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ABSTRACT 

Alteration of ruminal environment by nutritional strategy presents opportunities 

for manipulating beef cattle growth.  Changing fermentation patterns by altering feed 

type can impact both the composition and rate of gain in beef cattle.  Three experiments 

were conducted to examine the effect of manipulation of growth and fermentation 

patterns on nutrient availability and performance of feedlot cattle. Experiment 1 studied 

the impact of ruminal environment on the passage of omega-3 fatty acids through the 

rumen of grass-fed verses grain-fed cattle.  Omasal samples were collected from steers 

fed either fresh green chop, a high grain diet supplemented with flaxseed oil, or a high 

grain diet supplemented with corn oil.  Regardless of diet, fatty acids with the greatest 

number of unsaturated bonds found in the highest abundance were transformed 

preferentially.  Despite no differences (P = 0.88) in omega-3 transformation across 

treatments, grain-fed cattle with a flaxseed oil supplement demonstrated the greatest (P < 

0.01) g of omega-3 fatty acid flow escaping biohydrogenation due to an increase in intake 

of dietary omega-3 fatty acids.  Experiment 2 evaluated how utilization of bio-fuel 

byproducts impacts rumen environment and fatty acid profile at end point of 

fermentation.  Omasal samples were collected from steers fed a steam flaked corn (SFC) 

basal diet with a portion of corn replaced by distillers grains (DGS) (40%), crude glycerin 

(GLY) (10%) or both.  Total unsaturated fatty acids concentration in digesta were not 

different (P = 0.43) for the main effect of GLY, which indicates GLY is an effective 

alternative to corn when provided at the dietary concentrations evaluated in this study.   

The decrease (P < 0.01) in unsaturated fatty acids in digesta for main effect of DGS may 

be beneficial for shelf life stability of meat.   Experiment 3 used a meta-analysis approach 
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to examine how nutritional strategy and performance during a post-weaning growing 

phase can be used to predict finishing performance and carcass characteristics.  When 

examining feedlot and carcass performance attributes by growing strategy it factors, like 

ADGgrowing, DOFgrowing, and initial BWfinishing, interacted to create the most optimal 

compensatory gain response.  Optimal combinations of DOFgrowing and initial BWgrowing 

differed between performance characteristics (Table 4.6) but as an average across 

dressing percent, LMA, Final BWfinishing, and HCW it was identified that maximized 

performance occurred when cattle began the growing phase around 240 kg.   
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Chapter I.   

LITERATURE REVIEW OF RELEVANT TOPICS  

 

PART I  – Availability of dietary omega 3 and omega 6 fatty acids to ruminants 

INTRODUCTION 

Dietary fatty acid composition varies immensely depending upon forages and 

concentrates fed.  Most fatty acids that contribute to the dietary lipid fraction, regardless 

of diet, are comprised of 16- or 18-carbon.  These fatty acids, in particular omega-3 and 

omega-6 18-carbon chains, have been in the spotlight by the modern consumer.  

Consumers increasingly demand information on the fatty acid composition of ruminant 

food products, particularly those with polyunsaturated fatty acids (PUFA) that fall into 

the 18-carbon chain category.  Various studies have proven that omega-3 and omega-6 

fatty acid concentrations in beef and milk products are directly impacted by the diet of 

the animal (Wood et al., 2004).   

Greater omega-3 concentrations of meat and milk have led some consumer groups 

to begin classifying omega-3 enriched meat and milk products as “functional foods”.  

Although omega-3 content of milk or meat products may increase, the amount of omega-

3 fatty acids consumed from that product is not enough to be considered a significant 

intake source for omega-3 fatty acids.  Instead, an increase in omega-3 content balances 

the omega-6 to omega-3 ratio of the consumers’ diet.  Human dietitians recommend a 

ratio of 4:1 omega-6 to omega-3 (Daley et al., 2010).  A typical American diet has an 

omega-6 to omega-3 ratio of around 15 to 20:1 (Simopoulos, 2006) mainly due to 

American’s high consumption of grain-based products.  The increase in demand by 
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consumers for omega-3 rich products has led to a trend in cattle feeding research to 

understand the most effective method to incorporate omega-3 fatty acids from the diet 

into meat or milk.   

A study conducted by Cherfaoui et al. (2011) determined that the long-chain 

PUFA associated with human health benefits, such as eicosapentaenoic acid (EPA; 

25:5n-3) and docosahexaenoic acid (DHA; 22:6n-3), can be synthesized in bovine liver, 

adipose, and muscle tissues if supplied with post-ruminal alpha linolenic acid (ALA; 

18:3).  This observation led to the conclusion that ALA leaving the rumen unaltered 

beneficially impacts omega-3 concentrations in meat and milk products.  Increasing ALA 

content in the diet through grass feeding can shift this ratio in meat products from 6-7:1 

to 2:1 (Nuernberg et al., 2005). 

Impact of differences in dietary structure of polyunsaturated fatty acids 

Alpha linolenic acid (ALA) is the most common dietary form of omega-3 

consumed by cattle.  In fresh grasses, approximately 50% to 75% of total fatty acids (FA) 

are linolenic acid (Hawke, 1973). Unlike grasses, cereal-based crops, which make up a 

majority of conventional Midwestern feedlot and dairy diets, are high in linoleic acid, an 

omega-6 fatty acid.   

Based on dietary source, structure of fat varies, in turn altering efficiency of its 

rate of breakdown.  Most cereal grains or concentrate sources store lipids in the form of 

triglycerides while lipids found in forage sources are galactolipids, sulpholipids, and 

phospholipids predominantly found within the chloroplast membrane .  These lipids 

differ from triglycerides because they bind 2 fatty acid chains rather than 3 in 
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triglycerides.  Thus, energy content per fat unit is higher for cereals (i.e.- triglycerides) 

than forages (i.e.-galactolipids, sulpholipids).   

RUMINAL LIPID TRANSFORMATIONS 

Triglycerides and forage lipids in the rumen are hydrolyzed by enzymes of rumen 

microorganisms (Garton et al., 1958; Dawson et al., 1977).  Breakdown of fats by rumen 

microbes varies based on the form in which it is stored.  This transformation occurs via 

two major processes in the rumen, lipolysis and biohydrogenation.   

Microbial roles in lipid breakdown processes are differentiated by species-specific 

enzyme production and dietary fat structure. Butyrivibrio fibrisolvens is a known 

producer of phospholipase enzymes, establishing its role in lipolysis of forage-derived fat 

sources (galactolipids and sulpholids; Hazelwood and Dawson, 1975).  While 

Anaerovibrio lipolytica plays a role in lipolysis of triglycerides (cereal lipids) but not 

phospholipids or galactolipids (Hobson and Mann, 1961; Prins et al., 1975).  During 

lipolysis, microbial lipases work to breakdown lipids by hydrolyzing ester linkages 

within lipid structures to release fatty acids and expose a free carboxyl group (Garton et 

al., 1961; Dawson et al., 1977).  The exposure of a free carboxyl group on a fatty acid is 

imperative for the next transformation process, biohydrogenation.  The carboxyl group 

serves as an electronegative region for the lipase enzyme to bind hydrogen.  When 

hydrogen is bound, there is a shift of electrons allowing isomerization to occur and 

saturation of double bonds to proceed (Harfoot and Hazelwood, 1988).  Thus, 

transformation from the unsaturated to saturated form is complete.   
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Saturation of each unsaturated bond within a PUFA makes up a different phase of 

the biohydrogenation pathway.  Dietary sources of linoleic acid and linolenic acid are 

transformed by rumen bacteria from an unsaturated structure to the saturated fatty acid 

stearic acid (18:0) via a pathway involving various isoforms (Figure A1.11; Wilde and 

Dawson, 1966; Kramer et al., 2004).    Each phase of fatty acid transformation involves 

two distinct groups of bacteria, Group A and B, as classified by Kemp and Lander 

(1984). Group A hydrogenates polyunsaturated fatty acids to trans 18:1 isoforms, while 

Group B hydrogenates the trans 18:1 isoform to stearic acid (18:0) (Kemp and Lander, 

1984; Harfoot and Hazelwood, 1997).   

Role of Biohydrogenation in Rumen 

Three primary theories on biohydrogenation have evolved to explain the purpose 

of lipid transformation in the rumen. One theory stemmed from observations by 

Hazelwood and Dawson (1979) about the two primary groups of bacteria involved in 

fatty acid transformations (Group A and Group B).  Group A bacteria demonstrated the 

ability to incorporate trans-isoforms of linolenic or linoleic acids into membrane lipids.  

Therefore, suggesting that the biohydrogenation pathway served a role in the utilization 

of dietary fatty acids to synthesize membranes in certain bacterial species.  Because these 

species make up such a small fraction of the total microbial population, it is unrealistic to 

think that supporting this small group is the reason behind such a significant ruminal 

process (Harfoot and Hazelwood, 1988).  A more debated theory suggested by Lennarz 

(1966), is that biohydrogenation serves as a hydrogen disposal for bacteria requiring a 

reduced environment.  Unsaturated bonds serve as a sink for free hydrogen in the rumen; 

therefore, this theory does hold merit.  However, Harfoot and Hazelwood (1988) discredit 
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this theory, citing methanogenesis as a much more efficient process for disposal of excess 

reducing power (i.e.- hydrogen).  The third and perhaps most widely known theory for 

the purpose of biohydrogenation is as a role in the detoxification of fatty acids (Kemp 

and Lander, 1984).  Maia et al. (2010) supported this theory by showing a negative 

impact of linoleic and linolenic acid on cell growth and integrity of rumen microbes.  By 

hydrogenating unsaturated fatty acids, PUFA are converted to a form useable by the 

rumen microbes and the inhibitory effects associated with unsaturated forms decrease.  

Within this third theory of biohydrogenation, there are three schools of thought from 

which the idea of toxicity of unsaturated fats stems: 

1. Double bonds alter the shape of molecule and disrupt microbial lipid 

bilayer structure altering cell integrity   

2. Chemiosmotic destruction of membrane potential causing ion leakage and 

/or decoupling intramembrane pathways  

3.  Metabolic pathway disruption   

Knowledge that 0.5% of total cell protein of Butyrivibrio fibrisolvens, an active 

contributor to both lipolysis and biohydrogenation, is devoted to the reductase that 

converts conjugated linoleic acid (cis-9, trans-11 C18:2) to vaccenic acid (trans-11 

C18:2) indicates a significant dedication of cellular resources to this process (Maia el al., 

2010).  This would imply a vital function of the biohydrogenation process.  Butyrivibrio 

fibrisolvens cell wall structure has been shown to have an extremely thin cellular 

envelope (Cheng and Costerton, 1977).  This evidence also supports toxicity theory one 

and two, knowing toxic effects would be greater for bacteria with less protection from 

surrounding environment.  However, strong evidence exists in favor of theory three as 
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well.  Paillard et al. (2007) determined that, in the presence of overwhelming amounts of 

unsaturated fatty (specifically linoleic acid) acids, there was a shift in utilization of 

ruminal CoA metabolic pools used to synthesize butyrate.  Within the rumen, butyrate is 

synthesized via two separate enzymes; butyrate kinase and butyryl-CoA CoA-transferase 

(Figure A1.12).  Strains of B. fibrisolvens were identified to carry the gene for either 

butyrate kinase or butyryl-CoA CoA-transferase.  Strains that carry the gene for butyrate 

kinase were shown to have an increase in vulnerability to toxic effects of linoleic acid 

(Paillard et al., 2007). Thus, it was concluded that toxicity to unsaturated fatty acids is 

strain specific.  However, to this point, no evidence has been provided to distinctly 

conclude if toxicity is caused from disruption of cell integrity, chemiosmotic changes, or 

metabolic pathway interruptions.  Regardless, from this work it seems logical to conclude 

that the toxic effect of PUFA on rumen microbes is a primary driver behind need for 

biohydrogenation in the rumen.   

Greater need for biohydrogenation exists in the rumen of grass-fed animals 

because B. fibrisolvens, particularly the cellulolytic-butyrate-producing strains, is present 

in greater concentrations in this environment.  Greater rates of biohydrogenation are 

necessary in the rumen of grass-fed cattle because linolenic acid, the primary fatty acid 

found in grasses, has greater toxicity to rumen-butyrate producers than linoleic acid 

(Maia et al., 2010).  It is estimated that approximately 85 to 100% of dietary ALA is 

biohydrogenated in the rumen, with 0 to 15% passing through unchanged (Doreau and 

Ferlay, 1994).  In contrast, 70 to95% of dietary linoleic acid is biohydrogenated in the 

rumen.  The increase in B. fibrisolvens population with fiber-based diets resulting from 
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greater dietary concentration of linolenic acid could explain why greater amounts of 

linolenic not linoleic acid are hydrogenated.   

Within modern grain-based cattle feeding systems, greater supply of dietary 

linoleic acid concentration became a topic of interest as feeding ethanol coproducts such 

as distillers grains and corn oil increased.   Ethanol is produced via fermentation of starch 

found within corn grain.  By-products from this process consisting of the remaining 

fractions of corn grain are commonly utilized as feed sources for livestock.  As the starch 

fraction is removed from the grain, the concentration of fat within the remaining by-

products increases.  Unsaturated fatty acids make up over 80% of the fat composition of 

corn, with over 50% of unsaturated fatty acids being linoleic acid.  Hendersen (1973) 

demonstrated in pure culture that unsaturated fatty acids exhibited greater negative 

impacts on growth of cellulolytic bacteria than saturated fats.  Various researchers 

observed a shift in rumen fermentation with an increase in supplementation of 

concentrations of fat in the diet (Czerkawski 1966a; Clapperton et al, 1969; Dinius et al, 

1974; Zinn 1988).  A decrease in ruminal acetate production with an increase in ruminal 

propionate and a decrease in methane production are consistent responses to addition of 

dietary fat (Clapperton et al., 1969).  A decrease in growth of cellulolytic bacteria in 

response to supplementation of dietary fat explains the decrease in ruminal acetate 

concentration and lowered methane production (Rasmussen and Harrison, 2011).  An 

increase in ruminal propionate concentration can be explained by increased lipolysis of 

triglycerides freeing glycerol backbones which ferment to propionate in the rumen (Wang 

et al., 2009).  A decrease in enteric ruminal methane production with dietary PUFA 

supplementation is hypothesized to be a response to the double bonds within the fatty 
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acid serving as direct competition to other hydrogen utilizing mechanisms, such as 

methane production (Rasmussen and Harrison, 2011).   

 A compelling counter explanation for the impact of fat on rumen fermentation is 

that the fat source can physically coat the feed particles and retard feed exposure to 

microbial enzymatic attack.  This coating effect is especially pertinent for fatty acids with 

a melting point that is near or exceeds the temperature of rumen (MacLeod and 

Buchanan-Smith, 1972; Chalupa et al., 1984).  Zinn et al (2000) demonstrated that high 

concentrations of dietary fat (> 8% of diet DM) negatively impacted microbial nitrogen 

flow out of the rumen; an effect proposed to have resulted directly from a decrease in 

ruminal digestion of organic matter (OM).  

To avoid detrimental impacts of high concentrations of dietary fatty acids on 

rumen fermentation yet still maintain an energy dense feed ingredient, investigations into 

alternative by-products, such as glycerin, have been conducted.  Glycerin is a byproduct 

of the biodiesel industry and is comprised of the glycerol backbone of a triglyceride fat.  

Glycerol has been suggested to ferment directly to propionate (Wang et al., 2009). 

However dietary glycerin, similar to unsaturated fatty acids, has negative effects on 

certain strains of fiber-digesting bacteria (Butyvibrio fibrosolvens and Selenomonas 

ruminantium; AbuGhazaleh et al., 2011).  Thus, a decrease in acetate and increase in 

propionate would be expected when feeding glycerin or unsaturated fats.   

Impact of ruminal pH on PUFA 

As fermentation patterns change (in both amount and profile) from dietary 

additions of fat as well as differing ratios of concentrates:forages within a ration, the 
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rumen microbial population will shift production of fermentation end products.  This shift 

in fermentation products, such as VFA, can lead to differences in ruminal pH due to 

varying pKa associated with differing VFA profiles, as well as changes in total acid 

production.  Associations between decreases in ruminal pH and decreases in rates of 

lipolysis and biohydrogenation of PUFA were observed (Nevel and Demeyer, 1996; Loor 

et al., 2003).  As shown in Table A1.11, there is a definite impact of ruminal pH on both 

lipid transformation processes once ruminal pH drops to a borderline acidotic level.  

Two major theories have emerged to explain changes in biohydrogenation rate 

associated with lowered pH.  One theory suggests that pH-sensitivity of lipolytic bacteria 

is a primary cause for the depression of hydrogenated fatty acid products in the rumen.   

Lipolytic bacterial species, Anaerovibrio lipolytica, has a decrease in growth at pH 5.7 

and completely inhibited lipolytic activity at pH 5.3 (Hobson, 1965).  In vitro, 

Butyrivibrio fibrisolvens exhibited a 25% decrease in yield at pH 5.75 and activity was 

completely inhibited at pH 5.5 (Russell and Dombrowski, 1980).  By inhibiting 

enzymatic activity of these species, lipid breakdown to free fatty acids (FFA) will not 

occur as readily. Chalupa et al. (1984) observed that fat in the form of triglycerides did 

not inhibit ruminal digestion to the same extent as free fatty acids.  Although a decrease 

in pH negatively impacts bacterial activity involved ruminal lipolysis and 

biohydrogenation, a lower presence of free fatty acids would lower the need for ruminal 

biohydrogenation.   

Mackie et al. (1978) determined that A. lipolytica was not eliminated from the 

microbial population when donor cattle were adapted from a low- to a high-concentrate 

diet.  These results cast doubt as to whether or not viable counts of lipolytic bacteria 
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could be a primary indicator of lipase activity.  Results from earlier studies demonstrated 

that activity of lipase enzymes was highest at pH 7.4 but it was reduced 50% if pH 

dropped to 6.6 (Henderson, 1971).  Because a decrease in ruminal pH is routinely 

associated with an increase in concentrates in a diet, the decrease in lipase activity 

became associated with the changes in microflora based on diet composition (Latham et 

al., 1972; Gerson et al.,1985).  This reduction in activity has been theorized as an 

inhibition of the rumen microflora.  Results from in vitro studies, demonstrated a 

secondary theory that the reduction in lipase activity associated with changes in dietary 

composition was due to a shift in the metabolic processes of microbes.  High 

concentrations of carbohydrates, particularly glucose, reduced bacterial production of 

lipase under aerobic conditions (Papon and Talon, 1988; Jaeger et al., 1994).  

