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ABSTRACT 

Disinfecting powder food is challenging due to their low water activity. Intense-pulsed 

light (IPL) is advantageous in achieving efficient bacterial reduction. Its mechanisms of 

mediating bactericidal effect has been characterized as inducing DNA damage and 

disrupting cell structure integrity. A novel IPL platform is being constructed and studied 

to achieve high disinfecting efficacy while maintaining the physiochemical properties of 

the powder food. However, little is known about its influence on cell metabolism, which 

is essential for cell survival and growth. E.coli K-12 culture from overnight incubation 

were treated with a bactericidal dose of IPL for different durations. After centrifugation, 

the metabolites in bacterial pellets were extracted by a mixture of chloroform, methanol, 

and water. Aqueous and lipid extracts were examined by liquid chromatography-mass 

spectrometry (LC-MS)-based metabolomic analysis. The principal components analysis 

(PCA) of LC-MS data indicated that the metabolome of E. coli was dramatically affected 

by IPL treatment in a time-dependent pattern. Multiple nucleotides, antioxidants, and 

membrane components, including adenosine monophosphate, glutathione, and 

menaquinone-8, were identified as the metabolites sensitive to IPL treatment. These 

markers revealed IPL-induced membrane damage and oxidative stress. Additional 

markers suggest IPL hindered ability of repairing DNA damage. New information from 

untargeted metabolomic analysis provides useful insights on the mechanism of IPL-

elicited bactericidal activities.  

An ideal IPL treatment is expected to achieve pasteurization with minimal influences on 

physical, chemical, and nutritional properties of powdered food.  While IPL showed 

effective bactericidal effect, it is also essential to evaluate its influence on the food 
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matrix. IPL-irradiated non-fat dry milk was prepared by solvent extraction and acid 

hydrolysis, and then examined by liquid chromatography-mass spectrometry (LC-MS) 

analysis. Targeted and untargeted chemometric analysis were performed to determine the 

chemical compositions of prepared samples and the effects of IPL treatment. Targeted 

chemometric analysis indicated that IPL treatment in this study did not significantly 

affect the amino acid composition of non-fat dairy milk powder. However, the 

multivariate models constructed by untargeted chemometric analysis of extracted samples 

revealed the dose-dependent chemical changes after IPL treatment. IPL treatment directly 

degraded riboflavin, and led to formation of peptides as a result of photolysis of milk 

proteins. Untargeted chemometric analysis on the chemical effects of IPL treatment will 

provide useful information to guide the development of IPL disinfection technology.  
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1.1 Foodborne illness  

1.1.1 Overview of foodborne illness  

Foodborne illness is a persisting public health issue in the United States. From 2012 to 

2016, over 800 cases of foodborne outbreaks were recorded each year, causing 103 

deaths, more than 4000 hospitalizations, and over 71,000 illnesses [1].  Escherichia coli, 

Listeria, and Salmonella are the pathogenic bacteria responsible for most outbreaks 

through contaminating diverse food (Table 1.1), including ground beef, romaine lettuce, 

nuts, nut butter, flour, cheese, eggs, and sprouts [2]. Common complexions from 
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consuming contaminated food include abdominal cramps, diarrhea, nausea, fever, and 

vomiting. More severe consequences from food poisoning, such as Clostridium 

botulinum in canned foods, has caused respiratory failure and death [3]. Besides these 

adverse health effects, foodborne illness is also a significant economic burden for both 

public health agencies and individuals in the United States [4].  

1.1.2 Escherichia coli  

Escherichia coli is Gram-negative bacteria [5]. It is naturally distributed in the intestinal 

tract of warm-blooded organisms, including human [6]. Most strains of E. coli are non-

pathogenic [7]. E. coli is intensively studied and widely used in a variety of research 

fields, such as genetic engineering, pharmaceuticals, molecular biology, and evolution 

[5]. E. coli K-12 is a non-pathogenic strain used widely in research as a surrogate [5]. Yet 

E. coli is well known to the public as a pathogen related to foodborne illness.  

1.1.2.1 Pathogenic E. coli strains and foodborne illness 

Even though majority of E. coli strains are nonpathogenic, a few E. coli strains can cause 

food poisoning, including E. coli O157:H7 and O26 [2]. Outbreaks are usually linked to 

fresh produces, ground beef, flour, and nuts (Table 1.1). Contamination are from 

environment and animals [8, 9]. From 1998 to 2006, more than 500 outbreaks were 

caused by pathogenic E. coli, which has led to more than 2,000 hospitalization and 38 

deaths in the United States [1]. Symptoms of pathogenic E. coli infection include bloody 

diarrhea, abdominal cramp, and vomiting [3]. No specific treatment is targeting E. coli 

infection, except resting and adequate hydration aid in self recovery, according to Mayo 

Clinic [10]. However, severe form develops hemolytic uremic syndrome (HUS), most 
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commonly seen in immune compromised population and children under 5 years old. HUS 

is resulted from the shiga toxin and shiga-like toxin produced by E. coli O157:H7 and 

O26, also known as STEC [2, 3].These toxins act via binding to glycosphingolipid on the 

target cell surface, disrupting ribosomal RNA and sequential protein synthesis, and 

inducing apoptosis on renal tubular epithelial cells [11-13]. Severe HUS is characterized 

by degradation of red blood cells and renal kidney failure. Symptoms include fever, 

abdominal pain, pale skin tone, fatigue, and decreased urination. Testing of stool sample 

with microscopic visualization is a standard diagnostic procedure [14].  

1.1.2.2 Overview of E. coli cell structure and metabolism 

Both pathogenic and non-pathogenic E. coli strains share some essential cellular structure 

and metabolic features. The cellular structure of E. coli is shown in Figure 1.1 [15]. 

Prokaryotes like E. coli does not have bilayer-membrane organelles, such as 

mitochondria, and is much smaller in size than eukaryotes. E. coli is Gram-negative [5], 

with the cell wall consisting of an inner plasma membrane, a peptidoglycan (PG) cell 

wall, and an outer membrane. The plasma membrane consists by bilayer of 

predominantly phosphatidylethanolamine (PE), which accounts for 80% of total lipid 

[16]. Some proteins of important physiological functions are embedded in plasma 

membrane, including cytochromes, enzymes of electron transport chain, phospholipid 

synthesis enzymes, and active transporter proteins [17, 18]. PG cell wall consists of N-

acetylmuramic acid and N-acetylglucosamine, joined by β-1, 4-glicosidic bond and cross-

linked by oligopeptide bond. The outer membrane consists of one layer of 

lipopolysaccharide (LPS) and one layer of PE. LPS has the greatest susceptibility to 

oxidative damage, followed by phospholipid layers and then PG cell wall [15]. The 
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sandwich-style membrane structure is the target of some antibacterial agent and 

inactivation methods [19]. Disruption of the cell wall and membrane integrity alters the 

positive turgor pressure needed to maintain cellular structure competence and hence 

induce cell death [20]. E. coli cell has a flagella structure, which facilitates mobility and 

adherence to intestinal microvilli [21]. Its genetic material consists of genomic DNA, 

double-strand looped chromosomal DNA stored in nucleoid, with additional plasmid 

DNA, a circular double-strand DNA in cytoplasm separated from nucleoid. 

Chromosomal DNA contains genetic information that is essential for cellular function 

and growth. Plasmid DNA harbor genes that expresses antibiotic resistance and can 

replicate independently, which significantly aids in the survival of E. coli [22, 23]. 

Antimicrobial agents work in distinct mechanisms, but all involve disruption of bacterial 

DNA competence, stability, and replication. Nonetheless  drug resistance still develops 

due to exchange of genetic material amongst bacteria cells [24]. 

Bacterial metabolism can be categorized into two categories: primary and secondary. 

Primary metabolites are essential for the normal function and growth of bacteria, 

including intermediates and end products of anabolic and catabolic pathways. Primary 

metabolites are also the foundation of synthesizing macromolecules and energy 

production. Examples include amino acids, nucleotides, vitamins, fatty acids, citric acid, 

acetate, and ethanol [25]. Secondary metabolites are not essential but might aid in cell 

survival. Shiga toxin and shiga-like toxin produced by E. coli O157:H7and O26 (STEC) 

are secondary metabolites. The central metabolism pathway of E. coli includes 

glycolysis, pentose phosphate pathways, and tricarboxylic acid (TCA) cycle, yielding 

adenosine monophosphate (ATP) and other important metabolites [26]. Glucose is the 
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primary carbon and energy source for E. coli. Lactose became the preferred fuel in 

glucose-poor environment [27]. 

Research has established several growth-limiting parameters for E. coli growth (Table 

1.2).  It is very flexible with the environment. E. coli can grow with temperature range 

from 7°C to 46°C, pH ranging from 3.56 to 9, and in NaCl up to concentration of 8.5% 

[28].   

1.2 Disinfection technology and Intense Pulsed Light 

1.2.1 Disinfection technology for different food matrix 

Several disinfection technologies have been developed and approved to treat low-water 

activity foods.  

Thermal treatment is a traditional disinfection technology. However, thermal treatment is 

not sufficient for disinfecting food of low water activity [29]. Bacteria, such as 

Salmonella spp. and Cronobacter spp. are highly resistant to heat in a low moisture 

environment, thus requires longer treatment with higher temperature to be completely 

inactivated [29]. However, undesired deterioration of food quality were reported to be 

associated with such thermal treatment, including production of volatile compounds [30], 

flavor [30], and color [31]. 

Non-thermal treatment have been studied for disinfecting dry foods. Application of 

chemicals, such as ethylene oxide and ozone, showed effective killing [32]. However, the 

use of ethylene oxide leaves residues in food and is banned in the European Union [33]. 
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Ozone, on the other hand, does not leave residues, but alters food quality of those rich in 

unsaturated fatty acids and soluble proteins [34].  

Ionizing irradiation technologies, such as electron beam, X-ray, and gamma ray, have 

been reported to be effective and are commercially adopted to disinfect dry herbs and 

spices in the U.S. [29]. Electron beam is environmental friendly, but has lower 

penetration and the disinfection effect is largely influenced by food size, thickness, 

direction, and package [35]. Gamma ray and X-ray had better penetration depth but the 

application of high dose irradiation adversely influences the food flavor [36]. 

Additionally, political factors and inadequate consumer advocacy limits the application 

and promotion of these irradiation technologies [37].  

Use of ultraviolet (UV), a type of non-ionizing irradiation, is capable of deconstructing 

vegetative cells and spores and is commonly applied in pharmaceutical and medical 

products [38]. Due to its shallow penetration depth, in food system, continuous UV was 

studied for disinfecting juice, drinking water, and surfaces of fruits, vegetables, and fresh 

meat [38].Pulsed UV system was developed for disinfecting food powder. However, 

early alteration of food color was observed in flour and black pepper prior to reaching 

desired microbial log reduction [39].  

Based on the characteristics and effectiveness of these technologies, they are applied to 

different food matrixes (Table 1.3), as approved by U.S. Food and Drug Administration 

(FDA). Most approved technologies are used in food surfaces and liquid food. Yet 

disinfecting powdered food remains a challenge, given the related outbreaks on flour, 
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milk powder, and chia seed powder [1]. Extensive research efforts are invested in 

developing feasible disinfection platforms for the food industry.  

