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Abstract

This thesis consists of three chapters on games with linear best replies. In the first chapter1

we show how in the context of a common agency game, when principals seek robustness,

then linearity in total output emerges as an equilibrium outcome. More specifically we

consider a game between several principals and a common agent, where principals design

contracts that are robust to misspecification of the agent’s technology. The principals

know a subset of the actions available to the agent, but other unknown actions could exist.

Principals demand robustness and evaluate contracts on the worst-case performance over

all possible actions of the agent. Despite the complexity of the game, we show that a

pure strategy equilibrium always exists, by constructing a pseudo-potential for the game.

Equilibrium contracts are linear in total output and imply that all players (the principals

and the agent) receive a share of total output. The higher the share of total output accruing

to the agent, the more efficient the outcome of the game. The crisp characterization of

the equilibrium allows us to revisit the classical question of the efficiency of competitive

outcomes relative to collusion among principals. We also consider a game where principals

collude and offer a joint contract. The efficiency of the competitive outcome depends

crucially on the ability of principals to offer side-payments to one another through the

agent.

In the second chapter we consider several applications of the framework introduced in the

first chapter. Linearity allows for sharp predictions of the model in several contexts. The

main application of the model in the first chapter is in analyzing the taxation of multi-

national firms where we study the effects of tax competition among countries. We show

that a flat tax on domestic and foreign profits with a full deduction of foreign taxes pro-

vides the best worst-case guarantee for each country’s revenues. Furthermore we consider

a procurement auction setup, as well as an application of the model to private provision of

public goods.

In the third chapter we depart from the robustness framework and focus on the network

structure of games with linear best replies. Games played on fixed networks capture a

1Chapters one and two are products of a collaboration with Sergio Ocampo Diaz.
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variety of economic settings including public goods, peer effects, and technology adaption.

Bramoullé et al. (2014) analyze a large class of one dimensional linear best reply games

and provides general results on how the network affect social and economic outcomes. In

this paper we first provide an isomorphism between games with linear best replies and the

threshold-linear recurrent networks used in neuroscience to study the encoding of memory

patterns in the brain, connecting two seemingly unrelated literatures. Inspired by the

isomorphism we extend games of linear best replies in understanding Lindahl equilibria and

to games with multidimensional actions. In particular we show how Cournot competition

among several firms leads to specialization in production. We show how the network

structure of competition in demand for consumers shape the decision of firms in which

goods to specialize.
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Chapter 1

Robust Contracts in Common

Agency

Strategic settings where several actors try to influence a common party have attracted abun-

dant attention in many areas of economics. Examples include political economy, industrial

organization, mechanism design, public finance, international trade, and auctions.1 Start-

ing with the work of Bernheim and Whinston (1986a,b) these settings have been modeled

as a common agency game where several principals simultaneously and non-cooperatively

contract with a single agent.

In this chapter we present a general moral hazard common agency game, where the princi-

pals seek to design contracts that are robust to misspecification of the environment. More

specifically contracts that perform well if the principals have an incomplete knowledge

of the agent’s technology, or if principals cannot renegotiate contracts when technology

1For example, in political economy, lobbying is modeled as a game between lobbyists (the principals)

influencing a politician (the agent), see Grossman and Helpman (1994), Dixit et al. (1997), Le Breton

and Salanie (2003), and Martimort and Semenov (2008). In public finance, a firm (the agent) is taxed and

regulated by the local, state and federal government (the principals), or a multinational company (the agent)

has to pay taxes in several countries (the principals), see Martimort (1996), and Bond and Gresik (1996).

In combinatorial auctions an auctioneer (the agent) wants to sell several items, and multiple bidders (the

principals) bid on all or a subset of the items is studied as a common agency game (Milgrom, 2007). In the

voluntary provision of public goods, the public good provider (the agent) elicits payment from consumers

(the principals), see Laussel and Le Breton (1998).

1



changes.

The game has two stages. First, risk neutral principals simultaneously and non - coopera-

tively offer contracts to a risk neutral agent that has limited liability.2 Given the contracts,

the agent chooses an action that induces a joint distribution over the output of each prin-

cipal at an unobservable cost. Each principal observes her output realization along with

that of the other principals, and can condition her contract on all these observations, as

in Bernheim and Whinston (1986a). The action taken by the agent is not observed, more-

over, the principals do not know the full set of actions available to the agent, as in Carroll

(2015). This captures instances where the principals are contracting with a new agent,

or instances where the agent’s technology can change after the contracts have been set in

place.3 Principals evaluate contracts on a worst-case basis, considering their performance

under all potential actions that the agent might take.

We show that, in equilibrium, each principal offers a linear contract that is increasing

in her output and decreasing in the other principals’ output. Furthermore, contracts are

such that the payoffs of all players are linearly tied, and payments depend only on total

output. Specifically, all players (the principals and the agent) receive a share of total

output. This is also the case when principals collude and offer the agent a joint contract.

Equilibrium contracts deal with the distributional concerns that arise from competition and

the potential misspecification of the environment. While previous papers on moral hazard

common agency games, such as Dixit (1996) and Maier and Ottaviani (2009), restrict

attention to linear contracts for tractability, we place no such restrictions. Linear contracts

arise as equilibrium outcomes.

Linearity in total output allows us to further characterize the equilibrium. First, we show

that a pure strategy equilibrium always exist. This is done by constructing a pseudo-

potential for the game, similar to that of the standard Cournot competition model. The

application of the pseudo-potential to a common agency game is new to the literature. This

2Limited liability implies that the aggregate payment to the agent has to be non-negative for any output

realization, as in Martimort and Stole (2012).
3In a lobbying game, this would imply that lobbyists (the principals) are unsure about the preferences

and goals of new politicians. In the problem of taxing multinational firms, countries want to design tax

policy taking into account that the production technology of multinational corporations might change, but

they will unable to change their tax policy due to political constraints.
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approach allows us to establish existence of equilibrium without imposing any assumptions

over the action set of the agent, while previous papers can only obtain existence under

restrictive assumptions (e.g. Bernheim and Whinston (1986a), Fraysse (1993), Carmona

and Fajardo (2009)).

Second, we show that the higher the share of total output accruing to the agent, the higher

the surplus of the action chosen by the agent, as well as the sum of payoffs of all players.

The monotonicity of surplus and welfare in the share of output accruing to the agent allows

us to compare the outcomes under competition and collusion. The share is weakly lower

when the principals compete, thus leading to lower expected surplus and welfare than if

the principals collude.

This result is similar to the one obtained in the moral hazard models of Bernheim and

Whinston (1986a), Holmstrom and Milgrom (1988), and Martimort and Stole (2012), as

well as the adverse selection models of Martimort and Stole (2012) and Bond and Gresik

(1996), where the agent’s effort is lower under competition than collusion, due to free-riding

among principals.

We also consider a stronger form of limited liability, where each principal’s contract should

specify non-negative payments to the agent for any output realization. In this case the

equilibrium contract of each principal rewards the agent with a share of her output, and

with a share of output that the agent did not produce (but could have) for the other

principals. Contracts are such that each principal gets a share of total output for a fee.

This fee is proportional to the share of total output that the principal appropriates for

herself.

Since the agent still gets a share of total output we can compare the outcome of the game

under this stronger version of limited liability to the outcome under collusion and the

weaker version of limited liability. In this case the share of output accruing to the agent is

higher than under collusion. If the agent receives a lower share than what he gets under

collusion, we show that one of the principals is better off lowering her own share to increase

the agent’s share to its collusion level. This lowers the fee she pays and increases expected

total output, enough to make up for the decrease in her share of output. This highlights

the role of limited liability in the provision of incentives.

3



As noted above, we depart from the common agency literature by dropping usual assump-

tions on the information set of the principals. In particular, we deal with an extreme

version of moral hazard of the type introduced in the principal-agent framework by Hur-

wicz (1977) and Hurwicz and Shapiro (1978), and recently explored by Chassang (2013),

Frankel (2014), Garrett (2014), Antic (2014), Carroll (2015), and Carroll and Meng (2016).4

This degree of informational asymmetry over the possible set of actions makes the design

of incentive compatible contracts challenging. Instead, we look for robust contracts that

maximize the minimum guaranteed payoff for the principals, as in Carroll (2015). Our

work adds to this literature in a crucial way by allowing strategic interaction between

several principals that simultaneously contract with a single agent. To our knowledge we

are the first to study robust contracts in common agency. Dai and Toikka (2017) study

an analogous problem of moral hazard in teams (one principal and multiple agents), where

they find that the optimal contract for the principal is to give each agent a share of total

output.

Robust contracts ensure performance over a wide range of possible settings that the princi-

pals may face (Chassang, 2013). In the absence of a complete characterization of the agent’s

technology (action set), or a well-formed system of priors over possible technologies, robust

contracts will guarantee the highest lower bound for the principals’ payoffs.5 For instance,

in the context of taxing multinationals, the need for robustness to profit shifting strate-

gies is evident. Particularly since tax reforms are often slow, complicated and expensive

processes (we expand on this in Section 2.2). Furthermore, the sensitivity of some of the

results in common agency to the details of the information structure (Martimort, 2006)

justifies our focus on robust contracts. We find that, despite its increased complexity, our

setting allows for a tractable yet general solution.

A central feature of the agent in the classical papers of common agency, like Bernheim and

4The information setup considered here most closely resembles the work of Carroll (2015). Hurwicz

(1977) and Hurwicz and Shapiro (1978) study cases where the principal knows the technology of the agent

belongs to a certain class, but does not know the actual technology. We build on Carroll (2015), because

his framework is more amenable to generalizations.
5When the space of possible technologies of the agent is large the problem becomes intractable, even

when the principals have a well-formed system of priors over this space, see Frankel (2014). Robust contracts

avoid specifying such a system.
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Whinston (1985, 1986a), is that of facilitating collusion among the principals. Collusive

behavior in those models comes from the fact that each principal sells the firm to the agent,

making him the residual claimant of all output. However, this is not possible when the agent

has limited liability.6 In our setup, under the stronger version of limited liability, incentives

align more intuitively since, instead of selling her firm, each principal buys a share of all

the firms for a fee that she pays to the agent (the fee disappears under the weaker version

of limited liability). In equilibrium all players own a share of the ‘conglomerate’ of firms,

caring only about the aggregate output. The alignment of incentives in equilibrium takes

the form of mergers and acquisitions facilitated by having a common agent.7

To summarize, in this chapter we make the following contributions: First, we provide a

model of common agency where principals seek robustness. Second, we characterize equilib-

rium contracts. Third, we establish how the efficiency properties of the equilibrium depend

on the form of the contracts offered, and compare the non-cooperative and cooperative

solutions of the game.

The remainder of this chapter is organized as follows: Section 1.1 lays out the model.

Section 1.2 compares our common agency results to the collusive outcome of the game.

Finally, Section 1.3 presents extensions.

6Without limited liability our solution converges to the Bernheim and Whinston (1986a) case where the

agent becomes the residual claimant, see Section 1.3.3. The only other moral hazard common agency paper

that considers some form of limited liability on the agent is Martimort and Stole (2012). They extend the

model of Innes (1990) to a common agency setting. Their model is a special case of ours, where output is

perfectly correlated between all principals.
7In the 1990s the uncertainty over government policy after the Reagan presidency and the fall of the

Soviet Union pushed defense contractors to merge in order to guarantee their profitability, most famously

the merger of Lockheed with Martin Marietta, see Censer (2014). Also, many mergers and acquisitions

happen between firms that share a financial adviser. Agrawal et al. (2013) find that the smaller firms

(targets) are usually hurt by the M&A process relatively more when they share a common advisor with

the acquirer. Our model captures this fact by showing how smaller principals get a smaller share of total

output in competition.

5



1.1 Model

Consider a game played between two principals, indexed by i ∈ {1, 2}, and one agent A,

all risk neutral.8 The payoff space for the principals is Y = Y1 × Y2 ⊂ R2. Yi is compact

with min {Yi} = 0 and max {Yi} = yi.
9 The agent has access to a compact technology set

A ⊂ ∆ (Y ) × R+. An action is a pair (F, c) ∈ A, where F is a probability distribution

over payoffs y = (y1, y2) and c ≥ 0 is the cost of the action. We endow the space of Borel

distributions, ∆ (Y ) with the weak-? topology and ∆ (Y ) × R with the natural product

topology.

The game has two stages. First both principals offer a contract to the agent; this is done

simultaneously and in a non-cooperative fashion. Second, the agent chooses an action in

its technology set A, and payments realize. Each principal observes her output realization

along with that of the other principals, and can condition her contract on all these ob-

servations, as in Bernheim and Whinston (1986a). The action taken by the agent is not

observed, moreover, the principals do not know the full set of actions available to the agent

(A). As in Carroll (2015) the principals both know a subset A0 of A. We assume that

both principals know the same A0 for notational convenience and to facilitate comparison

across principals. Only three other assumptions are placed on the set A0:

Assumption 1. (Inaction) The agent can always choose not to produce: (δ0, 0) ∈ A0,

where δ0 is the degenerate distribution on y = (0, 0).

Assumption 2. (Positive Cost) For all A ⊇ A0, If (F, c) ∈ A and c = 0, then F = δ0.

Assumption 3. (Non-triviality) ∃(F,c)∈A0
EF [y1 + y2]− c > 0.

Assumption 1 says that choosing the minimum output is costless for the agent, so that the

agent can always choose not to produce. Assumption 2 is a technical assumption requiring

the agent to pay a cost in order to produce. This cost can be arbitrarily small. Assumption

3 ensures that the principals and the agent will, potentially, find it beneficial to participate

in the game.

8All the results are extended to the general case with n principals in Section 1.3.2.
9This assumption can be relaxed by letting Y ⊆ R2 be an arbitrary compact set with min

y∈Y
yi = 0 for

i ∈ {1, 2}, allowing any degree of complementarity or substitutability.
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Although no other assumptions are needed for our results, we can strengthen them when

the following holds:

Assumption 4. (Full Support) For all (F, c) ∈ A0 if (F, c) 6= (δ0, 0) then supp (F ) = Y .

A contract is a continuous function wi : Y1 × Y2 → R, and a contract scheme is a vector of

functions w = (w1, w2). The agent has limited liability so that the aggregate payment

to the agent has to be non-negative for any output realization, i.e. w1 (y) + w2 (y) ≥ 0 for

all y ∈ Y . A principal can charge the agent up to the amount that the other principal is

paying. This is the same restriction imposed in Martimort and Stole (2012). We consider

different limited liability assumptions in Sections 1.2.1, 2.2 and 1.3.3. Furthermore, in

Section 1.3.1 we consider the private common agency case where principals are restricted

to contract only on their own output, as opposed to the public common agency considered

in this section.

Given a contract scheme and a technology A, the agent will choose an action to maximize

his expected payoff. The set of optimal actions and the value they give to the agent are:

A? (w|A) = argmax
(F,c)∈A

EF [w1 (y) + w2 (y)]− cVA (w|A) = max
(F,c)∈A

EF [w1 (y) + w2 (y)]− c.

(1.1)

We define the value of a principal, given a contract scheme w, as the minimum payoff

guarantee offered by the contracts, as in Carroll (2015).10 The payoff to the principal is:

Vi (w) = inf
A⊇A0

Vi (w|A) (1.2)

where Vi (w|A) is the value for a given technology A, given by:

Vi (w|A) = min
(F,c)∈A?(w|A)

EF [yi − wi (y)] . (1.3)

The principal doesn’t know which action in A? the agent will choose, so she assigns the

value of the minimum payoff across those actions. In this we depart from what is usually

10Behind the definition of the principal’s guaranteed payoff there is a strong assumption on the type of

technologies that the principals consider. All technologies A that contain A0 are allowed. This includes

technologies for which the agent has almost zero cost of inducing distributions that are detrimental for the

principal. It is possible to relax this assumption by allowing for a lower bound on the cost that the agent

faces. Doing so does not change our main results. In particular a version of Theorem 1 can be proven and

Proposition 1 goes unchanged. See Appendix.
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assumed in the robustness literature, where the principal believes that the agent will take

the best action for her among those in A? (w|A) (see Frankel (2014) and Carroll (2015)).

This change is motivated by the the principal’s goal to maximize her guaranteed payoff.

Any other tie-braking rule can potentially lead to cases where the expected payoff the

principal would actually get is lower than Vi (w|A).

The best response of principal i to a contract wj is:

BRi (wj) = argmax
wi≥0

Vi (w1, w2) . (1.4)

We call the contracts in the best response of the principal robust, since they maximize

the guaranteed payoff of the principal across all possible technologies. We can now define

an equilibrium:

Definition. A Nash equilibrium is a contract scheme w? = (w?1, w
?
2) such that w?i ∈

BRi

(
w?j

)
, along with a best response of the agent A? (w?|A) given the true technology

set.

An implicit assumption in the definition of equilibrium is that principals correctly predict

the behavior of the other principals and the only uncertainty is about the technology of

the agent. In a lobbying game, this would imply that lobbyists know each other but they

are unsure about the preferences and goals of new politicians. In reality new politicians

come every election cycle however lobbying firms are there longer term. In the problem

of taxing multinational firms, countries know the tax policy of other countries, however

they are unsure about future changes in the production technology of the multinational

firm. Thus our assumption that worst case only considers the agent’s technology (i.e. the

multinational) and not the other principal’s strategy (the other country’s tax policy) is not

very demanding. Dai and Toikka (2017) employ a similar informational structure, where

the agents have complete knowledge about the true technology and the only misinformed

party is the principal.

Note that we are restricting attention to pure strategies, and the equilibrium actions and

payoffs of the principals are independent of the agent’s true technology set, A. They instead

depend on A0.

8



1.1.1 Principal’s best response

In this section we characterize the behavior of a principal who maximizes her guaranteed

payoff, taking as given the contract of the other principal. We propose a set of contracts

that imply linear revenue sharing between a principal and the agent and show that they are

robust to misspecification of the agent’s technology. That is, they maximize the principal’s

guaranteed payoff. The strategy to determine optimality is similar to that of Carroll (2015)

and the detailed proofs can be found in Appendix A.1.1.

We proceed by defining the class of linear revenue sharing contracts:

Linear Revenue Sharing (LRS) Contracts: Given a contract wj (y), a contract wi (y)

is a LRS contract for principal i if it ties the principal’s ex-post payoff linearly to the total

revenue of the agent. That is, for some α ∈ (0, 1] and k ∈ R:

wi (y) = αyi − (1− α)wj (y)− αk ∀y ∈ Y (1.5)

It is easy to see that the ex-post payoff of the principal and the revenue of the agent are

linearly tied because A.43 implies that

yi − wi (y) =
(1− α)

α
(w1(y) + w2 (y)) + k (1.6)

LRS contracts deal with the dual objective of the principal: providing incentives to the

agent to increase her output and competing against the offers made by other principals.

The contract rewards the agent when he produces for the principal, and partially undoes

the payments the agent receives from the other principal. The first part of the contract is

reminiscent of the results in the literature on the max-min optimality of linear contracts in

principal-agent settings11. The second part resembles the principle of aggregate congruence

in Bernheim and Whinston (1986a), where the principals first offset the payments of the

other principals and then design their preferred incentive scheme. Under LRS contracts

however the payments of the other principal are only partially offset. The principal claims

a fraction of his output from the agent and the same fraction of the payments of the other

principal. This results in the sharing of the agent’s revenue.12

11See Carroll (2015), Chassang (2013), Hurwicz (1977) and Hurwicz and Shapiro (1978).
12Formally, the problem of a principal can then be thought of in two steps: first undoing the payments of

other principals, and then offering the agent an aggregate contract satisfying limited liability. We call this
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Moreover, the defining property of LRS contracts, i.e. the affine relationship between

the ex-post payments of the agent and the principal, allows for linking the principal’s

guaranteed payoff to the agent’s payoff under A0 in an affine way. Lemmas 35, 36 and 37

in Appendix A.1.1 show this explicitly. Formally, given a contract scheme (w1, w2) where

wi is a LRS contract as in (A.43), the principal’s guaranteed payoff is given by:

Vi (w) =
1− α
α

VA (w|A0)− k (1.7)

Equation (1.7) provides a way to compute principals’ guaranteed payoffs, since the agent’s

payoff under A0 is known given a contract scheme w. The affine link between the agent’s

payoff and the principal’s payoff is a crucial element in providing incentives. Given the

incomplete knowledge of the agent’s set of actions the principals’ optimal strategy is to tie

their payoff to that of the agent, thus aligning the agent’s objectives with their own. LRS

contracts implement this strategy. This is the same mechanism at the heart of the optimal

contracts in Carroll (2015) and Hurwicz and Shapiro (1978).

The main result of this section is summarized in the following theorem. It states that

offering a LRS contract is always a best response for the principal, that is: a LRS contracts

is always robust. Furthermore, under Assumption 4 only LRS contracts are robust or the

principal can only guarantee herself the payoff given by offering the agent zero aggregate

incentives and induce the agent to pick inaction. In the later case, principal i sets wi (y) =

−wj (y) and the agent picks (F, c) =
(
δ(0,0), 0

)
. The proof can be found in Appendix

A.1.113.

Theorem 1. For any contract wj there exists LRS contract wi such that wi ∈ BRi (wj),

where min
y∈Y
{w̄i (y) + wj (y)} = 0. That is, there is always a LRS contract that is robust

for principal i.

aggregate contract w̃i. Then the ex-post payoff of principal i is: yi + wj (y) − w̃i (y). Principal i’s actual

contract is of course: wi (y) = w̃i (y)−wj (y). When wi is an LRS contract the implied aggregate contract

is: w̃i (y) = α (yi + wj (y))− αk. Thus the ex-post payoffs of the principal are linearly tied to those of the

agent, with principal i receiving 1− α of the payoff yi + wj (y) and the agent receiving α of it. k acts like

a lump-sum transfer between the principal and the agent and is determined by limited liability.
13As mentioned above when we impose a lower bound on the cost of the agent a similar version of

Theorem 1 can be obtained. LRS contracts are always a best response to LRS contracts. This will allow

us to still construct an equilibrium in LRS contracts. The proof relies on similar arguments as the one of

Theorem 1 and is presented in the online appendix.
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If A0 satisfies the full support property, then any robust contract for principal i is a LRS

contract or principal i cannot guarantee a positive guaranteed higher than wj (0, 0).

1.1.2 Equilibrium

We turn now to study the Nash equilibrium of the model. Theorem 1 allows us to focus

on equilibria where both principals offer LRS contracts. In this section we establish that

an equilibrium in LRS contracts always exists and we characterize equilibrium payoffs in

this case. In common agency with incomplete information, as in many sequential games,

establishing existence under general conditions has proven difficult, mostly because of the

failure of convexity of the principals’ best responses (see Bernheim and Whinston (1986a),

Fraysse (1993) and Carmona and Fajardo (2009)). However our robust approach allows

us to prove existence of a pure strategy Nash equilibrium in a novel way, by showing that

the common agency game has a pseudo-potential function as in Dubey et al. (2006). The

proof for existence is presented at the end of the section.

Recall from (A.43) that an LRS contract depends on the contract offered by the other

principal, by partially undoing the payments she makes to the agent. In equilibrium, when

both principals play LRS contracts, that satisfy limited liability with equality, we obtain

a sharper characterization of the form of the contract and of the principal’s payoffs. Each

principal gets a share of total output by rewarding the agent for not working for the other

principal.

The following proposition characterizes contract schemes in LRS contracts precisely. If

assumption 4 holds then all equilibria are in LRS contracts.

Proposition 1. Let w be a LRS contract scheme satisfying limited liability. Then there

exist {θi, ki}i∈{1,2} such that:

wi (y) = (1− θi) yi − θiyj − ki and k1 = −k2 θi ∈ [0, 1− θj ] (1.8)

The guaranteed payoff of principal i is:

Vi (w) = θi max
(F,c)∈A0

{
EF [y1 + y2]−

c

1− θ1 − θ2

}
− ki (1.9)

Proof. Since both w1 (y) and w2 (y) are LRS contracts, for some shares α1, α2 ∈ [0, 1] and

constants k1 and k2 such that wi (y) is as in (A.43) for i ∈ {1, 2}. Then the aggregate
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contract offered to the agent is:

w1 (y) + w2 (y) =
α1α2

α1 + α2 − α1α2
(y1 + y2 − k1 − k2)

In order to satisfy limited liability for all y ∈ Y it must be that k1 = −k2.
We can further define θi =

(1−αi)αj
α1+α2−α1α2

to characterize the contracts:

wi (y) = (1− θi) yi − θiyj − ki

note that θi ∈ [0, 1− θj ] and that the aggregate contract faced by the agent is: w1 (y) +

w2 (y) = (1− θ1 − θ2) (y1 + y2). The principals’ guaranteed payoffs are obtained from

equation (1.7) (see Lemma 37 in Appendix A.1.1).

It is worthwhile noting that the transfers k1 and k2 do not affect the action chosen by

the agent. In this sense the constants k1 and k2 act as transfers between the principals,

channeled through the agent. This is similar to the way in which the agent is used to make

side payments between principals in Bernheim and Whinston (1985, 1986a). Moreover,

since the effect of ki on the payoff of principal i is independent of θi, and the agent’s payoff

(and thus her optimal action) does not depend on the value of k1 or k2, the value of θ1 and

θ2 can be computed separately from the value of the transfers (k1 and k2). Finally, the

transfers are not pinned down in equilibrium.14

When both principals use LRS contracts the payoffs of all players depend only on aggregate

output. In fact principal i receives a share θi of aggregate output. This is a more explicit

form of the principle of aggregate congruence in Bernheim and Whinston (1986a):

“[W]e underscore the need to make principals’ objectives congruent in equilibrium:

since all principals can effect the same changes in the aggregate incentive scheme,

none must find any such change worthwhile. One can think of this congruence as

being accomplished through implicit side payments among principals.”

Under LRS contract one can equivalently cast the problem of each principal as choosing

the share of output going to the agent. In an equilibrium all principals have to agree on

14In Bernheim and Whinston (1986a) the value of transfers between principals is also indeterminate in

equilibrium. A participation constraint is assumed for the agent and each principal can induce the agent not

to participate. If that happens principals get some outside payoff. The value of transfers in an equilibrium

with participation ensures that each principal receives at least her outside payoff.
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the agent’s share. Moreover, side payments are made explicit through the transfers k1 and

k2, as mentioned above these transfers have to sum to zero, using the agent as conduit for

payments between principals.

LRS contracts maximize the guaranteed payoffs of the principals by balancing the dual

objective of incentivizing the agent and competing with the other principal. The contract

described in (1.8) gives the agent a fraction (1− θi) of principal i’s output, and takes a

share θi of principal j’s output. Furthermore, the contract deals in an effective way with

the distributional concerns that lie behind the competition between principals. Under LRS

contracts it is irrelevant who the agent chooses to work for when determining realized

payoffs. Each player receives a share of total output and as a consequence the guaranteed

payoffs of all principals are linearly tied with those of the agent (see (1.9)).

We now present the main result of this section using the results in Proposition 1 to show

that an equilibrium in LRS contracts exists. We do this by showing that our game allows

for a pseudo-potential as in Dubey et al. (2006). The use of a potential function to show

equilibrium existence is new to the common agency literature and can be useful in showing

equilibrium existence in common agency games with incomplete information that do not

take a robust contracting approach.

Theorem 2. Under assumption 3 a pure strategy Nash Equilibrium in LRS contracts, with

θi > 0 for i ∈ {1, 2}, exists.

Proof. First note from Proposition 1 that a pair of LRS contracts is characterized by two

shares (θ1, θ2) and two transfers (k1, k2) satisfying k1 = −k2. The shares are chosen to

maximize the principal’s guaranteed payoff, as in equation (1.9). This is equivalent to

maximizing:

Ṽi (θ, θj) = max
θ∈[0,θj ]

θG (θ + θj) (1.10)

where we define G : R+ → R as follows:

G (x) =
1

1− x
max

(F,c)∈A0

{(1− x)EF [y1 + y2]− c} (1.11)

Note that if x ≥ 1 then G (x) = 0, G is continuous.

We prove existence of an equilibrium in which θi > 0 for i ∈ {1, 2}, so we will only consider

best responses to strictly positive actions. As in Monderer and Shapley (1996) we consider
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an ordinal potential function for the game:

P (θ1, θ2) = θ1θ2G (θ1 + θ2) (1.12)

The function P is an ordinal potential for the game if the shares θ1, θ2 are positive since

the function P induces the same order over θi as the function Vi, that is for all θj > 0 and

θ, θ
′ ∈ [0, 1]:

Ṽi (θ, θj)− Ṽi
(
θ
′
, θj

)
> 0 ⇐⇒ P (θ, θj)− P

(
θ
′
, θj

)
> 0 (1.13)

However the strategy space that we are considering allows for θ1 or θ2 to be zero, so the

function P is not an ordinal potential, however it is a pseudo-potential since its maxima

in [0, 1]2 are interior. It is immediate from (1.13) that any maximum of P such that

θ1, θ2 > 0 is a pure strategy equilibrium of the common agency game. Under assumption

3 such a maximum exist. First note that P attains a maximum in [0, 1]2 by Weierstrass’

theorem.Assumption 3 allows for an action that generates enough (expected) output to

cover the cost of production, formally there exists θ1, θ2 > 0 such that G (θ1 + θ2) > 0,

then P (θ1, θ2) > 0. Then for all (θ?1, θ
?
2) ∈ argmax

(θ1,θ2)∈[0,1]2
P (θ1, θ2), it holds that θ?1, θ

?
2 > 0. All

these pairs are Nash equilibria of the common agency game. If assumption 3 is violated then

it is not possible to induce the agent to produce and the game has a trivial solution.15

The potential function structure provides an interesting connection of the common agency

game with the standard Cournot competition. Once we show that equilibrium contracts

are LRS, the problem of each principal can be interpreted as maximizing profits
(
Ṽi

)
by

choosing a quantity of production (θi) and facing an inverse demand function given by G,

defined in (1.11), and a constant marginal cost of zero.

Finally, it is possible to characterize an equilibrium in LRS contracts more tightly by ana-

lyzing the guaranteed payoff of the principals. An equilibrium is completely characterized

by a pair of shares (θ1, θ2) and a pair of transfers (k1, k2). Interestingly the equilibrium

has an anonymity property, pinning down the actions taken in equilibrium, but not the

identity of the principal taking them. The conditions they satisfy are summarized in the

following proposition:

15An equilibrium still exists if assumption 3 is violated, for instance it is a best response for both

principals to set θi = 0. That makes Ṽi = 0.
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Proposition 2. A Nash equilibrium in LRS contracts is a pair of shares
(
θ1, θ2

)
and

transfers (k1, k2) such that k1 = −k2 and there are actions
(
F 1, c1

)
,
(
F 2, c2

)
∈ A0 such

that:

(
1− θ1 − θ2

)2
=

(
1− θj

)
ci

EF i [y1 + y2]

(
F i, ci

)
∈ argmax

(F,c)∈A0

{(√
(1− θj)EF [y1 + y2]−

√
c

)2
}

Proof. From (1.9) in Proposition 1 we can find the shares and the transfers independently.