The impact of ruminal pH on biohydrogenation rate is of great interest when 

observing the wide spectrum of diets consumed by cattle.  It is accepted that average 

ruminal pH of grass-fed cattle is higher than that of grain-fed cattle due to an increase in 

ensalivation, an increase in rumen volume, less severe pKa of acetate compared with 

propionate, and natural buffering capacity of forages (McBurney et al., 1983; Moreira el 

al., 2013).  Data from Van Nevel and Demeyer (1996; Table A1.11), indicates that 

average ruminal pH for a 24 h-period should have no effects on lipolysis or 

biohydrogenation.  However, in that study pH did not reach a value below the decreased 

activity threshold of pH 5.7.  It is assumed that the ruminal pH of grain-fed cattle spends 

a quantifiable amount of time below pH 5.7, which leads to the hypothesis that the total 

amount of biohydrogenated PUFA in digesta would be lower for grain- compared with 

grass-fed rumen.  Depression in ruminal pH of grain-fed animals would lead to lower 
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biohydrogenation rates and greater concentration of dietary PUFA present in digesta 

entering the small intestine. 

Effect of ionophores and antimicrobials on biohydrogenation 

In addition to differences in ruminal pH, it must also be considered that many 

grain-based diets are supplemented with ionophores.  Ionophores and other 

antimicrobials are thought to alter the amount of PUFA deposited in meat and milk 

products due to an interaction with the microbes involved in lipolysis and 

biohydrogenation (Marmer et al., 1985; Van Nevel and Demeyer, 1995; Fellner et al., 

1997).  Marmer et al. (1985) determined that inclusion of monensin in the diet did not 

change lipid and fatty acid content in tissue of steers, but it did demonstrate a decrease in 

saturated fatty acid content and an increase in unsaturated fatty acid content.  Within 

adipose deposits of monensin-supplemented cattle, significant increases in trans-

octadecenoic acids, a product of the first steps of biohydrogenation, were observed.  This 

led to the hypothesis that monensin reduces biohydrogenation.  Zinn (1988) determined 

that dietary inclusion of monensin increased trans-C18:1 by 34% and decreased C18:0 by 

11% in the duodenal chyme of steers fed highly digestible finishing diets.  Fellner et al. 

(1997) observed a decrease in complete hydrogenation of C18:2 to C18:0 but flows of 

trans-C18:1 to the small intestine were increased when ionophores were included in the 

diet.  These results suggest that the first step in biohydrogenation is not inhibited to the 

same extent as the final saturation step (Figure A1.11).   

Because a main effect of monensin in the rumen is inhibition of gram-positive 

bacteria growth, its impact on biohydrogenation is of interest (Van Nevel and Demeyer, 

1995).  The primary bacteria (Group A) involved in the conversion of C18:2 to trans-
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C18:1 is Butyrvibrio fibrisolvens, a gram positive bacteria (Harfoot and Hazelwood, 

1988).  However observations by Zinn (1988) showed steers supplemented with 

monensin had an increase in trans-C18:1 concentrations post-ruminally, which would 

indicate no inhibition of Group A bacteria.  Instead, the observed decrease in stearic acid 

would indicate an interaction of monensin with group B bacteria. However the primary 

Group B bacterial species, Fusocillus and Clostridium proteoclasticum, are gram 

negative (Harfoot and Hazelwood, 1988); thereby negating a role of monensin on these 

species.  Work conducted by Li et al. (2012) demonstrated most of the bacteria involved 

in biohydrogenation are uncultured, so assuming all bacteria in group B can be classified 

as gram negative is inaccurate.       

Additional oversight is the absolute classification of bacterial species to Group A 

or B.  Butyrvibrio fibrisolvens was classified as Group A by Harfoot and Hazelwood 

(1988), but recent work by Li et al. (2012) has shown this species involvement in 

hydrogenating trans-C18:1 to C18:0.  Therefore the impact of monensin on 

biohydrogenation is most likely an interaction with uncultured bacterial species or 

bacteria with multifaceted roles in the pathway.   

  Research to date on ionophore effects on unsaturated fatty acids has been focused 

on the inhibition of biohydrogenation.  However, Van Nevel and Demeyer (1995) 

widened this perspective by suggesting that ionophores and other antimicrobials inhibit 

lipolysis to a greater extent than they inhibit biohydrogenation.  In addition to B. 

fibrisolvens role in biohydrogenation it is also a commonly accepted lipolytic species.  

Therefore, inhibition of B. fibrisolvens would hint towards impacts of monensin on 

lipolysis not simply biohydrogenation.  The species has a particularly thin cellular 



  13 

 

envelope that is easily affected by rumen environment disruptors, like monensin.  

However not all antimicrobial additives are effective for inhibiting lipolysis in the rumen.  

For certain compounds such as Salinomycin sodium, lincomycin hydrochloride, 

oxytetracycline, virginiamycin, and mentronidazole, an increase in inhibition of lipolysis 

is paired with an increase in inhibition of VFA production (Table A1.12; Van Nevel and 

Demeyer, 1995).  These findings suggest that these antimicrobial compounds inhibit the 

rumen microbes themselves rather than shifting energetic pathways.  Inhibition of 

lipolysis by antimicrobial compounds such as amoxicillin, avoparcin, lasalocid sodium, 

and monensin was not accompanied by a decrease in VFA production (Table A1.12; Van 

Nevel and Demeyer, 1995).  Thus, these four particular compounds helped to increase 

flows of polyunsaturated fatty acids from the rumen without majorly altering ruminal 

fermentation. 

POST RUMINAL DIGESTION AND ABSORPTION OF PUFA 

A survey of published literature found that digestibility of fatty acids can range 

from 55% to 92%, depending upon factors such as chain length and degree of 

unsaturation (Demeyer and Doreau, 1999).  This survey found that variability in 

digestibility was not explained by fatty acid concentration in the diet.  Contrary to this 

review,  Palmquist and Jenkins (1980) found fat supplementation at moderate levels (3% 

or 5%) were 80% digested, while dietary fat concentrations greater than that were 

significantly less (~56%).  Assuming a linear response to fat supplementation, the work 

by Palmquist and Jenkins (1980) would indicate that for each percentage unit above 4% 

dietary fat concentration, a 3.4% decrease in fat digestibility would be expected 

(Palmquist and Jenkins, 1980). These observed differences in the effects of dietary fat 
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concentration between the work by Palmquist and Jenkins (1980) and the survey by 

Demeyer and Doreau (1999) are suggested to be attributed to the survey’s variation in 

experimental approaches, analysis techniques, and variations in diet formulation (Lock et 

al., 2000).   

Differences in digestibility of isolated fatty acids at similar dietary inclusions are 

relatively modest, with apparent digestibility values for C18:0, C18:1, C18:2, C18:3 fatty 

acids determined to be 77%, 85%, 83%, or 76% respectively.  As an important note, 

within this dataset the digestibility value for C18:1 included all of the biohydrogenation 

isomers, which perhaps exaggerated the digestibility value reported.  Additionally, the 

value for C18:3 may have been inaccurately portrayed due to low dietary inclusions 

(Glasser et al., 2008).  These digestibility values were repeated by Lock et al. (2000) with 

very similar findings of 72%, 80%, 78% and 77% digestibilities for 18:0 C, 18:1 C, 18:2 

C, 18:3 C respectively.  Therefore, it can be concluded that the difference in digestibility 

of differing fatty acids is indeed relatively modest. Zinn et al. (2000) determined that 

digestibility of fatty acids could be increased by decreasing the extent of 

biohydrogenation.  A linear relationship between proportion of unsaturated fat entering 

the small intestine and digestibility of saturated fat was determined.  This relationship 

showed a 1% increase in 18:1 escaping biohydrogenation lead to a simultaneous 1% 

increase in 18:0 absorption (Zinn et al., 2000).  Ketels et al. (1989) observed the same 

effects in broilers.   

Although the same effects of unsaturated to saturated fatty acid ratio in digesta 

exist in both ruminants and non-rumimants, the relatively modest range of digestibility 

values for individual fatty acids is unique to ruminant animals.  Non-ruminants have 
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shown a wide range of digestibility values for differing fatty acids (Freeman, 1984) with 

a decrease in digestibility with an increase in number of double bonds (Lessire et al., 

1992).  These differences between species exist due to differences in lipid material, 

degree of neutralization of digesta, and source of amphiphile for micelle formation.  In 

ruminants, 80 to 90% of lipid material entering the small intestine is in free fatty acid 

form, while non-ruminant lipid material is >90% esterified fat (Noble, 1981).  Kinetics of 

rumen digestion and flow create a continuous presentation of digesta to the small 

intestine of ruminant animal.  As digesta enters the small intestine, it stimulates the 

secretion of bile salts, lecithin, and pancreatic enzymes.  Pancreatic enzymes convert 

lectithin to lysolecthin, the primary amphiphile ruminants utilize to promote micelle 

formation (Lock et al., 2005).  Fatty acid absorption is dependent upon micelle formation 

and fatty acid incorporation into the core of a micelle molecule. Due to the water 

insoluble nature of fatty acids combined with the water layer present within intestinal 

cells, hydrophobic fatty acids are very poorly absorbed from the intestinal lumen without 

incorporation into a micelle.  Before micelle formation, fatty acids must be released from 

microbes and feed particles by action of lysolectin and bile salts (Moore et al., 1984).  

Fatty acids flowing out of the ruminant stomach are associated with the particle phase of 

digesta despite being in free fatty acid form (Doreau and Chilliard, 1997).  Because 

continuously stimulated, pancreatic secretions of ruminants are less concentrated and 

released in lower quantities at one time.  This leads to a lesser degree of neutralization in 

the duodenum because of lower concentration and amount of bicarbonate secreted.  Due 

to a more acidic pH of digesta in the upper small intestine, the site of digestion is shifted 

to lower segments of the jejunum than in non-ruminants (Moore et al., 1984).  In 
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response to the lower site of digesta neutralization digesta and absorption, ruminants 

evolved an alternative system for absorbing fatty acids compared to that of non-

ruminants.  

Rather than secreting predominantly glycine-conjugated bile acids like non-

ruminants, ruminants secrete taurine-conjugated bile acids, which have capability to 

remain in ionized form despite the acidic nature of digesta (Noble, 1981).  Glycine-

conjugated bile acids are insoluble at pH 4.5, while taurine-conjugated bile acids remain 

soluble even at pH 2.5 (Moore et al., 1984).   This is significant as the bile salt must be in 

ionized form to remain in micellar phase and aid in absorption of fatty acids.  These bile 

acids are responsible for solubilizing fatty acids through stabilizing the micelle structure, 

while the amphiphile or swelling agent (i.e.- lysolecthin) promotes infiltration of 

unsaturated fatty acids and phospholipids into hydrophopic core of micelle (Davis, 1990).    

Despite having evolved a more efficient absorption system for fatty acids, total fatty acid 

digestibility is not 100% but instead averages 74%.  Figure A1.14 (Lock et al., 2005) 

depicts the relationship between duodenal flow of fatty acids (g/d) and daily absorption 

(g/d).  The linear relationship demonstrates for 1 g daily fatty acid flow, only 66% will be 

absorbed.   

Incorporation of PUFA into meat or milk 

Digestibility values of less than 100% demonstrate that even if fatty acids escape 

ruminal biohydrogenation, there is no guarantee that they will be fully utilized by the 

animal. Because animals are unable to synthesize significant amounts of PUFA at tissue 

deposition site, all long chain unsaturated fatty acids found in blood stream are of dietary 

origin or have been mobilized from body stores (Demeyer and Doreau, 1999).  Thus 
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dietary inclusion of PUFA has a direct impact on their concentration in meat or milk 

products.  Regardless of the exact value of digestibility, there is a large amount of 

variability in the amount of PUFAs deposited, with majority of the variation being 

explained by diet.  In sheep, feeding greater dietary concentrations of concentrate was 

associated with greater efficiency in utilization of C18:3 of dietary origin (Chilliard et al., 

2000; Table A1.13).    These data represent the efficiency of intestinal absorption but do 

not account for the efficiency of incorporation into meat or milk products.  This 

reinforces that the challenge to ruminant nutritionists to manipulate PUFA concentrations 

in meat and milk products involves more than the manipulation of ruminal 

biohydrogenation.   

 As depicted in Figure A1.13, the efficiency of incorporation of C18:3 into milk 

decreases as supply presented to the small intestine increases (Chilliard et al., 1991; 

Drackley et al., 1992; Christensen et al., 1994; LaCount et al., 1994; Ottou et al., 1995; 

Litherland et al., 2005).  Long chain fatty acids absorbed in the small intestine are 

preferentially packaged into HDL.  Uptake of HDL differs by tissue; for example adipose 

tissue takes up HDL much more efficiently than the mammary gland.  A portion of PUFA 

are taken up by the mammary gland to ensure fluidity in milk (Demeyer and Doreau, 

1999), but the efficiency of incorporation is not constant.  This indicates that the 

mammary gland is able to selectively incorporate fatty acids in milk fat when larger fatty 

acid quantities are present.  Although efficiency of incorporation decreases there is 

greater milk fat C18:3 concentration as the amount of C18:3 presented to the small 

intestine increases.   
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However, as explained previously, most linolenic and linoleic acid do not reach 

the small intestine in dietary form.  Instead, biohydrogenation alters fatty acid structure to 

various isoforms referred to commonly as biohydrogenation intermediates.  Certain 

intermediates of linoleic and linolenic acid, including trans-10, cis-12 conjugated linoleic 

acid (CLA), exert a negative influence on total milk fat yield (Peterson et al., 2003).  In a 

study conducted by Loor et al. (2004), linolenic acid was added to low or high 

concentrate diets.  Both the high concentrate diet (75% inclusion) as well as high 

concentrate plus linolenic acid decreased milk fat percent and yield.  Therefore, 

management of the amount of biohydrogenation isoforms synthesized is critical in order 

to avoid milk fat depression when supplementing polyunsaturated fatty acids.  

Fatty acids not incorporated into milk fat accumulate in adipose tissue deposits 

within viscera, subcutaneously, inter- or intra- muscularly.  The composition of adipose 

tissue deposits, specifically those in beef, are directly reflective of the fatty acid profile 

presented to the small intestine following ruminal digestion (Demeyer and Doreau, 

1999).  Lipids are selectively deposited in various adipose deposits based on weight and 

growth stage of the animal. As body weight increases, subcutaneous fat will increase and 

concentration of unsaturated fatty acids will increase within adipose deposits if presented 

to small intestine (Moloney, 2002).  In finishing cattle, subcutaneous fat is the primary 

deposition site for unsaturated fatty acids while intramuscular fat is the primary 

deposition site for saturated fat.  To contrast, in lean animals, subcutaneous fat is 

primarily made up of saturated fats while intramuscular fat accumulates more unsaturated 

fat.  Because lean animals have less body fat, the unsaturated FAs incorporated into cell 

phospholipid membranes contribute to a greater percentage of total body fat (Demeyer 
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and Doreau, 1999).  No major inhibitory mechanisms for increasing PUFA 

concentrations in meat are known.  Instead, justification for the supplementation of 

specific dietary FA, especially omega-3 FA, is challenging because omega-3s are 

deposited within fat depots that trimmed are not directly consumed unless mixed into a 

ground product.   

ECONOMIC BENEFITS OF DIETARY PUFA FOR CATTLE PRODUC ERS 

 The nature of the ruminant biological system presents a challenge to cattle 

producers to meet demands by modern consumers to provide the appropriate omega-6 to 

omega-3 ratio.  Biohydrogenation, efficiency of absorption, and site of fat deposition all 

must be considered when aiming to present the product modern consumers desire.  As 

previously described, in finishing cattle unsaturated fat is deposited within subcutaneous 

fat which is partially trimmed off of the carcass during processing.  Therefore, the health 

benefits associated with balancing omega-3 and omega-6 fats in finishing cattle is not 

fully obtained within traditional cuts of meat but instead within ground product where 

trim fat is added back to the product.  De Mello et al. (2017) observed that steaks with 

greater concentration of total PUFAs had greater oxidation and greater surface 

discoloration.  Steers within the study were fed 0%, 15%, or 30% distillers grains plus 

solubles, leading to significant linear increases in steak omega-6 fatty acids with 

increasing dietary distillers.  No difference in total fat concentration was observed.  

Therefore, the authors concluded that shifting fat composition without shifting total fat 

led to a change in meat shelf life that altered consumer desirability due to increases in 

discoloration with higher concentrations of PUFA.   
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Despite impacts observed by De Mello (2017) on meat quality, the fat content of 

full-fat distillers grains provides an excellent source of dietary energy to feedlot cattle.  

Yet, as corn processing to produce ethanol has changed to extract greater value from the 

kernel, nutrient composition of distillers grains with solubles has changed.  Instead, 

distillers grains is commonly subjected to further oil extraction; therefore, reduced fat 

distillers grains with solubles are more commonly produced today.  Nelson et al. (2017) 

examined the effects of feeding 15% full fat distillers (FFDGS), 15%, 30%, or 45% 

reduced fat distillers (RFDGS) on meat quality.  Unlike results from De Mello et al. 

(2017) with full-fat distillers, reduced-feeding fat distillers showed no difference in retail 

shelf life for steaks, ground beef, or bologna.  The absence of differences in omega-6 

content of steaks, ground beef, or bologna between treatments would explain the lack of 

shelf life differences observed by Nelson et al. (2017).  Low levels of dietary PUFA 

(such as that found in 15% FFDGS) would allow for greater extent of PUFA 

biohydrogenated in the rumen with less available for incorporation into meat products. 

As dietary omega-6 fatty acid content increases differences in shelf life stability become 

apparent, such as those observed at 30% and 45% FFDGS inclusion in work by De Mello 

et al. (2017).  Because of variation present between DGS products, caution should be 

exercised for basing meat quality conclusions off of dietary distillers grains inclusion 

without reviewing dietary fatty acid profile.   

Benefits of dietary Omega-3 inclusion 

Presently, there are no monetary incentives at the packing plant for producers to 

feed omega-3 fatty acids to cattle.  Certain groups in the U.S. are marketing omega-3 rich 
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beef products; however, these are integrated systems from cattle procurement to cattle 

feeding and product marketing.  

Omega-3 riched products entering the market are regulated by the USDA to avoid 

broad marketing labels of “enriched” or “enhanced” type claims.  Instead, when 

marketing a product for improved omega-3 fatty acid concentrations, each label must 

state the milligrams per serving.  Thus, the goal as a producer of this type of product is to 

increase omega-3 concentration per serving to the greatest extent. When feeding flaxseed 

at a dietary inclusion of 8%, omega-3 fatty acid concentration was increased in the 

longissimus lumborum from 0.26 g to 0.58 g per 100 g of neutral fat and from 7.42 g to 

11.47 g per g phospholipid fat (Maddock et al., 2006). To equate this to 1 serving of 80% 

lean hamburger, the mg of omega-3 per serving would increase from 165.8 to 283.7 mg 

when fed without vs with flaxseed respectively.  In perspective, this is competitive with 

grass-fed ground beef, which retails in stores as 200 mg or more of omega-3 content.  

