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ABSTRACT 
 

Tinnitus is a neurological condition that manifests as a phantom auditory perception in 

the absence of an external sound source. Tinnitus is often caused by hearing loss associated with 

noise exposure or aging and as such, the prevalence is only expected to rise in the coming years. 

Currently there is no cure for tinnitus and available treatment options have only shown limited 

success, thus there is an ever present need for continued research into new treatments. In this 

thesis we propose a new approach to treating tinnitus that uses deep brain stimulation to target the 

inferior colliculus (IC) with the goal of altering tinnitus-related neural activity, such as 

hyperactivity and increased neural synchrony, to suppress the tinnitus percept. We hypothesize 

that stimulation of the outer cortices of the inferior colliculus will modulate the tinnitus-affected 

neurons in the central region of the inferior colliculus (ICC) and in turn, these neural changes 

will be carried throughout the central auditory system by the extensive projection network 

originating in the IC, and will induce modulation in other tinnitus-affected auditory nuclei. The 

research of this thesis is aimed at determining the feasibility of this tinnitus treatment by 

assessing the IC as a potential neuromodulation target and identifying optimal stimulation 

locations and stimulation strategies for achieving maximal suppression. The first study was 

completed to better understand the auditory coding properties of the IC and to create a three 

dimensional reconstruction of these functional properties across the entire IC. These results 

narrowed down the stimulation target to the dorsal cortex of the inferior colliculus (ICD) and 

produced a tool that could be used to consistently place stimulating and recording electrodes in 

correct regions in the IC. The second and third studies focused on assessing the best stimulation 

locations and stimulation paradigms within the ICD, respectively, by stimulating throughout and 

measuring changes in neural activity in the ICC. These results show that maximal suppression is 

achieved by stimulation of the rostral-medial region of the ICD using either electrical stimulation 

only or electrical stimulation paired with acoustic stimulation with an 18 ms delay. These results 

will guide implementation in human patients. There are already deaf patients who suffer from 

tinnitus that are being implanted with a deep brain stimulator for hearing restoration called the 

auditory midbrain implant. Hardware modifications to the auditory midbrain implant have been 

completed that will allow us to stimulate the ICD and evaluate the effects on the tinnitus percept 

directly in patients. 
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CHAPTER 1: INTRODUCTION 

TINNITUS 

 Tinnitus, known as “ringing in the ears” is a neurological condition that is 

estimated to affect 10-15% of the population, with 20 million people afflicted in the 

United States alone (Heller, 2003; Eggermont and Roberts, 2004; ATA, 2013). For about 

two million of those tinnitus sufferers, this condition is so disturbing and debilitating that 

it impedes the patient’s ability to perform daily tasks, and can lead to anxiety, sleep loss, 

headaches, and thoughts of suicide (ATA, 2013). Tinnitus is characterized as a phantom 

auditory sensation in the absence of any external source that is typically a result of 

hearing loss, though other etiologies exist (Coles, 2000; Sindhusake et al., 2003; Hoffman 

and Reed, 2004; Henry et al., 2014). As it is related to hearing loss, the number of 

tinnitus sufferers is expected to rise with increasing environmental noise and an aging 

population (Passchier-Vermeer and Passchier, 2000; Ortman et al., 2014). Additionally, 

there is a growing population of veterans experiencing tinnitus attributed to hearing loss 

as a result of the environmental hazards they are exposed to during war (i.e., explosions, 

high noise levels; Lew et al., 2007; Theodoroff et al., 2015). 

 Hearing loss leading to tinnitus is often a result of damage to the peripheral 

auditory system due to noise exposure or aging (Axelsson and Ringdahl, 1989; Nicolas-

Puel et al., 2002; Eggermont and Roberts, 2004; Sindhusake et al., 2004; Henry et al., 

2014). Loss of hearing results in altered auditory information being introduced into the 

central auditory system (CAS), often as lower levels of neural activity related to the 

frequencies associated with the hearing loss (Popelár et al., 1987; Qiu et al., 2000). In 
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response to the altered information, the central auditory system attempts to adapt to 

and/or restore the lost auditory information generating new, irregular firing patterns of 

auditory neurons that are perceived as a constant auditory sensation (Eggermont and 

Roberts, 2004; Roberts et al., 2010; Noreña, 2011; Henry et al., 2014). As such, the true 

origin of tinnitus is believed to be in the CAS, where aberrant plasticity emerges as a 

consequence of gain increases for particular frequencies or even across a broad frequency 

range (Lockwood et al., 1998; Qiu et al., 2000; Schaette and Kempter, 2006; Møller, 

2011a; Eggermont and Tass, 2015).  

 Animal and human studies have shown tinnitus-related plasticity leads to 

hyperactivity and increased neural synchrony (reviewed in (Roberts et al., 2010; 

Kaltenbach, 2011; Henry et al., 2014). These neural correlates of tinnitus are found 

throughout the auditory system including the dorsal and ventral cochlear nucleus (DCN 

and VCN, respectively; Brozoski et al., 2002; Kaltenbach, 2006; Bledsoe et al., 2009; 

Vogler et al., 2011), the inferior colliculus (IC; Chen and Jastreboff, 1995; Ma et al., 

2006; Melcher et al., 2009; Manzoor et al., 2012; Vogler et al., 2014) and the primary and 

secondary auditory cortices (A1 and A2, respectively; Eggermont and Kenmochi, 1998; 

Noreña and Eggermont, 2003; Seki and Eggermont, 2003). Onset of these neural 

correlations varies in the auditory nuclei and is highly dependent on the induction and 

measurement protocols used. For example following noise exposure, hyperactivity in the 

DCN has emerged two to five days following noise exposure, while hyperactivity in the 

IC can be found seven to eleven days later (Kaltenbach et al., 2000; Manzoor et al., 

2013). This suggests that changes in activity patterns in DCN may in part drive the CAS 
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to a tinnitus state, though other mechanisms are likely involved. However once in the 

tinnitus state, the percept is dependent on the network of auditory nuclei involved, as 

tinnitus persists after the removal of the DCN (Brozoski and Bauer, 2005). 

 In spite of its prevalence, a cure for tinnitus remains elusive though many 

treatment options have been tested. Many of these treatments aim to either restore normal 

firing patterns or completely inhibit firing associated with tinnitus through activation at 

different levels of the auditory system (Møller, 2011b; Vanneste and De Ridder, 2012). 

Treatment in humans has targeted the auditory nerve, the cochlear nucleus, and the 

auditory cortex in attempts to fix the trigger, generator, and perception points of tinnitus, 

respectively. Corrections to errant incoming auditory information entering the CAS at the 

level of the auditory nerve have been attempted with the use of cochlear implants (CIs) 

(Osaki et al., 2005; Baguley and Atlas, 2007; Quaranta et al., 2008; Van de Heyning et 

al., 2008; Kleinjung et al., 2009; Zeng et al., 2011). This stimulation has reduced or 

suppressed the tinnitus percept in a majority of patients, but has not yet been extended 

beyond CI users. The auditory brainstem implant (ABI) has also been employed for 

tinnitus treatment by invasively stimulating the DCN, where tinnitus-related activity may 

originate. A survey of ABI patients shows that reduction, but not complete elimination of 

the tinnitus percept is possible with daily use of the ABI (Soussi and Otto, 1994). Non-

invasive methods to treat tinnitus at the level of the DCN are currently being tested, with 

outcomes still pending. This treatment pairs acoustic and somatosensory stimulation in 

attempts to retrain activity in the DCN where these two pathways merge (Dehmel et al., 

2012). As perception occurs in the auditory cortex, the cortex has been most extensively 
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targeted with both invasive and non-invasive methods. Cortical stimulation has been 

implemented in both the A1 and the A2 using intradural or extradural electrodes (De 

Ridder et al., 2006; Friedland et al., 2007; De Ridder et al., 2011; Engelhardt et al., 

2014). Reduction in the tinnitus percept was seen in most patients, but a majority of those 

patients only achieved partial suppression of the percept, with results highly dependent 

on the type of tinnitus and pattern of stimulation. Non-invasive methods assessed include 

transcranial direct current stimulation (Song et al., 2012; Shekhawat et al., 2015) and 

transcranial magnetic stimulation (Kleinjung et al., 2011; Hoekstra et al., 2013; Piccirillo 

et al., 2013). Again there was high individual variance in the results and long term 

efficacy would need to be evaluated to determine an optimal treatment schedule to see 

lasting effects. Lastly, more holistic approaches using cognitive-behavioral therapy 

(Cima et al., 2014) and sound therapy approaches that mask the tinnitus have been 

attempted with varied levels of success (Davis et al., 2007; Davis et al., 2008; Trotter and 

Donaldson, 2008; Moffat et al., 2009; Roberts and Bosnyak, 2011). 

 Further research into new tinnitus treatments is warranted by the growing number 

of tinnitus sufferers and the inconsistent results of current treatments. For this thesis 

work, we have investigated a new approach to treating tinnitus by using deep brain 

stimulation (DBS) to target the IC. The potential of the IC to suppress tinnitus has not 

previously been evaluated, but we believe there is great promise for success for three 

main reasons. First, the IC is the convergence center for auditory information with the 

potential to induce changes in all other auditory nuclei. Unlike the DNC, which is at the 

beginning of the auditory pathway receiving mainly ipsilateral input or the cortex which 



 

 5 

is at the end receiving processed information, the IC is a central hub that can interact with 

other auditory nuclei through ascending and descending connections (Casseday et al., 

2002). Second, anatomical studies suggest that secondary regions of the IC may be able 

to modulate the primary region of IC which may correct the errant firing patterns before 

transmission throughout the auditory system including to the auditory cortex, possibly 

suppressing the tinnitus percept. Third, there are deaf patients who suffer from tinnitus 

due to hearing loss that are already being implanted in the IC with a DBS array for 

hearing restoration known as the auditory midbrain implant (AMI). Thus we have the 

potential to directly test this method in patients. Therefore, the motivation of this thesis is 

to determine the feasibility of this tinnitus treatment by assessing the IC as a potential 

neuromodulation target and identifying optimal stimulation locations and strategies 

within the IC. The following sections will detail the motivation for this new treatment, 

our hypotheses, and the project aims. 

 

INFERIOR COLLICULUS  

 The IC is an important integration hub within the central auditory system with 

converging descending, ascending, and bilateral inputs. Ascending inputs arise directly 

from all auditory regions in the brainstem including: the cochlear nucleus (CN), the 

superior olivary complex (SOC), and the nuclei of the lateral lemniscus (NLL) (Aitkin 

and Phillips, 1984a; Coleman and Clerici, 1987; Saint Marie and Baker, 1990; Schofield 

and Cant, 1996, 1997; Alibardi, 2000; Casseday et al., 2002). Descending inputs from the 

medial geniculate body of the thalamus (MGB) and the auditory cortex also synapse 
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throughout the IC (Saldana et al., 1996; Winer et al., 1998; Kuwabara and Zook, 2000; 

Winer et al., 2002; Malmierca and Ryugo, 2011). For every region that synapses in the 

IC, there are reciprocal projections back to that region, apart from the auditory cortex 

(Calford and Aitkin, 1983; Caicedo and Herbert, 1993; Malmierca et al., 1996; Schofield 

and Cant, 1999). Additionally, there are projections into non-auditory regions including 

the superior colliculus (SC) and motor areas (Aitkin and Boyd, 1978; Edwards et al., 

1979; Huffman and Henson, 1990; Caicedo and Herbert, 1993; King et al., 1998). The IC 

can be subdivided into three regions, the central nucleus (ICC), the dorsal cortex (ICD), 

and the external nucleus (ICX; Fig. 1A), each with different projections networks. 

Additionally, each of these regions has a distinctive organization, different physiological 

responses, and thus serve diverse functions in the auditory system (Roth et al., 1978; 

Faye-Lund and Osen, 1985; Coleman and Clerici, 1987; Casseday et al., 2002; Oliver, 

2005; Cant and Benson, 2006; Loftus et al., 2010).  

 The ICC is part of the lemniscal auditory system and is the core processing center 

in the midbrain for all ascending auditory information, with litte descending innervation 

(Adams, 1979; Brunso-Bechtold et al., 1981; Shneiderman et al., 1988; Saint Marie and 

Baker, 1990; Oliver et al., 1995; Schofield and Cant, 1996; Winer et al., 1998; Malmierca 

and Ryugo, 2011). The ICC is composed of disc-shaped cells arranged in fibrodentric 

lamina (Morest and Oliver, 1984; Oliver and Morest, 1984; Faye-Lund and Osen, 1985; 

Meininger et al., 1986; Malmierca et al., 1993). Neurons within a single lamina fire 

maximally to a charcteristic frequency (CF) and together all laminae form a tonotopic 

gradient within the ICC (Merzenich and Reid, 1974; Malmierca et al., 1995; Snyder et 
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al., 2004). The tonotopic gradient is arranged from low to high frequencies in the 

dorsolateral to ventromedial direction (Fig. 1B). Individually, neurons in the ICC are 

narrowly tuned with strong frequency selectivity, low thresholds, and sustained firing 

(Aitkin et al., 1994; Syka et al., 2000; Egorova et al., 2001; Palmer et al., 2013). 

Projections out of the ICC are the most extensive of any IC region, synapsing in every 

auditory nuclei except the auditory cortex (Winer and Schreiner, 2005). 

 

 

Figure 1. Subdivisions, tonotopicity, and connectivity in the IC. A, Anatomical subdivisions of 

the IC in cat were determined using Golgi methods (scale = 0.5 mm). Individual cells have been 

labeled and redrawn. Each region has been divided based on the cell distribution (Morest and 

Oliver, 1984). B, The tonotopic map of a mouse IC is superimposed over a cytochrome oxidase-

stained slice (scale = 0.5 mm). Electrode penetrations were made perpendicular to the surface of 

the IC with recordings made at different depths, indicated by circles. Laminae were fit to the CFs 

measured at each location (Portfors et al., 2011). C, A representation of the connectivity of IC is 

shown. Injections of Phaseolus vulgaris-leucoagglutinin are indicated by the stars. Each location 

labels four laminar plexuses: one in the ipsilateral CF lamina, one in the contralateral CF lamina, 

one in the ipsilateral ICX, and one in the contralateral ICX. The same patterning can be found 

when injections are made in the ICD (Saldaña and Merchán, 1992). Images were reprinted with 

permission from John Wiley and Sons and Elsevier. 

 

 The ICX and the ICD belong to the non-lemniscal system, assisting but not 

primarily responsible for ascending auditory processing (Lee and Sherman, 2010). The 
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ICX is organized in three layers: a fibrous outer layer, a small-celled middle layer, and a 

mixed third layer, with both small and large cells (Morest and Oliver, 1984; Faye-Lund 

and Osen, 1985; Oliver, 2005). The ICX shows frequency selectivity, but can be 

distinguished from the ICC by a frequency reversal at their border (Stiebler and Ehret, 

1985). Unique to the ICX are the somatosensory projections that synapse throughout 

allowing for multi-sensory integration (Aitkin et al., 1981; Morest and Oliver, 1984; 

Binns et al., 1992). With projections from the ICX synapsing on the SC and various 

motor areas, the ICX is part of circuitry that controls sound localization and head 

orienting (Huffman and Henson, 1990). The ICD is organized into four layers. The first 

two are similar to the ICX with an outer fibrous layer and a second, small-celled layer 

(Morest and Oliver, 1984). The third contains commissural fibers in route to the 

contralateral IC, and the fourth layer contains larger cells where it meets the ICC (Oliver 

et al., 1991). The border between the ICD and the ICC is hard to characterize with CF 

alone, and relies on cell morphology and organization as well as neural response 

properties for division. Notably, the ICD has layered innervation, predominately 

receiving projections from the ascending system in the shallow layers and from the 

descending system in the deeper layers (Oliver, 1984; Shneiderman et al., 1988; Winer et 

al., 1998; Oliver, 2005). Projections leaving the ICD enter the MGB and to a lesser extent 

the DCN (Calford and Aitkin, 1983; Schofield, 2001; Thompson, 2005). Studies have not 

yet probed the function of the ICD in hearing, including the purpose of the differential 

innervation. However its possible role in auditory processing is the focus of Chapters 3 

and 4. Response properties of the ICD and the ICX appear to be similar based on 
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previous studies and are more broadly tuned, have longer latencies on average, higher 

thresholds, and more variable response shapes compared to neurons in the ICC (Aitkin et 

al., 1975; Willott and Urban, 1978; Aitkin et al., 1994; Syka et al., 2000). Our findings in 

Chapter 2 further explore these differences in subregions and reveal an underappreciated 

spatial organization of responses across these two regions which offer new insights into 

their role in auditory processing.  

 

CONNECTIVITY AND MODULATION WITHIN THE INFERIOR COLLICULUS 

 Intrinsic and commissural projections throughout the IC are extensive and have 

been well documented anatomically using tracers injected into each of the three main IC 

subregions. Injection of the anterograde tracer Phaseolus vulgaris-leucoagglutinin (PHA-

L) into the ICC labeled four laminar plexuses, two contralateral and two ipsilateral to the 

site of injection (Fig. 1C). The same patterning exists on each side with one plexus along 

the isofrequency lamina extending into ICD and one parallel to the IC surface that lies 

within the ICX (Saldaña and Merchán, 1992; Malmierca et al., 1995; Saldana and 

Merchan, 2005). Injections of PHA-L in the ICD mirrored the patterning of the ICC with 

two laminar plexuses in both ICs (Saldaña and Merchán, 1992; Saldana and Merchan, 

2005). The ICX does not appear to have the same contribution to the internal network, 

though results are dependent on the tracer used. Using PHA-L, projections from the ICX 

remain within the outer cortices, with a heavier labeling of the hemisphere ipsilateral to 

the injection (Saldaña and Merchán, 1992; Saldana and Merchan, 2005). However, 

injection of the retrograde tracer horseradish peroxidase into the ICC revealed extensive 
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labeling in the ipsilateral and the contralateral ICX (Willard and Martin, 1983; Coleman 

and Clerici, 1987; Frisina et al., 1998). Despite disparities of the ICX projection patterns, 

which may be attributed to stain methodology, it is apparent that there is a widespread 

intracollicular network.  

 The functional purpose of intracollicular network is less understood and evidence 

suggests that it is part of the descending modulation network. Corticofugal projections 

provide necessary modulation to shape the way ascending auditory information is 

processed in route to perception in the auditory cortex (Yan and Ehret, 2002; Winer, 

2005; Suga, 2008; Xiong et al., 2009; McLachlan and Wilson, 2010; Markovitz et al., 

2015). Excitatory and inhibitory modulation of the ICC via corticofugal projections has 

been demonstrated in numerous experiments by stimulating or inactivating the A1 to 

suppress firing, reshape the frequency tuning, and shift threshold and latency in the ICC 

(Massopust and Ordy, 1962; Mitani et al., 1983; Syka and Popelar, 1984; Sun et al., 

1989; Torterolo et al., 1998; Zhang and Suga, 2000; Zhou and Jen, 2000; Bajo and King, 

2012; Suga, 2012). Considering that projections from the A1 to the IC, including directly 

to the ICC, are predominately glutamatergic and presumed to be excitatory, the required 

inhibition must come from sources other than the A1 (Rockel and Jones, 1973; Feliciano 

and Potashner, 1995; Saint Marie, 1996; Saldana et al., 1996). This inhibition may be 

provided by multi-synaptic pathways to the ICC via intrinsic IC projections from the ICX 

and the ICD. This has been previously shown for the ICX, where direct and indirect 

stimulation of the ICX (i.e., through stimulation of the A1 to excite the ICX) suppressed 

neural activity in the ICC (Jen et al., 2001; Jen et al., 2002). However, no study to our 
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knowledge prior to the ones included in this thesis (Chapters 3 and 4) has examined the 

type and extent of modulation possible by the ICD. As projections from the A1 synapse 

throughout the outer cortex, we hypothesized that inhibition could also be accomplished 

via the ICD (Faye-Lund, 1985; Huffman and Henson, 1990; Herbert et al., 1991; Winer 

et al., 1998). We further hypothesized that based on sources of innervation, the ICD may 

have an even greater ability to modulate the ICC than the ICX. The ICX processes not 

only auditory information, but also integrates multi-sensory information (Aitkin et al., 

1978; Aitkin et al., 1981; Binns et al., 1992; Knudsen, 2002; Gruters and Groh, 2012). By 

comparison, a majority of all projections to the ICD are auditory and thus the ICD may 

have a strong modulatory effect on auditory processing (Coleman and Clerici, 1987; 

Winer et al., 1998). 

 

AUDITORY MIDBRAIN IMPLANT 

 The auditory midbrain implant was originally designed to restore hearing in 

neurofibromatosis type II (NF2) patients, as an alternative to the ABI. NF2 is a genetic 

disorder that often manifests as bilateral acoustic neuromas (Lenarz et al., 2006; Schwartz 

et al., 2008; Colletti et al., 2009b; Lim et al., 2009b). During tumor resection, ABIs or 

AMIs can be implanted with minimal added surgical risk and supply auditory cues that 

would be otherwise lost (Samii et al., 2007; Lim et al., 2009a). Current ABI performance 

has yet to attain the success of the CI, with patients receiving mainly limited open-set 

speech perception compared to the high levels of hearing possible by CI patients (Otto et 

al., 2002; Adams et al., 2004; Behr et al., 2007; Colletti et al., 2009a). Limited ABI 
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performance in NF2 patients may be attributed to damage to the brainstem incurred 

during tumor growth or tumor removal surgery. This hypothesis is corroborated by the 

improved performance in non-tumor ABI patients (e.g., deafness due to being born 

without an auditory nerve or head trauma) using the same implant technology and 

stimulation strategies (Colletti and Shannon, 2005; Colletti et al., 2009a). To avoid tumor 

and surgical effects within the brainstem area, the AMI was developed for implantation in 

the IC (Lenarz et al., 2006; Lim et al., 2009b). The AMI was originally designed as a 

single shank array with twenty electrode contacts to be placed along the tonotopic 

gradient within the ICC, which allowed for stimulation strategies similar to the CI (Fig. 

2A,B; Lenarz et al., 2006; Lim and Anderson, 2006). 

 

 

Figure 2. First and second generation AMIs. A, The first generation AMI (top - Cochlear 

Limited, Australia) compared to a typical array used for DBS for Parkinson’s (bottom - 

Medtronic, Ireland) has a smaller overall size, smaller contacts, and a greater number of contacts . 

B, The first generation AMI has 20 contacts (200 μm spacing, 200 μm thickness, 400 μm 

diameter), a Dacron mesh to prevent over-insertion, and a cable tethering it into the brain. C, The 

second generation AMI has two separate shanks with the same Dacron mesh and cable. Each 

shank has 11 contacts, (300 μm spacing, apart from one site close to the Dacron mesh that is used 

for tinnitus treatment as described in the text). This new generation AMI will be used in the 

upcoming clinical trial. Images were taken from Lenarz et al., 2006; Samii et al., 2007; Lim and 

Lenarz, 2015 and reprinted with permission from Lippincott Williams & Wilkins and Elsevier. 
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 Unfortunately, the first AMI clinical trial was not able to achieve the same 

success as CI users in speech understanding due to implant location and temporal coding 

limitations (Shannon et al., 1995; Lim et al., 2008b; McKay et al., 2013). However, based 

on the enhanced lip-reading abilities, increased environmental awareness of the initial 

patients, and indications of more optimal stimulation locations, a second clinical trial is 

now underway (Lim et al., 2008a; Straka et al., 2014; Lim and Lenarz, 2015). This 

clinical trial will use the new, two-shank design (Fig. 2C) which is expected to greatly 

overcome the limited temporal coding capabilities observed in the first AMI clinical trial 

(Calixto et al., 2012; Straka et al., 2013; Lim and Shannon, 2014; Lim and Lenarz, 2015). 

 In this upcoming clinical trial we would like to treat a second need of these AMI 

patients: tinnitus. Many NF2 patients experience hearing loss and some develop tinnitus 

due to their hearing loss. Therefore, we would like to leverage the AMI technology and 

the IC implant location to also treat tinnitus. We hypothesize that by stimulating the outer 

cortices that are presumed to be modulatory, particularly the ICD, we may be able to 

achieve the suppression necessary to reduce the hyperactivity and neural synchrony 

associated with tinnitus within the ICC. We further hypothesize that suppressing activity 

within the ICC could affect other nuclei that are part of the abnormal tinnitus network via 

the massive projection network originating in the ICC and extending throughout the 

CAS. To achieve this treatment, one site along each shank was purposely positioned near 

the Dacron mesh that can stimulate the outer cortices of the IC in order to induce 

modulatory effects across the auditory system to potentially treat tinnitus (Fig. 2C).  
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RESEARCH AIMS 

 Prior to assessing AMI stimulation for treating tinnitus directly in patients, we 

need to understand how DBS of the IC can be utilized to alter neural activity which will 

guide novel stimulation strategies in upcoming AMI patients. This treatment will be 

initially limited to NF2 patients who are completely deaf since these individuals are 

already being implanted with the AMI and the effects of IC stimulation on tinnitus 

perception can be explored in these patients with minimal added risk. However, we hope 

that early success in these AMI patients would enable implantation of the AMI into 

patients solely for treating tinnitus who still have residual or near-normal hearing. These 

patients would be those who experience debilitating tinnitus enough to justify the DBS 

surgery.  

 In order to determine the feasibility of this tinnitus treatment and to guide 

stimulation strategies in upcoming AMI patients, I performed three studies for my thesis 

research in a guinea pig animal model. The guinea pig was selected for the animal model 

because it exhibits an anatomical and functional organization of the IC similar to other 

mammalian species, including in humans (Oliver, 2005), and its frequency hearing range 

is similar to that of humans (Harper, 1976; Rode et al., 2013). In these three studies we 

sought to assess the IC as a potential neuromodulation target, to identify optimal 

stimulation locations, and to determine stimulation strategies that may lead to tinnitus 

suppression.  

The aim of the first study was to better understand the auditory coding properties 

across the different subregions of the IC and to create a three-dimensional brain 
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reconstruction of the whole guinea pig IC to aid in target selection and electrode 

placement. Although numerous studies have characterized the coding properties across 

the ICC and have identified various topographic maps within the ICC, no study to our 

knowledge has mapped the functional properties across the outer IC regions, including 

the ICD and the ICX. Additionally, as described above, though there is much speculation 

that the ICD likely serves a stronger modulatory role in auditory information processing 

compared to the ICX, few functional studies have provided evidence to support this 

prediction. In Chapter 2, we provide data further suggesting the ICD’s modulatory role in 

auditory processing and indicating the ICD may be a better target for tinnitus treatment 

with the AMI. Importantly, we created the first detailed three-dimensional reconstruction 

of the whole IC in the guinea pig, with accurate visualization of the ICD and the ICC 

regions that assisted in placement of stimulation and recording sites for the proceeding 

studies described in Chapters 3 and 4. 

Once we were able to identify where to consistently place the electrode sites into 

the ICC and the ICD, we proceeded with the second study described in Chapter 3. The 

aim of the second study was to investigate the effects of electrically stimulating many 

different locations of the ICD on neural activity across different locations of the ICC. 

This study was proof-of-concept to determine if any modulation of the ICC was possible 

using ICD stimulation paired with and without acoustic stimulation, as previous studies 

had only examined effects of directly stimulation the ICX on ICC activity. For this study, 

only a few stimulation paradigms were explored in order to focus on determining 

effective stimulation locations across the ICD. From the results, we identified a certain 
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stimulation parameter and specific locations within the ICD that exhibited strong 

suppressive effects that may be relevant for reducing tinnitus-related activity. 

The results presented in Chapter 3 were encouraging for tinnitus treatment; 

however, there were limitations to the protocol used for the study, in which we attempted 

to stimulate many different locations with several different paradigms. To accommodate 

all of these conditions, each paradigm was presented in a set order without any recovery 

of modulation, and thus cumulative effects likely contributed to confounding results. The 

aim of the third study described in Chapter 4 was to repeat the experiments in Chapter 3, 

but this time targeting one specific region of the ICD that exhibited the strongest 

suppressive effects in the study in Chapter 3 and exploring several different paradigms in 

each animal with a randomized order across animals. Moreover, by limiting the 

experiments to one stimulation site per animal, there was sufficient time in the protocol to 

allow for at least thirty minutes of recovery of modulation back to baseline activity. The 

findings in Chapter 4 revealed new and optimal ICD stimulation paradigms that were 

masked in the experiments in Chapter 3. Furthermore, it revealed that both ICD 

stimulation alone and ICD stimulation paired with acoustic stimulation at a specific delay 

could potentially treat tinnitus, and thus would be relevant for both proposed tinnitus 

populations, those with and without hearing. 

