))}∞t=1 follows a quasi-martingale process and converges almost

surely. Then, the lemma on positive converging sums (see [56, Lemma 8]) and Lemma

3 are used to claim that limt→∞ Č1,t(X
(t))− C1,t(X

(t)) = 0, almost surely. �

The last step of the proof for Proposition 2 is inspired by [80]. Based on Lemma 4,

it will be shown that the sequence {∇Č1,t(X
(t))−∇C1,t(X

(t))}∞t=1 goes to zero, almost

surely. Together with C ′2, it follows that limt→∞C
′
t(X

(t); D) ≥ 0 ∀D, a.s. by algorithmic

construction, implying convergence of a sequence {X(t)}∞t=1 to the set of stationary

points of C(X).

By the compactness of X , it is always possible to find a convergent subsequence

{X(t)}∞t=1 to a limit point X̄ ∈ X . Then, by the strong law of large numbers [28]

under (a1) and equicontinuity of a family of functions {C1,t(·)}∞t=1 due to the uniform

boundedness of ∇g1 in (p5) [14], upon restricting to the subsequence, one can have

lim
t→∞

C1,t(X
(t)) = Eξ[g1(X̄, ξ)] =: C1(X). (A.29)

Similarly, a family of functions {Č1,t(·)}∞t=1 is equicontinuous due to the uniform bound-

edness of ∇ǧ1 in (p5). Furthermore, {Č1,t(·)}∞t=1 is pointwisely bounded by (a1)–(a3).

Thus, Arzelá-Ascoli theorem (see [14, Cor. 2.5] and [22]) implies that there exists a

uniformly continuous function Č1(X) such that limt→∞ Č1,t(X) = Č1(X) ∀ X ∈ X and

after restricting to the subsequence

lim
t→∞

Č1,t(X
(t)) = Č1(X̄). (A.30)

Furthermore, since ǧ1(X,X(t−1), ξ(t)) ≥ g1(X, ξ(t)) as in (p1), it follows that

Č1,t(X)− C1,t(X) ≥ 0 ∀X. (A.31)

By letting t → ∞ on (A.31) and combining Lemma 4 with (A.29) and (A.30), one

deduces that

Č1(X̄)− C1(X̄) = 0, a.s. (A.32)
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meaning that Č1,t(X)− C1,t(X) takes its minimum at X̄ and

∇Č1(X̄)−∇C1(X̄) = 0, a.s. (A.33)

by the first-order optimality condition.

On the other hand, the fact that X(t) minimizes Čt(X) by algorithmic construction

and g′2 exists (so does C ′2), yields

Č1,t(X
(t)) + C2(X(t)) ≤ Č1,t(X) + C2(X) ∀X ∈ X (A.34)

and limt→∞ Č1,t(X
(t)) + C2(X(t)) ≤ limt→∞ Č1,t(X) + C2(X) ∀X ∈ X , which implies

lim
t→∞
〈∇Č1,t(X

(t)),D〉+ C ′2(X(t); D) ≥ 0 ∀D. (A.35)

Using the result in (A.33), (A.35) can be re-written as 〈∇C1(X̄),D〉 + C ′2(X̄; D) ≥
0 ∀D, a.s. or

C ′(X̄; D) ≥ 0 ∀D, a.s. (A.36)

Thus, the subsequence {X(t)}∞t=1 asymptotically coincides with the set of stationary

points of C(X). �



Appendix B

Derivations for Chapter 4

B.1 Derivation of the posterior conditional in (4.17)

Recalling that p(št|f , σ2
ν) ∼ N (W>

t f , σ
2
νIt) and p(f |z,θf ) ∼ N (µf |z,Σf |z), one can

expand p(f |št, z,θ) in (4.17) to arrive at (cf. (4.18))

p(f |št, z,θ) ∝ p(št|f , σ2
ν)p(f |z,θf )