1.2.2 Challenges of disinfecting low-water activity powdered food 

Powdered foods are unique of the low water activity (aw) environment. This feature can 

be the result of processing, or the natural low moisture level [40, 41]. In general, low aw 

food has an aw  <0.85, including milk powder, spices, powdered infant formula, flour, 

meal and grits, while the minimum aw required for microbial growth is 0.6 [41]. Low aw 

food are considered advantageous in terms of inhibiting the growth of pathogens in 

general [41]. However, some foodborne pathogens are able to survive in the dry 

environment, especially those who are in stationary phase or form spores [41].  During 

the drying process, the microbes do not grow, yet remain viable for extended period of 

time [42]. Once activated by moisture, survived pathogens can lead to diseases. Some 

bacterial strains can cause disease with only several living cells, such as some Shigella 

spp. Contaminated low-water activity food, such as nuts and dry milk, have become 

threat to public health and economic burden [40].  

Powdered food is widely used as ingredients in food manufacturing and consumed 

directly [29]. Usually powdered food has low water activity (<0.85) [41]. Comparing to 

high-aw food, which can be effectively pasteurized with mild heat treatment, low-aw food 

is difficult to disinfect [41]. Insufficient disinfection of powdered food has led to 

outbreaks of foodborne illnesses over the years. Incidences were reported on dry milk 

powder[43], infant formula [44], powdered red and black pepper [45], and flour [46]. 

Salmonella spp. and Cronobacter spp. are two strains of bacteria associated with 
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foodborne illness incidences of dry milk products [29]. Other bacterial pathogens 

involved in outbreaks and recalls include Bacillus cereus, Clostridium botulinum, 

Clostridium perfringens, Escherichia coli, Listeria monocytogenes, and Staphylococcus 

aureus. The origin of these pathogens can be traced back to agricultural production, 

inadequate hygiene of the manufacturing environment and worker, and insufficient 

process control [29]. Industry have invested in reducing the risk of contamination from 

sources [41]. Yet, a dedicated and effective disinfection tool will be helpful for lowering 

the risk of foodborne illness and ensuring food safety [40].  

1.2.3 Intense-pulsed light: mechanisms, advantages, and limitations 

Intense-pulsed light (IPL) is an emerging non-thermal light-based disinfection technology 

[47]. The IPL emits broad spectrum light with wavelength range of 200-1100 nm, 

covering UV (200-400 nm), visible light (400-700 nm), and near-infrared (700-1100 nm) 

[48, 49]. Multiple flashes of light (1-20 per second) are delivered by the lamp containing 

energy up to 50 J/cm2 at target surface. The intensity of the delivered light can be 20,000 

times higher than sunshine [50] .FDA approved use of IPL in food processing in 1996.  

Pulsed light technologies possess several advantages comparing to traditional (thermal) 

and other irradiation based technologies. Firstly, pulse light system deconstructs both 

vegetative cells and spores [47], which is effective for low water activity foods such as 

powdered food. Due to its nature of being a non-thermal technology, pulsed light is 

effective in decontaminating heat-resistant pathogens such as Salmonella spp.[50]. 

Meanwhile, IPL leaves no toxic or chemical residues to food matrix, which largely 

alleviates the concern on food safety. In addition, the IPL is more cost-efficient and 
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environmental friendly [51]. However, IPL has a shallow penetration depth (~2 mm), and 

is hence limited to applying for disinfecting food of low viscosity and high transparency, 

and food surfaces [47, 52].  Thermal effect of pulsed light technologies also raises 

concern for application on food with color, such as black pepper and flour. As a result of 

oxidative changes and heating, undesired color and flavor changes were observed prior to 

reaching ideal disinfection effect [39]. Hence, for commercial application, a good IPL 

system should have high penetration, thermal control, and well-validated process factors 

[53]. As the non-thermal IPL platform undergoes development, continuous monitoring on 

the processed food quality will be essential to evaluate the efficacy of the platform.  

1.3 Non-fat dry milk 

1.3.1 Production and pasteurization of non-fat dry milk 

Non-fat dry milk is made from removing the moisture content of pasteurized fluid skim 

milk via spray drying process, without added vitamin A or D [54]. Fluid milk is 

pasteurized at specific temperature for designated amount of time prior to spray drying, 

according to USDA standard (Table 1.4) [54]. Current regulations do not require post 

spray dry disinfection. But the U.S. Standard Grade limits the bacterial estimate to no 

more than 75,000 CFU/gram as determined by standard plate count [55]. 

1.3.2 Nutrition profile of non-fat dry milk 

Non-fat dry milk contains lipids, proteins, carbohydrates, proteins, vitamins, and minerals 

(Table 1.5). The lipid content is very minimal – 0.8g per 100g NFDM. Protein and 

carbohydrate are the major macronutrients, making up of about 35% and 55% of NFDM 

(Table 1.5).  Bovine milk protein usually consists of 80% casein and 20% whey or serum 
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protein, which is made up by 7 major proteins:  αs1-B casein, αs1-A casein, β-A2 casein, 

κ-B, α-lactoglobulin, β-lactoglobulin, and serum albumin [56, 57]. Milk proteins are 

complete proteins, and are primary source of essential amino acids for humans in milk 

[56, 58]. Milk contains many minerals. It is the primary dietary source of calcium in 

American’s diet [58]. Phosphorus and potassium are also abundant in milk. As of 

vitamins, milk is good source of folate, vitamin A (retinoids), riboflavin, and vitamin B12 

[58]. However, without fortification, vitamin A concentration is poor in NFDM and is not 

contributing to daily value (Table 1.5).   

1.3.3 Quality parameters of non-fat dry milk 

1.3.3.1. Color of milk 

The color of milk is greatly attributed to the fat and micronutrient component. Skim milk 

contains less than 0.5% fat and skim milk powder contains no more than 1.5% fat [55, 

59]. Skim milk appears more blue comparing to whole milk due to reflection of shorter 

wavelengths of visible light by casein micelles [60].  Micronutrients, riboflavin and β-

carotene, contributes green and creamy color [61]. The white color is from proteins 

emulsified with casein micelle in milk fat globule membrane. USDA specifies U.S. grade 

non-fat dry milk to display “a uniform white to light cream natural color [55].”  

Milk color can be measured in CIE Lab color space by use of a spectrocolourimeter, with 

color parameters indicating white (L*), green (a*) and blue (b*) [62, 63]. Despite slight 

variation due to the source of milk, NFDM usually has L* value varying from 93.96 to 

95.01, while the maximum of L* value is 100, indicating very white color [62]. The a* 

value varies from -2.09 to -3.29, indicating a light green color detected in NFDM. With 



12 

b* value ranging from 12.40 to 17.91, NFDM processes a color of yellowness. Total 

color difference is illustrated as ΔE*, calculated as the square root of the sum of the 

squares of the different in each parameter, as shown in the following equation [64, 65]. It 

indicates the extent but not the direction of change [62]. Established system categorizes 

ΔE*ab values to three classes: not noticeable change ranging from 0 to 0.5; 0.5 to 1.5 

means slightly noticeable change; over 1.5 indicates noticeable shift [64].  

𝛥𝛥𝛥𝛥 ∗= �𝛥𝛥𝛥𝛥 ∗2+ 𝛥𝛥𝛥𝛥 ∗2+ 𝛥𝛥𝛥𝛥 ∗2 

 

Color is a quality parameter. Production season is an influential factor. Whole milk 

powder manufactured during summer shows lower L* and higher b* values due to the 

higher whey-protein level in raw milk [66]. Proper storage condition is crucial to 

maintain the quality, including color, of NFDM. Extended storage generates light brown 

color [67]. Extended processing during manufacturing exposes dry milk products to 

higher chance of color change. Color measurement is hence an essential parameter for 

quality monitoring of milk production. Different processing technologies influence milk 

color to various extents. Non-thermal processing methods, including pulsed electric field 

and microfiltration, showed less shift in total color space while exhibiting no significant 

difference in each parameter comparing to thermal pasteurized skim milk [63]. Pre-

drying indirect heat treatment for 180 seconds at 90-93 °C resulted in significantly 

decreased L* and higher b* value in whole milk powder, which may be attributed by the 

browning product of Maillard reaction [60].  
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Change of the milk color is directly associated with chemical changes. Photo-degradation 

of riboflavin generates reactive oxygen species, which accelerates the decomposition of 

macro- and micro-nutrients [68, 69]. Milk is a rich source of riboflavin in American’s 

diet. In fluid milk, sun light induced riboflavin photosensitization led to the degradation 

of tryptophan and tyrosine and resulted in brown color [69].  

1.3.3.2. Protein 

Milk protein has high biological value and is good source of essential amino acids [58]. 

The concentration of each major protein largely depends on the genetics, growth, and 

lactation status of the cow [56]. Exposure to light, UV or fluorescence, can lead to 

oxidative changes in milk protein structure and properties. Formation of carbonyl groups 

[47, 70-72], di-tyrosin [70, 71], and N-formylkynurenine [70, 71], and loss of tryptophan 

[71] were reported as indicators of protein oxidation. These markers are responsible for 

changes in primary, secondary, and tertiary structure of milk proteins [71]. 

Conformational changes of proteins were also reported as extensive proteolysis after 

exposure to UV, which eventually leads to reduced total bio-available protein content 

[70]. During the oxidative change process of milk proteins, riboflavin played a role as 

photosensitizer, aiding in the formation of singlet oxygen species [68] and accelerating 

the oxidative changes [71].  

1.3.3.3. Carbohydrate 

Lactose is the dominant carbohydrate present in milk, making up >50% of NFDM (Table 

1.5).  As a reducing sugar, lactose is capable of participating in the Maillard reaction: 

interacting with amino acids (mainly with lysine) at heated and non-heated condition [73, 
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74]. The joining of reducing sugar and lysine forms a Schiff base, which undergoes 

rearrangement and converts to Amadori product. After hydrolysis, furosine is formed 

[75]. Furosine (ɛ-N-2-furoylmethyl-L-lysine, FML) is usually used as an indicator of 

quality in many foods [73, 76]. Advanced Maillard reaction in milk leads to the color 

change (browning) [77], impaired availability of lysine [74] and digestibility of proteins 

[76].  

1.3.3.4. Micronutrients 

Milk significantly contributes to dietary riboflavin intake [78]. Riboflavin is resistant to 

heat processing but is sensitive to light [68]. In non-fat dry milk, photo-decomposition of 

riboflavin was reported to be a 2-phase process, with the 1st phase of fast and 2nd phase of 

slower degradation [79]. Both phases showed 1st-order reaction mechanism. Riboflavin 

can be oxidized to deuteroflavin and leucodeuteroflavin [68]. Generated riboflavin 

radicals have strong oxidative capacity and actively interact with amino acids, proteins, 

carbohydrates, and vitamins in food matrix, with and without oxygen present [68]. 

Tyrosine and tryptophan were reportedly sensitive to riboflavin radicals, degraded into 

dityrosin, indole-, flavin-, and indo-flavin-type aggregates. Histidine and methionine are 

also impacted. As of proteins, enzyme activity is reduced due to riboflavin induced 

photosensitization. Cross-link in collagen was also induced by riboflavin photosensitized 

modification [80]. Carbohydrate is more resistant to photo-oxidation, comparing to amino 

acids and lipids. Glucose can be degraded up to 30% with riboflavin at concentration of 

10-6M [81]. Multiple vitamins, including vitamin A, C, D, and E, can undergo 

degradation resulting from riboflavin-photosensitization. Vitamin A loss had the highest 

rate in non-fat milk [82]. Degradation product of vitamin A includes ethyl-(2,6,6-
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trimethylcyclohex-1-ene) carboxylate, retinal, 5,8-peroxide of  β-ionone, 5,6-peroxide of 

vitamin A, and retinoic acid [68]. Ascorbic acid is a strong antioxidant but is sensitive to 

photooxidation when oxygen and riboflavin are present [68]. Vitamin D is oxidized to 

5,6-epoxide form, as a result of riboflavin’s photo sensing and formation of singlet 

oxygen species.  