The transfer don’t have any constraint other than summing to zero, so k1 = −k2. The

share θi of principal i is chosen to solve:

max
(F,c)∈A0

max
θ∈[0,1−θj ]

{
θiEF [y1 + y2]−

θi
1− θ1 − θ2

c

}
(1.14)

for a fixed (Fi, ci) ∈ A0 the solution to this problem is characterized by:

(1− θi − θj)2 =
(1− θj) ci
EFi [y1 + y2]

(1.15)

Since both principals satisfy this equation in equilibrium we have:

1− θ1 − θ2 =

√
(1− θj) ci
EFi [y1 + y2]

=

√
(1− θi) cj
EFj [y1 + y2]

We obtain (Fi, ci) by replacing (1.15) in (1.14):

(Fi, ci) ∈ argmax
(F,c)∈A0

{(√
(1− θj)EF [y2 + y2]−

√
c

)2
}

The problem of each principal does not depend on her identity, because of that the solution

will be anonymous.

An equilibrium is then a pair of shares
(
θ1, θ2

)
and actions

((
F 1, c1

)
,
(
F 2, c2

))
such that:

(
1− θ1 − θ2

)2
=

(
1− θj

)
ci

EF i [y1 + y2]

(
F i, ci

)
∈ argmax

(F,c)∈A0

{(√
(1− θj)EF [y1 + y2]−

√
c

)2
}

We use superscripts to reinforce anonymity, so that θi is not necessarily given by θi.
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1.1.3 Collusion

When colluding, principals seek to maximize guaranteed joint payoff. They offer a single

contract that satisfies limited liability of the form w : Y1 × Y2 → R+. The principals’

problem is a generalization of the principal-agent problem studied in Carroll (2015) to

a multi-task principal-agent model. In this case the agent controls two components or

accounts (y1, y2).

Given technology A, the agent’s optimal actions and payoff are now given by:

A? (w|A) = argmax
(F,c)∈A

EF [w (y)]− c VA (w|A) = max
(F,c)∈A

EF [w (y)]− c.

The guaranteed joint payoff for the principals is:

VP (w) = inf
A⊇A0

VP (w|A) where VP (w|A) = min
(F,c)∈A?(w|A)

EF [y1 + y2 − w (y1, y2)] .

The optimal contract under collusion is linear in total output (y1 + y2). By making the

contract dependent on total output the principals leave to the agent the decision of which

output (y1 or y2) to favor when producing. The decision depends on the agent’s true

technology, which is unknown to the principals when contracting. Even if, under the

known technology (A0) the principals want to incentivize differently across outputs, say

because the agent is more productive in generating y1 than y2, the same incentives do not

generalize across all possible technologies, and thus do not provide the best guarantee for

the principals.

The linear contract offered by the principals also ties linearly the value of the agent and

the principal, and it makes ex-post payoffs depend only on total output. We summarize

these results in the following theorem. The proof can be found in the Online Appendix.

Theorem 3. Let (F ?, c?) ∈ argmax
(F,c)∈A0

{(√
EF [y1 + y2]−

√
c
)2}

. When principals collude,

the contract:

wc (y) = (1− θc) (y1 + y2) where 1− θc =

√
c?

EF ? [y1 + y2]
(1.16)

maximizes VP . Moreover, for any contract of the form w (y) = (1− θ) (y1 + y2) that guar-

antees a positive payoff, VP can be expressed as:

VP (w|A0) =
θ

1− θ
max

(F,c)∈A0

{(1− θ)EF [y1 + y2]− c} (1.17)
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Corollary 1. If A0 satisfies assumption 4, then all optimal contracts are of this form.

As mentioned above, when the principals collude, the model boils down to a multi-task

principal-agent model. This type of problem has received extensive attention by the lit-

erature, most notably by Holmstrom and Milgrom (1987). A key question is how the

incentives should depend on the different tasks (or outputs) controlled by the agent. In

the model developed in Holmstrom and Milgrom (1987) an agent controls the drift of a

multi-dimensional Brownian motion, the principal chooses how to reward the agent given

the terminal value of the Brownian motion. Importantly they find that the optimal scheme

is not generally linear in total output (principal’s profits), instead it rewards the agent dif-

ferently for different tasks. They specifically note (Holmstrom and Milgrom, 1987, p.306):

“The optimal scheme for the multidimensional Brownian model is a linear function

of the end-of-period levels of the different dimensions of the process. ...If... the

compensation paid must be a function of profits alone (perhaps because reliable

detailed accounts are unavailable), or if the manager has sufficient discretion in

how to account for revenues and expenses then the optimal compensation scheme

will be a linear function of profits. This is a central result, because it explains the

use of schemes which are linear in profits even when the agent controls a complex

multi-dimensional process.” [Emphasis added]

However, in our model, robustness leads to linearity in profits no matter how complex the

multi-dimensional process the agent controls is. The alignment of incentives between the

principal and the agent requires linearity in profits.

1.2 Efficiency

In this section we examine the efficiency properties of the equilibrium, and compare them

to those of the collusive outcome. In games of complete information the issue of efficiency

was tackled by considering truthful equilibria (Bernheim and Whinston, 1986b), which

are always efficient. However, in environments with asymmetric information competition

among principals can lead to inefficiencies.16 In this section we verify this result by showing

16See Martimort and Stole (2015), Martimort and Moreira (2010) and Bond and Gresik (1996) under

adverse selection and Bernheim and Whinston (1986a) and Holmstrom and Milgrom (1988)under moral
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that competition between principals leads to an outcome as much as efficient as that under

collusion.

This efficiency result parallels finding in the literature, see for instance Bernheim and

Whinston (1986a), Holmstrom and Milgrom (1988), and Martimort and Stole (2012), as

well as the adverse selection models of Martimort and Stole (2012) and Bond and Gresik

(1996). As noted in Section 1.1.2 the objectives of all the principals are made congruent

in the equilibrium (they all receive a share of total output), this gives rise to a “free-rider”

problem since principals are made aware of the incentives provided by their competitors to

the agent. The free riding problem appears here because each principal does not internalize

the effect of an increase in her share of total output (which lowers the share of the agent)

on the payoffs of the competing principal. This leads to the equilibrium share of output

accruing to the agent to be lower relative to what he gets under collusion. As we show in

Lemmas 1 and 2 this implies a less efficient equilibrium outcome.

We consider two notions of efficiency:

Total expected surplus (TES): Given a contract scheme w and a known technology set

A, total expected surplus measures the sum of the expected payoffs of all players. This is

given by the difference between total expected output and the cost for the actions preferred

action of the agent given the contract scheme w and the action set A.17

Let (F, c) ∈ argmax
(F,c)∈A

{w1 (y) + w2 (y)− c}, Total expected surplus is given by:

TES = EF [y1 + y2]− c

Total guaranteed surplus (TGS): Given a contract scheme w and a known technology

set A0, total guaranteed surplus measures the surplus to be guaranteed to all players.

TGS (w) = V1 (w|A0) + V2 (w|A0) + VA (w|A0)

and under collusion:

TGS (w) = VP (w|A0) + VA (w|A0)

The first notion of efficiency (TES) is standard in the literature, while the second one

(TGS) is considered here because of the game’s information structure. Given a technology

hazard.
17A contract scheme can then induce more than one total expected surplus.
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set A it is possible to compute TES for any action on that set. Yet, the principals only

know a minimal technology set A0. Given that knowledge and a contract scheme it is still

possible to compute the guaranteed surplus of a principal, Vi.
18 This allows for a notion

of ex-ante efficiency from the point of view of the principals. Theorem 4 establishes the

main result of this section, namely that collusion leads to a more efficient outcome than

competition between principals. Its proof will be developed in lemmas 1, 2 and 3.

Theorem 4. Total expected surplus and total guaranteed surplus are higher under a collu-

sion between the principals than under a Nash equilibrium in LRS.

Note that under both competition and collusion the agent gets paid a share of total output.

This will allow for a clean comparison of the efficiency properties of the two scenarios.

Lemmas 1 and 2 show that total expected and total guaranteed surplus are increasing in

the share of output that the agent gets. Then Lemma 3 shows that the agent will always

get a higher share of output when principals collude than when they compete.

Recall that, given the equilibrium contracts (or contract in the case of collusion), the agent

will choose an action (F, c) in order to maximize her payoff VA (w|A) given a technology

set A. Under both competition and collusion the agent’s problem reduces to:

ṼA (θ|A) = max
(F,c)∈A

{θEF [y1 + y2]− c} (1.18)

for some share θ. Thus, the action taken by the agent is, in general, not efficient (in the

sense that it does not maximize TES). Yet, we can establish how total (expected) surplus

varies with the equilibrium contracts. Contracts for which the agent captures a larger share

of realized output are more efficient. This is intuitive, since as θ goes to one, the agent’s

problem converges to that of maximizing total surplus. We formalize this argument in

Lemmas 1 and 2 below.

Lemma 1. Total expected surplus (TES) is weakly increasing in the share of total output

going to the agent.

18We can think of Vi as the utility function of principal i, which is quasilinear in lump sum transfers.

Because of the quasilinear environment we can consider the sum of utilities as a measure of welfare or

efficiency.

19



Proof. Let θ and θ
′

be shares of total output going to the agent with θ < θ
′
. Let (Fθ, cθ) ∈

A? (θy|A) and
(
Fθ′ , cθ′

)
∈ A?

(
θ
′
y|A

)
, then:

ṼA (θ|A) = θEFθ [y]− cθ < θ
′
EFθ [y]− cθ ≤ θ

′
EF

θ
′ [y]− cθ′ = ṼA

(
θ
′ |A
)

(1.19)

where y = y1 +y2. The first inequality follows from θ < θ
′

and the second one from (Fθ, cθ)

being feasible at θ
′
. Furthermore, its easy to check that EF

θ
′ [y] ≥ EFθ [y], otherwise

(Fθ, cθ) /∈ A? (θy|A). Finally, using the second inequality in (1.19) we have:

cθ′ − cθ ≤ θ
′
[
EF

θ
′ [y]− EFθ [y]

]
cθ′ − cθ ≤ EFθ′ [y]− EFθ [y]

EFθ [y]− cθ ≤ EF
θ
′ [y]− cθ′

This proves the monotonicity of expected total surplus surplus on θ.

Lemma 2. Total guaranteed surplus (TGS) is weakly increasing in the share of total output

going to the agent.

Proof. First note that total guaranteed surplus depends exclusively on the share of output

going to the agent, regardless of whether or not the principals cooperate. Using (1.9) and

(1.17) we have:19

TGS =
1

θ
max

(F,c)∈A0

{θEF [y]− c}

under both competition and collusion, where θ is the share of total output going to the

agent, and y = y1 + y2.

Let θ < θ
′

and (Fθ, cθ) ∈ A? (θy|A) and
(
Fθ′ , cθ′

)
∈ A?

(
θ
′
y|A

)
, then:

θ
′
EFθ [y]− cθ ≤ θ

′
EF

θ
′ [y]− cθ′ (1.20)

by optimality of the agent. Since θ < θ
′

we have:

TGS (θ) = EFθ [y]− 1

θ
cθ < EFθ [y]− 1

θ′
cθ ≤ EF

θ
′ [y]− 1

θ′
cθ′ = TGS

(
θ
′
)

The inequalities follow from θ < θ
′

and (1.20), respectively.

19Note that this implies that under competition θi is not only the share of output going to the principal,

but also the share of total guaranteed surplus.
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Finally we compare the share that the agent gets under collusion and in a Nash equilibrium.

To do this we first note that the condition of the agent’s share under collusion given in

(1.16) of Theorem 3 is equivalent to the problem of a principal under competition facing

θj = 0. This is immediate from Proposition 2. Then, in order to show that the share of

the agent under competition is lower than the share under collusion, it is sufficient to show

that the share that principal i wants to induce for the agent is decreasing in the share of

principal j. Since in equilibrium θj ≥ 0 it follows that the share of the agent will be lower

than under collusion.

Intuitively, as in Bernheim and Whinston (1986a), where principals only internalize“1/Jth”

of the gain when making the principals’ objectives congruent, here the principal only in-

ternalizes only (1− θj) of the increases in output, note that the objective function is:

Vi (θi, θj) = θi

(
EF [y1 + y2]−

c

1− θj − θi

)
+ ki

=
θi

1− θj

(
(1− θj)EF [y1 + y2]−

(1− θj) c
1− θj − θi

)
+ ki

=
θi

1− θj

(
EF [(1− θj) y1 + (1− θj) y2]−

c

1− θi
1−θj

)
+ ki

= θ̃i

(
EF [ỹ1 + ỹ2]−

c

1− θ̃i

)
+ ki

Then the problem of principal i of choosing θi ∈ [0, 1− θj ] given θj is equivalent to the

problem of a single principal facing a multitasking agent over a “reduced” output space

Ỹ = (1− θj)Y , choosing θ̃i ∈ [0, 1]. The constant ki plays no role in choosing θi. Since

the principal does not internalize all of the output it also does not want to give as much

incentives to the agent. This is the same force at the heart of the “free-rider” problem

described in Bernheim and Whinston (1986a), Holmstrom and Milgrom (1988), Maier and

Ottaviani (2009) andMartimort and Stole (2012).

The formal result is presented in the following Lemma:

Lemma 3. Let θLj < θHj and denote by θLi and θHi any elements of the best response of

principal i to θLj and θHj respectively. It holds that:

1− θLi − θLj ≥ 1− θHi − θHj
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Proof. Suppose for a contradiction that the best response of principal i implies a higher

share for the agent when responding to θHj than when responding to θLj :

1− θLi − θLj < 1− θHi − θHj

Since θLi is in the best response to θLj it must give at least as much payoff to principal

i as any other share, given a fixed level of transfers (k1, k2). In particular consider an

alternative share for principal i given by: θ̃i = θHi −
(
θHj − θLj

)
. This alternative share

implies that the share of the agent is the same as under the high share: 1 − θHi − θHj . It

must be that:

θLi

(
EFL [y1 + y2]−

cL

1− θLi − θLj

)
≥
(
θHi −

(
θHj − θLj

))(
EFH [y1 + y2]−

cH

1− θHi − θHj

)

Where
(
F l, cl

)
∈ argmax

(F,c)∈A0

{(
1− θli − θlj

)
EF [y1 + y2]− c

}
for l ∈ {L,H}.The pair (F, c) is

determined by the agent’s problem and thus depends only on the share of the agent.

Similarly, since θHi is in the best response to θHj we can consider an alternative share for

principal i given by: θ̃Hi = θLi −
(
θHj − θLj

)
. As before, this alternative share implies that

the share of the agent is 1− θLi − θLj . It must be that:

θHi

(
EFH [y1 + y2]−

cH

1− θHi − θHj

)
≥
(
θLi −

(
θHj − θLj

))(
EFL [y1 + y2]−

cL

1− θLi − θLj

)
By subtracting these inequalities we get:

(
θHj − θLj

)(
EFL [y1 + y2]−

cL

1− θLi − θLj

)
≥
(
θHj − θLj

)(
EFL [y1 + y2]−

cL

1− θHi − θHj

)

max
(F,c)∈A0

{
EF [y1 + y2]−

c

1− θLi − θLj

}
≥ max

(F,c)∈A0

{
EF [y1 + y2]−

c

1− θHi − θHj

}
TGS

(
1− θLi − θLj

)
≥ TGS

(
1− θHi − θHj

)
This contradicts Lemma (2) since 1− θLi − θLj < 1− θHi − θHj .

1.2.1 Limited liability and efficiency

In this section we provide a better understanding of the efficiency result derived in the

previous section and in most of the common agency literature. Even though principals
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are competing among them trying to influence the agent, the agent gets a larger share

of total output when the principals collude. This in turn leads to a more efficient action

being taken by the agent. We show now that the ability of principals to implicitly make

side-payments through the agent is crucial for this result. To see this we impose individual

limited liability constraints on the contracts offered by the principals.

Up until now we have assumed that the agent has limited liability, implying that the aggre-

gate payments to the agent must be non-negative for any realization of output. Critically,

this allows the principals to extract payments from the agent. This form of punishment

is at the heart of two of the mechanisms described in Section 1.1.2: competition among

principals and the congruence of objectives of principals in equilibrium. As mentioned

above, the contract described in (1.8) allows principal i to take a share θi of principal j’s

output, and then receive a share θi of total output. By doing this one of the principals can

end out receiving net payments from the agent, wi (y) < 0 for some y ∈ Y . Moreover, the

contract (1.8) stipulates transfers between the agent and the principals given by k1 and k2.

In equilibrium these transfers are such that k1 = −k2, so that they have no effect over the

agent’s problem, they are in effect transfers between the principals.

Individual limited liability implies that the contract of each principal has to be non-

negative, wi (y) ≥ 0 for all y ∈ Y and i ∈ {1, 2}. This constraints the ability to transfer

resources between principals, and to demand payments from the output produced for com-

petitors. As we show below this will not change the optimality of LRS contracts for the

principals, but it does affect the ability of a principal to free-ride on the incentives provided

by her competitors as now limited liability forces each principal to internalize the external-

ity imposed on the other principal. At the end of this section we show that under individual

limited liability an equilibrium in LRS contracts is more efficient than the outcome under

collusion.

Regardless of the limited liability constraints it is still optimal for the principals to tie their

payoffs to the payoffs of the agent. The desire for robustness requires that link to ensure

that the incentives of the agent and the principals are aligned. A version of Theorem 1

establishing the optimality of LRS contracts applies and is presented below, its proof is

almost identical to the proof of Theorem 1 and is presented in the Online Appendix.

Theorem 5. For any contract wj there exists a LRS contract wi such that wi ∈ BRi (wj),
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where min
y
w̄i (y) = 0. That is, there is always a LRS contract that is robust for principal

i.

If A0 satisfies the full support property, then any robust contract for principal i is a LRS

contract or principal i cannot guarantee a positive profit.

Theorem 5 suggests that since LRS contracts are always optimal for the principals it is

worthwhile focusing in what happens when we restrict attention to this class of strategy,

just as we did in Section 1.1.2. Unfortunately the added restrictions of individual lim-

ited liability do not allow for a general proof of existence as that in Theorem 2. We are

nonetheless able to provide two different sufficient conditions for equilibrium existence and

characterize an equilibrium in which both principals use LRS contracts. The exercise sheds

light on the role of limited liability in the provision of incentives to the agent.

When both principals use LRS contracts we can characterize the equilibrium more fully,

obtaining a similar result as that of Proposition 1. The main difference is that individual

limited liability pins down the transfer of the principal to the agent, this in turns allows

for a nice interpretation of the contract: each principal gets a share of total output by

rewarding the agent for not working for the other principal. Transfers are such that each

principal pays the agent for the output that did not, but could have, produced for her

competitors. The following proposition makes this precise:

Proposition 3. Let w be a LRS contract scheme satisfying individual limited liability.

Then there exist (θ1, θ2) ∈ [0, 1] such that:

wi (y) = (1− θi) yi + θi
(
yj − yj

)
and θi ∈ [0, 1− θj ] (1.21)

The guaranteed payoff of principal i is:

Vi (w) = θi max
(F,c)∈A0

{
EF [y1 + y2]−

c

1− θ1 − θ2

}
− θiyj (1.22)

Proof. Since both w1 and w2 are LRS contracts there are shares α1 and α2 and constants

k1 and k2 such that wi is as in (A.43) for i ∈ {1, 2}. Then the aggregate contract offered

to the agent is:

w1 (y) + w2 (y) =
α1α2

α1 + α2 − α1α2
(y1 + y2 − k1 − k2)
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Defining θi =
(1−αi)αj

α1+α2−α1α2
this implies:

wi (y) = (1− θi) yi − θi (yj − ki − kj)− ki

where θi ∈ [0, 1− θj ]. Note that the contract is increasing in yi and decreasing in yj ,

so miny wi (y) is attained at yi = 0 and yj = yj .
20 In order to satisfy limited lia-

bility for all y ∈ Y it must be that minw (y) = w
(
0, yj

)
= 0. This implies ki =

− θi
1−θ1−θ2

(
(1− θj) yj + θjyi

)
. Replacing we get:

wi (y) = (1− θi) yi + θi
(
yj − yj

)
The payoffs are obtained directly from equations (1.6) and (1.7). The aggregate contract

faced by the agent is: w1 (y) + w2 (y) = (1− θ1 − θ2) (y1 + y2) + θ1y2 + θ2y1.

The first change induced by the strengthening of limited liability is that the upper bound

of the output space plays now an explicit role in how incentives are provided to the agent.

In this setting the dual objective of the principal (offering incentives to the agent and

competing against the other principal) is served by giving the agent a fraction (1− θi) of

her output, and also a share θi of the output, that he did not (but could have) produced

for the other principals. Doing this still ties the payoffs of all players, they all get a share of

realized total output, but it also implies that transfers are now given entirely to the agent.

The equilibrium payment to the agent is then a combination of high and low powered

incentives, in the form of a share of total output and a constant fee. Notice that the fee

that principal i pays (θiȳj) depends only on the maximum output of the other principal.

Hence we can interpret ȳj as the price per unit share of the conglomerate that principal

i has to pay. A consequence of this is that increasing the share of output going to the

principal comes at a cost, not only in terms of the share of output left to the agent (which

potentially lowers production), but in terms of a fee payed with certainty.21

20The points (0, y2) and (y1, 0) are in Y by the assumption that Y is a cross product. This assumption

is not a necessary one, and is just convenient for determining the values of (y1, y2) for which miny wi (y) is

attained. If the assumption is lifted (as we do in the example in Section 2.2 and Example 2.4 of Appendix

A.3.1), only the constants k1 and k2 are directly affected. For instance if output is perfectly and positively

correlated miny wi (y) is attained when y1 = y2 = 0 and then k1 = k2 = 0.
21The dependency of the contract in the maximum output (size) of the competing principal also breaks
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It is useful to understand the characteristics of the game that induce a principal to offer

high powered versus low powered incentives. A lower θ gives the principal a lower share

of total output, and, all else equal increases the share of the agent. It also reduces the

fee that the principal pays. Hence incentives are ‘high powered’. Conversely a higher θ

gives the agent a smaller share of output, and it increases the fee the principal pays to the

agent. Hence incentives are ‘low powered’.22 This allows for understanding the effect of

competition and productivity on the use of ‘high powered’ incentives by simply analyzing

how they affect the share of output θ.

Existence of an equilibrium as the one just described can be guaranteed under the following

sufficient conditions:

Assumption 5. (Symmetry) The output space is such that max {Y1} = max {Yj} = y.

Assumption 6. (Convexity of A0) Consider the known technology set A0 and define a

function f : R→ R as:

f (x) = min {c| (F, c) ∈ A0 and EF [y1 + y2] = x} . (1.23)

The set FA0 = {F ∈ ∆ (Y ) | (F, c) ∈ A0} is convex, and the function f is continuous, and

its square root is a convex function.

Theorem 6. If assumption 5 or assumption 6 hold then a Nash equilibrium in LRS con-

tracts that satisfy individual limited liability exists.

Assumption 5 imposes a type of symmetry across principals. It allows to prove existence

of equilibrium using the potential approach of Theorem 2. The symmetry imposed on the

principals is actually very mild, since only the maximum output that can be produced for

them is required to be the same across principals. This leaves unconstrained the rest of the

output space, and the known actions of the agent. In particular the agent can be known to

the anonymity that characterized the equilibrium described in Section 1.1.2 (see Proposition 2). It also

implies stronger conditions on what a principal needs to guarantee herself a positive payoff. In particular

Assumption 3 (non-triviality) is not enough, a necessary condition for principal i to guarantee herself a

positive payoff is that there exists an action (F, c) ∈ A0 such that EF [y1 + y2]− c > yj .
22Note that the payment of fees to the agent implies that the ex post payoffs of the principals can be

negative. Yet, our results do not rely on the ability of principals to make unbounded payments to the agent.

In the Online Appendix we augment the model by adding limited liability on the principal’s side.
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favor production for one of the principals, or one of the principals can have just extreme

realizations of output (only high and low values of yi in Yi), while the other one can have

intermediate values of production.

Assumption 6 imposes more structure over the known set of actions. This structure adds

enough convexity to ensure that the principals’ best responses are single valued. As men-

tioned before failure of convexity in the principals’ best responses is a common issue faced

when establishing existence in common agency games.

The conditions stated in assumption 6 use the results in Proposition 3. In particular, since

only expected total output is relevant in determining payoffs, it is without loss to have the

agent choose expected total output, x, and an associated cost, c. Moreover, if two actions

have the same expected total output the agent will always pick the one with lower cost.

This gives rise to a cost function for the agent, defined in (1.23). Only the expected output

that an agent can induce, and its associated cost, matter for determining the behavior of

the agent and the principals.

It is worthwhile mentioning that these conditions are only sufficient, we can also show

existence of equilibrium in special cases. For instance when the cost function is linear,

or when the agent is indifferent between actions. This latter case has been used in the

literature, for example, Bernheim and Whinston (1986a) establish that an equilibrium of

the common agency game exists and implements the efficient outcome when the agent is

indifferent between actions (their condition (ii)).23 Although the assumption is restrictive,

it is well suited to describe situations such as auctions or lobbying, were the agent is

expected not to have preferences over the actions.

We can now turn to the final result of this section. We show that under individual limited

liability the efficiency result established in Theorem 4 is overturned. We do this by showing

that the agent receives a higher share of total output when principals compete than when

they collude. Or else, there exist a profitable deviation for one of the principals. The

deviation consists in reducing her own share of output so that the agent receives the same

share as under collusion. The critical step is that doing this increases expected output and

reduces the fees that the principal has to pay, increasing the principal’s own payoff.

23We reproduce Bernheim and Whinston (1986a) results under this condition in Examples 4 and 2.3 of

Appendix A.3.1.
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The formal result is:

Theorem 7. Total expected surplus and total guaranteed surplus are higher under a Nash

equilibrium in LRS contracts satisfying individual limited liability than under collusion.

Proof. First note that Lemmas 1 and 2 still apply since fees do not play a role in the agent’s

decisions and are cancelled out across players. Then it is only left to show that the share

of output accruing to the agent in a Nash equilibrium in LRS contracts is higher than in

collusion.

Let wN be a contract scheme in LRS contracts as the one in equation (1.21) characterized

by shares
(
θN1 , θ

N
2

)
. The share of output going to the agent is: θNA = 1− θN1 − θN2 . Under

collusion the principals get a share θC of output and the agent a share θCA = 1 − θC , see

Theorem 3. The problem of the agent is then equivalent to that in (1.18). To simplify

notation we define the following objects:

Ṽ N
A = ṼA

(
θNA |A0

)
Ṽ C
A = ṼA

(
θCA |A0

)
It will be also useful to define the value of principal i under LRS contracts as in (1.22),

given his share (θi) and that of the agent (θA):

Vi (θi, θA) =
θi
θA
ṼA (θA)− θiyj

Suppose that wN is such that θNA < θCA , where θCA is the highest share that the agent gets

if principals were to collude. We will show that this leads to a contradiction. There are

five cases to consider.

Case 1. Both principals can reduce their share of output so as to give the agent the same

share of output as under collusion. This is:

θN1 ≥ θCA − θNA and θN2 ≥ θCA − θNA

Thus any principal can unilaterally deviate and induce the collusive outcome.

Now, let Vi
(
θCi , θ

C
A

)
− Vi

(
θNi , θ

N
A

)
≤ 0 be the gain that principal i gets by

unilaterally deviating to the collusion outcome, i.e. by reducing his share to
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θCi = θNi −
(
θCA − θNA

)
. Since wN is a Nash equilibrium the gain must be non-

positive. Letting Vi
(
θCi , θ

C
A

)
= V C

i and Vi
(
θNi , θ

N
A

)
= V N

i we can write

V C
i − V N

i =
(
θCA − θNA

)
ȳj +

θCi
θCA
Ṽ C
A −

θNi
θNA

Ṽ N
A

Summing across the two principals we get:

0 ≥
(
V C
1 − V N

1

)
+
(
V C
2 − V N

2

)
=
(
θCA − θNA

)
(ȳ1 + ȳ2) +

θC1 + θC2
θCA

Ṽ C
A −

θN1 + θN2
θNA

Ṽ N
A

=
(
θCA − θNA

)
(ȳ1 + ȳ2) +

(
1− θCA
θCA

−
θCA − θNA
θCA

)
Ṽ C
A −

1− θNA
θNA

Ṽ N
A

=
(
θCA − θNA

)(
ȳ1 + ȳ2 −

Ṽ C
A

θCA

)
+

1− θCA
θCA

Ṽ C
A −

1− θNA
θNA

Ṽ N
A

Now note that
1− θCA
θCA

Ṽ C
A −

1− θNA
θNA

Ṽ N
A ≥ 0

by the fact that when agents act collusively they maximize 1−θ
θ ṼA (θ|A0), see

(1.17) in Theorem 3. Also note that

ȳ1 + ȳ2 −
Ṽ C
A

θCA
= min

(F,c)∈A0

{
(ȳ1 + ȳ2 − EF [y1 + y2]) +

c

θCA

}
> 0

since the highest action possible that the agent can choose is to put full support

on (ȳ1, ȳ2), and by assumption 2 c > 0 in A0. This leads to a contradiction since

it violates the assumption that wN is a Nash equilibrium contract scheme. At

least one principal has a profitable deviation.

Case 2. Only one principal can unilaterally deviate to collusion, say principal i, and

θj > 0.

θNi ≥ θCA − θNA and 0 < θNj < θCA − θNA

As in Case 1, it is still the case that(
V C
i − V N

i

)
+
(
V C
j − V N

j

)
> 0
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However to get a contradiction we must show that
(
V C
j − V N

j

)
≤ 0:

V C
j − V N

j =
(
θCA − θNA

)
ȳi +

θCj

θCA
Ṽ C
A −

θNj

θNA
Ṽ N
A

=
(
θCA − θNA

)(
ȳi −

Ṽ C
A

θCA

)
+ θNj

(
Ṽ C
A

θCA
−
Ṽ N
A

θNA

)

=
(
θCA − θNA

)(
ȳi −

Ṽ N
A

θNA

)
+
(
θCA − θNA − θNj

)( Ṽ N
A

θNA
−
Ṽ C
A

θCA

)
≤ 0

The inequality follows since both terms are non-positive.
(
θCA − θNA − θNj

)
> 0

by assumption and
(
ȳi −

Ṽ NA
θNA

)
≤ 0 since it must be the case that V N

j ≥ 0 if wN

is a Nash equilibrium. Finally,
(
Ṽ NA
θNA
− Ṽ CA

θCA

)
≤ 0, this follows from the proof of

lemma 2 since θNA ≤ θCA . Hence it must be that V C
i − V N

i ≥ 0, proving that

principal i has a profitable deviation. Then wN is not an equilibrium.