Table A1.14 shows a simulation of  breakeven prices (per bushel) when producers 

receive a premium above market live weight price for finishing steers on a diet with 8% 

dietary flaxseed inclusion.  Values were calculated using performance data from 

Maddock et al. (2006).  According to the U.S. department of agriculture flaxseed price 

historical data, the cost of flaxseed on the market for August 2016 was around $8.44 per 

bushel.  To break even with price of flaxseed needed to be purchased for 8% dietary 

inclusion, producers would need to receive a premium of 42% above live market price 

(Table A1.14).  This increase in price at the packer then translates to an increased cost at 

retail.  Studies conducted from the consumer perspective, have proven an increase in 

willingness to pay premiums when the food product of interest is perceived as healthier.  
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McClusky et al. (2005) examined the reason behind consumer willingness to pay for 

grass-fed beef finding that 24 to 40% of consumers pay premiums for the product due for 

health associated benefits (McCluskey et al., 2005). It is this segment of the consumer 

base that a grain fed omega-3 riched product would appeal to, but further research needs 

to be conducted to determine how consumers would respond to this type of product.   

OBJECTIVES FOR CHAPTERS II & III 

The objectives of chapters II and III were to examine rumen characteristics associated 

with diets fed omega-6 and omega-3.  Chapter II specifically sought to:  

1. Determine the impact of ruminal environment on the passage of omega-3 fatty 

acids through rumen and 

2. Understand differences in ruminal biohydrogenation in grass-fed verses grain-fed 

cattle. 

While Chapter III sought to: 

1. Understand how utilization of bio-fuel byproducts impacts rumen environment 

and fatty acid profile at end point of fermentation and 

2. Determine differences in PUFA content at endpoint of fermentation when bio-fuel 

byproducts are fed to ruminants. 
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PART II – Effect of manipulation of growth patterns during backgrounding phase 

on finishing performance and meat quality 

INTRODUCTION 

A managed growing phase for cattle post-weaning and prior to finishing presents 

a valuable opportunity to produce more pounds of beef per animal.  Commonly known as 

a growing phase, an accurately timed period of limited energy intake prior to finishing 

results in larger frame size, ultimately allowing the animal to support more pounds of 

carcass weight (Perillat et al., 2003).  Consuming lower energy causes a delay in the 

onset of maturity by delaying the onset of fat accumulation.  Owens et al. (1993) shows 

slower rates of growth maintain the same order of deposition of various tissues and sites 

as rapid rate of growth animals, but the rate of accumulation at any like-point in time 

differs between these two scenarios.  When caloric intake is restored to above 

maintenance, the animal responds by allocating energy to muscle hypertrophy and growth 

of various tissues associated with later maturation (Owens et al., 1993).  Effects of 

compensatory growth, such as greater final weight and greater overall feed conversion 

efficiency, are goals of growth strategies before high-grain finishing1.  An understanding 

of how management decisions during the growing phase impact the magnitude of 

finishing performance and carcass growth is not well understood. 

COMPENSATORY GAIN AS MECHANISM OF GROWTH 

This period of controlled growth in a growing phase represents an opportunity for 

maximizing frame growth prior to the deposition of fat.  Because accumulation of fat is 

correlated with carcass maturation, the “framing out” phenomenon that occurs during a 
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growing period causes a shift in the growth curve, delaying carcass maturity and allowing 

increases in lean and bone growth (Owens et al., 1993).  Prioritized accumulation of lean 

growth and bone mass over fat is explained through physiological endocrine changes, 

particularly changes in circulating growth hormone (GH) (Hornick et al., 2000).  Lower 

nutrient availability decreases the hypothalamus’ secretion of somatostatin, which is the 

primary hormone responsible for mediating GH production (Thomas et al., 1990).  While 

a decrease in circulating insulin and thyroid hormones, resulting from lowered glucose 

intake, leads to a decrease in synthesis of GH receptors (Maes et al., 1983).  Limited GH 

uptake receptors and reductions in somatostatin secretion lower the amount of GH taken 

up by the liver causing concentrations of circulating GH to accumulate (Thomas et al., 

1990).  As a result of decreased liver uptake, limited GH is available for IGF-1 synthesis.  

Because IGF-1 drives anabolic growth, this decrease in liver GH uptake and lower IGF-1 

synthesis largely contributes to slowed growth rates during feed restriction (Hornick et 

al., 2000).   

Tissues react differently during periods of reduced growth.  Growth rates are 

reduced for most for viscera, followed by adipose tissue with little effects in muscle 

(Hornick et al., 2000).  Reductions in volume and metabolic activity of the visceral mass 

leads to a reduction in basal metabolic rate (Yambayamba et al., 1996).  This energy-

sparing mechanism remains for several weeks even after caloric intake restriction has 

ended (Ryan et al., 1993).  This surplus of energy intake above maintenance needs results 

in allocation of energy to growth of various tissues whose accumulation is associated 

with more mature development, particularly muscle hypertrophy and fat accumulation 

(Owens et al., 1993).   
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For cattle stocked on or fed forage-based growing diets, an increase in energy 

required to digest and ruminate fiber based particles as well as an increase in energy 

losses due to heat of fermentation losses lead to an overall increase in energy demands by 

the viscera during the growing phase.  Owens et al. (1993) described observations of 

grazing cattle with an increased in DMI entering the finishing phase but a lower feed 

conversion to gain compared with cattle placed on finishing diet rather than grazing.  He 

attributes this to increased ruminal capacity with increased energetic costs of maintaining 

a larger visceral mass.  However visceral mass, particularly the liver and digestive tract, 

contracts as cattle adapt to a finishing diet, decreasing metabolic requirements of animal 

for maintenance of the viscera (Owens et al., 1993).  This decrease of energetic needs to 

maintain the viscera in combination with lower energetic losses from finishing diets 

result in an increase in energy available for growth.  Transitioning from a growing to 

finishing diet regardless of growing strategy, enhances secretion of insulin, due to an 

increase in glucose uptake (Blum et al., 1985; Wester et al., 1995).  Blum et al. (1985) 

hypothesized that an increase in insulin concentration serves as an initiating signal for the 

anabolic growth processes.   

GROWING PHASE STRATEGIES  

Cattle displaying characteristics of “framing out” due to a lowered plain of 

nutrition are generally more desirable because of expectations for elevated growth 

performance (i.e. – compensatory gains).  Cattle displaying these characteristics are 

referred to as “green”.  An immature or “green” appearance can be achieved by various 

nutritional strategies during a growing phase. Selection of strategy varies based on feed 

or land availability and cost-to-benefit ratio for the producer.  Weighing benefits across 
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strategies is challenging as differences in the duration of growing phase, severity of 

caloric restriction, maturity of animal at harvest, sex, genetic background, and diet 

composition all play a role in the observed inconsistencies between studies reported in 

literature.   

Effects of stocking and grazing growth strategies are arguably most difficult to 

effectively evaluate due to an inherent deficiency in knowledge of actual intake or energy 

intake consumed.  Feed intake in ruminants is regulated by two factors: chemostatic or 

physical.  Chemostatic regulation refers to the effects of metabolic signals indicating that 

the need for nutrients has been satisfied.  Physical limitations result from by rumen fill 

reaching a level where feed particles are not readily leaving the rumen thereby reducing 

capacity for additional feed to be consumed (slow particle disintegration rate) and/or 

intake rate limitations (prehension or ease of swallowing constraints; Poppi et al., 1993).  

Intake control in growing cattle fed ad libitum results from physical limitation.  However, 

due to the variability in caloric density of these diets, intake limitation between growing 

strategies varies.  Grazing cattle are continuous eaters; they maximize the upper limit for 

eating time (12 hours; Arnold, 1981).  A rate of intake limitation occurs when feed is 

consumed at a slowed rate due to a greater time needed for prehension and a decrease in 

ease of manipulating feed for swallowing (in case of more mature forages).  Forage-fed 

dry lot cattle consuming ensiled forages are not limited by rate of intake to the same 

extent as grazing cattle as feed particle size is uniform with consistent moisture content.  

Although rate of intake may differ, total intake for both grazing cattle and cattle fed 

harvested forages in a drylot is limited by rumen capacity because of the combined effect 

of weight and volume on the tension receptors in the reticulorumen (Allen, 2000).   



  27 

 

Greater rumen fill leads to an increase in rumen volume in cattle fed forages or 

grazing.  A review by Rohr and Daenicke (1998) found that gut fill ranged from 11 to 

17.1% of live weight depending upon various dietary factors.   Dietary forage type plays 

a large part in this variation. Waldo et al. (1990) found that steers fed alfalfa haylage at 

similar intakes had 28% less gut fill than cattle fed grass silage. Carstens et al. (1991) 

suggested that much of the compensatory gain response was due to changes in gut fill and 

body composition of gain.  Hogg (1991) suggested that DMI variability in the finishing 

phase results from differences in dietary energy content of the growing diet, with greater 

DMI coming cattle grown in forage-based strategies.  Sainz et al. (1995) expounded on 

the suggestion by Hogg (1991)  by demonstrating that differences in initial finishing 

weight gain between cattle grown on forages verses cattle placed in a feedlot post-

weaning was not due simply to an increase in visceral mass but instead related to an 

increase in capacity for dry matter intake. Combined observations by Hogg (1991) and 

Sainz (1995) conclude that an increase in gut fill capacity for high forage growing 

strategies can prove beneficial to finishing performance and do not solely represent a loss 

from an increase in drop weight.  However, caution needs to be exercised to ensure the 

increase in digestive tract weight at slaughter can be compensated by efficiently 

converting increased intake capacity in finishing phase to increased empty body weight 

gains.    

Growing growth effect on finishing and carcass performance 

The ability to precisely predict how growing phase strategies affect finishing and 

carcass performance is imperative to maximize the benefits of adding a growing phase 

post-weaning.  Across the literature, variable and even conflicting results in performance 
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have been observed between growing strategies making predictions of performance 

challenging.  Differences in duration of growing phase, severity of caloric restriction, 

maturity of the animal at harvest, sex, genetic background, and diet composition all 

played a role in the observed inconsistencies between studies.  Growing phase strategies 

published in the literature represent the range from low caloric density dry lot diets to 

grazing systems on native range.  Each strategy presents a unique management decision 

especially when considering possible interactions of dietary energy intake with number of 

days on feed.  As experiments within the literature have led to conflicting observations on 

finishing and carcass performance, certain research groups have turned to a meta-analysis 

approach to better understand the effects of growing strategies on finishing (Lancaster et 

al., 2014; Klopfenstein et al., 1999).  Lancaster et al. (2014) was able to generate 

prediction equations for finishing and carcass performance estimates.  Average daily gain 

in growing phase and body weight at the end of the growing phase were primary 

predictors of finishing and carcass performance characteristics (i.e. finishing ADG, 

finishing DMI, HCW, 12th rib fat thickness, LMA, ect.).  However, no correction was 

made for degree of maturity of the animal at slaughter, instead HCW and fat thickness 

were simply used as terms within the prediction equation to correct the carcass 

performance data.  This presents a challenge when interpreting the data because 

observations were not compared at same degree of maturity, so systematic biases exist 

within the predicted data.  Additionally, growing strategy utilized in the experiment was 

not modeled, and because DMI was not used as an independent variable, it is challenging 

to understand intake capacity differences that stem from different dietary forage content.  

In their review of grazing cattle prior to a finishing phase, Drouillard and Kuhl (1999) 
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state the imperative nature of standardizing gut fill when comparing across strategies.  

Therefore, there is a need for strategy-corrected prediction equations to better extrapolate 

equations to particular situations common to the industry. 

  McMeniman et al. (2010) and Galyean et al. (2011) were able to predict 

finishing performance based on initial performance as animals came into the finishing 

phase.  The two primary predictors they identified for finishing and carcass performance 

were initial body weight (at the start of finishing) and dry matter intake for days 8 to 28 

of the finishing period.  Therefore, demonstrating the importance of an increase in 

potential to eat but also the amount they gained prior to finishing phase.  Heavier weights 

coming into finishing correlated to an increase in DMI, an increase in final body weight, 

an increase in ADG, and an increase in HCW according to prediction equations presented 

by McMeniman et al. (2010).  Strong correlations between the initial weight at the start 

of finishing and final performance characteristics lend to the idea that the extent of gain 

in the growing period (relating to duration of days on feed and daily gain) may have 

significant impacts on finishing and carcass performance. 

Taylor et al. (2015) examined the interaction of days on feed and a target average 

daily gain by varying both ADG and DOF to achieve same final body weight of cattle 

entering the feedlot. Increased final BW, HCW, ADG, DMI and decreased marbling 

scores were observed for animals with lower growing ADG and longer DOF.  

Demonstrating the differences in magnitude of compensatory gain responses amongst 

backgrounded cattle (both frame size and delayed maturity) correlate to carcass quality 

attributes.  Despite the large amount of research completed on growing cattle, there is still 
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a lack of understanding of the interactions of duration of time in the growing phase and 

rate of gain growing.  

GROWING PHASE IMPACTS ON ECONOMICS 

Although the growing phase is considered a low input situation, as this period is 

extended, the animal’s maintenance requirement costs contribute a greater portion of total 

production costs (Drouillard and Kuhl, 1999). If compensatory gains are expressed when 

market cost of inputs are greatest (i.e. - during finishing), there is the possibility to offset 

inefficient performance during the growing phase.  As apparent from figure A1.21, 

implementing a growing phase has the ability to increase final weights of steers; 

however, this comes at a cost as days on feed.  Therefore, the risk of adding a growing 

phase must also be considered.  Adding days on feed, depending upon how the market 

shifts, may push the slaughter date to a point in the market were animals are less 

profitable.  

Using growth patterns from Sainz et al. 1995 (Figure A1.21), economic scenarios 

can be examined to demonstrate gains and losses from cattle requiring extended days on 

feed due to a growing phase.  Figure A1.22 shows cattle price by month for 2012 to 2016.  

Using these values, if cattle raised without a growing phase were harvested at 450 kg in 

July 2014 for $3.49/kg with yard cost of $0.37/d, gross profit (minus yardage) would 

yield $1,521 per animal.  Instead, if those cattle were raised with a growing period that 

extended the feeding period by 60 days, final weight would increase to 500 kg.  Price on 

September 2014 price (60 d after July price referenced earlier) for cattle was $3.52/kg 

and assuming the same yardage costs per day, gross profit minus yardage would be 

$1,684, $163 more per animal.  However, this example is contingent upon price/kg being 
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relatively stable.  On the opposite end of the spectrum, in July to September 2016, when 

prices were low and continued to fall, a drop in price from $2.58/kg (July 2016) to 

$2.34/kg (September 2016) would cause cattle raised with a growing phase to yield $14 

less than if those cattle were raised without the growing phase and sold in July 2016 

(Table A1.21).  If this example is applied to all possible combinations of 60 d increments 

year round from 2012-2016, cattle raised with a growing phase averaged $120 more per 

animal than cattle raised without growing phase.   During these years, profit from cattle 

raised with a growing phase ranged from $90 less to $290 more than cattle without, 

demonstrating the obvious risk involved with adding a growing phase to a production 

system.  However, on average, positive economic benefits compensate for greater days 

on feed required by cattle raised with a growing period. 

OBJECTIVES OF CHAPTER IV 

A meta-analysis approach was utilized to understand interactions of growing phase 

performance on finishing performance and at constant maturity at harvest, sex, genetic 

background, and dietary strategy.  The objectives of this analysis were to understand: 

1. Impact of growing nutritional strategy on finishing and carcass performance 

2. Understand the impact of calorie consumption and form of calories in the growing 

phase on finishing and carcass performance 

3. Identify interactive terms from the growing phase that correlated to finishing and 

carcass performance 
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Chapter II. 

RUMINAL DIGESTION FACTORS THAT MAY AFFECT INCREASIN G 

ALPHA LINOLENIC FATTY ACID PASSAGE RATE IN GRAIN-FE D CATTLE 

AS COMPARED WITH GRASS-FED CATTLE  

H.E. Larson, R. Gardner, M.D. Stern, A. DiCostanzo  

Department of Animal Science, University of Minnesota, St. Paul, MN 55108 

 

INTRODUCTION 

Because there is a consumer desire to understand fat composition of meat 

presented on retail shelves, an increasing demand for grass-fed beef has developed.  The 

beef consumer index from March 2014 found that 69% of the 19% of consumers not 

consuming beef were doing so because of nutritional reasons.  Nutritional awareness is 

suspected to be a primary driver behind the 20% annual increase in cattle raised in 

alternative systems (organic, natural, and grass-fed) in recent years.  Arguably, a certain 

percentage of this increase is due to misinformed consumer perceptions that alternative 

beef production systems provide a more ideal animal environment, a concern voiced by 

9% of consumers not consuming beef.  However, the majority of concerns expressed 

were in direct relation to human health when consuming beef products.  

 The primary marketing approach for grass-fed beef is the advertisement of 

improved omega-3 to omega-6 fatty acid ratio due to an increase in omega-3 content 

relative to grain-fed beef.  The most common omega-3 is alpha linolenic acid (ALA; 
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C18:3) which serves as a precursor for eicosapentaenoic acid (EPA; 25:5n-3) and 

docosahexaenoic acid (DHA; 22:6n-3).  These polyunsaturated fatty acids are functional 

foods because they serve primary roles in human anti-inflammatory immune responses 

(Cherfaoui et al., 2011).  This desirable shift in nutritional composition of grass-fed beef 

has led to increases in consumers’ willingness to pay up to $3.44 premium per pound for 

grass-fed beef (Abidoye et al., 2011).  However, finishing animals on grass comes at a 

cost.  Grass finishing animals requires a 21% longer feeding period compared with grain-

fed animals (Berthiaume et al., 2006), greenhouse gas production (particularly methane) 

is greatest per kg beef produced for grass-fed cattle (Pelletier et al., 2010), and cattle on 

grass require more extensive land use.  Therefore, within the beef industry, there is an 

opportunity to better understand alternatives to grass-feeding systems that maintain the 

health benefits of grass-fed beef while producing product in a more sustainable and 

efficient manner. 

Studies have shown that omega-3 concentrations in meat and milk are directly 

related to dietary omega-3 fatty acid content of the animal (Wood et al., 2004).   Grass-

fed beef tends to have a greater omega-3 to omega-6 ratio compared with grain-fed beef.  

This is expected as alpha linolenic acid is the primary fat found in grasses and grains are 

generally high in linoleic acid (an omega-6 fatty acid).  However, the objective of this 

study was to determine whether dietary concentrations of omega-3 fatty acids were 

identical between grass- and grain-fed animals.  Also, how does the rumen environment 

alter the amount of non-hydrogenated PUFA to the animal for incorporation into meat or 

milk products?  It was hypothesized that the rumen environment of a grain-fed animal, 

due to time spent at lower pH throughout the day, would decrease PUFA transformation, 
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in turn increasing unsaturated alpha linolenic acid present at the endpoint of fermentation.  