Although outside of the scope of this thesis research, the Appendix includes an 

additional study that was performed in a chronic animal model for exploring plasticity 

effects in the ICC. This study was the original focus of my thesis research but due to 

challenges in its setup and the encouraging findings presented in Chapters 2 and 3, I 
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changed the focus of my thesis research towards developing a new DBS stimulator in the 

IC for tinnitus treatment. The Appendix provides the work that went into developing a 

chronic electrode implant setup in guinea pigs and the initial EEG and plasticity studies, 

which are now being used by others in the lab for other hearing and tinnitus studies.  
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CHAPTER 2: ACOUSTIC RESPONSE MAPS SPAN THE WHOLE 

INFERIOR COLLICULUS AND REVEAL THE FASTEST NEURONS 

WITHIN THE NON-LEMNISCAL PATHWAY 
 

 

 Neural responses to acoustic stimulation have long been studied throughout the auditory 

system to understand how auditory information is coded for perception. Within the IC, a central 

hub in the auditory system, a majority of the effort has been toward characterizing response of the 

ICC, as it is part of the lemniscal system mainly responsible for perception. In comparison, the 

responses of the outer cortices (ICO) have largely been unexplored, though they also function in 

perception tasks, such as in sound localization. Therefore we sought to expand on previous work 

by completing a three dimensional functional mapping study of the whole IC. We analyzed 

responses to pure tone and broadband noise stimulation across all IC subregions and correlated 

those responses with recording location to create spatial maps. Our study revealed there are well 

organized trends for temporal response properties that extend throughout the whole IC with little 

distinction between IC subregions. Interesting, these maps show two populations of neurons in 

the ICO: one with the fastest and most precise neurons, faster even than ICC responses, and one 

with the slowest and least precise responses. Relevant for the functional role of the IC, these fast 

ICO responses may be necessary for executing accurate head orienting responses or other 

sensorimotor reflex actions. The slow ICO responses may be involved with auditory modulation 

of the ICC related to attention and learning. Both of these functions are supported by anatomical 

projections to the different regions in the ICO.  

 

INTRODUCTION  

 The IC is an essential hub in the central auditory system, integrating numerous 

converging pathways from the brainstem in route to the thalamus and cortex (Aitkin and 

Phillips, 1984a; Casseday et al., 2002). The roles of the IC are varied, including auditory 

processing leading to speech understanding, multisensory integration, and sound 

localization (Aitkin, 1979; Huffman and Henson, 1990; Knudsen, 2002). As such, the IC 
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has been studied extensively to understand how auditory information is coded into neural 

responses that contribute to sound perception (Ehret, 1997; Portfors and Sinex, 2005; 

Rode et al., 2013).  

 There is already a large body of research focused on coding properties within the 

ICC as it is the main auditory or lemniscal pathway within the midbrain (Roth et al., 

1978; Irvine, 1992). The ICC has a well-defined tonotopic organization composed of 

fibrodentric laminae of cells that preferentially code from low to high best frequencies 

(BFs) in the dorsal-lateral to ventral-medial direction (Merzenich and Reid, 1974; Snyder 

et al., 2004; Oliver, 2005; Malmierca et al., 2008). Multiple topographic maps of the ICC 

have been identified along the BF laminae for first spike latencies (FSLs), thresholds, Q-

values, periodicity and frequency modulation coding, and binaurality (Semple and Aitkin, 

1979; Wenstrup et al., 1985; Stiebler, 1986; Schreiner and Langner, 1988; O'Neill et al., 

1989; Hattori and Suga, 1997; Langner et al., 2002; Hage and Ehret, 2003). These studies 

suggest a major conversion of coding properties into spatial representations occurs at the 

level of the midbrain. 

 Compared to the ICC, there have only been a few studies characterizing the 

functional properties within the outer region of the IC (ICO), which includes the ICD and 

the ICX. These studies have generally shown slower latencies, more variable response 

durations, lower spontaneous firing rates, higher thresholds, broader frequency tuning, 

and a weak or non-existent tonotopy in the ICO compared to the ICC (Aitkin et al., 1994; 

Syka et al., 2000; Lumani and Zhang, 2010). Additionally, studies have shown greater 

adaptive effects and greater duration selectivity within the ICO versus the ICC (Pérez-
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González et al., 2005; Pérez-González et al., 2006). However, to our knowledge, no 

studies have yet systematically mapped different coding properties fully across the ICO 

in mammals. Only a few studies have recorded across specific portions of the ICO (e.g., 

ICX) for maps of sound localization (Knudsen and Knudsen, 1983; Binns et al., 1992; 

Knudsen, 2002). 

 Due to the scarcity of functional data spanning different subregions of the ICO, 

we sought to map response properties fully across the IC using a robust method for three-

dimensional reconstruction of recording sites (Markovitz et al., 2012). The original 

intention of this study was to construct functional maps across the IC for several response 

properties in the same preparation in order to more accurately compare response trends 

and to begin building up a database of IC responses across different species. 

Unexpectedly, we discovered topographic maps of temporal response features 

systematically varied across the entire IC without any clear distinction between 

traditionally defined subregions of the IC. Furthermore, we identified a region within the 

rostral-lateral portion of the ICO that exhibited fast, temporally precise responses 

including the fastest responses to acoustic stimulation for the entire IC. These responses 

were faster than what was observed in the ICC, which is typically viewed as the main and 

robust pathway for ascending auditory information to higher perceptual centers. 

Conversely, the caudal-medial portion of the ICO exhibited slower, less precise responses 

than typically found in the ICC. These findings raise new insights and questions as to the 

functional role of the ICO in auditory processing. 
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MATERIALS AND METHODS 

Surgery and Experimental Setup 

 Experiments were performed on three Hartley guinea pigs (mass: 578.6 g, 610.2 

g, 595.0 g, Elm Hill, Chelmsford, MA) in accordance with the standards set forth by 

University of Minnesota Institutional Animal Care and Use Committee. Basic surgical 

and electrophysiological methods used in these experiments have been detailed in 

previous work and are only summarized here (Lim and Anderson, 2007a; Markovitz et 

al., 2013; Offutt et al., 2014). Animals were anesthetized with an intramuscular injection 

of ketamine (40 mg/kg) and xylazine (10 mg/kg) and kept in an areflexive state with 

additional doses. Temperature, blood oxygenation, and heart rate were continually 

monitored and atropine sulfate (0.05 mg/kg) was administered periodically to reduce 

mucous secretions.  

 Experiments were performed in an electrically and acoustically isolated sound 

chamber. Stimulation delivery and data collection was controlled by TDT hardware 

(Tucker-Davis Technologies, Alachua, FL) and custom software written in MATLAB 

(MathWorks, Natick, MA). Animals were positioned into a stereotaxic frame (David 

Kopf Instruments, Tujunga, CA) and a craniotomy was performed to expose the right 

occipital lobe. Acoustic stimulation was delivered through a speaker coupled to the left 

hollow ear bar at a sampling frequency of 195 kHz. The speaker and ear bar were 

calibrated using a 0.25-in condenser microphone (ACO Pacific, Belmont, CA). Neural 

signals were recorded using a monopolar configuration with the return needle positioned 
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in the neck muscle. The recorded neural signals were passed through analog DC-blocking 

and anti-aliasing filters from 1.6 Hz to 7.5 kHz and sampled at 25 kHz.  

 

Electrode Array Placement and Acoustic Stimulation 

 A four shank multi-site silicon substrate electrode array (NeuroNexus, Ann Arbor, 

MI) was used in these experiments. Eight sites (403 µm
2
 site area; 0.4-0.9 M at 1 kHz) 

were linearly spaced along each shank with a 100 µm separation and the distance 

between shanks was 500 µm. The electrode array was inserted into the IC using 

micromanipulators (Kopf Instruments, Tujunga, CA) at a 45° angle to the sagittal plane 

in order to align each shank parallel to the tonotopic axis of the IC (Malmierca et al., 

1995; Snyder et al., 2004). The IC was initially located by delivering broadband noise 

(BBN) stimulation (50 ms duration, 0.5 ms rise/fall time, 6 octave bandwidth from 0.625 

to 40 kHz, 70 dB-SPL) during insertion until consistent acoustic-driven responses were 

elicited. Once located, the electrode array was stained with red fluorescent dye (Di-I: 1, 

1-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate; Sigma-Aldrich, St 

Louis, MO) so that the electrode array trajectories could be identified during the 

histological procedure. In order to sample the entire IC, multiple electrode array 

placements were made in a grid-like pattern and multiple depths were recorded at each 

placement. The grid-like pattern was achieved by first varying the medial to lateral 

location by 1 mm per placement along the same rostral to caudal axis, then moving to a 

new rostral to caudal axis and repeating the medial to lateral movement. Two rostral to 

caudal axes were required to assess the full extent of the IC. Across animals the initial 
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placement and movement direction of each proceeding placement was varied to avoid 

bias and is further depicted in Results: Spectral Parameters Show No Systematic Spatial 

Trends.  

 There were a total of 51 electrode array placements across all three animals. For 

each placement, recordings were done at two or three depths, resulting in a total of 115 

recording positions in the IC. At each position, we recorded BBN-driven, pure tone-

driven, and spontaneous activity. BBN stimulation consisted of 100 trials each of 30, 50, 

and 70 dB-SPL (50 ms duration, 0.5 ms rise/fall time, 6 octave bandwidth from 0.625 to 

40 kHz). BBN stimulation was interleaved with 100 trials of spontaneous activity (with 

no stimulation), presented in a random order at 2/s. Pure tone stimulation was used to 

create frequency response maps (FRMs; 1-40 kHz with 8 tones/octave, 0-70 dB-SPL in 

10 dB steps, all presented in a random order at 2/s). 

 

Histology 

 The histological method used in these experiments was developed in our lab and 

detailed in a previous paper (Markovitz et al., 2012). Important points and additional 

steps are highlighted here. Upon completion of each experiment, animals were given an 

intracardiac overdose of pentobarbital and decapitated. The head was placed in a 3.7% 

paraformaldehyde solution. Over the next 10 days, the brain was fixed, blocked, and 

cryo-sliced to 60 µm thick slices. The slices were imaged and imported into Rhinoceros, 

a CAD software (Seattle, WA) to create 3D reconstructions of the IC. In this protocol, 

anatomical landmarks from the midbrain were used to consistently align slices and allow 
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for normalization and comparison of the IC across animals (Markovitz et al., 2012). For 

each IC, the red marks left by the Di-I were aligned across the slices to reproduce the 

location of the electrode array tracks.  

 Once the electrode array tracks were identified, the location of each site along 

those tracks was determined by calculating the depth from the IC border. The border of 

the IC was resolved during the experiment using BBN-driven responses at each electrode 

array placement. The electrode array was inserted to a depth where some but not all sites 

on each shank showed acoustic-driven responses. The IC border of each shank was 

deemed to be halfway between a deeper site with consistent responses to BBN and the 

subsequent, shallower site with weak or imperceptible responses (Markovitz et al., 2012). 

From this, the insertion depth of each recording position along a given placement was 

known in relation to its IC border depth. Next, we corrected the site location depths for 

changes in dimensions due to the fixation process. The change in dimension was 

calculated for each brain as the percent difference of the average, measured distance 

between adjacent shanks in the reconstruction compared to the expected, fixed distance 

of 500 µm. The resulting changes due to fixation were <10% for each brain. Within the 

reconstruction, the recording site locations were populated along the shank trajectories 

based on their corrected depths from the border. The accuracy of this method requires the 

assumption that anatomical and functional borders are coincident such that locations 

which do not respond to BBN lie outside the IC. In a recent report by Ito et al. (2014), 

acoustic-driven responses were recorded from layer 1 of the ICD using in vivo calcium 

imaging. Based on the focal depth, the acoustic-driven responses in that study were found 
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within 40 µm from the surface. This depth is within the error we can expect from our 

border technique where the actual border can be anywhere between the two adjacent sites 

(i.e., 100 µm, where we set the border at 50 µm between the adjacent sites). Therefore we 

can conclude that in using this assumption, there may be a small depth error but not 

enough to offset our overall trends. 

 Finally, the three brains were normalized to each other, and all the best fit lines 

and electrode array sites were imported to a single midbrain reconstruction. There were a 

total of 172 shanks and 2935 electrode array sites (number of sites per guinea pig: 

nGP1=995, nGP2=949, nGP3=991). Thirty-two additional shanks were excluded from the 

reconstruction because none of their sites exhibited consistent acoustic-driven responses 

at any position along that placement and therefore were considered to be outside of the 

IC.  

 

Data Analysis 

 The goal of this study was to determine how response parameters differ across the 

entire IC and if systematic trends exist. Analysis was done first to compute the different 

response parameter values for each recording site. Sites were then separated into 

appropriate subregions (i.e., ICC, ICO, and SC; based on functional responses) and 

planar cuts were made along ICC laminae in order to investigate location trends across 

each lamina. Finally, comparisons were made between response parameters values found 

within subregions and within different laminae to assess functional differences.  
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 Response Parameters. For this functional study, we assessed temporal parameters 

with BBN stimulation, spontaneous firing activity with no-stimulation trials, and spectral 

parameters with pure tone stimulation. Post stimulus time histograms (PSTHs) were used 

to analyze BBN-driven and spontaneous responses for four parameters: FSL, FSL jitter, 

response duration, and spontaneous firing rate. Each of the temporal parameters was 

analyzed at fixed levels of 30, 50, and 70 dB-SPL for each site. Analysis was done at 

fixed sound levels to better estimate how sound is processed by neurons. It seemed more 

realistic to use set sound levels to characterize responses versus using levels dependent 

on the thresholds of each neuron as perception occurs from sounds of varying levels 

independent of neural threshold. FSL and FSL jitter were determined by calculating the 

mean and standard deviation of time from onset of acoustic stimulation to the first spike 

over 100 trials. For each trial, the time to first spike was measured between a window that 

started after a 4 ms lockout period and ended at the offset of acoustic stimulation. This 

lockout period represents the shortest latency previously reported in the IC (Schreiner and 

Langner, 1988; Syka et al., 2000). Response duration was calculated by determining the 

window of spiking activity that significantly exceeded the spontaneous activity according 

to the signal detection theory value of d’>1 (Green and Swets, 1966; Lim and Anderson, 

2007a). The response durations were normalized by the length of BBN stimulation (i.e., 

50ms) to provide ratio values in which one indicated the response lasted the entire 

duration of the stimulus. Lastly, spontaneous firing rates were calculated over a 50 ms 

window, corresponding to the time window when the stimulus was presented in the other 
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BBN conditions. The spontaneous firing rates were calculated over the 100 no-

stimulation trials. 

 Responses to pure tones were examined for the four additional response 

parameters: threshold, BF, Q-value at 10 dB above threshold, and Q-value at 60 dB-SPL. 

Response parameters were evaluated from the FRM of each site utilizing custom written 

MATLAB software used in Rode et al. (2013). The threshold was visually determined 

and the BF was calculated as the centroid of the bandwidth of activity 10 dB above 

threshold (Lim and Anderson, 2006). The Q-values were calculated by dividing the 

center frequency by the bandwidth of activity at either 10 dB above threshold or at 60 

dB-SPL. Of these response parameters, only threshold and Q-values were evaluated for 

spatial trends, while BF was used to categorize sites into midbrain subregions. 

 

 Midbrain Subregions. Sites were divided into different subregions depending on 

their tuning properties and/or location. ICC sites were characterized as those that 

displayed a tonotopic gradient, where consecutive sites along a shank showed a change 

from high to low frequencies across deeper to shallower sites (Snyder et al., 2004). If a 

reversal of frequencies occurred at the low frequency border, sites following the reversal 

were not included in the ICC. SC sites were identified by their reconstructed location 

within the SC portion of the midbrain. These sites had predominantly narrow, high 

frequency tuning with an average BF of 16 kHz and occasionally had broader tuning 

centered around 7 kHz (Wise and Irvine, 1983; Hirsch et al., 1985; Carlile and Pettigrew, 

1987). In addition, no tonotopic gradient was identified across SC sites. All remaining 
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sites were considered to be within the ICO, comprised of sites in the ICD and in the ICX. 

The FRMs of these ICO sites included several varieties: narrowly tuned sites that showed 

a BF reversal, double peaked FRMs, broad tuning with no gradient changes along the 

shank, and no clear frequency selectivity. The locations of sites within the three 

subregions can be seen in 3D (Fig. 3A) and in 2D (Fig.3B). Based on these divisions, 

there were 1075 ICC sites, 450 SC sites, and 1410 ICO sites.  

 

Figure 3. Histological reconstructions of all 

recording locations. A, Sites were separated 

into subregions that included ICC (n=1075, 

green), ICO (n=1410, blue), and SC (n=450, 

red) depending on the tuning properties and 

midbrain location. B, For visualization and 

analysis purposes, planar cuts were used to 

create 2D maps, in which B corresponds to 

the view along the gray planar cut shown in 

A. The 2D maps include estimated borders 

delineating the subregions. C,E, The ICC 

sites were further separated into BF laminae. 

See Methods: Midbrain Subregions for 

lamina BFs, bandwidths, and number of sites. 

D,F, Three-dimensional planes were fit to the 

ICC laminae. BF sites and lamina planes are 

shown at two different angles to better view 

their shapes and location within the IC. 
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After dividing sites into appropriate subregions within the midbrain, the BFs were 

used to further separate the ICC sites into eight different isofrequency laminae. These 

laminae were selected such that individually, each lamina spanned one critical bandwidth 

of 0.34 (Schreiner and Langner, 1997; Egorova et al., 2006). The resulting laminae as 

shown in Figure 3D,F are as follows: Lamina 1, 1.5-1.9 kHz (L1, n=43, red); Lamina 2, 

2.0-2.5 kHz (L2, n=43, orange); Lamina 3, 3.0-3.8 kHz (L3, n=47, yellow); Lamina 4, 

4.0-5.1 kHz (L4, n=37, green); Lamina 5, 6.0-7.6 kHz (L5, n=114, dark green); Lamina 

6, 8.0-10.1 kHz (L6, n=169, cyan); Lamina 7, 12.0-15.2 kHz, (L7, n=93, blue); Lamina 

8, 16.0-20.3 kHz (L8, n=123, purple). Sites within each lamina in the ICC (Fig. 3C,E) 

have been fitted with 3D planes to depict the size, shape, and directionality of the best 

frequency laminae inside the whole IC (Fig. 3D,F).  

 Based on the location of the sites in each lamina defined in Figure 3C-F, planar 

cuts (i.e., sites within a similar area projected onto a given plane) were created that 

encompassed not only all of the ICC sites sorted to a specific lamina but also the ICO and 

the SC sites that fell in the same plane as those ICC sites. To create each planar cut, a 

mean plane was first calculated from all of the ICC sites designated to be within a single 

ICC lamina, as previously defined in Figure 3C-F. Next, we calculated borders to serve 

as the limits for each planar cut in order to avoid outliers and reduce the amount of 

overlap. The borders were created as planes parallel to the mean plane and placed at an 

interval above and below the mean plane, which varied for each lamina. That interval was 

calculated by finding the distance from each ICC point in the lamina to the mean plane 

and averaging. The planar cut was then comprised of all sites, regardless of the BF 
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subregion, that lay between these two border planes. In other words, each planar cut 

could consist of sites that are technically from different BF laminae that were originally 

defined in Figure 3 because the planes are flat whereas the laminae are curved. This type 

of analysis was necessary to be able to easily view the data in two dimensions and to 

identify spatial trends across these laminae. The result was eight planar cuts derived from 

the eight previously defined laminae from Figure 3C-F. As an example, the mean plane 

calculated for Lamina 6 can be seen in Figure 3A and the corresponding planar cut with 

the sites within the outer border planes projected onto that cut can be seen in Figure 3B. 

Although the planes are tilted in a roughly 45 angle, since we are projecting the sites 

onto a 2D plane, it is possible to simplify the terminology by using just medial-lateral and 

rostral-caudal coordinates for viewing purposes and for describing trends along each 

plane. It is clear from our reconstruction in Figure 3D,F and previous anatomical work 

that laminae vary in shape and curvature (Malmierca et al., 1995). However, an 

approximation of a flat plane with projected sites onto that plane is adequate for our 

purposes, as will be later demonstrated in Results. The absolute distance between sites 

may be slightly skewed due to this projection process, but the relative locations of the 

sites with each other are preserved, and thus we can still estimate trends along each plane. 

For visualization purposes only (but not the actual analysis), the sites were slightly 

skewed in the figures in the medial-lateral direction to be able to view all of the sites in 

each 2D map since many sites were exactly on top of each other. Additionally, borders 

were between the IC and the SC based on anatomical landmarks viewed from the dorsal 

surface and encircling a majority of the ICC sites in the planar cut were drawn (Fig. 3B). 
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These borders are unique to each planar cut dependent on where the plane intersected the 

IC/SC border and on the location of ICC sites in the plane. Within the Results, lamina 

refers to only ICC sites from a specific frequency range and is denoted by lamina number 

with frequency range as necessary (e.g. L6 or L6: 8.0-10.1 kHz). Planar cut refers to all 

midbrain sites within a defined area and is denoted by the lamina number from which it 

was derived and the mean BF of the ICC and the ICO sites within the planar cut when 

necessary (e.g. PC6 or PC6: 9.1 kHz). 

 

 Location Effects and Lamina Comparisons. All SC sites were excluded from 

these analyses since we only sampled a subset of the SC which may not be representative 

of the acoustic responses expected from the entire SC. SC sites are still included in the 

visualization of the trends in the figures. Sites that lacked significant acoustic-driven 

activity at each level were further excluded from the location analyses for that level. 

Significant acoustic-driven activity was determined using signal detection theory, as 

described in Green and Swets (1966) and Lim and Anderson (2007a). Spike count 

distributions from 50 ms of acoustic-driven activity and 50 ms of spontaneous activity 

were compared and sites were included if the two distributions were significantly 

different from each other (d’>1). Due to threshold differences, the number of sites in the 

IC that showed sufficient evoked activity varied across level with 2055 sites included for 

30 dB-SPL, 2439 sites included for 50 dB-SPL, and 2477 sites included for 70 dB-SPL.  

 Two-dimensional multiple linear regression was used to examine the existence of 

linear gradients along a given 2D planar cut by determining if measured response 
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parameters could be predicted by location along each planar cut. For each response 

parameter that yielded a significant trend, the gradient angle (θ) and the R
2
 statistic are 

reported in Results. The θ gave the direction along the planar cut where the greatest 

change in values was found, with θ=0° indicating a change in the caudal to rostral 

direction and θ=-90° indicating a change in the medial to lateral direction. The R
2
 value 

was a measure of the strength of the correlation along the gradient angle. Concentric and 

clustering analyses were employed for response parameters that did not show a linear 

gradient. However, these analyses did not yield any significant results and thus are not 

further discussed. 

 Statistical analysis was performed to identify any differences in response 

properties between the ICC and the ICO, between different ICC laminae, and between 

different stimulation levels. All comparisons were performed using a two-tailed, unequal 

variance, ranked t-test (Ruxton, 2006b). Lamina and level comparisons were performed 

with a Bonferroni correction. Significance was determined at p<0.05. For subregion 

comparisons, the exact p-values are provided. For lamina and level comparisons, only the 

largest significant p-value found is provided for simplicity since lamina comparisons 

resulted in twenty-eight unique values and level comparison resulted in three unique 

values.  
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RESULTS  

Temporal Parameters Show Systematic Spatial Trends across the Whole IC 

 A consistent organization across the IC was found only for temporal parameters 

and spontaneous activity, but not for spectral parameters. For FSL, FSL jitter, response 

duration, and spontaneous firing rate, there was a clear distinction between neural activity 

exhibited in the caudal-medial versus rostral-lateral areas of the IC. In response to BBN, 

rostral-lateral sites had shorter latencies, smaller jitter, sustained response durations, and 

higher spontaneous firing rates. The direction of change for each trend was the same, but 

the trend strength varied, which was evident when comparing response parameter maps 

in Figure 4. These maps plot the response parameter values that correspond to each 

recording site. The maps and trends shown in Figure 4 and discussed here were a result of 

BBN at 70 dB-SPL; however, similar trends were observed at 30 and 50 dB-SPL and are 

later discussed in Results: Spatial Trends and Response Differences Are Not Dependent 

on Stimulation Level. 

 Trends for FSL and FSL jitter showed a clear gradient from caudal-medial to 

rostral-lateral areas of the IC, which is apparent in the full 3D maps and 2D planar cut 

maps (Fig. 4A-D). FSL responses varied from long to short latencies across a gradient 

angle equal to -41.3° for PC4, -43.8° for PC6, -45.7° for PC7, from the caudal-medial 

corner (R
2
=0.55, 0.54, 0.52, respectively). Similarly, FSL jitter responses varied from 

large to small jitter, (i.e., increased precision) from the caudal-medial to rostral-lateral 

areas (PC4, θ=-33.2°, R
2
=0.48; PC6, θ=-38.3°, R

2
=0.48; PC7, θ=-38.6°, R

2
=0.46). Due to 

placement of sites in the ICC and the ICO, it was not possible to calculate separate
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 .  

Figure 4. Functional maps reveal temporal response parameter trends from the caudal-medial to 

rostral-lateral area of the IC in response to 70 dB-SPL stimulation. For each response parameter, 

a full 3D map of all the sites and 2D plots of three individual planar cuts are provided. A,C,E,G 

For the 3D maps, a total of 2918 sites were included (nICC=1072, nICO=1405, nSC=441) for (A) 

FSL, (C) FSL jitter, (E) response duration, and (G) spontaneous firing rate. B,D,F,H, Only PC4, 

PC6, and PC7 are shown here of the eight planar that were analyzed. Trends found for these 

planar cuts were representative of what was found in all planar cuts. B,D, FSL and FSL jitter 

showed a clear gradient from the caudal-medial to rostral-lateral area of the IC, with similar 

gradient angles (PC4: θFSL=-41.3°, θJitter=-33.2; PC6: θFSL=-43.8°, θJitter=-38.3°; PC7: θFSL=-45.7°, 

θJitter=-38.6°). F, For response duration, there was a clear division between the rostral-lateral 

versus caudal-medial portion of the IC, with the former having sustained response durations with 
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ratios near one and the latter displaying different response durations with ratios typically 

exceeding one. H, Spontaneous firing rate showed a weak gradient with higher spontaneous firing 

rates more often in the rostral-lateral and lateral areas of the IC. 

 

gradient angles for each subregions without bias. However, it was clear that no division 

can be made between the two subregions as the gradient extended over the whole IC. 

This result was surprising since it was originally expected that clear differences in 

acoustic response properties would be found between the ICC and the ICO, considering 

that previous studies have proposed different roles for these two subregions (Aitkin, 

1979; Huffman and Henson, 1990; Knudsen, 2002). The ICC is part of the lemniscal 

pathway, which corresponds to the main ascending pathway for robustly transmitting 

sound information to higher perceptual centers; thus, it would be expected that the 

shortest and most precisely-timed latencies would occur within the ICC instead of the 

ICO. Instead, there is a general rostral-lateral region of the IC (compared to the caudal-

medial IC) with the fastest and most precisely timed responses that includes neurons in 

the non-lemniscal pathway. 

 The trend for response duration was different than the gradients seen for FSL and 

FSL jitter. In contrast to those smooth gradients, a clear division could be drawn in the IC 

that separates two distinct populations of responses. One population contained sites with 

response durations that were sustained during acoustic stimulation (i.e., with normalized 

response duration ratios near 1), represented by the yellow-orange color in Figures 4E,F. 

This population contained 66.5% of the ICC sites and 65.8% of the ICO sites with a mean 

response duration equal to 1.12 ± 0.22. The second population consisted of sites with 

response durations that exceeded the duration of the stimulus, with a mean response ratio 
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equal to 1.49 ± 0.46. This population comprised 33.5% of the ICC sites and 34.2% of the 

ICO sites. This trend revealed that the sustained population resided in the rostral-lateral 

area of the IC and the other population resided in the caudal-medial area. As with FSL 

and FSL jitter, there were no clear differences observed in the spatial trend for response 

duration ratio between the ICC and the ICO.  