Case 3. None of the principals can unilaterally deviate to induce the collusive outcome,

and θ1, θ2 > 0. Then θN1 < θCA − θNA and θN2 < θCA − θNA . As shown in Case 2 this

implies that: V C
1 −V N

1 ≤ 0 and V C
2 −V N

2 ≤ 0, but this leads to a contradiction

since, as in Case 1, it still holds that:
(
V C
i − V N

i

)
+
(
V C
j − V N

j

)
> 0.

Case 4. Finally we consider the case where one principal, say j, has no share of the

surplus, so that: θNj = 0. This case can be shown directly. Recall the problem

of principal i given θj = 0:

θNA = argmax
θA∈[0,1]

{
1− θA
θA

ṼA (θA)− (1− θA) yj

}
Note that for all θA < θCA :

1− θA
θA

ṼA (θA)− (1− θA) yj ≤
1− θCA
θCA

ṼA
(
θCA
)
−
(
1− θCA

)
yj

Since
1− θA
θA

ṼA (θA) ≤
1− θCA
θCA

ṼA
(
θCA
)

from the collusion problem (1.17), and − (1− θA) yj ≤ −
(
1− θCA

)
yj by assump-

tion. This implies that θNA ≥ θCA .
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Case 5. Finally we consider the case where both principals have no share of the surplus

in equilibrium, so that θN1 = θN2 = 0. This cannot be since it would imply that

θNA = 1, contradicting θCA > θNA .

The crucial element that overturns the efficiency result is that individual limited liability

forces the principals to internalize the externality that they impose on the other principals.

The fees
(
θiyj

)
force each principal to lower her share of total output that she claims

in equilibrium implying a higher share for the agent and a more efficient outcome under

competition than under collusion.

1.3 Extensions

1.3.1 Private common agency

In this section we consider the case where principals are restricted to contract only on

their own output.24 The study of private common agency is appealing when considering

certain applications of common agency. For instance, when home buyers and sellers hire

a realtor, they do not explicitly reward him for not working for other home buyers and

sellers. Celebrities or professional athletes usually simply give their agents a share of their

earnings, regardless of the earnings of others that are also represented by the same agent.

The equilibrium contract that arises in this setting provides a rationale for this behavior.

The essential feature of the LRS contracts in Section 1.1 was that they allowed each prin-

cipal to tie their payoff to the payoff of the agent in an affine way. The principals did so

by partially offsetting the contract given to the agent by their competitors. In the private

common agency framework such contracts are not allowed. A contract now is a continuous

function wri : Yi → R+. The best response for a principal is to give the agent a share of her

output and offset the payment of the other principal by charging the agent the maximum

value of the other principal’s contract. However, limited liability does not allow the prin-

cipal to charge the agent, so the best response is a linear contract; she gives the agent a

24This can be due to their inability to observe the other principal’s output, or because of regulation that

prohibits contracting on output other than your own.
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share of her output.

We formalize this in the following theorem. All the proofs of this section can be found in

the online appendix.

Theorem 8. For any contract wrj , the best response of principal i contains a linear contract.

i.e. there exists θi ∈ [0, 1] such that:

wri (yi) = (1− θi) yi and wri ∈ BRi
(
wrj
)

Corollary 2. If A0 has the full support property then, for any wrj , if wri ∈ BRi

(
wrj

)
then

wri = (1− θi) yi for some θi ∈ [0, 1]. All best responses are linear contracts, or principal i

cannot guarantee a positive payoff.

This does not imply that the problem is reduced to a simple principal agent problem like

the one studied in Carroll (2015). Because of the interaction between principals, the share

of output that each principal offers in equilibrium is affected by the need to compete for

the agent’s services.

We can now further characterize the equilibrium. When both principals play linear con-

tracts as in 8 the best response of principal i is:

BRi (θj) = argmax
θi∈[0,1]

[
max

(F,c)∈A0

{
θi

1− θi
EF
[
(1− θi) yi − (1− θj)

(
yj − yj

)
− c
]}]

(1.24)

Given the equilibrium action of the agent (F, c) ∈ A0, in an interior equilibrium (i.e.

θi ∈ (0, 1)) we have that:

1− θi =
c+ (1− θj)

(
yj − EF [yj ]

)
(1− θi)EF [yi]

First note that the numerator in the ratio above is the opportunity cost of the agent (as

perceived by the principal) of taking action (F, c). This cost is formed by the accounting

cost of the action (c), plus the expected forgone earnings from the other principal. The

share of output that a principal gives to the agent is then equal to the ratio between this

cost and the expected payment that the agent receives from the principal. From the agent’s

stand point, in equilibrium, the marginal revenue she gets from principal i’s output is equal

to the average cost of taking the action.
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The principal increases the share of output given to the agent as the forgone earnings from

the other principal increase. This resembles the second term in the equilibrium contract

(1.21) found in Proposition 3. When contracts were not restricted, each principal was able

to compensate the agent for the forgone earnings from the other principal. Under the

restricted contracting domain this explicit form of competition is not possible. Instead,

principals implicitly compete with each other by offering higher shares of their own output

to the agent. In the absence of this competition motive (e.g. if θj = 1 or EF [yj ] = yj)

the share obtained in equilibrium is equal to that found in Carroll (2015) for the single

principal setup.

It is possible that in equilibrium one principal behaves as though she is the only principal in

the game, while the other one offers the zero contract. If c+(1− θj)
(
yj − EF [yj ]

)
≥ EF [yi]

then the principal cannot generate sufficient incentives given the output that she expects

to receive. In this case it is optimal for the principal to offer θi = 1 and thus get zero

payoff. See Appendix A.1.3.

1.3.2 Multiple Principals

The model considered in Section 1.1 can be extended to multiple principals. Our main

results are preserved in this case. Below we summarize them and we leave all details

in the Online Appendix. We denote the number of principals by n, and we define the

vector of competing contracts as w−i (y) = (w1 (y) , . . . , wi−1 (y) , wi+1 (y) , . . . , wN (y)).

The definition of a LRS contract is the natural extension to that in Section 1.1:

Linear Revenue Sharing (LRS) Contracts: A contract wi is a LRS contract for

principal i if, given a vector of competing contracts w−i, it ties the principal’s ex-post

payoff linearly to the total revenue of the agent. That is, for some α ∈ (0, 1] and k ∈ R:

yi − wi (y) =
(1− α)

α

(
N∑
n=1

wn (y)

)
− k (1.25)

Just as before we can show that that there is always a LRS contract in each principal’s

best response. And if all principals play LRS contracts then we can characterize them as

in Theorem 2:

wi (y) = (1− θi) yi + θi
∑
j 6=i

(
yj − yj

)
(1.26)
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Although this contract has the same form, the principal’s best response functions are more

sensitive to competition than before. In fact, we show in the Appendix that, in order to

have θi > 0 in equilibrium, the principal must expect the agent to choose an action (F, c)

such that:

EF [yi] >
∑
j 6=i

EF
[
yj − yj

]
This condition is stronger than non-triviality and increasingly difficult to satisfy as the

number of principals increases. Intuitively the LRS contract is compensating the agent for

her forgone earnings from other principals, this compensation requires principal i’s payoff

to be large enough in order to guarantee a positive payoff.

1.3.3 No limited liability on the agent

If we dispense with the limited liability on the agent and instead impose a participation

constraint on the agent, guaranteeing the agent a given expected payoff (normalized here

to 0), then we get the Bernheim and Whinston (1986b) solution where each principal sells

“her firm” to the agent.

Suppose that A0 is common knowledge among the principals. Also let s0 equal the total

surplus under A0, that is:

s0 = max
(F,c)∈A0

{EF [y1 + y2]− c}

Now consider the best response of principal i to the strategy of principal j that sells the

firm to the agent for a price sj ≤ s0 (i.e. wj (y) = yj−sj). Principal i cannot be guaranteed

a payoff higher than s0 − sj . Otherwise the participation constraint of the agent would be

violated. This payoff is achieved if principal i offers wi (y) = yi − (s0 − sj). Thus selling

the firm is a best response of principal i. We note that there is an indeterminacy in how

the total surplus is divided between the principals as is the case in Bernheim and Whinston

(1986b).

Furthermore it is obvious the same equilibria are also valid if we restrict attention to private

common agency, since the optimal contracts do not depend on the other principal’s output.
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1.4 Conclusion

Taking a robust contracting approach provides a crisp characterization of equilibrium

strategies and payoffs in the complicated problem of common agency. The central is-

sue in the literature of how competition among principals affects the efficient provision of

incentives can be easily pinned down to one component, namely the share of total out-

put that the agent receives in equilibrium. We show that when principals can make side

payments (through the agent) to each other, in equilibrium a free-riding problem appears.

Free riding leads to lower incentives given to the agent, compared to the collusive outcome.

When such side payments are not possible because of limited liability, then principals are

forced to internalize their externality, which leads to the competitive outcome being more

efficient than the collusive outcome.

Our results can provide interesting insights in a dynamic common agency game, because

of their implication on renegotiation possibilities. We leave this work for future research.
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Chapter 2

Applications of Robustness and

Linearity in Common Agency

2.1 Introduction

In this chapter we apply the theoretical framework established in Chapter 1 to study a

variety of economic questions, such as taxation of multinational corporations, government

procurement auctions, and provision of public goods. The first application of our theoretical

results is to study the problem of tax competition among countries in the presence of a

multinational firm, using a common agency framework. Our robust contracting approach

is especially relevant to the problem of taxing multinational companies, where the two

primary concerns for policymakers are the eroding corporate tax base, due to aggressive

profit shifting by multinational companies, and the complexity of tax law.

With the increase of globalization and advances in technology, the number of multinational

corporations and their ability to shift profits to low-tax countries have increased tremen-

dously. This issue has received considerable attention in the news and in political and

economic debates in the United States and other developed countries. An estimated $2

trillion dollars of U.S. multinational corporations’ profits are “parked” overseas, mostly in

tax havens like the Bahamas, Bermuda, and the Cayman Islands, that implies a loss in tax
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revenue of about $50 billion dollars every year (Hungerford, 2014).1 This issue has impli-

cations beyond tax revenue, for instance, Guvenen et al. (2017) show that profit shifting

understates measured U.S. GDP in official statistics, helping to explain the slowdown in

U.S. productivity seen since the mid 2000s.

The debate among tax policy experts and lawmakers in the United States has centered

on whether to adopt a territorial approach–taxing only profits generated in the U.S.–or

a worldwide approach–taxing all profits, foreign and domestic, the same.2 Our model

provides a rationale for why a worldwide approach along the lines of the system proposed

in the Bipartisan Tax Fairness and Simplification Act of 2011 by Sen. Wyden and Sen.

Coats (Senate Bill 727, 2011) addresses the two primary concerns regarding corporate

income tax. We show that taxing domestic and foreign profits at a flat rate, with a full

deduction for taxes paid in the foreign country, provides the best guarantee for corporate

tax revenues as well as a simplified tax code.

The second application is understanding how robustness affects procurement auctions,

specifically when the bidders (suppliers) face uncertainty about the preferences of the buyer.

The third application considers the implications of the private common agency and public

common agency in the efficient provision of public goods.

As mentioned in Section 1.3.1 of Chapter 1, when principals are restricted to contract only

on their own output, that significantly restricts the ability of each principal to achieve a

large guarantee. In the third application we show such restriction affects the provision of

public good.

2.2 Taxing Multinationals

We now show how the setup developed in Chapter 1 can be applied to study the taxation

of multinationals. As mentioned earlier, there is a big debate among tax policy experts and

lawmakers on how to reform the corporate income tax with a particular focus on foreign

profits. The debate in the United States has centered on whether to adopt a territorial

1Using a different data source Zucman (2014) estimates that profit shifting activities have reduced the

tax burden of corporations by about 20%.
2The current U.S. system is between the two approaches. Foreign profits are taxed (almost) the same

as domestic profits, but not until they are paid to a U.S. parent company. This is known as deferral.
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approach–taxing only the profits generated in the U.S.–or a worldwide approach–taxing all

profits, foreign and domestic, the same.

The need for tax systems to be robust to profit shifting strategies is evident. Tax reforms

are slow, complicated and expensive processes, hard to adapt to changes in the strategies

used by firms. Having a robust tax system also implies having a more simple tax system.

This is beneficial for firms, since it gives a stable legal framework to work with, and for

governments, since it avoids the costs of changing tax laws. Our common agency approach

characterizes the main features of a robust tax system for multinationals. We show that

a worldwide tax with a deduction paid for taxes in the foreign countries is indeed robust.

This is the tax system proposed in the Bipartisan Tax Fairness and Simplification Act of

2011 by Senators Wyden and Coats (Senate Bill 727, 2011).

The theoretical literature on taxation of multinational corporations has primarily focused

on the issue of how taxes affect multinational corporations who allocate their business op-

erations and capital abroad-see Feldstein and Hartman (1979). The main concern of that

literature is to achieve neutrality in investment allocation, and they abstract from infor-

mational asymmetries. However, today’s biggest multinational corporations (like Google

and Apple) rely heavily on intangible capital (patents, brands, etc.), which can easily shift

ownership to a subsidiary in a tax haven without affecting the firm’s productivity. These

transfer pricing practices have allowed firms like Microsoft and Google to pay an overall

tax rate of less than 3% on non-U.S. profits (Zucman, 2014).

The literature has addressed profit shifting by multinationals in the context of an adverse

selection problem–see Bond and Gresik (1996) and Olsen and Osmundsen (2001). They

use the revelation principle to deal with profit shifting strategies. As noted in Martimort

(2006) their solution is highly sensitive to the information structure of the problem, while

our focus is on solutions that are robust to potential misspecification of the environment.

We define an isomorphic problem to the common agency problem in Chapter 1. Denote

the multinational firm by A and let πi be the firm’s profit in country i. The firm’s ac-

tions are then distributions (F ) over the profits in Π, and a cost (c) associated with each

distribution.3 The firm’s action set (A) is then composed by pairs (F, c) ∈ ∆ (Π)× R+.

3The cost can be interpreted as an economic cost (after accounting costs are deducted) of engaging in

transfer pricing between the firm’s subsidiaries in each country. Alternatively, the cost can be interpreted

as unobservable effort from the firm’s manager as in Laffont and Tirole (1986).
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Each country’s government chooses a tax function to maximize their guaranteed corporate

tax revenue when they only know a subset A0 ⊂ A, all assumptions on A and A0 are as

in Chapter 1. The tax function for country i is a continuous function ti : Π → R. The

country’s objective can be interpreted directly as maximizing its guaranteed revenue, or

as seeking robustness in the tax system, which is obtained by solving the problem just

described.

We consider two different restrictions over the range of the taxes. We refer to them as

weak and strong enforceability:

Weak Enforceability: A country has weak enforceability if it can only tax up to the

amount of profits declared in its territory. This implies: ti (π1, π2) ≤ πi.
For small countries that have a subsidiary of a big multinational firm this is a reasonable

restriction4.

Strong Enforceability: A country has strong enforceability if it can collect taxes on all

profits generated by the firm. This implies: ti (π1, π2) ≤ π1 + π2.

For large countries like the United States where the multinational corporation has most of

its activity this restriction is more reasonable.

The firm’s problem is to maximize after tax profits:

A? (t|A) = argmax
(F,c)∈A

EF [(π1 − t1 (π1, π2)) + (π2 − t2 (π1, π2))]− c (2.1)

where t = (t1, t2) is a tax scheme. The guaranteed expected revenues of government i are

given by:

Ri (t1, t2) = inf
A⊇A0

{
min

(F,c)∈A?(t|A)
EF [ti (π1, π2)]

}
(2.2)

It is easy to show from Theorem 1 that given the tax system of country j, country i’s best

response contains the following tax:

Worldwide Tax: A tax function ti is a worldwide (flat) tax rate if the firm’s global profits

are taxed at a constant rate α, allowing for the full deduction of taxes payed to country

j, and a potential tax incentive (in the form of a lump sum subsidy). That is, for some

4Weak enforceability is equivalent to the limited liability assumption imposed in the main section. It

does not amount to a territorial approach to taxation. A territorial approach would amount to restricting

the domain of the taxes, so that ti (π1, π2) = ti (πi).
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α ∈ (0, 1] and k ∈ R:

ti (π1, π2) = (1− α) (π1 + π2 − tj (π1, π2)) + αki (2.3)

The tax proposed by Senators Wyden and Coats has this form. It proposes a flat tax

rate for all profits independently of origin. While the model does not provide a literal

description of reality, it provides a robustness property for the Wyden-Coats tax reform,

that a territorial tax system does not have. This property has been informally articulated

among tax policy experts (Hungerford, 2014), and thus the model provides a rigorous

treatment of the policy debate. Note that a Worldwide Tax is not just an equilibrium

outcome of the game. A Worldwide tax is a best response for country i to any arbitrary

tax system of country j.

Interestingly, the worldwide tax has the same form as the taxes found by Feldstein and

Hartman (1979) without a lump sum subsidy. Unlike us they have a complete information

setup and restrict attention to linear tax functions, and their “full taxation after deduction”

result rests on concerns on the optimal allocation of capital between countries. In our setup

the lump sum subsidy k depends on the enforceability assumption that we make. Under

strong enforceability there is no lump sum transfer, and under weak enforceability we get

the same lump sum transfer as in the main section of the paper.

Proposition 4. If both countries use a worldwide tax functions, then taxes in country i

are:

Weak Enforceability: t?i (πi, πj) = θi (πi + πj)− θiπj

Strong Enforceability: t?i (πi, πj) = θi (πi + πj)

where θi ∈ [0, 1], πi is profits declared in country i and and πj is the maximum profit the

firm can declared in country j.

Moreover the ex-post payoffs of the company (πA) and the revenue of each country (πi) are:

Weak Enforceability: πA = (1− θ1 − θ2) (π1 + π2) + θ1π2 + θ2π1 − c

ri = θi (π1 + π2)− θiπj

Strong Enforceability: πA = (1− θ1 − θ2) (π1 + π2)− c

ri = θi (π1 + π2)
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It is easy to see that weak enforceability leads to significantly lower tax rates than strong

enforceability. The following illustrating example can be useful in understanding this.

Suppose that the total profits of the firm π1 +π2 = π̄ (if it produces) are fixed and the firm

is simply deciding how much of the total profits to declare in each country. So the output

space is [(π̄, 0) , (0, π̄)]∪{0, 0} .5 Then, only a country that has strong enforceability would

be able to guarantee positive revenue. The country with weak enforceability would choose

not to tax (set θ = 0). Intuitively a country with weak enforceability is always threatened

by the possibility that the firm does not produce in its territory, this induces the country

to offer subsidies. 6

Another important issue is that of efficiency, as shown in Section 1.2, competition between

countries would lead to a lower overall tax rate on the multinational, relative to cooperation

between countries. This would also imply that tax competition leads to higher efficiency

due to lower distortionary taxes. This contrasts with the results in Bond and Gresik (1996)

where competition between countries lead to higher taxes and lower efficiency compared to

the cooperative outcome.

Beyond guaranteeing revenue

An important assumption made above is that each country only cares about the guaranteed

tax revenue that it collects from the multinational. Yet, it is natural to consider cases

where the government cares also about the profits of the firm (because of spillovers on the

economy, or lobbying). If we were to consider, like in Bond and Gresik (1996), that country

i cares about the after (total) tax profits of the multinational as well as its tax revenue,

then qualitatively nothing would change in the tax structure, except that the tax rate that

country i would charge would be lower. Hence if country i’s guaranteed payoff are given

by

Ri (t1, t2) = inf
A⊇A0

{
min

(F,c)∈A?(t|A)
EF [ρATP + ti (π1, π2)]

}

5Note that here we have dispensed with the cross product assumption on the output space
6This also relates to inter-state competition for firms or sport teams, as discussed in Burstein and

Rolnick (1995).
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where ATP = π1 − t1 (π1, π2) + π2 − t2 (π1, π2) and ρ ∈ [0, 1]. Taxes are given by.

t1 (π1, π2) =

(
1− α

1− αρ

)
(π1 + π2 − t2 (π1, π2)) +

α

1− αρ
k

Alternatively, the government can be interested in increasing the profits that the firm

makes locally. The policy and political debate has considered the benefits of attracting

foreign profits by allowing a ’tax holiday’ (like the one enacted in 2005), or as in the

proposal of Senator Max Baucus to tax foreign profits at a lower rate than domestic profits

(Chairman Staff Discussion Draft - MCG13834, 2013). However, if we were to model such

considerations in our set up we would get that domestic profits should be taxed at a lower

rate than foreign profits. If country i’s guaranteed payoffs are given by

Ri (t1, t2) = inf
A⊇A0

{
min

(F,c)∈A?(t|A)
EF [ρπi + ti (π1, π2)]

}
then we would have that taxes are:

t1 (π1, π2) = ((1− α)− αρ)π1 + (1− α) (π2 − t2 (π1, π2)) + αk

Details for both of these cases are provided in the Online Appendix.

As was the case in LRS contracts, a worldwide tax system implies a linear relation between

country i’s payoff and the company’s after tax profits in all the cases above. For instance

if taxes are as in (2.3):

t1 (π1, π2) =
1− α
α

(π1 − t1 (π1, π2) + π2 − t2 (π1, π2)) + k (2.4)

This link is at the heart of the robustness properties of the tax system. Robust tax

systems align the incentives of the multinational with those of taxing authority, thus making

profit shifting strategies futile (or as beneficial to the taxing authority as they are to the

multinational).

2.2.1 Two Period Model of Taxation

We can extend the model in the previous section to a two period model of taxation

Consider a government and a firm that operates for two periods. The firm has access to

some unspecified technology of which the government only knows some subset. An action
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of the firm is a pair of a distribution over output and a cost. Taxes depend on realized

output. In each period the firm takes an action (at) that induces a distribution over output

(Ft) at some cost (ct). The government only observes realized output and taxes it to collect

revenue. Taxes depend on current and past output. The period profits of the firm are:

y1 − t1 (y1)− c1 and y2 − t2 (y1, y2)− c2

Government revenue is:

t1 (y1) + t2 (y2)

There is limited liability on the firm, so that t1 (y1) ≤ y1 and t2 (y1, y2) ≤ y2. Both the

government and the firm are assumed risk neutral. The government has commitment.

The timing of the game is as follows:

1. The government sets a tax scheme (t1, t2).

2. The firm chooses a1, output y1 realizes, and taxes are payed.

3. The firm chooses a2, output y2 realizes, and taxes are payed.

4. The game ends.

The action set of the firm (A) is unknown to the government, save from a minimal set of

actions A0 ⊆ A.

Given a tax scheme (t1, t2) and an action set (A) the problem of the firm is:

VA (t1, t2,A) = max
a1∈A

{
EF1

[
(y1 − t1 (y1)− c1) + max

a2∈A
{(EF2 [y2 − t2 (y1, y2)]− c2)}

]}
Notice that a1 = (F1, c1) ∈ ∆Y × R+ is only a function of the contract scheme, while

a2 (y1) = (F2 (y1) , c2 (y1)) ∈ ∆Y × R+ is a function of y1. Let A? (t1, t2|A) be the set of

maximizers for the firm.

The government’s guaranteed revenue is given by:

V (t1, t2) = inf
A⊇A0

{
min

a1,a2∈A?(t1,t2|A)

{
EF1

[
t1 (y1) + EF2(y1) [t2 (y1, y2)]

]}}
We can show know that the robust taxes have the form:

t1 (y1) = αy1 t2 (y1, y2) = αy2

The proof of these results are in the Appendix.
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2.3 Government Contracting (First Price Auction)

Consider a setup where two competing firms bid for a government contract (such as a

contract for the provision of services to the government, the construction of a public good,

or the privatization of a government asset). The government announces that the contracting

process has a fixed cost c > 0, and that the contract will be awarded with the objective of

maximizing the government’s profits. The cost of the contract can be interpreted as the

social benefit of carrying out the project that the contract stipulates, or the valuation of

a government asset that is being privatized. Both firms have their own valuation of the

contract, we denote them by y1 and y2. We assume without loss that y1 > y2 > c.

If the government is known to be corrupt the firms would have reasons to doubt the

announcement. For instance, the government can potentially (and secretly) favor one

of the firms, or ’under the table’ payments can make the cost vary depending on who

is awarded the contract; it is also possible that the government is willing to randomize

between the firms and lower the cost, this might be the case if bids are hard to assess and

the government can lower costs at the expense of adding error to the contracting process, or

if technicalities can arise that create the chance of a lower bid to be awarded the contract.7

The possible outcomes of the contracting process are that firm 1 is awarded the contract,

firm 2 is awarded the contract, or the process is declared null and neither firm gets it. Note

that, in a perfect information setting, this setup is that of a first price auction. The game

would then have no solution since firm 1 would try to marginally outbid firm 2, leaving the

bids undefined. Instead we show that there is a unique equilibrium in robust contracts for

this game.

To formalize the model consider a payoff space Y = {(0, 0) , (ȳ1, 0) , (0, ȳ2)} and a known

set of actions for the agent given by:

A0 =
{

(δ0, 0) ,
(
δy1 , c

)
,
(
δy2 , c

)}
We now solve for the equilibrium when firms are allow to offer bids that depend who the

7Randomness in who is assigned the contract can also arise from last minute changes in the rules (not

uncommon in developing countries), or from challenges made in courts to the rules or the decision of the

government. It is worth pointing out that randomization is not itself necessary for our results. The firms

could simply be worried that the government can allocate the good with certainty to the other contractor

for a zero cost. This is in fact the worst case scenario they face.
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contract is awarded to. LRS contracts will have the following form:

wi =


θiyj if y = (0, 0)

yi − θi
(
yi − yj

)
if y = (yi, 0)

0 if y =
(
0, yj

)
Note that since θi ≥ 0 and yj > 0 it holds that wi

(
0, yj

)
≤ wi (0, 0) ≤ wi (yi, 0). That is,

the principals always pay more if they win the auction, followed by no one winning and

lastly if the auction is won by the other principal.

It is left to characterize the optimal actions of the government and the two firms, given the

form of the contracts. The government’s problem is:

VA (w|A0) = max
{
θiyj + θjyi, (1− θi) yi + θiyj − c, (1− θj) yj + θjyi − c

}
Note that for any strategy of the firms (θ1, θ2) the government will either award the contract

to the firm with the highest valuation (firm 1) or not award it at all.

This implies that the best response of firm 2 is to set θ2 = 0 or to offer the zero contract.

In turn, this gives rise to two equilibria of the game. One in which firm 2 sets θ2 = 0, thus

bidding w2 (y) = y2, where firm 1 optimally sets

θ1 =


1−

√
c

y1−y2
if c
(
y1−y2
y1

)
< y1 ∧ y2 + c < y1

0 otw

The condition above is just guaranteeing that the government will prefer awarding the

contract to firm 1 over declaring null the process, and that the valuation of firm 1 is

enough to pay the cost to the government and compensate for not awarding the contract

to firm 2 (this ensures that θ1 ≥ 0).

And another equilibrium in which firm 2 walks away from the bid, setting w2 (y) = 0, where

firm 1 optimally sets w1 (y) = (1− θ1) y1 with θ1 = 1−
√

c
y1

. For this to be an equilibrium

it must be a best response by principal 2 to offer the zero contract when principal 1 offers

this contract. That is the case when:

y2 <
√
cy1
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If y1 = y2 then there are no eligible contracts for the firms, since the agent will be indifferent

between them and neither firm can guarantee to be awarded the contract. Because of this

the only equilibrium is for both of them to set wi (y) = yi. In all cases the government

ends up awarding the contract to the firm with the highest valuation.

2.4 Provision of public goods (Public vs Private Contracting

Domain)

In this section we consider a classical example on the provision of a public good, taken

from Martimort and Stole (2012), under the assumption of constant marginal costs.

Consider an agent that produces one unit of a public good with variable quality q ∈ [0, 1].

The cost function of the agent depends on q and is given by f (q) = γq. Each principals

values the public good with yi = νiq. The output space is then:

Y =
{

(y1, y2) ∈ R2
+|∃q∈[0,1] y1 = v1q ∧ y2 = v2q

}
This abandons the assumption on the set Y being a cross product. Output is now assumed

to be perfectly correlated across principals. This will only change the intercept of the

LRS contract. The efficient outcome is of course to provide the good at highest quality if

ν1 + ν2 ≥ γ.

We first characterize the equilibrium in public common agency. In this case there is no

competition factor since output is perfectly correlated across principals. Each principal

“partially” free rides on the other by lowering compensation by a fraction of the other

principal’s payoff. Moreover the agent optimally chooses to set q = 1. An interesting

feature of this equilibrium is that no matter how different the valuations are, all principals

get the same share of expected output and the same guaranteed payoff. Moreover the agent

picks the efficient action.

Proposition 5. (Public good provision - Public common agency) In the public

common agency equilibrium both principals offer contracts of the form:

wi (y) = (1− θ) yi − θyj where θ is such that
1− θ

(1− 2θ)2
=
νi + νj
γ

if
(νj−νi)2

max{νi,νj} ≤ γ ≤ ν1 + ν2.
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Proof. We first note that the LRS contracts in equilibrium change because of our assump-

tion on the output space. If principal j offers a contract wj = (1− θj) yj − θjyi, then the

LRS contract of principal i (given by (A.43)) is increasing in both yi and yj as long as:

(α+ (1− α) θj) νi − (1− α) (1− θj) νj ≥ 0 (2.5)

In this case the minimum is achieved when yi = yj = 0. This implies k = 0, and thus:

wi = (1− θi) yi−θiyj , with θi = (1− α) (1− θj) and no fees payed to the agent. Condition

(2.5) is verified later.

The value of the agent is given by:

VA (w|A0) = max {0 , (1− θ1 − θ2) (ν1 + ν2)− γ}

The agent will choose either to induce the highest quality of not to produce at all.

The best response of principal i is then:

BRi (wj) = argmax
θi∈[0,1−θj ]


θi (ν1 + ν2)− θi

1−θ1−θ2γ if (1− θ1 − θ2) (ν1 + ν2) > γ

−θiyj if (1− θ1 − θ2) (ν1 + ν2) ≤ γ


The interior solution assuming that the agent produces is given by:

θ?i = (1− θj)−

√
(1− θj) γ
ν1 + ν2

Moreover, in equilibrium it must be that:

1− θj
(1− θi − θj)2

=
νi + νj
γ

∧ 1− θi
(1− θi − θj)2

=
νi + νj
γ

which implies that θi = θj = θ, where θ is such that: 1−θ
(1−2θ)2 =

νi+νj
γ . This characterizes

the equilibrium contract. It is left to verify the assumptions, namely condition (2.5) which

is satisfied if
(νj−νi)2

max{νi,νj} ≤ γ, and profitability of the agent ((1− θ1 − θ2) (ν1 + ν2) > γ),

feasibility of the share θ
(
0 ≤ θ ≤ 1

2

)
and profitability of the principals, which are always

satisfied.