∝ exp

[
− 1

2σ2
ν

‖št −W>
t f‖22 −

1

2
‖f − µf |z‖2Σ−1

f |z

]
∝ exp

[
− 1

2
f>Σ−1

f |z,θ,štf +

(
1

σ2
ν

š>t W>
t + µ>f |zΣ

−1
f |z

)
f

]
= exp

[
− 1

2
f>Σ−1

f |z,θ,štf + µ̌>f |z,θ,štΣ
−1
f |z,θ,štf

]
∝ exp

[
− 1

2
‖f − µ̌f |z,θ,št‖2Σ−1

f |z,θ,št

]
, (B.1)

which shows that the proportionality of p(f |št, z,θ) follows N (µ̌f |z,θ,št ,Σf |z,θ,št). �
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B.2 Derivation of (P1) in (4.46)

At time slot τ , we seek w
(n∗,n′∗)
τ+1 minimizing Hτ+1(f |šτ+1, z,θ) in (4.45), which amounts

to solving

max
w

(n,n′)
τ+1 :

(n,n′)∈Mτ+1

∑
z′∈Z

∫
θ′,š′τ+1

p(š′τ+1, z
′,θ′)h(z′,θ′,w

(n,n′)
τ+1 , šτ )dθ′dš′τ+1. (B.2)

Then, one can show that∫
p(š′τ+1, z

′,θ′)dš′τ+1 =

∫
š′τ+1

∫
f ′
p(š′τ+1,f

′, z′,θ′)df ′dš′τ+1

(e1)
=

∫∫
p(š′τ+1|f ′, z′,θ′)p(š′τ |f ′, z′,θ′)p(f ′, z′,θ′)df ′dš′τ+1

=

∫∫
p(f ′, z′,θ′|š′τ )p(š′τ )df ′dš′τ =

∫
p(z′,θ′|š′τ )p(š′τ )dš′τ (B.3)

where (e1) holds due to independence between š′τ+1 and š′τ after conditioning on {f , z,θ}.
By substituting (B.3) into (B.2) and recalling that šτ is given at time slot τ , finding

w
(n∗,n′∗)
τ+1 boils down to solving

max
w

(n,n′)
τ+1 :

(n,n′)∈Mτ+1

∑
z′∈Z

∫
θ′
p(z′,θ′|šτ )h(z′,θ′,w

(n,n′)
τ+1 , šτ )dθ′, (B.4)

which is (P1) in (4.46). �



Appendix C

Derivations for Chapter 5

Here we derive the variational distributions in (5.16). Terms not related to a target

variable will be lumped in a generic constant c. The iteration index ` will be omitted

for simplicity.

C.1 Variational distribution of the SLF in (5.21)

Recall that the conditional posterior obeys p(f , z,θ|št) ∝ p(št|f , ϕν)p(f |z,θf ). The

first factor in (5.16), is expressed as

ln q(f |z) =

Ng∑
i=1

ln q(fi|zi) =
K∑
k=1

∑
i:x̃i∈Ak

ln q(fi|zi = k) (C.1)

where ln q(fi|zi = k) can be written as

ln q(fi|zi = k) = E−q(fi|zi=k) [ln p(f , z,θ|št)] + c

= E−q(fi|zi=k) [ln p(št|f , ϕν)] + E−q(fi|zi=k) [ln p(f |z,θf )] + c. (C.2)

Each term on the RHS in (C.2) is thus given by

E−q(fi|zi=k) [ln p(št|f , ϕν)]↔ ϕ̃ν
2

t∑
τ=1

[
w2
τ,if

2
i − 2

(
šτ −

∑
j 6=i

wτ,j f̄j

)
wτ,ifi

]
(C.3)
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where f̄j :=
∑K

k=1 ζ̆k(x̃j)µ̆fk(x̃j), and

E−q(fi|zi=k) [ln p(f |z,θf )]↔ E−q(fi|zi=k)

[ϕfk
2

(
f2
i − 2µfkfi

)]
=
ϕ̃fk
2

(
f2
i − 2m̆kfi

)
. (C.4)