The objectives were to:  

1. Examine the influence of rumen environment on fatty acid profile at the end 

of fermentation for grass- vs. grain-based diets,  

2. Determine differences in flow rates of fatty acids within three different digesta 

phases for grain- vs. grass-based diets, and 

3. Understand rumen microbial activity and efficiency of fermentation when 

cattle were fed grass- vs. grain-based diets.  

MATERIALS AND METHODS 

The experiment was conducted at the University of Minnesota Beef Research Facility 

in Rosemount, MN. All animals involved in this experiment were cared for according to 

guidelines of the University of Minnesota Institutional Animal Care and Use Committee 

(IACUC). All experimental procedures, including diets, sampling, and cannulation were 

reviewed and approved by IACUC (protocol #1507-32760A). 

Animals, Experimental Design, and Dietary Treatment 

Six ruminally cannulated Holstein steers (300 ± 33 kg) were utilized in a 3 x 3 

replicated Latin square design (n = 2 per period).  Periods were 28 d with 21 d of 

adaptation and a 7-d sampling period.  Cattle were housed in tie stalls with individual 

feed bunks and waters.  Body weights were measured on the last day of the sampling 

period after an overnight fast. 

Dietary treatments consisted of a grass-based diet (GRASS), a grain-based diet with 

flax (FLAX), or a grain-based diet with corn oil (CORN) (Table 2.1).  All diets were 

formulated to be isonitrogenous and provide 300 mg/hd/d of monensin.  Omega-3 content 
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of grass sources and flax seed oil was measured prior to the start of the experiment.  

Based on these values, GRASS and FLAX were formulated to provide the same amount 

(g/d) of alpha linolenic acid (ALA).  Within grain-based diets, flax seed oil and corn oil 

were included at the same concentration to ensure the same fat content between grain-

based diets.  Steers were fed for zero refusals with orts recorded and sampled daily. 

Diets were mixed individually on a daily basis using a concrete mixer.  Individual 

diet ingredient samples were collected daily during sampling week and weekly 

throughout the adaptation period.  Grass based diets utilized a high and low quality 

harvested green chop.  Grass consisted primarily of orchard grass and reed canary grass 

harvested from pastures at the Rosemount Research and Outreach Center in late August 

and chopped using a John Deere forage harvester with a haylage head to achieve 

approximately 5.08 cm particle length.  Once harvested, grass was stored in 189 L bags 

and frozen at -20○ C.  Bags were removed from the freezer the night prior to feeding to 

allow to thaw at room temperature.  This harvest method allowed for preservation of 

nutrient composition of grass-fed throughout the Latin square design and allowed for 

confinement of steers for continuous infusions for flow rate data.    

Marker infusion 

The triple marker method, developed by France and Siddons (1986), was utilized to 

determine digesta flow rate.  Markers selected for this study were YbCl3 (modified from 

Siddons et al., 1985) and CoEDTA (Udén et al., 1980) as external markers, and iNDF as 

an internal marker (Ahvenjärvi et al., 2003).  Use of 3 markers allows digesta to be 

divided into small particle phase, large particle phase, and fluid phase, marked by Yb, i 
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NDF, and Co respectively.  Cobalt-EDTA and YbCl3 were dissolved in distilled water 

to create a marker solution for continuous infusion into the rumen.  

On the first day of the sampling period, steers were fitted with an infusion cannula 

plug which allowed for continuous infusion of the flow rate marker solution using a 

peristaltic pump (Masterflex). Cobalt and Yb were infused continuously at a rate of 0.44 

g/d, 0.49 g/d, and 0.10 g/d respectively.  Prior to the start of continuous infusion, a spot 

sample of ruminal contents was collected to establish natural abundancy of Yb and Co 

present.  This sample was frozen at -20º C until lyophilization. Immediately prior to the 

beginning of infusion, a 2 L priming dose of the marker solution was delivered through 

the cannula opening and thoroughly mixed by hand into ruminal contents.  The marker 

solution was continuously infused into the rumen of the steer for the entirety of the 7 d 

sampling period, with the first 3 d representing a plateau period for the concentration of 

markers within the rumen.   

Sample collection 

On d 4, d 5, and d 6 of the sampling period, samples were collected in 8 h 

increments.  Eight h sampling periods were offset so each day represented a different 8 h 

time point relative to feeding to create a 24 hour composite.  Within each 8 h period, 

samples of ruminal and omasal fluid were collected every 4 h and composited to 

represent a 24-h period.  Spot fecal samples were collected at every natural defecation 

during each 8 h period and all samples were composited from the 3, 8 h periods.  Omasal 

samples were collected utilizing the procedure developed by Huhtanen et al. (1997) 

modified by Ahvenjärvi et al. (2000).  A reinforced 1.9 cm diameter hose was manually 

placed in the omasum of each steer at time of sampling.  The hose was connected to a 
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dual flow, vacuum pump and air compressor to ensure that placement of the hose 

remained within the omasum and clogs in the line could be easily be unblocked with a 

low pressure air compressor.  Bi-hourly ruminal and omasal samples were divided into 3 

subsamples at the time of sample collection: 24 h composite (200 mL), 24 h composite 

acidified to pH 2.0 with sulfuric acid (75 mL), and bacterial isolation sample (50 mL).  

Samples were kept on ice during sample collection and stored at -20º C immediately after 

samples were collected until further processing, with the exception of bacterial samples 

which were processed immediately following sample collections.   

On d 7 of the sample collection period, rumen evacuations were conducted.  

Animals access to feed and water were restricted and ruminal contents were emptied 

manually via the rumen fistula opening into a 90 L tub.  Once a majority of solid particles 

were removed, a vacuum pump was used to remove the liquid fraction within the rumen 

to ensure consistent emptying. Tubs containing ruminal contents were weighed, mixed 

and subsampled in triplicate. Samples of ruminal contents were frozen at -20º C until 

further processing and remaining contents were immediately placed back into the rumen 

via the fistula.  Caution was exercised to complete the entire rumen evacuation process in 

less than 30 min to minimize any detrimental impact on the ruminal microbe population 

or animal hydration.  Access to feed and water was restored immediately following 

rumen evacuation. 

Sample processing and chemical analysis 

Composites, acidified composites, and rumen evacuation samples were all frozen 

immediately post collection at -20º C, while bacterial samples were processed 

immediately.   
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Bacterial samples were first strained through 2 layers of cheese cloth.  The fluid 

portion was used to isolate the fluid associated bacteria (FAB) fraction (Firkins et al., 

1984), while the solid fraction separated by cheese cloth was used to isolate solid 

associated bacteria (SAB) following methods outlined by Whitehouse et al. (1994).  The 

fluid portion was centrifuged at 1,000 x g for 10 min to remove feed and protozoal 

contamination.  Supernatant was saved for further centrifugation at 20,000 x g for 20 

min.  The supernatant was discarded, while the pellet was saved to represent the FAB 

fraction and frozen at -20º C until lyophilization.  The solid fraction separated from 

cheese cloth was incubated in 0.8% methylcellulose-saline solution for 1 h in a 39º C 

water bath.  After a 1-h incubation, the solution containing the solid fraction was 

refrigerated at 4º C for 24 h.  After 24 h at 4º C, the sample was mixed for 1 min using an 

omni-mixer.  Solids and methylcellulose-saline solution were then strained through 2 

layers of cheese cloth with the solid fraction rinsed with an additional 100 mL of saline.  

The separated fluid then underwent centrifugation at 1,000 x g followed by 20,000 x g, as 

previously described for FAB isolation.  The isolated pellet represented the SAB fraction 

and was stored at -20º C until lyophillization.  Bacterial isolations were only conducted 

for omasal contents. 

 Omasal and rumen composite samples were thawed at room temperature before 

further separation.  Total sample was weighed and homogenized using an overhead 

mixer.  Prior to separation of digesta phases, a subsample of the homogenized composite 

sample was collected and saved as a reference sample of the digesta composite.  To begin 

phase separations, samples were strained through 4 layers of cheese cloth.  Solids were 

weighed and placed in a separate storage container to be frozen at -20º C until 
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lyophilization.  This sample represented the large particle fraction of digesta (LP). The 

fluid fraction remaining after LP was removed was then centrifuged at 10,000 x g for 15 

min.  The supernatant was poured off into a separate container, weighed and stored at -

20º C until lyophilization.  The supernatant fraction represented the fluid phase of digesta 

(FP).  The pellet formed after centrifugation represented the small particle phase of 

digesta (SP) and was frozen at -20º C until lyophilization.  The weight of the SP phase 

was determined via subtraction of the weights of FP and LP phases from total original 

sample weight.     

Nutrient analysis and digestibility 

Bacterial isolates (FAB and SAB), a subsample of the fecal composites, rumen 

digesta phases (FP, SP, LP), and omasal digesta phases (FP, SP, LP) were frozen on dry 

ice prior to lyophilization to ensure samples were solidified and prevent boiling of the 

sample within the lyophilizer.  Subsamples of feed samples from the last 4 d of the 

sampling period were also frozen on dry ice prior to lyophilization.  

Feed samples and fecal samples (minus subsamples for lyophilization) were dried 

in a conventional drying oven at 55º C.   Once dry, samples were ground through a 2-mm 

screen using a Thomas Model 4 Wiley Mill (Thomas Scientific, Swedesboro, NJ).  

Samples were then analyzed for nutrient composition (DM, OM, CP, and NDF/ADF).  

Feed ingredients were analyzed individually and mathematically re-combined for diet 

composition.  Dry matter was determined using fresh and dry weights from the initial 55º 

C drying (DM1) and then later corrected using an additional 100º C oven drying of 1 

gram subsample (DM2).  To measure ash, 1 g of sample was weighed into a crucible and 

placed in an ashing oven for 12 h at 450º C. Organic matter (OM) was determined using 
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1 minus ash content of sample.  Crude protein (CP) was determined via steam distillation 

Kjeldahl technique (Kjeltec 2300).  A sample of 0.5 g was weighed into a Kjeldahl tube, 

along with 1 CuSO4 kjeltab and 10 mL H2SO4.  The tube contents were digested at 410º 

C for 1 h, after which they were steam distilled using NaOH as an alkali addition, boric 

acid as an indicator solution, and 0.1 M HCl as titrant (all titrations done automatically by 

Kjeltec 2300).  Using an Ankom 200 Fiber Analyzer (Ankom Technology, Macedon, 

NY), neutral detergent fiber (NDF) was determined via 60 min extraction in 100º C 

neutral detergent solution with additions of sodium sulfite and heat stable alpha-amylase.  

Samples high in fat have shown great variation in NDF results due to bound fat within the 

fiber matrix.  To reduce variability between replicates, samples with greater than 5% fat 

underwent a biphasic fat pre-extraction procedure prior to NDF analysis using diethyl 

ether and petroleum ether (modified from Bremer et al., 2010).  After NDF analysis, 

samples were gently shaken in 400 mL of acetone, allowed to air dry for 2 h and then 

placed in a 100º C oven overnight to obtain a hot weight. This final weight along with a 

hot bag weight and a sample weight were used to calculate NDF percent of the sample.  

After a final hot weight was collected, the sample then underwent acid detergent fiber 

(ADF) analysis using a 60 min 100º C extraction procedure in an ANKOM 200 fiber 

analyzer, with ADF solution.  After ADF analysis, samples were placed in 100º C oven 

overnight to obtain a hot weight. This final ADF weight along with the final NDF hot 

weight were used in the calculation of ADF percent of the sample.   

Subsamples of feed as well as omasal phases were all lyophilized using a Virtis 

shelf freeze drier.  Approximately 500 g of sample were placed in 22.9 x 33.0 x 5.1 cm 

aluminum pans spread less than 2 cm thick and covered with a standard hair net.  The 
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hair net prevented transfer of small particles or volatile compounds into the oil of the 

lyophilizer.  Once in aluminum pans, samples were placed on dry ice overnight until the 

sample was completely frozen.  This is critical for rumen and omasal fluid samples to 

prevent boiling of any liquid within the sample during the sublimation process. The 

lyophilized subsample of feed was analyzed for fatty acid (FA) profile.  Analysis was 

completed using Jenkins 1-step direct methylation procedure, with internal standards of 

Tridecanoic acid (C13:0) and Heptadecenoic acid (C17:1).  A 0.5-g sample was weighed 

into screw cap borosilicate tube and 0.5 mL of 2 mg/mL internal standard:toluene and 3 

mL 5% Methanolic HCl were added directly to the tube.  The tube was vortexed and 

incubated in 70º C shaking water bath for 2 h.  Following incubation, 7.5 mL 6% K2CO3 

and 1 mL Hexane were added.  The solution was centrifuged at 286 x g for 8 min at 4º C.  

The organic layer was transferred to a separate tube and one scoop (~0.4g) of charcoal 

was added.  The solution was vortexed and allowed to sit for 1 h, after which the sample 

was re-centrifuged at 418 x g for 5 min.  The top layer of solution was pipetted into a gas 

chromatography (GC) vial and refrigerated until analyzed for fatty acid composition.  

Fatty acid methyl esters were measured using GC using an Agilent 7890B gas 

chromatograph.  Samples were run through a capillary column (100 m x 0.25 mm i.d. 

with 0.2 um film thickness) with fame-ionization detector with hydrogen as carrier gas.  

Pure methyl ester standards (GLC 60; Nu Chek Prep Inc., Elysian, MN) we used to 

identify methyl ester peaks.   

 Separated phases of omasal digesta were also analyzed for DM (via lypohilization 

pre and post-weights), OM, NDF/ADF, CP, and fatty acids using the same procedures 

described for feed analysis with the exception of fatty acid analysis of omasal digesta.  



  42 

 

Feed was analyzed for fatty acid composition using Jenkins-1 step direct methylation 

procedure, while omasal digesta phases were analyzed via Jenkins-2 step methylation 

procedure.  The primary difference between these two procedures is that the Jenkins 2-

step adds 2 ml 0.5 M Sodium Methoxide to the sample and incubates it at 50º C for 10 

min prior to addition of 5% Methanolic HCL.  The remainder of preparation steps 

proceed in accordance with those described for feed analysis.   

Lyophilized digesta phases were also measured for Yb, Co, and iNDF as markers 

for passage rate determinations.  Samples were prepared for Yb and Co analysis 

following the procedure of Ellis et al. (1982).  Omasal digesta phases (LP, SP, and FP), 

and fecal samples were ashed and digested in an acid mixture of 3M HCL and 3M HNO3 

for 12 h.  Samples were filtered through a Whatman #1 filter and diluted using deionized 

water and a 6% KCl solution.  Natural abundance of markers (particularly Co) were 

determined by measuring Yb and Co in lyophilized rumen spot samples collected prior to 

the infusion of marker solution. Concentration of Yb and Co were determined using 

Inductively Coupled Plasma (ICP) spectrometry at UF/IFAS Analytical Services 

Laboratory (Gainesville, FL).   Both SP and LP omasal digesta phases, in addition to 

fecal samples and rumen evacuation samples were analyzed for iNDF (Van Soest et al., 

1991), with iNDF representing the large particle passage rate of digesta.  The fluid phase 

was not analyzed for iNDF as it was assumed that no indigestible fiber was present in this 

phase.  A 0.5-g sample was weighed into a 125-mL Erlenmeyer flask, in duplicate.  

Samples were inoculated with 40 mL of pre-warmed in vitro “day of inoculation” 

solution (mixture of in vitro rumen buffer, in vitro macromineral solution, and in vitro 

micromineral solution plus Trypticase and a reducing solution and indicator), and 10 mL 
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of rumen fluid previously strained through 4 layers of cheese cloth.  Samples were placed 

in a 39º C water bath continuously gassed with CO2 with pressure monitored using a 

barometer to maintain approximately 5 cm water displacement.  All flasks were 

incubated for 240 h and then stored at 4º C until analyzed.  Contents of each fermentation 

bottle, including blanks, were analyzed for NDF content using Van Soest reflux apparatus 

method with same solution as NDF method described earlier (Van Soest et al., 1991).  

Neutral detergent fiber remaining after 240 h incubation was considered indigestible 

(iNDF).  This procedure was repeated until there were 4 observations per sample with 2 

different fluid inoculation time points.  In addition to the analysis of the 3 markers for 

digesta passage rate (Yb, Co, iNDF), a microbial marker was also analyzed to determine 

microbial contribution to nutrient flow.  Purines were used as internal microbial marker 

and measured in both the microbial isolates as well as omasal digesta phases using the 

procedure developed by Zinn and Owens (1986).  Pure torula yeast RNA was utilized as 

a standard to generate the standard curve using known concentrations of pure bacterial 

purines.  All samples and standards were digested in 70% perchloric acid at 90º C for 1 h 

after which 0.0285M Ammonium Phosphate buffer was added to solution to help break 

up the charred mass formed from perchloric acid digestion of the sample.  Solution was 

vortexed and incubated at 90º C for an additional 15 min.  Samples were immediately 

filtered through a Whatman 54 filter.  Filtered solution (0.5 mL) was combined with 0.5 

mL of silver nitrate in a screw-cap centrifuge tube, along with 9 mL of 0.2M ammonium 

phosphate buffer.  Samples and solution were then stored in a dark refrigerator overnight.  

After overnight incubation, samples were centrifuged at 10,000 x g for 10 min, 

supernatant was discarded and pellet washed with 10 mL of deinonized water that was 
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adjusted to pH 2 with sulfuric acid.  Samples were re-centrifuged and supernatant was 

discarded once again.  Ten mL of 0.5 M HCl were then added to the pellet and vortexed 

to suspend the pellet in solution.  Samples were then incubated for 30 min at 90º C, and 

re-centrifuged.  Supernatant was pipetted into a UV transparent 96 well plate and read at 

260 nm using a Biotek Synergy plate reader.  Absorption values were converted to 

mg/mL using the standard curve created with torula yeast.    

 Samples of rumen and omasal fluid that were acidified and left in the collected 

form were thawed and analyzed for ammonia-N and VFA.  In preparation for ammonia-N 

analysis, samples were first centrifuged at 5,000 x g for 15 min to remove feed particles 

from solution.  Then, 15 mL of sample were pipetted into a Kjeldahl tube containing 2g 

MgO and 15 mL of distilled water.  This solution was then analyzed via steam distillation 

in a Kjeltec 2300 for N content, representing ammonia-N concentration of the fluid 

sample.  Acidified rumen and omasal fluid were also analyzed for selected VFA: acetate, 

propionate, butyrate, valerate, isobutyrate, isovalerate and 2-methylbutyrate.  Five-point 

calibration curves were built for each of these VFA with known amounts of standard 

solutions.  Calibration curves allow a correlation to be constructed between the area 

under the curve value provided from gas chromatograph and the concentration of VFA 

present.  Samples were prepared for GC analysis following a modified procedure by 

Erwin et al. (1961) for ruminal fluid VFA analysis.   Samples were prepared using a 

similar centrifugation process to that used for ammonia-N analysis to remove feed 

particles.  A 2.0 mL sample of supernatant was added to a solution of 25% meta-

phosphoric acid/2-Ethyl-Butyrate (2-EB) which then underwent a series of centrifugation 

and freeze and thaw steps.  During these steps, meta-phosphoric acid aids in protein 



  45 

 

precipitation while 2-EB serves as an internal standard for GC analysis.  Supernatant was 

filtered through 0.45 μm polyethersulfone micropore-filter and added to distilled water.  