Restricting the principals to a private contracting domain changes the equilibrium outcomes

significantly. In this case principals cannot “free ride” on each other. Even though there is
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no competition each principal will act as if the public good had to be financed by herself

alone. In fact, in equilibrium, the value of the principal does not directly depend on θj , and

so neither does the optimal value of θi. Because of this, the equilibrium share (1− θi) is

the same share that would have been optimal in the single principal framework (see Carroll

(2015)). When restricted to contract only on their own output principals optimally behave

as if they were financing the public good on their own.

When νi < γ (principal i cannot unilaterally pay for the costs of the public good) principal i

cannot guarantee herself a positive payoff, and sets θi = 0, or offers the zero contract. This

implies that when νi < γ, νj < γ and ν1 + ν2 > γ, in equilibrium both principals can offer

the zero contract and the public good does not get built (the agent chooses q = 0), despite

it being socially valuable. Only when either νi and νj are greater than γ can we guarantee

the provision of the public good, however each principal has to foot the bill by herself. This

implies that the principals overpay the agent for the good, since (1− θi) νi > γ.

Proposition 6. (Public good provision - Private common agency) In a private

common agency equilibrium principals offer contracts of the form:

wri (y) = (1− θi) yi where 1− θi = min

{√
γ

νi
, 1

}
Proof. LRS contracts are of the form wi (y) = (1− θi) yi. Then the agent’s problem is:

VA (w) = max
q∈[0,1]

{((1− θi) νi + (1− θj) νj − γ) q}

We guess that (νi + νj − γ) ≥ θiνi+θjνj so that the optimal choice is q = 1 in equilibrium.

The principal’s value is then:

Vi (w) =

θiνi −
θi

1−θiγ if (1− θi) νi + (1− θj) νj ≥ γ

− θi
1−θi (1− θj) νj otw

The optimal share if the agent produces is given by:

1− θi =

√
γ

νi

which is the solution to the single principal problem of Carroll (2015). Note that this

is interior only if γ < νi. Now we can check the guesses. Namely that the principal gets

a positive payoff, and that the agent will produce. Both conditions are satisfied as long as

νi ≥ γ.
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Chapter 3

Network Games with Linear Best

Replies

3.1 Introduction

The structure of connections among economic agents affects their actions in many areas of

economics. The production of firms and the choice of their markets depends on the action

of other firms and the substitutability or complementarity of their goods with those of

other firms. People’s information, opinions and actions are influenced by the information

of their social circles. Technology adaptation and the spread of innovation depends on the

underlying channels of information.

The structure of these connections can be formally represented by a network, or graph and

the interaction of two agents does not depend only on the intensity of their link, but on the

links that they have with other agents as well, i.e. the entire network structure. A major

issue is understanding how the the network structure shapes equilibrium outcomes.

Bramoullé et al. (2014) study a large class of games where agents have linear best replies.

As they point out many games fall in this category- including games of investment, belief

formation, public good provision, social interaction and oligopoly. For a review of papers

that fall in this category see Bramoullé et al. (2014). The first part of this chapter focuses

on extending results for such games when agent’s choice set is uni-dimensional, with a

particular focus on games of private provision of public goods. More specifically exploiting
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an equivalence of stable equilibria in games with linear best replies to the steady states of the

Threshold-Linear neural network Hahnloser et al. (2003); Yi et al. (2009), used in recent

developments in theoretical neuroscience to explain the formation of memory1, we can

provide further characterization of such the Nash equilibra. Furthermore in particular in

the context of public goods we show how results from the theoretical neuroscience literature

allow for characterizing Lindahl equilibria 2 and determination of conditions under which

Lindahl equilibra have the same stability and properties as the Nash equilibria3.

Furthermore, as Bramoullé and Kranton (2015) point out, there is little research done in

network games where the agent’s choice is multidimensional. However in many contexts,

players’ actions are multidimensional. Firms have multiple products that they sell, and

they choose both quality and quantity of the goods that they produce. Individuals act

differently toward some people than toward others. For example BourlÃšs et al. (2017)

advance a model of altruism in networks where players care about their neighbor’s utility

and choose a profile of transfers.

In the later part of this chapter we propose a framework to extend network games with

linear best replies to a multidimensional setting inspired by an isomorphism between net-

work games with linear best replies as in Bramoullé et al. (2014), Bramoullé and Kranton

(2007),Ballester et al. (2006) to the threshold-linear recurrent neural network Hahnloser

et al. (2003) used in theoretical neuroscience as a model of memory encoding and retrieval.

Then we provide an extension to multidimensional games extending results from the Com-

petitive Layer Model (CLM) used for feature binding and sensory segmentation Wersing

et al. (2001).

In particular we focus on a Cournot competition game between firms that can produce

multiple products. While models of oligopolistic competition usually abstract from the

multi-dimensional nature of competition, in reality oligopolistic firms compete with one

another across several different markets. For example in electricity and airline markets,

1The stable steady states of the network correspond to patters of firing neurons which represent memory
2Lindahl equilibria are equilbria where each agent faces an individual price for the public good, and that

price is set to the individual’s marginal benefit from the public good and thus they implement a socially

efficient outcome.
3Elliott and Golub (January 17 2017) also characterize Lindahl equilibria in a similar setting, however

their approach and characterizations are different and they do not focus on stability and structure of Lindahl

equilibria.
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firms compete with one another in different geographical markets, and are constrained by

the network like interactions that these firms have in each market. Multi-market contact

is prevalent in many oligopolistic industries4. Recently, Bimpikis et al. (2019) models the

multi-dimensional nature of Cournot competition, with a similar structure the the one we

study. However they do not focus on stable Nash equilbria, and our results focus on cases

when this multi-market competition leads to the specialization of each firm producing only

one good. Which good is produced depends on the centrality that each firm has on each

market.

3.2 One Dimensional Network Games

Before proceeding to the multidimensional case, for exposition it is worth revisiting the one

dimensional version of the game. The discussion below follows Bramoullé et al. (2014).

There are n agents. Each agent i simultaneously chooses an action xi ≥ 0 and let x =

(x1, ..., xn). Let x−i denote the actions of all agents other than i. G = [gij ] denotes the

adjacency matrix where gij = 1 if agents i and j are linked and gij = 0 otherwise. However

there is no loss in considering arbitrary numbers for gij as long as gij = gji which implies

that we have a weighted undirected network. δ ≥ 0 measures how much i and j affect each

others payoffs. Player i’s payoff is U (xi,x−i; δ,G) . Also let fi (x−i; δ,G) denote agent i’s

best response. A Nash equilibrium is x∗ where x∗i = fi
(
x∗−i; δ,G

)
. We will focus on games

where the best response is linear.

fi (x−i; δ,G) = max

0, x̄i − δ
∑
j

gijxj

 (3.1)

There are plenty of games where the best response has the above form. For example in a

game of private provision of public good as in Bramoullé and Kranton (2007) we have that

the agents have the following utility function.

Û (xi,x−i; δ,G) = bi

xi + δ
∑
j

gijxj

− κixi
4See Bimpikis et al. (2019) for a review of several industries.
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where bi () is twice differentiable strictly increasing and concave. In this game the agents

have the best response given by equation (3.1).

Another game is that of peer effects considered in Ballester et al. (2006) where the utility

function is given by

Ũ (xi,x−i; δ,G) = x̄ixi −
1

2
x2i − δ

∑
j

gijxixj

and as they show equilibrium outcomes are related to players Bonacich centralities. This

game has the same best response as the one in equation (3.1).

Another game that is important and that we will carry as an example in the multi dimen-

sional game is a game of Cournot competition.

Firm i faces price

pi = a− s

xi + 2δ
∑
j

gijxj


which imply a linear inverse demand function from the consumers. Vives (2001) shows that

when consumers have strictly concave quadratic utility functions over substitute products,

then firms face linear inverse demand functions.

The profits of the firm are given by

Πi (xi,x−i; δ,G) = xipi − dxi

, where d is the constant marginal cost.

This game also has the same best reply given by equation (3.1).

More generally all games that have the following generalized payoff function:

Πi (xi,x−i; δ,G) = vi

xi − x0i + δ
∑
j

gijxj

+ wi (x−i)

where vi is increasing on (−∞, 0], decreasing on [0,+∞) and symmetric around 0, so that 0

is the unique maximum of vi and since it does not affect incentives wi can be an arbitrary

function. x0i represents the action that the agent would pick in the absence of network

effects.

Bramoullé et al. (2014) show that the game in Ballester et al. (2006) has a potential function

of the form

φ (x; δ,G) = xT1− 1

2
xT (I + δG)x
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which then implies that x∗ is a Nash equilibrium if and only if x∗ satisfies the Kuhn-Tucker

conditions of the problem below

max
x

φ (x; δ,G) s.t. ∀ixi ≥ 0

3.3 Linear Threshold Recurrent Neural Network

Consider the following system of differential equations

ẋ1 = f1 (x; δ,G)− x1
...

ẋn = fn (x; δ,G)− xn

x is a Nash Equilibrium of the game if and only if it is a steady state of the system above,

by construction.

It turns out that this non-linear system of equations is the Threshold-Linear Recurrent

Neural Network model used in neuroscience Hahnloser et al. (2003).

dxi
dt

+ xi =

bi +
∑
j

Wijxj

+

Here there are n neurons and xi = xi (t) is the firing rate of neuron i. Wij denotes the

effective strength of the recurrent connection from jth to ith neuron. bi is the external

input to neuron i and it is constant over time. It is easy to see that both systems are the

same with bi = x̄i and Wij = −δgij .
Hahnloser et al. (2003) show essentially the same results as Bramoullé et al. (2014) using

similar techniques. Hahnloser et al. (2003) use an energy function formulation of the

threshold-linear network while Bramoullé et al. (2014) use a potential for their game. Stable

Nash equilibria correspond to stable steady states of the threshold-linear network. When

Wij = −δgij and gij ∈ {0, 1} Xie et al. (2002) show results about winner-take-all networks,

which are similar to results regarding the relationship between maximal independent sets

and Nash equilibria in Bramoullé and Kranton (2007). In the next section we show how

the results of Hahnloser et al. (2003) can be used to provide characterizations of stable

Lindahl equilibria in these games with linear best replies.
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Both these literatures have advanced several different properties of the effect of networks

on the Nash equilibrium outcomes and the steady states of the dynamical system. While

the motivations are different the results are meaningful in both of these literatures.

For example Bramoullé et al. (2014) prove the following results that also are easily shown

using similar techniques using Hahnloser et al. (2003).

Some of those results are the following:

1. If |λmin (G)| < 1
δ , there is a unique Nash equilibrium.

2. For any δ and G, if |λmin (G)| > 1
δ there exists at least one Nash equilibrium with

inactive agents (their action is xi = 0).

3. Consider a graph G and a Nash equilibrium x with active agents A and strictly

inactive agents. x is stable if and only if |λmin (GA)| < 1
δ .

4. For |λmin (G)| > 1
δ , all stable equilibria involve at least one inactive agent.

5. Consider a stable equilibrium x with active agents A. There is no other equilibrium

x
′
with active agents A

′ ⊂ A

3.4 Lindahl Equilibria and public goods

While the questions of public good provision are as old as economics itself, there is a recent

and growing literature that takes a social network approach to public goods and focuses on

understanding the impact of the heterogeneity of externalities across agents. Many public

goods, like innovation or technological spillover (as well as other actions with positive and

negative externalities, like crime, smoking, quitting smoking etc) spread locally so the social

and geographical structure can have substantial effects.

This local nature of public goods and of the spread of influence have raised new questions

in the public goods literature: How does the social or geographic structure affect the level

of public good provision? Do people exert effort themselves or rely on others? Who is

the most influential agent in the economy? Whose effort generates the highest positive

or negative externality? How do new links—links between communities or firms, for ex-

ample—affect contributions and welfare? What are the efficient allocation of a particular
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network structure and how do they compare to non-cooperative outcomes? What policies

can remedy inefficiencies that can arise due to the underlying network structure of the

economy?

Consider the game of private provision of public goods of Bramoullé and Kranton (2007)

where the agents have the following utility function.

Û (xi,x−i; δ,G) = bi

xi + δ
∑
j

gijxj

− κixi
but now we allow for transfers where

Û (xi,x−i; δ,G) = bi

xi + δ
∑
j

gijxj

− κixi+τixi
is quasilinear in money transfers (τixi).

The best response of agent i is of the form

fi (x−i; δ,G) = max

0, ¯̄xi − δ
∑
j

gijxj


where b

′
i (¯̄xi) = κi − ti.

Then we ask the following question. Given the network structure for what allocations

x ≥ 0 do there exist transfers or Lindahl prices t = (t1, ..., tn) such that x is a stable Nash

equilibrium? This leads us to the following results.

Theorem 9. Let x ≥ 0 be an allocation. Then there exist some linear transfer rates

t = (t1, ..., tn) for which x is a Nash equilibrium.

Moreover if |λmin (G)| < 1
δ , all these Nash equilibra are stable equilibria.

Proof. Let ¯̄xi = xi + δ
∑

j gijxj if xi > 0 and ¯̄xi = δ
∑

j gijxj otherwise.

Then x is a Nash equilibrium since it is a steady state of the system

dxi
dt

+ xi =

¯̄xi − δ
∑
j

gijxj

+

If |λmin (G)| < 1
δ then the matrix I + δG is positive definite. That implies the function

L = 1
2x

T (I + δG)x− ¯̄xTi x is lower bounded and radially unbounded.
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In Rn+ the function L is non-increasing under the network dynamics and it is constant only

at the steady state. By Lyapunov’s Stability theorem, the stable steady states are globally

asymptotically stable, hence a stable Nash equilibrium.

Using this framework we can further characterize Lindahl equilibria of this game, where

we use the definition of permitted and forbidden sets.

Definition. A set of agents A is called permitted if for some tax rates t = (t1, ..., tn)

there is a stable NE where all agents in A are active.

also

Definition. A set of agents A is called forbidden if there are no tax rates t = (t1, ..., tn)

for which there exists a stable NE where all agents in A are active .

Then using the Threshold linear equilibrium framework we can have the following results.

Theorem 10. Any subset of a permitted set is permitted. Also any superset of a forbidden

set is forbidden.

Proof. Follows by Cauchy’s Interlacing Theorem.

Theorem 11. If |λmin (G)| > 1
δ , then there exits a forbidden set. Also there exits t =

(t1, ..., tn), for which there are multiple stable Nash equilibria.

Proof. Follows from Hahnloser et al. (2003)

Theorem 12. Consider a stable equilibrium x with active agents A. There is no other

equilibrium x
′
with active agents A

′ ⊃ A.

3.5 Multidimensional network games

Now let us consider the Cournot game mentioned earlier, modified such that each firm

can produce multiple goods and face different markets. The framework below allows for

understanding Cournot competition between multiproduct firms where firms face some re-

source constraint or supply chain difficulties where holding everything else fixed, increasing

output in one of the markets leads to lower output in the other markets of that firm.
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Formally there are n firms and L goods that each firm can choose to produce from. Indices

i, j will be reserved for agents, and indices k, l will be reserved for goods. Firm i chooses(
x1i , x

2
i , ...x

L
i

)
≥ 0 in order to maximize its profits.

Assume that each firm i has the following best response for good k.

xki = max

0, x̄k −Akli
∑
l

xli − δk
∑
j

gkijx
k
j + xki


where we need Akli = Alki > 0 for all l, k ∈ {1, 2, ...., L} and i ∈ {1, 2, ..., N}. The Nash

equilibria of this game are the same as the fixed points of the following system of equations:

dxki
dt

+ xki = max

0, x̄i −Akli
∑
l 6=k

xli − δk
∑
j

gkijx
k
j

 (3.2)

Now this system of equations is called the Competitive Layer Model of Wersing et al. (2001)

and has an energy function given by

E = −
∑
ik

x̄ix
k
i +

1

2

∑
i

∑
kl

Akli x
k
i x

l
i −

1

2

∑
k

∑
ij

gkijx
k
i x

k
j

Wersing et al. (2001) provides conditions for the existence of a stable Nash equilibrium

each agent chooses at most one dimension. Essentially those conditions boil down to

strong substitutability, given by Akli being large enough for all k and l and k 6= l.

Now for simplicity assume that there are only two good {k, l}.
Consider a simplified version of the model in Bimpikis et al. (2019). The price of good k

that firm i faces is given by

pki = a− s

xki + 2δk
∑
j

gkijx
k
j


Implicitly assumed here is that the overall demand for these two goods is the same in the

sense that ak = al = a and sk = sl = s. We will relax this assumption later but maintain

it for now for ease of exposition. Gk = {gkij} denotes the market structure for good k

and δk denotes the degree of substitutability among the two goods. For now gkij ∈ {0, 1}.
Again this assumption will be reduced later. Note that this also implies that there are
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no complementarities between goods since gkij ≥ 0 and δ > 0. The firm tries to maximize

profits which are given by

Πi = xki p
k
i + xlip

l
i − d

(
xki + xli

)2
The quadratic cost function here implies that there are interaction terms that mean that

marginal cost of production in one good is increasing in the level of the other good.

Πi = pki x
k + plix

l
i
− d

(
xki + xli

)2
=

a− s
xki + 2δk

∑
j 6=i

gkijx
k
j

xki +

a− s
xli + 2δl

∑
j 6=i

glijx
l
j

xli − d
(
xki + xli

)2
Taking first order conditions we get

∂Π

∂xki
=

a− s
2δk

∑
j 6=i

gkijx
k
j

− 2dxli

− 2 (d+ s)xki

Which implies that

xki = max

0,

(
a− s

(
2δk

∑
j 6=i g

k
ijx

k
j

)
− 2dxli

)
2 (s+ d)

 (3.3)

It will be useful to write the best response in equation (3.3) in the following way

xki = max

0,

a
2
− dxli − (d+ 2s)xki + s

xki + δk
∑
j 6=i

gkijx
k
j

+ xki


Now the Nash equilibria of this game are the fixed points of the following system of equa-

tions

dxki
dt

+ xki = max

0,

a
2
− dxli − (d+ 2s)xki + s

xki − δk∑
j 6=i

gkijx
k
j

+ xki

 (3.4)

However in this particular setup with linear demand and quadratic costs, the sufficient

conditions of Wersing et al. (2001) for the existence of stable Nash equilibrium where each

firm produces only in one market are not satisfied, as it essentially requires that s < 0,

which would mean upward sloping demand curves.

It would be useful to have sufficient conditions for the existence of stable Nash equilibria

where firms produce in all markets. We leave that for future work.
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Appendix A

Robust Contracts in Common

Agency

A.1 Proofs

A.1.1 Best Response - 2 Principals

First consider the implications of the common limited liability assumption. Under this

assumption contracts have to guarantee that w1 (y)+w2 (y) ≥ 0. From the point of view of

an individual principal this allows to charge the agent up to the amount that the opposing

party is paying. From the point of view of the equilibrium this allows for transfers between

principals (through the agent), as in Bernheim and Whinston (1986a,b). The problem

of a principal can then be thought of in two steps: first undoing the payments of other

principals, and then offering the agent an aggregate contract satisfying limited liability. We

call this aggregate contract w̃i. Then the ex-post payoff of principal i is: yi+wj (y)−w̃i (y).

Principal i’s actual contract is of course: wi (y) = w̃i (y)− wj (y).

One option that is always available to a principal when facing a competing contract is

to undo all payments and offer the agent the “zero contract”, i.e. w̃i (y) = 0. Under

assumption (2) the agent’s unique optimal action, under any technology set, given the zero

contract is to choose inaction. This allows us to define a lower bound on the payoff of the

principal. We call a contract eligible if it guarantees the principal a payoff higher than
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the zero contract1:

Vi (w) > wj (0, 0) (A.1)

The following proposition relates the expected payments to the agent under any technology

with its value under A0.

Proposition 7. Let (F, c) ∈ A? (w|A). For A ⊇ A0, it holds that:

EF [w1 (y) + w2 (y)] ≥ VA (w|A0)

Moreover, if (F, c) ∈ A? (w|A) then F ∈ F where:

F = {F ∈ ∆ (Y ) |EF [w1 (y) + w2 (y)] ≥ VA (w|A0)}

Proof. To see the first inequality let (F, c) ∈ A? (w|A) for A ⊇ A0:

EF [w1 (y) + w2 (y)] ≥ EF [w1 (y) + w2 (y)]− c ≥ VA (w|A) ≥ VA (w|A0)

Then F ∈ F .

Lemma 45 characterizes the principal’s payoff for a given contract scheme using the set

F (defined in the proposition above). Note that F only depends on the contract and the

known set of actions A0. In this way we replace the complexity of the definition of Vi (w)

in (1.2) with an object that depends only on known elements.

Lemma 4. Let w be an eligible contract for principal i. Then

Vi (w) = min
F∈F

EF [yi − wi (y)]

Moreover if F ∈ argmin
F∈F

EF [yi − wi (y)] then EF [w1 (y) + w2 (y)] = VA (w|A0).

Proof. We first establish the first claim: Let w be an eligible contract scheme then: Vi (w) =

min
F∈F

EF [yi − wi (y)].

It must be that: Vi (w) ≥ min
F∈F

EF [yi − wi (y)]. Using the definition of Vi (w):

Vi (w) = inf
A⊇A0

min
(F,c)∈A?(w|A)

EF [yi − wi (y)] ≥ min
F∈F

EF [yi − wi (y)]

1In the case of a single principal dealing with a single agent this is similar to allowing the output of the

principal (ỹ) to go from ỹ = min
y∈Y
{yi + wj (y)} to ¯̃y = max

y∈Y
{yi + wj (y)}. In that case a contract is eligible

if it gives a guaranteed payoff above the minimum possible output
(
ỹ
)
.
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Where the inequality follows because if (F, c) ∈ A? (w|A) then F ∈ F .

To prove equality suppose that Vi (w) > min
F∈F

EF [yi − wi (y)], and let

F
′ ∈ argmin

F∈F
EF [yi − wi (y)]

Note that We have that EF ′ [w1 (y) + w2 (y)] ≥ VA (w|A0) from Proposition 7. There are

two options:

1. F
′

does not place full support on the values of y that maximize w1 + w2.

Let ŷ ∈ argmax {w1 (y) + w2 (y)}, and F̂ = δŷ be a distribution with full mass on ŷ.

Let ε ∈ [0, 1] and Fε = (1− ε)F ′ + εF̂ .

Note then that for all ε there exists a ξε > 0 such that: EFε [w1 (y) + w2 (y)] − ξε >
VA (w|A0).

Define and Aε = A0 ∪ {(Fε, ξε)}. It follows that the unique optimal action of the

agent in Aξ is (Fε, ξε). Then:

Vi (w) ≤ Vi (w|Aε) = EFε [yi − wi (y)] = (1− ε)EF ′ [yi − wi] + εEF̂ [yi − wi]

This condition holds for all ε > 0. Letting ε→ 0 we arrive at a contradiction:

Vi (w) ≤ EF ′ [yi − wi] = argmin
F∈F

EF [yi − wi]

2. F
′

places full support on the values of y that maximize w1 + w2. There are still two

possible cases:

(a) EF ′ [w1 + w2] > VA (w|A0). Then there exists ξ > 0 and a technology A′ =

A0 ∪
{(
F
′
, ξ
)}

such that
(
F
′
, ξ
)

is the unique optimal action for the agent in

A′ . Then we arrive at a contradiction:

Vi (w) ≤ Vi
(
w|A′

)
= EF ′ [yi − wi] = argmin

F∈F
EF [yi − wi]

(b) EF [w1 + w2] = VA (w|A0). This implies VA (w|A0) = max
y∈Y
{w1 + w2} which can

only be satisfied if F
′

is available in A0 at zero cost. By assumption 2 this

implies that F = δ(0,0) and that w1 (0, 0) + w2 (0, 0) = max
y∈Y
{w1 (y) + w2 (y)}.
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In this case the unique optimal action for the agent under any technology is

(δ0, 0), so the value of the principal is Vi (w) = −wi (0, 0) ≤ wj (0, 0), where the

inequality follows from limited liability. This contradicts eligibility.

Now we establish the second claim: Let w be an eligible contract scheme for principal i. If

F ∈ argmin
F∈F

EF [yi − wi] then EF [w1 + w2] = VA (w|A0).

To prove this, let F
′ ∈ argmin

F∈F
EF [yi − wi (y)] and suppose for a contradiction that

EF [w1 (y) + w2 (y)] > VA (w|A0) .

Let ε ∈ [0, 1] and define Fε = (1− ε)F ′ + εδ0.

For low enough ε it holds that: EFε [w1 (y) + w2 (y)] > VA (w|A0). Then there exists ξε > 0

such that {(Fε, ξε)} = A? (w|Aε) where Aε = A0 ∪ {(Fε, ξε)}. The payoff to the principal

is then:

Vi (w|Aε) = (1− ε)EF [yi − wi (y)] + ε (−wi (0, 0))

= (1− ε)Vi (w) + ε (wj (0, 0)− (w1 (0, 0) + w2 (0, 0)))

= Vi (w)− ε (Vi (w)− wj (0, 0) + (w1 (0, 0) + w2 (0, 0)))

≤ Vi (w)− ε (Vi (w)− wj (0, 0))

< Vi (w)

This gives a contradiction.

Given the known action set A0, the next lemma links the principal’s guaranteed payoff

to the agent’s payoff in an affine way. This link allows the principal to increase her own

guaranteed payoff by controlling the payoff given to the agent. Lemma 46 also offers a

relation between any contract wi, the outcome yi and the contract wj offered by the other

principal.

The affine link between the agent’s payoff and the principal’s payoff is a crucial element

in providing incentives for the agent. Given the partial knowledge over the agent’s set

of actions the principals’ optimal strategy is to tie their payoff to that of the agent, thus

aligning the agent’s objectives with their own. This is the same mechanism at the heart

of the optimal contracts in Hurwicz and Shapiro (1978) and Carroll (2015), and will be

crucial in establishing the optimality of affine (LRS) contracts in the setting we develop.
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Lemma 5. Let w be an eligible contract scheme. There exits k, λ with λ > 0 such that for

all y ∈ Y :

wi (y) ≤ 1

1 + λ
yi −

λ

1 + λ
wj (y)− 1

1 + λ
k (A.2)

Vi (w) = k + λVA (w|A0) (A.3)

Proof. For the proof define the following two sets:

1. Let S ⊆ R2 be the convex hull of all points (w1 (y) + w2 (y) , yi − wi (y)) for y ∈ Y .

2. Let T ⊆ R2 be the set of all pairs (u, v) such that u > VA (w|A0) and v < Vi (w).

We first establish that S ∩ T = ∅. Let (u, v) ∈ T then let F ∈ argmin
F∈F

EF [yi − wi (y)], by

definition of T and Lemma (45):

u > VA (w|A0) = EF [w1 (y) + w2 (y)]

v < Vi (w) = EF [yi − wi (y)]

now, suppose for a contradiction that (u, v) ∈ S, then there exists F
′ ∈ ∆ (Y ) such that:

u = EF ′ [w1 (y) + w2 (y)] and v = EF ′ [yi − wi (y)]

Note that F
′

guarantees a payoff to the agent larger than VA (w|A0) so F
′ ∈ F but:

EF [yi − wi (y)] > EF ′ [yi − wi (y)]

which contradicts minimality of F . Then S ∩ T = ∅
Second, since S ∩ T = ∅ we can apply the separating hyperplane theorem which implies

that there exist constants (k, λ, µ) such that (λ, µ) 6= (0, 0) and:

k + λu− µv ≤ 0 (u, v) ∈ S (A.4)

k + λu− µv ≥ 0 (u, v) ∈ T (A.5)

Let F ? ∈ argmin
F∈F

EF [yi − wi (y)].

Note that the pair (EF ? [w1 (y) + w2 (y)] , EF ? [yi − wi (y)]) lies in the closures of both S

and T . Then:

k + λEF ? [w1 (y) + w2 (y)]− µEF ? [yi − wi (y)] = 0 (A.6)
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It is left to show that λ, µ > 0.

Note that (u, v) ∈ T admits u arbitrarily high and v arbitrarily low. So for (B.8) to hold

it must be that λ ≥ 0 and µ ≥ 0. There are then two cases to rule out:

1. Suppose µ = 0, then it must be that λ > 0 (since (λ, µ) 6= (0, 0)). From (B.7) and

(B.8)

u ≤ −k
λ

(u, v) ∈ S and u ≥ −k
λ

(u, v) ∈ T

So max
y∈Y

[w1 (y) + w2 (y)] = max
u∈S

u ≤ − k
λ ≤ inf

u∈T
u = VA (w|A0). Which implies:

max
y∈Y

[w1 (y) + w2 (y)] = VA (w|A0)

This can only be satisfied if the agent takes an action with zero cost. By assumption

2 this implies that F = δ(0,0) and that w1 (0, 0) + w2 (0, 0) = max
y∈Y
{w1 (y) + w2 (y)}.

In this case the unique optimal action for the agent under any technology is (δ0, 0),

so the value of the principal is Vi (w) = −wi (0, 0) ≤ wj (0, 0), where the inequality

follows from limited liability. This contradicts eligibility. Then µ > 0.

2. Suppose λ = 0, then it must be that µ > 0 (since (λ, µ) 6= (0, 0)). From (B.7) and

(B.8)

v ≥ k

µ
(u, v) ∈ S and v ≤ k

µ
(u, v) ∈ T

So min
y∈Y

[yi − wi (y)] = min
v∈S

v ≥ k
µ ≥ sup

v∈T
v = Vi (w), then:

Vi (w) ≤ min
y∈Y

[yi − wi (y)] ≤ min
y∈Y

[yi + wj (y)] ≤ wj (0, 0)

which violates eligibility (the second inequality follows from limited liability). So

λ > 0.

Note that since λ and µ are greater than zero µ can be normalized to 1, giving from (B.7):

k + λ (wi (y) + wj (y))− (yi − wi (y)) ≤ 0

And from (B.9):

Vi (w) = k + λVA (w|A0)
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The following two lemmas (35 and 36) use the relation between the principals’ contracts

derived in Lemma 46 to construct an alternative contract that dominates the original one,

in the sense that it weakly increases principal i’s guaranteed payoff. Since the relation

obtained in (B.5) is affine in output and the other principal’s contract, the alternative

contract constructed below will inherit that form. These contracts form the LRS contracts

defined in (A.43).