After substituting (C.3) and (C.4) into (C.2), the pdf q(fi|zi = k) can be expressed as

q(fi|zi = k) ∝ exp

{
− 1

2

(
ϕ̃ν

t∑
τ=1

w2
τ,i + ϕ̃fk

)
f2
i

+

[
ϕ̃ν

t∑
τ=1

(
šτ −

∑
j 6=i

wτ,j f̄j

)
wτ,i + ϕ̃fkm̆k

]
fi

}
. (C.5)

By completing the square, one can readily verify that q(fi|zi = k) = N (µ̆fk(x̃i), σ̆
2
fk

(x̃i))

∀k, where

σ̆2
fk

(x̃i) =

(
ϕ̃ν

t∑
τ=1

w2
τ,i + ϕ̃fk

)−1

(C.6)

µ̆fk(x̃i) = σ̆2
fk

(x̃i)

[
ϕ̃ν

t∑
τ=1

(
šτ −

∑
j 6=i

wτ,j f̄j

)
wτ,i + ϕ̃fkm̆k

]
. (C.7)

Upon defining sτ :=
∑Ng

i=1wτ,if̄i, µ̆fk(x̃i) in (C.7), it follows that

µ̆fk(x̃i) = f̄i + σ̆2
fk

(x̃i)

[(
m̆k − f̄i

)
ϕ̃fk + ϕ̃ν

t∑
τ=1

wτ,i
(
šτ − sτ

)]
. �

C.2 Variational distribution of the hidden label field (5.22)

Since q(z) =
∏Ng
i=1 q(zi) in (5.16) because zi and zj ∀i 6= j are independent, we focus on

the derivation of q(zi). By proportionality of the conditional posterior p(f , z,θ|št) ∝
p(f |z,θf )p(z;β) wrt z, after singling out the terms that involve q(zi), we arrive at

ln q(zi) = E−q(zi) [ln p(f , z,θ|št)] + c

↔ E−q(zi) [ln p(f |z,θf )] + E−q(zi) [ln p(zi|z−i;β)] . (C.8)
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For zi = k, each term on the RHS in (C.8) becomes

E−q(zi) [ln p(f |z,θf )]↔ 1

2
E−q(zi)

[
lnϕfk − ϕfk(fi − µfk)2

]
= − ϕ̃fk

2

 E−q(zi)
[
f2
i

]︸ ︷︷ ︸
=σ̆2

fk
(x̃i)+µ̆2

fk
(x̃i)

−2m̆kµ̆fk(x̃i) + E−q(zi)
[
µ2
fk

]︸ ︷︷ ︸
=σ̆2

k+m̆2
k


+

1

2
E−q(zi) [lnϕfk ]︸ ︷︷ ︸

=ψ(ăk)+ln b̆k

(C.9)

and

E−q(zi) [ln p(zi = k|z−i, β)]↔ E−q(zi)

β ∑
j∈N (x̃i)

δ(zj − k)


= β

∑
j∈N (x̃i)

ζ̆k(x̃j). (C.10)

All in all, the variational pdf q(zi = k) becomes

q(zi = k) ∝ exp

{
− ϕ̃fk

2

[
σ̆2
fk

(x̃i) + µ̆2
fk

(x̃i)− 2m̆kµ̆fk(x̃i) + σ̆2
k + m̆2

k

]
+

1

2
(ψ (ăk) + ln b̆k) +

∑
j∈N (x̃i)

βζ̆k(x̃j)

}
. (C.11)

which leads to the update rule of q(zi = k) in (5.22). �

C.3 Variational distribution of the noise precision in (5.23)

As the conditional posterior p(f , z,θ|št) is proportional to p(št|f , ϕν)p(ϕν) wrt ϕν , we

can write

ln q(ϕν) = E−q(ϕν) [ln p(f , z,θ|št)] + c

↔ E−q(ϕν) [ln p(št|f , ϕν)] + E−q(ϕν) [ln p(ϕν)] (C.12)
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where