 Spontaneous activity showed a weak gradient with sites exhibiting high 

spontaneous firing rates in the rostral-lateral and lateral portions of the ICC and the ICO 

(PC4, θ=-65.7°; PC6, θ=-72.3°; PC7, θ=-75.3°). The calculated strength (PC4, R
2
=0.11; 

PC6, R
2
=0.13; PC7, R

2
=0.10) indicated the gradient does not account for a majority of 

the sites but rather verified that there was an area of higher firing rates (Fig. 4G,H). 

Again, there were no clear differences observed for spontaneous activity between the ICC 

and the ICO spatial trends. 

A comparison of the overall distributions of values found in each subregion or 

lamina was made for each response parameter in Figure 5 There was a significant 

difference between the two subregions for FSL (ICC mean ± std: 8.1 ± 2.8 ms; ICO: 8.1 

± 4.5 ms; p=0.026 two-tailed, unequal variance, ranked t-test), FSL jitter (ICC: 2.1 ± 2.3 

ms; ICO: 3.1 ± 3.3 ms; p=4.9E-6), response duration (ICC: 1.3 ± 0.4; ICO: 1.2 ± 0.4; 

p=5.0E-9), and had spontaneous activity (ICC: 46.3 ± 16.2 spikes/s; ICO: 42.5 ± 19.1 

spikes/s; p=3.8E-12). The ICC on average had shorter latencies, was more precise, had 

shorter response durations, and higher spontaneous firing rates than the ICO. This 

statistical result is expected when viewing Figure 4 since the ICO contains response 

property values at the extreme edges of each trend (i.e., the most caudal-medial and the 
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most rostral-lateral areas). Comparisons 

between the different ICC laminae 

revealed that there were no systematic 

differences across different BFs, though 

some laminae were significantly 

different from others (Fig. 5). The details 

of those significant differences are 

provided in Table 1.  

 

 

 

Figure 5. No systematic difference exists 

between BF laminae for temporal response 

parameters. Distributions are plotted for all 

eight ICC lamina and for ICO for the BBN 

noise and no-stimulation parameters. For 

each lamina and the ICO, plots provide the 

median, 1
st
 and 3

rd
 quartiles, and outlier 

values. Similar FSL, FSL jitter, and 

spontaneous firing rates were found across 

all laminae. Response duration showed the 

greatest number of differences between 

laminae, with shorter responses and a 

smaller distribution of values found in 

laminae with BFs less than 5.1 kHz. 

Significant differences in response 

parameters are summarized in Table 1. 
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Spatial Trends and Response Differences Are Not Dependent on Stimulation Level 

 In addition to 70 dB-SPL stimulation, temporal parameters were also analyzed at 

30 and 50 dB-SPL. At lower stimulation levels, the general spatial trends remained the 

same as at 70 dB-SPL, but the range of response values varied. As an example of this 

result, 2D maps of FSLs for each stimulation level can be seen in Figure 6. Each map 

showed a clear gradient from the caudal-medial and rostral-lateral areas of the IC, though 

the direction of each gradient varied slightly, represented by the arrow in each map (Fig. 

6). The apparent difference found in each of these 2D maps was the range of values 

measured, with faster latencies occurring with 70 dB-SPL acoustic stimulation. This 

conclusion is evident when comparing distributions per ICC lamina (Fig. 7). The median 

and range was inversely correlated with stimulation level. For FSL, each lamina had a 

larger median and range of values at 30 dB-SPL with smaller median FSLs and reduced 

ranges of values at higher levels (p<0.003). 
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Figure 6. FSL spatial maps for the three BBN stimulation levels show that the general direction 

of the trends is similar across levels, though the gradient angles vary slightly. Arrows point in the 

direction of the shortest latencies at the specified gradient angle. This angle was calculated from 

the caudal-medial corner of the 2D maps. All maps show a clear gradient from the caudal-medial 

to the rostral-lateral area of the IC, without any clear transition between the ICC and the ICO.  

 

 Similar to FSL, the location trends do not differ across stimulation level for FSL 

jitter and response duration (maps not shown), but the median and range do. FSL jitter 

was larger at 30 dB-SPL than 70 dB-SPL, and on average the range of measured values 

diminished with higher stimulation levels (p<0.002). In contrast, there was no systematic 

variation in response duration across stimulation levels. Taken as a whole, the temporal 
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parameters measured at lower acoustic stimulation levels reflect the same spatial trends 

shown in Figure 4 for 70 dB-SPL, but with different maximum and minimum values 

dependent on the level.  

 

 

 

 

 

 

 

 

 

Figure 7. Response ranges for temporal 

parameters are dependent on stimulation 

level. As stimulation levels increased, 

latency decreased, reflected by a larger 

median and range of values at 30 dB-

SPL and smaller median FSL values 

with reduced ranges at louder 

stimulation levels (p<0.003 two-tailed, 

unequal variance, ranked t-test with 

Bonferroni correction). FSL jitter 

medians and ranges of measured values 

decreased with higher stimulation levels 

(p<0.002). No systematic differences 

were found for response duration across 

different levels. 
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Fastest Neurons Located External to the Lemniscal Auditory Pathway 

 As shown in Figure 4, the sites with the shortest FSL and smallest FSL jitter 

values were located in the rostral-lateral area of the IC. In comparing the subregion of 

fastest 5% of sites and the most precise 5% of sites, most of these sites were outside of 

the ICC and within what we have defined as the ICO (Fig. 8). The ICO contained the 

absolute fastest sites, while the ICC contained the absolute most precise sites, but overall 

there were a greater majority of ICO sites that make up both populations (FSL – ICO: 

79.5%, ICC: 13.0%, SC: 7.5%; FSL Jitter – ICO: 69.2%, ICC: 28.1%, SC: 2.7%). It is 

not certain based on our methods if all sites categorized as ICO are part of what is 

traditionally defined as the non-lemniscal auditory pathway since some sites may extend 

beyond what anatomical studies have marked as the non-lemniscal region of the auditory 

midbrain. However, it is clear from our data that the fastest and most precisely timed 

neurons exist outside of the ICC, which is part of the lemniscal auditory pathway.  

 

Figure 8. The fastest neurons are located 

in the ICO. The fastest 5% of sites and 

most precise 5% of sites across the 

midbrain are provided. The absolute fastest 

neurons were located in the ICO and ICO 

sites accounted for 79.5% of the fastest 

overall sites (ICC: 13.0%, SC: 7.5%). The 

most precise neuron resided in the ICC, 

however a majority of the overall most 

precise neurons were from the ICO 

compared to the other subregions (ICO: 

69.2%, ICC: 28.1%, SC: 2.7%). 
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Spectral Parameters Show No Systematic Spatial Trends 

 Unlike temporal parameters, no consistent trends could be found across the IC for 

spectral parameters, which include BF threshold, Q-value at 10 dB above threshold, and 

Q-value at 60 dB-SPL. Though no apparent gradients or concentric spatial trends existed, 

these response parameters did show systematic differences when comparing between IC 

subregions and between ICC laminae. 

 Inspection of the 3D map for threshold reveals that low and high thresholds were 

scattered throughout the IC subregions and could not be characterized by a spatial trend 

(Fig. 9A). On average across all animals, sites in the ICC had significantly lower 

thresholds than sites in the ICO (ICC: 19.5 ± 11.7 dB-SPL; ICO: 22.2 ± 11.6 dB-SPL; 

p=7.2E-7). As shown in Figure 9B, we did not observe any obvious differences or trends 

across animals. In each animal, we purposefully varied the initial placements and the 

direction of subsequent placements per animal (e.g., GP1’s initial placements was in the 

rostral-medial corner of the IC and subsequent placements were made in a clockwise 

direction, indicated by the circle and arrows for GP1 in Figure 9B, which is different 

from GP2 and GP3). This step reveals no indication of thresholds shifting due to time-

specific adaptation or potential damage caused by subsequent placements in each animal 

that might have washed out any spatial trends for threshold. 

 Compiling all of the recordings sites across animals, we analyzed threshold trends 

across different BF laminae (Fig. 9C). L5 (p<1.4E-9) and L6 (p<1.1E-16) had 

significantly lower thresholds than all the other laminae. The two flanking BF laminae 

(L4 and L7), had significantly higher thresholds than L5 and L6 (p<1.4E-9), but 
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significantly lower thresholds than the remaining laminae (p<1.1E-5). With lowest 

thresholds at 6.0-10.1 kHz, our results match audiograms showing lowest thresholds at 

around 8 kHz for the guinea pig (Heffner et al., 1971; Prosen et al., 1978; Gourévitch et 

al., 2009). 

 

Figure 9. No spatial trends are apparent for threshold, but there are significant differences 

between laminae. A,B, Spatial trends were not evident in either the full 3D reconstruction (A) or 

the 2D visualizations of planar cuts separated for each animal (B). The arrow indicates the order 

of electrode array placements made during the experiment with a circle signifying the initial 

position for each animal. The initial recording placements were made in the rostral-medial corner, 

caudal-medial corner, and caudal-lateral corner for GP1, GP2, and GP3, respectively. Lowest 

thresholds were found within the ICC, but no spatial trend within the ICC was found. C, Between 

the laminae, L5 and L6 had significantly lower thresholds than all of the other laminae (p<0.01). 

 

 Similar to thresholds, no spatial trends were identified for Q-value at 10 dB above 

threshold or at 60 dB-SPL (Fig. 10A-D) and significant differences were detected when 

comparing between subregions and between laminae. ICC sites were more sharply tuned 

resulting in larger Q-values (10 dB: 2.1 ± 1.3; 60 dB-SPL: 1.3 ± 0.7) compared to those 

in the ICO, which on average were more broadly tuned (10 dB: 1.7 ± 1.5, p<1.4E-36; 60  
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dB-SPL: 0.7 ± 0.8, p<7.6E-24), signifying greater frequency selectivity in the ICC. This 

difference was evident when examining the 2D maps (Fig. 10B,D); sites with larger Q-

values lie within the ICC border. Further analysis was completed to determine if the sites 

within the ICC were organized concentrically, but no systematic organization was 

 

Figure 10. Spatial trends along each planar cut are not apparent for Q-value, but there are 

significant differences between laminae. A-D, Neither the full 3D reconstruction (A,C) nor the 2D 

visualizations per planar cut (B,D) showed a spatial trend; however there was narrower tuning 

found in the ICC compared to the ICO. E,F, Tuning width decreased with increasing BFs, with 

the narrowest tuning occurring at L8 for both 10 dB above threshold (E) and at 60 dB-SPL (F).  
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revealed. Significant differences were found for Q-values dependent on frequency (Fig. 

10E,F). As BF increased, tuning width decreased (i.e., Q-values increased) with the 

narrowest tuned sites found in L8. Laminae with BFs greater than 8 kHz had significantly 

higher Q-values at 10 dB above threshold and at 60 dB-SPL than laminae with BFs lower 

than 3.8 kHz (p=1.2e-19). All of the lamina results for every parameter are summarized 

in Table 1.  

 

Table 1. Significant difference for response parameters between laminae. 

 Lamina 1 Lamina 2 Lamina 3 Lamina 4 Lamina 5 Lamina 6 Lamina 7 

Lamina 8 ‡ ● ■ ♦ ■ ♦ ■ ♦ § ■ ♦ ‡ ● ■ ♦ § ● § ● 

Lamina 7 ● ■ ♦ ● ■ ♦ ● ■ ♦  ● ●  

Lamina 6 ● ■ ♦ ● ■ ♦ ● ■ ♦ ● ■ ■   

Lamina 5 ● ■ ● ♦ ● ●    

Lamina 4 ● § ● ●     

Lamina 3        

Lamina 2        

A summary of significant differences for response parameters across different laminae are 

provided in the table (p<0.0016, the largest p-value found that was still significant with 

Bonferroni correction). Comparison of the temporal parameters is shown for responses at 70 dB-

SPL. Each symbol represents a different response parameter: FSL (†), FSL jitter (‡), response 

duration (§), spontaneous firing rate (▲), threshold (●), Q-value at 10 dB at threshold (■), and Q-

value at 60 dB-SPL (♦). 

 

Response Parameter Model Fits 

 Simple equations were used to model FSL and FSL jitter as their spatial trends 

followed linear gradients along the caudal-medial to rostral-lateral axis. To create the 

model equations, all locations were first normalized between zero and one using the 
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smallest cube possible that encapsulated all the IC recording sites in the reconstruction. 

The origin point was set at the most rostral, medial, and ventral location and the variables 

in the equations give the normalized distance to the most lateral ( ), caudal ( ), and 

dorsal ( ) position. The final models were fit with parametric equations such that the 

location of each recording site (i.e., all three Cartesian coordinates) was represented by a 

single parametric value. The models were evaluated for high goodness of fit (R
2
) and 

similarly to experimental values (low mean square error, MSE). The final equations were 

exponential describing the expected response as a function of location in the IC (FSL = 

7.88e
1.43t

 where t = 0.54L – 0.60C + 0.60V – 0.25; FSL Jitter = 1.44e
4.06t

 where t = 0.48L 

– 0.50C + 0.72V – 0.39). The upper panels in Figure 11 show the measured values from 

these two parameters. Using those same locations within the IC, the lower panels show 

the expected responses calculated from the provided equations (Fig. 11). The resulting 

equations render a much smoother gradient than was actually measured, but the equations 

can successfully predict the parameter values as a function of location. It should be noted 

that these are not the smallest MSEs achievable, but that there is tradeoff between best fit 

and ease of implementation. Multiple linear regression fits with second and third order 

terms could achieve lower MSEs and higher R
2
 values, but at the cost of having over ten 

terms for each equation. In the end, we opted for equations that were feasible to 

implement, and simply demonstrate that FSL and FSL jitter can be systematically 

quantified as a function of location across the IC. 
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Figure 11. Simple equations could be used to model FSL and FSL jitter values as a function of 

location throughout the whole IC. Measured values are shown in the upper panels and expected 

responses calculated from the modeled equations as a function of locations are shown in the 

bottom panels. The measures of goodness of fit (R
2
) and similarity of the modeled to measured 

values (MSE) are provided in the plots. 

 

DISCUSSION  

 In mapping acoustic responses throughout the entire IC, we have compiled the 

most complete set of response parameter values available in the field, thus allowing us to 

assess the functional topography found in the IC and compare patterns across subregions. 

Our results indicate that clear spatial trends can be found for temporal response 
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parameters and spontaneous activity across the whole IC and clear distinctions can be 

made between subregions and laminae for spectral response parameters. The spatial 

trends for temporal responses revealed two unexpected results. First, no clear distinction 

can be made between the subregions, with trends extending into the ICO. The rostral-

lateral IC, regardless of subregion, shows faster FSLs, greater precision, sustained 

response durations, and higher spontaneous firing rates compared to the caudal-medial 

IC. Second, as part of the lemniscal system, we expected responses from the ICC to be 

faster and more robust than sites in non-lemniscal regions. However, while slow, 

imprecise responses were found in parts of the ICO, a majority of the fastest and most 

precise sites were also located in the ICO. Examination of the functional roles of these 

different regions in the ICO provides context for differences in responses found.  

 

Comparison of Functional Maps, Level and Lamina Trends to Previous Studies 

 To our knowledge, no functional mapping study has been completed that includes 

sites outside of the ICC or in response to BBN. Therefore, all the comparisons for our 

data are made with previous studies using pure tones and only in the ICC. Apart from 

spatial trends for spectral parameters, our results for spatial trends for temporal 

parameters and comparisons of the subregions, levels, and between laminae are 

consistent with previously found results.  

 The caudal-medial to rostral-lateral trend for FSL, FSL jitter, and response 

duration match those found in a previous study completed by our lab that focused on only 

two specific frequency laminae in the ICC . Our results show shortest FSL values in the 
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rostral-lateral area, while earlier work found shorter latencies mainly in lateral areas 

(Schreiner and Langner, 1988; Langner et al., 2002). Unlike previous studies that found 

concentric organizations with lower thresholds and narrower tuning in the center of the 

ICC (Stiebler, 1986; Ehret et al., 2003; Hage and Ehret, 2003), we found no concentric 

spatial trends. Instead, our results indicate locations with low thresholds and narrow 

tuning are dispersed throughout the ICC, similar to more recent studies (Portfors et al., 

2011).  

 Our results agree with previous studies showing that on average the ICC contains 

sites with shorter latencies, smaller jitter values, more sustained response durations, 

higher spontaneous firing rates, lower thresholds, and narrower tuning compared to ICO 

(Aitkin et al., 1994; Syka et al., 2000; Lumani and Zhang, 2010). Comparing results 

across levels, we found that latencies, FSL jitter, and Q-values were inversely 

proportional to stimulus level, wherein values decreased with increasing stimulus levels, 

which is also consistent with previous studies (Hind et al., 1963; Egorova et al., 2001; 

Tan et al., 2008). We did not see non-monotonic jitter relationships that have been found 

in the ICC previously (Tan et al., 2008). Finally in comparing trends across lamina, our 

results agree with others that found Q-values increase with BFs (Ramachandran et al., 

1999; Syka et al., 2000; Egorova et al., 2001; Egorova and Ehret, 2008) and that found no 

trend for latencies (Hind et al., 1963; Tan et al., 2008). We have not found literature on 

changes in jitter, response duration, or spontaneous firing rate as a function of BF, and 

therefore cannot make further comparisons.  
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 Some of the inconsistencies, specifically for spectral trends, may be accounted for 

by the use of ketamine-xylazine anesthesia and multi-unit versus single unit recordings. 

Ketamine-xylazine anesthesia has been shown to have little or no effect on auditory 

coding in the IC for temporal properties, but can increase spontaneous firing rates and 

decrease inhibitory areas in FRMs (Astl et al., 1996a; Alkhatib et al., 2006; Ter-

Mikaelian et al., 2007). In regard to multi-unit activity, if a trend was not observed, it 

may still occur on the single-unit level but was masked or obscured by multi-unit activity. 

However, it is unlikely a spatial trend would be completely eliminated due to multi-unit 

recording since neurons with similar properties would be clustered together, and thus 

general trends should still be observed. We did not observe any spatial spectral trends, at 

least under anesthesia. Results will need to be verified in awake preparations 

 

Function of Temporally Precise and Imprecise Neurons in the ICO 

 Based on previous studies, we expected responses in the ICO to be slower and 

less precise than responses in the ICC, as the lemniscal system is mainly responsible for 

efficient, reliable transmission of auditory information necessary for perception. In the 

caudal-medial area of the ICO we found temporally imprecise neurons as expected. 

However a surprising result was that a majority of the fastest and most precise neurons 

reside in the rostral-medial ICO. Examining the anatomical projections to and from these 

regions of the ICO provide necessary context to determine the use of both types of 

information in auditory processing and in the functions of those regions. 
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 The spatial trends found in the ICC may be aligned with and a result of the 

differential innervation by brainstem sources (Brunso-Bechtold et al., 1981; Aitkin and 

Schuck, 1985; Cant and Benson, 2006; Loftus et al., 2010). As the spatial trends extend 

out to the ICO in our functional data, it is possible that the same differential innervation 

that occurs in the ICC also extends out to the ICO. Since most ascending projections from 

the brainstem nuclei end in the ICC with some projections to the ICX, but with little 

innervation of the ICD, it is likely that the regions with fast, precise neurons in our 

studies correspond to the ICX (Ehret, 1997). This claim is supported by previous studies 

have observed fast, precise responses in the ICX (Aitkin et al., 1994; Syka et al., 2000). 

These studies however did not indicate the location of these fast, precise responses within 

the ICX, as we have provided in our results. For the ICD, in addition to the minor 

contribution from the ascending system, there are dense projections from the descending 

system, perhaps accounting for the slower, less precise responses found in our ICO data 

(Winer et al., 1998; Bajo and Moore, 2005; Malmierca and Ryugo, 2011). Based on these 

anatomical projections and organization, the question becomes what ICX function 

requires fast, precise responses and what ICD function requires slower information. 

 Fast, precise responses by the ICX may be necessary for its role in multimodal 

circuits. Prior evidence shows that the ICX is involved in head orientating actions and 

sound localization (reviewed in Huffman and Henson, 1990), with projections to the SC, 

the dorsolateral pontine nucleus (DLPN), ventrolateral tegmental nucleus, and dorsal 

cochlear nucleus (Aitkin and Boyd, 1978; Edwards et al., 1979; Caicedo and Herbert, 

1993; King et al., 1998). Information received by the ICX is sent directly to the SC and 
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indirectly to the cerebellum via the DPLN, allowing for initiation of necessary pinna, eye, 

and head movement to orient and to localize to the sound source (Syka and Straschill, 

1970; Hoddevik et al., 1977). These pathways suggest that the information is bypassing 

the cortical network, acting as a reflex versus relying on auditory perception before motor 

initiation. Studies confirm this reflex, as cortical inactivation does not affect head 

orienting (Smith et al., 2004; Nodal et al., 2012). Thus, the simultaneous projection of 

fast information to the ICX and the ICC allows for parallel processing leading to 

movement and perception, coordinating accurate, timely interaction with the surrounding 

environment.  

 In contrast, slow, imprecise responses in the ICD may allow for the integration of 

cortical feedback for auditory modulation. Activation and inactivation of the cortex has 

led to plastic changes throughout the ICC (Bajo and King, 2012; Suga, 2012). One 

pathway for this modulation is directly from the cortex to the ICC (Bajo and Moore, 

2005; Lim and Anderson, 2007b; Markovitz et al., 2013). However, as this pathway is 

predominantly excitatory, a second inhibitory pathway may exist via the ICD (Offutt et 

al., 2014). The delayed response of neurons in the ICD may allow for integration of 

ascending and descending input to correctly modulate the ICC. FSL in the auditory cortex 

in response to BBN ranges from 10-15 ms (Hackett et al., 2011) and transmission time to 

the IC from the A1 is 4-10 ms (Markovitz et al., 2013). The FSLs for the caudal-medial 

ICO, or the ICD, were from 15 to 25 ms, in line with the summation of time for sound to 

travel up to the cortex and then back to the ICD. This modulation may affect salience of 

or attention to auditory information that is coded within the ICC, as lesions to the ICD 
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have resulted in altered attention to an auditory stimulus (Jane et al., 1965). These 

descending networks to the ICD and the ICC have also been implicated in plasticity and 

learning (Xiong et al., 2009; Malmierca and Ryugo, 2011). Thus, the ascending 

information to the ICD and descending signal from the cortex can coordinate modulation 

of ICC neural activity to better attend to and learn the incoming sound information. 

 In conclusion and supported by previous anatomical and behavioral studies, our 

data suggest that different subregions of the auditory midbrain exhibit significant 

differences in timing properties necessary for supporting varying behavioral roles. For 

head and body orienting reactions to meaningful or life-threatening sounds, the 

coordination of the ICX and the ICC for movement and perception requires fast, precise 

responses in the ICX. For auditory modulation involved with attention or learning, 

coordination between ascending and descending auditory projections requires slow, 

imprecise responses in the ICD. These response properties are spatially organized in a 

distinct and systematic way across the IC, as revealed for the first time through our 

mapping results.  
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CHAPTER 3: SUPPRESSION AND FACILITATION OF AUDITORY 

NEURONS THROUGH COORDINATED ACOUSTIC AND MIDBRAIN 

STIMULATION 
 

 

 The IC is the primary processing center of auditory information in the midbrain and is 

one site of tinnitus-related activity. One potential option for suppressing the tinnitus percept is 

through deep brain stimulation via the AMI, which is designed for hearing restoration and is 

already being implanted in deaf patients who also have tinnitus. However, to assess the feasibility 

of AMI stimulation for tinnitus treatment we first need to characterize the functional connectivity 

within the IC. Previous studies have suggested modulatory projections from the ICD to the ICC, 

though the functional properties of these projections need to be determined. In this study, we 

investigated the effects of electrical stimulation of the ICD on acoustic-driven activity within the 

ICC in ketamine-anesthetized guinea pigs. We observed ICD stimulation induces both 

suppressive and facilitatory changes across ICC that can occur immediately during stimulation 

and remain after stimulation. Additionally, ICD stimulation paired with broadband noise 

stimulation at a specific delay can induce greater suppressive than facilitatory effects, especially 

when stimulating in more rostral and medial ICD locations. These findings demonstrate that ICD 

stimulation can induce specific types of plastic changes in ICC activity, which may be relevant 

for treating tinnitus. By using the AMI with electrode sites positioned within the ICD and ICC, 

the modulatory effects of ICD stimulation can be tested directly in tinnitus patients. 

 

INTRODUCTION 

 The IC is a major convergence center of the auditory system located within the 

midbrain that integrates bilateral ascending and descending inputs. The IC is subdivided 

into three main regions: the ICC, the ICX, and the ICD, each with a distinct role in 

auditory processing that can be substantiated by the projections to that region (Roth et al., 

1978; Faye-Lund and Osen, 1985; Coleman and Clerici, 1987; Casseday et al., 2002; 
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Oliver, 2005; Cant and Benson, 2006; Loftus et al., 2010). The ICC is the best 

characterized of all the IC regions, comprised of disc-shaped cells arranged in 

fibrodendritic laminae that constitute the tonotopic area of the IC (Morest and Oliver, 

1984; Oliver and Morest, 1984; Faye-Lund and Osen, 1985; Meininger et al., 1986; 

Malmierca et al., 1993). As the core auditory processing center in the IC, a majority of 

projections into the ICC ascend from lower auditory centers with a smaller percentage of 

innervation originating from the auditory cortex (Adams, 1979; Brunso-Bechtold et al., 

1981; Shneiderman et al., 1988; Saint Marie and Baker, 1990; Oliver et al., 1995; 

Schofield and Cant, 1996; Winer et al., 1998; Malmierca and Ryugo, 2011). Unlike the 

ICC, which is mainly an auditory center, the ICX is innervated by auditory, visual, and 

somatosensory projections and thus has a role in multi-sensory integration (Aitkin et al., 

1978; Aitkin et al., 1981; Binns et al., 1992; Knudsen, 2002; Gruters and Groh, 2012). 

Questions, however, remain about the role of the ICD in auditory processing. 

 The role of the ICD in auditory processing may be modulatory, suggested by the 

extensive inputs the ICD receives descending from the auditory cortex (Faye-Lund, 1985; 

Huffman and Henson, 1990; Herbert et al., 1991; Winer et al., 1998). Corticofugal 

projections have been shown to modify frequency tuning and tonotopic maps, shift 

thresholds, and alter sensitivity to sound localization cues within the ICC (Zhang et al., 

1997; Yan and Suga, 1998; Yan and Ehret, 2002; Suga and Ma, 2003; Nakamoto et al., 

2008; Bajo and King, 2012). Because the descending projections from the A1 targeting 

the ICD are more abundant than those targeting the ICC, it is possible that this 

descending modulation is achieved, at least in part, by a multi-synaptic pathway to the 
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ICC via the ICD. Anatomical studies within the IC have shown a network of intrinsic 

projections from the ICD to the ICC that supports this multi-synaptic pathway (Saldaña 

and Merchán, 1992; Malmierca et al., 1995; Saldana and Merchan, 2005). Modulation via 

ICD is also implicated by the results of inactivation studies, which have demonstrated 

changes in the ICC coding properties and plasticity effects when inactivating the IC 

surface, which likely included the ICD (Jen et al., 2001; Ji et al., 2001; Ji and Suga, 

2009). However, there are no studies to our knowledge that have directly activated ICD 

neurons to confirm and characterize their modulatory effects on ICC neurons.  

 The effects of ICD stimulation on ICC activity are particularly relevant for recent 

investigations of a new deep brain stimulator for tinnitus treatment. The AMI was 

initially developed for hearing restoration in patients with NF2, a genetic disease that is 

typically associated with bilateral acoustic neuromas (Lenarz et al., 2006; Schwartz et al., 

2008; Colletti et al., 2009b; Lim et al., 2009b). These patients become bilaterally deaf 

due to damage of the auditory nerves inflicted by growth and/or surgical removal of these 

tumors. For these patients, the AMI array consisting of one or two shanks with up to 22 

electrode sites can be inserted along the tonotopic axis of the ICC with minimal added 

risks by using the same surgical opening as tumor removal (Samii et al., 2007; Lim et al., 

2009a). Due to the hearing loss associated with the tumors, many of these patients also 

develop tinnitus, which has been linked to changes in spiking activity and synchrony 

across the auditory system, including the ICC (Eggermont and Kenmochi, 1998; Zhang 

and Kaltenbach, 1998; Brozoski et al., 2002; Ma et al., 2006; Bauer et al., 2008; Lanting 
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et al., 2009; Melcher et al., 2009; Roberts et al., 2010; Møller, 2011b; Wang et al., 2011; 

Mulders et al., 2014; Vogler et al., 2014).  