Lemma 6. Let w = (wi, wj) be an eligible contract scheme that satisfies limited liability

and w1 (0, 0) + w2 (0, 0) < max
y∈Y
{w1 (y) + w2 (y)}. Then there exists λ > 0 and k such that

the contract

w
′
i (y) =

1

1 + λ
yi −

λ

1 + λ
wj (y)− 1

1 + λ
k (A.7)

satisfies Vi

(
w
′
i, wj

)
≥ Vi (w), moreover it is also eligible and satisfies limited liability.

Proof. From Lemma 46 wi satisfies equations (B.5) and (B.6). Clearly w
′
i satisfies (B.5) as

an equality, rearrange it as:(
yi − w

′
i (y)

)
= k + λ

(
w
′
i (y) + wj (y)

)
then let (F, c) ∈ A? (w|A) for any A ⊇ A0 and taking expectations one gets:

EF

[
yi − w

′
i (y)

]
≥ k + λVA

((
w
′
i, wj

)
|A0

)
(A.8)

This applies to any (F, c) under any technology, so this guarantees a payoff for principal i.

Note that w
′
i (y) ≥ wi (y) for all y ∈ Y so the agent is always at least as well off under w

′
i.

Moreover, w
′
i satisfies limited liability. Then from equations (B.6) and (A.8):

EF

[
yi − w

′
i (y)

]
≥ k + λVA (w|A0) = Vi (w)

Since this holds for all (F, c) ∈ A? (w|A), by Lemma 45:

Vi

((
w
′
i, wj

)
|A
)

= min
F∈A?(w|A)

EF

[
yi − w

′
i (y)

]
≥ Vi (w)

Then Vi (w) is a lower bound for Vi

((
w
′
i, wj

)
|A
)

under arbitrary A ⊇ A0.

Thus Vi

(
w
′
i, wj

)
≥ Vi (w) by definition. Finally since w is an eligible contract scheme, so

is
(
w
′
i, wj

)
.
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Lemma 7. Let (wi, wj) be a contract scheme satisfying limited liability strictly:

min
y∈Y
{wi (y) + wj (y)} = β > 0.

The alternative contract w
′
i (y) = wi (y)− β outperforms wi for principal i: Vi

(
w
′
i, wj

)
>

Vi (wi, wj).

Proof. Note that by limited liability min
y∈Y
{wi (y) + wj (y)} = β > 0. Let w

′
i (y) = wi (y)−β,

this contract satisfies limited liability with equality: w
′
i (y) + wj (y) = 0. Note that

A?
((
w
′
i, wj

)
|A
)

= A? ((wi, wj) |A) for allA ⊇ A0. This implies Vi

(
w
′
i, wj

)
= Vi (wi, wj)+

β ≥ Vi (wi, wj).

From the previous two lemmas we see that an eligible contract that satisfies limited liability

is weakly dominated by an LRS contract of the form:

wi (y) = αyi − (1− α)wj (y)− αki ∀y ∈ Y

satisfying limited liability with equality. For an LRS contract to satisfy limited liability

with equality it must be that:

k = min
y∈Y
{yi + wj (y)}

The last two lemmas (37 and 38) establish the form of the principal’s payoffs under LRS

contracts and the existence of an optimal contract in that class.

Lemma 8. Let w an eligible contract scheme, such that wi is an LRS contract given wj

characterized by α ∈ (0, 1]. Then:

Vi (w) =
1− α
α

VA (w|A0) + k = max
(F,c)∈A0

(
(1− α)EF [yi + wj (y)]− 1− α

α
c

)
+ αk (A.9)

This also holds for α = 0 if we interpret the term 1−α
α c as 0 when c = 0 and ∞ for c > 0.

Proof. Let F ∈ argmin
F∈F

EF [yi − wi (y)] by Lemma 45 one has:

Vi (w) = EF [yi − wi (y)] =
1− α
α

EF [w1 (y) + w2 (y)] + k =
1− α
α

VA (w|A0) + k

The second equality follows by replacing VA (w|A0).
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Its worthwhile to highlight that when α = 0 the LRS contract offsets the other principal’s

payments to the agent and implies the zero aggregate contract, i.e. wi (y) = −wj (y). In

this case Lemma (37) gives Vi (w) = wj (0, 0), corresponding to (F, c) = (δ0, 0). Note that

this is the only optimal action for the agent under any technology under assumption (2)

and a zero aggregate contract.

Lemma 9. In the class of LRS contracts that satisfy limited liability with equality there

exists an optimal one for principal i.

Proof. From Lemma 37 we can express Vi (w) directly as a function of α as in (A.22).

Recall that k = min
y∈Y
{yi + wj (y)} is independent of α.

Moreover, The function (1− α)EF [yi + wj (y)]− 1−α
α c is continuous in α, thus its maximum

over A0 is continuous as well. Since the RHS in equation (A.22) is continuous in α it

achieves a maximum in [0, 1]. This α gives the optimal guarantee over all contracts of this

class.

Theorem 1. For any contract wj there exists LRS contract wi such that wi ∈ BRi (wj),

where min
y∈Y
{w̄i (y) + wj (y)} = 0. That is, there is always a LRS contract that is robust

for principal i.

Proof. Consider a contract wj by the competing principal. By Lemma 38 among the class

of LRS contracts satisfying limited liability with equality there is an optimal one, call it

w?i . There are two cases to consider:

1. The contract w?i is eligible.

Suppose for a contradiction that there is an arbitrary contract wi that satisfies limited

liability and that does strictly better than w?i : Vi (wi, wj) > Vi (w?i , wj). This contract

is itself eligible. Then by Lemmas 46, 35 and 36 there exists an LRS contract w
′
i

that satisfies limited liability with equality such that Vi

(
w
′
i, wj

)
≥ Vi (wi, wj). This

contradicts w?i being optimal among LRS contracts that satisfy limited liability with

equality.

2. The contract w?i is not eligible, i.e. Vi (w?i , wj) ≤ wj (0, 0).
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Note that since wi (y) = −wj (y) is a LRS contract that satisfies limited liability we

know that:

Vi (w?i , wj) ≤ wj (0, 0) = Vi ((−wj , wj)) ≤ Vi (w?i , wj)

Then w? attains the bound: Vi (w?i , wj) = wj (0, 0). We now claim that w?i ∈
BRi (wj), if it were not then there exists a contract wi that satisfies limited lia-

bility and Vi (wi, wj) > Vi (w?i , wj), then this contract is eligible. Just as in the first

case this leads to a contradiction of w?i being optimal among LRS contracts that

satisfy limited liability with equality.

Corollary 1. If A0 has the full support property (Assumption 4) then any robust contract

for principal i is a LRS contract, or there are no eligible contracts.

Proof. Consider a contract wj by the competing principal. Suppose that there exists an

eligible contract, then any contract in the best response is eligible. Suppose wi is an optimal

contract for principal i. Define w
′
i as in Lemma 35. Note that w

′
i satisfies:

EF

[
yi − w

′
i (y)

]
≥ k + λVA

((
w
′
i, wj

)
|A0

)
Since wi satisfies Equation (B.6) from Lemma 46 we can replace for k to obtain:

EF

[
yi − w

′
i (y)

]
≥ Vi (w) + λ

(
VA

((
w
′
i, wj

)
|A0

)
− VA ((wi, wj) |A0)

)
(A.10)

Because of full support, since w
′
i (y) ≥ wi (y) pointwise and any action under A0 gives a

(weakly) higher payoff to the agent under w
′
i than under wi, it follows that

VA

((
w
′
i, wj

)
|A0

)
≥ VA ((wi, wj) |A0)

with strict inequality unless w
′
i is identical to wi.

Since the equation (A.23) holds for all F we get: Vi

(
w
′
i, wj

)
≥ Vi (w), with strict inequality

when wi is not identical to w
′
i. Then wi = w

′
i, or else optimality would be contradicted.

Moreover, wi has to be a LRS contract, or else by Lemma 36 there is a LRS contract that

strictly improves on wi.
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A.1.2 Private Common Agency

In the case of private output we employ the same procedure as in the case of the public

common agency with the appropriate changes. To avoid repetition we provide only the

statements of the crucial lemma in this new environment.

Lemma 10. Let w be an eligible contract. There exits k, λ with λ > 0 such that for all

y ∈ Y :

wi (yi) ≤
1

1 + λ
yi −

λ

1 + λ
wj −

1

1 + λ
k (A.11)

Vi (w) = k + λVA (w|A0) (A.12)

where wj = max
yj∈Yj

wj (yj).

As noted earlier in the private common agency framework the principal gives the agent

a share of his output and punishes the agent based on the maximum value of the other

principal’s contract. (i.e. the only difference is the use of w̄j instead of wj (y)).

Lemmas similar to (35), (36), (37), and (38) provide the optimality of linear contracts.

Details are available in the Online Appendix.

A.1.3 Participation and competition in equilibrium

In the discussion above a form of non-participation by the principals is discussed. By

conceding rights to the agent over all of her output a principal “opts out” of the game.

This contracts gives the principal zero guaranteed payoff, but this form of opting out of the

game is not without effects. In this case the remaining principal has to provide incentives

for the agent not to work for herself. Thus the form of the LRS contracts is not modified.

There is an alternative way of opting out of the game: instead of giving the agent rights

over all of her output the principal can play the zero contract, thus not giving the agent

any compensation for any action taken.(note that this contract also implies zero guaranteed

payoffs). If a principal offers the zero contract then the other principal faces no competition,

in the sense that hers are the only incentives the agent gets. The problem reduces to a

principal-agent game studied by Carroll (2015). The best response to a zero contract is

then:

wj (yi, yj) = θyj θ =

√
c

EF [yj ]
(A.13)

76



where (F, c) are such that:

(F, c) ∈ argmax
(F,c)∈A0

(√
EF [yj ]−

√
c

)2

For this to be an equilibrium it must be that the zero contract is a best response to the

contract in (A.13); this happens if and only if there are no admissible contracts available

to principal i. A sufficient and necessary condition for this, is for the best LRS contract

(A.43) to have θi = 0, when wj is as in (A.13). This happens if and only if:

EF ? [yi + θyj ]− c? ≤ θyj

for (F ?, c?) such that:

(F ?, c?) ∈ argmax
(F,c)∈A0

[EF [yi + θyj ]− c]

This condition has a simple interpretation: θi = 0 is optimal if the agent is better off by

inducing
(
0, yj

)
with full probability and zero cost, than under any action available in A0,

when principal i is already giving away the rights to her output. If this is the case then

principal i’s maximum guaranteed payoff is zero and the zero contract is a best response.
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A.2 Existence of Equilibrium - Examples

As shown previously only expected total output is relevant to determine payoffs. This

allows us to consider the agent’s action as choosing an expected total output x and a cost

c. Moreover, as noted earlier, if two actions have the same expected total output the agent

will always pick the one with lower cost. These actions form the lower envelope of the

action set in the (x, c) space, and define the cost function o the agent:

f (x) = min
{(F,c)∈A0|EF [y1+y2]=x}

c

The function f has domain on the set X =
{
x ∈ [0, y1 + y2] |∃(F,c)∈A0

x = EF [y1 + y2]
}

.

By assumption this is a compact set, let x̄ = max
x∈X

x and note that the minimum x is always

zero.

In the examples below we consider different specifications for f . In all cases we consider

the problem of principal i when wj = (1− θj) yj + θj (yi − yi). As shown previously the

corresponding LRS contract for principal i is: wi = (1− θi) yi + θi
(
yj − yj

)
, where θi =

(1− α) (1− θj).

Example 1. Constant marginal cost (linear cost)

Under Assumption 7 the cost function has the form: f (x) = γx for some constant γ > 0.

The value of the agent and his optimal action are:

VA (w|A0) = max
x∈X
{ ((1− θ1 − θ2)− γ)x}+ θ1y2 + θ2y1 x? =


x if 1− θ1 − θ2 > γ

0 if 1− θ1 − θ2 < γ

X if 1− θ1 − θ2 = γ

Then the best response of principal i is characterized by:

BRi (wj) = argmax
θi∈[0,1−θj ]


θi

(
x− yj

)
− θi

1−θ1−θ2γx if 1− θ1 − θ2 > γ

−θiyj if 1− θ1 − θ2 ≤ γ


The function in the first case is strictly concave, its critical value if x > y is given by:

θ?i = (1− θj)−

√
(1− θj) γx
x− yj
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This is an interior solution if:

1− θj − θ?i > γ and 0 ≤ θ?i ≤ (1− θj)

these conditions are satisfied if and only if:
x−yj
x > γ

1−θj . This condition amounts to there

being enough expected output to pay for the cost of the agent and the fees. The best

response of principal i is:

BRi (θj) =


1− θj −

√
(1−θj)γx
x−yj

if (1− θj)
(
x− yj

)
> γx

0 otw

The best response of each principal is then single valued. As before this implies the existence

of an equilibrium.

Example 2. Constant cost

Assume now that the agent is indifferent between actions, so that f (x) = γ, with γ > 0,

if x > 0, and f (0) = 0. This function is not convex. Since the agent’s payoff under LRS

contracts is increasing in expected total output, hence the agent will choose to induce the

maximum expected total output, as long as it covers the cost γ.

x? (θ1, θ2) =

x if (1− θ1 − θ2)x > γ

0 otw

Then the best response of principal i is characterized by:

BRi (wj) = argmax
θi∈[0,1−θj ]


θi

(
x− yj

)
− θi

1−θ1−θ2γ if (1− θ1 − θ2)x > γ

−θiyj if (1− θ1 − θ2)x ≤ γ


The function in the first case is strictly concave, its critical value if x > y is given by:

θ?i = (1− θj)−

√
(1− θj) γ
x− yj

This is an interior solution if:

(1− θj − θ?i )x > γ and 0 ≤ θ?i ≤ (1− θj)
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these conditions are satisfied if and only if: x − yj >
γ

1−θj . This condition amounts to

there being enough expected output to pay for the cost of the agent and the fees. The best

response of principal i is:

BRi (θj) =


1− θj −

√
(1−θj)γ
x−yj

if (1− θj)
(
x− yj

)
> γ

0 otw

The best response of each principal is then single valued. As before this implies the existence

of an equilibrium.

A.3 Individual Limited Liability

The model presented in the main text assumes that contracts are subject to common limited

liability, so that the contracts satisfy w1 (y) + w2 (y) ≥ 0 for all y ∈ Y . We can instead

think of a stronger requirement and ask that the contract offered by each principal have

to satisfy wi (y) ≥ 0 for all y ∈ Y and i ∈ {1, 2}. In this case a principal cannot charge

the agent, regardless of what the other principal is paying . Unlike previously, there are no

equilibrium transfers between principals (through the agent).

Importantly, changing limited liability does not change our analysis on the principal’s best

response. We show thatLRS contracts are still best responses:

wi (y) = αiyi − (1− αi)wj (y)− αiki ∀y ∈ Y (A.14)

Theorem 1 of the main text then goes through with just one modification, namely the

limited liability requirement. The formal statement and proof are provided at the end of

this section. We now state and prove a series of lemmas to establish the result. They

follow closely the arguments in the proof of Theorem 1 in the text, with the appropriate

modifications.

The following proposition relates the expected payments to the agent under any technology

with its value under A0.

Proposition 8. Let (F, c) ∈ A? (w|A). For A ⊇ A0, it holds that:

EF [w1 (y) + w2 (y)] ≥ VA (w|A0)
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Moreover, if (F, c) ∈ A? (w|A) then F ∈ F where:

F = {F ∈ ∆ (Y ) |EF [w1 (y) + w2 (y)] ≥ VA (w|A0)}

Proof. To see the first inequality let (F, c) ∈ A? (w|A) for A ⊇ A0:

EF [w1 (y) + w2 (y)] ≥ EF [w1 (y) + w2 (y)]− c ≥ VA (w|A) ≥ VA (w|A0)

Then F ∈ F .

Lemma 11 characterizes the principal’s payoff for a given contract scheme using the set

F (defined in the proposition above). Note that F only depends on the contract and the

known set of actions A0. The following results are valid for any scheme w that provides

positive guarantees for principal i

We formally define them as follows:

Eligibility: A contract w is eligible for principal i if: Vi (w) > 0.

Lemma 11. Let w be an eligible contract for principal i, then

Vi (w) = min
F∈F

EF [yi − wi (y)]

Moreover if F ∈ argmin
F∈F

EF [yi − wi (y)] then EF [w1 (y) + w2 (y)] = VA (w|A0).

Proof. We first establish the first claim: Let w be an eligible contract scheme then: Vi (w) =

min
F∈F

EF [yi − wi (y)].

It must be that: Vi (w) ≥ min
F∈F

EF [yi − wi (y)]. Using the definition of Vi (w):

Vi (w) = inf
A⊇A0

min
(F,c)∈A?(w|A)

EF [yi − wi (y)] ≥ min
F∈F

EF [yi − wi (y)]

Where the inequality follows because if (F, c) ∈ A? (w|A) then F ∈ F .

To prove equality suppose that

Vi (w) > min
F∈F

EF [yi − wi (y)]

and let F
′ ∈ argmin

F∈F
EF [yi − wi (y)]. We have that EF ′ [w1 (y) + w2 (y)] ≥ VA (w|A0).

There are two options:
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1. F
′

does not place full support on the values of y that maximize w1 + w2.

Let ŷ ∈ argmax {w1 (y) + w2 (y)}, and F̂ = δŷ be a distribution with full mass on ŷ.

Let ε ∈ [0, 1] and Fε = (1− ε)F ′ + εF̂ .

Note then that for all ε there exists a ξε > 0 such that: EFε [w1 (y) + w2 (y)] − ξε >
VA (w|A0).

Define and Aε = A0 ∪ {(Fε, ξε)}. It follows that the unique optimal action of the

agent in Aξ is (Fε, ξε). Then:

Vi (w) ≤ Vi (w|Aε) = EFε [yi − wi (y)] = (1− ε)EF ′ [yi − wi] + εEF̂ [yi − wi]

This condition holds for all ε > 0. Letting ε→ 0 we arrive at a contradiction:

Vi (w) ≤ EF ′ [yi − wi] = argmin
F∈F

EF [yi − wi]

2. F
′

places full support on the values of y that maximize w1 + w2. There are still two

possible cases:

(a) EF ′ [w1 + w2] > VA (w|A0). Then there exists ξ > 0 and a technology A′ =

A0 ∪
{(
F
′
, ξ
)}

such that
(
F
′
, ξ
)

is the unique optimal action for the agent in

A′ . Then we arrive at a contradiction:

Vi (w) ≤ Vi
(
w|A′

)
= EF ′ [yi − wi] = argmin

F∈F
EF [yi − wi]

(b) EF ′ [w1 + w2] = VA (w|A0). This implies VA (w|A0) = max
y∈Y
{w1 + w2} which

can only be satisfied if F
′

is available in A0 at zero cost. By the positive

cost assumption this implies that F = δ(0,0) and that w1 (0, 0) + w2 (0, 0) =

max
y∈Y
{w1 (y) + w2 (y)}. In this case the unique optimal action for the agent under

any technology is (δ0, 0), so the value of the principal is Vi (w) = −wi (0, 0) ≤ 0,

where the inequality follows from limited liability. This contradicts eligibility.

Now we establish the second claim: Let w be an eligible contract scheme for principal i. If

F ∈ argmin
F∈F

EF [yi − wi] then EF [w1 + w2] = VA (w|A0).
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To prove this, let F
′ ∈ argmin

F∈F
EF [yi − wi (y)] and suppose for a contradiction that

EF [w1 (y) + w2 (y)] > VA (w|A0)

.

Let ε ∈ [0, 1] and define Fε = (1− ε)F ′ + εδ0.

For low enough ε it holds that:

EFε [w1 (y) + w2 (y)] > VA (w|A0)

Then there exists ξε > 0 such that

{(Fε, ξε)} = A? (w|Aε)

where

Aε = A0 ∪ {(Fε, ξε)}

The payoff to the principal is then:

Vi (w|Aε) = (1− ε)EF [yi − wi (y)] + ε (−wi (0, 0)) ≤ (1− ε)EF [yi − wi (y)]

= (1− ε)Vi (w) < Vi (w)

This gives a contradiction.

Given the known action set A0, the next lemma links the principal’s guaranteed payoff

to the agent’s payoff in an affine way. This link allows the principal to increase her own

guaranteed payoff by controlling the payoff given to the agent. Lemma 12 also offers a

relation between any contract wi, the outcome yi and the contract wj offered by the other

principal.

The affine link between the agent’s payoff and the principal’s payoff is a crucial element

in providing incentives for the agent. Given the partial knowledge over the agent’s set

of actions the principals’ optimal strategy is to tie their payoff to that of the agent, thus

aligning the agent’s objectives with their own. This is the same mechanism at the heart

of the optimal contracts in Hurwicz and Shapiro (1978) and Carroll (2015), and will be

crucial in establishing the optimality of affine (LRS) contracts in the setting we develop.
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Lemma 12. Let w be an eligible contract. There exits k, λ with λ > 0 such that for all

y ∈ Y :

wi (y) ≤ 1

1 + λ
yi −

λ

1 + λ
wj (y)− 1

1 + λ
k (A.15)

Vi (w) = k + λVA (w|A0) (A.16)

Proof. This lemma is proven with the following two propositions. In both propositions

define:

Let S ⊆ R2 be the convex hull of all points (w1 (y) + w2 (y) , yi − wi (y)) for y ∈ Y .

Let T ⊆ R2 be the set of all pairs (u, v) such that u > VA (w|A0) and v < Vi (w).

Proposition 9. S ∩ T = ∅.

Proof. Let (u, v) ∈ T then let F ∈ argmin
F∈F

EF [yi − wi (y)], by definition of T and Lemma

(11):

u > VA (w|A0) = EF [w1 (y) + w2 (y)]

v < Vi (w) = EF [yi − wi (y)]

now, suppose for a contradiction that (u, v) ∈ S, then there exists F
′ ∈ ∆ (Y ) such that:

u = EF ′ [w1 (y) + w2 (y)] and v = EF ′ [yi − wi (y)]

Note that F
′

guarantees a payoff to the agent larger than VA (w|A0) so F
′ ∈ F but:

EF [yi − wi (y)] > EF ′ [yi − wi (y)]

which contradicts minimality of F . Then S ∩ T = ∅

Since S ∩ T = ∅ we can apply the separating hyperplane theorem which implies that there

exist constants (k, λ, µ) such that (λ, µ) 6= (0, 0) and:

k + λu− µv ≤ 0 (u, v) ∈ S (A.17)

k + λu− µv ≥ 0 (u, v) ∈ T (A.18)

Let F ? ∈ argmin
F∈F

EF [yi − wi (y)].
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Note that the pair (EF ? [w1 (y) + w2 (y)] , EF ? [yi − wi (y)]) lies in the closures of both S

and T . Then:

k + λEF ? [w1 (y) + w2 (y)]− µEF ? [yi − wi (y)] = 0 (A.19)

It is left to show that λ, µ > 0.

Note that (u, v) ∈ T admits u arbitrarily high and v arbitrarily low. So for (A.18) to hold

it must be that λ ≥ 0 and µ ≥ 0. There are then two cases to rule out:

1. Suppose µ = 0, then it must be that λ > 0 (since (λ, µ) 6= (0, 0)). From (A.17) and

(A.18)

u ≤ −k
λ

(u, v) ∈ S and u ≥ −k
λ

(u, v) ∈ T

So max
y∈Y

[w1 (y) + w2 (y)] = max
u∈S

u ≤ − k
λ ≤ inf

u∈T
u = VA (w|A0). Which implies:

max
y∈Y

[w1 (y) + w2 (y)] = VA (w|A0)

This can only happen if the agent has an action (F, 0) ∈ A0 such that

EF [w1 (y) + w2 (y)] = max [w1 (y) + w2 (y)]

the only action in A0 with zero cost is (δ0, 0), so

max (w1 (y) + w2 (y)) = w1 (0, 0) + w2 (0, 0)

. This is also the unique action in A? (w|A0) so:

Vi (w) ≤ Vi (w|A0) = −wi (0, 0) ≤ 0

This violates eligibility (Vi (w) > 0).

2. Suppose λ = 0, then it must be that µ > 0 (since (λ, µ) 6= (0, 0)). From (A.17) and

(A.18)

v ≥ k

µ
(u, v) ∈ S and v ≤ k

µ
(u, v) ∈ T

So min
y∈Y

[yi − wi (y)] = min
v∈S

v ≥ k
µ ≥ sup

v∈T
v = Vi (w).

But we know that min
y∈Y

[yi − wi (y)] ≤ 0 − w (0, 0) ≤ 0 this implies Vi (w) ≤ 0 which

contradicts eligibility. So λ > 0.
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Note that since λ and µ are greater than zero µ can be normalized to 1, giving from (A.17):

k + λ (wi (y) + wj (y))− (yi − wi (y)) ≤ 0

And from (A.19):

Vi (w) = k + λVA (w|A0)

The following two lemmas (13 and 14) use the relation between the principals’ contracts

derived in Lemma 12 to construct an alternative contract that dominates the original one,

in the sense that it weakly increases principal i’s guaranteed payoff. Since the relation

obtained in (A.15) is affine in output and the other principal’s contract, the alternative

contract constructed below will inherit that form. These contracts form the LRS contracts

defined in (A.43).

Lemma 13. Let w = (wi, wj) with wi satisfying (A.15) and (A.16). Then the contract

w
′
i (y) =

1

1 + λ
yi −

λ

1 + λ
wj (y)− 1

1 + λ
k (A.20)

satisfies Vi

(
w
′
i, wj

)
≥ Vi (w).

Proof. Clearly w
′
i satisfies (A.15) as an equality, rearrange it as:(

yi − w
′
i (y)

)
= k + λ

(
w
′
i (y) + wj (y)

)
then let (F, c) ∈ A? (w|A) for any A ⊇ A0 and taking expectations one gets:

EF

[
yi − w

′
i (y)

]
≥ k + λVA

((
w
′
i, wj

)
|A0

)
(A.21)

This applies to any (F, c) under any technology, so this guarantees a payoff for principal i.

Note that w
′
i (y) ≥ wi (y) for all y ∈ Y so the agent is always at least as well off under w

′
i.

Then from equations (A.16) and (A.21):

EF

[
yi − w

′
i (y)

]
≥ k + λVA (w|A0) = Vi (w)

Since this holds for all (F, c) ∈ A? (w|A), by Lemma 11:

Vi

((
w
′
i, wj

)
|A
)

= min
F∈A?(w|A)

EF

[
yi − w

′
i (y)

]
≥ Vi (w)
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Then Vi (w) is a lower bound for Vi

((
w
′
i, wj

)
|A
)

under arbitrary A ⊇ A0.

Thus Vi

(
w
′
i, wj

)
≥ Vi (w) by definition.

Lemma 14. Let
(
w
′
i, wj

)
with w

′
i an affine contract on yi and wj, there is an affine

contract w
′′
i that does at least as well as w

′
i for principal i: Vi

(
w
′′
i , wj

)
≥ Vi

(
w
′
i, wj

)
, with

strict inequality unless min
y
w
′
i (y) = 0.

Proof. Note that by limited liability min
y
w
′
i (y) ≥ 0 let β = min

y
w
′
i (y) and w

′′
i (y) =

w
′
i (y) − β which is a valid contract

(
w
′′
i (y) ≥ 0

)
and is affine on yi and wj . Note

that A?
((
w
′′
i , wj

)
|A
)

= A?
((
w
′
i, wj

)
|A
)

for all A ⊇ A0. This implies Vi

(
w
′′
i , wj

)
≥

Vi

(
w
′
i, wj

)
, with strict inequality if β > 0.

The last two lemmas (15 and 16) establish the form of the principal’s payoffs under LRS

contracts and the existence of an optimal contract in that class.

Lemma 15. For w an eligible contract scheme such that wi is an LRS contract given wj

satisfying limited liability with equality. wi is characterized by α ∈ (0, 1]. Then:

Vi (w) =
1− α
α

VA (w|A0) + k = max
(F,c)∈A0

(
(1− α)EF [yi + wj (y)]− 1− α

α
c

)
+ αk (A.22)

This also holds for α = 0 if we interpret the term 1−α
α c as 0 when c = 0 and ∞ for c > 0.

Proof. Let F ∈ argmin
F∈F

EF [yi − wi (y)] by Lemma 11 one has:

Vi (w) = EF [yi − wi (y)] =
1− α
α

EF [w1 (y) + w2 (y)] + k =
1− α
α

VA (w|A0) + k

The second equality follows by replacing VA (w|A0).

Lemma 16. In the class of LRS contracts that satisfy limited liability with equality there

exists an optimal one for principal i.

Proof. From Lemma 15 we can express Vi (w) directly as a function of α as in (A.22). Recall

that k (α) = min
y

[
yi − 1−α

α wj (y)
]

is function is continuous in α for a given wj . Moreover,

The function (1− α)EF [yi + wj (y)]− 1−α
α c is continuous in α, thus its maximum over A0

is continuous as well. Since the RHS in equation (A.22) is continuous in α it achieves a

maximum in [0, 1]. This α gives the optimal guarantee over all contracts of this class.
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Theorem 2. For any contract wj there exists LRS contract wi such that wi ∈ BRi (wj),

where min
y
w̄i (y) = 0. That is, there is always a LRS contract that is robust for principal

i.

Proof. By Lemma 16 among the class of LRS contracts there is an optimal one, call it w?i .

Suppose there is an arbitrary contract wi that does strictly better than w?i : Vi (wi, wj) >

Vi (w?i , wj). Note that Vi (w?i , wj) ≥ Vi (yi, wj) ≥ 0. Hence it must be the case that wi is

eligible, i.e. Vi (wi,wj) > 0. Then by Lemmas 12, 13 and 14 there exists an LRS contract

w
′
i such that Vi

(
w
′
i, wj

)
≥ Vi (wi, wj). This contradicts w?i being optimal among LRS

contracts.

Corollary 2. If A0 has the full support property then any robust contract for principal i

is a LRS contract, or she cannot guarantee a positive payoff.

Proof. Suppose wi is an optimal contract for principal i and define w
′
i as in Lemma 13.

Note that w
′
i satisfies:

EF

[
yi − w

′
i (y)

]
≥ k + λVA

((
w
′
i, wj

)
|A0

)
Since wi satisfies Equation (A.16) from Lemma 12 we can replace for k to obtain:

EF

[
yi − w

′
i (y)

]
≥ Vp (w) + λ

(
VA

((
w
′
i, wj

)
|A0

)
− VA ((wi, wj) |A0)

)
(A.23)

Because of full support, since w
′
i (y) ≥ wi (y) pointwise and any action under A0 gives a

(weakly) higher payoff to the agent under w
′
i than under wi, it follows that

VA

((
w
′
i, wj

)
|A0

)
≥ VA ((wi, wj) |A0)

with strict inequality unless w
′
i is identical to wi.

Since the equation (A.23) holds for all F we get: Vi

(
w
′
i, wj

)
≥ Vi (w), with strict inequality

when wi is not identical to w
′
i. Then wi = w

′
i, or else optimality would be contradicted.