Riboflavin’s photosensitivity is directly associated with deterioration of milk flavor. 

Sulfur-containing compounds, methionine and dimethylsulfide are dominant contributor 

to the oxidized flavor in milk [68].  

1.4 Technical platforms of metabolomics and chemometrics 

1.4.1 Overview of metabolomics and chemometrics 

Metabolomic platform has been an emerging technology for the past two decades. It 

refers to the study of the full profile of metabolites of a given subject. But the early 

concept of metabolomics, or metabolite profiling, can be traced back to the 1940s, when 

paper chromatography was used to identify and distinguish patterns amongst different 

subjects. It was believed that individuals processes unique metabolite pattern that can be 

identified in biological fluids [83]. With advances in technologies, including gas 

chromatography (GC), liquid chromatography (LC), and mass spectrometry (MS) 

through 1980s, and nuclear magnetic resonance spectroscopy (NMR) later, the 

application of metabolite profiling has been expanded in the field of system biology [84]. 

MS and NMR are the two analytical platform targeting small molecules. Comparing to 

NMR, MS has higher sensitivity and accuracy, and hence used more for metabolite 

detection, quantitation, and identification. Separating technologies such as LC and GC 
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are usually combined with MS. Additionally, combined with multivariate statistical 

analysis, the metabolomics have become a widely-used platform in areas including food, 

plant science, pharmaceuticals, toxicology, environmental science, and medicine [84].  

Chemometrics, on the other hand, as a concept first brought up in 1970s [85]. It refers to 

application tools of chemistry with a combination of mathematical and statistical 

analysis, with an emphasis in the investigation of causal relationships [86]. Considering 

the nature of analytical chemistry of LC/GC-MS and NMR platform, and the use of 

multivariate data analysis, metabolomics can be considered as a chemometric approach, 

although chemometrics applies to a broader range of research. In addition to LC-MS 

platform, other analytical technologies are commonly used in chemometrics as well, 

including UV spectrometry, Fourier-transform infrared (FT-IR), raman spectroscopy, 

spectrofluorimetry, thin-layer chromatography with fluorescence detection (TLC-FD), 

and liquid chromatography with diode array detection (LC-DAD). Statistical tools 

commonly used in chemometrics include hierarchical cluster analysis (HCA), multi-

linear regression-calibration (MLRC), principal component analysis (PCA), and partial 

least square (PLS) [87]. Chemometric based approach has now been widely used in fields 

of analytical chemistry [86].  

 

1.4.2 Workflow of metabolomics and chemometrics 

The workflow of metabolomics and chemometrics can be characterized into 4 steps: 

sample preparation, data acquisition, statistical modeling, and pathway analysis (Figure 

1.1) [88].  
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Samples are prepared based on their biochemical and biological context. Appropriate 

sample preparation is essential for efficient and successful metabolomics study. The 

purpose of sample preparation is to remove unwanted particles and to extract metabolites 

and analytes from the sample matrix, and to make them applicable for the purpose of 

metabolomics analysis. In the context of cellular study, quenching cellular metabolism 

and extracting metabolites of interest is key to profiling the cell metabolome. Common 

method involves wash of phosphorus buffer solution (PBS), quenching with cold 

methanol, low-speed centrifugation, and a two-phase extraction by methanol-water-

chloroform [89]. In the context of food, sample preparation involves more pre-treatment, 

such as grounding and freeze drying to enhance the efficacy of extraction [90]. The 

extraction method is largely similar to the ones for biological samples, based on 

extraction by methanol-water-chloroform. The two-phase extraction method maximize 

the release of compounds from sample matrix, and acquires both hydrophilic and 

hydrophobic analytes [90].  

In addition to extraction, derivatization of chemicals with specific functional groups is 

commonly used prior to instrumental analysis, in order to enhance separation, selectivity 

and sensitivity. To detect organic acids, 2-hydraziniquinoline can be used as a 

derivatization agent.[91] It enhances the selectivity and detection of chemicals with 

carboxyl group [91]. Amino acid analysis is facilitated by derivatization with dansyl 

chloride [92].  

Data acquisition in metabolomics is the key to high quality output. Three major platforms 

are currently used in metabolomics and chemometrics research: NMR, GC-MS, and LC-
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MS, each with their own advantages and limitations [93].  NMR is based on the detection 

of emitted radio frequency in the strong magnetic field by nuclei between low and high 

energy spinstates [93]. It requires minimal sample preparation. In the context of cellular 

study, NMR can be used for metabolic profiling of intact cells and tissues [93, 94]. 

However, NMR has relatively low-sensitivity in comparison to LC-MS [95]. GC-MS is 

effective at separating and detecting volatile and small molecular weight compounds. But 

it is has very limited application for non-volatile and large compounds [96]. LC-MS is 

constructed based on separation of compounds in liquid chromatography, followed by 

electrospray ionization (ESI) and MS detection. It provides wider coverage and detection 

of metabolites with higher efficiency, and is able to provide structural analysis of 

unknown compounds [93]. But it requires sample preparation and derivatization, which 

can be time-consuming [95].  

Obtained data usually went through extensive data mining and statistical analysis process. 

NMR spectroscopy yields spectrum (chemical shift and signal intensity). Subsequent data 

analysis involves assigning peaks to specific metabolites [93]. GC-MS and LC-MS yields 

retention time (RT) and mass to charge ration (m/z).[93] Annotating metabolites by RT 

and m/z is the basis of MS based data processing. Deployment of appropriate statistical 

analysis is essential to understand the highly abundant metabolomics data. Unsupervised 

approach, such as principal component analysis, can be used to classify samples, along 

with clustering analysis [88]. To characterize metabolites and biomarkers, projection to 

latent structures-discriminant analysis (PLS-DA) or orthogonal PLS (OPLS) can be used 

[97].  
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Metabolite identification is one of the foundations of data mining in metabolomics. 

Database in metabolomics analysis accelerates the workflow by providing automated 

annotation of spectra data, metabolite identification, and structural analysis [98].  Some 

commonly used mass spectrometry based metabolomics databases includes: Kyoto 

Encyclopedia of Genes and Genomes (KEGG, http://www.genome.jp/kegg), Human 

Metabolome Database (http://www.hmdb.ca ), Lipid Maps (http://www.lipidmaps.org ), 

METLIN database (http://metlin.scripps.edu ), and MassBank 

(http://mona.fiehnlab.ucdavis.edu/). Development of algorithms and platforms also 

facilitates the data mining process by mapping out networks and pathways. Some 

analysis platform includes Metaboanalyst 4.0 

(http://www.metaboanalyst.ca/MetaboAnalyst/faces/home.xhtml), MetaCoreTM, and 

3Omics.  

 

1.4.3 Application of chemometric analysis in food research 

Chemometric applies to analysis of chemical based data, with data mining and statistical 

and mathematical methods. When it comes to food chemistry, traditional statistical 

methods focuses on analyzing the effect of one single variable at a time, which may be 

ignorant towards the nature complexity of food matrix. With the large amount of data 

generated by qualitative and quantitative food researches, the role of chemometric 

analysis has to investigate the interactions amongst sample matrix is becoming 

increasingly significant [99]. Combined with instrumental techniques, chemometric is 
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also part of data-mining tool of bioinformatics in foodomics, an emerging field in both 

food science and nutrition research.  

Foodomics, a concept formed in the early 21st century, refers to the studies on food and 

nutrition using advanced -omics technology for the purpose of improving human 

nutrition [100, 101]. MS and NMR based technical platforms are essential to foodomic 

research. It is a combination of several disciplines: from traditional and advanced 

analytical chemistry technologies, to bioinformatics. Foodomics is applied to a variety of 

research areas, topics including food safety, food quality, prevention of food-related 

disease, authentication of genetically-modified food, and identifying and tracing 

contaminants [102].  

Current -omics technology incorporated are genomic, transcriptomic, proteomic, and 

metabolomics. Metabolomics is the study of the full metabolome of sample species, 

focusing on the metabolites with mass smaller than 1000Da [101]. Separation 

technologies, such as LC, GC, and CE, are usually combined with MS in metabolomic 

studies, allowing for sensitive detection and measurement of low-abundance metabolites 

[90]. The metabolite changes associated with treatment can then be identified and used to 

establish patterns and causal relationships, which eventually form metabolic profiling and 

fingerprinting [88]. MS-based metabolomics approach has been successfully applied for 

studying food safety, quality, and traceability.  

1.4.4 Application of metabolomics in microbial research 

Metabolism is essential to all cellular functions [103]. Regulation and control over 

metabolism is fundamental for cell physiology and proliferation [103, 104]. Upon 
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environmental change, cells adopt a variety of mechanisms in different context to 

regulate metabolism in order to proliferate [103, 105]. The regulation occurs at genetic 

level, reflected by translation, transcriptional regulation of protein synthesis, and also 

post-translational modifications [104]. Disrupting the normal cellular metabolism  can 

lead to cell death [106]. For example, in the context of bacterial cell, antibiotics bind to 

cellular targets and significantly impairs the availability of nicotinamide adenine 

dinucleotide (NAD+), which further induce formation of reactive oxygen species (ROS), 

DNA damage, and eventually bacterial death [107].  

The metabolites are embedded in the regulatory pathways, mediating and signaling the 

metabolic regulations and changes [105]. The concentration of metabolites directly 

reflect the microbial response to metabolic flux changes. Cell metabolomics studies and 

profiles these metabolites within living cells [108]. It provides a fast and effective method 

for screening a vast number of intracellular metabolites, and bridges genomics, 

transcriptomics, and proteomics [88, 109]. It provides a broader picture of system biology 

for cellular functions [109]. Cell and microbial metabolomics has a wide range of 

application in research [88, 105, 109].  In pharmaceutical field, cell metabolomics 

examines actions and targets of drugs [110, 111]. In cancer research, by characterizing 

cell metabolome, diseased cells can be differentiated from normal cells [103, 105], which 

facilitates the discovery of cancer biomarkers and disease diagnosis [112]. In microbial 

engineering, metabolomics revealed regulatory pathway and aid in the development of 

bacterial or yeast strains for bio-fuel production [113].                       
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Table 1.1 Foodborne pathogens in the United States (Modified from Centers for Disease 
Control and Prevention List of Selected Multistate Foodborne Outbreak Investigations 
https://www.cdc.gov/foodsafety/outbreaks/multistate-outbreaks/outbreaks-list.html) [2] 

Pathogen Strain Food contamination 

Escherichia coli O 157:H7 Romaine lettuce 

  Leafy greens 

  Nut butter 

  Alfalfa sprouts 

  Rotisserie chicken salad 

  Ready-to-eat salads 

  Ground beef 

  Spinach and spring mix 

  Hazelnuts 

  Cheese 

  
Prepackaged cookie 
dough 

  Pizza 

   Beef patty 

 O 121 and O26 Wheat Flour 

  Raw clover sprouts 

    Frozen food products 

Listeria monocytogenes Frozen vegetables 

  Raw milk 

  Packaged salads 

  Soft cheese 

  Ice cream 

  Bean sprouts 

    Cantaloupe 

https://www.cdc.gov/foodsafety/outbreaks/multistate-outbreaks/outbreaks-list.html
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Salmonella Braenderup Shell eggs 