 In the initial AMI clinical trials, three of the five patients had tinnitus. In those 

three patients, the AMI array was implanted in the ICC, the ICD, and the lateral 

lemniscus. Stimulation in these patients interfered with the tinnitus percept but did not 

sufficiently suppress tinnitus (unpublished observations). Considering the proposed 

modulatory role of ICD, our hypothesis is that appropriate stimulation of ICD may alter 

auditory neural activity that is effective at suppressing tinnitus. For the one AMI patient 

implanted in the ICD, complete tinnitus suppression may not have been achieved due to 

inappropriate placement and stimulation of the electrode sites. Ultimately, we hope the 

AMI will be able to treat the general tinnitus population and not just deaf individuals 

undergoing implantation for hearing restoration. For most tinnitus patients who have 

functional hearing, one exciting opportunity is to combine AMI activation with acoustic 

stimulation paradigms. There are numerous studies in animals that have demonstrated the 

immense capability to shift neural coding and induce plasticity within the auditory system 

by pairing electrical stimulation of modulatory pathways with acoustic stimulation 

(Weinberger et al., 1993; Gao and Suga, 1998; Kilgard and Merzenich, 1998; Suga and 

Ma, 2003; Xiong et al., 2009; Engineer et al., 2011). Therefore, we further hypothesize 

that acoustic stimulation paired with AMI stimulation of different ICD regions could 

potentially treat tinnitus in humans. Currently, the AMI is designed for stimulating the 

ICC, but this array can be slightly modified to have electrodes positioned within the ICD 
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(Lim and Lenarz, 2015). With this modification, we will have the unique opportunity to 

assess the effects of ICD stimulation on tinnitus perception directly in human patients. 

 The goal of this study was to investigate the effects of electrical stimulation of the 

ICD on ascending auditory activity, not only to characterize the modulatory role of the 

ICD but also to begin assessing the potential for using the AMI for tinnitus treatment. We 

were primarily interested in determining if differential modulation can be achieved 

dependent on the ICD stimulation location. In addition, we were interested in the effects 

of different stimulation paradigms, including electrical stimulation only and electrical 

stimulation paired with broadband noise stimulation. We initially characterized the 

changes in acoustic-driven activity within the ICC since anatomical studies have already 

identified direct connections from the ICD to the ICC. In future studies, we can further 

assess how ICD stimulation alters neural coding across the auditory system through 

ascending and descending pathways (Aitkin and Phillips, 1984a; Caicedo and Herbert, 

1993; Winer et al., 1998; Malmierca and Ryugo, 2011), especially for properties directly 

linked to tinnitus. In each animal experiment, we electrically stimulated different regions 

of the ICD combined with or without broadband noise stimulation. We recorded the 

corresponding neural changes within different regions of the ICC before, during, and 

after a given stimulation paradigm to assess immediate and residual effects. Our results 

reveal that ICD stimulation induces both suppressive and facilitatory changes throughout 

the ICC that depend on the location of ICD stimulation as well as its relative timing with 

acoustic stimulation. These results show that modulation can be achieved through ICD 
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stimulation; whether this modulation is effective in tinnitus treatment can be investigated 

in future AMI patients. 

 

METHODS 

Overview 

 All experiments were performed in ketamine-anesthetized guinea pigs (Elm Hill 

Labs, Chelmsford, MA) in accordance with the guidelines of the University of Minnesota 

Institutional Animal Care and Use Committee. Basic surgical and electrophysiological 

recording and stimulating methods were detailed in previous works (Lim and Anderson, 

2007a; Markovitz et al., 2012; Straka et al., 2013). Multi-site, silicon-substrate electrode 

arrays (NeuroNexus Technologies, Ann Arbor, MI) were used to electrically stimulate 

and record neural activity in the IC. To investigate suppression and facilitation in the ICC 

during stimulation, multi-unit spike data were recorded in the ICC in response to 

electrical stimulation of the ICD alone as well as paired with acoustic stimulation at 

specific inter-stimulus intervals. Additionally, responses to acoustic stimulation alone 

were recorded before and after each ICD stimulation paradigm to evaluate changes in 

activity remaining in the ICC after stimulation. 

 

Surgery 

 Experiments were performed on 12 Hartley guinea pigs (393 ± 50g, Elm Hill, 

Chelmsford, MA). Animals were initially anesthetized with an intramuscular injection of 

ketamine (40 mg/kg) and xylazine (10 mg/kg). Anesthesia was administered throughout 



 

 60 

the experiment to maintain an areflexive state. A warm water blanket was used to 

maintain a body temperature of 38.0 ± 0.5°C, which was monitored with a rectal 

thermometer. Additionally, atropine sulfate (0.05 mg/kg) was administered periodically 

to keep the airway clear of mucous secretion. Animals were positioned in a stereotaxic 

frame (David Kopf Instruments, Tujunga, CA) using hollow ear bars into the ear canals 

and a bite bar. A craniotomy was performed to expose the right occipital lobe.  

 

Stimulation and data acquisition 

 Experiments were performed in an electrically and acoustically isolated sound 

chamber. Stimulation delivery and data collection were controlled by TDT hardware 

(Tucker-Davis Technologies, Alachua, FL) and custom software written in MATLAB 

(MathWorks, Natick, MA). Acoustic stimulation was delivered to the left ear by a 

speaker coupled to the hollow ear bar at a sampling frequency of 195 kHz. The speaker 

and ear bar were calibrated using a 0.25-in condenser microphone (ACO Pacific, 

Belmont, CA). Electrical stimulation was delivered through an optically isolated 

stimulator. A monopolar configuration was used for both electrical stimulation and 

recording, with the returns through needle electrodes placed directly into the parietal lobe 

and in the neck muscle, respectively. Neural signals were passed through analog DC-

blocking and anti-aliasing filters from 1.6 Hz to 7.5 kHz and sampled at 25 kHz. 
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Electrode array placement 

 Upon removing the dura, micromanipulators (Kopf Instruments, Tujunga, CA) 

were used to insert arrays into the ICC and the ICD. The electrode arrays consisted of 

two shanks separated by 500 µm with 16 sites linearly spaced along each shank at a 

separation of 100 µm. The recording electrode array was inserted at a 45° angle to the 

sagittal plane and through the occipital cortex into the midbrain to a depth that spans the 

tonotopic axis in the ICC (Malmierca et al., 1995; Snyder et al., 2004). The stimulating 

electrode array was inserted at a 90° angle to the horizontal plane and through the 

occipital cortex to a depth corresponding to the ICD. Some lateral locations 

corresponding to the ICX may have been included in the analysis; however excluding 

those points would not have changed our main findings (see data in the Results).  

 To identify the IC during placement of the electrode arrays, broadband noise (50 

ms duration, 0.5 ms rise/fall time, 6 octave bandwidth from 0.625 to 40 kHz, 70 dB-SPL) 

was delivered to the left ear to elicit acoustic-driven responses within the IC. FRMs, 

which indicate tuning properties of neurons, were created by presenting a random 

sequence of pure tones (1-40 kHz, 8 steps per octave) at varying levels (0-70 dB-SPL, 10 

dB-SPL steps) with four trials presented for each stimulus at 2/s. These FRMs were used 

to differentiate sites within the ICC versus those within the ICD. Sites in the ICC 

exhibited a tonotopic gradient from high frequencies on the deepest locations to low 

frequencies on more shallow sites (Merzenich and Reid, 1974; Snyder et al., 2004; 

Malmierca et al., 2008). The FRMs of sites in the ICD lacked a tonotopic organization 

and were predominantly double-peaked or broad in shape with no clear frequency 



 

 62 

selectivity (see Chapter 2, LeBeau et al., 2001; Palmer et al., 2013). Prior to placement, 

electrode arrays were stained with Di-I (Sigma-Aldrich, St Louis, MO) in order to enable 

identification of the array placements across the IC during the histological analysis. 

 In some experiments (n=5 animals), a single stimulation array placement was 

made in the ICD and multiple recording array placements were made in the ICC (Fig. 

12A). In the other experiments (n=7 animals), a single recording array placement was 

made in the ICC and multiple stimulating array placements were made in the ICD (Fig. 

12B). Across all 12 experiments, recording placements were made throughout the ICC 

(Fig. 12C), that fully sampled the ICC along the isofrequency dimension. Figure 12E 

shows a comparison of the recording locations across the ICC from this study to 

recording locations outside of the ICC taken from a separate mapping study (unpublished 

data from our lab). Sites designated as outside of the ICC were identified by the lack of 

systematic tonotopic shifts along the recording shank and fully encapsulate our recording 

locations (Straka et al., 2014). The stimulating array placements from all 12 experiments 

are shown in the 3D reconstruction (Fig. 12D) and along a 2D plane perpendicular to the 

array shanks (Fig. 12F). Most of the ICD was sampled; however it was not possible to 

sample the most medial portions of the ICD due to obstructive vasculature on the 

occipital cortex surface. For experiments where one ICD stimulation array placement and 

multiple ICC recording array placements are made, analysis was done for each of the ICC 

sites. Across the 12 experiments, where there are different numbers of ICD and ICC sites 

stimulated and recorded dependent on the experimental design used, modulation of each 

ICD-ICC site pair was analyzed. 
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Figure 12. Experimental protocols and array placements. A, In five experiments, one stimulation 

array placement (each array consists of two shanks) was made in the ICD and multiple recording 

array placements across the ICC. B, In seven experiments, one recording array placement was 

made in the ICC and multiple stimulating array placements in the ICD. C, All of the recording 

array placements (n=51 shanks shown in green) and D, all of the stimulating array placements 

(n=45 shanks shown in blue) were superimposed onto a single 3D reconstruction of the IC. Planar 

cuts (shown in yellow) were made through the reconstructions orthogonal to the electrode array 

trajectories. E, F, Coordinates of the shanks through each plane are plotted as 2D maps. E, For 

the recording locations, each shank location was plotted along what is approximated as an 

isofrequency lamina that also includes recording locations identified as being outside of the ICC 

(see Chapter 2) in order to show that we fully spanned the isofrequency dimension of the ICC. F, 

For the stimulation locations, the borders of the IC were included on the horizontal plane in order 

to show that we fully spanned the rostral-caudal extent of the ICD. We were unable to sample the 

most medial portion of the ICD due to obstructive vasculature on the occipital cortex surface. The 

most lateral locations may include some portions of the ICX.  
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Stimulation parameters 

 Different acoustic and electrical stimulation paradigms were used to examine both 

suppression and facilitation of neural activity in the ICC. Acoustic stimulation (AS-only) 

consisted of broadband noise stimulation (90 ms duration, 0.5 ms rise/fall time, 6 octave 

bandwidth from 0.625 to 40 kHz). The level presented varied based on the hearing 

threshold of each animal, with a typical level delivered at 10 to 20 dB-SPL above the 

neural threshold such that at least 50% of the ICC sites showed activity significantly 

above the spontaneous level (see Methods: Data analysis for further details). The 

acoustic stimulation level ranged from 30-70 dB-SPL with an average level across 

experiments of 40 dB-SPL.  

 Electrical stimulation consisted of 100 µA biphasic, charge balanced, cathodic 

leading pulses (205 µs/phase) presented to the ICD. The largest current level safe for the 

electrode (Lim and Anderson, 2006) was used to elicit the greatest modulation. Due to 

the limited time per experiment, additional current levels were not tested, though future 

studies can investigate varying electrical and acoustic levels. Electrical stimulation 

paradigms included electrical-only stimulation (ES-only) and paired acoustic-electrical 

stimulation. For the paired acoustic-electrical paradigms, the electrical pulse was 

delivered 8 ms or 18 ms following the onset of acoustic stimulation. The 8 ms paired 

acoustic-electrical paradigm (PAES_8) allowed electrical stimulation to effect the ICC 

approximately before or simultaneous with the onset of acoustic activation. Onset 

latencies for acoustic-driven activity within the IC typically range between 4 and 25 ms 

with an average found for guinea pigs of about 13 ms (Langner et al., 1987; Schreiner 
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and Langner, 1988; Syka et al., 2000; Ter-Mikaelian et al., 2007). The 18 ms paired 

acoustic-electrical paradigm (PAES_18) allowed electrical stimulation to effect the ICC 

approximately after the onset of acoustic activation. 

 For each ICD array placement, 3-4 stimulating sites were selected from each 

shank located within the ICD. The following paradigms were completed sequentially for 

each stimulating site: AS-only, ES-only, AS-only, PAES_18, AS-only, PAES_8, AS-

only. Each paradigm consisted of 100 trials presented at 2 trials/s. All 100 trials were 

presented for each paradigm before starting the subsequent paradigm. For each 

stimulating site, the AS-only paradigm was interleaved with electrical paradigms in order 

to assess different modulatory effects. All seven stimulation paradigms were completed 

for each stimulation site before proceeding to the next stimulation site. For these 

experiments, there were many parameters that could have been varied, each potentially 

affecting the results in different ways. Due to the limited time per experiment and in 

order to systematically track these potential effects across a reasonable number of 

animals, we initially chose to focus on varying electrode array placements in the ICC and 

in the ICD to test the effects of location. In doing so, we used the same acoustic and 

electrical levels, paradigm order, and recovery time across experiments to minimize their 

confounding influences on the location effects. In part, we chose this protocol because 

keeping the locations in the ICC and ICD constant across experiments was not readily 

possible whereas randomizing locations while keeping the other parameters constant was. 

Furthermore, identifying locations for implanting an array in patients will be critical for 
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tinnitus treatment. The ramifications of this methodology in interpreting the results will 

be discussed in Discussion: Stimulus timing dependent plasticity. 

 

Data analysis  

 The neural recordings were bandpass filtered offline from 0.3 to 3 kHz to extract 

and analyze multi-unit spike activity. For recordings taken during electrical stimulation, 

the artifact was removed prior to bandpass filtering the signal. Spikes were counted if the 

amplitude exceeded three standard deviations above the background noise level. 

Modulation of ICC activity was only analyzed on sites where acoustic-driven activity was 

significantly greater than spontaneous activity using signal detection theory (Green and 

Swets, 1966; Lim and Anderson, 2007a), which compared the spike distributions of 90 

ms windows of acoustic-driven and spontaneous activity. Sites were excluded if the two 

distributions of spike counts per trial were not significantly different from each other 

(d’<1), which was deemed as insufficient evoked neural activity. 

 

 Immediate and residual modulation. A two-tailed, unequal variance, ranked t-test 

(Ruxton, 2006a) was used to compare spike count distributions to determine if a 

recording site underwent immediate or residual modulation, with significance determined 

at p<0.01. Immediate modulation occurred when the spike count distribution for a paired 

acoustic-electrical stimulation paradigm was significantly different than that for the 

preceding AS-only paradigm. For all immediate comparisons, spike counts were found 

within a window which began 4 ms after the onset of the electrical artifact (i.e., 



 

 67 

immediately after the electrical artifact removal window) and ended at the offset of 

acoustic stimulation, giving total window lengths of 68 ms for PAES_18 and 78 ms for 

PAES_8. Residual modulation compared the two AS-only spike count distributions 

surrounding an electrical paradigm. The window for this analysis started 8 ms after the 

onset of acoustic stimulation to allow for sound transmission to the ICC and ended at the 

offset of acoustic stimulation for a total window of 82 ms.  

 Immediate suppression (facilitation) occurred if the activity to paired acoustic-

electrical stimulation was significantly lower (higher) than that of the AS-only response 

preceding the paired paradigm. Immediate modulation was only assessed in comparison 

to the activity elicited from the preceding AS-only and not to the activity elicited from 

the preceding ES-only (e.g., to assess the amount of enhancement beyond the sum of the 

individual paradigms). This approach was selected because there was a relatively small 

number of ICD-ICC site pairs that exhibited activity in response to ES-only (513 of 4109 

ICD-ICC site pairs), which would have limited our ability to perform a summation 

analysis. Furthermore, the immediate modulation elicited for this group of ICD-ICC site 

pairs was distributed, with suppression for 101 site pairs, facilitation for 155 site pairs, 

and no significant change for 257 site pairs, indicating that the presence of activity to ES-

only did not always result in facilitation or enhancement. For these reasons, the 

immediate modulation analysis only focused on how much ICD stimulation could alter 

ongoing acoustic-driven activity (i.e., ascending coding properties). Residual suppression 

(facilitation) occurred if the AS-only response following the electrical paradigm yielded a 
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significantly lower (higher) spike count than the AS-only response preceding the 

electrical paradigm.  

 

 Modulation spread and strength. Two metrics were used to quantify the 

extent of modulation within the ICC caused by ICD stimulation. The first metric was 

spread, which was the percent of sites across the ICC that were significantly suppressed 

or facilitated for each ICD stimulation location. The second metric was strength, which 

measured the amount of change that occurred on each of the significantly modulated 

sites. Strength was calculated as a normalized value by dividing the spike count during 

the electrical paradigm (for immediate) or the following AS-only paradigm (for residual) 

by the spike count of the preceding AS-only paradigm. 

 

 Histology and maps. The histological process and 3D reconstruction were 

detailed in a previous publication (Markovitz et al., 2012) and are briefly described here. 

At the end of an experiment, the animal was euthanized with an intracardiac injection of 

an overdose of pentobarbital. The head was removed and placed in 3.7% 

paraformaldehyde. The brain was completely removed from the skull within four days 

following the acute experiment and the right midbrain was sectioned and placed in 

sucrose within ten days of the acute experiment. After 24 hours in sucrose, the tissue was 

cryo-sliced into 60 µm thick slices and mounted on slides. The slices were then imaged 

and digitally processed to create a 3D midbrain reconstruction using Rhinoceros software 

(Seattle, WA). A brightfield image was taken of each slice to digitally trace its outline 
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and to align all the slice tracings together into a 3D reconstruction of the midbrain. The 

positions of the electrode arrays within the 3D midbrain were reconstructed from images 

taken under a green fluorescent filter, which captured the Di-I stains of the arrays within 

the brain slices. Once the 3D brain reconstructions were completed for each animal, they 

were normalized across animals so that all recording and stimulation shanks were 

superimposed onto one normalized midbrain (Fig. 12). 

 Additional steps were taken to create 2D maps from the 3D renderings that would 

be used for assessing location trends across the ICC or the ICD for spread and strength. 

For the ICC, 2D planes were constructed to approximately align with the isofrequency 

laminae (i.e., orthogonal to the recording arrays; an example plane is shown in Figure 

12C). Planes were created at three different depths relative to the IC surface 

corresponding to specific laminae in guinea pigs (unpublished data from our lab: 1.3 mm 

for 3-4.5 kHz, 1.6 mm for 6-9.1 kHz, 1.9 mm for 10-15.2 kHz). The frequency ranges of 

these laminae were based on the BFs of the recorded sites at those corresponding depths. 

The BF was calculated from the FRM of each site by taking the frequency centroid of 

activity at 10 dB-SPL above the minimum threshold, as further described in (Lim and 

Anderson, 2006). We selected these three frequency ranges, that each spanned two 

critical bandwidths, because there were a sufficient number of sites for assessing 

locations trends along these ICC laminae (n=86 for 3-4.5 kHz, n=189 for 6-9.1 kHz, 

n=158 for 10-15.2 kHz). It is important to note that while the different laminae exhibit 

some variations in shape and curvature relative to the 45 tonotopic orientation 

(Malmierca et al., 1995), an approximation of each lamina as a flat plane does not 
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compromise the ability to identify location trends. The absolute distance between sites 

may be skewed by the projection onto a flat plane, but the relative locations of sites to 

each other are preserved. 

 For analyzing the ICD location effects, the medial-lateral and caudal-rostral 

coordinates for all stimulating shanks were compiled onto one normalized midbrain 

reconstruction and mapped onto a single transverse plane (Fig. 12D,F). We initially 

attempted to analyze ICD location effects along the dorsal-to-ventral axis, but further 

analysis was not pursued as no obvious trend was observed across this dimension. By 

using a single transverse plane, each shank position only appears as a single point in 

Figure 12F even though there can be up to four stimulation sites corresponding to that 

location. For analyzing stimulation location trends across this single plane, we slightly 

staggered the locations of all the sites for each shank location so that they could be visible 

and included in the analysis (e.g., see Figure 18). 

 

RESULTS 

 We analyzed and compared the immediate and residual effects across the ICC for 

stimulation of different ICD sites for PAES_18, PAES_8, and ES-only to examine 

modulation differences due to recording and stimulation locations as well as stimulation 

paradigms. Separate maps for the effects elicited during and after each stimulation 

paradigm were created in the ICC and the ICD. For the ICC, the strength of the 

modulation was mapped onto each recording site. For the ICD, the spread produced 

across ICC by each ICD stimulation site was mapped onto each site location. We did not 
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observe any noticeable location trends across the ICC or the ICD for immediate effects 

for any of the stimulation paradigms. However, we did observe stimulation location 

trends across the ICD for residual effects using PAES_18, but not PAES_8 or ES-only. 

Considering these findings, only the residual data for PAES_18 is presented below. 

However, a summary of the differences in residual spread resulting from the three 

stimulation paradigms and a comparison of residual and immediate simulation effects for 

PAES_18 are included to highlight the unique modulation properties caused by 

PAES_18. 

 

Residual modulation in the ICC 

 Neural activity was recorded across the ICC in response to 154 different 

stimulation sites in the ICD. Stimulation of every ICD site modulated activity in the ICC, 

though the spread and strength of the suppression or facilitation varied across sites. To 

obtain a representative measure of spread across the ICC for a stimulated ICD site, we 

initially analyzed data from experiments in which we mapped multiple shank locations 

across the ICC (i.e., >34 ICC sites recorded for a given ICD stimulation site). These data 

correspond to 35 ICD sites from five animals. Figures 13A,B present data from a single 

animal to show how stimulation of two different ICD sites with PAES_18 can result in 

large suppression spread (Fig. 13A, 46.0% of ICC sites suppressed) while stimulation of a 

second site that was separated by 500 µm resulted in minimal suppression spread (Fig. 

13B, 11.1%). Differences in spread across ICD sites can also be seen for facilitation, in 

which stimulation of one ICD site resulted in large facilitation spread (Fig. 14A, 23.4%) 
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while stimulation of another site from the same animal resulted in minimal facilitation 

spread (Fig. 14B, 4.7%). For the 35 stimulated ICD sites, histograms of the suppression 

spread (Fig. 13C) and facilitation spread (Fig. 14C) indicate that stimulation of the ICD 

generally causes greater residual suppression (mean: 18.2%, SD: 9.5%) than facilitation 

(mean:6.1%, SD: 6.5%). Significance was determined at p<0.01 two-tailed, unequal 

variance, ranked t-test.  

 

 

Figure 13. Examples across cases show variability of suppression spread. A, A single stimulation 

site in the ICD (circled in red) resulted in a suppression spread of 46.0% (29 significantly 

suppressed sites out of 63 ICC sites shown in black, see Methods: Data Analysis for statistical 

methods) compared to B, an ICD stimulation site 500 µm away that resulted in a suppression 

spread of 11.1% (7 of 63 ICC sites). C, A histogram of the suppression spread resulting from 35 

stimulated ICD sites from five animals is shown with an average of 18.2 ± 9.5% (mean ± SD). A 

total of 2428 ICC sites were included in this analysis, with 456 ICC sites showing suppression. 
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Figure 14. Examples across cases show variability of facilitation spread. A, A single stimulation 

site in the ICD (circled in red) resulted in a facilitation spread of 23.4% (15 significantly 

facilitated sites out of 64 ICC sites shown in black) while B, another ICD site 500 µm away 

resulted in a facilitation spread of 4.7% (3 of 64 ICC sites). C, A histogram of the facilitation 

spread resulting from 35 stimulated ICD sites from five animals is shown with an average of 6.1 

± 6.5% (mean ± SD). A total of 2428 ICC sites were included in this analysis, with 146 ICC sites 

showing facilitation. 

 

In addition to spread effects, the strength of modulation varied across different 

ICC recording sites. PSTHs of AS-only recordings before and after stimulation are 

plotted for two different ICC recording sites in response to the same stimulated ICD site 

(Fig. 15A). For this example, different suppression strengths were observed for the two 

ICC sites (decrease of 51.4% versus 13.9%). Figure 15B plots the histogram of different 

suppression strengths across all ICC recording sites in which there was an average 

decrease of 17.1%. Differences in facilitation strength were also observed across ICC 

sites. Figure 16A shows one example in which different facilitation strengths were 

observed for two different ICC sites in response to the same stimulated ICD site (increase 

of 66.5% versus 17.7%). Figure 16B plots the histogram of different facilitation strengths 

across all ICC recordings sites in which there was an average increase of 19.7%. We did 

not observe any significant differences in the distribution of suppressive and facilitatory 
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strengths, which is evident when comparing Figures 15B and 16B. Overall, stimulation of 

each ICD site resulted in weak and strong modulation of different ICC sites, but there 

were generally more sites being suppressed than facilitated using PAES_18. 

 

Figure 15. Examples of suppression strength. A,B, Stimulation of a single ICD site could induce 

strong suppression (A - 51.4% decrease) or weak suppression (B - 13.9% decrease) on different 

ICC sites. C, A total of 456 out of 2428 ICC sites were suppressed by the 35 stimulated ICD sites 

from Fig. 13 and 14 with an average decrease of 17.1 ± 10.7%. 

 

 

 

Figure 16. Examples of facilitation strength. A,B, Stimulation of a single ICD site could induce 

strong facilitation (A - 66.5% decrease) or weak facilitation (B - 17.7% decrease) on different 

ICC sites. C, A total of 146 out of 2428 ICC sites were facilitated by the 35 stimulated ICD sites 

from Fig. 13 and 14 with an average increase of 19.7 ± 16.9%. 
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Residual modulation trends across the ICC recording locations 

 To assess if ICD modulation varied for different recording locations across the 

ICC laminae, we assembled the data into three different isofrequency planes (Fig. 17), as 

explained in the Methods: Histology and maps. Each site represents where the shank 

intersected with the isofrequency plane (Fig. 17). On some shanks, multiple recording 

sites had BFs within each frequency range (low frequency, nshanks=29, nsites=86; middle 

frequency, nshanks=47, nsites=189; high frequency, nshanks= 44, nsites=158). For each shank, a 

binary analysis was performed to indicate whether or not sites in each frequency range 

could be significantly modulated by any stimulated ICD site. The filled circles represent 

locations in ICC that were modulated and unfilled circles represent unmodulated 

locations. For the low frequency lamina, 58.6% of locations were suppressed and 44.8% 

were facilitated. For the middle frequency lamina, 91.5% of the locations were 

suppressed and 68.1% were facilitated. For the high frequency lamina, 75.0% of the 

locations were suppressed and 52.3% were facilitated. Visual inspection of the binary 

analysis (Fig. 17) reveals that suppression and facilitation can occur throughout an ICC 

lamina without any specific regions exhibiting greater modulation. To further evaluate if 

differential modulation occurred across the ICC, maps of strength were plotted as a 

function of ICC location (data not shown). No clear location trends were observed across 

the ICC laminae, consistent with the binary spread plots (Fig. 17). 
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Figure 17. Modulation across an ICC lamina. ICC recording sites from 12 animals and three 

different frequency ranges (low frequency, nshanks=29, nsites=86; middle frequency, nshanks=47, 

nsites=189; high frequency, nshanks= 44, nsites=158) were mapped onto their corresponding 

isofrequency plane. Modulated locations showed significant suppressive or facilitatory residual 

changes to PAES_18. Modulated and unmodulated locations were distributed throughout an 

entire ICC lamina. 