One N NaOH was utilized to adjust pH of the solution between 6 and 7 to prevent any 

damage to the GC column packing.  Prior to transferring to a GC vial for analysis, 0.03% 

oxalic acid was added to solution to prevent “ghost effects” and maintain column 

performance by degrading to formic acid during injection (Fussell and McCalley, 1987).  

Samples were then transferred to a GC vial and frozen at -20º C until analysis was 

conducted.  Prepared sampled were thawed for 1 h prior to analysis in Hewlet-Packard 

HP6890 Gas Chromatograph.  Samples were run through 2 m x 0.64 cm x 2 mm 

carbopack glass column (SUPELECO) with 40 min run time: 27 min initial run time at 

175º C, 9 min ramp time to 225º and 4 min post run.  

Calculations 

Calculated reconstitution of true omasal digesta, devoid of sampling error, was 

determined using equations outlined by France and Siddons (1986).   

Statistical Analyses 

Data were analyzed using the mixed procedure of SAS 9.4 (SAS Institute Inc., 

Cary, NC).  Intake, fermentation parameters and flow data were analyzed as a Latin 

square with experimental design effects included as random factors.  The statistical 

model was as followed: 

Y ijkl  = μ + αi + Sk + Pl + εijkl 

μ = population mean 
α = ith effect of treatment 
S = Random kth effect of steer 
P = Random lth effect of period in time 
ε = residual error 
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Hourly pH measurements were analyzed within a similar model with hour as a repeated 

measure, and subject of steer within period with variance modeled using Toeplitz 

covariance structure. 

RESULTS AND DISCUSSION 

Intake, rumen volume and flow rate 

Grass-fed cattle had greater (P < 0.01) as-fed intakes (AFI) relative to grain-fed 

cattle, but lower dry matter intakes (DMI; P < 0.01; Table 2.3) relative to grain-fed 

treatments.  Differences in intake can be explained by extreme differences in DM % of 

the diet (Table 2.2).  However this inverse relationship between AFI and DMI is 

important to consider when interpreting weight of ruminal contents. No differences were 

observed (P = 0.30) between treatments for DM ruminal contents, but increased (P < 

0.001) as-is ruminal content weights were observed for grass compared with grain 

treatments (Table 2.3).  Droulliard and Kuhl (1999) stated that ruminal fill on a DM basis 

has limited use and application because there is no consideration of variation in DM 

content of the diet.  Because grass-fed cattle consumed less feed on a DM basis but had 

no difference in DM ruminal contents it can be concluded that these animals had a longer 

rumen retention time than grain-fed counterparts.  This conclusion is reinforced by 

greater as-is ruminal contents observed for the grass-fed treatment.  This slowed passage 

out of the rumen paired with greater as-is ruminal contents lead to the conclusion that 

grass-fed cattle had greater rumen capacity.  Greater rumen volumes were expected for 

grass-fed cattle as greater as-fed intakes are generally required in order to consume 

calories necessary for energy requirements.  A review by Rohr and Daenicke (1984) 

found that gut fill ranged from 11 to 17.1% of live weight depending upon various dietary 
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factors.   Dietary forage type plays a large part in this variation.  Feeding forages 

typically leads to an increase in passage rate if the forage consumed is high quality.  

Contrary to this, less true digesta flow (kg/d) was observed (P = 0.05; Table 2.3) for 

grass-fed cattle compared with grain-fed cattle despite a high quality orchard grass-mix 

being fed.  This may be a consequence of experimental execution.  Because cattle were 

fed once a day in bunks, feedlot-like eating behaviors were exhibited.  Larger meals were 

consumed earlier in the day with all feed consumed before feeding the following day.  

This behavior contradicts normal grazing which would be multiple small meals 

throughout the day to seemingly “push” feed through the rumen at faster rate. Instead, 

longer retention times were observed (P = 0.03; Table 2.3) for grass-fed compared with 

grain-fed cattle.      

Fermentation parameters and rumen environment 

Ruminal volatile fatty acid (VFA) concentration was greater (P = 0.05) for grain-fed 

cattle compared with grass-fed (Table 2.4). However when extrapolated to moles of VFA 

in the rumen, there were no differences between treatments (P = 0.53; Table 2.4), 

demonstrating the importance of rumen volume when comparing different feeding 

systems (i.e.- grain vs. grass-fed cattle).  Despite similar VFA totals in the rumen, grass-

fed cattle had a higher ruminal pH (P < 0.01) , with an average ruminal pH of 6.6 

(GRASS) vs 6.0 (FLAX) and 6.0 (CORN) in grain-fed treatments (Figure A2.1; Table 

2.5).  Less severe pH declines are partially explained by a greater (P < 0.01) acetate to 

propionate ratio in grass compared with grain-fed cattle (Table A2.4).  Greater pKa of 

propionate leads to more severe pH impacts on the rumen compared with acetate (van 

Houtert, 1993).  Additionally, production of acetate is associated with microbial 
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breakdown of forages.  Fiber digestion by ruminal bacteria occurs after a lag period 

leading to a delay in digestion rate.  This slowed rate of digestion in combination with a 

less severe pKa of the primary VFA produced, acetate, offers an explanation for the 

higher ruminal pH of the grass-fed treatment while maintaining the same total volume of 

VFAs as grain-fed treatments.  Due to an increase in mastication and rumination with 

high forage-fed ruminants, there is also an increase in buffering capacity of ruminal 

contents due to larger quantities of saliva production. 

Nitrogen Flow 

Because of challenges in balancing a grain-based finishing ration to match the 

high CP content of the orchard grass mixture utilized, diets were not isonitrogeous.  The 

grass-fed diet was highest in CP (19.1 for GRASS,  17.5  for FLAX and 17.5%  for 

CORN; Table 2.2) of all treatments.  However on a g of N intake basis, grass-fed cattle 

had the lowest N intake (P < 0.01; Table 2.6) due to lower DMI (P < 0.01; Table 2.3), 

demonstrating that a balanced total N flow would have to be achieved by formulating 

rations with known DM intakes.   

Lower intake of N in GRASS was accompanied by lower (P < 0.01) g of non-

ammonia non-microbial nitrogen (NANMN) passage as a percent of total N flow (Table 

2.6), indicating greater ruminal digestion of dietary CP compared with grain-fed cattle.  

This greater ruminal digestion could be due to differences in ruminal degradable protein 

between diets (which was not tested), or due to the slower passage rate which allowed for 

longer retention of feed in the rumen.  If the latter, better understanding the impact of 

forage eating behavior on digestibility is important in extrapolating these results back to 

grazing cattle from those fed green-chop in a bunk as in this study.   
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Greater dietary CP degradability in the rumen of less readily available N source 

can explain a higher (P = 0.02; Table 2.6) ruminal ammonia-N flow in GRASS compared 

with CORN and FLAX.  Bacterial-N as a percent of total N flow was also higher (P = 

0.01) for grass-fed compared with grain-fed treatments.  Reis and Combs (2000) 

observed a decrease in ruminal ammonia-N when concentrate was fed to grazing dairy 

cows.  They concluded that adding fermentable substrate to provide energy to microbes 

improved utilization of N in pasture-grazed ruminants.  Although an increase in 

ammonia-N can indicate inefficient utilization of dietary N, ammonia as a substrate 

serves as the primary N source for fiber digesting bacteria, especially cellulolytic bacteria 

(Burroughs et. al., 1951).  Therefore, an increase in ammonia accompanied by an increase 

in bacterial-N flow may indicate an ideal environment for fiber digesting bacteria to 

flourish.  This ideal environment may partially explain the increase (P = 0.01; Table 2.6) 

in percent bacterial-N flow.        

 The NRC (1996) MCP synthesis model with a forced (0, 0) intercept, predicts 

digesta flow of finishing steers to contain approximately 816 g MCP/d, while digesta 

from growing steers fed high forage were estimated at 609 g MCP/d.  The NRC (2017) 

MCP synthesis model with no forced intercept, predicts finishing steers flow to be 

approximately 822 g MCP/d while growing steers were estimated at 450 g MCP/d.  

Within the current experiment, using FLAX as comparison for finishing steers and 

GRASS as comparison for growing cattle, values of 899 g MCP/d and 658 g MCP/d 

respectively were determined.  An overestimation of MCP was expected because purines 

were used to analyze bacterial content (Obispo and Dehority, 1999).  Despite the 

overestimation, from the comparison of these data to the NRC models, the NRC (1996) 
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model was determined to be a better predictor of MCP synthesis.  The difference in MCP 

synthesis can be explained by flow rate differences in cattle fed these types of diets.  A 

lower quantity of bacteria within digesta flow was expected for treatments with lower 

total digesta flow, simply due to longer retention times in the rumen.  Initially higher (P = 

0.05; Table 2.3) OM digestibility for GRASS supports the concept that more substrate 

was available for microbes because of a larger rumen capacity.  The lower quantity of 

MCP makes sense because total flow (kg/d) was lower (P = 0.05; Table 2.3) for GRASS.  

On a percent basis, there is an increase in bacterial contribution to N flow for GRASS (P 

= 0.02; Table 2.6).     

Fatty acid profile transformation 

In general, g of stearic acid in the flow of digesta were higher than dietary stearic 

acid intake due to biohydrogenation of C18 unsaturated fatty acids by rumen microbes.  

Results from the current experiment show an increase (P = 0.04) in the ratio of g of 

stearic acid to g of C18:2 and C18:3 fatty acid intake for GRASS compared with either 

FLAX or CORN.  This may be due to the fact that C18:3 and C18:2 make up a large 

majority of the total fatty acids in the diet of grass-fed cattle and therefore an increase in 

ruminal availability leads to a greater contribution to stearic acid formation.  Linolenic 

(C18:3) and Linoleic (C18:2) acids are also preferentially biohydrogenated over fatty 

acids with less unsaturated bonds like C18:1.  Doreau and Ferlay (1994) noted an 

increase in the amount of C18:3 biohydrogenation compared with C18:2 when added as a 

substrate to the same rumen environment. 

This study hypothesized that grain fed cattle may have lowered biohydrogenation 

of polyunstaturated fatty acids because of an increase in time spent below pH 5.7.  
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However this is difficult to discern due to DMI differences across treatments in g of fatty 

acids consumed.  No differences (P = 0.88) in g of omega-3 fatty acid transformed were 

observed across treatments while lower g/d omega-6 fatty acid transformation was 

observed for grass compared with grain-based diets (P = 0.01; Table 2.7).   Oleic acid 

showed a trend (P = 0.07) for increased transformation when cattle were fed grass 

compared with grain-based diets (Table 2.7). The lack of consistent response in fatty acid 

transformation across the major C18 PUFA suggests that ruminal environment effects 

transformation differently for different fatty acids.  It is important to note that the trend 

for an increase in biohydrogenation of fatty acids with increased unsaturated bonds first 

observed by Doreau and Ferlay (1994) is also found in the current experiment regardless 

of treatment.  Linolenic acid had the greatest numeric g of fatty acids transformed per g 

dietary fatty acids intake, followed by linoleic and oleic acid respectively (Table 2.7). 

 Russel and Dombrowski (1980) indicated that ruminal pH had a strong impact on 

reducing enzyme activity involved in the biohydrogenation process.  However with 

inconsistent transformation responses to treatment observed across C18:1, C18:2, and 

C18:3 unsaturated FA, the question becomes whether biohydrogenation processes are 

more effected by ruminal pH, dietary monensin inclusion or a combination of the two?  

Because monensin was added to both grass-fed and grain-fed diets, it is not possible to 

measure this in the current experiment.  No differences were observed in omega-3 

biohydrogenation across treatments, so it can be concluded that pH changes in the 

presence of monensin, specifically time spent below 5.7, do not have a large impact on 

the extent of biohydrogenation of omega-3 fatty acids.  Contrary to what was 

hypothesized, grass-fed cattle elicited a decrease in biohydrogenation of C18:2 fatty 
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acids.  Oleic acid was the only fatty acid that showed a trend for higher (P = 0.07) 

transformation in grass compared with grain-based diets.  Differences in transformation 

are most likely related to dietary fatty acid profile and abundance of certain fatty acids 

within the rumen.  Linoleic acid (C18:2) accounts for 18% the fatty acids in  FLAX and 

51% of the fatty acids in CORN, but only contributes 7% of fatty acids in GRASS.  

Therefore C18:2 would be more concentrated in fat fraction in rumen of grain fed 

animals than grass fed, which would change probability of biohydrogenation microbes 

having contact with C18:2 in different rumen conditions.  Further research will need to be 

conducted to fully understand the effect of monensin and ruminal pH on 

biohydrogenation across grain and grass-fed diets.      

Despite no differences in transformation percent, greater fatty acid intake 

stimulated greater omega-3 fatty acids in the digesta of FLAX cattle. Because USDA 

regulations for omega-3-rich meat require suppliers to list the mg of omega-3 present in 

the product, increasing total g of omega-3 in the meat using flax supplementation could 

be an economically and sustainably viable alternative to grass-feeding systems for 

producing beef products.  

Unpublished data by Bauchart and Poncet referenced in Chilliard et al. (2000) 

shows differences in efficiency of utilization of omega-3 fatty acids under different 

rumen environmental conditions.  The lowest efficiency of utilization of omega-3 was in 

fresh grass based diets, however in this study fresh grass also had the greatest amount of 

C18:3 intake.  Numerous studies (Chilliard et al., 1991; Drackley et al., 1992; Christensen et 

al., 1994; LaCount et al., 1994; Ottou et al., 1995; Litherland et al., 2005) determined a linear 

decrease in transfer efficiency of C18:3 from the intestine to deposition in milk when increasing 

C18:3 amounts are presented to the small intestine.  Bauchart and Poncet (unpublished data) 



  53 

 

indicated that an increase in C18:3 presented to the small intestine may have negatively affected 

the efficiency of utilization of C18:3 for grass-fed cattle (Chilliard et al., 2000).  However this 

study also compared efficiency of C18:3 utilization for diets containing hay to concentration 

ratios of 75:25 and 30:70.  It is interesting to note the increase in efficiency of utilization from 

4.71% in 75:25 diet to 9.05% in 30:70 diet despite very similar C18:3 grams presented to the 

small intestine.  This increase in efficiency indicates that grain-fed cattle fed diets may have an 

improved ability to utilize C18:3 for incorporation into meat products.   An increase in efficiency 

of C18:3 utilization presents an added benefit of utilizing flax supplementation in grain-based 

systems to obtain omega-3 rich meat products to meet the demand of the modern-day consumer. 

CONCLUSIONS 

Diet is a primary driver in characterizing the ruminal environment. Rumen 

volume and passage rate were characterized both by diet as well as eating behavior.  

Grass-fed cattle exhibited larger as-fed intakes but lower DM ruminal contents because of 

the high moisture content of the diet.  Despite larger as-fed intakes, grass-fed cattle also 

had slower passage rates compared with grain-based treatments likely due to once-a-day, 

slick-bunk management rather than traditional continuous feeding in grazing 

environment.  Slower passage rate in grass-fed cattle increased OM digestibility and % 

bacterial N flow in digesta.  An increase in ruminal ammonia and decrease in RUP in 

omasal true digesta of grass-fed cattle compared with grain-based treatments 

demonstrated an inefficiency of utilization of N sources, most likely as an alternative 

energy source for microbial growth.  The magnitude of transformation of unsaturated 

fatty acids was directly related to the contribution of that fatty acid to the dietary 

inclusion.  Fatty acids with the greatest number of unsaturated bonds found in the highest 

abundance were transformed preferentially.  Despite no differences in percent omega-3 
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transformation across treatments, cattle on the FLAX treatment demonstrated the greatest 

g of omega-3 fatty acid flow escaping biohydrogenation due to an increase in intake of 

dietary omega-3 fatty acids.  From these conclusions it can be implied that providing 

grain-fed cattle with a dietary source of omega-3 FA, like flax oil, is an economically and 

sustainably favorable alternative to grass-fed systems for producing beef with increased 

mg of omega-3 fatty acids.  
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Table 2.1 Dietary ingredient composition of grass-fed and grain-fed treatments with 
either a flax oil or corn oil supplement 
 

Inclusion, % DM GRASS FLAX CORN 

Green chop grass1 95 . . 

Rye grass silage . 12 12 

Soybean meal . 14 14 

Dry rolled corn . 75 75 

Flax oil . 2 . 

Corn oil . . 2 

Liquid supplement2 5 . . 