  Nut butter 

   Mango 

 Typhimurium Dried coconut 

  Chicken salad 

  Ground beef 

  Cantaloupe 

  Peanut butter 

   Tomato 

 Montevideo Raw sprouts 

  Pistachios 

   Tahini sesame paste 

 Newport Cucumber 

  
Frozen shredded 
coconut 

  Chia powder 

    Cantaloupe 
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Table 1.2 Growth-limiting factors of E. coli [28] 

  Minimum Optimu
m Maximum 

Temperature (°C) E. coli (all 
types) 7-8 35-40 44-46 

VTEC O157:H7 (Shiga-like toxin 
producing strain) 6.5 37 44-45 

pH --Pathogenic E. coli 4.4* - 9 

water activity -- Pathogenic E. 
coli 0.95 - - 

Sodium chloride -- Pathogenic E. 
coli 

Grows vigorously in 2.52% 
NaCl;    

 Grow slowly in 6.5% NaCl;    

 Does not grow in 8.5% NaCl   

*E. coli O157 is reported to survive at pH values below 4.4 and has also been shown to grow at 
pH 3.6 in apple juice, pH 3.58 in hydrochloric acid, pH 3.78 in lactic acid and pH 3.96 in citric 
acid. 
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Table 1.3 Disinfection technologies and their application on different food matrix, approved by FDA  

Disinfection technology Examples of food matrix 

Thermal Liquid milk, meat products  

Ozone fish, poultry, fruits in storage, fresh vegetables, whole grains [114] 

X-ray and gamma ray Herbs, seeds, spices, poultry, meats, shell egg, shellfish [115] 

UV Fresh juice [115] 
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Table 1.4 USDA standard of pasteurization of fluid milk 

Temperature Time 

145°F (vat pasteurization) 30 min 

161°F (high temperature short time pasteurization) 15 s 

191°F  1.0 s 

194°F  0.5 s 

201°F  0.1 s 

204°F  0.05 s 

212°F  0.01 s 
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Table 1.5 Nutritional profile of NFDM without added vitamin A (Modified from http://nutritiondata.self.com/facts/dairy-and-egg-
products/83/2, based on USDA SR-21) 

Macronutrient
s Composition 

Amount per 100g 
NFDM 

Micronutrient
s Composition 

Amount per 100g 
NFDM 

Carbohydrate Lactose 52.0 g vitamins vitamin A 7 mcg (22IU, 0%DV) 
Protein total 36.2 g   vitamin C 6,8 mg (11%DV) 
  tryptophan 510 mg   vitamin D 332 IU (83% DV) 
  threonine 1632 mg   vitamin K 0.1 mcg 
  isoleucine 2188 mg   vitamin B1 (thiamin) 0.4 mg 

  leucine 3542 mg   
vitamin B2 
(riboflavin) 1.5 mg 

  lysine 2868 mg   vitamin B3 (niacin) 1.0 mg 

  methionine 907 mg   
vitamin B6 
(pyridoxine) 0.4 mg 

  cystine 334 mg   
vitamin B12 
(cobalamin) 4.0 mcg 

  
phenylalanin
e 1746 mg   folate 50.0 mcg 

  tyrosine 1746 mg   pantothenic acid 3.6 mg 
  valine 2420 mg   choline 169 mg 
  arginine 1309 mg minerals calcium 1257 mg 
  histidine 981 mg   iron 0.3 mg 
  alanine 1247 mg   magnesium 110 mg 
  aspartic acid 2743 mg   phosphorus 968 mg 
  glutamic acid 7572 mg   potassium 1794 mg 
  glycine 765 mg   sodium 535 mg 
  proline 3503 mg   zinc 4.1 mg 
  serine 1967 mg   selenium 27.3 mcg 
fat total 0.8g     

http://nutritiondata.self.com/facts/dairy-and-egg-products/83/2
http://nutritiondata.self.com/facts/dairy-and-egg-products/83/2
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Figure 1.1 Workflow of Metabolomics and Chemometrics 
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Key words and abbreviations:  

STEC shiga and shiga-like toxin producing E. coli; HUS hemolytic uremic syndrome; 

UV-C untraviolet-C; aw water activity; IPL intense pulsed light; ACN acetonitrile; DC 

dansyl chloride; LC-MS liquid chromatography-mass spectrometry; CMGSH 2-s-

glytathionyl acetate; UMP uridine monophosphate; AMP adenosisne monophosphate; 

NAD+ nicotinamide adenine dinucleotide; PCA principal component analylsis; HCA 

hierarchical cluster analysis; MK-8 menaquinone-8; UQH2-8 ubiquinone-8; UQ-8 

ubiquinone-8; PE phosphatidylethanolamine; GSH glutathione, reduced; GSSG 

glutathione, oxidized; MTA 5'-Deoxy-5'-(methylthio)adenosine; DHBA 2,3-

dihydroxygenzoic acid; G3P glycerol 3-phosphate; GPDH glycerol-3-phosphate 

dehydrogenase; ROS reactive oxygen species; PBS phosphorus buffer solution; R5P 

ribose 5-phosphate; SEM scanning electron microscopy; TEM transmission electron 

microscopy 

 

2.1 Introduction 

Escherichia coli is a Gram-negative and facultative anaerobic bacterium that can live on 

diverse substrates in the intestinal tracts of animals and humans [8, 9]. E. coli is widely 

used as a model organism in microbiology research. Most of E. coli strains are non-

pathogenic, but some shiga-toxin producing E. coli (STEC) strains, such as O157:H7 and 

O104:H4, are the causes of foodborne illnesses in the United States and Europe through 

contamination in vegetable, fruit, beverages, and undercooked meat [2]. General 

symptoms of STEC infection includes bloody diarrhea, vomiting, and abdominal pain. In 



31 

severe cases of infection, hemolytic uremic syndrome can occur, potentially leading to 

renal kidney failure and death [2, 3]. Therefore, effective disinfection of pathogenic E. 

coli is highly desirable in human food and animal feed production. 

Thermal processing, which rises internal temperature of food to 70°C, is the most 

common technology to disinfect E. coli in food manufacturing [116]. However, thermal 

processing is known to alter physical and chemical properties of food. Other sterilization 

technologies, such as pulsed magnetic field [117], plasma under atmospheric pressure 

[118], high hydrostatic pressure [119], high pressure carbon dioxide [120], and 

ultraviolet-C (UV-C) irradiation [121], have been developed. Howbeit, these technologies 

have very limited application when applied to food matrix, especially dry foods of low 

water activity (aw).  

Intense pulsed light (IPL) is a novel non-thermal technology developed for inactivation of 

microbes in food of low water activity (aw), such as powdered food. IPL system 

inactivates microbes by flashing (1-20 flashes per second) broad spectrum light (200-

1100 nm) and delivering energy up to 50 J/m2 to target surface [50]. 

The mechanism of IPL elicited bactericidal effect has not been fully explained. UV 

irradiation, making up of 25% of IPL, is an important component in IPL-induced 

bactericidal effect via photochemical changes [122]. Irreversible mutagenesis and DNA 

lesion are the dominant mechanism mediated by UV-induced cell death [123]. Studies 

have reported that there are differences between IPL and UV mediated cell damage. In 

addition to inducing DNA lesions, IPL disrupts cell structural and membrane integrity, 

leading to the leakage of intracellular content and eventually cell death. Moreover, IPL is 
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capable of denaturing protein, inactivating intracellular enzyme, and producing abnormal 

ion flow [124]. But the mechanism of the antimicrobial effect mediated by IPL needs 

further investigation. 

Current understanding of pulsed light and UV elicited bactericidal effect is mainly based 

on targeted analysis, such as gel electrophoresis for analyzing DNA structural 

change[124, 125], scanning electron microscopy for cell histology[122], confocal laser 

scanning microscopy and flow cytometry for evaluating membrane damage [123, 125]. 

These analyses however reveal little information on cellular metabolic change, while 

maintaining normal metabolic activity is fundamental for cell proliferation [103, 104]. 

Metabolites, intermediates and end products of metabolic activities, directly reflects 

microbial response to environmental stress factors [108]. The metabolic activity changes 

induced by IPL remain unclear. Therefore, studying and analyzing the metabolites under 

IPL treatment can enhance the understanding of the mechanism of IPL-induced cellular 

metabolic changes.  

Liquid chromatography-mass spectrometry (LC-MS) based metabolomics is a technical 

platform used widely in cellular and microbial research, such as cancer [112] and 

microbial engineering[113]. It is a high-throughput analytical platform, successfully 

profiles and fingerprints the changes in metabolome. It can be an efficient tool to further 

study the metabolic events occurred under IPL treatment in microorganisms.  

In this study, the metabolic changes induced by IPL in E. coli, a representative foodborne 

pathogen, was studied by the LC-MS based metabolomics. The IPL-responsive 

metabolites were identified and characterized.  
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2.2 Materials and methods 

2.2.1 Culture of E. coli 

E. coli strain K-12 W3110 (ATCC 27325) was revived from frozen culture (-80°C) and 

maintained on TSA agar medium. Fresh inoculum was prepared by lifting a single 

bacterial colony from TSA agar medium and used to inoculate Luria-Bertani broth (EMD 

Millipore, Billerica, MA) and incubated at 37 °C for 12 h on a rotary shaker set to 200 

rpm. Bacterial cells were harvested at an optical density (OD600) of 1, transferred to 50 

mL centrifuge tubes, and then centrifuged at 8000 rpm (Sorvall Legend XT/XF 

Centrifuge, ThermoFisher, Waltham, MA) for 10 min to pellet cellular suspension. After 

decanting the supernatant, the pellet was washed with phosphate buffered saline (PBS) 

(Millipore Sigma, Burlington, MA), and then re-suspended to the volume of bacterial 

culture.  

2.2.2 IPL treatment of E. coli 

The E. coli K-12 strain was chosen as the model of food-born pathogen to study the IPL-

elicited bactericidal effects. In a separate study, the IPL instrument was designed and 

built to examine the efficiency of disinfection on bacteria inoculated food powder.  

A 30 mL E. coli suspension in PBS was loaded in a petri dish (15 cm diameter) and then 

treated with IPL for 0 s (control), 5 s, 10 s, 15 s, and 20 s. Each second, 3 pulses of broad 

spectrum light (wavelength 190-1100 nm) with pulse width of 520 μs were elicited by a 

lab scale Z-1000 steripulse- XL system (Xenon Corporation, Woburn, MA, US), which 

consists of a xenon flash lamp and a RV-800 power control module. Each pulse delivers 
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1.27 J/cm at a distance from the lamp of 8 cm. Treated E. coli culture was chilled on ice 

for further analysis.  

2.2.3 Chemicals 

LC-MS-grade water and acetonitrile (ACN) were purchased from Fisher Scientific 

(Houston, TX). Dansyl chloride (DC), n-butanol, acetone, and amino acid standards were 

purchased from Sigma-Aldrich (St. Louis, MO).  

2.2.4 Sample preparation for LC-MS analysis 

IPL-treated and control E. coli culture was transferred to centrifuge tube and centrifuged 

at 5,000 × g 4 oC for 10 min and washed with PBS twice. A 0.5 mL of methanol was 

added into the tube to re-suspend the pellet, then vortexed and sonicated for 30 s prior to 

transferring to 1.6 mL Eppendorf tube. Then 0.5 mL chloroform and 0.4 mL H2O were 

added into the mixture and centrifuged at 14,000 × g 4 oC for 10 min. Fractions were 

separated. Polar fraction was stored at -80 oC, non-polar fraction was dried under 

nitrogen and reconstituted in 0.5 mL n-butanol.  