 

Residual modulation trends across the ICD stimulation locations 

 We mapped all of the ICD site locations onto a 2D plane (Fig. 18A). Across 

twelve animals, 154 different stimulation sites were used from 45 total shank placements 

for a total of 4109 ICD-ICC site pairs. Note that each shank placement could have three 

to four ICD sites along the shank, in which we slightly staggered those sites so they could 

be visualized and analyzed. Two parameters of spread are mapped for each ICD location 

(Fig. 18A). The first is the percent of ICC sites suppressed, represented by the color of the 

circles, with darker colors indicating larger spread. The second parameter is the 
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maximum number of ICC sites for a given ICD location in which larger circles indicate 

more sites could have been suppressed in the ICC. Large-dark circles represent ICD sites 

that elicited a large amount of spread in comparison to large-light circles that represent 

more sites could have been suppressed in the ICC. Large-dark circles represent ICD sites 

 

Figure 18. Residual suppression spread depends on ICD stimulation location. A, All stimulation 

sites (n=154) were mapped onto a horizontal plane through the ICD. Two parameters were 

mapped along the plane: spread and total number of sites that could be modulated. Large-dark 

circles indicate that maximal suppressive spread across the ICC can be elicited by stimulation of 

that ICD location. B, The suppression spread significantly increased (p<<0.001) as a function of 

location along the steepest gradient axis from the caudal-lateral to the rostral-medial regions in 

the ICD. The steepest gradient axis for suppression spread is shown on the map as a dotted line. A 

total of 740 out of 4109 ICD-ICC site pairs were suppressed by ICD stimulation. 
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that elicited a large amount of spread in comparison to large-light circles that represent 

ICD sites that had the potential to suppress a large number of ICC sites but failed to do 

so. Since we visually observed a location trend, we further analyzed the ICD map to 

define the steepest gradient axis for spread, which corresponds to a vector across ICD 

showing the direction of the greatest change in suppression spread. The steepest gradient 

axis was calculated by two-dimensional multiple linear regression analysis where the 

modulation response was predicted by the location of each stimulation site. Figure 18B 

shows that the spread of suppression significantly increases as a function of ICD location 

along that steepest gradient axis (p<<0.001; along the dotted black line in Fig. 18A). The 

weakest spread of suppression occurred from stimulation of sites in the caudal-lateral 

region of the ICD. Similar plots and analyses were performed for facilitation spread. No 

clear location trend was observed across the ICD (Fig. 19) and we did not identify any 

significant steepest gradient axis for facilitation spread (data not shown). Our findings 

indicate that the greater spread of suppression versus facilitation for PAES_18 is due to 

ICD stimulation location rather than ICC recording location. In particular, PAES_18 

causes greater suppression in ICC when stimulating in more rostral and medial ICD 

locations, while eliciting facilitation in ICC when stimulating throughout the ICD. 
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Figure 19. No trend for ICD stimulation location was observed for residual facilitation spread. 

All stimulation sites (n=154) were mapped onto a horizontal plane through the ICD. Two 

parameters were mapped along the plane: spread and total number of sites that could be 

modulated. Large-dark circles indicate that maximal facilitatory spread across the ICC can be 

elicited by stimulation of that ICD location. A total of 314 out of 4109 ICD-ICC site pairs were 

facilitated by ICD stimulation. 

 

Differences in residual spread across stimulation paradigms 

 In contrast to PAES_18, we did not observe any location trends for ES-only and 

PAES_8. Figure 20 summarizes the differences in spread effects for these three 

stimulation paradigms, using only the data from experiments in which we mapped 

multiple shank locations across the ICC. The spread of suppression for PAES_18 is 

significantly larger than that of the other two paradigms (18.2 ± 9.7% compared to 12.9 ± 

8.9% for ES-only, p<0.05, and 12.5 ± 12.1% for PAES_8, p<0.05). Conversely, the 

facilitation spread is significantly reduced for PAES_18 compared to the other two 

paradigms (6.1 ± 6.5% compared to 9.9 ± 6.9% for ES-only, p<0.05, and 9.6 ± 5.9% for 

PAES_8, p<0.05). In comparing suppression versus facilitation effects, Figure 20 

indicates that paired stimulation with a specific delay (i.e., PAES_18; p<<0.001) can 
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cause different extents of suppressive versus facilitatory modulation that does not occur 

for another delay (i.e., PAES_8) or ES-only. 

 

Figure 20. Comparison of residual spread induced by different stimulation paradigms. PAES_18 

induced significantly more residual suppression and less residual facilitation than ES-only and 

PAES_8 (two-tailed, unequal variance, ranked t-test with Bonferroni correction; p<0.05 *). 

PAES_18 also induced significantly more suppression than facilitation (p<<0.001 **). This figure 

plots the median and distribution of suppression and facilitation spread values. The mean ± SD 

for each paradigm are as follows: ES-only - suppression spread = 12.9 ± 8.9% and facilitation 

spread = 9.9 ± 6.9%; PAES_18 - suppression spread = 18.2 ± 9.7% and facilitation spread = 6.1 ± 

6.5%; PAES_8 - suppression spread = 12.5 ± 12.1% and facilitation spread = 9.6 ± 5.9%. The 

total number of ICC sites analyzed and the resulting number of sites suppressed and facilitated 

are as follows: ES-only 324 suppressed and 219 facilitated out of 2377 ICC sites; PAES_18 - 456 

suppressed and 146 facilitated out of 2428 ICC sites; PAES_8 - 288 suppressed and 222 

facilitated out of 2313 ICC sites.  

 

Immediate modulation guides residual modulation 

 In addition to the residual analysis described above, we also analyzed and 

compared the immediate changes in the ICC caused by PAES_18 and by PAES_8. ICD-

ICC site pairs could be modulated immediately and/or residually or show no change due 
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to paired stimulation, as shown in Table 2. From the pooled results of PAES-18 and 

PAES-8, a total of 705 ICD-ICC site pairs (8.70%) were both immediately and residually 

modulated significantly across all experiments. Of the total 8102 ICD-ICC site pairs that 

were analyzed for significant immediate and/or residual modulation (4109 ICD-ICC site 

pairs from PAES-18 and 3993 ICD-ICC site pairs from PAES-8), 14.46% were only 

immediately modulated and 15.84% were only residually modulated. Around 60% of the 

ICD-ICC site pairs sampled in these experiments showed no immediate or residual 

modulation consistent with the results shown in Figures 13 and 14, where a single ICD 

stimulation site generally modulated only a subset of ICC sites. 

Table 2. Immediate and residual modulation resulting from paired paradigms. 

Immediate 

Modulation 

Residual 

Modulation 

Number of ICD-

ICC Site Pairs 
Percentage 

Suppression Suppression 467 5.76 

Facilitation Facilitation 176 2.17 

Suppression Facilitation 35 0.43 

Facilitation Suppression 27 0.33 

Suppression No Change 690 8.52 

Facilitation No Change 481 5.94 

No Change Suppression 763 9.42 

No Change Facilitation 520 6.42 

No Change No Change 4943 61.01 

ICD-ICC site pairs were pooled for this analysis from both PAES_18 and PAES_8 to determine if 

a correlation exists between immediate and residual modulation regardless of the paired paradigm 

used. A total of 8102 ICD-ICC site pairs were analyzed for significant immediate and/or residual 

modulation due to PAES_18 (4109 ICD-ICC site pairs) or PAES_8 (3993 ICD-ICC site pairs). 

Results show that 8.70% of all ICD-ICC site pairs are both immediately and residually modulated 

while 14.46% are only immediately modulated and 15.84% are only residually modulated due to 

paired paradigms. 

 

However, all the ICD sites stimulated here were still able to activate ICC sites 

across all laminae (Fig. 17). It is possible that stimulating additional ICD sites not 
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sampled in this study would activate different subsets of ICC sites and thus would 

decrease the number of unmodulated sites. For each of the ICD-ICC site pairs that were 

immediately and residually modulated, the strength of the immediate modulation and of 

the residual modulation were compared (Fig. 21). Of all the site pairs modulated 

immediately and residually by a paired paradigm, 66.2% were immediately suppressed 

and also residually suppressed and 25.0% were immediately facilitated and also 

residually facilitated. These results suggest that the type of modulation (i.e., suppression 

or facilitation) that occurs during PAES-18 or PAES-8 drives the type of residual 

modulation for site pairs that are both immediately and residually modulated. Only 8.8% 

of site pairs switched modulation direction following stimulation. 

 

Figure 21. Type of immediate modulation generally directs the type of residual modulation. Sites 

that exhibited significant immediate and significant residual modulation due to a paired paradigm 

were plotted based on the strength of each of the modulations (ntotal=705). Data was pooled from 

PAES_18 and PAES_8 to assess the relationship between immediate and residual modulation 

regardless of the paired paradigm used. Immediate and residual modulations were typically in the 

same direction (i.e., both suppressive or both facilitatory) in which 66.2% of the sites were 

suppressed and 25% were facilitated. Only 8.8% of the sites showed a switch in modulation type. 
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DISCUSSION 

 The goals of these experiments were to identify the types of ICC modulation 

possible through electrical stimulation of the ICD, to determine if any location trends 

existed in either the ICC or the ICD, and to compare the extent of suppression and 

facilitation elicited in ICC by different ICD stimulation paradigms. For all three electrical 

stimulation paradigms, we observed both immediate and residual suppression and 

facilitation across different ICC locations. We also observed that stimulation of every 

location in the ICD caused some amount of significant modulation in neural activity in 

the ICC. In particular, each ICD site could modulate a different subset of ICC neurons 

(<40% of the ICD-ICC sites pairs shown in Table 2 with varied patterns shown in Figure 

13 and Figure 14). For PAES_18, more residual spread of suppression was elicited by 

stimulating rostral and medial regions of the ICD. Compared to PAES_8 and ES-only, 

PAES_18 also appeared to exhibit significantly more residual spread of suppression and 

less residual spread of facilitation, suggesting that paired stimulation with different inter-

stimulus delays can alter the relative amount of suppression versus facilitation across the 

ICC. Furthermore, the type of residual modulation was predicted by the type of 

immediate modulation. In a majority of ICD-ICC site pairs that were both immediately 

and residually modulated, sites that were immediately suppressed (facilitated) were also 

residually suppressed (facilitated). In summary, our findings demonstrate that ICD 

stimulation can modulate the ICC and that targeting different ICD regions with paired 

acoustic-electrical stimulation may be a way to induce varying types of plasticity within 
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the ascending auditory pathway, which in turn could potentially modulate the tinnitus 

percept. 

 

Functional connectivity between the ICD and the ICC 

 Our results show that stimulation of the ICD both increases and decreases spiking 

activity in the ICC, which is in contrast to the functional effects shown from the ICX to 

the ICC that were found to be inhibitory (Jen et al., 2001; Jen et al., 2002). Previous 

studies have shown that corticofugal activation and inactivation of the ICC can lead to 

excitatory and inhibitory changes within the ICC (Mitani et al., 1983; Syka and Popelar, 

1984; Sun et al., 1989; Torterolo et al., 1998; Zhang and Suga, 2000; Zhou and Jen, 

2000). Considering that projections from auditory cortex to the IC, including the ICC, are 

considered to be excitatory (i.e., glutamatergic; Rockel and Jones, 1973; Feliciano and 

Potashner, 1995; Saint Marie, 1996; Saldana et al., 1996), it is expected that inhibitory 

effects within the ICC are induced by the auditory cortex through a multi-synaptic 

pathway via the ICD and the ICX. Corticofugal excitatory effects, especially for 

frequency specific changes in the ICC, are expected to involve both direct projections to 

the ICC (Saldana et al., 1996; Yan and Suga, 1999; Bajo and Moore, 2005; Bajo et al., 

2007; Lim and Anderson, 2007a; Xiong et al., 2009; Markovitz et al., 2013) and indirect 

multi-synaptic projections via the ICD. Our results support this type of functional 

organization, which is also consistent with the excitatory and inhibitory synapses from 

the ICD to the ICC shown in previous anatomical studies (González-Hernández et al., 

1996; Saint Marie, 1996; Nakamoto et al., 2013).  
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Methodological considerations in interpreting location trends 

 There are several potential limitations to consider when interpreting our results. 

The first set of limitations relates to the ICD location trends observed in our study. 

Location trends could have been affected by the limited recovery time allowed by our 

chosen experimental protocol. The modulatory effects elicited by one stimulation site 

may have lasted for tens of minutes to several hours, and thus influenced or masked the 

modulatory effects of proceeding stimulation sites. However, we specifically designed 

our experimental protocol to minimize this issue, wherein the ICD stimulation locations 

were varied within an experiment and across all experiments by starting in different 

locations and moving to sites in different directions. Therefore, if a location trend was 

observed (i.e., for residual spread of suppression following PAES_18), then we know it 

truly exists. If a trend was not observed (i.e., for residual spread of facilitation following 

PAES_18 or other possible trends), then it may still exist but was somehow masked by 

our protocol.  

 ICD location trends may have also been missed due to the artificial way electrical 

stimulation activates central neurons. In using monopolar electrical stimulation, which 

can cause current spread out to hundreds of microns depending on the cell type and 

orientation (Ranck, 1975; McIntyre and Grill, 2000), we could have stimulated a complex 

network of neurons as well as overlapping populations across different ICD sites. 

Additionally, electrical stimulation may have activated axons passing by the stimulated 

sites that originate within or outside of ICD. One example of passing fibers includes 

commissural projections, which arise from every subregion in the IC and project to 
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homotopic regions of the contralateral IC (Aitkin and Phillips, 1984b; González 

Hernández et al., 1986; Coleman and Clerici, 1987; Saldaña and Merchán, 1992; 

Malmierca et al., 1995). These commissural projections are both glutamatergic and 

GABAergic (González-Hernández et al., 1996; Saint Marie, 1996; Hernández et al., 

2006) and have induced both excitatory and inhibitory effects on neurons in the 

contralateral IC in functional electrical stimulation and pharmacology experiments 

(Smith, 1992; Moore et al., 1998; Malmierca et al., 2003; Malmierca et al., 2005), similar 

to the effect seen in the data presented here. Therefore, it is possible that the suppressive 

and facilitatory effects we observed in the ICC in response to ICD stimulation could be 

caused, in part, by activation of commissural neurons. Clinically, it is not an issue if we 

are activating a larger area of ICD including neurons within as well as passing fibers 

through ICD as long as electrical stimulation of the corresponding implant location in 

ICD in humans can sufficiently modulate the auditory brain to suppress tinnitus.  

 The second set of limitations relates to the ICC location trends observed in our 

study. Differences exist in the number of modulated sites per ICC lamina with maximum 

modulation occurring in the middle frequency layer. Based on previous anatomical 

studies, there does not seem to be a differential pattern of excitatory and inhibitory 

synapses across laminae that would suggest greater modulatory effects particularly for 

middle frequency regions (González-Hernández et al., 1996; Saint Marie, 1996; 

Nakamoto et al., 2013). The differential modulation seen across laminae may be due to 

the acoustic levels used in these experiments. In guinea pigs, auditory thresholds are 

lowest around 8 kHz (Heffner et al., 1971; Gourevitch et al., 2009), which coincides with 
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our middle frequency lamina (i.e., 6.0-9.1 kHz). Thus, the chosen acoustic levels elicited 

stronger activity within the middle frequency lamina compared to the lower and higher 

frequency laminae, which may have enabled stronger modulation.  

 In terms of spatial trends within a given ICC lamina, there appears to be a random 

distribution of modulated and unmodulated sites. It is possible that we missed a location 

trend across the ICC due to insufficient mapping across each lamina per animal or even 

the use of multi-unit recordings. Individual neurons recorded on the same electrode site 

may have exhibited different modulation effects but the summation of their neural 

activity in the multi-unit recordings could have canceled out or masked these individual 

effects. 

 

Stimulus timing dependent plasticity 

 The results presented in Figure 20 suggest that the type and extent of modulation 

depends on the relative timing between paired acoustic-electrical stimulation. In 

particular, PAES_18 resulted in significantly more residual suppression and less residual 

facilitation than PAES_8. Both PAES_8 and ES-only exhibited similar amounts of 

residual spread for suppression and facilitation, whereas PAES_18 exhibited significantly 

greater residual spread of suppression than facilitation. This stimulus timing dependent 

plasticity can be likened to spike timing dependent plasticity; however, instead of looking 

at how pre- and post-synaptic cells potentiate or depress based on timing, we are looking 

at how electrical and acoustic stimulation facilitate or suppress a population of cells 

based on timing (Magee and Johnston, 1997; Markram et al., 1997; Bi and Poo, 1998; 
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Zhang et al., 1998; Abbott and Nelson, 2000; Yao and Dan, 2001; Dan and Poo, 2004; 

Caporale and Dan, 2008). Spike and stimulus timing dependent plasticity have been 

demonstrated in the auditory system at the brainstem level as well as the cortex 

(Tzounopoulos et al., 2004; Dahmen et al., 2008; Basura et al., 2013; Koehler and Shore, 

2013b, a). Our results suggest that timing dependent plasticity induced by paired 

acoustic-electrical stimulation is also occurring at the auditory midbrain level. For 

PAES_18, the ICD-induced activity would have generally reached the ICC after the onset 

of acoustic-driven activity, which may have caused the stronger suppressive effect. A 

delay shorter than the 8 ms that was used for PAES_8 may have been needed for the 

ICD-induced activity to reach the ICC before the acoustic-driven activity to cause a 

stronger facilitatory effect. We did not observe any significant differences in facilitatory 

versus suppressive effects for PAES_8.  

 Two aspects of our protocol need to be considered when interpreting these results. 

First, we used a set ordering of the different stimulation paradigms with limited recovery 

time. We cannot rule out that the stronger suppressive effects caused by PAES_18 

compared to PAES_8 or ES-only were partly attributed to the order and prolonged 

influence of the different stimulation paradigms. It may be possible that while ES-only 

did not result in large amounts of suppression, it did act as a primer allowing for larger 

suppression to occur in response to PAES_18. Thus, the greater suppression seen 

following PAES_18 may be due to an individual paradigm or to the sequence of 

paradigms. At the same time, it may be possible that because of the large suppression 

occurring due to PAES_18, further suppression in response to PAES_8 was not possible. 
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From our protocol and data, we can claim that it is possible to induce varying extents of 

suppressive versus facilitatory modulation, but whether it can be sufficiently achieved 

using a paired paradigm with a specific delay (e.g., PAES_18) or requires a sequence of 

stimulation paradigms (e.g., ES-only followed by PAES_18) warrants further 

investigation. For this initial study, we chose to focus on varying ICD and ICC electrode 

array placements with limited recovery time for several reasons explained in Methods: 

Stimulation parameters. This limited recovery makes it difficult to completely separate 

out the individual paradigm effects. Further studies are underway to parse out the 

modulatory effects that can be achieved by individual paradigms. For these studies, the 

ICC is probed with a repeated sequence of acoustic-only stimulation following each 

electrical stimulation paradigm in order to monitor the modulatory effects over time and 

to allow the effects to diminish before moving onto the next paradigm. Additionally, the 

stimulation site is held constant and each paradigm is presented in a random sequence 

throughout an experiment to further minimize any residual effects of one paradigm on 

another.  

 The second consideration in interpreting our plasticity results is that these 

experiments were performed under ketamine anesthesia, which may have influenced the 

types of modulatory effects observed in our study. Ketamine is known to influence 

auditory responses in the cortex (Zurita et al., 1994; Kisley and Gerstein, 1999; Gaese 

and Ostwald, 2001; Syka et al., 2005). In comparison, ketamine has been shown to have 

little or no effect on auditory coding within the ICC (Astl et al., 1996b; Ter-Mikaelian et 

al., 2007). Ketamine may also limit plasticity changes in the auditory brain by effecting 
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synaptic potentiation and depression (Salami et al., 2000; Leong et al., 2004). In this 

experiment, under ketamine anesthesia, we were still able to induce a significant amount 

of immediate and residual suppression and facilitation across the ICC with ICD 

stimulation. Therefore, we can conclude that the results are promising for eliciting 

differential modulation of neural activity across the ICC, but modulation by different 

paradigms needs to be verified in an awake preparation. 

 

Clinical implications for tinnitus treatment 

 Tinnitus has commonly been associated with properties such as hyperactivity of 

neurons across the auditory system, including the ICC (Noreña and Eggermont, 2003; 

Kaltenbach et al., 2005; Ma et al., 2006; Bauer et al., 2008; Lanting et al., 2009; Melcher 

et al., 2009; Roberts et al., 2010; Møller, 2011b; Manzoor et al., 2013; Mulders et al., 

2014; Vogler et al., 2014). Based on the findings from this study, targeted ICD 

stimulation combined with varying delays of broadband noise stimulation may suppress 

activity in the ICC associated with tinnitus. Specifically, we found that using paired 

acoustic-electrical stimulation with a specific delay (i.e., PAES_18, though it may require 

a sequence of stimulation where ES-only precedes PAES_18) and stimulation of more 

medial and rostral ICD regions resulted in greater suppressive versus facilitatory effects 

in the ICC. Tinnitus has also been linked with other neural properties, such as 

hypersynchrony, tonotopic reorganization, and changes in firing patterns, and within 

other auditory and non-auditory nuclei (Møller, 1984; Chen and Jastreboff, 1995; 

Lockwood et al., 1998; Muhlnickel et al., 1998; Komiya and Eggermont, 2000; Seki and 
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Eggermont, 2003; Zhang et al., 2003; Eggermont and Roberts, 2004; Wienbruch et al., 

2006; Chen et al., 2012; Galazyuk et al., 2012). We will need to investigate these neural 

properties, especially in tinnitus animal models, to assess if ICD stimulation can suppress 

or fix the pathogenic activity directly driving the tinnitus percept. Additionally, this 

treatment may also be relevant for a hyperacusis, a condition resulting in increased 

sensitivity to certain frequencies. We will need to determine if ICD stimulation can 

suppress the increased acoustic-driven activity and gain experienced and reduce 

sensitivity (Gu et al., 2010; Aazh et al., 2014). As discussed above, ICD stimulation may 

be activating passing fibers, such as from the contralateral IC, in addition to neurons 

projecting to the ICC from the ICD. Regardless of what is being activated, the main 

clinical goal would be to identify appropriate locations for array implantation and 

stimulation strategies that can induce neural changes that translate into therapeutic results 

for the patient.  

 There is already an ongoing clinical trial funded by the National Institutes of 

Health in which deaf patients will be implanted with the AMI. Many of these patients 

will also have tinnitus and can be stimulated with different electrode sites to evaluate 

their modulatory effects on the tinnitus percept. Based on our animal findings, we have 

decided to incorporate some of the stimulation paradigms into the clinical trial for 

treating tinnitus with the AMI. Before implantation, the AMI array needs to be modified 

to enable ICD simulation. Each AMI shank has a Dacron mesh that prevents over-

insertion of the neuroprosthetic array into the IC and positions the sites within the ICC. 

To allow some sites to be placed in the ICD, each AMI shank will be modified to add 
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dorsal sites closer to that mesh (Lim and Lenarz, 2015). With the initial AMI patient 

population, we will not be able to combine broadband noise stimulation with ICD 

stimulation since the patients will be deaf. However for these patients, we will investigate 

stimulation strategies that combine ICD stimulation with precisely timed stimulation 

across multiple ICC sites to attempt to mimic the paradigms used here as well as test the 

safety of this treatment. We will also not be able to access multiple locations throughout 

the ICD in human as was possible in our animal studies. As a results, electrodes may be 

implanted outside the optimal rostral and medial regions of ICD that appear to cause 

greater suppressive versus facilitatory effects. While our data shows that stimulation of 

different ICD locations generally modulates different subsets of ICC neurons, tinnitus 

treatment may then be limited if the electrode is not stimulating appropriate locations to 

target tinnitus-affected neurons. Since patients will already be implanted with the AMI 

for hearing restoration, we have the opportunity to investigate a wide range of stimulation 

patterns as best we can considering these limitations, which will hopefully reveal some 

parameters that can effectively suppress or at least modulate the tinnitus. 

 Demonstrating the ability to decrease the tinnitus percept in these initial AMI 

patients using paired ICD/ICC stimulation along with the suppression results from paired 

acoustic-electrical paradigms in animal studies could open up the possibility for 

implanting the AMI array in a larger population of patients with severe tinnitus. We 

would eventually seek a Phase I safety study for the treatment of tinnitus in patients with 

functional hearing in whom we can implement the paired acoustic-electrical stimulation 

paradigm. For patients who do not have sufficient hearing, cochlear implants will remain 
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an option that have been effective in reducing the tinnitus percept in some patient groups 

(Osaki et al., 2005; Baguley and Atlas, 2007; Quaranta et al., 2008; Van de Heyning et 

al., 2008; Kleinjung et al., 2009; Zeng et al., 2011). Another possible alternative for 

patients with severe tinnitus with or without sufficient hearing is round window 

stimulation. Reduction in tinnitus using round window stimulation has been promising in 

acute cases (Cazals et al., 1978; Portmann et al., 1979; Rubinstein et al., 2003), but 

repeatability of tinnitus suppression needs to be further explored (Møller, 2011b; Punte et 

al., 2013). More invasive approaches for treating tinnitus are being developed and 

increasingly used across different patient groups including stimulation of the auditory 

cortex or caudate nucleus as well as vagal nerve stimulation paired with acoustic 

stimulation (Cheung and Larson, 2010; De Ridder et al., 2011; Engineer et al., 2011; De 

Ridder et al., 2014). While cochlear implants, round window stimulation, and several 

invasive brain treatments remain an option for some tinnitus patients, new approaches 

including AMI stimulation need to continually be developed so a larger population of 

patients can achieve tinnitus suppression. 

 

This included chapter was reproduced from Offutt SJ, Ryan KJ, Konop AE, Lim HH 

(2014) Suppression and facilitation of auditory neurons through coordinated acoustic and 

midbrain stimulation: investigating a deep brain stimulator for tinnitus. J Neural Eng 

11(6): 066001. DOI: 10.1088/1741-2560/11/6/066001 

© IOP Publishing. Reproduced with permission. All rights reserved.  
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CHAPTER 4: NEUROMODULATION WITHIN THE MIDBRAIN 

USING PAIRED ACOUSTIC AND ELECTRICAL STIMULATION TO 

TREAT TINNITUS 
 

  

With the development of smaller DBS devices with more sites for stimulation, DBS can 

potentially be used to treat a wider range of neurological conditions, including tinnitus. Tinnitus 

typically manifests as hyperactivity and increased neural synchrony throughout the auditory 

system. We hypothesize that by using DBS in spatially specific regions, tinnitus-related neural 

activity can be suppressed leading to a reduction in the percept. Particularly, we hypothesize that 

stimulation in the IC using a new type of DBS device originally designed for hearing restoration, 

known as the AMI, will be able to suppress tinnitus. This hypothesis will be tested in an 

upcoming AMI clinical trial, but prior to the trial, we wanted to identify stimulation paradigms 

that provide lasting suppression of acoustic-driven activity and synchrony. Results revealed that 

overall stimulation of the ICD suppressed acoustic-driven activity, but not synchrony. 

Importantly, we identified two stimulation paradigms that provide lasting suppression. These 

optimal paradigms will be implemented directly in humans in the upcoming AMI clinical trial. 

 

INTRODUCTION 

DBS has been successfully used to treat a number of neurological disorders 

including Parkinson’s, essential tremor, dystonia, and obsessive compulsive disorder, and 

is continuing to expand to other applications with clinical trials underway for depression, 

epilepsy, and Alzheimer’s (Johnson et al., 2013). In all of these applications, it has been 

possible to implement the traditional DBS device; however further expansion to new 

applications may be reduced by limitations of the traditional DBS lead. Though current 

steering can be employed to increase targeting specificity, the size and number of 

contacts make the traditional DBS lead unusable for certain neuromodulation applications 
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(i.e., due to small target location, proximity to neighboring regions where activation 

results in unwanted side effects, need for small and discrete activation areas, etc.). For 

those applications, new DBS devices, including the ABI and the AMI with their 

decreased size and increased number of contacts may prove more valuable.  

Tinnitus is one condition which may benefit from stimulation with the new DBS 

devices. Tinnitus is characterized by a phantom auditory percept and is often a result of 

hearing loss (Sindhusake et al., 2003; Hoffman and Reed, 2004). The hearing loss 

typically leads to hyperactivity and increased neural synchrony throughout the auditory 

system (Eggermont and Roberts, 2004; Henry et al., 2014). As such, restoration of 

normal neural activity through DBS may result in suppression of the tinnitus percept. The 

new DBS devices would prove advantageous in two regards. First, the new DBS devices 

can be used to target areas within the auditory nuclei that can modulate the tinnitus-

affected neurons without stimulating the entire nuclei, which may cause additional 

auditory sensations. Second, as aberrant activity can manifest in limited regions 

dependent on hearing loss (Kaltenbach and Afman, 2000; Vogler et al., 2014), selective 

targeting can be employed to either directly stimulate tinnitus-affected neurons or to 

stimulate the surrounding regions as necessary to indirectly drive suppression of the 

tinnitus-related neural activity (De Ridder et al., 2006). Already, the ABI has been 

implemented for treating tinnitus with favorable results, in which the electrode array 

stimulates portion of the modulatory region of the auditory brainstem. Stimulation by the 

ABI has resulted in most patients reporting reduced or masked percepts (Soussi and Otto, 

1994; Behr et al., 2007). Encouraged by these results, the use of the AMI for tinnitus will 
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be tested in an upcoming clinical trial, in which a couple sites of the AMI will be used to 

activate the modulatory region of the auditory midbrain and hopefully alter and interact 

with the tinnitus-affected neurons within the ascending auditory pathway leading to the 

phantom percept.  