Moreover, wi has to be a LRS contract, or else by Lemma 14 there is a LRS contract that

strictly improves on wi.
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A.3.1 Existence of Equilibrium - Examples

In the examples below we consider different specifications for f . In all cases we consider

the problem of principal i when wj = (1− θj) yj + θj (yi − yi). As shown in Lemma

11 of Appendix A.2 in the main text, the corresponding LRS contract for principal i is:

wi = (1− θi) yi + θi
(
yj − yj

)
, where θi = (1− α) (1− θj).

Example 3. Constant marginal cost (linear cost)

To better understand the determinants of the share θ we consider the case where the agent’s

production technology exhibits constant marginal cost of production in total output. Note

that if two actions have the same expected total output the agent will always pick the

one with lower cost. Below we assume that this lowest cost is a constant fraction of total

expected surplus. We formalize this notion in the following assumption

Assumption 7. For any x ∈ [0, ȳ1 + ȳ2] there exists (F, c) ∈ A0 such that EF [y1 + y2] = x

and

γx = min {c| (F, c) ∈ A0 and EF [y1 + y2] = x}

where γ < 1 is the marginal cost.

Note that this allows to replace the maximization of the agent over (F, c) ∈ A0 with one

over the expected value of total output x ∈ [0, ȳ1 + ȳ2]. Under Assumption 7 we can

characterize the equilibrium strategies of the principals and the agent.

Proposition 10. Under Assumption 7 if principal j plays the contract wj (y) = (1− θj) yj+
θj (yi − yi) for some θj ∈ [0, 1], then principal i best responds with a contract of the form

wi (y) = (1− θi) yi + θi
(
yj − yj

)
with:

θi =

(1− θj)−
√

(1− θj) γ y1+y2yi
if θj < 1− γ y1+y2yi

0 otw
(A.24)

Moreover, an equilibrium exists and in equilibrium , if the true technology is A0, the agent

chooses (F, c) such that EF [y1 + y2] = y1 + y2 and c = γ (y1 + y2).
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Proof. Under Assumption 7 the cost function has the form: f (x) = γx for some constant

γ > 0. The value of the agent and his optimal action are:

VA (w|A0) = max
x∈X
{ ((1− θ1 − θ2)− γ)x}+ θ1y2 + θ2y1 x? =


x if 1− θ1 − θ2 > γ

0 if 1− θ1 − θ2 < γ

X if 1− θ1 − θ2 = γ

Then the best response of principal i is characterized by:

BRi (wj) = argmax
θi∈[0,1−θj ]


θi

(
x− yj

)
− θi

1−θ1−θ2γx if 1− θ1 − θ2 > γ

−θiyj if 1− θ1 − θ2 ≤ γ


The function in the first case is strictly concave, its critical value if x > y is given by:

θ?i = (1− θj)−

√
(1− θj) γx
x− yj

This is an interior solution if:

1− θj − θ?i > γ and 0 ≤ θ?i ≤ (1− θj)

these conditions are satisfied if and only if:
x−yj
x > γ

1−θj . This condition amounts to there

being enough expected output to pay for the cost of the agent and the fees. The best

response of principal i is:

BRi (θj) =


1− θj −

√
(1−θj)γx
x−yj

if (1− θj)
(
x− yj

)
> γx

0 otw

The best response of each principal is then single valued. As in Lemma 11 of Appendix

A.2 in the main text, this implies the existence of an equilibrium.

Recall that when θi = 0 principal i’s guaranteed payoff, Vi, is zero as well. If this is the case

in equilibrium we say that the principal has been driven out of the game. Effectively the

principal renounces her output by setting wi (y) = yi. In particular, we see from equation

(A.24) that if yi < γ (y1 + y2) the principal cannot guarantee herself a positive payoff,
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Figure A.1: Constant Marginal Cost of Production - Share of total output - by principal
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regardless of θj . For a principal to be able to profit in the game, she must be able to cover

the (total) production cost of the agent. Clearly, when wi (y) = yi, the principal can always

opt for the zero contract (wi (y) = 0). This is another way to opt out of the game since

the principal cannot guarantee herself a positive payoff without incentivizing the agent.

The figures show the equilibrium of the game in LRS contracts under Assumption 7. We

let ȳ1 = x and ȳ2 = 1 − x. Figures A.1 and A.3 vary x and fix γ = 1/4. Figures A.2 and

A.4 vary γ and fix x = 1/2.

We can now analyze the equilibrium contracts and payoffs for different values (y1, y2) and

γ. This allows for determining the effect of changes in competitor’s size (Figures A.1, A.3)

and productivity (Figures A.2, A.4) on the equilibrium outcomes.

The share of output that a principal can appropriate for herself decreases as her competitor
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Figure A.2: Constant Marginal Cost of Production - Share of total output - marginal cost
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Figure A.3: Constant Marginal Cost of Production - Guaranteed Surplus - by principal
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Figure A.4: Constant Marginal Cost of Production - Guaranteed Surplus - Marginal cost
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becomes larger. Eventually if a principal is too small relative to her competition she is

driven driven out of the game and cannot guarantee any positive payoffs. When a principal

is relatively large she opts for increasing her share of total output, this lowers the share of

the agent but increases his fees. As the productivity of the agent goes down (γ increases),

higher incentives are needed to induce him to produce. This is achieved by reducing the

share of output going to the principals. Eventually both principals end up giving up their

output in equilibrium. In this case, competition drives their guaranteed payoffs to zero.

Example 4. Constant cost

Assume now that the agent is indifferent between actions, so that f (x) = γ, with γ > 0,

if x > 0, and f (0) = 0. This function is not convex. Since the agent’s payoff under LRS

contracts is increasing in expected total output, hence the agent will choose to induce the

maximum expected total output, as long as it covers the cost γ.

x? (θ1, θ2) =

x if (1− θ1 − θ2)x > γ

0 otw

Then the best response of principal i is characterized by:

BRi (wj) = argmax
θi∈[0,1−θj ]


θi

(
x− yj

)
− θi

1−θ1−θ2γ if (1− θ1 − θ2)x > γ

−θiyj if (1− θ1 − θ2)x ≤ γ


The function in the first case is strictly concave, its critical value if x > y is given by:

θ?i = (1− θj)−

√
(1− θj) γ
x− yj

This is an interior solution if:

(1− θj − θ?i )x > γ and 0 ≤ θ?i ≤ (1− θj)

these conditions are satisfied if and only if: x − yj >
γ

1−θj . This condition amounts to

there being enough expected output to pay for the cost of the agent and the fees. The best

response of principal i is:

BRi (θj) =


1− θj −

√
(1−θj)γ
x−yj

if (1− θj)
(
x− yj

)
> γ

0 otw
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The best response of each principal is then single valued. As in Lemma 11 of Appendix

A.2 in the main text, this implies the existence of an equilibrium.

A.4 Multiple Principals

The model considered in the main text can be extended to multiple principals. Our main

result is preserved in this case. Letting N be the number of principals we have:

BRi (w−i) = argmax
wi

Vi (wi, w−i) (A.25)

where w−i (y) = (w1 (y) , . . . , wi−1 (y) , wi+1 (y) , . . . , wN (y)).

Theorem 3. For any set of contracts w−i, there exists an LRS contract wi such that

wi ∈ BRi (wj), where min
y∈Y

{
w̄i (y) +

∑
j 6=i
wj (y)

}
= 0 or min

y∈Y
{w̄i (y)} = 0 according to

limited liability. That is, there is always a LRS contract that is robust for principal i.

If A0 satisfies the full support property, then any robust contract for principal i is a LRS

contract or principal i cannot guarantee a payoff higher than
∑
j 6=i
wj (0, 0) or 0, according to

limited liability.

Proof. The proof is virtually identical to that of Theorem 1 in the main text. Lemmas 45

to 38 follow by defining the aggregate competing contract wc (y) =
∑
j 6=i
wj (y).

We can characterize them as in Propositions 1 and 3 of the main text, depending on the

limited liability restrictions:

Proposition 11. Let w be a LRS contract scheme satisfying limited liability with equality.

There exist (θ1, ..., θN ) and (k1, . . . , kN ) such that the for all i ∈ {1, 2, . . . , N} contracts

are:

wi (y) = (1− θi) yi − θi
∑
j 6=i

yj − ki Liminted Liability (A.26)

wi (y) = (1− θi) yi + θi
∑
j 6=i

(
yj − yj

)
Individual Limited Liability (A.27)
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where
N∑
i=1
ki = 0 when limited liability is placed over the aggregate payment to the agent. θi

is the share of total output and total guaranteed surplus going to principal i in equilibrium.

Guaranteed surplus is computed relative to the payoffs under inaction.

Proof. By Theorem 3 there is a LRS contract in the best response of each principal. Then

consider contracts of the following form for all i:

wi (y) = yi −
1− αi
αi

n∑
j=1

wj (y)− ki

Letting βi = 1−αi
αi

we obtain the following expression for the sum of contracts:

n∑
i=1

wi (y) =

∑
(yi − ki)

1 +
∑
βi

When limited liability is placed over the aggregate payment to the agent this implies
N∑
i=1
ki = 0. Replacing into the contract we get:

wi (y) = yi −
βi

1 +
∑
βi

∑
(yi − ki)− ki

When limited liability applies to each individual contract it must be that minwi (y) = 0,

the minimum is achieved when yi = 0 and yj = yj for j 6= i, then one can solve for ki:

ki = − βi
1 +

∑
βi

∑
j 6=i

yj +
βi

1 +
∑
βi

(∑
ki

)
Replacing one last time we get the equilibrium wage and defining θi = βi

1+
∑
βi

:

wi (y) = (1− θi) yi + θi
∑
j 6=i

(
yj − yj

)
(A.28)

From Lemma 37 we can establish that the share of total guaranteed surplus going to

principal i in equilibrium is equal to θi. To see this note from equilibrium contract, equation

(A.28), that principal i’s payoff given inaction is − βi
1+

∑
βi

∑
j 6=i yj and that total surplus

given inaction is by construction zero. Then we have:

θi =

Vi (w) + βi
1+

∑
βi

∑
j 6=i
yj∑

i
Vi (w) + VA (w|A0)

=

β1VA (w|A0) + k1 + βi
1+

∑
βi

∑
j 6=i
yj

(1 +
∑
βi)VA (w|A0) +

∑
ki

=
βi

1 +
∑
βi
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In order to further characterize the equilibrium we first present the best response in LRS

contracts of principal i, given LRS contracts played by the other principals, characterized

by θ−i:

BRi (θ−i) = argmax
θi∈[0,1]

 max
(F,c)∈A0

EF
θi

∑ yi −
∑
j 6=i

yj

− c

1−
∑
θi


 (A.29)

From the FOC of the principal’s problem we can obtain an expression for θi given θ−i and

a pair (F, c):

(1 + θi) Γi =
1

1−
∑
θi

where Γi =
EF [

∑
yi]−

∑
j 6=i yj

c and (F, c) are maximizers of VA (w). As before Γi > 0 it is

necessary for the principal to have an interior solution. This implies that A0 must be such

that there exists a pair (F, c) that satisfies:

EF [yi] >
∑
j 6=i

EF
[
yj − yj

]
This condition is stronger than non-triviality and increasingly difficult to satisfy as the

number of principals increases.

To compute an interior equilibrium where a subset I of nI principals have θi ∈ (0, 1), and

for all principal k /∈ I θi = 0, note that the equilibrium condition above induces a linear

system of nI − 1 equations, holding i ∈ I fixed these equations are of the form:

(1− θj) =
Γi
Γj

(1− θi)

for j ∈ I. Then we get:θ. For this to be an interior equilibrium θi ∈ (0, 1) it is needed that:

1

Γ2
i

+
1

Γi
(nI − 1) ≤

(∑
i∈I

1

Γi

)

To get a sense of this expression it is instructive to consider the case of a symmetric solution,

then Γi = Γj and the expression is reduced to Γi ≥ 1.
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A.5 Double Limited Liability

As mentioned before our equilibrium contracts require principals to pay a fee to the agent.

This fee depends on the maximum potential payment that other principals can make, thus,

in equilibrium, principals offer potentially large payments to the agent. These payments

are motivated by competition among the principals. This form of competition can lead

to solutions where both principals force each other to up their payments and reduce their

final payoff. This has two practical implications: first, principals can have negative ex

post payoffs; second, one principal can try to drive out the other by increasing her own

payments to the agent. Both these implications can be dealt with by introducing limited

liability on the principals. We show now that the core of our results does not rely on the

principals to offer unbounded rewards to the agent.

Imposing limited liability on the principals amounts to restricting contracts so that yi −
wi (y) ≥ 0 for all y ∈ Y . Under this extra assumption only the definition of LRS contracts

changes, adding a cap to the amount that the principal can pay to the agent.

Linear Revenue Sharing contracts (Principal’s limited liability): A contract wi

is a LRS contract for principal i if, given a competing contract wj , it ties the principal’s

ex-post payoff linearly to the total revenue of the agent. That is, for some α ∈ (0, 1] and

k ∈ R:

yi − wi (y) = min ((1− α) (yi + wj (y))− αk, 0) (A.30)

The relation of the value of the principal and the agent (equation (7) in the paper) and

Theorem 1 in the paper remain true as shown in detail below.

Consider a model with two principals i ∈ {1, 2} and one agent A, all risk neutral. The

payoff space for the principals is Y1 × Y2 ⊂ R × R, it is assumed that Yi is compact and

that min {Yi} = 0. The agent has access to a technology A ⊂ ∆ (Y ) × R+.An action is

therefore a pair (F, c), where F is a probability distribution over payoffs y = (y1, y2) and

c ≥ 0 is the cost of the action. ∆ (Y ) is endowed with the weak-∗ topology and ∆ (Y )×R
with the natural product topology.

The game has two stages. First both principals offer a contract to the agent; this is done

simultaneously and in a non-cooperative fashion. Second, the agent chooses an action in

its technology set A. Finally payments realize. The principals do not know A, but they

both know a subset A0 of A. For now we assume that both principals know the same
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A0, but this assumption is not necessary for any of the results below. Only three other

assumptions are placed on the set A0:

Non-triviality: ∃(F,c)∈A0
EF [y1 + y2] − c > 0. This guarantees that the principals can

benefit from hiring the agent.

Positive Cost: If (F, c) ∈ A ⊇ A0 and c = 0 then F = δ0, where δ0 is the degenerate

distribution on y = (0, 0). This implies that generating output requires some cost for any

action in A0.

Full support: A technology A has the full support property if for all (F, c) ∈ A such that

(F, c) 6= (δ0, 0), supp (F ) = Y1 × Y2.
Contracts: A contract by principal i is a continuous function wi : Y1 × Y2 → [0,∞).

In what follows let wi = wi (y1, y2). Contracts must also satisfy limited liability

on the principals’ side, i.e. yi − wi ≥ 0. A contract scheme is a vector of functions

w = (w1, w2).

Given a contract scheme and a technology A, the agent will choose from the set of actions

that maximize its expected payoff. The set of optimal actions and the value they give are:

A? (w|A) = argmax
(F,c)∈A

EF [w1 + w2]− c VA (w|A) = max
(F,c)∈A

EF [w1 + w2]− c (A.31)

We define the value of a principal given a contract scheme w is given by the minimum

payoff guarantee offered by the contract:

Vi (w) = inf
A⊇A0

Vi (w|A) (A.32)

where Vi (w|A) is the value for a given technology A that is is given by:

Vi (w|A) = min
(F,c)∈A?(w|A)

EF [yi − wi] (A.33)

We restrict our attention to contracts that are eligible to a principal in the sense that they

guarantee more that the trivial payoff 0. Formally:

Eligibility: A contract w is eligible for principal i if: Vi (w) > 0.

Finally we can define the best response of principal i to a contract wj offered by principal

j as:

BRi (wj) = argmax
wi

Vi (wi, wj) (A.34)
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The following proposition relates the expected payments to the agent under any technology

with its value under A0.

Proposition 12. Let (F, c) ∈ A? (w|A).For A ⊇ A0, it holds that:

EF [w1 (y) + w2 (y)] ≥ VA (w|A0)

Moreover, if (F, c) ∈ A? (w|A) then F ∈ F where:

F = {F ∈ ∆ (Y ) |EF [w1 + w2] ≥ VA (w|A0)}

Proof. To see the first inequality let (F, c) ∈ A? (w|A) for A ⊇ A0:

EF [w1 (y) + w2 (y)] ≥ EF [w1 (y) + w2 (y)]− c ≥ VA (w|A) ≥ VA (w|A0)

Then F ∈ F .

Lemma 17 characterizes the principal’s payoff for a given contract scheme using the set

F (defined in the proposition above). Note that F only depends on the contract and the

known set of actions A0. In this way we replace the complexity of the definition of Vi (w)

in (A.32) with an object that depends only on known elements. The following results are

valid for any scheme w that is eligible for principal i.

Lemma 17. Let w be an eligible contract for principal i, then Vi (w) = min
F∈F

EF [yi − wi].
Moreover if F ∈ argmin

F∈F
EF [yi − wi] then EF [w1 + w2] = VA (w|A0).

Proof. We first establish the first claim: Let w be an eligible contract scheme then: Vi (w) =

min
F∈F

EF [yi − wi (y)].

It must be that: Vi (w) ≥ min
F∈F

EF [yi − wi (y)]. Using the definition of Vi (w):

Vi (w) = inf
A⊇A0

min
(F,c)∈A?(w|A)

EF [yi − wi (y)] ≥ min
F∈F

EF [yi − wi (y)]

Where the inequality follows because if (F, c) ∈ A? (w|A) then F ∈ F .
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To prove equality suppose that

Vi (w) > min
F∈F

EF [yi − wi (y)]

and let F
′ ∈ argmin

F∈F
EF [yi − wi (y)]. We have that EF ′ [w1 (y) + w2 (y)] ≥ VA (w|A0).

There are two options:

1. F
′

does not place full support on the values of y that maximize w1 + w2.

Let ŷ ∈ argmax {w1 (y) + w2 (y)}, and F̂ = δŷ be a distribution with full mass on ŷ.

Let ε ∈ [0, 1] and Fε = (1− ε)F ′ + εF̂ .

Note then that for all ε there exists a ξε > 0 such that: EFε [w1 (y) + w2 (y)] − ξε >
VA (w|A0).

Define and Aε = A0 ∪ {(Fε, ξε)}. It follows that the unique optimal action of the

agent in Aξ is (Fε, ξε). Then:

Vi (w) ≤ Vi (w|Aε) = EFε [yi − wi (y)] = (1− ε)EF ′ [yi − wi] + εEF̂ [yi − wi]

This condition holds for all ε > 0. Letting ε→ 0 we arrive at a contradiction:

Vi (w) ≤ EF ′ [yi − wi] = argmin
F∈F

EF [yi − wi]

2. F
′

places full support on the values of y that maximize w1 + w2. There are still two

possible cases:

(a) EF ′ [w1 + w2] > VA (w|A0). Then there exists ξ > 0 and a technology A′ =

A0 ∪
{(
F
′
, ξ
)}

such that
(
F
′
, ξ
)

is the unique optimal action for the agent in

A′ . Then we arrive at a contradiction:

Vi (w) ≤ Vi
(
w|A′

)
= EF ′ [yi − wi] = argmin

F∈F
EF [yi − wi]

(b) EF ′ [w1 + w2] = VA (w|A0). This implies VA (w|A0) = max
y∈Y
{w1 + w2} which

can only be satisfied if F
′

is available in A0 at zero cost. By the positive

cost assumption this implies that F = δ(0,0) and that w1 (0, 0) + w2 (0, 0) =

max
y∈Y
{w1 (y) + w2 (y)}. In this case the unique optimal action for the agent under

any technology is (δ0, 0), so the value of the principal is Vi (w) = −wi (0, 0) ≤ 0,

where the inequality follows from limited liability. This contradicts eligibility.
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Now we establish the second claim: Let w be an eligible contract scheme for principal i. If

F ∈ argmin
F∈F

EF [yi − wi] then EF [w1 + w2] = VA (w|A0).

To prove this, let F
′ ∈ argmin

F∈F
EF [yi − wi (y)] and suppose for a contradiction that

EF [w1 (y) + w2 (y)] > VA (w|A0)

.

Let ε ∈ [0, 1] and define Fε = (1− ε)F ′ + εδ0. For low enough ε it holds that:

EFε [w1 (y) + w2 (y)] > VA (w|A0)

Then there exists ξε > 0 such that {(Fε, ξε)} = A? (w|Aε) where Aε = A0 ∪ {(Fε, ξε)}. The

payoff to the principal is then:

Vi (w|Aε) = (1− ε)EF [yi − wi (y)] + ε (−wi (0, 0)) ≤ (1− ε)EF [yi − wi (y)] =

(1− ε)Vi (w) < Vi (w)

This gives a contradiction.

Given the known action set A0, the next lemma links the principal’s guaranteed payoff

to the agent’s payoff in an affine way. This link allows the principal to increase her own

guaranteed payoff by controlling the payoff given to the agent. Lemma 18 also offers a

relation between any contract wi, the outcome yi and the contract wj offered by the other

principal.

Lemma 18. Let w be an eligible contract. There exits k, λ with λ > 0 such that for all

y ∈ Y :

wi (y) ≤ 1

1 + λ
yi −

λ

1 + λ
wj (y)− 1

1 + λ
k (A.35)

Vi (w) = k + λVA (w|A0) (A.36)

Proof. This lemma is proven with the following two propositions. In both propositions

define:

Let S ⊆ R2 be the convex hull of all points (w1 (y) + w2 (y) , yi − wi (y)) for y ∈ Y .
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Let T ⊆ R2 be the set of all pairs (u, v) such that u > VA (w|A0) and v < Vi (w). Note T

is convex.

Proposition 13. S ∩ T = ∅.

Proof. Let (u, v) ∈ T then let F ∈ argmin
F∈F

EF [yi − wi], by definition of T and Lemma (17):

u > VA (w|A0) = EF [wi + wj ]

v < Vi (w) = EF [yi − wi]

now, suppose for a contradiction that (u, v) ∈ S, then there exists F
′ ∈ ∆ (Y ) such that:

u = EF ′ [wi + wj ]

v = EF ′ [yi − wi]

Note that F
′

guarantees a payoff to the agent larger than VA (w|A0) so F
′ ∈ F but:

EF [yi − wi] > EF ′ [yi − wi]

which contradicts minimality of F . Then S ∩ T = ∅
Since S ∩ T = ∅ we can apply the separating hyperplane theorem which implies that there

exist constants (k, λ, µ) such that (λ, µ) 6= (0, 0) and:

k + λu− µv ≤ 0 (u, v) ∈ S (A.37)

k + λu− µv ≥ 0 (u, v) ∈ T (A.38)

Let F ? ∈ argmin
F∈F

EF [yi − wi]. Note that the pair (EF ? [w1 + w2] , EF ? [yi − wi]) lies in the

closures of both S and T . Then:

k + λEF ? [w1 + w2]− µEF ? [yi − wi] = 0 (A.39)

It is left to show that λ, µ > 0.

Note that (u, v) ∈ T admits u arbitrarily high and v arbitrarily low. So for (A.38) to hold

it must be that λ ≥ 0 and µ ≥ 0. There are then two cases to rule out:
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1. Suppose µ = 0, then it must be that λ > 0 (since (λ, µ) 6= (0, 0)). Also from (A.37)

and (A.38)

u ≤ −k
λ

(u, v) ∈ S

u ≥ −k
λ

(u, v) ∈ T

So max
y∈Y

[w1 (y) + w2 (y)] = max
u∈S1

u ≤ − k
λ ≤ inf

u∈T1
u = VA (w|A0). Which implies:

max
y∈Y

[w1 (y) + w2 (y)] = VA (w|A0)

This can only happen if the agent has an action (F, 0) ∈ A0 such that

EF [w1 (y) + w2 (y)] = max [w1 (y) + w2 (y)]

the only action in A0 with zero cost is (δ0, 0), so

max (w1 (y) + w2 (y)) = w1 (0, 0) + w2 (0, 0)

This is also the unique action in A? (w|A0) so:

Vi (w) ≤ Vi (w|A0) = −wi (0, 0) ≤ 0

This violates eligibility (Vi (w) > 0).

(a) Suppose λ = 0, then it must be that µ > 0 (since (λ, µ) 6= (0, 0)). Also from

(A.37) and (A.38)

v ≥ k

µ
(u, v) ∈ S

v ≤ k

µ
(u, v) ∈ T

So min
y∈Y

[yi − wi (y)] = min
v∈S1

v ≥ k
µ ≥ sup

v∈T1
v = Vi (w). But we know that

min
y∈Y

[yi − wi (y)] ≤ 0− w (0, 0) ≤ 0

this implies Vi (w) ≤ 0 which contradicts eligibility. So λ > 0.
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Proof. Note that since λ and µ are greater than zero µ can be normalized to 1, giving from

(A.37):

k + λ (wi (y) + wj (y))− (yi − wi (y)) ≤ 0

And from (A.39):

Vi (w) = k + λVA (w|A0)

Corollary 3. Let w be an eligible contract of where

wi (y) = min

(
1

1 + λ
yi −

λ

1 + λ
wj (y)− 1

1 + λ
k, yi

)
with λ > 0 . Then

Vi (w) = k + λVA (w|A0) (A.40)

Proof. Let F ∗ ∈ argmin
F∈F

EF [yi − wi]. By Lemma 17we have that

k + λVA (w|A0)− Vi (w) = k + λEF ? [w1 + w2]− EF ? [yi − wi]

= k + (1 + λ)EF ∗ (wi) + λEF ∗ (wj)− EF ∗ (yi)

= k + (1 + λ)EF ∗

(
min

(
1

1 + λ
yi −

λ

1 + λ
wj (y)− 1

1 + λ
k, yi

))
+ λEF ∗ (wj)− EF ∗ (yi)

Suppose for a contradiction that F ∗ places some positive probability δ > 0 on a set Ȳ ⊂ Y
such that such that 1

1+λyi −
λ

1+λwj (y)− 1
1+λk > yi for y ∈ Y .

This implies that 0 >
λyi+λwj(y)+k

1+λ =⇒ −k
λ > yi + wj (y), where the RHS is the agents

payment if output is y.

Now consider ŷ ∈ Y for which 1
1+λ ŷi −

λ
1+λwj (ŷ) − 1

1+λk = ŷi. Then the agents payment

at ŷ is (computed in two ways)

ŷi + wj (ŷ) =
1

1 + λ
ŷi −

λ

1 + λ
wj (ŷ)− 1

1 + λ
k + wj (ŷ)

106



Rearranging we get that

λ

1 + λ
(ŷi + wj (ŷ)) = − 1

1 + λ
k

ŷi + wj (ŷ) = −k
λ
> yi + wj (y)

Also it must be the case that F ∗ puts positive probability on a ỹ ∈ Y for which the payoff

to principal i is positive (by eligibility).

Now consider F ′ that is the same as F ∗ but shifts all the weight δ in Y to ŷ. Then

EF ′ (wi + wj) > VA (w|A0).

Now consider F ′′ that is the same as F ′ but shifts a small but positive weight from ỹ to ŷ

such that we still have EF ′′ (wi + wj) ≥ VA (w|A0). Note that F ′′ ∈ F . But also the payoff

to principal i under F ′′ is worse than that under F ′ and F ∗ which violates the minimality

of F ∗.

Hence F ∗ places full support on y ∈ Y for which 1
1+λyi −

λ
1+λwj (y)− 1

1+λk ≤ yi. Then we

have

k + λVA (w|A0)− Vi (w) = k + λEF ? [w1 + w2]− EF ? [yi − wi]

= k + (1 + λ)EF ? [wi] + λEF ? [w2]− EF ? [yi]

= k + (1 + λ)EF ?

[
1

1 + λ
yi −

λ

1 + λ
wj (y)− 1

1 + λ
k

]
+ λEF ? [w2]− EF ? [yi]

= 0

Rearranging

Vi (w) = k + λVA (w|A0)

The following two lemmas (19 and 20) use the relation between the principals’ contracts

derived in Lemma 18 to construct an alternative contract that dominates the original one,

in the sense that it weakly increases principal i’s guaranteed payoff. Since the relation

obtained in (A.35) is affine in output and the other principal’s contract, the alternative

contract constructed below will inherit that form.
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Lemma 19. Let w = (wi, wj) with wi satisfying (A.35) and (A.36). Then the contract

w
′
i (y) =

1

1 + λ
yi −

λ

1 + λ
wj (y)− 1

1 + λ
k

satisfies Vi

(
w
′
i, wj

)
≥ Vi (w).

Proof. Clearly w
′
i ≤ 1

1+λyi −
λ

1+λwj (y)− 1
1+λk , rearrange it as:(

yi − w
′
i (y)

)
= k + λ

(
w
′
i (y) + wj (y)

)
then let (F, c) ∈ A? (w|A) for any A ⊇ A0 and taking expectations one gets:

EF

[
yi − w

′
i (y)

]
= k + λEF

[
w
′
i (y) + wj (y)

]
≥ k + λVA

((
w
′
i, wj

)
|A0

)
EF

[
yi − w

′
i (y)

]
≥ k + λVA

((
w
′
i, wj

)
|A0

)
(A.41)

This applies to any optimal (F, c) under any technology, so this guarantees a payoff for

principal i.

Note that w
′
i (y) ≥ wi (y) for all y ∈ Y so the agent is always at least as well off under w

′
i

and it doesn’t violate the agent’s limited liability . Then:

VA

((
w
′
i, wj

)
|A0

)
≥ VA (w|A0)

Joining with (A.41):

EF

[
yi − w

′
i (y)

]
≥ k + λVA (w|A0) = Vi (w)

Since this holds for all (F, c) ∈ A? (w|A):

Vi

((
w
′
i, wj

)
|A
)

= min
F∈A?(w|A)

EF

[
yi − w

′
i (y)

]
≥ Vi (w)

Finally:

Vi

(
w
′
i, wj

)
= inf
A⊇A0

Vi

((
w
′
i, wj

)
|A
)
≥ Vi (w)

Lemma 20. Let
(
w
′
i, wj

)
with w

′
i be the affine contract on yi and wj satisfying 19. There

is an affine contract w
′′
i that does at least as well as w

′
i for principal i: Vi

(
w
′′
i , wj

)
≥

Vi

(
w
′
i, wj

)
, with strict inequality unless min

y
w
′
i (y) = 0.
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Proof. Note that by limited liability min
y
w
′
i (y) ≥ 0 let β = min

y
w
′
i and w

′′
i (y) = w

′
i (y)− β

which is a valid contract
(
w
′′
i (y) ≥ 0

)
and is affine on yi and wj . Note that

A?
((
w
′′
i , wj

)
|A
)

= A?
((
w
′
i, wj

)
|A
)

for all A ⊇ A0 since subtracting a constant doesn’t change the agent’s incentives. This

implies Vi

(
w
′′
i , wj

)
≥ Vi

(
w
′
i, wj

)
, with strict inequality if β > 0.