2.2.5 Chemical derivatization 

To detect amino acids, the polar fraction of E. coli extraction was derivatized with dansyl 

chloride (DC) prior to LC-MS analysis. Briefly, 5 μL sample or standard was mixed with 

5 μL of 50 μM d5-tryptophan (internal standard), 50 μL of 10 mM sodium carbonate, and 

100 μL of DC (3 mg/mL in acetone). The mixture was incubated at 60°C for 15 min and 

centrifuged at 14,000 × g for 10 min. Then supernatant was transferred to HPLC vial for 

LC-MS analysis.  
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2.2.6 Synthesis of standard 

The standard of 2-S-glutathionyl acetate was synthesized based on previously established 

method [126]. Briefly, 100 μL of 100 μM glutathione was mixed with 100 μL of 10 mM 

iodoacetic acid in 10 mM ammonium bicarbonate buffer (pH=10, adjusted with 

ammonium hydroxide). The mixture was incubated at room temperature for 1h and then 

proceeded to LC-MS/MS analysis.  

2.2.7 LC-MS analysis 

A 5 μL aliquote of supernatant was injected into an Acquity ultra-performance liquid 

chromatography system (UPLC, Waters, Milford, MA). The polar fractions and 

derivatives were separated by a BEH C18 column or a BEH Amide column with a 

gradient of mobile phase ranging from water to 95% ACN containing 0.1% formic acid 

in a 10-minute run. The non-polar fractions were separated by a BEH C8 column with a 

gradient of mobile phase ranging from 55% A (60% H2O, 40% ACN, 0.1% formic acid, 

10mM NH4OAc) to 100% B (methanol, 0.1% formic acid, 10mM NH4OAc). The LC 

elute was directly introduced in a Waters QTOF mass spectrometer for accurate mass 

measurement and ion counting. For electrospray ionization, the capillary voltage was set 

at 3 kV and cone voltage was set at 40 V for positive mode detection. Nitrogen was used 

as both cone gas (50 liters/h) and desolvation gas (600 liters/h). For accurate mass 

measurement, the mass spectrometer was calibrated with sodium formate (range m/z 50-

1,200) and monitored by intermittent injection of the lock mass leucine encephalin 

([M+H]+= m/z 556.2771) or reserpine([M+H]+= m/z 609.2812) . Chromatograms were 

acquired and processed by MassLynxTM (Waters). Structural of markers of interest was 
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analyzed by tandem MS (MS/MS) fragmentation with a collision energy ramp of 15-50 

eV. 

2.2.8 Multivariate data analysis 

Chromatographic and spectral data were analyzed using MarkerLynx software (Waters). 

A multivariate data matrix containing information on sample identity, ion identity 

[retention time (RT) and m/z], and ion abundance was generated through centroiding, 

deisotoping, filtering, peak recognition, and integration. The intensity of each ion was 

calculated by normalizing the single ion counts (SIC) versus the total ion counts (TIC) in 

the whole chromatogram. The processed data matrix was further exported into SIMCA-

P+TM software (Umetrics, Kinnelon, NJ), transformed by Pareto scaling and then 

analyzed by principal components analysis (PCA). Major latent variables in the data 

matrix were described in a scores scatter plot of multivariate model. The potential 

chemical changes after IPL treatment was identified by analyzing ions contributing to the 

principal components and to the separation of sample groups in the loadings scatter plot. 

The chemicals’ identity was identified by accurate mass measurement, elemental 

composition analysis, database search (Metlin, http://metlin.scripps.edu/; ECMDB, 

http://ecmdb.ca/), fragmentation, and comparison with authentic standards if possible.  

2.2.9 Marker quantification 

To quantify amino acids, the ratio between the peak area of each amino acid and the peak 

area of internal standard was calculated and fitted with a standard curve using 

QuanLynxTM software (Waters).  

http://metlin.scripps.edu/
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2.2.10 Statistical analysis 

Statistical analysis was performed by one-way ANOVA and Tukey – Kramer comparison 

test using the GraphPad Prism 6 (GraphPad Software, La Jolla, CA, US). P<0.05 is 

considered as statistically significant.  

2.2.11 Transmission electron microscopy 

IPL-irradiated E. coli was harvested by centrifuging at 5,000 × g 4 oC for 10 min and 

washed with PBS twice. Cell pellet was processed by University of Minnesota Imaging 

Center (Saint Paul, Minnesota, United States) for transmission electron microscopy.  

 

2.3 Results 

2.3.1 IPL elicited log reduction of E. coli  

Plate count of E. coli revealed significant log reduction after IPL treatment (Figure 2.1). 

Five log reduction was achieved after 10s, with further bactericidal effect alongside 

longer treatment time. The linear regression showed good correlation between the log 

reduction and IPL application, with the regression coefficient (r2) of 0.81.  

2.3.2 Modeling and identification of IPL induced changes in E. coli metabolome 

E. coli K-12 culture was treated with IPL, from 0 to 20 s. Treated cells were extracted 

and separated to polar and organic phase, which were further analyzed by LC-MS. The 

features of LC-MS data were extracted and pooled together for PCA analysis. The 

distribution pattern of the PCA model of the E. coli metabolome showed that IPL 

treatment elicited progressive changes in the E. coli metabolome, mainly along the 
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principal component 1 of the model (Figure 2.2 A). All of the IPL-treated samples were 

distinctively different than the ones not treated by IPL (control samples). Moreover, the 

separation of IPL-treated samples illustrates a treatment-time dependent pattern. The 

metabolites contributing to the separation of control (0 s) and IPL treated samples were 

identified in a loadings plot (Figure 2.2 B and Table 2.1).  

To examine the associations among the metabolites and IPL treatment, a hierarchical 

cluster analysis (HCA) based heatmap was constructed (Figure 2.3). Metabolite profile of 

IPL treated and control samples were dramatically different, indicating the significant 

effects of IPL on E. coli metabolome. Based on their metabolic function, and their origins 

in E. coli cellular structure, these metabolites were further characterized and categorized 

as the indicators of membrane component, amino acid metabolism, antioxidant 

metabolism, polyamine metabolism, and nucleotide metabolism.  

2.3.2.1 Effects of IPL on E. coli membrane components 

The loadings plot of the PCA model revealed three membrane lipid component were 

significantly reduced by IPL treatment: menaquinone-8, ubiquinol-8, and ubiquinone-8 

(Figure 2.2 B). Menaquinone-8 (MK-8) was rapidly diminished upon 5 s of IPL treatment 

(Figure 2.4 A). Ubiquinol-8 (UQH2-8) and ubiquinone-8 (UQ-8) were decreased 

dramatically after 5 s without further dose-dependent decrease (Figure 2.4 B and C).  

These trends were also observed in the LC-MS chromatogram. The LC-MS 

chromatogram of the organic phase showed UQH2-8, UQ-8, and MK-8 eluting at 4.57, 

5.11, and 5.83 min were diminished by IPL treatment after 20 s (Figure 2.4 D). The three 

major peaks eluted between 3 and 4 min were identified as membrane phospholipids: 
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PE(14:0/16:0) (RT=3.24), PE(16:0/19:1/9z) (RT=3.80), and PE(16:0/17:0CYCW7C) 

(RT=3.48). The intensity of the peaks of these three components remained unchanged 

after IPL treatment. However, since the overall features decreased, the relative abundance 

of these three lipids were reflected in the heatmap (Figure 2.3).  

2.3.2.2 Effects of IPL on E. coli amino acid metabolism 

The intracellular amino acids of E. coli culture were extracted in the polar phase and were 

detected by different LC-MS methods. Without derivatization, histidine was revealed as a 

major intracellular amino acid decreased by IPL treatment, as revealed by the 

chromatogram of the polar phase detected in negative ionization mode (Figure 2.5 G). 

With DC derivatization, the concentration of amino acids were more selectively 

quantified. IPL treatment decreased valine, glutamic acid, histidine, and pyroglutamic 

acid in E. coli (Figure 2.6 A-D). Glutamic acid was significantly diminished after 10 s of 

IPL treatment (Figure 2.6 B).  

2.3.2.3 Effects of IPL on E. coli antioxidant metabolism 

Glutathione, which is an antioxidant in functioning E. coli cells, was decreased 

progressively by IPL treatment (Figure 2.5 A). 2-S-glutathionyl acetate, also known as S-

(carboxymethyl)glutathione (CMGSH), which is a derivative of glutathione (GSH), was 

absent in untreated cells and was increased progressively by IPL treatment (Figure 2.5 

B). The changes of GSH and CMGSH were also reflected in the chromatogram in 

negative ionization mode. Eluting at 3.49 and 3.76 min respectively, GSH’s 

concentration gradually declined while that of CMGSH was induced by IPL (Figure 2.5 

G).  
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2.3.2.4 Effects of IPL on E. coli polyamine metabolism 

Three n-acetylated polyamines were identified as IPL-responsive markers. N-

acetylspermidine was increased by 5 s of IPL treatment and then decreased (Figure 2.7 

A). N-acetylputrescine and N-acetylcadaverine decreased continuously with IPL 

treatment (Figure 2.6 E and F).  

2.3.2.5 Effects of IPL on E. coli nucleotide metabolism 

IPL increased two nucleotides level in E. coli: uridine monophosphate (UMP) and 

adenosine monophosphate (AMP) (Figure 2.5 B and C). The level of nicotinamide 

adenine dinucleotide (NAD+) indicated a declining trend with progression of IPL 

treatment as shown in the LC-MS chromatogram (Figure 2.5 G). However, statistical 

analysis did not show significance (data not shown). Phosphoric acid, which is a common 

structural component in nucleotides, increased after IPL treatment (Figure 2.7 C). 

Additionally, 5'-Deoxy-5'-(methylthio)adenosine (MTA), a naturally occurring 

nucleoside, decreased with progression of IPL treatment (Figure 2.7 B).  

2.3.2.6 Effects of IPL on other metabolites 

IPL treatment increased 2, 3-dihydroxybenzoic acid (DHBA), an enterobactin breakdown 

product (Figure 2.7 D). Glycerol 3-phosphate (G3P), the backbone of glycerol 

phospholipids  and ribose 5-phosphate (R5P), the intermediate and product of pentose 

phosphate pathway, were increased at 5s and then decreased with proceeded IPL 

treatment (Figure 2.5 E and F).  

 



41 

2.4 Discussion 

Intense-pulsed light is a novel technology developed for disinfecting food of low water 

activity (aw). Constituting of an important part of elicited light in the IPL system, UV 

irradiation is known to achieve bactericidal effect via DNA damage [123] and destruction 

of membrane integrity [124]. IPL also induces chromosomal DNA damage as a 

photothermal and photochemical effect. Additionally, IPL disrupts cellular integrity and 

structure [124]. However, the previous analysis was based on targeted analysis on DNA 

and structure integrity. As a hallmark of cellular function and activity, the effect of IPL 

on bacterial cellular metabolism is not fully studied. In this study, LC-MS based 

metabolomics analyzed the metabolome of E. coli affected by IPL, which may extend the 

understanding of the mechanism which IPL inactivates microorganisms. 