 The AMI was originally designed for implantation into the IC for hearing 

restoration (Lenarz et al., 2006; Lim et al., 2009b), but previous results from animal 

experiments revealed the potential for using the AMI to treat patients who also have 

tinnitus (Offutt et al., 2014). The new generation AMI has two shanks, each with ten sites 

for hearing restoration and one site for tinnitus therapy (Lim and Lenarz, 2015). Each 

shank will be positioned into the IC such that the ten sites for hearing restoration will 

reside in the ICC where the primary processing of auditory information occurs (Aitkin, 

1979). The one superficial site on each shank designated for tinnitus treatment will be 

placed in the outer cortices of the IC, which can modulate activity within the ICC (Jen et 

al., 2001; Jen et al., 2002; Offutt et al., 2014) and potentially interact with midbrain 

neurons driving or linked to the tinnitus percept (Ma et al., 2006; Bauer et al., 2008; 

Melcher et al., 2009; Vogler et al., 2014). It is important to note that five deaf patient will 

be implanted with the AMI for hearing restoration from 2015 to 2018. Most of these 

patients will also have tinnitus due to their deafness, and thus it will be possible to 

evaluate the effects of IC stimulation on their tinnitus percept with minimal additional 

risk to the patients.  

If this AMI clinical trial demonstrates the ability to decrease the tinnitus percept, 

then we would next seek to expand treatment to two populations: patients with the most 
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debilitating tinnitus but with moderate to near-normal hearing, and hyperacusis patients. 

For tinnitus patients with residual hearing, we would be able to use sound stimulation in 

conjunction with AMI stimulation, opening up a greater parameter space to better address 

their needs, as will be further explained through the results of this chapter. For 

hyperacusis patients who have an increased sensitivity and painful sensation to particular 

frequencies or sound inputs, stimulation with the AMI could be used to suppress the 

increased acoustic-driven activity associated with hyperacusis (Gu et al., 2010; Aazh et 

al., 2014), as was possible in our animal experiments described in this chapter.  

 The aim of this study was to better understand the neuromodulation effects 

achievable by stimulation of the outer IC, particularly the ICD, in order to guide 

stimulation parameters in the upcoming AMI clinical trial. We wanted to expand upon 

our previous results that showed stimulation of the ICD can both suppress and facilitate 

ICC neural activity, by examining a larger stimulation parameter space to determine 

optimal paradigms for suppression and by evaluating the lasting effects. We stimulated a 

single ICD location with different electrical and acoustic paradigms and measured the 

changes in acoustic-driven activity and synchrony across sites in the ICC. Our results 

reveal that modulation of ICC neural activity can last at least up to thirty minutes 

following electrical and/or acoustic stimulation and the amount of suppression and 

facilitation is dependent on the stimulation paradigm used. We were able to identify two 

paradigms that produce maximum suppression, one that can be used in the upcoming 

AMI patients and one that can be used in future patients that still have hearing. Future 

studies are needed to further evaluate the effects of these stimulation paradigms in 
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humans and animals with tinnitus and on a longer time scale than was possible in our 

experiments.  

 

METHODS 

Surgery and Experimental Setup 

Experiments were performed on eleven Hartley guinea pigs (mass: 440 ± 59; Elm 

Hill, Chelmsford, MA) following the University of Minnesota Institutional Animal Care 

and Use Committee standards. Basic surgical and electrophysiological protocols have 

been detailed in previous works (see Chapter 2, Lim and Anderson, 2007a; Offutt et al., 

2014) and are only summarized here. Animals were initially anesthetized with an 

intramuscular dose of ketamine (40 mg/kg) and xylazine (10 mg/kg), and additional 

doses were administered to maintain an areflexive state. Animals were placed in a 

stereotaxic frame and a craniotomy was performed over the right hemisphere. 

All experiments were completed in an electrically and acoustically isolated 

chamber. TDT hardware (Tucker-Davis Technologies, Alachua, FL) controlled by 

custom-written MATLAB software (MathWorks, Natick, MA) was used for stimulation 

delivery and data collection. Acoustic stimulation was delivered to the left ear at a 

sampling frequency of 195 kHz through a hollow ear bar coupled to the speaker. A 0.25-

in condenser microphone (ACO Pacific, Belmont, CA) was used to calibrate the speaker 

and ear bar system. Monopolar electrical stimulation was delivered into the midbrain 

through an optically isolated stimulator with a return electrode placed in the parietal lobe. 

Multi-unit neural activity was recorded using a monopolar configuration with a return 
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electrode within the neck muscle. The neural signals were passed through an analog DC-

blocking and anti-aliasing filter from 1.6-7.5 kHz, sampled at a rate of 25 kHz, and 

filtered from 0.3-3 kHz to identify spikes. Spikes were detected when voltages exceeded 

three times the standard deviation of the noise floor. 

 

Electrode Placement  

Bi-shank silicon substrate electrode arrays were used for both recording and 

stimulating (16 sites per shank, 403 µm
2
 site size, 100 µm site spacing, 500 µm shank 

spacing; NeuroNexus, Ann Arbor, MI). The recording array was placed at a 45° angle to 

the sagittal plane and inserted along the tonotopic axis of the ICC. The stimulating array 

was placed perpendicular to the horizontal plane to enter the ICD. Both arrays were long 

enough to pass through the visual cortex to reach the IC. Broadband noise stimulation (50 

ms duration, 0.5 ms rise/fall time, 6 octave bandwidth from 0.625 to 40 kHz, 70 dB-SPL) 

was used during insertion of the electrodes to confirm location in the IC. Location within 

the IC was determined by responses to pure tone stimulation at varying frequencies and 

levels (50 ms duration, 0.5 ms rise/fall time, 1.0-40 kHz, 8 steps/octave, 0-70 dB-SPL, 10 

dB steps). Sites within the ICC showed strong frequency selectivity with a progression of 

sites that preferred low to high frequencies from shallower to deeper locations 

(Merzenich and Reid, 1974; Snyder et al., 2004; Malmierca et al., 2008). Sites within the 

ICD showed weak or no frequency selectivity and did not display an organized gradient 

of preferred frequencies (see Chapter 2, LeBeau et al., 2001; Palmer et al., 2013).  
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Paradigms and Protocol 

Eight different electrical stimulation paradigms and two control paradigms were 

tested in each of the animals. Each paradigm was presented for 100 trials at 2 trials/s The 

electrical stimulation paradigms included ES-only (100 µA biphasic, charge balanced, 

cathodic leading pulse, 205 µS/phase) and paired stimulation consisting of acoustic (90 

ms, 5 ms rise/fall time, 50 dB-SPL) and electrical stimulation at varying delays 

(PAES_ndelay; where ndelay = -7 ms to 23 ms, 5 ms steps relative to the onset of acoustic 

stimulation). The control paradigms included AS-only and no stimulation at all 

(Control). The Control paradigm was presented before any other stimulation paradigm 

and if time permitted, after all stimulation paradigms, allowing us to assess changes in 

spike activity inherent to the ICC and overall effects of stimulation, respectively. The 

remaining paradigms were presented in a randomized order across experiments. In a 

single experiment, all paradigms were presented once before any paradigms were 

repeated. Aside from Control, all stimulation paradigms were presented as the first 

stimulation paradigm in at least one experiment, to assess effects elicited without the 

possible influence of previous paradigms. The number of presentations for each 

stimulation paradigm is as follows: PAES_-7, n=12; PAES_-2, n=12; PAES_3, n=13; 

PAES_8, n=13; PAES_13, n=13; PAES_18, n=13; PAES_23, n=13; ES-only, n=12; AS-

only, n=12; Control, n=16).  
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Data Analysis 

In order to evaluate the modulation elicited by each paradigm, ICC neural activity 

in response to acoustic stimulation (90 ms, 5 ms rise/fall time, 50 dB-SPL, 100 trials) was 

collected before, immediately after (T0), and thirty minutes after (T30) each 

neuromodulation paradigm. Only ICC sites that demonstrated significant acoustic-driven 

activity were included in the analysis. Significant acoustic-driven activity was determined 

using signal detection theory as described in (Green and Swets, 1966; Lim and Anderson, 

2007a), wherein ICC sites were included if the spike count distributions from 50 ms of 

acoustic-driven activity and from 50 ms of spontaneous activity were significantly 

different from each other (d’>1). Those ICC sites were next assessed to determine if 

significant modulation occurred following a paradigm. The window used for modulation 

analysis began 8 ms after the onset of acoustic stimulation and ended at the offset of 

acoustic stimulation. The spike count distribution from acoustic stimulation before was 

compared to the spike count distribution at T0 and at T30 using a two-tailed, unequal 

variance, ranked t-test (Ruxton, 2006a). Significant suppression (facilitation) occurred if 

there was a decrease (increase) in spike count following the paradigm (p<0.01). Once 

significantly suppressed or facilitated ICC sites were identified, modulation was 

quantified for each paradigm using a metric called spread. Spread measures the percent of 

sites that were significantly suppressed (facilitated) by each paradigm and was calculated 

by dividing the number of suppressed (facilitated) ICC sites by the total number of ICC 

sites with significant acoustic-driven activity. 



 

 102 

 Modulation of synchrony was also evaluated on all sites with significant acoustic-

driven activity by first determining significance of synchrony at each time point and then 

assessing changes in significance over time. To evaluate modulation of synchrony, ten 

seconds of spontaneous activity were recorded before, at T0, and at T30. At each time 

point, the maximum cross correlation value for each ICC site pair was calculated. For 

each site pair, bootstrapping was completed to find the mean and standard deviation of 

the maximum cross correlation values from 1000 inter-spike interval shuffled 

comparisons. ICC site pairs were considered significantly synchronous at a time point if 

the measured maximum cross correlation value was two standard deviations greater than 

the calculated mean cross correlation value. Only ICC site pairs that demonstrated 

significant synchrony at a given time point were included for further analysis. Next, 

modulation of synchrony occurred if an ICC site pair changed significantly from before 

to after a paradigm (e.g., if an ICC site pair was significantly synchronous before and was 

not at T0 then suppression of synchrony immediately after the paradigm occurred, or if a 

pair was not significantly synchronous before and became synchronous at T30 then lasting 

facilitation of synchrony occurred). Finally, spread for synchrony modulation was 

calculated by dividing the number of suppressed (facilitated) ICC sites pairs by the total 

number of significantly synchronous ICC site pairs. In addition, analysis was completed 

to account for the site pairs that remained significantly synchronous before and after a 

paradigm by evaluating the change in maximum cross correlation values regardless if 

those changes were significant or not. For this additional analysis, if the maximum cross 

correlation value decreased (increased) between time points, the site pairs was deemed to 
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be suppressed (facilitated). Spread was then calculated for synchrony by dividing the 

number of suppressed (facilitated) ICC site pairs by the total number of site pairs. The 

second analysis yielded no significant differences and results are not further discussed in 

this chapter. 

 To determine overall effects of each paradigm, paradigm comparisons were 

completed separately for acoustic-driven modulation and synchrony modulation. Spread 

of acoustic-driven modulation and synchrony modulation per paradigm were pooled 

across all animals for these comparisons. Paradigms were compared using a two-tailed, 

unequal variance, ranked t-test with Bonferroni correction (p<0.05). The amount of 

suppression and facilitation spread elicited per paradigm (Bonferroni corrected p<0.005) 

as well as the amount of suppression spread elicited compared to Control (Bonferroni 

corrected p<0.0056) were assessed to determine optimal stimulation paradigms. For these 

comparisons, all Control paradigms have been pooled together as the results from Control 

paradigms presented at the start of the experiment and at the end of the experiment were 

not systematically different for acoustic-driven modulation (mean ± SEM, T0 Sup – Start: 

15.1 ± 4.5%, End: 15.1 ± 7.0%; T0 Fac – Start: 12.9 ± 1.8%, End: 10.2 ± 3.2%; T30 Sup – 

Start: 16.4 ± 3.5%, End: 16.2 ± 3.7%; T30 Fac – Start: 15.7 ± 4.6%, End: 13.7 ± 7.8%) or 

for synchrony modulation (T0 Sup – Start: 7.3 ± 4.7%, End: 15.9 ± 7.2%; T0 Fac – Start: 

12.9 ± 6.3%, End: 11.3 ± 6.1%; T30 Sup – Start: 4.7 ± 0.6%, End: 16.3 ± 6.2%; T30 Fac – 

Start: 13.8 ± 4.6%, End: 9.8 ± 3.2%). Spread from Control at the start and spread from 

Control at the end are plotted in Results for visual comparison.  
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Histology 

A histological protocol was completed for each experiment to verify the location 

of the recording and stimulating arrays and sites in the IC (Fig. 22). This protocol has 

been detailed in previous works and will be summarized here (see Chapter 2, Markovitz 

et al., 2012; Offutt et al., 2014). Prior to placement in the IC, electrode arrays were 

dipped in Di-I (Sigma-Aldrich, St Louis, MO) that was absorbed into the tissue for later 

identification. Following an experiment, the heads were placed in 3.7% 

paraformaldehyde. Within 10 days, the full brain was extracted and the right midbrain 

was blocked out for further processing. The right midbrain was then cryo-sliced to 60 μm 

thick slices, the slices were imaged, and the images were imported into a 3D CAD 

software for reconstruction (Rhinoceros, Seattle, WA). Using anatomical landmarks, the 

slices were aligned to create the 3D reconstruction, and the 3D reconstructions were 

normalized across all animals. The reconstructed recording electrode array and the single 

stimulation site with its corresponding electrode array shank location from each 

experiment were imported into a single normalized brain for location comparison across 

all eleven animals (Fig. 22). The location of the stimulation site was determined relative 

to the anatomical border of the IC, appropriately adjusted for changes due to the fixation 

process (see Chapter 2, Markovitz et al., 2012). 

By analyzing the histological reconstructions, we can determine the similarity of 

our placements to each other and to the regions we were targeting. As our previous study 

indicated that all areas in the ICC can be modulated by stimulation of the ICD and that 

the largest amount of suppression could be achieved by stimulation of the rostral-medial 
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area of the ICD (Offutt et al., 2014), we aimed for similar recording and stimulating 

locations across animals based on anatomical and vasculature landmarks on the surface of 

the occipital lobe. All recording locations can be seen in the ICC in Figure 22A. As 

expected, there was some variability in placement but electrode arrays were generally in 

the same location. Based on previous results, modulation is not noticeably dependent on 

ICC recording location and therefore there is minimal concern that ICC recording 

location will contribute to significant variance in the results (Offutt et al., 2014). The 

single stimulation site (black sphere) and corresponding electrode array shank from each 

experiment are shown in the three dimensional reconstruction in Figure 22B. The ICD 

stimulation sites across experiments were then projected onto the yellow plane to be 

visualized in two dimensions (Fig. 22C). This is the same plane as was used in the 

previous ICD stimulation study, thus sites can be compared to previous location results. 

Sites from this study were in more medial ICD locations (black circles), which was in our 

intended region and within the area of the ICD where the greatest suppression was found 

in our previous study (gray circles, suppression spread greater than 25%; Offutt et al., 

2014). This map indicates that for each individual animal, we were targeting areas of the 

ICD that produced large amounts of suppression previously (Offutt et al., 2014). 
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Figure 22. Locations of recording electrode arrays in the ICC and stimulation sites in the ICD. A, 

The ICC electrode array reconstructions from all eleven animal experiments are shown in a single 

midbrain reconstruction. B, The ICD stimulation site (black sphere) and its corresponding 

electrode array shank from each of the eleven animal experiments are shown in a single midbrain 

reconstruction. C, The ICD stimulation sites were projected onto a flat plane (yellow plane in B) 

and compared to ICD stimulation locations from a previous study (Offutt et al., 2014). The ICD 

stimulation locations from this experiment are concentrated in the medial area of the ICD (black 

circles). The previous study found that the largest suppression can be elicited from rostral-medial 

locations in the ICD (gray circles indicating suppression spread was greater than 25%). Thus, the 

ICD sites from this study are activating areas from the previous study that elicited a greater extent 

of suppression. The image from C was adapted from (Offutt et al., 2014). 

 

RESULTS  

We analyzed and compared the modulation effects from different ICD stimulation 

paradigms at two different time points to identify optimal paradigms and to examine 

lasting effects of modulation. As interference with the ongoing tinnitus-related neural 

activity is likely necessary to affect the tinnitus percept, we believe treatments need to 

decrease hyperactivity and disrupt neural synchrony associated with tinnitus. In these 

experiments we could not directly monitor the effects on these neural correlates of 

tinnitus, as we were not using animal models of tinnitus. Due to the ongoing controversy 



 

 107 

in the field over a reliable animal model for tinnitus (Eggermont, 2013; Ropp et al., 2014) 

and to simplify the interpretation of our initial experiments in animals, we instead 

focused on the ability to suppress neural activity in normal hearing animals. Encouraging 

results from our study could then be further explored and confirmed in animal models of 

tinnitus and humans with tinnitus. Thus, in analyzing these results, we defined an optimal 

paradigm as one that elicited significantly more suppression than the Control paradigm 

(pvControl < 0.056) and significantly more overall suppression compared to facilitation 

(pvFac < 0.005). We compared the spread elicited by each paradigm at each time point for 

both acoustic-driven activity and synchrony. Our results show that overall there is more 

suppression of acoustic-driven activity elicited by ICD stimulation than facilitation at 

both time points, and that there are optimal paradigms at each time point for suppressing 

acoustic-driven activity. Our results also reveal that certain paradigms can be effective 

for suppressing synchrony, though many other paradigms did not reach significance or 

instead enhanced synchrony.  

 

Acoustic-Driven Modulation 

Suppression and facilitation could be elicited by each electrical stimulation 

paradigm at each time point, but spread was highly dependent on the paradigm. On 

average, the number of sites modulated increased over time (T0: 31.4% versus T30: 

51.3%), with more suppression (Sup) than facilitation (Fac) elicited at both T0 (Fig. 23A, 

Sup: 22.3%, Fac: 9.1%) and T30 (Fig. 23B, Sup: 30.7%, Fac: 20.6%). Examining the 

effects of individual paradigms at both time points reveals three paradigms that meet the 
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criteria of providing more suppression spread than facilitation spread and more 

suppression spread than Control: PAES_8 at T0, PAES_18 at T30, and ES-only at T30. For 

all three paradigms, significance was only achieved at a single time point. For PAES_8, 

suppression occurred immediately after the paradigm but did not last (Fig. 23C, Sup: 30.8 

± 4.6%, Fac: 5.0 ± 1.9%, pvFac=1.4E-6, pvControl=0.0037). By contrast, modulation 

achieved from PAES_18 and ES-only did not occur immediately after the paradigm but 

rather had a delayed onset leading to lasting suppression (Fig. 23D, PAES_18 – Sup: 47.2 

± 7.1%, Fac: 11.7 ± 3.8%, pvFac=2.9E-5, pvControl=6.5E-4; ES-only – Sup: 41.9 ± 5.9%, 

Fac: 11.3 ± 2.8%, pvFac=5.8E-5, pvControl=9.8E-4). There was one more paradigm, 

PAES_13 at T0, which did provide significantly more suppression spread compared to 

facilitation spread (Sup: 30.0 ± 6.3%, Fac: 3.0 ± 1.1%, pvFac=2.8E-5), but failed to meet 

our criteria for an optimal parameter as it was not significantly greater than Control 

(pvControl=0.043). There were no differences found between suppression and facilitation 

spread elicited by Control at either T0 (Sup: 15.1 ± 3.7%, Fac: 12.1 ± 1.6%, pvFac=0.99) or 

T30 (Sup: 16.3 ± 2.6%, Fac: 15.1 ± 3.8%, pvFac =0.49). Furthermore, as there were no 

significant differences found for spread between the two time points for Control for 

suppression (p=0.48) or facilitation (p=0.98), we can conclude that the effects over time 

were caused by the stimulation paradigms and not solely due to inherent changes in the 

brain state of the animals (e.g., due to anesthesia, health of the animal, or intrinsic 

oscillations in brain activity). Overall, these findings demonstrate that electrical 

stimulation or paired stimulation of the ICD induces modulation within the ICC that can 
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evolve over time and that the type of changes are highly dependent on the delay between 

acoustic and electrical stimulation. 

 In assessing these effects, it is possible that modulation remained longer than the 

allotted thirty minute window, perhaps affecting the results of the following paradigm. In 

general, there was more modulation at T30 compared to T0 indicating that at least for 

some paradigms, greatest modulation appeared over time. Though we cannot directly 

assess the influence of one paradigm on the results of the following paradigm, certain 

recourse was taken to minimize the effects and address this concern. First, by 

randomizing the paradigm order, we were able to average out the effects one specific 

paradigm may have on the following. Thus, we cannot explicitly isolate a single 

paradigm as affecting or even priming the subsequent paradigm. Second, for each 

experiment a different stimulation paradigm was used after the initial Control paradigm, 

such that the effects from the first stimulation paradigm of each experiment would not be 

influenced by other stimulation paradigms. The results are not shown, but overall those 

first stimulation cases match what is shown in Figure 23. There was a general trend of 

more suppression than facilitation at both time points (T0 – Sup: 22.0%, Fac: 8.4%; T30 – 

Sup: 41.5%, Fac: 13.6%). When analyzing just the first stimulation cases of the 

experiments, all paradigms identified as significant in the pooled data in Figure 23 also 

provided larger suppression spread compared to facilitation spread in these first 

stimulation cases. These results include PAES_8 (Sup: 29.0%, Fac: 3.2%) and PAES_13 

(Sup: 41.6%, Fac: 0.0%) at T0, and PAES_18 (Sup: 50.0%, Fac: 3.8%) and ES-only (Sup: 

50.0%, Fac: 10.7%) at T30. To that end, we can say that while there may be an influence 
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of one paradigm on another, paradigms elicited similar trends in modulation regardless of 

whether it was presented as the first stimulation paradigm of an experiment or following 

other stimulation paradigms. 

 

Figure 23. Acoustic driven modulation elicited by different paradigms. A,B, The total pooled 

spread across all stimulation trials of sites that were suppressed was greater than sites that were 

facilitated following the stimulation paradigm at T0 (A, Sup: 22.3%, Fac: 9.1%) and at T30 (B, 

Sup: 30.7%, Fac: 20.6%). Overall there were a greater percentage of sites that were modulated at 

T30 compared to T0 (T0: 31.4%; T30: 51.3%). Per animal there was an average of 30 ICC sites 

evaluated per paradigm and a total of 3240 ICC sites evaluated across all animals and all 

paradigms. C,D, The mean and SEM of spread elicited by each paradigm over 12-16 individual 

trials are presented (see Methods: Paradigms and Protocol for number of trials for each 

paradigm). C, At T0, PAES_8 and PAES_13 elicited more suppression than facilitation (*, 

pvFac=1.4E-6 and pvFac=2.8E-5, respectively) and PAES_8 provided more suppression than the 

Control paradigm (+, pvControl=0.0037). D, At T30, PAES_18 and ES-only induced more 
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suppression than facilitation (pvFac=2.9E-5 and pvFac=5.8E-5, respectively) and more than the 

Control paradigm (pvControl=6.5E-4 and pvControl=9.8E-4, respectively). The amount of suppression 

compared to facilitation elicited by Control was unchanged between the two time points (T0: 

p=0.99; T30: p=0.49). The significant cases at T0 include PAES_8 (Sup: 30.8 ± 4.6%, Fac: 5.0 ± 

1.9%), and PAES_13 (Sup: 30.0 ± 6.3%, Fac: 3.0 ± 1.1%). The significant cases at T30 include 

PAES_18 (Sup: 47.2 ± 7.1%, Fac: 11.7 ± 3.8%) and ES-only (Sup: 41.9 ± 5.9%, Fac: 11.3 ± 

2.8%). The spread for Control between T0 (Sup: 15.1 ± 3.7%, Fac: 12.1 ± 1.6%) and T30 (Sup: 

16.3 ± 2.6%, Fac: 15.1 ± 3.8%) were not significantly different for suppression (p=0.48) nor 

facilitation (p=0.98). 

 

Modulation Specificity 

We next assessed the specificity of each electrical stimulation paradigm by 

determining if ICC sites were suppressed or facilitated by a single paradigm or by 

multiple paradigms. ICC sites that are only able to be modulated by a single paradigm 

may provide information on synaptic dynamics between the ICC and the ICD, as well as 

indicate that we would be able to target particular ICC locations using different electrical 

stimulation paradigms. For this analysis, we only used the data from animals where all 

nine paradigms were presented (eight animals) and did not use any repetitions of 

paradigms in a single animal. There were a total of 241 ICC sites included in this 

analysis. For each ICC site, we counted the number of paradigms that elicited either 

significant suppression or significant facilitation for both time points. The ES-only, AS-

only, and Control paradigms were not included in this analysis, as we were interested in 

how acoustic and electrical stimulation interacted in the ICC and if there were trends due 

to delays (i.e., a total of seven different delay paradigms). We only included sites where 
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modulation occurred, and thus all sites that showed no modulation over the seven paired 

paradigms were excluded from the total.  

Both suppression and facilitation at T0 showed specificity with 51.3% and 80.6% 

of the ICC sites only being suppressed and facilitated by a single paradigm, respectively 

(Fig. 24). By T30, ICC sites could be suppressed or facilitated by more paradigms with a 

median of two paired stimulation paradigms per site. We further analyzed which 

paradigms provided modulation to determine if the delays were similar or if there were 

any timing dependencies in relation to the onset of spike activity in the ICC that led to 

facilitation versus suppression. In examining modulation at T0, most facilitation was a 

result of paradigms where the electrical stimulation preceded the first spike in the ICC in 

response to acoustic stimulation (i.e., average first spike latency equal to 8.5 ± 3.1 ms). 

At T0, a total of 72.5% of the ICC sites were facilitated by PAES_-7, PAES_-2, or 

PAES_3 and no other paradigms. Conversely, most suppression was a result of 

paradigms where electrical stimulation followed the first spike in the ICC, with 58.6% of 

the ICC sites suppressed by PAES_8, PAES_13, PAES_18, or PAES_23. In analyzing 

suppression and facilitation at T30, no further stimulus-timing dependent relationships 

were observed. Overall, these results suggest that at least immediately, the type of 

modulation elicited (i.e., facilitation or suppression) is dependent on the timing of the 

electrical pulse in relation to transmission of sound information to the ICC. 
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Figure 24. Specificity of the timing of paired stimulation. The number of electrical stimulation 

paradigms that elicited significant suppression or facilitation at each time point was analyzed for 

each ICC site to examine the specificity of modulation. Specificity was found for suppression and 

facilitation at T0 in which ICC sites were mostly modulated by only one or two paradigms. This 

specificity was weaker at T30 in which ICC sites could be generally modulated by one to four 

different electrical stimulation paradigms. Suppression at T0 was achieved mostly by one or two 

paired stimulation paradigm (51.3% or 28.6% of sites, respectively), which was typically due to a 

paradigm in which electrical stimulation followed the first spike in the ICC (i.e., PAES_8, 

PAES_13, PAES_18, PAES_23). Facilitation at T0 was often achieved by only one electrical 

stimulation paradigm (80.6% of sites), which was typically due to a paradigm in which electrical 

stimulation preceded the first spike in the ICC (i.e., PAES_-7, PAES_-2, PAES_3).  

 

Synchrony Modulation 

Similar to acoustic-driven modulation, we assessed synchrony modulation to find 

paradigms that had greater suppression spread than facilitation spread and more 

suppression spread than Control. The average modulation of synchrony at T0 and T30 was 

similar (T0: 22.3%; T30: 24.4%) and there was no overall trend between suppression and 
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facilitation within or across time points (Fig. 25A,B, T0 – Sup: 11.9%, Fac: 10.4%; T30 – 

Sup: 11.6%, Fac: 12.8%). Unlike acoustic-driven modulation, analysis for synchrony 

yielded no paradigms at T0 or at T30 (Fig. 25C,D) that met both criteria to be significant. 

However, PAES_-7 at T30 showed significantly more suppression of synchrony than 

facilitation (Sup: 17.1 ± 4.7%, Fac: 4.1 ± 1.0%, pvFac=0.003), but not more suppression 

spread than Control (pvControl=0.038). There were other paradigms that were not 

significant as they failed to meet our criteria, but did trend toward more suppression of 

synchrony compared to facilitation spread including PAES_-7 at T0 (Sup: 18.6 ± 6.1%, 

Fac: 5.2 ± 1.1%, pvFac=0.17), PAES_3 at T0 (Sup: 16.0 ± 5.5%, Fac: 7.4 ± 1.8%, 

pvFac=0.41), and PAES_3 at T30 (Sup: 20.3 ± 5.8%, Fac: 5.5 ± 1.1%, pvFac=0.052). 