Lemma 21. Let w
′′

=
(
w
′′
i , wj

)
be the contract in 20and wi satisfying (A.35) and (A.36).

Then the contract

wPLLi (y) = min
(
w
′′
i , yi

)
= min

(
1

1 + λ
yi −

λ

1 + λ
wj (y)− 1

1 + λ
k
′′
, yi

)
where k

′′
is such that min

y
w
′′
i (y) = 0 satisfies Vi

(
wPLLi , wj

)
≥ Vi (w).

Proof. First note that k
′′ ≥ k. Also note that

wPLLi (y) ≤ 1

1 + λ
yi −

λ

1 + λ
wj (y)− 1

1 + λ
k
′′

rearrange it as: (
yi − wPLLi (y)

)
≥ k′′ + λ

(
wPLLi (y) + wj (y)

)
then let (F, c) ∈ A? (w|A) for any A ⊇ A0 and taking expectations one gets:

EF
[
yi − wPLLi (y)

]
≥ k′′ + λEF

[
wPLLi (y) + wj (y)

]
≥ k′′ + λVA

((
wPLLi , wj

)
|A0

)
EF
[
yi − wPLLi (y)

]
≥ k + λVA

((
wPLLi , wj

)
|A0

)
+ (k

′′ − k)

= k + λVA

((
wPLLi +

(k
′′ − k)

λ
,wj

)
|A0

)
(A.42)
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This applies to any optimal (F, c) under any technology, so this guarantees a payoff for

principal i.

Note that

wPLLi +
(k
′′ − k)

λ
≥ min

(
w
′′
i , yi

)
+

(k
′′ − k)

λ

= min

(
1

1 + λ
yi −

λ

1 + λ
wj (y)− 1

1 + λ
k
′′
, yi

)
+

(k
′′ − k)

λ

> min

(
1

1 + λ
yi −

λ

1 + λ
wj (y)− 1

1 + λ
k
′′
, yi

)
+

(k
′′ − k)

1 + λ

= min

(
1

1 + λ
yi −

λ

1 + λ
wj (y)− 1

1 + λ
k
′′

+
(k
′′ − k)

1 + λ
, yi +

(k
′′ − k)

1 + λ

)

= min

(
1

1 + λ
yi −

λ

1 + λ
wj (y)− 1

1 + λ
k, yi +

(k
′′ − k)

1 + λ

)

= min

(
w
′
i, yi +

(k
′′ − k)

1 + λ

)
≥ wi

for all y ∈ Y because w
′
i ≥ wi and by since wi satisfies principals limited liability then

wi ≤ yi ≤ yi + (k
′′−k)
1+λ .

So the agent is always at least as well off under wPLLi + (k
′′−k)
λ as he was under wi. Then:

VA

(((
wPLLi +

(k
′′ − k)

λ
,wj

)
, wj

)
|A0

)
≥ VA (w|A0)

Joining with (A.42):

EF
[
yi − wPLLi (y)

]
≥ k + λVA (w|A0) = Vi (w)

Since this holds for all (F, c) ∈ A? (w|A):

Vi
((
wPLLi , wj

)
|A
)

= min
F∈A?(w|A)

EF
[
yi − wPLLi (y)

]
≥ Vi (w)

Finally:

Vi
(
wPLLi , wj

)
= inf
A⊇A0

Vi
((
wPLLi , wj

)
|A
)
≥ Vi (w)

110



Definition. Given a contract wj , a contract wi is an LRS contract if there exists α ∈ [0, 1]

and k such that:

wi (y) = min (αyi − (1− α)wj (y)− αk, yi) (A.43)

and min
y

(αyi − (1− α)wj (y)− αk) = 0.

For a given wj let Wi (wj) be the set of LRS contracts for principal i.

The last two lemmas (22 and 23) establish the form of the principal’s payoffs under LRS

contracts and the existence of an optimal contract in that class.

Lemma 22. Let w be an eligible LRS contract scheme characterized by α ∈ (0, 1], then:

Vi (w) =
1− α
α

VA (w|A0) + k

This also holds for α = 0 if we interpret the term 1−α
α c as 0 when c = 0 and ∞ for c > 0.

Proof. This follows immediately by 3 by setting α = 1
1+λ .

Lemma 23. In the class of LRS contracts there exists an optimal one for principal i.

Proof. First note that

VA (w|A0) = max
(F,c)∈A0

EF [wi (y) + wj (y)− c]

= max
(F,c)∈A0

EF [min (αyi − (1− α)wj (y)− αk, yi) + wj (y)− c]

is continuous in α.

The function min (αyi − (1− α)wj (y)− αk, yi) + wj (y) − c is continuous in α and so by

some functional analysis result it should be that

EF [min (αyi − (1− α)wj (y)− αk, yi) + wj (y)− c]

is also continuous in α , thus its maximum over A0 is continuous as well.

Recall that:

k (α) = min
y

[
yi −

1− α
α

wj (y)

]
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This function is continuous in α for a given continuous wj .

This implies that
1− α
α

VA (w|A0) + k

is continuous in α hence it achieves a maximum in [0, 1]. This α gives the optimal guarantee

over all contracts of this class.

Now let α∗ ∈ arg maxα∈[0,1]
1−α
α VA (w|A0) + k. If the LRS contract characterized by α∗

is eligible then this contract is optimal in the class of LRS contracts. If not, then all

LRS contracts provide a non-positive (and non-negative by PLL) guarantee for principal

i. Hence any LRS contract provides zero guarantee and thus is optimal .

Theorem 4. For any contract wj there exists α ∈ [0, 1] such that:

wi (y) = min (αyi − (1− α)wj (y)− αk (α) , yi) wi (wj) ∈ BRi (wj)

where k (α) is such that min
y

(αyi − (1− α)wj (y)− αk (α)) = 0. That is, there is a LRS

contract in the best response of principal i.

Proof. By Lemma 23 among the class of LRS contracts there is an optimal one, call it w?i .

Suppose there is an arbitrary contract wi that does strictly better than w?i : Vi (wi, wj) >

Vi (w?i , wj). Note that Vi (w?i , wj) ≥ Vi (yi, wj) ≥ 0. Hence it must be the case that wi is

eligible, i.e. Vi (wi,wj) > 0. Then by Lemmas 18, 19 , 20, and (21) there exists a LRS

contract w
′
i such that Vi

(
w
′
i, wj

)
≥ Vi (wi, wj). This contradicts w?i being optimal among

the LRS contracts.

Corollary 4. SupposeA0 has the full support property. For any given wj for which there

exists an eligible contract for principal i then, BRi (wj) ⊆ Wi (wj), that is, any optimal

contract for principal i is LRS.

Proof. Suppose wi is an optimal contract for principal i.

Define wPLLi as in Lemma 21. Note that from equation A.42 for any (F, c) ∈ A? (w|A) for

any A ⊇ A0 it satisfies:

EF
[
yi − wPLLi (y)

]
≥ k + λVA

((
wPLLi +

(k
′′ − k)

λ
,wj

)
|A0

)
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Also note that k′′ − k ≥ 0 as in the proof of Lemma21 Note that wi satisfies Equation

(A.36) from Lemma 18:

Vi (w) = k + λVA ((wi, wj) |A0)

Replacing for k:

EF
[
yi − wPLLi (y)

]
≥ Vi (w)+λ

(
VA

((
wPLLi +

(k
′′ − k)

λ
,wj

)
|A0

)
− VA ((wi, wj) |A0)

)

Because of full support, since wPLLi + (k
′′−k)
λ ≥ wi (y) point wise and any action under

A0 gives a (weakly) higher payoff to the agent under wPLLi + (k
′′−k)
λ than under wi, it fol-

lows that VA

((
wPLLi + (k

′′−k)
λ , wj

)
|A0

)
≥ VA ((wi, wj) |A0), with strict inequality unless

wPLLi + (k
′′−k)
λ is identical to wi.

Since the equation above holds for all optimal F under any technology it must be true

that:

Vi
(
wPLLi , wj

)
≥ Vi (w) + λ

(
VA

((
wPLLi +

(k
′′ − k)

λ
,wj

)
|A0

)
− VA ((wi, wj) |A0)

)

> Vi (w)

where the strict inequality follows when wi is not identical to wPLLi + (k
′′−k)
λ .

Then wi = wPLLi + (k
′′−k)
λ (or else optimality would be contradicted).

It must be that wi is LRS (i.e (k
′′−k)
λ = 0) otherwise, wPLLi gives the principal a strictly

greater guarantee compared to wPLLi + (k
′′−k)
λ as the incentives of the agent are not changed

and in wPLLi the limited liability for the agent binds.

Any optimal contract is LRS.
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A.6 Private common agency

The following proposition relates the expected payments to the agent under any technology

with its value under A0.

Proposition 14. Let (F, c) ∈ A? (w|A) for A ⊇ A0, it holds that:

EF [w1 (y1) + w2 (y2)] ≥ VA (w|A0)

Moreover, if (F, c) ∈ A? (w|A) then F ∈ F where:

F = {F ∈ ∆ (Y ) |EF [w1 + w2] ≥ VA (w|A0)}

Proof. To see the first inequality let (F, c) ∈ A? (w|A) for A ⊇ A0:

EF [w1 (y1) + w2 (y2)] ≥ EF [w1 (y1) + w2 (y2)]− c = VA (w|A) ≥ VA (w|A0)

Then F ∈ F .

In this section we characterize the behavior of a principal facing extreme uncertainty on the

set of actions of the agent. The principal acts taken as given the other principal’s action.

We proceed in a similar fashion as Carroll (2015) to establish the following lemmas.

Lemma 24 characterizes the principal’s payoff for a given contract scheme using the set F
(defined in the proposition above). Note that F only depends only on the contract and the

known set of actions A0. In this way we replace the complexity of the definition of Vi (w)

in Equation (2) in the paper with an object that depends only on known elements. The

following results are valid for any scheme w eligible for principal i.

Lemma 24. Let w be an eligible contract for principal i, then Vi (w) = min
F∈F

EF [yi − wi].
Moreover if F ∈ argmin

F∈F
EF [yi − wi] then EF [w1 + w2] = VA (w|A0).

Proof. The proof is identical to that of Lemma (45).

Lemma 25 links the principal’s payoff guarantee to the agent’s payoff given the known

action set A0 in an affine way. This link allows the principal to increase its own guaranteed

payoff by controlling the payoff given to the agent. The lemma also offers a relation between

any contract wi, the outcome yi and the contract wj offered by the other principal.
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The affine link between the agent’s payoff and the principal’s payoff is a crucial element

in providing incentives for the agent. Given the lack of knowledge over the agent’s set

of actions the principals’ optimal strategy is to tie their payoff to that of the agent, thus

aligning the agent’s objectives with their own. This is the same mechanism that lies at

the center of Hurwicz and Shapiro (1978) and Carroll (2015) optimal contracts, and will

be crucial to establish the optimality of affine contracts in the setting we develop.

Lemma 25. Let w be an eligible contract. There exits k, λ with λ > 0 such that for all

y ∈ Y :

wi (yi) ≤
1

1 + λ
yi −

λ

1 + λ
wj −

1

1 + λ
k (A.44)

Vi (w) = k + λVA (w|A0) (A.45)

where wj = max
yj∈Yj

wj (yj).

Proof. This lemma is proven with the following two propositions. In both propositions

define:

Let S ⊆ R2 be the convex hull of all points (wi (yi) + wj , yi − wi (yi)) for yi ∈ Yi and

wj = max
yj∈Yj

wj (yj).

Let T ⊆ R2 be the set of all pairs (u, v) such that u > VA (w|A0) and v < Vi (w). Note T

is convex.

Proposition 15. S ∩ T = ∅.

Proof. Let (u, v) ∈ T then let F ∈ argmin
F∈F

EF [yi − wi], by definition of T and Lemma (24):

u > VA (w|A0) = EF [wi (yi) + wj (yj)]

v < Vi (w) = EF [yi − wi (yi)]

now, suppose for a contradiction that (u, v) ∈ S, then there exists F
′ ∈ ∆ (Y ) such that:

u = EF ′ [wi (yi)] + wj

v = EF ′ [yi − wi (yi)]

Without loss F
′

is such that EF ′ [wj (yj)] = wj .
2Then:

u = EF ′ [wi (yi) + wj (yj)] > VA (w|A0)

2This uses our assumption on the output space being of the form Y = Y1 × Y2.
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That is, F
′

guarantees a payoff to the agent larger than VA (w|A0) so F
′ ∈ F but:

EF [yi − wi] > EF ′ [yi − wi]

which contradicts minimality of F . Then S ∩ T = ∅

Since S ∩ T = ∅ we can apply the separating hyperplane theorem which implies that there

exist constants (k, λ, µ) such that (λ, µ) 6= (0, 0) and:

k + λu− µv ≤ 0 (u, v) ∈ S (A.46)

k + λu− µv ≥ 0 (u, v) ∈ T (A.47)

Let F ? ∈ argmin
F∈F

EF [yi − wi (yi)] such that EF ? [wj (yj)] = wj . This F ? always exists since

the objective function EF [yi − wi (yi)] only depends on yi, moreover, recall that

F = {F ∈ ∆ (Y ) |EF [w1 (y1) + w2 (y2)] ≥ VA (w|A0)}

Then if F ∈ F the distribution F ? with the same marginal over yi and full probability over

wj also belongs to F .

Note that the pair (EF ? [wi (yi) + wj (yj)] , EF ? [yi − wi (yi)]) lies in the closures of both S

and T . Then:

k + λEF ? [w1 + w2]− µEF ? [yi − wi] = 0 (A.48)

It is left to show that λ, µ > 0.

Note that (u, v) ∈ T admits u arbitrarily high and v arbitrarily low. So for (A.47) to hold

it must be that λ ≥ 0 and µ ≥ 0. There are then two cases to rule out:

1. Suppose µ = 0, then it must be that λ > 0 (since (λ, µ) 6= (0, 0)). Also from (A.46)

and (A.47)

u ≤ −k
λ

(u, v) ∈ S

u ≥ −k
λ

(u, v) ∈ T

So max
yi∈Yi

[wi (yi) + wj ] = max
u∈S

u ≤ − k
λ ≤ inf

u∈T
u = VA (w|A0). Which implies:

max
yi∈Yi

[wi (yi) + wj ] = VA (w|A0)
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This can only happen if the agent has an action (F, 0) ∈ A0 such that

EF [w1 (y1) + w2 (y2)] = w1 + w2

By the positive cost assumption, the only action in A0 with zero cost is (δ0, 0), so

w1 + w2 = w1 (0) + w2 (0). This is also the unique action in A? (w|A0) so:

Vi (w) ≤ Vi (w|A0) = −wi (0) ≤ 0

This violates eligibility (Vi (w) > 0).

2. Suppose λ = 0, then it must be that µ > 0 (since (λ, µ) 6= (0, 0)). Also from (A.46)

and (A.47)

v ≥ k

µ
(u, v) ∈ S

v ≤ k

µ
(u, v) ∈ T

So min
yi∈Yi

[yi − wi (yi)] = min
v∈S

v ≥ k
µ ≥ sup

v∈T
v = Vi (w).

But we know that min
yi∈Yi

[yi − wi (yi)] ≤ 0 − w (0) ≤ 0 this implies Vi (w) ≤ 0 which

contradicts eligibility. So λ > 0.

Note that since λ and µ are greater than zero µ can be normalized to 1, giving from (A.46):

k + λ (wi (yi) + wj)− (yi − wi (yi)) ≤ 0

And from (A.48) and Lemma (24):

Vi (w) = k + λVA (w|A0)

The following two lemmas (26 and 27) use the relation between the principals’ contracts

derived in the previous lemma to construct an alternative contract that dominates the

original one in the sense that it guarantees a higher or equal payoff to principal i. Since

the relation obtained in (A.44) is affine on output and the other principal’s contract the

alternative contract constructed below will inherit that form.
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Lemma 26. Let w = (wi, wj) with wi satisfying (A.44) and (A.45). Then the contract

w
′
i (yi) =

1

1 + λ
yi −

λ

1 + λ
wj −

1

1 + λ
k

satisfies Vi

(
w
′
i, wj

)
≥ Vi (w).

Proof. Clearly w
′
i satisfies (A.44) as an equality, rearrange it as:(

yi − w
′
i (yi)

)
= k + λ

(
w
′
i (yi) + wj

)
then let (F, c) ∈ A? (w|A) for any A ⊇ A0 and taking expectations one gets:

EF

[
yi − w

′
i (yi)

]
= k + λEF

[
w
′
i (yi) + wj

]
≥ k + λEF

[
w
′
i (yi) + wj (yi)

]
≥ k + λVA

((
w
′
i, wj

)
|A0

)

EF

[
yi − w

′
i (yi)

]
≥ k + λVA

((
w
′
i, wj

)
|A0

)
(A.49)

This applies to any (F, c) under any technology, so this guarantees a payoff for principal i.

Note that w
′
i (yi) ≥ wi (yi) for all yi ∈ Yi so the agent is always at least as well off under

w
′
i and it doesn’t violate the agent’s limited liability. Then:

VA

((
w
′
i, wj

)
|A0

)
≥ VA (w|A0)

Joining with (A.49):

EF

[
yi − w

′
i (yi)

]
≥ k + λVA (w|A0) = Vi (w)

Since this holds for all (F, c) ∈ A? (w|A):

Vi

((
w
′
i, wj

)
|A
)

= min
F∈A?(w|A)

EF

[
yi − w

′
i (yi)

]
≥ Vi (w)

Finally:

Vi

(
w
′
i, wj

)
= inf
A⊇A0

Vi

((
w
′
i, wj

)
|A
)
≥ Vi (w)
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Lemma 27. Let
(
w
′
i, wj

)
with w

′
i an affine contract on yi, there is an affine contract

w
′′
i that does at lest as well as w

′
i for principal i: Vi

(
w
′′
i , wj

)
≥ Vi

(
w
′
i, wj

)
, with strict

inequality unless min
yi
w
′
i (yi) = 0.

Proof. Note that by limited liability β = min
yi
w
′
i (yi) ≥ 0. Let w

′′
i (y) = w

′
i (y) − β

which is a valid contract
(
w
′′
i (y) ≥ 0

)
and is affine on yi. Note that A?

((
w
′′
i , wj

)
|A
)

=

A?
((
w
′
i, wj

)
|A
)

for all A ⊇ A0 since subtracting a constant doesn’t change the agent’s

incentives. This implies Vi

(
w
′′
i , wj

)
≥ Vi

(
w
′
i, wj

)
, with strict inequality if β > 0.

The previous two lemmas show affine contracts weakly dominate any eligible contract. We

will show that contracts that are linear in the principal’s output improve on them.

Linear contracts: A contract wi is linear, given a contract wj , if:

wi (yi) = αyi

where α ∈ [0, 1]. Note that min
y

wi (y) = 0 and that wi does not depend on wj .

Let Wi be the set of all linear contracts of principal i. Note that any eligible contract

(wi, wj) can be (weakly) improved for principal i by a contract of the form
(
w
′
i, wj

)
where

w
′
i ∈ Wi.

The last two lemmas (28 and 29) establish the form of the principal’s payoffs under linear

contracts and the existence of an optimal contract in that class.

Lemma 28. Let F ∈ argmin
F∈F

EF [yi − wi] for w an eligible contract scheme such that wi ∈

Wi is characterized by α ∈ (0, 1], then:

Vi (w) =
1− α
α

VA (w|A0)−
1− α
α

wj = max
(F,c)∈A0

(
1− α
α

(EF [αiyi − (wj − wj (y))]− c)
)

This also holds for α = 0 if we interpret the term 1−α
α c as 0 when c = 0 and ∞ for c > 0.

Proof. Let F ∈ argmin
F∈F

EF [yi − wi (yi)] such that EF [wj (yj)] = wj , where

wj = max
yj∈Yj

wj (yj)

By Lemma 24 one has:

Vi (w) = EF [yi − wi] EF [w1 + w2] = VA (w|A0)
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Then

Vi (w) =
1− α
α

EF [wi (yi) + wj (yj)]−
1− α
α

EF [wj (yj)] =
1− α
α

VA (w|A0)−
1− α
α

wj

Moreover:

1− α
α

VA (w|A0)−
1− α
α

wj =
1− α
α

(
max

(F,c)∈A0

EF [wi (yi) + wj (yj)− c]
)
− 1− α

α
wj

=
1− α
α

(
max

(F,c)∈A0

EF [αyi + wj (yj)− c]
)
− 1− α

α
wj

= max
(F,c)∈A0

(
1− α
α

(EF [αiyi − (wj − wj (y))]− c)
)

Lemma 29. In the class of linear contracts wi ∈ Wi there exists an optimal one for

principal i given contract wj.

Proof. From lemma (28) one gets that principal i’s payoff is given by:

Vi (w) = max
(F,c)∈A0

(
1− α
α

(EF [αiyi − (wj − wj (y))]− c)
)

The function 1−α
α (EF [αiyi − (wj − wj (y))]− c) is continuous in α, moreover it is also

continuous in (F, c) (since wj is a continuous function) and A0 is a compact set (constant

with respect to α). Then Vi is continuous in α as well (by the Theorem of maximum).

Since the RHS is continuous in α it achieves a maximum in [0, 1]. This α gives the optimal

guarantee over all contracts of this class.

The lemmas above allow us to characterize the behavior of a principal, in particular they

imply that it is always a best response to offer a linear contract, as shown in Theorem 5.

The result can be strengthened under the full support property.

Theorem 5. For any contract wj there exists α ∈ [0, 1] such that:

wi (yi) = αyi wi ∈ BRi (wj)

That is, there is a linear contract in the best response of principal i to any contract wj.
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Proof. By Lemma 29 among the class of linear contracts there is an optimal one, call it

w?i . Suppose there is an arbitrary contract wi that does strictly better than w?i :

Vi (wi, wj) > Vi (w?i , wj)

By Lemmas 25, 26 and 27 there exists a linear contract w
′
i such that

Vi

(
w
′
i, wj

)
≥ Vi (wi, wj)

This contradicts w?i being optimal among the linear contracts.

Corollary 5. If A0 has the full support property then, for any wj, BRi (wj) ⊆ Wi, that is,

any optimal contract for principal i is linear.

Proof. Suppose wi is an optimal contract for principal i.

• Define w
′
i as in Lemma 26. w

′
i satisfies:

EF

[
yi − w

′
i (yi)

]
≥ k + λVA

((
w
′
i, wj

)
|A0

)
Note that wi satisfies Equation (A.45) from Lemma 25:

Vi (w) = k + λVA ((wi, wj) |A0)

Replacing for k:

EF

[
yi − w

′
i (yi)

]
≥ Vi (w) + λ

(
VA

((
w
′
i, wj

)
|A0

)
− VA ((wi, wj) |A0)

)
• Because of full support, since w

′
i (yi) ≥ wi (yi) pointwise and any action under A0

gives a (weakly) higher payoff to the agent under w
′
i than under wi, it follows that

VA

((
w
′
i, wj

)
|A0

)
≥ VA ((wi, wj) |A0), with strict inequality unless w

′
i is identical to

wi.

• Since the equation above holds for all F it must be true that:

Vi

(
w
′
i, wj

)
≥ Vi (w) + λ

(
VA

((
w
′
i, wj

)
|A0

)
− VA ((wi, wj) |A0)

)
> Vi (w)

where the strict inequality follows when wi is not identical to w
′
i.
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• Then wi = w
′
i (or else optimality would be contradicted). Then wi is linear in yi.

• It must be that wi is linear, or else by Lemma 27 there is a linear contract that

strictly improves wi.

• Any optimal contract is linear.
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A.7 Collusion

To prove this we first obtain versions of Lemmas 45 and 46 for the case of collusion. The

results we obtain allow us to apply Carroll (2015)’s Theorem 1 to our collusion environment.

We begin by proving the following proposition relating the expected payments to the agent

under any technology with its value under A0.

Proposition 16. Let (F, c) ∈ A? (w|A) for A ⊇ A0, it holds that:

EF [w (y)] ≥ VA (w|A0)

Moreover, A? (w|A) ⊆ F where:

F = {F ∈ ∆ (Y ) |EF [w (y)] ≥ VA (w|A0)}

Proof. To see the first inequality let (F, c) ∈ A? (w|A) for A ⊇ A0:

EF [w (y)] ≥ EF [w (y)]− c ≥ VA (w|A) ≥ VA (w|A0)

Then A? (w|A) ⊆ F follows from the definition of F .

Now we prove Lemmas 30 and 31 that will allow us to characterize the optimal contracts

under collusion.

Lemma 30. Let w be an eligible contract then:

VP (w) = min
F
EF [y1 + y2 − w (y)] where F is s.t. EF [w (y)] ≥ VA (w|A0)

moreover if F ∈ argmin
F∈F

EF [y1 + y2 − w (y)] then EF [w (y)] = VA (w|A0).

Proof. The proof of this is virtually identical to that of Lemma 45.

Lemma 31. Let w be an eligible contract. There exits k, λ with λ > 0 such that for all

y ∈ Y :

w (y) ≤ 1

1 + λ
(y1 + y2)−

1

1 + λ
k (A.50)

VP (w) = k + λVA (w|A0) (A.51)

Proof. The proof of this is virtually identical to that of Lemma 46.
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With this we can use the framework developed in Carroll (2015) to obtain:

Theorem 6. Under collusion there exists a contract that is linear on the sum of payoffs

that maximizes VP .

w (y) = αc (y1 + y2)

Proof. This follows from Lemmas (30) and (31) along with Lemmas 2,4,5 and 6 in Carroll

(2015), using the same argument as in his main theorem and replacing his y for y1+y2.

Corollary 6. If A0 has the full support property then all optimal contracts are of the form:

w (y) = αc (y1 + y2) where: αc =

√
c?

EF ? [y1 + y2]

for (F ?, c?) ∈ argmax
(F,c)∈A0

[√
EF [y1 + y2]−

√
c
]2

. The payoff of the principals is:

VP (w) =
[√

EF ? [y1 + y2]−
√
c?
]2

Proof. Just as in Carroll (2015).
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A.8 Lower bound on costs

The model allows for large amounts of output produced for free. The distribution that

provides the worst case guarantee is one with zero cost. To rule this out we suppose that

the principal knows a lower bound on the cost of producing any given level of expected

output. In this section we prove that LRS contracts are a best response to LRS contracts

when allowing for a lower bound on costs.

Let b : R → R+ be a convex function satisfying b (0) = 0. A technology is a compact set

A ⊂ ∆ (Y )×R+ such that for any (F, c) ∈ A we have that c ≥ b (EF [y1 + y2]). This holds

also for any (F, c) ∈ A0 with a strict inequality (i.e. c > b (EF (y)) if (F, c) ∈ A0) This

is similar to the positive cost assumption when there was no lower bound on costs. Now

suppose that for all Vi (w) is still the infimum of Vi (w|A) over all technologies A ⊃ A0.

We furthermore assume that A0 satisfies the full support property.

The following proposition relates the expected payments to the agent under any technology

with its value under A0.

Proposition 17. Let (F, c) ∈ A? (w|A). For A ⊇ A0, it holds that:

EF [w1 (y) + w2 (y)] ≥ VA (w|A0) + b (EF [y1 + y2])

Moreover, if (F, c) ∈ A? (w|A) then F ∈ F where:

F = {F ∈ ∆ (Y ) |EF [w1 (y) + w2 (y)] ≥ VA (w|A0) + b (EF [y1 + y2])}

Proof. To see the first inequality let (F, c) ∈ A? (w|A) for A ⊇ A0:

EF [w1 (y) + w2 (y)]− b (EF [y1 + y2]) ≥ EF [w1 (y) + w2 (y)]− c ≥ VA (w|A) ≥ VA (w|A0)

where the first inequality holds since c ≥ b (EF [y1 + y2]). Then F ∈ F .

The following results are valid for any scheme w that provides positive guarantees for

principal i.

We formally define them as follows:

Eligibility: A contract w is eligible for principal i if: Vi (w) > 0.
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Lemma 32. Let w be an eligible contract for principal i, then

Vi (w) = min
F∈F

EF [yi − wi (y)]

.

Moreover if F ∈ argmin
F∈F

EF [yi − wi (y)] then

EF [w1 (y) + w2 (y)] = VA (w|A0) + b (EF [y1 + y2])

.

Proof. The proof is broken into the following two propositions.

Proposition 18. Let w be an eligible contract then: Vi (w) = min
F∈F

EF [yi − wi (y)]

Proof. First note that it must be that: Vi (w) ≥ min
F∈F

EF [yi − wi (y)]. Using the definition

of Vi (w):

Vi (w) = inf
A⊇A0

min
(F,c)∈A?(w|A)

EF [yi − wi (y)] ≥ min
F∈F

EF [yi − wi (y)]

Where the inequality follows because if (F, c) ∈ A? (w|A) then F ∈ F .

Now we can establish equality. Suppose not, then it must be that:

Vi (w) > min
F∈F

EF [yi − wi (y)]

Let F ∈ argmin
F∈F

EF [yi − wi (y)].

We have that EF [w1 (y) + w2 (y)] ≥ VA (w|A0) + b (EF [y1 + y2]). Then consider the

technology A′ = A0 ∪ {(F, b (EF [y1 + y2]))}. Then we have that (F, b (EF [y1 + y2])) ∈
A?
(
w|A′

)
, which implies that

Vi (w) ≤ Vi
(
w|A′

)
= min

(F,c)∈A?(w|A′)
EF [yi − wi (y)] ≤ min

F∈F
EF [yi − wi] .

Proposition 19. Let w be an eligible contract for principal i. If F ∈ argmin
F∈F

EF [yi − wi (y)]

then EF [w1 (y) + w2 (y)] = VA (w|A0) + b (EF [y1 + y2]).
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Proof. To prove this, let F ∈ argmin
F∈F

EF [yi − wi] and suppose for a contradiction that

EF [w1 (y) + w2 (y)] > VA (w|A0) + b (EF [y1 + y2]).

Let ε ∈ [0, 1] and consider Fε = (1− ε)F + εδ(0,0) and Aε = A0 ∪
{(
Fε, b

(
EF ′ (y1 + y2)

))}
.

It follows that
{(
Fε, b

(
EF ′ (y1 + y2)

))}
= A? (w|Aε) for low enough ε since the payoff to

the agent is strictly greater choosing Fε at a cost of b
(
EF ′ (y1 + y2)

)
, than choosing any

(F, c) ∈ A0. Note that by convexity b (EFε (y1 + y2)) ≤ (1− ε) b (EF [y1 + y2]) + εb (0).