Liquid supplement3 . 4 4 
1Green chop grass was harvested at one date, frozen and thawed and fed fresh daily  
2,3Liquid supplement - provides increased RDP in form of urea and formulated to supply 300 
mg/hd/d monensin 

        2Liquid supplement = low protein concentration 

        3Liquid supplement = high protein concentration 
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Table 2.2 Nutritional composition of dietary treatments for grass-fed and grain-fed cattle 
with either a flax oil or corn oil supplement 
 

 GRASS FLAX CORN 

DM, % 27.3 79.5 79.6 

OM, % DM 86.3 96.0 96.0 

CP, % DM 19.1 17.5 17.5 

NDF, % DM 53.6 21.1 21.0 

ADF, % DM 27.1 8.9 8.9 

TDN1, % DM  70.2 89.7 89.7 

NEm, Mcal/kg 2 1.74 2.31 2.31 

NEg, Mcal/kg 3 1.03 1.54 1.54 

Fatty Acids, % DM 2.7 6.1 5.9 

C18:0, % FA 0.1 0.2 0.1 

C18:1, % FA 0.2 0.5 0.5 

C18:2, % FA 0.2 1.1 3.0 

C18:3, % FA 1.0 2.5 0.3 
1calculated from TDN contribution of each ingredient calculated from ADF to TDN 
equation for that particular ingredient class 
2 NEm: Mcal/kg = (TDN % x 0.01318) - 0.132 
3 Neg: Mcal/kg = (TDN % x 0.01318) - 0.459 
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Table 2.3 Intake, digestibility, flow, and rumen volume measurements for grass-fed and grain-fed cattle with either flax oil or corn oil 
supplement 

 

  GRASS FLAX CORN SEM1 P-value 

As-fed intake, kg/d 17.84 a 10.68 b 11.18 b 0.50 < 0.01 

DM intake, kg/d 5.04 a 8.50 b 8.80 b 0.36 < 0.01 

True digesta Flow, kg/d 6.42 a 8.15 b 8.24 b 0.69 0.05 

True OM digestibility2 , % 68.18 a 59.42 b 54.57 b 5.25 0.05 

Flow rate, % of rumen volume/h 3.40 5.10 5.33 0.51 0.06 

Retention time, h 30.37 a 21.38 b 19.46 b 2.45 0.03 

Ruminal contents DM, kg 8.12 6.93 6.72 0.74 0.30 

Ruminal contents DM, % SBW 2.79 2.43 2.15 0.20 0.09 

Ruminal contents as-is, kg 59.23 a 39.57 b 38.79 b 2.47 < 0.01 

Ruminal contents as-is, % SBW 20.7 a 13.9 b 12.8 b 1.2 < 0.01 
1SEM = Standard error of the mean      
2calculated: kg OM intake – (kg OM flow – kg OM bacteria in flow) 
abUnlike superscripts differ (P < 0.05) 
 
 
 
 
 
 
 
 
 
 
 

57 



  58 

 

Table 2.4 Ruminal VFA concentration and composition as affected by grass-fed and grain-fed cattle with either a flax oil or corn oil 
supplement 
 

  GRASS FLAX CORN SEM1 P-value 

Total, mM 136 b 182 a 189 a 22 0.05 

Total Mol in rumen volume2 7,056 8,020 7,331 732 0.53 

acetate, % 70.0 b 46.6 a 48.5 a 1.2 < 0.01 

propionate, % 19.6 b 39.1 a 36.5 a 2.5 < 0.01 

butyrate, % 7.1 9.8 9.7 1.7 0.45 

valerate, % 0.6 b 2.1 a 2.0 a 0.2 < 0.01 

isobutyrate, % 0.9 0.8 0.8 0.1 0.54 

isovalerate, % 0.6 0.6 0.7 0.1 0.57 

2-MB3, % 1.1 1.0 1.7 0.3 0.17 

Acetate : Propionate 3.6b 1.2a 1.4a 0.2 < 0.01 
1SEM = standard error of the mean 
2Total mol in total rumen volume = mM * kg as-is weight in rumen 
32-MB = 2-methylbutyrate 
abUnlike superscripts differ (P < 0.05) 
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Figure 2.1 Hourly differences in ruminal pH post feeding as affected by grass-fed and 
grain-fed cattle with either a flax oil or corn oil supplement 
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Table 2.5 Effects of grass-fed and grain-fed cattle with either a flax oil or corn oil supplement on average ruminal pH and time 
ruminal pH spent below ruminal pH 5.7  
 

 GRASS FLAX CORN SEM1 P-value 

Average pH 6.6 a 6.0 b 6.0 b 0.1 < 0.01 

Time below 5.7, h 0.0 a 7.5 b 8.8 b 2.0 0.02 

1SEM = standard error of the mean 
abUnlike superscripts differ (P < 0.05) 
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Table 2.6 Omasal true digesta N flow for grass-fed verses grain-fed cattle with either a flax oil or corn oil supplement  

  GRASS FLAX CORN SEM1 P-value 

N Intake, g/d 141.4 b 251.2 a 253.5 a 9.9 < 0.01 

NH3-N3, mg/dL 6.3 b 3.4 a 3.6 a 1.3 0.01 

Total N Flow, g 146.6 b 250.7 a 251.3 a 15.2 < 0.01 

NH3-N3, g/d 1.2 b 0.8 a 0.8 a 0.3 0.02 

Bacterial N, g/d 105.3 b 143.9 a 155.0 a 9.4 0.01 

NANMN2, g/d 40.1 b 106.1 a 95.1 a 10.4 < 0.01 

NH3-N2, % of total N 4.1 b 1.4 a 1.5 a 0.8 < 0.01 

Bacterial-N, % of total N 69.5 b 57.3 a 61.2 a 2.9 0.02 

NANMN3, % of total N 26.4 b 41.4 a 37.4 a 3.0 < 0.01 
1SEM = standard error of the mean 
2NH3-N = Ammonia-N 
3NANMN = non-ammonia, non-microbial nitrogen 
abUnlike superscripts differ (P < 0.05) 
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Table 2.7 Fatty acid composition of intake, omasal true digesta flow, and percent dietary fatty acid transformed in the rumen for grass-
fed and grain-fed cattle with either a flax oil or corn oil supplement  
  GRASS FLAX CORN SEM1 P-value 
Intake, g/d      

C18:0 4.8 b 16.2 a 12.5 c 0.6 < 0.01 
C18:1 9.9 b 40.3 a 43.3 a 1.5 < 0.01 
C18:2 9.0 b 210.7 a 260.6 c 7.3 < 0.01 
C18:3 50.3 b 90.0 a 22.4 c 3.2 < 0.01 
C18:2 + C18:3 59.3 b 300.7 a 283.1 a 10.2 < 0.01 

Flow, g/d      
C18:0 22.9 b 52.2 a 66.3 a 7.8 < 0.01 
C18:1 2.9 b 23.1 a 22.4 a 3.7 < 0.01 
C18:2 1.0 b 8.9 a 6.8 c 0.6 < 0.01 
C18:2 t10c12 0.1 0.7 0.6 0.2 0.18 
C18:2 c9t11 0.5 0.7 0.6 0.2 0.67 
C18:3 1.1 b 1.5 a 0.4 c 0.1 < 0.01 
C18:2 + C18:3 2.1 b 10.4 a 7.1 c 0.6 < 0.01 

g in digesta flow / g of intake      
C18:0 / C18:0 503.1 321 511.9 139.4 0.16 
C18:0 / C18:2 + C18:3 0.4 b 0.2 a 0.2 a 0.1 0.04 

g transformed2 / g of intake      

C18:1 0.70 0.44 0.50 0.08 0.07 
C18:2 0.89 b 0.96 a 0.97 a 0.02 0.01 
C18:3 0.98 0.98 0.98 0.005 0.88 
C18:2 + C18:3 0.97 b 0.96 a 0.98 b 0.003 0.04 

g in digesta flow/ g transformed2 
     

C18:2 t10c12 / C18:2 + C18:3 2.3 2.3 2.1 0.8 0.99 
C18:2 c9t11 / C18:2 + C18:3 8.4 b 2.2 a 1.8 a 1.2 0.01 

      
True Digesta Flow Ratio C18:2 to C18:3 1.2 b 6.0 a 16.2 c 0.9 < 0.01 
1SEM = standard error of the mean 
2g transformed = g/d of intake – g/d in digesta 
abcUnlike superscripts differ (P < 0.05)  
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Chapter III. 

 EFFECT OF INCLUSION OF DISTILLERS GRAINS WITH SOLUB LES AND 

CRUDE GLYCERIN IN BEEF CATTLE FINISHING DIETS ON RU MINAL 

FERMENTATION AND FATTY ACID BIOHYDROGENATION 

 

H.E. Larson, G. I. Crawford, R. B. Cox and A. DiCostanzo 

Department of Animal Science, University of Minnesota, St. Paul, MN 55108 

 

INTRODUCTION 

Within modern grain-based cattle feeding systems, an increase in linoleic acid 

concentration within diets has become a topic of interest because of feeding of ethanol 

byproducts such as distillers grains and corn oil.   Corn-based ethanol is produced via 

fermentation of starch found within the grain.  Byproducts from this process consist of 

the remaining fractions of corn grain and are commonly utilized as feed sources for 

livestock.  With the starch fraction removed from corn grain, the concentration of fat 

within remaining byproducts is much higher than in corn grain itself.  Unsaturated fatty 

acids make up over 80% of the fat composition of corn, with over 50% of unsaturated 

fatty acids being linoleic acid.  Henderson (1973) demonstrated in pure culture that 

unsaturated fatty acids exhibited greater negative impacts on the growth of cellulolytic 

bacteria than saturated fats.  Several studies have reported a shift in ruminal fermentation 

with an increase in the supplementation of dietary fat concentrations (Czerkawski 1966; 

Clapperton et al., 1969; Dinius et al., 1974; Zinn, 1989).  A decrease in ruminal acetate 

production with an increase in ruminal propionate and a decrease in methane production 



  64 

 

are consistent responses to addition of dietary fat (Clapperton et al., 1969).  A decrease in 

growth of cellulolytic bacteria in response to supplementation of dietary fat explains the 

decrease in ruminal acetate concentration and lowered methane production (Rasmussen 

and Harrison, 2011).  An increase in ruminal propionate concentration can be explained 

by increased lipolysis of triglycerides freeing glycerol backbones which ferment to 

propionate in the rumen (Wang et al., 2009).   

To avoid detrimental impacts of high concentrations of dietary fatty acids on 

ruminal fermentation but still maintain an energy-dense feed ingredient, investigations 

into alternative byproducts, such as glycerin, have been conducted.  Glycerin is a 

byproduct of the biodiesel industry and is comprised of the glycerol backbone of a 

triglyceride fat.  Glycerol has been suggested to ferment directly to propionate (Wang et 

al., 2009).  However, dietary glycerin, similar to unsaturated fatty acids, has been shown 

to have negative effects on fiber-digesting bacteria (Butyvibrio fibrosolvens and 

Selenomonas ruminantium; AbuGhazaleh et al., 2011).  A similar decrease in ruminal 

acetate and increase in ruminal propionate would be expected when feeding glycerin or 

supplementing unsaturated fat.   

De Mello et al. (2017) reported an increase in concentrations of total 

polyunsaturated fatty acids (PUFA) within steaks resulted in greater oxidation of beef 

product in a retail case as well as greater surface discoloration.  Steers within the study 

were fed 0, 15, or 30% of their dietary DM as distillers grains plus solubles, which 

resulted in significant increases in steak omega-6 fatty acids with increasing dietary 

distillers inclusion.  However, there was no difference in overall fat percentage of the 

steak.  This suggests that shifting fat composition without shifting total fat leads to 
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changes in meat shelf life.  This change in shelf life could potentially alter consumer 

desirability due to increased discoloration of beef from cattle fed increased 

concentrations of PUFAs.  Despite the impact on meat quality, fat content of distillers 

grains provides an excellent source of dietary energy to feedlot cattle.  As the ethanol 

process has been refined, distillers grains with solubles are no longer the primary 

byproduct created.  Instead, as fat extraction of distillers grains has become more 

common, reduced-fat distillers and extracted corn oil are the primary byproducts formed.  

Nelson et al. (2016) examined the effects of feedlot cattle diets containing 15% full fat 

distillers (FFDGS) compared with 15, 30, and 45% reduced fat distillers (RFDGS) on 

meat quality.  In contrast with De Mello et al. (2017), there was no difference in retail 

shelf life for steaks, ground beef, or bologna.  This is likely explained by lack of 

differences in omega-6 content of the beef between treatments.  This is consistent with 

the literature that reports low concentrations of dietary PUFA (such as that found in 15% 

FFDGS) have no impact on meat quality as majority of PUFA will be biohydrogenated 

within the rumen.  However, as dietary inclusion reaches 30-40% FFDGS differences in 

shelf life stability are noticed (De Mello et al., 2017).   

Based on the previous literature it was hypothesized that glycerin or distillers 

grains could partially replace corn as a dietary energy source in cattle diets.  However, 

supplementation of byproducts can alter post-ruminal unsaturated fatty acid content of 

the digesta, which can change shelf life stability of the final beef product. Therefore the 

objective of this study was to examine the impact the rumen plays on altering the fatty 

acid profile of digesta when distillers grains (DGS) and/or glycerin (GLY) replaced steam 

flaked corn (SFC) in the diet.  Specific objectives were to: 
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1. Understand how utilization of bio-fuel byproducts impacts the ruminal 

environment and fatty acid profile at end point of fermentation 

2. Determine differences in PUFA content at endpoint of fermentation when bio-

fuel byproducts are fed to ruminants. 

MATERIALS AND METHODS 

The experiment was conducted at the University of Minnesota Beef Research 

Facility in Rosemount, MN. All animals involved in this experiment were cared for 

according to guidelines of the University of Minnesota Institutional Animal Care and Use 

Committee (IACUC). All experimental procedures, including diets, sampling, and 

cannulation were reviewed and approved by IACUC (protocol #1507-32777A). 

Animals, Experimental Design, and Dietary Treatments 

Four ruminally cannulated Holstein steers (371 ± 5 kg) were utilized in a 4 x 4 

Latin square design (n = 1 per period).  Periods were 21 d with 14 d of adaptation and a 

7-d sampling period.  Cattle were housed in individual tie stalls with individual feed 

bunks and water troughs.  Body weights were measured on the last day of the sampling 

period after an overnight fast. 

Treatments were applied as a 2 x 2 factorial using modified distillers grains with 

solubles (DGS) and crude glycerin (GLY) replacing steam flaked corn (SFC) in the basal 

diet.  Treatments were a SFC-based diet (DGS-N GLY-N) with 40% replacement of SFC 

by DGS (DGS-Y GLY-N), or 10% replacement of SFC with GLY (DGS-N GLY-Y), or 

40% replacement of SFC by DGS with an additional 10% replacement with GLY (DGS-

Y GLY-Y; Table 3.1).  All diets were formulated for similar NEg content and provided 

300 mg/hd d-1 monensin.  Diets were fed for zero refusals, with orts recorded and 
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sampled daily. Diets were mixed individually on a daily basis using a concrete mixer.  

Individual diet ingredient samples were collected daily during the sampling period and 

weekly throughout the adaptation period. 

Marker infusion 

The triple marker method, developed by France and Siddons (1986), was utilized to 

determine digesta flow rate.  Markers selected for this study were YbCl3 (modified from 

Siddons et al., 1985) and CoEDTA (Udén et al., 1980) as external markers, and iNDF as 

an internal marker (Ahvenjärvi et al., 2003).  Use of three markers allows digesta to be 

divided into small particle phase, large particle phase, and fluid phase, marked by Yb, 

iNDF, and Co respectively.  Cobalt-EDTA and YbCl3 were dissolved in distilled water to 

create a marker solution for continuous infusion into the rumen.  

On the first day of the sampling period, steers were fitted with an infusion cannula 

plug which allowed for continuous infusion of the flow rate marker solution using a 

peristaltic pump (Masterflex). Cobalt and Yb were infused continuously at a rate of 0.44 

g/d, 0.49 g/d, and 0.10 g/d respectively.  Prior to the start of continuous infusion, a spot 

sample of ruminal contents was collected to establish natural abundance of Yb and Co 

present.  This sample was frozen at -20º C until lyophilization. Immediately prior to the 

beginning of infusion, a 2 L priming dose of the marker solution was delivered through 

the cannula opening and thoroughly mixed by hand into ruminal contents.  The marker 

solution was continuously infused into the rumen of the steer for the entirety of the 7 d 

sampling period, with the first 3 d representing a plateau period for the concentration of 

markers within the rumen.   
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Sample collection 

On d 4, d 5, and d 6 of the sampling period, samples were collected in 8 h 

increments.  Eight h sampling periods were offset so each day represented a different 8 h 

time point relative to feeding to create a 24 h composite.  Within each 8 h period, samples 

of ruminal and omasal fluid were collected every 2 h and composited to represent a 24 h 

period.  Spot fecal samples were collected at every natural defecation during each 8 h 

period and all samples were composited from 3, 8 h periods.  Omasal samples were 

collected utilizing the procedure developed by Huhtanen et al. (1997) and modified by 

Ahvenjärvi et al. (2000).  A reinforced 1.9-cm diameter hose was manually placed in the 

omasum of each steer at time of sample collection.  The hose was connected to a dual 

flow vacuum pump and air compressor to ensure that placement of the hose remained 

within the omasum and clogs in the line could be easily unblocked with the low-pressure 

air compressor.  Bi-hourly ruminal and omasal samples were divided into 3 subsamples at 

the time of sample collection: 24 hour composite (200 mL), 24 hour composite acidified 

to pH 2.0 with sulfuric acid (75 mL), and bacterial isolation sample (50 mL).  Samples 

were kept on ice during sample collection and stored at -20º C immediately after samples 

were collected until further processing with the exception of bacterial samples which 

were processed immediately following sample collections.   

On d 7 of the sample collection period, rumen evacuations were conducted.  

Access to feed and water was restricted and ruminal contents were emptied manually via 

ruminal fistula into a 90 L tub.  Once a majority of solid particles had been removed from 

the rumen, a vacuum pump was used to remove the remaining contents to ensure 

consistent emptying. Tubs containing ruminal contents were weighed, mixed, and 
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subsampled in triplicate. Samples of ruminal contents were frozen at -20º C until further 

processing and remaining contents were immediately placed back into the rumen.  

Caution was exercised to complete the entire rumen evacuation process in less than 30 

min to minimize any detrimental impact on the ruminal microbe population or animal 

hydration.  Access to feed and water was restored immediately following rumen 

evacuation. 

Sample processing and chemical analysis 

Composites, acidified composites, and rumen evacuation samples were all frozen 

immediately post-collection at -20º C, while bacterial samples were processed 

immediately.   

Bacterial samples were first strained through 2 layers of cheese cloth.  The fluid 

portion was used to isolate the fluid associated bacteria (FAB) fraction (Firkins et al., 

1984), while the solid fraction was used to isolate solid associated bacteria (SAB; 

Whitehouse et al., 1994).  The fluid portion was centrifuged at 1,000 x g for 10 min to 

remove feed and protozoal contamination.  Supernatant was saved for further 

centrifugation at 20,000 x g for 20 min.  The supernatant was discarded, while the pellet 

was saved to represent the FAB fraction and frozen at -20º C until lyophilization.  The 

solid fraction separated from cheese cloth was incubated in 0.8% methylcellulose-saline 

solution for 1 hour in a 39º C water bath.  After the 1-hour incubation, the solution 

containing the solid fraction was refrigerated at 4º C for 24 hours.  After 24 hours at 4º C, 

the sample was mixed for 1 min using an omni-mixer.  Solids and methylcellulose-saline 

solution were then strained through 2 layers of cheese cloth with the solid fraction rinsed 

with an additional 100 mL of saline.  The separated fluid then underwent centrifugation 
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at 1,000 x g followed by 20,000 x g as previously described for FAB isolation.  The 

isolated pellet represented the SAB fraction and was stored at -20º C until lyophillization.  

Bacterial isolations were only conducted for omasal contents. 

 Omasal and ruminal composite samples were thawed at room temperature before 

further separation.  The total sample was weighed and homogenized using an overhead 

mixer.  Prior to separation of digesta phases, a subsample of the homogenized composite 

sample was collected and saved as a reference sample of the digesta composite.  To begin 

phase separations, samples were strained through 4 layers of cheese cloth.  Solids were 

weighed and placed in a separate storage container to be frozen at -20º C until 

lyophilization.  This sample represented the large particle fraction of digesta (LP). The 

fluid fraction remaining after the LP was removed was then centrifuged at 10,000 x g for 

15 min.  The supernatant was poured off into a separate container, weighed, and stored at 

-20º C until lyophilization.  The supernatant fraction represented the fluid phase of 

digesta (FP).  The pellet formed after centrifugation represented the small particle phase 

of digesta (SP) and was frozen at -20º C until lyophilization.  The weight of the SP phase 

was determined via subtraction of the weights of FP and LP phases from total original 

sample weight.     