E−qϕν [ln p(št|f , ϕν)]↔ t

2
lnϕν −

ϕν
2
‖št −W>

t f‖22

=
t

2
lnϕν −

ϕν
2

t∑
τ=1

š2
τ − 2šτsτ + E−q(ϕν)

[
(w(n,n′)

τ

>
f)2
]

(C.13)

and

E−q(ϕν) [ln p(ϕν)]↔ (aν − 1) lnϕν −
ϕν
bν
. (C.14)

After substituting (C.13) and (C.14) into (C.12), we can easily see that q(ϕν) = G(ăν , b̆ν)

with ăν := aν + t/2, and

b̆ν :=

(
1

bν
+

1

2

t∑
τ=1

š2
τ − 2šτsτ + E−q(ϕν)

[
(w(n,n′)

τ

>
f)2
])−1

(C.15)

where

E−q(ϕν)

[
(w(n,n′)

τ

>
f)2
]

= Var
[
w(n,n′)
τ

>
f
]

+
(
E−q(ϕν)

[
w(n,n′)
τ

>
f
])2

(C.16)

=

Ng∑
i=1

w2
τ,i

[
K∑
k=1

ζ̆k(x̃i)
(
σ̆2
fk

(x̃i) + µ̆2
fk

(x̃i)
)
− f̄2

i

]
+ s2

τ (C.17)

by the law of total variance on Var

[
w

(n,n′)
τ

>
f

]
[11, p. 401]. �

C.4 Variational distribution of the field means in (5.24)

Since the conditional posterior p(f , z,θ|št) is proportional to p(f |z,θf )p(µfk) wrt µfk ,

the entries of µfk are iid, we have

ln q(µfk) = E−q(µfk ) [ln p(f , z,θ|št)] + c

↔ E−q(µfk ) [ln p(f |z,θf )] + E−q(µfk )

[
K∑
k=1

ln p(µfk)

]
(C.18)
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where

E−q(µfk ) [ln p(f |z,θf )]↔
K∑
k=1

Ng∑
i=1

ζ̆k(x̃i)ϕ̃fk

(
µ2
fk
− 2µ̆fk(x̃i)µfk

)
(C.19)

and

E−q(µfk )

[
K∑
k=1

ln p(µfk)

]
↔

K∑
k=1

1

σ2
k

(µ2
fk
− 2µfkmk). (C.20)

Together with (C.19) and (C.20), ln q(µfk) becomes

ln q(µfk)↔
K∑
k=1

[(
1

σ2
k

+

Ng∑
i=1

ζ̆k(x̃i)ϕ̃fk

)
µ2
fk
− 2

(
mk

σ2
k

+

Ng∑
i=1

ζ̆k(x̃i)ϕ̃fk µ̆fk(x̃i)

)
µfk

]
.

(C.21)

After completing the square of the summand in (C.21), we find q(µfk) = N (m̆k, σ̆
2
k) ∀k

with

σ̆2
k :=

(
1

σ2
k

+

Ng∑
i=1

ζ̆k(x̃i)ϕ̃fk

)−1

(C.22)

m̆k := σ̆2
k

(
mk

σ2
k

+

Ng∑
i=1

ζ̆k(x̃i)ϕ̃fk µ̆fk(x̃i)

)
(C.23)

by inspection since q(µfk) =
∏K
k=1 q(µfk), as in (5.16). �

C.5 Variational distribution of the field precisions in (5.25)

Similar to q(µfk), the pdf q(ϕf ) can be expressed as

ln q(ϕf ) = E−q(ϕf ) [ln p(f , z,θ|št)] + c

↔ E−q(ϕf ) [ln p(f |z,θf )] + E−q(ϕf )

[
K∑
k=1

ln p(ϕfk)

]
(C.24)
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by appealing to the proportionality of the posterior p(f , z,θ|št) ∝ p(f |z,θf )p(ϕf )

w.r.t. ϕf . Each term on the RHS in (C.24) can be thus expressed as

E−q(ϕf ) [ln p(f |z,θf )] =
1

2

K∑
k=1

Ng∑
i=1

ζ̆k(x̃i)