Interestingly, examination of the paradigms that successfully suppressed acoustic-driven 

activity in Figure 23 revealed a trend toward more facilitation of synchrony in Figure 25. 

These included PAES_8 at T0 (Sup: 10.3 ± 3.3%, Fac: 15.4 ± 6.3%, p=0.64), PAES_18 at 

T30 (Sup: 5.8 ± 1.7%, Fac: 21.3 ± 6.6%, p=0.008), and ES-only at T30 (Sup: 7.5 ± 1.7%, 

Fac: 19.3 ± 7.1%, p=0.28). There was no significant difference between the two time 

points for the Control paradigm for suppression spread (p=0.51) or facilitation spread 

(p=0.71), indicating that these significant changes or trends in Figure 25 over time were 

driven by the stimulation paradigms and not solely due to inherent changes in neural 

activity. Overall, there appears to be specific paradigms that can suppress or enhance 

synchrony at different time points, as can be observed in Figure 25, but there were no 

optimal paradigms that achieved our strict criteria for significance. It may be possible that 
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cumulative effects, differences across animals, and anesthetic effects contribute to the 

variability in results and the lack of significance across paradigms. 

 

 

Figure 25. Synchrony modulation elicited by different paradigms. A,B, There was no difference 

in the total spread across all stimulation trials (pooled) at T0 compared to T30 (T0: 22.3%; T30: 

24.4%). The suppression and facilitation of synchrony at both time points was similar (T0 – Sup: 

11.9%, Fac: 10.4%; T30 – Sup: 11.6%, Fac: 12.8%). Per animal there was an average of 444 ICC 

site pairs evaluated for each paradigm and a total of 47,815 ICC site pairs evaluated across all 

animals and paradigms. C,D, The mean and SEM of spread of synchrony elicited by each 

paradigm over 12-16 individual trials are presented (see Methods: Paradigms and Protocol for 

number of trials for each paradigm). C, No significant modulation of synchrony was induced at 

T0. D, At T30, PAES_-7 induced more suppression of synchrony than facilitation (*, Sup: 17.1 ± 

4.7%, Fac: 4.1 ± 1.0%, pvFac=0.003), but not more suppression of synchrony than the Control 

paradigm (pvControl=0.038). There were no significant differences between suppression spread and 
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facilitation spread elicited by the Control paradigm at either time point (T0 – Sup: 10.0 ± 2.7%, 

Fac: 12.4 ± 4.6%, p=0.67; T30 – Sup: 8.3 ± 2.3%, Fac: 12.5 ± 3.3%, p=0.16) nor was there a 

significant difference between time points for the Control paradigm for suppression spread 

(p=0.51) and facilitation spread (p=0.71). 

 

DISCUSSION 

The aims of this study were to expand upon our understanding of the functional 

connectivity between the ICD and the ICC and to identify optimal electrical stimulation 

paradigms that lead to suppression of activity within the auditory system that could be 

relevant for tinnitus treatment. The translational goal was to use these results to better 

inform the stimulation parameters that can be investigated in the first set of AMI patients 

who will also receive tinnitus treatment. We found two paradigms that provided lasting 

suppression of acoustic-driven activity, ES-only and PAES_18, but no paradigm that 

provided lasting suppression of synchrony. There were however electrical stimulation 

paradigms that exhibited trends toward suppressing synchrony. These results have 

implications for potentially modulating tinnitus-related neural activity such as 

hyperactivity and increased neural synchrony and suppressing the tinnitus percept. 

 

Methodological considerations 

There are certain limitations to consider when interpreting the results of this study 

including allotted recovery time, effects of anesthesia, and translation into tinnitus 

models. For this study we wanted to assess the lasting modulation effects of different 

paradigms by evaluating neural changes at a time point thirty minutes after presentation 

of a stimulation paradigm. We had opted to limit recovery time in our previous study by 
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only assessing modulation at T0 and then presenting the subsequent stimulation paradigm 

in order to stimulate many different locations in the ICD (Offutt et al., 2014). Our 

concern from this initial study was that effects from individual paradigms were missed if 

they lasted beyond the initial time point and may have influenced or masked effects of 

other paradigms, particularly since paradigms were presented in a set order. The results 

from this previous study showed that PAES_18 provided the largest amount of 

suppression, with little effect from ES-only or PAES_8 (Offutt et al., 2014). In 

comparing those results with the findings from our current study, we see that PAES_18 

continues to be a promising paradigm for suppression. However, ES-only and PAES_8 

also met our criteria for optimal paradigms at T30 and T0, respectively. These results 

validate our concerns that our previous study may have failed to capture ES-only 

modulation by only assessing at T0 and modulation due to PAES_8 may have been 

masked by the lasting modulation effects of PAES_18. For this study we allowed for 

thirty minutes of recovery and used a randomized order to eliminate some of these 

cumulative and confounding effects. Still, this recovery period may not have been long 

enough to allow neural activity to return to baseline spiking. In order to investigate a 

sufficient number of paradigms, we were unable to allow for longer recovery periods. In 

future studies, we will focus on a few optimal parameters we identified in this study and 

allow for enough time for full recovery back to baseline activity. 

 These experiments were completed under ketamine anesthesia, which has been 

shown to have little effect on the acoustic-driven activity in the ICC, but may have 

increased the spontaneous firing rates (Astl et al., 1996b; Ter-Mikaelian et al., 2007). 
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Spontaneous activity was used to analyze synchrony and therefore it is possible that the 

lack of significant results could be attributed to anesthesia. Ketamine may have also 

affected synaptic potentiation and limited plasticity (Salami et al., 2000; Leong et al., 

2004). However under ketamine anesthesia, we were still able to see significant 

modulation effects on acoustic-driven activity and differential modulation that was 

dependent on the paradigm used. Nevertheless, the effects of ICD modulation on ICC 

acoustic-driven activity and synchrony will need to be verified in an awake preparation.  

 Lastly, these results presented here were recorded from normal hearing animals. 

We hypothesized that reduction in acoustic-driven activity and synchrony in normal 

hearing animal models translates to reduction in hyperactivity and disruption in elevated 

neural synchrony in tinnitus animal models and that those modifications lead to 

suppression or elimination of the tinnitus percept. We will need to repeat our studies in 

tinnitus animal models to confirm our hypothesis. While we built this therapy on the 

belief that the neural correlates of tinnitus in the ICC are higher spontaneous firing rates 

and greater neural synchrony, (Ma et al., 2006; Bauer et al., 2008; Melcher et al., 2009; 

Manzoor et al., 2013; Vogler et al., 2014), we may find in the tinnitus animal models 

there are additional alterations to neural activity and plasticity due to tinnitus. 

Fortunately, we have the unique opportunity to explore our findings from normal hearing 

animals directly in human patients with tinnitus in the upcoming AMI clinical trial. 

Considering the controversy over current animal models of tinnitus (Eggermont, 2013; 

Ropp et al., 2014), we can compare the results we observe in these tinnitus patients with 

those in our animal models of tinnitus in future studies.  
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Functional Connectivity  

One presumed role of the ICD in the central auditory system is to contribute to 

corticofugal modulation of the ICC. The projections from the auditory cortex to the ICC 

are sparse, mainly excitatory, and tonotopically organized (Bajo and Moore, 2005; Lim 

and Anderson, 2007b; Markovitz et al., 2013). Those direct projections alone cannot 

account for the excitatory and inhibitory plasticity found following cortical activation or 

inactivation (Mitani et al., 1983; Syka and Popelar, 1984; Sun et al., 1989; Torterolo et 

al., 1998; Zhang and Suga, 2000; Zhou and Jen, 2000). As such, it is believed that there is 

also indirect corticofugal modulation via the outer cortices that has a strong inhibitory 

component. This hypothesis is supported by anatomical studies that show extensive 

projections from the auditory cortex to both the ICD and the ICX (Winer et al., 1998; 

Bajo and Moore, 2005; Malmierca and Ryugo, 2011) and an extensive network of 

intrinsic IC connections (Coleman and Clerici, 1987; Saldaña and Merchán, 1992; Frisina 

et al., 1998). Studies have already demonstrated that stimulation of the A1 facilitated 

activity within the ICX and in turn ICX activation suppressed activity with the ICC (Jen 

et al., 2001; Jen et al., 2002). In conjunction with anatomical data showing projections 

from the auditory cortex to the ICD (Winer et al., 1998; Bajo and Moore, 2005; 

Malmierca and Ryugo, 2011), our study provides evidence for a second multi-synaptic 

pathway via the ICD which exhibits stronger suppressive than facilitatory modulation of 

the ICC. 

 Interestingly, greater modulation was achieved at T30 compared to T0. Both the 

number of suppressed sites and the number of facilitated sites increased from T0 to T30 for 
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all stimulation paradigms, but not the Control case (i.e., no stimulation paradigm). This 

result suggests that there is additional circuitry beyond just the ICD synapsing in the ICC 

that allows effects to appear over time. Perhaps there are local networks integrating the 

ICD input and driving a lasting plasticity. A better understanding of the distribution of 

projections from the ICD to the ICC would be necessary to confirm this option. A second 

circuit could involve the cortex and thalamus. Plasticity in the ICC driven by the ICC has 

been shown previously through a colliculo-thalamo-cortico-collicular loop (Zhang et al., 

2005; Xiong et al., 2009). It may be that we are initially driving changes in the ICC in a 

limited area, but through this feedback loop further modulation is achieved in a larger 

area of the ICC, accounting for the increase spread over time. Further studies are needed 

to confirm this pathway.  

 

Clinical Relevance 

The results of this study are promising when considering implementation for 

tinnitus treatment in not only the current patient group with the AMI for hearing 

restoration, but also in possible future patients with residual hearing. Individuals 

receiving the AMI are all NF2 patients with acoustic neuromas growing on their auditory 

nerves (Lenarz et al., 2006; Schwartz et al., 2008; Colletti et al., 2009b; Lim et al., 

2009b). The auditory nerve is typically severed during surgical resection of the tumors, 

leaving the patients deaf (Samii et al., 2007; Lim et al., 2009a). For this patient 

population we can employ the ES-only paradigm, which showed suppressive abilities in 

this study. Demonstrating a reduction in the tinnitus percept in this AMI patient 
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population may allow us to implant patients solely for tinnitus suppression, at least those 

with severe and debilitating tinnitus who still have residual hearing. These patients would 

be able to receive the PAES_18 paradigm in addition to ES-only paradigm, providing 

more treatment options. Looking beyond the application of tinnitus, this treatment may 

also be appropriate for hyperacusis. Hyperacusis is a central auditory condition that 

causes hypersensitivity to sounds, manifesting as increased acoustic-driven activity (Gu 

et al., 2010; Aazh et al., 2014). ICD stimulation with the AMI may help to suppress the 

acoustic-driven activity and reduce the elevated and painful loudness that the patients 

experience on a daily basis. 

 By having the opportunity to translate this treatment directly into tinnitus subjects, 

we will be able to more quickly discern paradigms that provide the best relief. The most 

effective paradigms may be outside of what were tested in this study. For these studies 

we minimized the stimulation parameters we investigated by using a single biphasic pulse 

at a rate of 2 Hz, however different pulse sequences may deliver better, longer lasting 

suppression. Moreover, we may find that our assumption of suppression being necessary 

to combat the tinnitus percept is incorrect, and that facilitation is necessary in some 

patients. As such, we can utilize other electrical stimulation paradigms that were 

evaluated. Regardless, in using the AMI we now have a platform that will allow us to 

continue to expand the clinical applications of DBS and continue to treat the needs of 

patients with other neurological conditions, such as debilitating tinnitus or hyperacusis.  
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CHAPTER 5: CONCLUSION 
 

SUMMARY OF RESULTS 

Given the ever present need for new tinnitus treatments and a deep brain 

stimulator that can target the inferior colliculus, we set out to assess the feasibility of 

using the IC to treat tinnitus. We wanted to look beyond the ICC as a stimulation target 

and examine the possibility of stimulating the outer cortices for better outcomes. We 

hypothesized that using the ICO as a target, we would be able to modulate more of the 

ICC through the extensive intrinsic network than ICC stimulation alone would achieve, 

and that in turn the ICC could modulate neural activity in the entire auditory system 

through the many ascending and descending projections originating from the ICC. We 

further hypothesized that this modulation would be able to achieve disruption of the 

hyperactivity and increased neural synchrony associated with tinnitus that is found in the 

ICC and throughout the auditory system, and that these changes in neural activity would 

result in reduction or completed suppression of the tinnitus percept. These hypotheses 

however encompass more work than could be completed in a single thesis. As so very 

little was known about the outer cortices and due to the controversy surrounding tinnitus-

animal models (Eggermont, 2013; Ropp et al., 2014), we started with examining their 

functionality in normal hearing animals. The intention was that this body of work would 

set the stage for future studies assessing the effects of this tinnitus treatment in human 

patients and determining if this stimulation is actually modulating tinnitus-related neural 

activity within the ICC and throughout the auditory system. For this thesis we focused on 

assessing the functional properties and purposes of the subregions in the ICO in order to 



 

 123 

narrow which regions to target for treatment. Based on those electrophysiological results 

in conjunction with the anatomical connectivity of the ICO with the rest of the auditory 

system, we next focused on investigating the modulation ability of just the ICD to 

determine if effects were suitable for tinnitus treatment. Finally we optimized stimulation 

parameters for what we believed would best treat tinnitus. These three separate projects 

comprise the thesis presented here. 

  In Chapter 2, we completed a comprehensive mapping of auditory responses 

across the entire IC. As previous studies had focused most attention toward the ICC, we 

wanted to expand to the outer cortices to provide a more complete picture of how 

auditory information is processed at the level of the IC. We assessed broadband noise and 

pure tone responses for both spectral and temporal properties and correlated those 

responses with location to determine if spatial trends existed. For spectral properties 

including threshold, Q-values at 10 dB about threshold, and Q-values at 60 dB-SPL, we 

found no spatial trend exist, but that trends could be found for ICC sites dependent on the 

BFs. In contrast, we found that there were clear spatial trends for spontaneous activity 

and temporal properties, including FSL, FSL jitter, and response duration, with no BF 

dependencies. Most interestingly, these spatial trends extended throughout the IC, with 

no distinction between the spatial trend in the ICC and in the ICO. Shorter latencies, 

increased precision, sustained responses compared to stimulation duration, and more 

spontaneous activity were recorded in the rostral-lateral IC compared to the caudal-

medial IC, regardless of subregions. In assessing the responses in the outer cortices, we 

discovered that there were two populations that are likely linked to the two separate 
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subregions in the ICO: the ICD and the ICX. Across the whole IC, the ICD had the 

slowest, least precise responses and the ICX had the fastest, most precise responses. The 

responses were even faster than what was found in the ICC. We believe the different 

responses reflect the different functions of the subregions. The slow responses in the ICD 

allow for coordinated reception of ascending auditory information and descending control 

signals to be integrated to modulate the ICC perhaps for auditory attention and learning. 

The fast responses in the ICX allow for sound localization and head orientation to be 

coordinated with perception for timely interaction with the surrounding environment. 

Guided by the known incoming and outgoing projections of these regions and supported 

by the responses found, we concluded that the ICD would better serve in our treatment. 

Additionally, we could use the full, detailed three-dimensional reconstruction to aid in 

electrode placement in the ICC and the ICD in subsequent studies. 

In Chapter 3 we delved into that proposed modulation function of the ICD by 

evaluating the effects of ICD stimulation on ICC neural activity. We were initially 

interested in location effects (i.e. locations in the ICC that could be modulated and 

locations in the ICD that induced the largest amount of modulation). We assessed ICC 

location effects by stimulating from a single ICD electrode array placement and recording 

from multiple ICC electrode array placements. Conversely, we assessed ICD location 

effects by stimulating from multiple ICD electrode array placements and recording from 

a single ICC electrode array placement. The secondary focus of these experiments was to 

evaluate a limited number of stimulation paradigms. We discovered that ICD stimulation 

induced both suppressive and facilitatory changes in the ICC, but that overall more 
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suppression can be elicited than facilitation. In evaluating the stimulation paradigms, we 

found that paired acoustic and electrical stimulation with an inter-stimulus delay of 18 ms 

provided the greatest suppression, and thus used those results to determine our location 

effects. Our location results revealed no trend in the ICC, but a clear trend in the ICD. 

Regardless of the location in the ICC, suppressive and facilitatory changes were found at 

each ICC electrode placement. For the ICD, the greatest amount of suppression was 

induced by stimulation of the rostral-medial portions of the ICD.  

Armed with an optimal stimulation location, the aims of the study in Chapter 4 

were to further investigate the effects of different stimulation paradigms, assess how long 

modulation lasts, and evaluate any effects on synchrony. For these studies we used eight 

stimulation paradigms, one electrical stimulation only, and seven paired acoustic and 

electrical stimulation with varying delays. As best possible we aimed for placement of the 

stimulation electrode array in the rostral-medial region of the ICD in each experiment. 

Later histological results confirmed we were more medial, but still within the optimal 

stimulation region of the ICD. For every stimulation paradigm tested, there was more 

suppression of acoustic-driven activity than facilitation, but little change in synchrony. 

We uncovered two paradigms that gave us significant suppression of acoustic-driven 

activity compared to facilitation and significant suppression of acoustic-driven activity 

compared to the control of no stimulation: paired acoustic and electrical stimulation with 

an inter-stimulus delay of 18 ms and electrical stimulation alone. The effects from these 

paradigms were not immediate but rather were significant thirty minutes after stimulation 

presentation.  
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Summarizing across all the studies, we identified the functional attributes of the 

ICD that suggest its purpose is for modulation and showed that indeed by activating the 

ICD we can suppressed and facilitate activity in the ICC. We determined optimal 

stimulation locations in the ICD for inducing suppression and stimulation paradigms to 

use that elicit suppression lasting up to thirty minutes. Guided by these results, we are 

able to move into translational human studies.  

 

CLINICAL RELEVANCE AND FUTURE STUDIES  

Overall our goal for this thesis was to show that modulation by the ICD was 

possible and provide substantial evidence for translating this tinnitus treatment into 

humans. The results of the initial ICD modulation study (see Chapter 3) were enough to 

enact a hardware change in the AMI. A single stimulation site was moved closer to the 

Dacron mesh to ensure stimulation in the outer cortices of the IC (Lim and Lenarz, 2015). 

The next step is to test this treatment in our human patients. By transitioning directly in 

patients, we have the ability to quickly assess the effectiveness of the treatment and make 

changes as necessary. In our animal studies we only tested a single biphasic pulse at a 

rate of 2 Hz, but in our patients we can quickly scan through different pulse sequences to 

determine the best fit for each patient. For each patient, we will need to evaluate the 

necessary frequency of treatment (i.e., once per day, continuous, etc.). Inherently hearing 

restoration and tinnitus treatment are at odds. Hearing restoration uses electrical 

stimulation to facilitate hearing and speech understanding, while tinnitus treatment uses 

electrical stimulation to decrease a sound percept. The difficulty will be increasing the 
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right sounds and decreasing the tinnitus sounds. The primary purpose of the AMI will 

continue to be hearing restoration with tinnitus treatment applied as necessary. In this 

initial phase, stimulation will be tested in the clinic and programmed into the stimulation 

algorithm dependent on the results. For the future, we envision a system that can operate 

in both modes with the ability to switch in the hands of the patients. As each patient has 

different requirements and tolerances for their tinnitus, each patient should have the 

power to control their treatment. As an example, a patient may prefer to operate in the 

tinnitus treatment mode during sleeping hours as a full night of rest may be a greater 

priority than attention to environmental cues.  

 Should this treatment prove effective, the next step will be to return to animal 

models and determine the mechanisms of action in the CAS that lead to good outcomes. 

We hypothesized that this treatment would modulate tinnitus-related neural activity such 

that hyperactivity was decreased and neural synchrony was disrupted. In a tinnitus animal 

model we can assess if these changes indeed occur or if there is other plasticity within the 

system that we did not anticipate. Second, we hypothesized that the success of this 

method is based on the ability of the ICD to not only alter ICC neural activity, but that 

effects would be seen throughout the auditory system due to the widespread projection 

network extending from the ICC. This hypothesis could be assessed in both normal 

hearing and tinnitus animal models to better understand connectivity and descending 

modulation and address effects on tinnitus-related neural activity in other auditory nuclei, 

respectively. Finally, a third step would be to move to chronic animals to address the 
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question of necessary treatment frequency and to study the effects of treatment over time 

to understand the plasticity that can be induced due to ICD stimulation.  
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APPENDIX I: CHRONIC PROTOCOL AND EAR PLUG INDUCED 

AUDITORY PLASTICITY 

 

  

 Tonotopic plasticity exists throughout the adult auditory system as a result of cochlear 

trauma, behavioral conditioning, passive exposure, and direct electrical stimulation. Long lasting 

reorganization has been seen in the A1, but tonotopic shifting has also been documented in the 

ICC and MGB. Interestingly, dependent on the plasticity paradigm used, this reorganization is 

reversible. Restoration of normal tonotopic reorganization following AMI is an illustrative 

example of reversible auditory plasticity.. Questions remain about the control signals driving 

tonotopic plasticity that ultimately allow for restoration. Based on the results of the AMI patient, 

we propose there is a fixed representation for tonotopy that is maintained in the ICC, with 

tonotopic changes found in higher auditory centers. To test this hypothesis, we wanted to induce a 

reversible hearing loss using ear plugs that may lead to a reversible auditory plasticity and 

monitored noninvasively. Preliminary results from a pilot study indicated that reversible plasticity 

is possible and can be monitored noninvasively. However, no final conclusions about the 

mechanism can be made, as further studies were suspended due to numerous shortcomings 

including unreliable frequency attenuation. Ultimately, this appendix can serve as a guide for 

continued tonotopic plasticity studies aimed at addressing fixed plasticity and for chronic animal 

implantation. 

 

INTRODUCTION 

Tonotopic Plasticity  

 In the past couple decades, extensive evidence has emerged showing that auditory 

plasticity is not confined to sensitive or critical periods in the developing brain but rather 

the adult brain is capable of modification due to environmental influences or salient 

events. Numerous experimental paradigms including cochlear trauma, behavioral 

conditioning, passive exposure, and direct electrical stimulation, have been used to alter 

the frequency selectivity of auditory neurons to alter tonotopic maps in the A1, the MGB, 
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and to a lesser extent the ICC (reviewed in Suga and Ma, 2003; Fritz et al., 2005; 

Weinberger, 2008; Xiong et al., 2009; Irvine, 2010; Pienkowski and Eggermont, 2011). 

In each experimental paradigm, frequencies of interest were targeted by various means 

and spatial modifications in the tonotopic maps for the selected frequency region and the 

immediate surrounding regions were monitored. The studies demonstrate adaptive 

plasticity was possible in tonotopic maps of the developed brain and probed the 

mechanism of action and necessary circuitry. 

 Cochlear trauma paradigms, which include cochlear lesions, ototoxic drugs, and 

noise exposure, have resulted in hearing loss of the frequencies of interest (i.e., 

frequencies in region of damage or exposure range), leading to tonotopic reorganization 

throughout the auditory system (Robertson and Irvine, 1989; Rajan et al., 1993; Willott et 

al., 1993; Rajan and Irvine, 1998; Eggermont and Komiya, 2000; Irvine et al., 2003; 

Kamke et al., 2003). The tonotopic reorganization induced by these paradigms has been 

characterized by a reduction in the representation of the lost frequencies and an 

expansion of the surrounding frequencies (reviewed in Irvine, 2010). The greatest 

changes have been found within the A1, which showed that not only did expansion occur, 

but that the neurons in the expanded area had thresholds near normal values (Robertson 

and Irvine, 1989; Rajan et al., 1993). Similar expansion and threshold changes were 

found in the MGBv (Kamke et al., 2003), but not in ICC (Irvine et al., 2003). Results of 

ICC tonotopic expansion have been inconsistent, showing long term effects with varying 

thresholds, rapidly appearing but not lasting effects, or no effects at all, and warrant 

further study (Willott and Lu, 1982; Wang et al., 1996; Snyder et al., 2000; Harrison, 
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2001; Wang et al., 2002; Izquierdo et al., 2008; Snyder et al., 2008; Fallon et al., 2009). 

Cochlear trauma experiments suggested that robust, lasting adaptive plasticity may be 

limited to the thalamus and cortex.  

 Similar to cochlear trauma, passive exposure to frequencies of interest also 

resulted in reduction in the representation of those frequencies. An initial result indicated 

that passive exposure would cause overrepresentation and increased selectivity in the 

auditory cortex for the exposed tones; similar to what was shown in the developing brain 

(Stanton and Harrison, 1996; Zhang et al., 2001; Engineer et al., 2004). However, a larger 

body of work has indicated that the opposite is true in adults, with suppression of activity 

and reduction of the representation of the exposed frequencies and overrepresentation of 

the surrounding frequencies (Noreña et al., 2006; Pienkowski and Eggermont, 2009, 

2010a, b; Pienkowski et al., 2011). Interestingly, the changes seen in the auditory cortex 

likely also occurred within the thalamus according to recorded LFPs, but not in the ICC 

indicated by auditory brainstem responses (Noreña et al., 2006; Pienkowski and 

Eggermont, 2009, 2010a, b; Pienkowski et al., 2011). Plasticity resulting from passive 

exposure also suggested that reorganization is restricted to the thalamus and cortex. 

 Where the cochlear trauma and passive exposure paradigms resulted in a 

contraction in A1 of the frequency representation for frequencies of interest, the 

behavioral conditioning paradigm resulted in expansion for the frequencies of interest. 

For example, tones paired with foot shock have caused over representation of the 

conditioned tone and reduction of the surrounding frequencies in cortical and collicular 

maps (Bakin and Weinberger, 1990; Edeline et al., 1993; Gao and Suga, 1998; Ji et al., 
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2001). A comparison of the adaptive plasticity in these two regions elicited by 

conditioning revealed that reorganization persists in A1 far longer than in the ICC, with 

tonotopic maps being restored in the ICC after three hours of recovery time whereas A1 

took twenty six hours to fully recover (Gao and Suga, 2000). This study suggested that 

the shift in the ICC served to enhance the cortical shifting as part of a feedback loop, but 

promptly returned to the original state.  

 Lastly, the direct electrical stimulation paradigm elicited reorganization similar to 

what was seen in behavioral conditioning with expansion of the stimulated frequencies of 

interest. A majority of the direct electrical stimulation studies have activated the A1 and 

induced frequency expansion in the A1 through local circuitry (Chowdhury and Suga, 

2000; Ma and Suga, 2001; Sakai and Suga, 2001, 2002) as well as in the ICC and MGB 

through corticofugal projections (Zhang and Suga, 1997; Rauschecker, 1998; Yan and 

Suga, 1998; Zhang and Suga, 2000; Ma and Suga, 2001; Yan and Ehret, 2002; Yan et al., 

2005). Similarly, stimulation in the ICC and MGB shifted the ICC, through a cortical 

feedback loop (Zhang and Suga, 2005; Wu and Yan, 2007). However, corticofugal 

shifting was extinguished when the cortex was inactivated (Zhang and Suga, 1997; Zhang 

et al., 1997; Zhang and Suga, 2000). From these studies it is apparent that cortex is 

necessary to drive alterations in subcortical nuclei. 

 From these different experimental paradigms, it is apparent that the topographic 

representation of the frequencies of interest can expand and contract dependent on the 

paradigm used. With this overwhelming evidence in support of plasticity in the adult 

brain, a ‘stability-plasticity’ dilemma is introduced. How can the brain be plastic while 
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maintaining the stability required to perform necessary functions (Seitz and Watanabe, 

2005). The results from these experiments present a solution. Overall, these results 

showed the changes experienced by the cortex were more robust that those witnessed in 

the IC. It appeared that early reorganization or at least altered sensitivity manifested in 

the ICC and was transmitted to the thalamus and cortex where lasting modifications 

remained. The lasting modifications in the A1 can then gate subcortical reorganization 

through descending projections. Therefore, the stability of the ICC and the plasticity of 

the cortex and thalamus may allow for proper auditory processing while also adapting. 

The stability and plasticity that the auditory system can achieve is well illustrated by the 

reorganization and restoration of tonotopic maps experience by an AMI patient. 