Nutrient analysis and digestibility 

Bacterial isolates (FAB and SAB), a subsample of the fecal composites, ruminal 

digesta phases (FP, SP, LP), and omasal digesta phases (FP, SP, LP) were frozen on dry 

ice prior to lyophilization to ensure samples were solidified and to prevent boiling of the 

sample within the lyophilizer.  Subsamples of feed samples from the last 4 days of the 

sampling period were also frozen on dry ice prior to lyophilization.  
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Feed samples and fecal samples (minus subsamples for lyophilization) were dried 

in a conventional drying oven at 55º C.   Once dry, samples were ground through a 2 mm 

screen using a Thomas Model 4 Wiley Mill (Thomas Scientific, Swedesboro, NJ).  

Samples were then analyzed for nutrient composition (DM, OM, CP, and NDF/ADF).  

Feed ingredients were analyzed individually and mathematically re-combined for diet 

composition.  Dry matter was determined using fresh and dry weights from the initial 55º 

C drying (DM1) and then later corrected using an additional 100º C oven drying of 1 

gram subsample (DM2).  To measure ash, 1 g of sample was weighed into a crucible and 

placed in an ashing oven for 12 h at 450º C. Organic matter (OM) was determined using 

1 minus ash content of sample.  Crude protein (CP) was determined via a steam 

distillation Kjeldahl technique (Kjeltec 2300).  A 0.5 g sample was weighed into a 

Kjeldahl tube, along with 1 CuSO4 kjeltab and 10 mL H2SO4.  The tube contents were 

digested at 410º C for 1 hour, after which they were steam distilled using NaOH as an 

alkali addition, Boric acid as an indicator solution, and 0.1 M HCl as titrant (all titrations 

were conducted automatically by the Kjeltec 2300).  Using an Ankom 200 Fiber 

Analyzer (Ankom Technology, Macedon, NY), neutral detergent fiber (NDF) was 

determined via 60 min extraction in 100º C neutral detergent solution with additions of 

sodium sulfite and heat stable alpha-amylase.  Samples high in fat have shown great 

variation in NDF results due to bound fat within the fiber matrix.  To reduce variability 

between replicates, samples with greater than 5% fat underwent a biphasic fat pre-

extraction procedure prior to NDF analysis using diethyl ether and petroleum ether 

(modified from Bremer et al., 2010). After NDF analysis, samples were gently shaken in 

400 mL of acetone, allowed to air dry for 2 h and then placed in 100º C oven overnight to 
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obtain a hot weight. This final weight along with a hot bag weight and a sample weight 

were used to calculate NDF percent of the sample.  After a final hot weight was collected, 

the sample then underwent ADF analysis using a 60 min 100º C extraction procedure in 

an ANKOM 200 fiber analyzer, with ADF solution.  After ADF analysis, samples were 

placed in 100º C oven overnight to obtain a hot weight. This final ADF weight along with 

the final NDF hot weight were used in the calculation of ADF percent of the sample.   

Subsamples of feed as well as omasal phases were all lyophilized using a Virtis 

shelf freeze drier.  Approximately 500 g of sample were spread less than 2 cm thick in a 

22.9 x 33.0 x 5.1 cm aluminum pan and covered with a standard hair net.  The hair net 

prevented transfer of small particles or volatile compounds into the oil of the lyophilizer.  

Once in aluminum pans, samples were placed on dry ice overnight to ensure the sample 

was completely frozen which is critical for ruminal and omasal fluid samples to prevent 

boiling of any liquid within the sample during the sublimation process. The lyophilized 

subsample of feed was analyzed for fatty acid profile.  Analysis was completed using 

Jenkins 1-step direct methylation procedure, with internal standards of Tridecanoic acid 

(C13:0) and Heptadecenoic acid (C17:1).  A 0.5 g sample was weighed into a screw-cap 

borosilicate tube.  After the sample was placed in the tube, 0.5 mL of 2 mg/mL internal 

standard:toluene and 3 mL 5% Methanolic HCl were added directly to the tube.  The tube 

was vortexed and incubated in a 70º C shaking water bath for 2 hours.  Following 

incubation, 7.5 mL 6% K2CO3 and 1 mL Hexane were added.  The solution was 

centrifuged at 286 x g for 8 min at 4º C.  The organic layer was transferred to a separate 

tube and one scoop (~ 0.4 g) of charcoal was added.  The solution was vortexed and 

allowed to sit for 1 h, after which the sample was re-centrifuged at 418 x g for 5 min.  
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The top layer of solution was pipetted into a gas chromatography (GC) vial and 

refrigerated until analyzed for fatty acid composition.  Fatty acid methyl esters were 

measured using GC using Agilent 7890B gas chromatograph.  Samples were run through 

a capillary column (100 m x 0.25 mm i.d. with 0.2 um film thickness) with fame-

ionization detector with hydrogen as carrier gas.  Pure methyl ester standards (GLC 60; 

Nu Chek Prep Inc., Elysian, MN) we used to identify methyl ester peaks.   

 Separated phases of omasal digesta were also analyzed for DM (via lypohilization 

pre- and post-weights), OM, NDF, ADF, CP, and fatty acids using the same procedures 

described for feed analysis with the exception of fatty acids analysis of omasal digesta.  

Feed was analyzed for fatty acids composition using Jenkins-1 step direct methylation 

procedure, while omasal digesta phases were analyzed via Jenkins-2 step methylation 

procedure.  The primary difference between these two procedures is that the Jenkins 2-

step adds 2 ml 0.5 M Sodium Methoxide to the sample and incubates it at 50º C for 10 

min prior to addition of 5% Methanolic HCL.  The remainder of preparation steps 

proceed in accordance with those described for feed analysis.   

Lyophilized digesta phases were also measured for Yb, Co, and iNDF as markers 

for passage rate determinations.  Samples were prepared for Yb and Co analysis 

following the procedure of Ellis et al. (1982).  Omasal digesta phases (LP, SP, and FP), 

and fecal samples were ashed and digested in an acid mixture of 3 M HCL and 3 M 

HNO3 for 12 hours.  Samples were filtered through a Whatman #1 filter and diluted using 

deionized water and a 6% KCl solution.  Natural abundance of markers (particularly Co) 

was determined by measuring Yb and Co in lyophilized rumen spot samples collected 

prior to the infusion of marker solution. Concentrations of Yb and Co were determined 



  74 

 

using Inductively Coupled Plasma (ICP) spectrometry at UF/IFAS Analytical Services 

Laboratory (Gainesville, FL).   Both SP and LP omasal digesta phases, in addition to 

fecal samples and rumen evacuation samples were analyzed for iNDF (Van Soest et al., 

1991) with iNDF representing the large particle passage rate of digesta.  The fluid phase 

was not analyzed for iNDF as it was assumed that no indigestible fiber was present in this 

phase.  A 0.5 g sample was weighed into a 125 mL Erlenmeyer flask, in duplicate.  

Samples were inoculated with 40 mL of prewarmed in vitro “day of inoculation” solution 

(mixture of in vitro rumen buffer, in vitro macromineral solution, and in vitro 

micromineral solution plus Trypticase and a reducing solution and indicator), and 10 mL 

of ruminal fluid previously strained through 4 layers of cheese cloth.  Samples were 

placed in a 39º C water bath continuously gassed with CO2 with pressure monitored using 

a barometer to maintain approximately 5 cm water displacement.  All flasks were 

incubated for 240 hours and then stored at 4º C until analyzed.  Contents of each 

fermentation bottle, including blanks, were analyzed for NDF content using the Van 

Soest reflux apparatus method with same solution as NDF method described earlier (Van 

Soest et al., 1991).  Neutral detergent fiber remaining after 240 h incubation was 

considered indigestible (iNDF).  This procedure was repeated until there were 4 

observations per sample with 2 different fluid inoculation time points.  In addition to the 

analysis of the three markers for digesta passage rate (Yb, Co, iNDF), microbial markers 

were also analyzed to determine microbial contribution to nutrient flow.  Purines were 

used as internal microbial marker and measured in both the microbial isolates as well as 

omasal digesta phases using the procedure developed by Zinn and Owens (1986).  Pure 

Torula yeast RNA was utilized as a standard to generate the standard curve using a 
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known concentrations of pure bacterial purines.  All samples and standards were digested 

in 70% perchloric acid at 90º C for 1 hour after which 0.0285 M Ammonium Phosphate 

buffer was added to the solution to help break up the charred mass formed from 

perchloric acid digestion of the sample.  The resulting solution was vortexed and 

incubated at 90º C for an additional 15 min.  Samples were immediately filtered through 

a Whatman 54 filter.  One half mL of filtered solution was combined with 0.5 mL silver 

nitrate in a screw-cap centrifuge tube, along with 9 mL of 0.2 M ammonium phosphate 

buffer.  Samples and solution were then stored in a dark refrigerator overnight.  After 

overnight incubation, samples were centrifuged at 10,000 x g for 10 min, supernatant was 

discarded and the pellet washed with 10 mL deinonized water that was adjusted to pH 2 

with sulfuric acid.  Samples were re-centrifuged and supernatant was discarded once 

again.  Ten mL of 0.5 M HCl were then added to the pellet and vortexed to suspend the 

pellet in solution.  Samples were then incubated for 30 min at 90º C, and re-centrifuged.  

Supernatant was pipetted into a UV transparent 96 well plate and read at 260 nm using a 

Biotek Synergy plate reader.  Absorption values were converted to mg/mL using the 

standard curve created with Torula yeast.    

 Samples of rumen and omasal fluid that were acidified and left in the collected 

form were thawed and analyzed for ammonia-N and VFA.  In preparation for ammonia 

analysis, samples were first centrifuged at 5,000 x g for 15 min to remove feed particles 

from solution.  Then, 15 mL of sample were pipetted into a Kjeldahl tube containing 2g 

MgO and 15 mL of distilled water.  This solution was then analyzed via steam distillation 

in a Kjeltec 2300 for N content, representing ammonia concentration of the fluid sample.  

Acidified ruminal and omasal fluid were also analyzed for selected VFA: acetate, 
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propionate, butyrate, valerate, isobutyrate, isovalerate and 2-methylbutyrate.  Five-point 

calibration curves were built for each of these VFA with known amounts of standard 

solutions.  Calibration curves allow a correlation to be constructed between the area 

under the curve value provided from gas chromatograph and the concentration of VFA 

present.  Samples were prepared for GC analysis following a modified procedure by 

Erwin et al. (1961) for ruminal fluid VFA analysis.   Samples were prepared using a 

similar centrifugation process to that used for ammonia-N analysis to remove feed 

particles.  A 2 mL sample of supernatant was added to a solution of 25% meta-

phosphoric acid/2-Ethyl-Butyrate (2-EB) which then underwent a series of centrifugation 

and freeze and thaw steps.  During these steps, meta-phosphoric acid aids in protein 

precipitation while 2-EB serves as an internal standard for GC analysis.  Supernatant was 

filtered through a 0.45 μm polyethersulfone micropore-filter and added to distilled water.  

One N NaOH was utilized to adjust pH of the solution to between 6 and 7 to prevent any 

damage to GC column packing.  Prior to transferring to a GC vial for analysis, 0.03% 

oxalic acid was added to the solution to prevent “ghost effects” and maintain column 

performance by degrading to formic acid during injection (Fussell and McCalley, 1987).  

Samples were then transferred to a GC vial and frozen at -20º C until analysis was 

conducted.  Prepared sampled were thawed for 1 hour prior to analysis in Hewlett-

Packard HP6890 Gas Chromatograph.  Samples were run through a 2 m x 0.64 cm x 2 

mm carbopack glass column (SUPELCO) with 40 min run time: 27 min initial run time at 

175º C, 9 min ramp time to 225º C and 4 min post-run.  
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Calculations 

The calculations for reconstitution of true omasal digesta, devoid of sampling 

error, were completed using equations outlined by France and Siddons (1986).   

Statistical Analyses 

Data were analyzed using the mixed procedure of SAS 9.4 (SAS Institute Inc., 

Cary, NC).  Intake, fermentation parameters and flow data were analyzed as a 2 x 2 

factorial design with the main effects of the Latin square design included as fixed effects 

and steer and period as random factors.  The statistical model was as followed: 

Y ijkl  = μ + αi + βj + α*βi(j) + Sk + Pl + εijkl 

μ = population mean 
α = ith effect of dietary distillers grains inclusion 
β = jth effect of dietary glycerin inclusion 
α*β = interaction between ith effect of distillers grains and jth effect of  glycerin 
S = Random kth effect of steer 
P = Random lth effect of period in time 
ε = residual error 

 

Hourly pH measurements were analyzed within a similar model with hour as a repeated 

measure, and subject of steer within period with variance modeled using Toeplitz 

covariance structure. 

RESULTS AND DISCUSSION 

Intake, rumen volume, and flow rate 

The interaction of DGS and GLY did not impact dry matter intact.  Dry matter 

intake was increased (P = 0.04) by 0.4 kg for the main effect of DGS compared with no 

difference (P = 0.64) in DMI observed for the main effect of glycerin (Table 3.5).  

Nuttelman et al. (2011) found differences in intake between types of DGS with dried or 

modified DGS having greater intakes compared with wet DGS.  Dietary inclusion rates of 
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20, 30, and 40% wet DGS all had increased intake compared with a negative control 

(Nuttelman et al., 2011).  However, Veracini et al. (2013) found a 0.93 kg decrease in 

DMI over a 244-d feeding period when modified DGS were fed at 40% dietary inclusion.  

Unlike modified DGS utilized in the current trial, Veracini et al. (2013) utilized full-fat 

DGS, which may have influenced the decrease in DMI through chemostatic energy intake 

mechanisms or through effects of unsaturated fat on rumen microbes.  Variation in DMI 

observed within the literature is assumed to be from inaccuracies when reporting nutrient 

composition of the byproduct utilized and byproduct manufacturing differences.    

Similar to DGS, previous research on the effects of glycerin has also had variable 

DMI results.  Hales et al. (2013) published a series of experiments with pure glycerin in 

receiving cattle in which there were both neutral and negative intake responses.   

Observations of steer eating behavior within the current study noted a hesitation to 

consume glycerin-containing diets.  However this is purely observation as no incremental 

feed refusals were recorded and there were no differences in DMI (P = 0.64).  Carvalho 

et al. (2011) also was able to determine a change in feeding behavior with dietary 

inclusion of glycerol in dairy cattle.  Glycerol inclusion at 11.5% (pre-partum) and 10.8%  

(post-partum) of the diet resulted in decreased sorting behavior and shifted a larger 

portion of intake to later in the day rather than immediately after feeding.   Carvalho et al. 

(2011) observed a 21% decrease in DMI for the 4 hours immediately post-feeding with 

no different in total DMI over course of the entire day.  Within the current study, since no 

interactive effects were seen for DGS and GLY for ruminal contents or digesta flow 

variables, the main effect of glycerin can be used to describe this potential shift in feeding 

pattern.  The feeding shift is reflected within the data as a decrease (8.4 vs. 7.3 kg; P = 
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0.05) in DM ruminal contents for the main effect of glycerin (Table 3.5).  This is thought 

to support Carvalho et al. (2011), where glycerin-fed cattle eat small meals throughout 

the day rather than consuming larger portions immediately following feeding.  The main 

effect of glycerin decreased DM ruminal contents as well as decreased (P = 0.04) digesta 

flow (kg/d), supporting the hypothesized shift in intake behavior when glycerin is fed 

(Table 3.5).  A change in eating behavior could also explain the decrease (P = 0.04) in 

total digesta flow (kg/d) for the main effect of glycerin (Table 3.5).   

There was no change in true digesta flow (kg/d) for main effect of DGS.  A 

decrease (P = 0.05) in flow rate with respect to volume was observed for diets with DGS 

inclusion compared with those without (Table 3.5).  Greater (P = 0.04) DMI paired with 

decreased flow rate (%/h) for cattle fed diets with DGS inclusion compared to those 

without would indicate an increase in ruminal feed retention.  No difference (P = 0.11) in 

retention time was observed, but a high standard error of the mean may have contributed 

to the lack of increase in retention time for cattle fed DGS (Table 3.5). 

Fermentation parameters and rumen environment 

No effects were observed for the interaction of DGS and GLY for VFA data, 

except isobutyrate molar proportion (P = 0.02; Figure 3.1).  Despite the main effect of 

DGS reducing flow rate, DGS did not affect total mM VFA concentration (P = 0.46; 

Table 3.1) or ruminal pH (Figure 3.2 and Table 3.7).  These observations suggest diets 

with DGS are slower-fermenting.  The slower %/h rumen removal (P = 0.05) and trend 

for longer retention time (P = 0.10) observed for the main effect of DGS should provide 

more time for fermentation of feed.  However, the main effect of DGS showed no 
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increase in total VFA concentration, nor in time spent below 5.7 pH.  Based on the lack 

of effects, reduced fermentation rate can be assumed for the main effect of DGS.   

A decrease (P = 0.01) in acetate as a percentage of total VFA was observed for 

the main effect of DGS.  This decrease paired with no change in total VFA concentration 

suggests a shift in the VFA pathways when DGS replace SFC in the diet.  Firkins et al. 

(1984) and Leupp et al. (2009) observed a linear decrease in acetate production when 

dietary DGS concentrations increased.  A decrease in acetate is not consistent across all 

DGS fermentation studies, because Walter et al. (2012) observed no change acetate 

concentration.  This variation may be due to differences in type and nutrient content of 

DGS. 

No differences in flow rate %/h (P = 0.33), ruminal pH (Figure 3.3 and Table 3.7 

P = 0.53), or total mM VFA concentration (P = 0.49) were observed for main effect of 

GLY.  Despite concerns that glycerin may decrease microbial digestion within the rumen, 

it does not appear that total fermentation is affected.  The main effect of GLY showed a 

trend for decreased (P = 0.09) acetate as percent of total VFA produced (Table 3.6).  

Johns (1953) determined that glycerin in the rumen is fermented directly to propionate.  

Although the current study was unable to detect an increase in propionate, the decrease in 

acetate with no change in total VFA concentration suggests a shift in the VFA pathways 

as a result of including glycerin.   

Nitrogen Flow 

 Diets were not isonitrogenous, therefore differences in ruminal N metabolism are 

challenging to interpret.  Intake appears to be the predominant driver of differences in N 

flow, as observed differences in total N flow mimic those seen in N intake.  The 
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interaction of DGS and GLY did not have a significant effect on any of the N flow 

variables, so only main effects will be discussed.  As expected because of dietary N 

content, the main effect of DGS increased (P = 0.02) total N flow, while the main effect 

of GLY tended to decrease (P = 0.10) total N flow.   However, the interest in N flow lies 

not in the total flow differences but in the partitioning of N by source (Table 3.8).  