[
lnϕfk − ϕfkE−q(zi)

[
(fi − µfk)2

] ]
+ c

(C.25)

where

E−q(zi)
[
(fi − µfk)2

]
= σ̆2

fk
(x̃i) + µ̆2

fk
(x̃i)− 2m̆kµ̆fk(x̃i) + σ̆2

k + m̆2
k, (C.26)

and

E−q(ϕf )

[
K∑
k=1

ln p(ϕfk)

]
=

K∑
k=1

[
(ak − 1) lnϕfk −

ϕfk
bk

]
+ c. (C.27)

After substituting (C.25) and (C.27) into (C.24), ϕf can be shown to follow q(ϕfk) =

G(ăk, b̆k) ∀k with

ăk := ak +
1

2

Ng∑
i=1

ζ̆k(x̃i) (C.28)

b̆k :=

[
1

bk
+

1

2

Ng∑
i=1

ζ̆k(x̃i)

(
σ̆2
fk

(x̃i) + µ̆2
fk

(x̃i)− 2µ̆fk(x̃i)m̆k + σ̆2
k + m̆2

k

)]−1

(C.29)

where we used that q(ϕf ) =
∏K
k=1 q(ϕfk), as in (5.16). �

C.6 Derivation of the cross-entropy in (5.46)

To establish the expression for H(f |z, šτ+1; θ̂τ ) in (5.46), consider that at time slot

τ + 1. Similar to (5.45), we have

H(f |z = z′, šτ+1 = š′τ+1; θ̂τ ) ≈ 1

2
ln
∣∣∣Σ̆f |z′,š′τ+1;θ̂τ

∣∣∣+
Ng

2

(
1 + ln 2π

)
. (C.30)
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With ∆wτ+1 := diag
(
w

(n,n′)
τ+1 ◦w

(n,n′)
τ+1

)
, and using the construction of σ̆2

fk
(x̃i) in (C.6),

we can write

Σ̆f |z′,š′τ+1;θ̂τ
=
[
Σ̆−1

f |z′,š′τ ;θ̂τ
+ ϕ̃ν∆wτ+1

]−1
(C.31)

from which we deduce that∣∣∣∣Σ̆f |z′,š′τ+1;θ̂τ

∣∣∣∣−1

=

∣∣∣∣INg + ϕ̃ν∆wτ+1Σ̆f |z′,š′τ ;θ̂τ

∣∣∣∣∣∣∣∣Σ̆−1

f |z′,š′τ ;θ̂τ

∣∣∣∣ (C.32)

by using the matrix determinant identity lemma [35, Chapter 18]. Further substitut-

ing (C.32) into (C.30), leads to

H(f |z = z′, šτ+1 = š′τ+1; θ̂τ ) ≈ H(f |z = z′, šτ = š′τ ; θ̂τ )

− 1

2
ln

∣∣∣∣INg + ϕ̃ν∆wτ+1Σ̆f |z′,š′τ ;θ̂τ

∣∣∣∣. (C.33)

It follows from the conditional entropy definition in (5.40) that

H(f |z, šτ+1; θ̂τ ) ≈
∑
z′∈Z

∫
p(z′, š′τ+1; θ̂τ )

×
(
H(f |z = z′, šτ = š′τ ; θ̂τ )− 1

2
ln

∣∣∣∣INg + ϕ̃ν∆wτ+1Σ̆f |z′,š′τ ;θ̂τ

∣∣∣∣)dš′τ+1

(e1)
= H(f |z, šτ ; θ̂τ )

−
∑
z′∈Z

∫
p(z′, š′τ ; θ̂τ )

1

2
ln

∣∣∣∣INg + ϕ̃ν∆wτ+1Σ̆f |z′,š′τ ;θ̂τ

∣∣∣∣dš′τ , (C.34)

where (e1) is obtained after marginalizing out šτ+1 from p(z′, š′τ+1; θ̂τ ) as the RHS

of (C.33) is not a function of šτ+1. �
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