2.4.1 IPL damages E. coli respiratory chain activity and disrupts membrane integrity 

Menaquinone-8 (MK-8) and Ubiquinone-8 (UQ-8) are coenzymes specific to E. coli and 

located on the cytoplasmic membrane. They both consist of an aromatic ring and a 

polyprenyl hydrophobic tail [127]. They are best known as dominant components of 

membrane bound electron-transport chain. Besides, MK-8 and UQ-8 also play essential 

roles in anaerobic and aerobic respiratory growth, gene regulation, and oxidative stress 

management. MQ-8 also actively transport amino acids [128, 129]. Ubiquinol-8 (UQH2-

8) is reduced ubiquinone-8, functioning as scavenger of reactive oxygen species and 

hence has antioxidant property. The ratio of UQH2/UQ indicates in vivo oxidative stress 

in animal cells [130]. However, the ratio of UQH2/UQ did not experience significant 

change after multiple doses of IPL treatment (data not shown). Thus, the observed 
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decrease of UQ-8 and UQH2-8 can be characterized as a direct effect elicited by IPL 

independent of potentially generated photo-oxidative stress. The level of UQ-8 and 

UQH2-8 were reportedly reduced after continuous broad spectrum UVA irradiation in 

marine bacteria, with UQ-8 degraded earlier than UQH2-8 [131]. However, upon IPL 

irradiation, both were degraded without significant further reduction by 5 s. (Figure 2.4 C 

and B), suggesting photosensitivity of UQ-8 and UQH2-8. This is consistent with 

previously reported photosensitivity of quinones to near-UV light (300-380 nm) [132]. 

MK-8, also known as vitamin K2, shows exceedingly high photosensitivity to not only 

near-UV light (300-380 nm) but also visible light [129]. IPL contains near-UV and 

visible light, and hence led to acute photo degradation of MK-8 upon 5 s of IPL 

treatment. After 10s, MK-8 was depleted (Figure 2.4 A). Deficiency of functioning MK-8 

hindered membrane transport of glutamic acid, as observed in Bacillus licheniformis 

[133], and delayed growth in E. coli [129]. Additionally, E. coli mutant depleted of MK-8 

and UQ-8 could not grow in neither anaerobic nor aerobic conditions [134]. The IPL-

elicited deleterious effect on MK-8 and UQ-8 is hence essential for inactivation of E. coli 

and preventing further growth of the remaining viable cells.  

Glutamic acid, along with potassium, are the main cytoplasmic osmolytes for enteric 

bacteria, E. coli as an example [135]. Accumulation of potassium and glutamate is a 

protective strategy for coping with hyper-osmotic shock. Meanwhile, glutamic acid in the 

form of potassium salts provides stabilizing effect of DNA-protein interaction [136]. The 

concentration of glutamic acid in E. coli culture after IPL treatment did not experience 

any increase. Instead, upon 5 s, glutamic acid concentration was significantly lowered 

and was nearly depleted by 10 s (Figure 2.6 B). Such a dramatic change hence suggests 
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leakage of osmolytes as a result of IPL induced membrane damage, rather than a 

response to osmotic shock. Pyroglutamic acid is a common intracellular metabolite and is 

also a breakdown product of glutathione cycle [137]. E. coli incubated with hypochlorite 

experienced 2 fold increase of pyroglutamic acid as a result of oxidative stress [138]. 

However, the loss of pyroglutamic acid followed a treatment time dependent pattern, and 

is hence the result of cellular content leakage from permeable membrane.  Additionally, 

the progressive loss of other intracellular amino acids (valine, histidine) (Figure 2.6 A 

and C), and N-acetylputrescine and N-acetylcadaverine (Figure 2.6 E and F) also indicate 

gradual alteration of membrane permeability after IPL treatment.  

Intracellular content, such as amino acids and acetylated polyamines, carryout diverse 

and important metabolic functions bacteria such as E. coli. Loss of such content 

significantly hinders cell’s normal physiological function and further growth. Leakage of 

intracellular content is a major contributor to IPL elicited inactivation of pathogens [47, 

124]. 

Pulsed light is known to pose photothermal and photophysical effect to disrupt bacteria 

cell membrane integrity. Such effects result in cytoplasmic membrane shrinkage and cell 

wall destruction, which ultimately lead to cell death [47, 124]. Scanning electron 

microscopy (SEM) and transmission electron microscopy (TEM) examination of pulsed 

light treated cells clearly showed erupted cell walls, flattened and bursted cells [122-124]. 

The IPL treated E. coli cells will be examined by TEM, showing clear membrane and 

cellular structure. Ruptured cells are expected to be observed.  
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The photothermal effect is also suggested by the change of N-acetylspermidine. 

Acetylation of spermidine in E. coli was found as responsive to heat, cold shock, ethanol, 

and high pH [139]. Comparing to untreated controls, 5 s of IPL treatment induced 

increase of acetylated spermidine (Figure 2.7 A), indicating a potential heat shock due to 

the photothermal effect of IPL. But the proceeding loss of N-acetyspermidine might be 

the result of disrupted membrane permeability.  

Glycerol 3-phosphate (G3P) is the backbone for synthesizing phospholipids in E. coli 

[140]. It can also be converted to dihydroxyacetone phosphate (DAP) by glycerol-3-

phosphate dehydrogenase (GPDH) and then participate in gluconeogenesis pathways. 

GPDH is a cytoplasmic membrane bound respiratory chain enzyme, and is the key of 

glycerophosphate shuttle [141]. The acute rise of G3P upon 5 s of IPL might be the result 

of lowered activity of GPDH (Figure 2.5 E). Other respiratory chain component, such as 

MK-8, UQ-8, and UQH2-8, were all significantly reduced upon IPL treatment. With 

increased IPL dose, G3P level progressively lowers, which could be the result of severe 

membrane damage and leakage of intracellular component (Figure 2.5 E). However, the 

stability of GPDH under photo irradiation warrants further study.  

In human skin cells, the mitochondrial respiratory chain is considered to be the 

contributor of electron for forming reactive oxygen species (ROS) under UV irradiation 

[142]. Similar effect has been observed in E. coli under solar UV [143]. The respiratory 

chain enzymes, including NADH oxidase, succinate oxidase and lactate oxidase, lost 

their activity of energy metabolism upon small dose of UVA irradiation. The damage to 

these membrane bound enzymes further causes the cell to lose its membrane potential 



45 

and leads to membrane leakage [143]. In this study, the activity of these respiratory chain 

enzymes were not measured. But the dramatic loss of MK-8, UQ-8, and UQH2-8, and the 

change of G3P level, all suggest that IPL hinders the normal metabolic activity of 

respiratory chain. While mainlining the metabolic activity of the respiratory chain is 

essential for cell viability and growth, therefore the IPL induced damage of respiratory 

chain and the following membrane damage is a key mechanism which ultimately 

mediates cell death.  

2.4.2 IPL induces oxidative stress and changes in redox balance system 

Having different cellular and metabolic functions, the level and changes of several 

metabolites indicates IPL had induced oxidative stress on E. coli cells.  

The level of 2, 3-dihydroxybenzoic acid (DHBA) increased followed an IPL-dose 

dependent manner (Figure 2.7 D). DHBA is a natural occurring phenolic acid in E. coli, 

functioning as iron chelator and is a moiety of iron’s siderophore, enterobactin [144]. 

Enterobactin has protective effect on E. coli upon oxidative stress, and is crucial for 

colony development [145]. DHBA also scavenges peroxyl radicals [144, 146].  Upon 

oxidative stress of hydrogen peroxide in growth media, the production of DHBA 

significantly increased in E. coli [144]. Upon 5 s of IPL treatment, DHBA’s level 

increased significantly and continued to increase with proceeding IPL doses, indicating 

the continuous breakdown of enterobactin. This is also a sign of oxidative stress directly 

induced by IPL.  

Glutathione (GSH), a well-established antioxidant in glutathione-ascorbate cycle of 

functioning cells, experienced gradual loss upon IPL treatment. To maintain redox 
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balance, GSH is oxidized to oxidized glutathione (GSSG). However, in IPL treated cells, 

the level of GSSG did not show significant variance across treatment groups (data not 

shown). Therefore, the gradual reduction of GSH level was not associated with IPL 

induced oxidative stress. However, 2-s-glutathionyl acetate (CMGSH), a glutathione 

derivative (by blockage of thio group) was formed after IPL treatment. CMGSH is best 

known as an intermediate during the metabolism process of xenobiotics like 1,1-

dichloreothylene by cytochrome P450 [147]. The association between light irradiation 

and the formation of CMGSH has not been reported before. In most cases, CMGSH is 

formed by incubating GSH with iodoacetate or chloroacetate, as a strategy to detect and 

quantify GSH [148]. But the E. coli was suspended in phosphorus buffer solution (PBS) 

where either iodoacetate or chloroacetate was absent. Yet the formation of CMGSH is a 

dominant feature in E. coli metabolome after IPL treatment, as observed in the LC-MS 

chromatogram (Figure 2.5 G). Hence, the loss of GSH and formation of CMGSH appears 

to be mediated by IPL irradiation. With the thiol group blocked, GSH cannot be 

transformed to GSSG and hence loses its antioxidant property, which may hinder further 

cell viability. It hence can be used as a marker to determine cell culture viability. 

However, the mechanism of pulsed light irradiation induced formation of CMGSH 

warrants further investigation.  

Ribose 5-phosphate (R5P) is a product formed from pentose phosphate pathway, used for 

synthesis of nucleotides and nucleic acids. The production of R5P also couples the 

synthesis of NADPH, a reducing equivalent participating in reductive biosynthesis 

pathways [149]. In human skin cells, activation of pentose phosphate pathway was 

characterized as a first response to UV oxidative stress, marked by increased production 
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of R5P [150]. With the boost of R5P at the first 5 s of IPL, it can be speculated that E. 

coli responded to IPL induced oxidative stress in the first 5 s in a similar pattern observed 

in human skin cells. But the following dramatic decline suggests a potential leakage as a 

result of permeable membrane (Figure 2.5 F).  

2.4.3 Effect of IPL on DNA damage and repair 

Adenosine monophosphate (AMP) and phosphoric acid are structural moieties of 

adenosine triphosphate (ATP). The IPL-dependent increase of AMP and phosphoric acid 

level suggests a gradual breakdown of ATP (Figure 2.5 D, Figure 2.7 C)). Meanwhile, 

previous study has reported impaired ATP synthesis in E. coli after UVA irradiation 

[143]. ATP is one of the fundamental intracellular energy carriers, participating in many 

metabolic process, such as protein synthesis. ATP is also needed for DNA replication, 

repair, and RNA synthesis [151-153]. Cell under stress needs ATP as the readily 

available energy for defending and surviving stress [143]. Previous study revealed that 

IPL is capable of inducing DNA damage in pattern similar to UV irradiation [123]. IPL 

induced hydrolysis of ATP potentially will further makes it more difficult for remaining 

viable E. coli cells to repair DNA damages in the dark cycle.  

Uridine monophosphate (UMP) is the building block of RNA. The accumulation of UMP 

in IPL-treated cells (Figure 2.5 C) potentially suggests the blockage of RNA synthesis 

pathways. RNA synthesis is essential for protein synthesis and plays a central role in 

cellular function. The blockage of such pathway ultimately hinders E. coli’s metabolic 

activity and leads to cell death.   
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2.4.4 Summary of IPL treatment time dependent modification on E. coli metabolome 

and cellular physiology 

The multi target inactivation mediated by IPL treatment on E. coli follows a treatment-

time-dependent pattern. 

In the first 5 s, large amount of cells still remain viable. The increase of N-

acetylspermidine and R5P suggests the E. coli initiated defensing system in response to 

IPL-induced oxidative stress. However, with further degradation of membrane bound 

respiratory chain components , evidenced by the change of MK-8, UQ-8, UQH2-8, and 

other intracellular metabolites, the resistance to oxidative stress was diminished. The 

alternation of membrane integrity and permeability ultimately lead to cell death in E. coli.  