 

Auditory Midbrain Implant Plasticity 

 In 2006, the first clinical trial for the AMI was completed in five patients at the 

Hannover Medical University in Germany. The AMI was only approved for use in NF2 

patients, as insertion of the AMI during the tumor removal procedure added only minimal 

surgical risk (Samii et al., 2007; Lim et al., 2009a). Of the five patients, three were 

implanted within the IC with only one of the patients being correctly implanted in ICC 

(Samii et al., 2007; Lim et al., 2008b; Lim et al., 2009b; Lim et al., 2013). As such, this 

patient received the greatest benefits from the implant, achieving open set speech (i.e., 

speech understanding with lip reading cues) and environmental awareness (Lim et al., 

2007; Lim et al., 2009c; Lim et al., 2013). However, what is most interesting about this 
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patient is the auditory plasticity measured due to hearing loss and then due to electrical 

stimulation of the ICC.  

 Following surgery and 1.5 month recovery, the patient was brought in for the first 

implant fitting to determine the optimal stimulation strategy. The AMI was designed such 

that each electrode contact resided in a different frequency layer, thus the first step was to 

map the implant to establish what perceived pitch was elicited by stimulation of each 

electrode contact. The pitch ordering was done with a qualitative scale, where the patient 

rated the perceived pitch either from zero to five with zero correlating to low frequencies 

sounds such as a boat horn and five correlating to high frequencies sounds like a bird 

chirping, and with a two-alternative forced choice (2-AFC) pitch ranking test (Lim et al., 

2007; Lim et al., 2013). In the 2-AFC pitch ranking method, the subject selected which of 

two sequentially stimulated sites elicited a higher pitch. The order was determined based 

on how frequently a site was the considered higher pitch. The initial pitch ordering 

revealed an altered tonotopic map (Fig. 26). Unlike a typical tonotopic map which would 

show a gradient of low to high frequencies in the dorsal-lateral to ventral-medial 

direction, the patient’s map showed low to medium back to low frequencies along the 

same direction. The non-tonotopic ordering and presumed non-tonotopic ICC map was 

surprising, but based on the patient’s history, not wholly unexplained. The alterations 

were likely attributed to the high frequency hearing loss the patient experienced six years 

prior to the implant, as a result of the tumor (Lim et al., 2013). Since the central auditory 

system was no longer receiving high frequency auditory information from the periphery, 

it was likely that the tonotopic map reorganized to represent only the frequencies 
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unaffected by the tumor. Given the resulting non-tonotopic pitch ordering, a non-

tonotopic stimulation strategy was employed. The highest frequency information detected 

by the external microphone generated stimulation of the electrode that elicited the highest 

pitch perceived by patient (i.e., the middle layers). The rest of the implant was similarly 

mapped, with the remainder of the site ordering dependent on the qualitative pitch 

ordering (Lim et al., 2013).  

 

 

Figure 26. Pitch ordering measured in AMI patient over three years showed restoration of 

original tonotopy, including return of high pitches. Results were measured using A, a qualitative 

pitch scaling test and B, 2-AFC pitch ranking test. Results from both tests at the initial time point 

indicate that there was a non-tonotopic ordering that lacked higher pitches. Results from both 

tests at the final time point indicate a tonotopic order returned, including higher pitches. The 

asterisks indicate significantly higher values at 10- and 21-month follow-up compared to the 1.5-

month values (p<0.006, two-tailed ranked, unequal variance t-test). This figure has been adapted 

from (Lim et al., 2013) with permission from the Nature Publishing Group. 
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 This stimulation strategy was used until the patient’s four month follow up, where 

pitch ordering was retested. Unexpectedly, instead of the non-tonotopic pitch ordering 

found in the first visit, a new ordering appeared that was now organized from low to 

medium perceived pitches from electrodes stimulated in the dorsal-lateral to ventral-

medial direction. Using a non-tonotopic stimulation strategy, a tonotopic organization 

had emerged, though with limited frequency range (Lim et al., 2013). The stimulation 

strategy was adjusted to account for the new, tonotopic ordering. Perhaps the most 

astonishing result came during the ten month follow up. Retesting of the pitch ordering 

during this visit showed that not only was the tonotopic ordering still intact, but new 

pitches were perceived that were higher than what had previously been measured (Lim et 

al., 2013). Stimulation of the ICC by the AMI was able to restore a tonotopic pitch 

ordering similar to what would be expected in a normal hearing listener per animal and 

human studies (Geniec and Morest, 1971; Schreiner and Langner, 1997; Oliver, 2005; 

Malmierca et al., 2008; De Martino et al., 2013; Ress and Chandrasekaran, 2013).  

 The auditory plasticity experienced by this patient is somewhat puzzling; as non-

tonotopic stimulation was able to restore a tonotopic pitch ordering and we believe 

restore the tonotopic map in the ICC. It seems unlikely that remapping of the circuitry 

could have happened as described in previous plasticity studies, where frequency 

representations can expand or contract but not completely reorganize. As such, it was 

expected that the non-tonotopic stimulation would only reinforce the non-tonotopic map 

and that tonotopic stimulation would have been needed to possibly restore a tonotopic 

map. Therefore we propose a different form of auditory plasticity that can explain what 
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was witnessed in the patient. Instead of plasticity that is constantly adapting based on the 

input, we propose that the IC is capable of maintaining multiple states (i.e., multiple 

frequency maps). Dependent on the input, the IC can switch between necessary states. In 

this patient, we propose that electrical stimulation by the AMI allowed the IC to switch 

from a non-tonotopic to a tonotopic state. 

 The idea of multiple plastic states has been well documented in sound localization 

(Hofman et al., 1998; Knudsen, 2002; Bajo et al., 2010; Kumpik et al., 2010). For 

example, owls with vision obscured by prisms were able to learn to correctly localize 

sound with a new map and then quickly return to the original map following prism 

removal (Knudsen and Knudsen, 1990; Knudsen, 2002). Anatomical tracer studies 

showed that both learned and original maps were maintained concurrently as projections 

within the sound localization circuitry of the IC. It was determined that an instructive 

signal from the visual system designated which state (i.e., projections) was necessary, 

mediating the switch by NMDA and GABA receptors (Hyde and Knudsen, 2000; 

DeBello et al., 2001; Knudsen, 2002). In ferrets, the role of the auditory cortex was 

established in the sound localization circuit, showing that projections from layer V of A1 

were necessary to enable learning-induced plasticity within the IC (Bajo et al., 2007; 

Bajo et al., 2010). Thus, we propose that similar to the multiple states that can be 

maintained for sound localization, fixed and learned plastic states also exist for tonotopic 

maps that would allow for the tonotopic reorganization and restoration seen in the AMI 

patients.  
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Fixed Representation Hypothesis 

 Based on the changes seen in our AMI patient and guided by fixed topographic 

maps for sound localization, we hypothesize that there is a fixed representation for 

tonotopy that exists within the ICC, with plastic reorganization predominately occurring 

in higher auditory centers (i.e., MGB and A1). This hypothesis is supported by previous 

work that showed peripheral damage results in limited frequency reorganization of the 

ICC though changes were seen in higher auditory centers (Irvine et al., 2000; Irvine et al., 

2003; Kamke et al., 2003; Fallon et al., 2008; Izquierdo et al., 2008). We further 

hypothesize that projections from the ICC to the thalamus also remain fixed but are either 

active or dormant, with new axonal projections arising dependent on available auditory 

information to form the plastic map. The ability to switch between the plastic and original 

map and thus activate necessary collicular projections may be dependent on both 

ascending and descending inputs to the ICC. Auditory information transmitted through 

ascending projections to the ICC may instruct which collicular projections are necessary, 

while descending projections from A1 may serve to activate or deactivate those collicular 

projections to enable plasticity and map switching. In this way, both a fixed map in the 

ICC and plastic map in the thalamus or A1 can exist simultaneously and be used as 

necessary. 

 This hypothesis is consistent with the AMI patient. Initial stimulation of the 

patient resulted in perception of only low frequencies. Due to the high frequency hearing 

loss, only low frequency auditory information was reaching the ICC and being passed to 

the thalamus and onward, likely resulting in a plastic map of only low frequencies. The 
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AMI was then used to stimulate all frequency regions of the ICC and thus reactivating 

dormant, fixed high frequency pathways leading to the return of the original tonotopic 

map in the thalamus and perception of the high frequencies.  

 

PROPOSED METHODS AND PILOT STUDIES 

Study Overview 

 In order to confirm that multiple maps can coexist in the auditory system, we 

wanted to induce a temporary, reversible high frequency hearing loss that would result in 

an altered tonotopic map similar to that found in the AMI patient. Measuring the time 

course for creation of the plastic map and return to the original map may determine if 

fixed maps exist. We postulated that if the time required to reacquire the original map 

was faster than learning a new, plastic map, fixed maps were present. However, if the 

time to reacquire the original map was comparable to learning, then likely relearning 

occurred, thereby eliminating the need for a fixed map. Additionally with these studies, 

we wanted to probe the role of descending projections in gating tonotopic plasticity 

through lesion studies to see if map switching ceased following removal of descending 

control. 
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Table 3. Proposed experimental groups for monitoring tonotopic plasticity within 

subcortical auditory nuclei. 

Group 1 was a control to monitor changes due to age related hearing loss, all changes were to be 

compared to the tonotopic maps found within the control GPs. Groups 2 and 3 verified and 

quantified tonotopic reorganization and restoration, respectively. Additionally, the neural changes 

can be correlated to ABR changes. Groups 4 and 5 verified that corticofugal projections are 

necessary to gate subcortical plastic change. If changes occurred with an inactive cortex, 

additional gating signals would need to be explored. 

 

 To carry out these studies, we designed an experimental protocol that used 

molded, silicone ear plugs and monitored the changes using Auditory Brainstem 

Responses (ABRs) and Middle Latency Responses (MLRs). Terminal studies were to be 

carried out at different time points to assess tonotopic changes by recording throughout 

the ICC, the A1, and possibly the MGB. The study was designed to contain five trial 

groups shown in Table 3, each serving a different purpose in testing our hypothesis. The 

Group 
Ear 

Plugs 
A1 Lesion Terminal Steps Reason 

Number 

of GPs 

1 No No 

After initial shift 

(2) or 

after return (2) 

Control Group. Determine 

if shift is functional or 

due to aging 

4 

2 Yes No After initial shift 

Verify that shifting 

occurred and quantify 

amount to correlate to 

ABR data 

4 

3 Yes No After return 

Verify that return 

occurred and quantify 

amount to correlate to 

ABR data 

4 

4 Yes 
Yes, Before ear 

plug insertion 
After initial shift 

Verify that no shifting 

occurred without 

descending projections 

4 

5 Yes 
Yes, Before ear 

plug removal 
After return 

Verify that no return 

occurs without 

descending projections 

4 
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following sections detail the design steps and decisions made preparing for this study, 

including expected outcomes, and the chronic surgical protocol. 

 

Ear Plug Attenuation 

 To achieve frequency reorganization similar to that of the AMI patient, we chose 

to attenuate frequencies above 4 kHz, which is approximately in the middle of hearing 

range we have measured in guinea pigs (0.6 to 25 kHz). Thus the number of octaves that 

would be attenuated and unattenuated are relatively equal with 2.64 octaves and 2.73 

octaves, respectively. We opted to attenuate a larger range of frequencies than was seen 

in the patient, since we wanted to target frequency regions that are highly active in guinea 

pig (4 to 10 kHz). The next step was to design ear plugs that fit the desired attenuation. 

 In designing these ear plugs, there were tradeoffs that needed to be considered 

between selective attenuation and cost and ease of use. The optimal attenuation profile 

would have been attained with the use of active ear plugs which have microphones and 

electronics that can detect the frequencies present and low pass filter only those of 

interest. However, in the scope of our animal experiments, active ear plugs would have 

been time intensive to design and fit to the guinea pig ear as well as cost prohibitive. The 

other option was to use passive ear plugs which provide a flat attenuation across a 

frequency spectrum. Though passive ear plugs did not have the desired attenuation 

profile, they allowed us to custom fit each guinea pig at each time point. We deemed ease 

of use to be the most important design constraint, because the size of the guinea pig’s ear 

canal made it challenging to reuse ear plugs. As such we selected three silicone ear 
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impression products that we could mold into the ear and had curing time under five 

minutes. These included Insta-mold II (Insta-mold Products Inc, Oaks, PA), Otoform KC 

(Dreve Otoplastik GmbH, Unna, Germany), and Otoform AK (Dreve Otoplastik GmbH, 

Unna Germany).  

 Of the three selected ear impression products, we finalized our material choice 

based on three selection criteria: attenuation profile, ease of use, and overall cost of 

producing numerous, one-time-use molds. Attenuation profiles were characterized by 

coupling the speaker (Tucker-Davis Technologies, Alachua, FL) and microphone (ACO 

Pacific Inc, Belmont, CA) through a custom-made silicone cylinder. For each mold, there 

was one centimeter of solid silicone separating the speaker and the microphone. 

Frequencies from 0.1 to 50 kHz at 0.5 kHz steps were presented and the resulting level 

(dB-SPL) per frequency was recording (Fig. 27A) from which the attenuation profile was 

calculated (Fig. 27B). The measured values showed approximately the same attenuation 

profile past 20 kHz for all silicones. The only advantage was that Insta-mold II had 

slightly less attenuation at frequencies below 4 kHz. It was apparent from the plots that 

none of these attenuation profiles completely met our requirements, which was expected 

and will be considered in future directions. The second selection criterion was ease of 

use. The Insta-mold II and Otoform KC were made with by mixing a silicone with a 

hardening paste, whereas the Otoform AK required mixing two silicones. The curing rate 

and rigidity of the Insta-mold II and Otoform KC was the easiest to control by altering 

the amount of catalyst solution added. Finally in comparing cost, Otoform KC had the 

lowest cost and fastest delivery time. Considering all these factors, Otoform KC was 
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selected as the material for all the pilot studies. Otoform KC was the easiest to use and 

most cost effective for mass production. In the end, the attenuation profiles were too 

similar to influence the decision. 

 

Figure 27. The different frequency response and attenuation measured from each silicone showed 

no obvious advantages for achieving the desired attenuation profile. A, Sound pressure levels 

(dB-SPL) were recorded by the microphone to frequencies from 0.1 to 50 kHz presented by the 

speaker without a coupler (green), with an Insta-mold II coupler (red), with a Otoform KC 

coupler (blue), and an Otoform AK coupler (purple). B, Attenuation was calculated by 

subtracting the coupled frequency response from the uncoupled frequency response. The dotted 

line marks the intended division between attenuated and unattenuated frequencies at 4 kHz. 

Attenuation was similar for frequencies above 20 kHz and only Insta-mold II had slightly less 

attenuation below 4 kHz. 
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 Speed and efficiency were crucial when making each custom ear plug to avoid the 

ear plug material curing outside the ear canal and pinna and ensure complete coverage. 

Ears were first cleaned of ear wax. Next, the Otoform silicon was mixed with three drops 

of the hardening paste and placed in a curved tipped syringe, which allowed for better 

insertion into the ear canal. The pinna part of the ear was swabbed with a thin layer of 

cyanoacrylate for better fixation and then the ear canal and 90% of the pinna was filled 

with the silicone mixture. This process was repeated starting with mixing silicon for the 

other ear. Using the animal’s body heat, the ear plugs cured within five minute. 

 

ABRs and MLRs Recording Protocol and Analysis 

 ABRs and MLRs are a noninvasive measurement of auditory evoked potentials. 

ABRs are able detect the synchronized response of neurons in multiple auditory centers 

in the brain stem up to the thalamus and MLRs detect synchronized activity from the 

thalamus and the auditory cortex (Starr and Hamilton, 1976; McGee et al., 1983; 

Ozdamar and Kraus, 1983; Wada and Starr, 1983). Typical ABRs can be seen within the 

first 10 ms and typical MLRs can be found 8-50 ms following acoustic onset (Ozdamar 

and Kraus, 1983; Wada and Starr, 1983). Each peak in the waves represents the activity 

of a different auditory center (Fig. 28). In the ABRs, Wave I through VII indicate activity 

in vestibulocochlear cranial nerve, cochlear nucleus, superior olivary complex, lateral 

lemniscus, inferior colliculus, and thalamus, respectively (Starr and Hamilton, 1976; 

Skinner and Glattke, 1977; Wada and Starr, 1983). MLRs consist of two negative peaks 

(Na and Nb) and two positive peaks (Pa and Pb) that correspond to activity in the thalamus 
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and cortex, respectively (McGee et al., 1983; Kraus and Nicol, 2009). The amplitude, 

absolute latency, and inter-peak latency of the ABR and MLR waves can be used as a 

measurement of auditory threshold and any change in those parameters can be attributed 

to alterations in frequency representation. As such, we would expect larger changes in the 

MLRs compared to the ABRs. 

 

Figure 28. Positive peaks in ABRs represent synchronized neural activity in subcortical auditory 

nuclei and positive and negative peaks in MLRs represent synchronized thalamic and cortical 

activity. A, Our recording set up fails to capture Wave I of the ABRs which represent activity in 

the vestibulocochlear cranial nerve. Waves II and III represent neural activity in the cochlear 

nucleus, trapezoid body, and superior olivary complex. Waves IV and V reflect activity in the 

lateral lemniscus and inferior colliculus (Starr and Hamilton, 1976; Wada and Starr, 1983). 

Waves VI and VII reflect neural activity in thalamus and possible cortex cell neural activity 

(Skinner and Glattke, 1977) . B, The first positive and negative peaks correspond to activity in the 

thalamus and the second positive and negative peaks correspond to activity in the cortex. 

 

 For these experiments, we chose to minimize variance associated with the 

recording location by implanting screws into the skull and to reduce likelihood of 
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infection by using a two electrode configuration. Instead of three electrodes that would 

typically be used for common mode rejection, we opted to use the same electrode for the 

ground and reference. Initial test indicated no difference in noise floor when using two 

electrodes. The final electrode placements were made ipsilateral to the free field speaker, 

caudal to lambda and contralateral to the free field speaker, caudal to bregma. 

Experiments were performed in an acoustically and electrically isolated sound booth. 

Recordings were made from TDT hardware interfaced with custom written MATLAB 

software. The acoustic stimulation was delivered at a sampling rate of 195 kHz. The 

recorded signals were digitally sampled at 25 kHz and passed through analog and DC-

blocking and anti-aliasing filters from 1.6 Hz to 7.5 kHz. The ABR/MLR acoustic 

stimulation protocol included eight pure tones (1 kHz, 4 kHz, 8 kHz, 14 kHz, 20 kHz) 

that were presented at varying levels (10-80 dB-SPL in 10 dB). The final results were 

calculated by averaging evoked response from 200-300 trials, though future work should 

average more than 500 trials per recording.  

 The ABR and MLR data was analyzed offline using a custom written MATLAB 

script to select the threshold of each frequency and calculated the amplitude and latency 

of each wave. ABR data was filtered from 100-3000 Hz with the signal recorded from the 

ipsilateral electrode, referenced to the contralateral electrode. MLR data was filtered from 

10-300 Hz with a reverse electrode polarity compared to ABR data (i.e., signal recorded 

from the contralateral electrode referenced to the ipsilateral electrode). Thresholds were 

determined by visual inspection. Absolute latency was calculated as the time between 



 

 165 

acoustic onset and maximum peak and inter-peak latency was calculated as the time 

between subsequent peaks. 

 

Chronic Protocol 

 In order to monitor changes over time, we developed a chronic, aseptic surgical 

procedure that would minimize the likelihood of infection compared to our acute 

experimental protocol. An outline of the chronic procedure steps and workflow are 

shown in Figure 29 with details necessary to replicate the procedure provided in the text. 

For all steps of the procedure, personal protective equipment was required including hair 

net, closed cuff lab coats, and sterile gloves. One day prior to experimentation, all tools 

and equipment that may make contact with the animal were autoclaved in separate bags 

at 135°C for three minutes. Autoclave bags were not opened until necessary during the 

surgery.  

 The first step once acquiring the experimental animal (GPs) was to administer 

enrofloxacin (10mg/kg, Baytril) and ketoprofen (5 mg/kg, Ketofen) subcutaneously. No 

incision or anesthesia should be made before the initial dose of antibiotics and anti-

inflammatory drugs. Next, an intramuscular injection of ketamine (40 mg/kg, Ketaject) 

and xylazine (10 mg/kg, AnaSed Injection) was given. Additional doses of ketamine 

mixed with two parts saline was administered as needed during the surgery. In order to 

minimize damage to the ear canal, the following surgical steps were performed out of the 

ear bars, though this also reduced stability during the surgical procedure. Heart rate, 

blood oxygenation, and temperature were monitored with a pulse oximeter and rectal 
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probe. The incision location was shaved, washed three times with Betadine then 

isopropyl alcohol, and then injected subcutaneously with lidocaine. An incision was 

made down the midline from bregma to lambda, exposing enough of the skull for the two 

electrode ABR/MLR recording configuration. The skull was cleaned of any muscle tissue 

and dried of any blood. 

The dental cement was allowed to cure for ten minutes and then the ABRs/MLRs 

were recorded. The free field speaker was placed 1.2 cm from the left ear of the GP and 

alligator clips were used to connect the recording electrodes with the TDT hardware. A 

box was placed around the whole setup to ensure animal safety during the long 

recordings. A baseline recording was made before custom ear plugs were fit for each ear 

and then a second recording was made to test ear plug attenuation. 

Following surgery and initial testing, GPS were placed in their cages and 

monitored under a heat lamp until they were able to support their own weight and move 

freely around the cage. For three and six days after the experiment, GPs are given daily 

injections of enrofloxacin and ketaprofen to prevent infection and reduce pain. For this 

initial study, no lesioning was done in the cortex. Details for the lesion protocol would 

need to be established for later studies. 

 

 



 

 167 

 

Figure 29. Chronic protocol steps and workflow for ear plug induced plasticity. Steps from 

preparing for the chronic protocol through the surgery to post-operative care are highlighted here, 

including steps that are necessary compared to the acute protocol. Further details for each step 

can be found in Proposed Methods and Pilot Studies.  
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PRELIMINARY RESULTS 

 We only completed two test animals with this protocol before the project was put 

on indefinite hold for reasons highlighted in Discussion. These first two animals served 

as a pilot study in order to determine the amount of time necessary to see changes in the 

auditory evoked protocols indicated possible ear plug induced changes and restoration. 

Thus, ABRs/MLRs were recorded weekly. An initial ABR/MLR was recorded on the day 

of surgery with and without placement of the ear plug (Fig. 30). For each subsequent 

recording, GPs were lightly anesthetized with an intramuscular injection of ketamine 

mixed with two parts saline. Typically this dosage was adequate to keep the GP 

anesthetized during transport and throughout the whole recording; however additional 

doses of ketamine and saline can be administered as necessary. The recording protocol 

was completed in the absence of ear plugs and then each ear was fit with a new ear plug.  

 

 

 

Figure 30. Ear plugs differentially 

attenuated frequencies indicated by 

differences in recorded ABRs. 

Baseline ABRs were recorded at 80 

dB-SPL without ear plugs (black) 

with clear peaks for Waves III – 

VI. Following the placement of ear 

plugs (red), no peaks can be seen 

for 14 kHz, and shifted peaks are 

present for 4 kHz and 8 kHz. 
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Unfortunately, we were only able to monitor GP2 to the final time point as the 

bone screw and dental cement cap made for GP1 did not adhere, causing complications 

that ultimately led to termination. When changes in latency and threshold presumed to 

indicate tonotopic plasticity appeared, ear plugs were removed until normal or near-

normal latencies and thresholds returned. Initial indications of tonotopic reorganization 

appeared after Week 4 (Fig. 31A,B) with return occurring one week after ear plug 

removal. Following weeks with ear plugs, the ABR peaks were reduced compared to the 

ABRs recorded in the previous and subsequent weeks. The ABRs from GP2 were 

averaged over only 200 traces which accounts for the added noise in the signal. Future 

studies should use longer recordings to reduce noise unrelated to synchronized activity. 

Following the initial reorganization, switches between the original and plastic map only 

took one week, shown first in Weeks 5-7 and Weeks 11-13 (Fig. 31B). Ear plugs were 

placed for the final weeks leading up to the terminal surgery. The tonotopic maps found 

within the ICC only showed frequencies between 2 and 9 kHz, which is a decreased 

range compared to normal hearing GPs (0.6 to 25 kHz, results not shown). These results 

revealed that we were able to elicit different ABRs that we attributed to ear plug induce 

plasticity. It was possible that the plasticity found could be ascribed to ear plug induce 

damage, however that seems highly unlikely as the results were reversible. 
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Figure 31. Ear plugs were able to induce reversible plasticity changes as monitored by ABRs. 

The initial reorganization resulted after four weeks of ear plug wear and restoration resulted after 

one week of recovery. A, The timeline for the pilot studied was completed to verify multiple 

switches between the original and chronic map was possible. B, Recordings were made at the end 

of the week (i.e., no ear plugs were present during Week 5 and Week 7, but were present during 

week 6). Weeks without ear plugs resulted in larger ABR peaks compared to the week with ear 

plugs (red). To visible difference is apparent in the recording from the week before (gray) and the 

week after (black). During ear plugs weeks, small peaks were present for 1 kHz and 4 kHz, 

though it was not clear which wave. In comparing Weeks 5-7 and Weeks 11-13, there was a loss 

in Wave amplitude that may denote damage to the peripheral ear. 
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DISCUSSION 

 

 There were several issues encountered during this pilot study that need to be 

remedied before piloting a second study. These issues include the dental cement cap and 

ear plug adherence, animal health, and the attenuation profile. With better methods in 

place, the second pilot study can be used to better determine shifting timelines and 

statistical methods. The section will introduce each issue and provide a possible solution. 

 The terminal times points for the pilot study were not selected by the 

experimenters but rather because the animals managed to remove their dental cement 

caps (GP1) or suffered injuries consistent with nerve damage (GP2). We believe that the 

first issue can be remedied by using more head screws to provide greater surface area for 

the dental cement adherence. Additionally, before applying dental cement, compressed 

air should be used to completely dry the skull which will ensure better fixation. The 

second issue is likely linked to sciatic nerve damage inflicted by anesthesia 

administration and can be avoided by changing the angle and approach of the injection.  

 Ultimately, these experiments ceased because the ear plugs were not reliable nor 

provided the desired attenuation profile. GPs are sensitive to environmental changes and 

do not respond well to irritation. Thus, the GPs displayed a head shaking behavior when 

ear plugs were present. Though they were not monitored 24 hours a day, we suspect that 

the animals continued this behavior until the ear plugs were expelled. Most weeks, either 

one or none of the ear plugs remained intact. One option would be to monitor the animals 

daily; however this would not eliminate the need for more secure ear plugs. A second 

option would be to use a more permanent solution to secure the ear plugs as the 
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cyanoacrylate was not strong enough to combat the head shaking behavior. In regard to 

the attenuation profile, though more attenuation occurs at higher frequencies, there was 

still a substantial amount of attenuation on the frequencies of interest. One option to 

enhance these frequencies would be to supplement the ear plugs with tones greater than 4 

kHz, since previous studies have indicated contraction of tonotopic representation for 

passive tone frequencies. Using ear plugs in conjunction with tones would create a 

greater likelihood that we would achieve the tonotopic shifts we desire than either 

paradigm alone. 

 Finally with the discussed issues addressed, a timeline of chronic and acute time 

points would need to be established in the second pilot study before to beginning the final 

studies. The results of this study as well as the results of previous passive exposure and 

ear plugs studies indicated a timeline that would likely be one month to initial 

reorganization and one week to restoration. This second pilot study would also better 

inform where in the CAS recordings should be made during the terminal step. The study 

was originally designed to record throughout the ICC. However, in reconsidering the 

hypothesis, it may be beneficial to record in both the ICC and the thalamus. If we believe 

that the ICC remains fixed and the changes happen in higher auditory centers, the 

thalamus may likely show the altered and original map we desire whereas the ICC may 

show only the original map. Recordings in the auditory cortex could also be considered, 

but due to the lesion portion of our study, we could not get data from all animals. 

 In summary, we would need a more robust protocol to ensure that we are 

establishing an altered map through ear plug induced plasticity. This would allow us to 
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more confidently test our fixed plasticity hypothesis. In reviewing our pilot studies, there 

are many issues that need to be amended prior to addressing the aim of the study. 

However, the results of this pilot show promise for continuation and have enabled us to 

establish the first chronic protocol in GPs for our labs.  

  

 

 

 

 

 

 