The payoff to the principal is then:

Vi

(
w|A′ε

)
= (1− ε)EF [yi − wi (y)]− εwi (0, 0) < EF [yi − wi (y)] = Vi (w) ≤ Vi

(
w|A′ε

)
which is a contradiction with the definition of Vi (w). The strict inequality follows from

EF [yi − wi (y)] > 0 by eligibility and wi (0, 0) ≥ 0 by the agent’s limited liability.

Joining the two propositions the proof of the lemma is completed.

Now suppose that principal j offers a contract of the form: wj (y) = (1− θj) yj+θj (ȳi − yi).
And consider wi : Y → R+ so that (w1, w2) is an eligible contract scheme for principal i.

Furthermore suppose that there does not exist θi ∈ [0, 1− θj ] and k such that wi (y1, y2) =

(1− θi) yi + θi (ȳj − yj) + k. Our objective is to show that in this case there exist an

alternative contract w
′
i that dominates wi, where w

′
i (y) =

(
1− θ′i

)
yi + θ

′
i (ȳj − yj) for

some θ
′
i ∈ [0, 1− θj ].

The same separation argument as in the main theorem will follow. However the separation

is done in outcome space and not in payoff space.

Define

t (x) = max {b (x) + VA (w|A0) , (1− θj)x+ θj ȳi − Vi (w)}

Clearly t (x) is convex.

Now let S ∈ R2 be the convex hull of pairs (y1 + y2, wi (y1, y2) + wj (y1, y2)) for all (y1, y2) ∈
Y , and let T ∈ R2 be the set of all pairs (x, z) such that x lies in the convex hull of points

y1 + y2, and z > t (x)3. Both of these sets are convex4.

3Formally T =
{

(x, z) ∈ R2|x ∈ [minY {y1 + y2} ,maxY {y1 + y2}] ∧ z > t (x)
}

.
4The first one is a convex hull, so it is convex, the second one is the intersection of the upper contour

set of a convex function (a convex set) with two half spaces (convex sets), so it is convex as well.
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We claim that S and T are disjoint. If not then there exists F ∈ ∆Y such that

EF [wi (y1, y2) + wj (y1, y2)] > t (EF [y1 + y2])

In particular we have that

EF [wi (y1, y2) + wj (y1, y2)] > b (EF [y1 + y2]) + VA (w|A0)

Also we have that

EF [wi (y1, y2) + wj (y1, y2)] > (1− θj)EF [y1 + y2] + θj ȳi − Vi (w)

Replacing by wj (y) = (1− θj) yj + θj (ȳi − yi) the second inequality becomes:

Vi (w) > EF [yi − wi (y1, y2)]

From Lemma 32 we know that Vi (w) = min
F∈F

EF [yi − wi (y1, y2)], but from the first inequal-

ity we know that F ∈ F , this is a contradiction.

Then by the separating hyperplane theorem. There exists λ and µ and k with (λ, µ) 6= (0, 0)

such that

λ (y1 + y2) + µz ≤ k ∀ ((y1 + y2) , z) ∈ S

λ (y1 + y2) + µz ≥ k ∀ ((y1 + y2) , z) ∈ T (A.52)

The second inequality implies that µ ≥ 0. Now suppose µ = 0 then it must be that λ = 0,

which is a contradiction. This implies that µ > 0.

Now

λ (y1 + y2) + µz ≤ k ∀ ((y1 + y2) , z) ∈ S

implies that

wi (y1, y2) + wj (y1, y2) ≤
k − λ (y1 + y2)

µ

Now consider the following wage

w
′
i (y1, y2) =

k − λ (y1 + y2)

µ
− wj (y1, y2)

= θ
′
iyi +

(
1− θ′i

) (
yj − yj

)
+ k

′
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where θ
′
i = θj − λ

µ and k
′

= k
µ − θj ȳi−

(
1− θ′i

)
yj . Note that w

′
i ≥ wi pointwise, and recall

that wi 6= w
′
i by assumption. Now we need to check that Vi

(
w
′
i

)
≥ Vi (wi).

Consider any technology A ⊃ A0. Then we have that VA

(
w
′ |A
)
≥ VA

(
w
′ |A0

)
>

VA (w|A0). The last inequality follows because A0 has full support and w
′
i (y) > wi (y)

for some y ∈ Y .

Now let (F, c) ∈ A such that:

(F, c) = arg min
(F,c)∈A?(w′ |A)

EF

[
yi − w

′
i (y)

]
Then Vi

(
w
′ |A
)

= EF

[
yi − w

′
i (y)

]
. Now we have that from equation A.52:

t (EF [y1 + y2]) ≥ EF
(
k − λ (y1 + y2)

µ

)
= EF

[
w
′
1 (y) + w2 (y)

]
= VA

(
w
′ |A
)

+ c

> VA (w|A0) + c

≥ VA (w|A0) + b (EF [y1 + y2])

Since the inequality is strict then we have that t (EF [y1 + y2]) = (1− θj)EF [y1 + y2] +

θj ȳi − Vi (w)

Then we have that

Vi

(
w
′ |A
)

= EF

[
yi − w

′
i (y)

]
= EF [yi + wj (y)]− EF

[
w
′
i (y) + wj (y)

]
= (1− θj)EF [y1 + y2] + θj ȳi − EF

[
w
′
i (y) + wj (y)

]
= t (EF [y1 + y2]) + Vi (w)− EF

[
w
′
i (y) + wj (y)

]
≥ Vi (w)

Since this holds for all A ⊃ A0. We get that Vi

(
w
′
)
≥ Vi (w). So any contract wi (as

described above) can be dominated by a contract of the form:

w
′
i (y1, y2) = θ

′
iyi +

(
1− θ′i

) (
yj − yj

)
+ k

′
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This contract can be improved upon by dropping the constant k
′
. Doing so makes it satisfy

limited liability with equality (when yi = 0 and yj = yj), it also does not affect the problem

of the agent, and it weakly increase the value of the principal (strictly if k′ > 0).
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Appendix B

Applications of Robustness and

Linearity in Common Agency

B.1 Taxing Multinational Companies

B.1.1 Caring only about domestic profits

The following proposition relates the expected payments to the agent under any technology

with its value under A0.

Proposition 20. Let (F, c) ∈ A? (t1, t2|A). For A ⊇ A0, it holds that:

EF [y1 − t1 (y) + y2 − t2 (y)] ≥ VA (t1, t2|A0)

Moreover, if (F, c) ∈ A? (t1, t2|A) then F ∈ F where:

F = {F ∈ ∆ (Y ) |EF [y1 − t1 (y) + y2 − t2 (y)] ≥ VA (t1, t2|A0)}

Proof. To see the first inequality let (F, c) ∈ A? (t1, t2|A) for A ⊇ A0:

EF [y1 − t1 (y) + y2 − t2 (y)] ≥ EF [y1 − t1 (y) + y2 − t2 (y)]− c ≥ VA (t|A) ≥ VA (t|A0)

Then F ∈ F .

Lemma 45 characterizes the principal’s payoff for a given contract scheme using the set

F (defined in the proposition above). Note that F only depends on the contract and the
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known set of actions A0. In this way we replace the complexity of the definition of Vi (t)

with an object that depends only on known elements. The following results are valid for

any scheme t that provides positive guarantees for principal i

We formally define them as follows:

Eligibility: A contract t is eligible for principal i if: Vi (t) > 0.

Lemma 33. Let t be an eligible contract for principal i, then Vi (t) = min
F∈F

EF [ρyi + ti].

Moreover if F ∈ argmin
F∈F

EF [ρyi + ti (y)] then EF [y1 − t1 (y) + y2 − t2 (y)] = VA (w|A0).

Proof. The proof is almost identical to that of 11 with the appropriate modification of the

payoff function.

Given the known action set A0, the next lemma links the principal’s guaranteed payoff

to the agent’s payoff in an affine way. This link allows the principal to increase her own

guaranteed payoff by controlling the payoff given to the agent. Lemma 46 also offers a

relation between any contract ti, the outcome (yi, yj) and the contract tj offered by the

other principal.

Lemma 34. Let t be an eligible contract. There exits k, λ with λ > 0 such that for all

y ∈ Y :

ti (y) ≥ λ− ρ
1 + λ

yi +
λ

1 + λ
yj −

λ

1 + λ
tj (y) +

1

1 + λ
k (B.1)

Vi (t) = k + λVA (t|A0) (B.2)

Proof. Let S ⊆ R2 be the convex hull of all points (y1 − t1 (y) + y2 − t2 (y) , ρyi + ti) for

y ∈ Y .

Let T ⊆ R2 be the set of all pairs (u, v) such that u > VA (t|A0) and v < Vi (t). The proof

follows the steps of Lemma 12

The following two lemmas (35 and 36) use the relation between the principals’ contracts

derived in Lemma 46 to construct an alternative contract that dominates the original one,

in the sense that it weakly increases principal i’s guaranteed payoff. Since the relation

obtained in (B.5) is affine in output and the other principal’s contract, the alternative

contract constructed below will inherit that form.
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Lemma 35. Let t = (ti, tj) with ti satisfying (B.5) and (B.6). Then the contract

t
′
i (y) =

λ− ρ
1 + λ

yi +
λ

1 + λ
yj −

λ

1 + λ
tj (y) +

1

1 + λ
k

satisfies Vi

(
t
′
i, tj

)
≥ Vi (t).

Proof. The proof is identical to that of Lemma 13.

Lemma 36. Let
(
t
′
i, tj

)
with t

′
i an affine contract on yi , yj and tj, there is an affine

contract t
′′
i that does at least as well as t

′
i for principal i: Vi

(
t
′′
i , tj

)
≥ Vi

(
t
′
i, tj

)
, with

strict inequality unless max
y
t
′
i (y) = yi.

Proof. The proof is identical to that of Lemma 14.

The last two lemmas (37 and 38) establish the form of the principal’s payoffs under the

worldwide taxes and the existence of an optimal contract in that class.

Lemma 37. For t an eligible contract scheme such that ti ∈ Wi (tj) is characterized by

α ∈ (0, 1], then:

Vi (t) =
1− α
α

VA (t|A0)+k = max
(F,c)∈A0

(
(1− α)EF [yi − ti (y) + yj − tj (y)]− 1− α

α
c

)
+αk

This also holds for α = 0 if we interpret the term 1−α
α c as 0 when c = 0 and ∞ for c > 0.

Proof. The proof is identical to that of Lemma 15.

Lemma 38. In the class of WT contracts wi ∈ Wi (wj) there exists an optimal one for

principal i.

Proof. The proof is identical to that of Lemma 16.

Theorem 7. For any contract tj there exists α ∈ [0, 1] such that:

t
′
i (y) = (1− α− αρ) yi + (1− α) yj − (1− α) tj (y) + αk and t

′
i (tj) ∈ BRi (tj)

where k (α) is such that min
y

(
yi − t

′
i (y)

)
= 0.

Proof. The proof is identical to that of Theorem 2
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B.1.2 Welfare as a weighted sum of taxes and profits of the multinational

Lemma 39 characterizes the principal’s payoff for a given contract scheme using the set F
(defined in the proposition above).

Eligibility: A contract t is eligible for principal i if: Vi (t) > 0.

Lemma 39. Let t be an eligible contract for principal i, then

Vi (t) = min
F∈F

EF [ρ (y1 − t1 + y2 − t2) + ti]

Moreover if F ∈ argmin
F∈F

EF [ρ (y1 − t1 + y2 − t2) + ti (y)] then

EF [y1 − t1 (y) + y2 − t2 (y)] = VA (w|A0)

Proof. The proof is identical to that of Lemma 11.

Lemma 40. Let t be an eligible contract. There exits k, λ with λ > 0 such that for all

y ∈ Y :

ti (y) ≥ λ− ρ
1 + λ− ρ

yi +
λ− ρ

1 + λ− ρ
yj −

λ− ρ
1 + λ− ρ

tj (y) +
1

1 + λ− ρ
k (B.3)

Vi (t) = k + λVA (t|A0) (B.4)

Proof. Let S ⊆ R2 be the convex hull of all points

(y1 − t1 (y) + y2 − t2 (y) , ρ (y1 − t1 + y2 − t2) + ti)

for y ∈ Y .

Let T ⊆ R2 be the set of all pairs (u, v) such that u > VA (t|A0) and v < Vi (t). Note T is

convex. The rest follows as in the proof of Lemma 12.

Lemma 41. Let t = (ti, tj) with ti satisfying (B.3) and (B.4). Then the contract

t
′
i (y) =

λ− ρ
1 + λ− ρ

yi +
λ− ρ

1 + λ− ρ
yj −

λ− ρ
1 + λ− ρ

tj (y) +
1

1 + λ− ρ
k

satisfies Vi

(
t
′
i, tj

)
≥ Vi (t).

Proof. The proof is identical to that of Lemma 13
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Lemma 42. Let
(
t
′
i, tj

)
with t

′
i an affine contract on yi , yj and tj, there is an affine

contract t
′′
i that does at least as well as t

′
i for principal i: Vi

(
t
′′
i , tj

)
≥ Vi

(
t
′
i, tj

)
, with

strict inequality unless max
y
t
′
i (y) = yi.

Proof. The proof is identical to that of Lemma 14

The last two lemmas (43 and 44) establish the form of the principal’s payoffs under the

worldwide taxes and the existence of an optimal contract in that class.

Lemma 43. For t an eligible contract scheme such that ti ∈ Wi (tj) is characterized by

α ∈ (0, 1], then:

Vi (t) =
1− α
α

VA (t|A0)+k = max
(F,c)∈A0

(
(1− α)EF [yi − ti (y) + yj − tj (y)]− 1− α

α
c

)
+αk

This also holds for α = 0 if we interpret the term 1−α
α c as 0 when c = 0 and ∞ for c > 0.

Proof. The proof is identical to that of Lemma 15.

Lemma 44. In the class of WT contracts wi ∈ Wi (wj) there exists an optimal one for

principal i.

Proof. The proof is identical to that of Lemma 16.

Theorem 8. For any contract tj there exists α ∈ [0, 1] such that:

t
′
i (y) =

1− α− αρ
1− αρ

(yi + yj − tj (y)) +
α

1− αρ
k and t

′
i (tj) ∈ BRi (tj)

where k (α) is such that min
y

(
yi − t

′
i (y)

)
= 0.

Proof. The proof is identical to that of Theorem 2.
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B.1.3 Two Period Model of Taxation Proof

By relabeling variables:

w1 (y1) = y1 − t1 (y1) and w2 (y1, y2) = y2 − t2 (y1, y2)

the taxation problem is isomorphic to the problem below.

Consider a principal and an agent that contract for two periods. In each period the agent

takes an action (at) that induces a distribution over output (Ft) at some cost (ct). The

principal only observes realized output and is able to condition contracts on it subject to

limited liability, so that w1 : Y → R+ and w2 = Y × Y → R+. Both the principal and the

agent are assumed risk neutral. The principal has commitment.

The timing of the game is as follows:

1. The principal offers a contract scheme (w1, w2) to the agent.

2. The agent chooses a1, output y1 realizes, and payments are delivered.

3. The agent chooses a2, output y2 realizes, and payments are delivered.

4. The game ends.

The action set of the agent (A) is unknown to the principal, save from a minimal set of

actions A0 ⊆ A.

Given a contract scheme (w1, w2) and an action set (A) the problem of the agent is:

VA (w1, w2,A) = max
a1∈A

{
EF1

[
(w1 (y1)− c1) + max

a2∈A
{(EF2 [w2 (y1, y2)]− c2)}

]}
Notice that a1 = (F1, c1) ∈ ∆Y × R+ is only a function of the contract scheme, while

a2 (y1) = (F2 (y1) , c2 (y1)) ∈ ∆Y × R+ is a function of y1. Let A? (w1, w2|A) be the set of

maximizers for the agent.

The principal’s guaranteed payoff is given by:

V (w1, w2) = inf
A⊇A0

{
min

a1,a2∈A?(w1,w2|A)

{
EF1

[
(y1 − w1 (y1)) + EF2(y1) [y2 − w2 (y1, y2)]

]}}
The following proposition relates the expected payments to the agent under any technology

with its value under A0.
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Proposition 21. Let (a1, a2) ∈ A? (w|A). For A ⊇ A0, it holds that:

EF1

[
w1 (y1) + EF2(y1) [w2 (y1, y2)]

]
≥ VA (w|A0)

Moreover, if (a1, a2) ∈ A? (w|A) then F1, F2 (y1) ∈ F where:

F =
{
F1 ∈ ∆Y , F2 (y1) ∈ ∆Y |EF1

[
w1 (y1) + EF2(y1) [w2 (y1, y2)]

]
≥ VA (w|A0)

}
Proof. To see the first inequality let (a1, a2) ∈ A? (w|A) for A ⊇ A0:

EF1

[
w1 (y1) + EF2(y1) [w2 (y1, y2)]

]
≥ EF1

[
w1 (y1)− c1 + EF2(y1) [w2 (y1, y2)− c2]

]
≥ VA (w|A) ≥ VA (w|A0)

Then F1, F2 (y1) ∈ F .

Lemma 45 characterizes the principal’s payoff for a given contract scheme using the set

F (defined in the proposition above). Note that F only depends on the contract and the

known set of actions A0. In this way we replace the complexity of the definition of V with

an object that depends only on known elements. The following results are valid for any

scheme (w1, w2) that provides positive guarantees for principal i

We formally define them as follows:

Eligibility: A contract scheme (w1, w2) is eligible for principal i if: V (w1, w2) > 0.

Lemma 45. Let (w1, w2) be an eligible contract scheme for principal, then

V (w1, w2) = min
(F1,F2)∈F

EF1

[
y1 − w1 (y1) + EF2(y1) [y2 − w2 (y1, y2)]

]
Moreover if

(F1, F2) ∈ argmin
(F1,F2)∈F

EF1

[
y1 − w1 (y1) + EF2(y1) [y2 − w2 (y1, y2)]

]
then EF1

[
w1 (y1) + EF2(y1) [w2 (y1, y2)]

]
= VA (w|A0).

Proof. The proof is broken into the following two propositions.

Proposition 22. Let (w1, w2) be an eligible contract scheme, then:

V (w1, w2) = min
(F1,F2)∈F

EF1

[
y1 − w1 (y1) + EF2(y1) [y2 − w2 (y1, y2)]

]
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Proof. First note that it must be that: V (w1, w2) ≥ min
(F1,F2)∈F

EF1 [y1 − w1 + EF2 [y2 − w2]].

Using the definition of V (w1, w2):

V (w1, w2) = inf
A⊇A0

{
min

a1,a2∈A?(w1,w2|A)

{
EF1

[
(y1 − w1) + EF2(y1) [y2 − w2]

]}}
≥ min

(F1,F2)∈F
EF1

[
y1 − w1 + EF2(y1) [y2 − w2]

]
Where the inequality follows because if (a1, a2) ∈ A? (w|A) then F1, F2 (y1) ∈ F .

Now we can establish equality. Suppose not, then it must be that:

V (w) > min
(F1,F2)∈F

EF1

[
y1 − w1 + EF2(y1) [y2 − w2]

]
Let (F1, F2) ∈ argmin

(F1,F2)∈F
EF1

[
y1 − w1 + EF2(y1) [y2 − w2]

]
.

Define F (y1, y2) = F1 (y1)F2 (y2|y1) as the joint distribution implied by F1 and F2. There

are two options:

1. F does not place full support on the values of y1 and y2 that maximize w1 (y1) +

w2 (y1, y2).

• Let (ŷ1, ŷ2) ∈ argmax [w1 + w2]. Let F̂ = δ(ŷ1,ŷ2) be a (joint) distribution with

full probability on (ŷ1, ŷ2).

• Let ε ∈ [0, 1] and F
′

= (1− ε)F + εF̂ and F
′
1, F

′
2 such that F

′
1 (y1)F

′
2 (y2|y1) =

F
′
(y1, y2). Define an action set A′ = A0 ∪

{(
F
′
1, 0
)
,
(
F
′
2, 0
)}

.

• It follows that the unique optimal action of the agent inA′ is
{(
F
′
1, 0
)
,
(
F
′
2, 0
)}

.

Note:

E
F
′
1

[
w1 + E

F
′
2

[w2]
]

= EF ′ [w1 + w2]

= (1− ε)EF [w1 + w2] + εmax [w1 + w2] > EF [w1 + w2]

= EF1 [w1 + EF2 [w2]] ≥ VA (w|A0)

so
{(
F
′
1, 0
)
,
(
F
′
2, 0
)}

dominates the agent’s payoff for any action in A0.

• Principal i’s payoff under
{(
F
′
1, 0
)
,
(
F
′
2, 0
)}

is given by:

V
(
w|A′

)
= EF ′ [y1 − w1 + y2 − w2]
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= (1− ε)EF [y1 − w1 + y2 − w2] + εEF̂ [y1 − w1 + y2 − w2]

Recall that
{(
F
′
1, 0
)
,
(
F
′
2, 0
)}

is the unique solution for the agent. This has to

be an upper bound for Vi (w) by definition.

• Joining:

Vi (w) ≤ (1− ε)EF [y1 − w1 + y2 − w2] + εEF̂ [y1 − w1 + y2 − w2]

which holds for all ε > 0. Letting ε→ 0:

Vi (w) ≤ EF [y1 − w1 + y2 − w2] = EF1 [y1 − w1 + EF2 [y2 − w2]]

= argmin
(F1,F2)∈F

EF1 [y1 − w1 + EF2 [y2 − w2]]

• This proves equality.

2. F places full support on the values of (y1, y2) that maximize w1 +w2. There are still

two possible cases:

(a) EF [w1 + w2] = EF1 [w1 + EF2 [w2]] > VA (w|A0).

Consider A′ = A0 ∪ {(F1, 0) , (F2, 0)}. {(F1, 0) , (F2, 0)} is the unique optimal

action for the agent in A′ since it gives higher payoff and has zero cost.

Principal i’s payoff under {(F1, 0) , (F2, 0)} is given by:

Vi

(
w|A′

)
= EF1 [y1 − w1 + EF2 [y2 − w2]]

This has to be an upper bound for Vi (w) by definition:

Vi (w) = inf
A⊇A0

Vi (w|A) ≤ Vi
(
w|A′

)
Joining:

Vi (w) ≤ EF1 [y1 − w1 + EF2 [y2 − w2]]

= min
(F1,F2)∈F

EF1

[
y1 − w1 + EF2(y1) [y2 − w2]

]
This proves equality.
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(b) EF [w1 + w2] = EF1 [w1 + EF2 [w2]] = VA (w|A0).

This implies VA (w|A0) = max [w1 + w2] which can only be satisfied when pro-

ducing at zero cost. This violates the Positive-cost assumption hence this case

cannot happen.

Proposition 23. Let w be an eligible contract for principal i. If

(F1, F2) ∈ argmin
(F1,F2)∈F

EF1

[
y1 − w1 (y1) + EF2(y1) [y2 − w2 (y1, y2)]

]
then

EF1 [w1 + EF2 [w2]] = VA (w|A0)

Proof. To prove this Let

(F1, F2) ∈ argmin
(F1,F2)∈F

EF1

[
y1 − w1 (y1) + EF2(y1) [y2 − w2 (y1, y2)]

]
and suppose for a contradiction that EF1 [w1 + EF2 [w2]] > VA (w|A0).

Let F (y1, y2) = F1 (y1)F2 (y2|y1) be the joint distribution implied by F1 and F2.

Consider F
′

= (1− ε)F + εδ(0,0) and F
′
1 and F

′
2 such that F

′
(y1, y2) = F

′
1 (y1)F

′
2 (y2|y1)

and A′ε = A0 ∪
{(
F
′
1, 0
)
,
(
F
′
2, 0
)}

. It follows that
{(
F
′
1, 0
)
,
(
F
′
2, 0
)}

= A?
(
w|A′ε

)
for

low enough ε since the payoff to the agent is strictly greater choosing F
′

at zero cost than

choosing any (F, c) ∈ A0.

The payoff to the principal is then:

Vi

(
w|A′ε

)
= (1− ε)EF [y1 − w1 (y1) + y2 − w2 (y1, y2)]− ε (w1 (0) + w2 (0, 0))

< EF1 [y1 − w1 (y1) + y2 − w2 (y1, y2)] = Vi (w) ≤ Vi
(
w|A′ε

)
which is a contradiction with the definition of Vi (w).

The strict inequality follows from EF [y1 − w1 (y1) + y2 − w2 (y1, y2)] > 0 by eligibility and

wi (0, 0) ≥ 0 by the agent’s limited liability.

Joining the two propositions the proof of the lemma is completed.
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Given the known action set A0, the next lemma links the principal’s guaranteed payoff

to the agent’s payoff in an affine way. This link allows the principal to increase her own

guaranteed payoff by controlling the payoff given to the agent. Lemma 46 also offers a

relation between any contract (w1, w2) and the outcomes (y1, y2).

The affine link between the agent’s payoff and the principal’s payoff is a crucial element

in providing incentives for the agent. Given the partial knowledge over the agent’s set

of actions the principal’s optimal strategy is to tie her payoff to that of the agent, thus

aligning the agent’s objectives with her owns. This is the same mechanism at the heart

of the optimal contracts in Hurwicz and Shapiro (1978) and Carroll (2015), and will be

crucial in establishing the optimality of affine contracts in the setting we develop.

Lemma 46. Let (w2, w2) be an eligible contract scheme. There exits k, λ with λ > 0 such

that for all (y1, y2) ∈ Y × Y :

w1 (y1) + w2 (y1, y2) ≤
1

1 + λ
(y1 + y2)−

1

1 + λ
k (B.5)

V (w) = k + λVA (w|A0) (B.6)

Proof. This lemma is proven with the following two propositions. In both propositions

define:

Let S ⊆ R2 be the convex hull of all points

(w1 (y1) + w2 (y1, y2) , y1 − w1 (y1) + y2 − w2 (y1, y2))

for (y1, y2) ∈ Y × Y .

Let T ⊆ R2 be the set of all pairs (u, v) such that u > VA (w|A0) and v < V (w). Note T

is convex.

Proposition 24. S ∩ T = ∅.

Proof. Let (u, v) ∈ T then let

(F1, F2) ∈ argmin
(F1,F2)∈F

EF1

[
y1 − w1 (y1) + EF2(y1) [y2 − w2 (y1, y2)]

]
by definition of T and Lemma (45):

u > VA (w|A0) = EF1 [w1 + EF2 [w2]]

v < V (w) = EF1 [y1 − w1 + EF2 [y2 − w2]]
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now, suppose for a contradiction that (u, v) ∈ S, then there exists a joint distribution F
′

on (y1, y2) such that:

u = EF ′ [w1 (y1) + w2 (y1, y2)] = E
F
′
1

[
w1 (y1) + E

F
′
2(y1)

[w2 (y1, y2)]
]

v = EF ′ [y1 − w1 (y1) + y2 − w2 (y1, y2)] = E
F
′
1

[
y1 − w1 (y1) + E

F
′
2(y1)

[y2 − w2 (y1, y2)]
]

where F1 (y1)F2 (y2|y1) = F (y1, y2). Note that
(
F
′
1, F

′
2

)
guarantee a payoff to the agent

larger than VA (w|A0) so
(
F
′
1, F

′
2

)
∈ F but:

EF1

[
y1 − w1 (y1) + EF2(y1) [y2 − w2 (y1, y2)]

]
> E

F
′
1

[
y1 − w1 (y1) + E

F
′
2(y1)

[y2 − w2 (y1, y2)]
]

which contradicts minimality of F . Then S ∩ T = ∅

Since S ∩ T = ∅ we can apply the separating hyperplane theorem which implies that there

exist constants (k, λ, µ) such that (λ, µ) 6= (0, 0) and:

k + λu− µv ≤ 0 (u, v) ∈ S (B.7)

k + λu− µv ≥ 0 (u, v) ∈ T (B.8)

Let (F ?1 , F
?
2 ) ∈ argmin

(F1,F2)∈F
EF1

[
y1 − w1 (y1) + EF2(y1) [y2 − w2 (y1, y2)]

]
. Note that the pair

(EF ? [w1 + w2] , EF ? [yi − wi]) lies in the closures of both S and T . Then:

k + λEF ? [w1 + w2]− µEF ? [yi − wi] = 0 (B.9)

It is left to show that λ, µ > 0.

Note that (u, v) ∈ T admits u arbitrarily high and v arbitrarily low. So for (B.8) to hold

it must be that λ ≥ 0 and µ ≥ 0. There are then two cases to rule out:

1. Suppose µ = 0, then it must be that λ > 0 (since (λ, µ) 6= (0, 0)). Also from (B.7)

and (B.8)

u ≤ −k
λ

(u, v) ∈ S

u ≥ −k
λ

(u, v) ∈ T
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So max
y∈Y

[w1 (y) + w2 (y)] = max
u∈S

u ≤ − k
λ ≤ inf

u∈T
u = VA (w|A0). Which implies:

max
y∈Y

[w1 (y) + w2 (y)] = VA (w|A0)

This can only happen if the agent has an action (F, 0) ∈ A0 such that

EF [w1 (y) + w2 (y)] = max [w1 (y) + w2 (y)]

the only action in A0 with zero cost is (δ0, 0), so

max (w1 (y) + w2 (y)) = w1 (0, 0) + w2 (0, 0)

This is also the unique action in A? (w|A0) so:

Vi (w) ≤ Vi (w|A0) = −wi (0, 0) ≤ 0

This violates eligibility (Vi (w) > 0).

2. Suppose λ = 0, then it must be that µ > 0 (since (λ, µ) 6= (0, 0)). Also from (B.7)

and (B.8)

v ≥ k

µ
(u, v) ∈ S

v ≤ k

µ
(u, v) ∈ T

So min
y∈Y

[yi − wi (y)] = min
v∈S

v ≥ k
µ ≥ sup

v∈T
v = Vi (w). But we know that

min
y∈Y

[yi − wi (y)] ≤ 0− w (0, 0) ≤ 0

this implies Vi (w) ≤ 0 which contradicts eligibility. So λ > 0.

Note that since λ and µ are greater than zero µ can be normalized to 1, giving from (B.7):

k + λ (wi (y) + wj (y))− (yi − wi (y)) ≤ 0

And from (B.9):

Vi (w) = k + λVA (w|A0)
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If we go through with the hyperplane argument we will get that:

w1 (y1) + w2 (y1, y2) = α (y1 + y2)

If there is double limited liability then it must be the case that w1 (y1) = αy1 and

w2 (y1, y2) = αy2. If there exists a y1 for which w1 (y1) > αy1 Then w2 (y1, y2) < αy2

for all y2. This cannot hold if y2 = 0 because of the agent’s limited liability. Similarly, if

there exists a y1 for which w1 (y1) < αy1 then w2 (y1, y2) > αy2 for all y2. This cannot

hold if y2 = 0 because of the principal’s limited liability. Then w1 (y1) = αy1 which implies

w2 (y1, y2) = αy2 by the hyperplane equation.
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