 

2.4.5 Implication on development of IPL instrument 

To investigate the bactericidal effect elicited by IPL, E. coli was cultured, treated by IPL, 

and then the metabolome examined. LC-MS based metabolomics analysis revealed that 

IPL induced E. coli cell death by damaging membranes, disrupting cellular structure 

integrity, and posing oxidative stress. Studying the mechanism of IPL-elicited effect on 

E. coli provides innovations for the future development of IPL platform.  Several photo-

sensitive components in E. coli was identified to be contributing to cell death, suggesting 

potential enhancement of corresponding light source for greater bactericidal effect in 

future IPL models. In addition, E. coli can be seen as a Gram-negative bacteria model. 

Foodborne illnesses can be caused by other microorganisms, including Gram-positive 

and spore forming bacteria. Comparing to Gram-negative bacteria like E. coli, Gram-
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positive bacteria do not have the outer membrane [5]. Spores, on the other hand, do not 

have cellular structure – mostly consisting of a protein-rich inner and outer coats, cortex, 

and core of DNA [154].  Bacillus cereus is an example of Gram-positive and spore 

forming bacteria that causes foodborne illness [29]. It is highly resistant to heat, cold, 

dryness, and radiation [155]. In a separate research project, IPL is developed to inactivate 

spores in low aw powder food. Potential studies on spores and Gram-positive species can 

be performed to evaluate and to compare the IPL-elicited effects. The common features 

elicited by IPL on these species could probably be revealed by LC-MS based 

metabolomics, which could be emphasized in future IPL models to improve the 

pasteurization capability.  
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Table 2.1 IPL-responsive metabolites in E. coli metabolome revealed by the loadings plot of the PCA model 

Detection 
phase 

Metabolites decreased 
by IPL 

Metabolites increased by 
5s IPL 

Metabolites increased by 
20s IPL 

Organic ubiquinol-8, 
menaquinone-8, 
ubiquinone-8,  

N/A N/A 

Polar pyroglutamic acida, 
valinea, glutamic acida, 
histidinea, 5’-deoxy-5’-
(methylthio)adenosinea , 
glutathionea 

glycerol 3-phosphatea, 
ribose 5-phosphate, N-
acetylspermidine 

uridine monophosphate 
(UMP) a, adenosine 
monophosphate(AMP) a, 
2-s-glytathionyl acetate 
(CMGSH) a, 2,3-
dihydroxybenzoic acid 
(DHBA), phosphoric 
acida 

Polar, DC 
derivatized 

pyroglutamic acid, N-
acetylputrescinea, N-
acetylcadaverine, 
glutamic acida 

N/A N/A 

aThe structural identities of these metabolites were determined by comparing with authentic standards. Other metabolites were 
elucidated by MSMS fragmentation.  
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Figure 2.1 Plate count of E. coli after IPL treatment. A linear regression model was 
created, with the f2 as 0.81. 
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Figure 2.2 Principal component analysis of E. coli metabolome. A: Scores plot of PCA 
model. Untreated and IPL-treated samples were separated mainly on the direction on the 
first component. B: Loadings plot of PCA model. Markers high in untreated control and 
IPL treated samples were identified.  
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Figure 2.3 Heatmap of IPL-responsive markers.  
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Figure 2.4 IPL-responsive membrane components of E. coli revealed by loadings plot of 
PCA model. (A) Menaquinone-8 relative abundance. (B) Ubiquinol-8 relative abundance. 
(C) Ubiquinone-8 relative abundance. (D) Chromatogram of the organic phase of E. coli 
metabolome. Ubiquinol-8 (RT= 4.57), ubiquinone-8 (RT=5.11), and menaquinone-8 
(RT=5.83) were the three compounds diminished by 20s of IPL treatment. 
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Figure 2.5 IPL-responsive markers detected in polar phase extraction of E. coli in 
negative ionization mode by LC-MS. (A) Relative abundance of glutathione. (B) Relative 
abundance of 2-s-glutathionyl acetate. (C) Relative abundance of uridine monophosphate. 
(D) Relative abundance of adenine monophosphate. (E) Relative abundance of glycerol 
3-phosphate. (F) Relative abundance of ribose 5-phosphate. (G) Overlay of LC-MS 
chromatograms.  
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Figure 2.6 IPL-responsive metabolites detected with dansyl chloride (DC) derivatization. 
Amino acids were quantified with authentic amino acid standards and the concentration 
was shown as μM. (A) Concentration of valine. (B) Concentration of glutamic acid. (C) 
Concentration of histidine. (D) Relative abundance of pyroglutamic acid. (E) Relative 
abundance of N-acetylputrescine. (F) Relative abundance of N-acetylcadaverine.  
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Figure 2.7 IPL responsive markers in polar phase extraction of E. coli, detected in 
positive ionization mode without derivatization. Relative abundance of (A) N-
acetylspermidine, (B) 5’-deoxy-5’-(methylthio)adenosine, (C) phosphoric acid, (D) 2, 3-
dihydroxybenzoic acid 
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3.1 Introduction 

Non-fat dry milk is a low water activity powdered food, used widely in production of 

processed foods, such as in bread, canned soup, animal food, and infant formula [156]. It 

is manufactured from spray drying of pasteurized skim milk [54]. The characteristic of 

low water activity food makes it challenging to ensure the complete safety of NFDM. 

Although USDA posts regulation with total bacteria count in spray dried NFDM [55], 

there is not yet a dedicated procedure for disinfecting NFDM. Cronobacter spp. 

(formerly Enterobacter sakazakii) is a Gram-negative bacteria associated with foodborne 

illness of dry foods, including dry milk and infant formula. It causes meningitis, 

necrotizing enterocolitis and sepsis in infants [156].    

Intense pulsed light has shown to be effective at disinfecting food surfaces and liquid 

food [47, 52].  It is potential to be applied to powdered food disinfection. In a separate 

study, the efficacy and efficiency of bactericidal effect of IPL platform is evaluated. 

However, previous studies have reported deterioration of food quality prior to reaching 

desired disinfection effect. For example, apples appeared more browning after pulsed 

light treatment due to destruction of pectin cell wall [157]. Flour and black pepper 

experienced significant color shift prior to completing pasteurization [39]. 

In this study, the effect of IPL on non-fat dry milk’s chemical profile was investigated by 

LC-MS based chemometric analysis. The chemical markers associated with dose-

dependent effect of IPL were identified and characterized.  
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3.2 Materials and method 

3.2.1 IPL treatment of non-fat dry milk 

Non-fat dry milk without fortification (Land O’Lakes) was chosen as the model of 

powdered food to study the IPL-elicited effects. In a separate study, the IPL instrument 

was designed and built to examine the efficiency of disinfection on bacteria inoculated 

food powder. NFDM without bacteria inoculation was processed by the IPL instrument. 

Briefly, NFDM was loaded into a vibratory treatment chamber, then treated by IPL for 1-

4 passes with each pass equivalent to 28 s. Each second, 3 pulses of broad spectrum light 

(wavelength 190-1100 nm) with pulse width of 520 us were elicited by a lab scale Z-

1000 steripulse- XL system (Xenon Corporation, Woburn, MA, US), which consists of a 

xenon flash lamp and a RV-800 power control module. Each pulse delivers 1.27 J/cm2 at 

a distance from the lamp of 8 cm. Treated NFDM was collected and store in air-tight 

centrifuge tubes at -20 °C. 

3.2.2 Color measurement of non-fat dry milk 

Color of NFDM was measured by a colorimeter (Konica Minolta CR-300 Chroma 

Meter). Briefly, NFDM was placed in a petri dish (60 x 15 mm) and pressed down. Then 

the color was measured and recorded as CIE L*a*b* color space.  

3.2.3 Chemicals 

LC-MS-grade water and acetonitrile (ACN) were purchased from Fisher Scientific 

(Houston, TX). 2-Hydrazinoquinoline (HQ) and triphenylphosphine (TPP) were 

purchased from Alfa Aesar (Ward Hill, MA). 2-2’-Dipyridyl disulfide (DPDS) were 

purchased from MP Biomedicals (Santa Ana, CA). Dansyl chloride (DC), n-butanol, 
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acetone, and amino acid standards were purchased from Sigma-Aldrich (St. Louis, MO). 

Hydrochloric acid was purchased from Honeywell (Morristown, NJ).   

3.2.4 Sample preparation for LC-MS analysis 

To determine the influence of IPL on NFDM’s amino acid composition, 50 mg of non-fat 

dry milk was dissolved in 7 mL 6N hydrochloric acid for acid hydrolysis. Acid 

hydrolysis was performed at 165 °C for 15 min by a Discover SP-D microwave digester 

(CEM Corporation, Matthews, NC). After hydrolysis, 50 μL of hydrolyte was dried by 

nitrogen and then reconstituted in 500 μL 50% aqueous ACN. 

Extraction of NFDM was based on the principal of two phase (methanol-water-

chloroform) extraction that is commonly used in preparing food samples for chemometric 

analysis [90]. Briefly, 50 mg of NFDM was dissolved in 0.5 mL methanol, 0.5 mL 

chloroform and 0.4 mL water. After 10 min centrifuge at 14,000 × g, fractions were 

separated. Polar fraction was stored at -80 °C; non-polar fraction was dried under 

nitrogen and reconstituted in 0.5 mL n-butanol.  

3.2.5 Chemical derivatization 

To detect amino acids, the hydrolyte was derivatized with DC prior to LC-MS analysis. 

Briefly, 5 μL sample or standard was mixed with 5 μL of 50 uM D5-tryptophan (internal 

standard), 50 μL of 10 mM sodium carbonate, and 100 μL of DC (3mg/mL in acetone). 

The mixture was incubated at 60°C for 15 min and centrifuged at 14,000 × g for 10 min. 

Then supernatant was transferred to HPLC vial for LC-MS analysis.  

To detect carboxylic acids, aldehydes, and ketones, the polar fraction of NFDM 

extraction was derivatized with HQ prior to LC-MS analysis. Briefly, 2 μL of the sample 



62 

was added into a 100 μL freshly-prepared ACN solution containing 10 mM DPDS, 10 

mM TPP and 10 mM HQ. The mixture was incubated at 60 °C for 30 min and then 

immediately chilled on ice, followed by an addition of 100 μL of H2O. After 

centrifugation at 14,000 × g for 10 min, the supernatant was transferred to HPLC vial for 

LC-MS analysis.  

3.2.6 LC-MS analysis 

A 5 μL aliquote of supernatant was injected into an Acquity ultra-performance liquid 

chromatography system (UPLC, Waters, Milford, MA) and separated in a BEH C18 

column or a BEH Amide column with a gradient of mobile phase ranging from water to 

95% ACN containing 0.1% formic acid in a 10-minute run. The LC elute was directly 

introduced in a Waters QTOF mass spectrometer for accurate mass measurement and ion 

counting. For electrospray ionization, the capillary voltage was set at 3 kV and cone 

voltage was set at 40 V for positive mode detection. Nitrogen was used as both cone gas 

(50 liters/h) and desolvation gas (600 liters/h). For accurate mass measurement, the mass 

spectrometer was calibrated with sodium formate (range m/z 50-1,200) and monitored by 

intermittent injection of the lock mass leucine encephalin ([M+H]+= m/z 556.2771). 

Chromatograms were acquired and processed by MassLynxTM (Waters). Structural of 

markers of interest was analyzed by tandem MS (MS/MS) fragmentation with a collision 

energy ramp of 15-50 eV. 

3.2.7 Multivariate data analysis 

Chromatographic and spectral data were analyzed using MarkerLynx software (Waters). 

A multivariate data matrix containing information on sample identity, ion identity 
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[retention time (RT) and m/z], and ion abundance was generated through centroiding, 

deisotoping, filtering, peak recognition, and integration. The intensity of each ion was 

calculated by normalizing the single ion counts (SIC) versus the total ion counts (TIC) in 

the whole chromatogram. The processed data matrix was further exported into SIMCA-

P+TM software (Umetrics, Kinnelon, NJ), transformed by Pareto scaling and then 

analyzed by principal components analysis (PCA). Major latent variables in the data 

matrix were described in a scores scatter plot of multivariate model. The potential 

chemical changes after IPL treatment was identified by analyzing ions contributing to the 

principal components and to the separation of sample groups in the loadings scatter plot. 

The chemicals’ identity was identified by accurate mass measurement, elemental 

composition analysis, database search (Metlin, http://metlin.scripps.edu/; UniProt  

http://www.uniprot.org/), PEAKS Studio 8 (Bioinformatics Solutions Inc., Waterloo, ON, 

Canada), fragmentation, and comparison with authentic standards if possible.  

3.2.8 Marker quantification 

To quantify amino acids, and markers of interest, the ratio between the peak area of each 

amino acid and the peak area of internal standard was calculated and fitted with a 

standard curve using QuanLynxTM software (Waters).  

3.2.9 Statistical analysis 

Statistical analysis was performed by one-way ANOVA and Turkey – Kramer 

comparison test using the GraphPad Prism 6 (GraphPad Software, La Jolla, CA, US). 

Significance is considered if P<0.05.  

 

http://metlin.scripps.edu/
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3.3 Results 

3.3.1 Color of NFDM after IPL treatment 

Color is a quality parameter during manufacturing of NFDM. The color of non-treated 

and IPL-treated NFDM was measured by colorimeter and recorded as CIE L*a*b* color 

space (Figure 3.1). One-way ANOVA and Turkey-Kramer comparison test was 

performed to determine the statistical significance of the changes. Total color difference 

was calculated and recorded as ΔE*ab (Figure 3.1).  

Comparing to control (non-treated) NFDM, all IPL-treated samples experiences 

significant color shift in L*, a*, and b* dimension (p < 0.05). The L* value was 

significant lowered after IPL treatments, with control scored 90.30, illustrating a shift 

towards less overall whiteness. The a* value was elevated from -3.59 to -0.53 after 4 

passes. With a* value being negative, the treated NFDM still fell in the dimension of 

green and shifted towards less green. The b* value significantly dropped after 1 pass of 

IPL treatment from 12.02 to 9.46, showing a shift towards less yellow. Total color change 

reached 3.70 upon 1 pass and further escalated to 6.11 after 4 passes.  

3.3.2 Amino acid profile of NFDM after IPL treatment 

Milk protein contains all essential amino acids for human needs. To analyze the amino 

acids, the NFDM was first hydrolyzed with acid by microwave-assisted digestion, then 

derivatized with dansyl chloride for detection of amino-containing compounds by LC-

MS. Tryptophan, methionine, and arginine were degraded during acid hydrolysis and 

hence were not quantified. The other amino acids profile remained unchanged after IPL 

treatment (Figure 3.2). 
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3.3.3 Chemometric investigation of IPL-elicited changes in NFDM 

In order to investigate the chemical changes induced by IPL, the treated NFDM, along 

with control (non-treated), were extracted and examined through LC-MS based 

chemometric analysis. Multivariate data analysis was applied to analyze the data acquired 

from LC-MS. Principal component analysis (PCA) of the data obtained from polar 

fraction of NFDM extraction through a BEH C18 column followed by electron spray 

ionization and QTof mass spectrometry in positive detection mode achieved the clearest 

separation and grouping effect. As shown by the scores plot, IPL treatment dependent 

separation of non-treated control and IPL treated samples were observed in a PCA model, 

suggesting that the IPL treatment altered the NFDM chemical profile in a dose-dependent 

pattern (Figure 3.3A). The separation of non-treated and treated samples occurred along 

the first component of the model. Subsequently, the markers associated with control and 

4-pass IPL treatment were identified in the loadings plot of PCA model, and their 

chemical identities were defined by the elemental composition analysis, database search, 

MSMS fragmentation, and confirmation by authentic standards. As shown in the loadings 

plot (Figure 3.3B), riboflavin and pantothenic acid are the nutrients that appeared to be 

degraded by IPL treatment and had higher concentration in non-treated NFDM. Several 

peptides were identified as IPL-responsive markers and were only found in IPL-treated 

NFDM.  

3.3.3.1 Structural identification of IPL-responsive markers 

The structures of the markers affected by IPL treatment was determined by multiple 

approaches. For example, the riboflavin and pantothenic acid were elucidated by 

analyzing the fragments in positive-mode MSMS fragmentograms. Comparison with 
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authentic standards of riboflavin and pantothenic acid were performed to confirm the 

identity of riboflavin and pantothenic acid. The preliminary amino acid composition of 

the peptides was firstly obtained by database search. Then the MSMS spectra were 

analyzed by PEAKS Studio 8.5 (Bioinformatics Solutions Inc., Waterloo, ON, Canada). 

The identified primary structure of peptides were aligned with milk protein primary 

structure based on UniProt peptide search (http://www.uniprot.org/). Two peptides were 

identified: H-Pro-Leu-Trp-OH and H-Pro-Ile-Ile-Val-OH, originated from c-terminal of 

αS1-casein and β-casein respectively.  

3.3.3.2 Correlation of NFDM color and IPL-responsive markers 

Influences of IPL treatment on color of NFDM was reflected by the markers contributing 

to the separation of all five groups in the partial least square analysis (PLS) model 

(Figure 3.4). As shown in the loadings plot of the PLS model, degradation of riboflavin is 

associated to the color shift in L* and b* value, which is the shift towards less white and 

less yellow. Peptides were associated with the shift in a* value, which is the shift towards 

less green. 

3.4 Discussion 

3.4.1 IPL mediated changes on NFDM quality  

Non-fat dry milk was treated by IPL at 4 different doses. Targeted analysis was 

performed to evaluate the color and amino acid profile of NFDM after IPL treatment. 

LC-MS based untargeted chemometric analysis was performed to evaluate the overall 

changes elicited by IPL. It appears that IPL does not alter amino acid profile of NFDM. 

The nutritional value given by milk protein was retained.  
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Color, measured by colorimeter, revealed significant changes on the total color space as 

indicated by ΔE*
ab of almost 6 after 4 passes (Figure 3.1 D). A noticeable change is 

defined when ΔE*
ab exceeds 1.5 [64]. Such shift might be the result of riboflavin 

degradation. Riboflavin gives liquid whole milk greenness color [61]. IPL degraded 

riboflavin in NFDM and caused a color shift to less green (Figure 3.1 B). Meanwhile, the 

PLS model indicated that the formation of peptides was associated with a decreased total 

whiteness (L* value) and yellowness (b* value) (Figure 3.1 A and C, Figure 3.4). 

Previous study evaluated the color modification on flour and black pepper treated by 

pulsed light. A total color shift of 6.1 and 8.5 were observed when the system reached 2 

log reduction [39]. In a separate study, with the current IPL system, Although the IPL 

altered the color of milk powder, the capacity of its disinfection effect remains effective 

and promising [158]. Additionally, this change of color does not necessarily impact the 

proceeding manufacture of processed foods. NFDM is widely used as ingredient in 

producing processed food, including animal feed, meat and seafood products, baking, and 

beverages [156]. The influence on these processed products requires individual 

examination. Additionally, the measurement of colorimeter is different from human eye 

perception as the instruments pick up subtle changes that may not be apparent for human 

eye sight [159]. In a separate sensory study, trained sensory panelists examined the 

change on the appearance of NFDM. The sensory study represents the perception from 

consumers’ point of view, and the result might be different from the instrumental 

measurement.   

A PCA model based on untargeted LC-MS data revealed the formation of 7 peptides in 

NFDM after IPL treatment. Two of the peptides were identified as H-Pro-Leu-Trp-OH 
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and H-Pro-Ile-Ile-Val-OH from milk casein proteins. These two are the c-terminal 

sequences of αS1-casein and β-casein, cleaved off from adjacent methionine and 

phenylalanine respectively. This result could be the photolysis of peptide bonds 

facilitated by UV irradiation. The three aromatic amino acids, phenylalanine, tryptophan, 

and tyrosine, absorb UV of 260-290 nm [160]. Excited aromatic side chains releases free 

electron, which can be transferred to the disulfide bridge in the protein and lead to its 

reduction [161]. The disassociated disulfide bond is reflected by the formation of H-Pro-

Leu-Trp-OH as it was adjacent to methionine in αS1-casein. In addition to aromatic amino 

acids, peptide bonds also absorbs UV at 190-230 nm, which is included in the IPL range 

[162]. However, this potential alteration in the advanced structure of protein does not 

affect the digestibility [70]. Meanwhile, the total amino acids profile in IPL-treated 

NFDM remained intact. Hence, the nutritional value of milk proteins was not influenced 

after IPL treatment.  

3.4.2 Implications on development of IPL platform 

Effect of IPL on NFDM was revealed by LC-MS based chemometric analysis. Although 

changes on color and chemical profile was revealed, the overall nutritional quality of 

milk proteins was intact. This result indicates potential modification for continuous 

development and upgrades of the existing IPL technology. The first strategy to further 

minimize the impact on the quality of NFDM is to manipulate the wavelength of light 

emitted by IPL. In previous chapter, the effect of IPL-mediated bactericidal events on E. 

coli was discussed. The IPL posed rapid and diminishing effect on membrane bound 

electron carrier, which ultimately led to cell death. These electron carriers, menaquinone-

8, ubiquinone-8, and ubiquinol-8, were sensitive to near-UV (300-380 nm) and visible 
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light [129, 132]. But the absorbance of peptide bonds and aromatic amino acids are 

different, at 190-230 nm [162] and 250-290 nm respectively [160]. By enhancing the 

elicitation of near-UV light, corresponding to bactericidal effect, and removing the ranges 

influential to milk protein, the performance of IPL system might be improved.  

Meanwhile, LC-MS based chemometrics can be applied to continuously monitor and 

compare the chemical changes in NFDM after IPL treatment. Current LC-MS method 

with pre-column extraction can effectively distinguish the treated and untreated samples. 

Additionally, the chemical shift displayed a dose-dependent pattern (Figure 3.3 A), which 

can be used to compare the NFDM treated by different IPL doses. However, in order to 

evaluate the quality change of NFDM with further details, more functional tests are 

needed.  

In United States, NFDM is used mostly as an ingredient in food manufacturing rather 

than being directly consumed [156]. Depending on the product, NFDM is used for a 

variety of purposes, including foaming stability, color development, flavor, and nutrition 

value [163]. IPL is designed to disinfect NFDM prior to incorporating into food 

manufacturing. For food manufacturers, it will be important to ensure the quality and 

consistency of the NFDM. Evaluating NFDM’s functioning properties after IPL 

treatment is hence also important as examining the chemical changes. Examples of 

functioning tests include enzymatic digestibility test [70], solubility test [70], foaming 

capacity test [164], and shelf life study [165].  
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Figure 3.1 Color of non-treated and IPL-treated NFDM 
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Figure 3.2 Amino acid profile of NFDM after IPL treatment 
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Figure 3.3 Effect of IPL treatment on NFDM chemical profile (Data from LC-MS 
analysis of the polar fraction of NFDM extraction by PCA model. The relations among 
non-treated control and IPL treated groups of NFDM are shown in the score plot. The 
markers correlating to the IPL treatment are labeled in the loadings plot. A: Scores plot of 
a PCA model on NFDM. B: Loadings plot of a PCA model on NFDM. ) 
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Figure 3.4 Loadings plot of PLS model, correlated with color change 
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