Inclusion of GLY in the diet had no effect on ammonia-N flow (P = 0.26), bacterial-N (P 

= 0.36), or non-ammonia non-microbial-N (NANMN; P = 0.55).  Increases in ammonia 

concentration might be explained by inefficient microbial N use, suggesting that slower 

fermentation rates may not accurately supply C chains at an adequate time for 

deamination of dietary CP.  A second explanation is simply that dietary CP 

concentrations for DGS (Table 3.2) far exceed ruminal N requirements, therefore there 

was increased available N for ammonia production as well as increased RUP leading to 

increased NANMN. 

Fatty acid profile transformation 

Intake of unsaturated fat ranged from 70.4 – 80% of the total fat within the diets 

fed in this experiment (Table 3.2).  Interaction of DGS and GLY inclusion in the diet 

affected intake of stearic (P < 0.01; Figure 3.4), linoleic (P < 0.01; Figure 3.5), and 

linolenic acid (P < 0.01; Figure 3.6). Linoleic and Linolenic acid intake were greatest for 

diet including DGS and no GLY (Figures 3.5 and 3.6).  When only GLY replaced a 

portion of SFC the lowest linoleic and linolenic acid intakes were observed.  Because 

GLY is a poor source of PUFA compared to other dietary ingredients, it dilutes the 

linoleic and linolenic acid content.   Stearic acid intake was greatest for diets with a 

portion of SFC replaced by both DGS and GLY (Figure 3.4).  Although DGS contributes 
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more stearic acid to total dietary stearic content (Table 3.4),  GLY also appears to 

increase stearic acid intake as well, with the combination of the two having additive 

effect on total stearic acid intake. 

Through biohydrogenation a significant portion of these dietary fatty acids are 

transformed into PUFA isomers, monounsaturated fatty acids, or saturated fatty acids.   

Increased numeric values for stearic acid in true digesta compared to values of intake 

(Table 3.10) are expected as a result of the biohydrogenation process.  The interaction of 

DGS and GLY affected (P < 0.01) the g of stearic acid flow with greatest g stearic acid 

flow coming from cattle fed DGS and GLY.  The diet with DGS and GLY was also the 

greatest for stearic acid intake so this is most likely a diet effect.  Unlike stearic acid 

intake relationship (figure 3.4), when no DGS was included GLY inclusion did not 

impact (P = 0.30) g of stearic acid in true digesta flow.  Because the diet without DGS 

but with GLY had more stearic acid intake than the diet without DGS and GLY but no 

difference was seen in total digesta flow a change in fermentation with GLY is 

concluded.  This interaction between GLY and DGS did not affect g of flow of Linoleic 

(P = 0.87) or linolenic acid (P = 0.88).  For the main effect of DGS, 93.5% of linolenic 

acid and 84.5% of linoleic acid were transformed to isomers or saturated forms of the 

original dietary fatty acid.  This is a 6.9% unit increase ( P < 0.01) for linoleic acid and 

6.2% unit increase (P < 0.01) for linolenic acid transformation compared with diets 

without DGS.  Conjugated linoleic acid (CLA; C18:2 cis-9, trans-11) also increased (P < 

0.01) with the main effect of DGS in the diet.  This increase in CLA appears to be related 

to the increase in dietary intake of linoleic acid, which serves as the precursor to CLA 

formation in the rumen. 



  83 

 

 The interaction between DGS and GLY did not impact the transformation (g FA 

flow/ g FA intake) of stearic acid (P = 0.17), linoleic acid (P = 0.18), or linolenic acid (P 

= 0.66; Table 3.10). The main effect of GLY inclusion had no impact on g of linolenic (P 

= 0.16) or linoleic (P = 0.32) acid transformed (Table 3.10).  A trend was identified for 

an increase (P = 0.07) in CLA for the main effect of GLY.  Glycerin inclusion in the diet 

had no impact on the percent of saturated fat (P = 0.44) or unsaturated fat (P = 0.43) in 

omasal flow.  Based on previous published literature, glycerin has been found to interfere 

with butyvibrio fibrosolvens, which has a role in the transformation of CLA to vaccenic 

acid (trans-C18:1; Harfoot and Hazelwood, 1997).  The current study appears to agree 

with those conclusions as an observed increase in CLA along with no differences in 

percentage of stearic acid or linoleic transformed indicate that the biohydrogenation 

pathway was inhibited at the point of CLA transformation.   

CONCLUSIONS 

 Distillers grains or crude glycerin could replace a portion of SFC in diets without 

causing large changes to basic fermentation processes such as ruminal pH patterns or 

total mM VFA concentration.  Observed feeding behavior could explain changes in flow 

rate and DM retention within the rumen for byproduct-fed cattle, but further research is 

needed to conclude this.  The fatty acid composition of digesta when cattle are fed either 

corn or soy byproducts is different from a SFC diet without byproducts.  This difference 

in fatty acid profile may imply differences in meat shelf life stability when these 

byproducts are fed.  Total unsaturated fatty acids in digesta were not different for the 

main effect of GLY, which may indicate GLY is an effective alternative to corn when 

provided at the dietary concentrations evaluated in this study.   The main effect of DGS 
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decreased unsaturated fatty acids which may be beneficial for shelf life stability of meat.  

In order to further evaluate the effect of crude glycerin on shelf life of meat products, 

more research is needed to examine if microbial-created isomers of linoleic acid, such as 

CLA, cause shelf life stability issues to the same extent as untransformed linoleic acid. 
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Table 3.1 Actual fed ingredient composition of treatment diets with and without modified distillers grains and crude glycerin 
 

 Inclusion, % of DM DGS-N GLY-N1 DGS-N GLY-Y2 DGS-Y GLY-N3 DGS-Y GLY-Y 4 

Grass hay 11 11 10 9 

Steam flaked corn 72 63 42 36 

Dry rolled corn + soybean meal mix 12 11 - - 

Glycerin - 11 - 10 

Modified Distillers Grains - - 42 40 

Liquid supplementa - - 5 5 

Liquid supplementb 4 4 - - 
 1DGS-N GLY-N = No dietary distillers grains inclusion, no dietary glycerin inclusion  
2DGS-N GLY-Y = No dietary distillers grains inclusion, Yes dietary glycerin inclusion 
3DGS-Y GLY-N = Yes dietary distillers grains inclusion, no dietary glycerin inclusion 
4DGS-Y GLY-Y = Yes dietary distillers grains inclusion, Yes dietary glycerin inclusion  

abLiquid supplement - provides increased RDP in form of Urea and formulated to supply 300 mg/hd/d monensin 

        Liquid supplementa = low protein   

        Liquid supplementb = high protein   
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Table 3.2 Nutrient composition of treatment diets with and without modified distillers 
grains and crude glycerin 
 

 DGS-N GLY-N1 DGS-N GLY-Y2 DGS-Y GLY-N3 DGS-Y GLY-Y 4 

DM, % 85.4 85.6 66.8 68.0 
CP, % DM 10.8 9.8 17.4 16.0 
NDF, % DM 14.3 13.3 22.7 20.9 
ADF, % DM 6.3 6.0 8.6 7.9 
FA, % DM 2.6 2.3 5.6 5.2 
TDN, % DM 83.0 83.0 83.7 83.7 
NEm, Mcal/kg 2.12 2.12 2.14 2.14 
NEg, Mcal/kg 1.40 1.40 1.42 1.42 
1DGS-N GLY-N = No dietary distillers grains inclusion, no dietary glycerin inclusion  
2DGS-N GLY-Y = No dietary distillers grains inclusion, Yes dietary glycerin inclusion 
3DGS-Y GLY-N = Yes dietary distillers grains inclusion, no dietary glycerin inclusion 
4DGS-Y GLY-Y = Yes dietary distillers grains inclusion, Yes dietary glycerin inclusion 
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Table 3.3 Nutrient composition of Distillers Grains (DGS) and Glycerin (GLY) fed 

 DGS Crude Glycerin 
DM, % 44.4 88.0 
CP, % DM 28.3 0 
NDF, % DM 30.5 0 
ADF, % DM 9.4 0 
FA, % DM 10.2 0.05 

   
C14:0 0.1 1.7 
C15:0 0.0 18.5 
C16:0 14.6 12.5 
C16:1c9 0.1 0.0 
C17:0 0.1 0.0 
C18:0 2.0 26.8 
C18:1c9 23.8 12.0 
C18:1c11 0.8 0.0 
C18:2c9c12 55.8 15.1 
C18:3c6c9c12 0.0 0.0 
C20:0 0.5 0.0 
C18:3c9c12c15 1.7 1.8 
C20:1c11 0.3 0.0 
C24:0 0.3 0.0 
C24:1n9 0.0 0.0 

   
unsaturated 82.4 28.9 
Omega 3 1.7 1.8 
Omega 6 55.8 15.1 
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Table 3.4 Fatty acid composition (% of total FA) of treatment diets with and without modified distillers grains and crude glycerin 
 
  DGS-N GLY-N 1 DGS-N GLY-Y 2 DGS-Y GLY-N 3 DGS-Y GLY-Y 4 

Total FA, % DM 2.6 2.3 5.6 5.2 
C14:0 0.2 0.4 0.1 0.3 
C15:0 0.1 2.1 0.1 1.8 
C16:0 15.6 15.5 15.7 15.5 
C16:1c9 0.3 0.2 0.3 0.2 
C17:0 0.1 0.1 0.1 0.1 
C18:0 1.9 3.2 2.2 3.3 
C18:1c9 23.7 22.2 22.3 21.2 
C18:1c11 0.7 0.6 0.7 0.7 

C18:2c9c12 50.3 45.9 51.9 48.2 
C18:3c6c9c12 0.1 0.1 0.1 0.1 
C20:0 0.7 0.6 0.6 0.6 
C18:3c9c12c15 4.9 4.9 4.6 4.4 
C20:1c11 0.3 0.3 0.3 0.3 
C24:0 0.9 0.9 0.8 0.7 
C24:1n9 0.3 0.3 0.2 0.2 

 
% unsaturated 80.5 74.4 80.4 75.3 
% omega-6 50.4 46.0 52.0 48.3 
% omega-3 4.9 4.9 4.6 4.4 
1DGS-N GLY-N = No dietary distillers grains inclusion, no dietary glycerin inclusion  
2DGS-N GLY-Y = No dietary distillers grains inclusion, Yes dietary glycerin inclusion 
3DGS-Y GLY-N = Yes dietary distillers grains inclusion, no dietary glycerin inclusion 
4DGS-Y GLY-Y = Yes dietary distillers grains inclusion, Yes dietary glycerin inclusion 
 

88 



  89 

 

Table 3.5 Dry matter intake, flow rate, and rumen volume for cattle fed diets with and without modified distillers grains and crude 
glycerin 
 

  DGS GLY   P-value 

 No Yes No Yes SEM 1 DGS GLY DGS*GLY 

DMI, kg/d 8.7 9.3 9.0 8.9 0.5 0.04 0.64 0.28 

True digesta flow, kg/d 9.7 9.0 10.2 8.4 1.3 0.34 0.04 0.40 

Flow rate, % rumen volume/h 5.4 4.5 5.2 4.8 0.8 0.05 0.33 0.47 

Retention time, h 20.5 23.5 21.9 22.1 3.6 0.11 0.91 0.64 

Ruminal contents DM, kg 7.5 8.2 8.4 7.3 0.5 0.18 0.05 0.93 

Ruminal contents DM, % SBW 1.9 2.0 2.1 1.8 0.1 0.35 0.11 0.96 

Ruminal contents as-is, kg 45.8 46.8 46.4 46.2 1.3 0.59 0.92 0.48 

Ruminal contents as-is, % SBW 11.4 11.5 11.4 11.5 0.7 0.86 0.79 0.48 
1SEM = Standard error of the mean 
2SBM = shrunk body weight 
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Table 3.6 Main effects of dietary inclusion of distillers grains (DGS) or glycerin (GLY) on ruminal VFA concentration (mM) and 
composition (%) 
 

 DGS GLY  P - value 
 No Yes No Yes SEM1 DGS GLY DGS*GLY 

Total, mM 167.2 142.2 165.3 144.1 46.8 0.42 0.49 0.13 

Total Mol in rumen volume 7,621 6,720 7,575 6,766 2,151 0.60 0.64 0.17 

acetate, % 46.0 40.1 44.6 41.5 3.1 0.01 0.09 0.12 

propionate, % 38.4 42.8 40.1 41.0 2.0 0.16 0.74 0.23 

butyrate, % 11.0 11.1 10.8 11.3 2.6 0.98 0.80 0.66 

valerate, % 2.06 2.83 1.80 3.08 0.71 0.35 0.14 0.86 

isobutyrate, % 0.79 1.19 1.14 0.85 0.29 0.16 0.29 0.02 

isovalerate, % 1.54 1.35 1.30 1.59 1.13 0.60 0.44 0.22 

2-MB2, % 0.25 0.66 0.29 0.62 0.26 0.03 0.07 0.32 

Branched-chain VFA, mM 2.20 2.57 2.58 2.19 0.82 0.65 0.64 0.16 

Acetate : propionate 1.23 0.96 1.13 1.05 0.10 0.06 0.52 0.18 
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Figure 3.1 Interaction of dietary inclusion of distillers grains (DGS) and Glycerin (GLY) 
(P = 0.02) on isobutyrate as percent of total VFA. 
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Figure 3.2 Main effect of dietary distillers grains (DGS) inclusion on ruminal pH 24 h 
post-feeding (DGS*hour P < 0.01) 
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Figure 3.3 Main effect of dietary crude glycerin (GLY) inclusion on ruminal pH 24 h 
post-feeding (GLY*hour P = 0.39) 
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Table 3.7 Main effects of dietary inclusion of distillers grains (DGS) or crude glycerin (GLY) on ruminal pH and time below pH 5.7 
 

 DGS GLY  P-value 

 No Yes No Yes SEM1 DGS GLY DGS*GLY 

Average ruminal pH 6.18 6.21 6.17 6.22 0.09 0.72 0.53 0.47 

Time below pH 5.7, min 365 307 402 270 79 0.50 0.16 0.89 

1SEM = Standard error of the mean 
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Table 3.8 Partitioning of N sources in omasal true digesta flow for cattle fed diets including distillers grains (DGS) or glycerin (GLY) 
to replace a portion of steam flaked corn 
 

 DGS GLY  P-value 

 No Yes No Yes SEM1 DGS GLY DGS*GLY 

N Intake, g/d 141.7 247.0 204.6 184.1 5.32 < 0.01 < 0.01 0.06 

NH3-N3, mg/dl 2.47 3.42 2.70 3.19 0.65 0.09 0.34 0.42 

Total N Flow, g/d 265.9 372.3 350.5 287.7 43.0 0.02 0.10 0.34 

NH3-N2 flow, g/d 0.41 0.91 0.71 0.61 0.15 < 0.01 0.26 0.66 

Bacterial N flow, g/d 180.1 166.9 191.5 155.4 25.7 0.73 0.36 0.49 

NANMN3 flow, g/d 85.5 204.7 158.4 131.8 39.9 0.03 0.55 0.88 

1SEM = standard error of the mean 
2NH3-N = Ammonia N 
3NANMN = Non-Ammonia Non-microbial Nitrogen 
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Table 3.9 Fatty acid (FA) composition of true omasal digesta flow for cattle fed diets with distillers grains (DGS) or crude glycerin 
(GLY) to replace a portion of dietary steam flaked corn 

  DGS GLY   P-value 
  No Yes No Yes SEM1 DGS GLY DGS*GLY 

FA concentration, % of DM 2.13 4.59 3.13 3.59 0.28 < 0.01 0.03 0.05 
saturated, % of FA 43.9 59.5 51.1 52.2 3.3 < 0.01 0.44 0.31 
unsaturated, % of FA 56.1 40.5 48.9 47.7 3.3 < 0.01 0.43 0.33 

Composition of FA, %         
iC14:0 0.28 0.13 0.21 0.20 0.06 0.01 0.96 0.36 
C14:0 1.66 1.40 1.56 1.49 0.07 < 0.01 0.21 0.04 
iC15:0 0.41 0.28 0.35 0.35 0.08 0.10 0.96 0.88 
aC15:0 2.57 1.89 2.33 2.13 0.55 0.19 0.67 0.62 
C14:1c9 0.00 0.00 0.00 0.00 . . . . 
C15:0 0.88 0.73 0.71 0.90 0.07 0.07 0.04 0.08 
C16:0 19.5 19.5 19.68 19.36 0.53 0.93 0.52 0.52 
iC17:0 0.32 0.28 0.21 0.40 0.04 0.46 0.01 0.33 
C16:1c9 0.06 0.10 0.09 0.07 0.02 0.07 0.11 0.13 
aC17:0 0.79 0.45 0.66 0.58 0.06 < 0.01 0.31 0.70 
C17:0 0.57 0.38 0.43 0.52 0.02 < 0.01 0.02 0.02 
C18:0 15.52 33.08 23.61 24.99 3.27 < 0.01 0.26 0.07 
C18:1t5 0.00 0.00 0.00 0.00 . . . . 
C18:1t4 0.06 0.06 0.07 0.06 0.01 0.82 0.43 0.81 
C18:1t6-8 1.53 1.00 1.29 1.24 0.13 0.02 0.82 0.59 
C18:1t9 2.23 1.08 1.46 1.86 0.39 0.04 0.40 0.08 
C18:1t10 16.68 7.20 11.49 12.39 1.39 < 0.01 0.54 0.34 
C18:1t11 3.22 3.00 2.90 3.33 0.50 0.70 0.45 0.74 
C18:1c9 16.23 13.05 15.28 14.00 1.11 0.01 0.14 0.62 
C18:1c11 1.7 1.48 1.68 1.51 0.08 0.05 0.11 0.45 
C18:1c12 0.24 0.60 0.48 0.36 0.08 < 0.01 0.15 0.45 
C18:2t11c15 0.58 0.20 0.37 0.40 0.05 < 0.01 0.63 0.71 
C18:2c9c12 11.74 9.64 11.50 9.87 1.41 < 0.01 0.01 0.08 
C20:0 0.63 0.64 0.64 0.63 0.02 0.51 0.30 0.70 
C18:3c9t11c15 0.68 0.37 0.54 0.50 0.06 < 0.01 0.43 0.98 
C20:1c11 0.3 0.24 0.28 0.26 0.02 < 0.01 0.19 0.60 
CLAc9t11 0.58 2.15 1.17 1.55 0.17 < 0.01 0.16 0.64 
CLAt10c12 0.24 0.36 0.27 0.33 0.07 0.20 0.49 0.51 
C24:0 0.73 0.69 0.74 0.68 0.07 0.34 0.18 0.91 
1SEM = standard error of mean         96 
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Table 3.10 Transformation of fatty acids from intake to omasal true digesta for cattle fed diets including distillers grains or glycerin in 
place of a portion of dietary steam flaked corn 
 
  DGS GLY  P- value 

  No Yes No Yes SEM1 DGS GLY DGS*GLY 

Intake, g/d         
C18:0 5.4 13.3 7.9 10.8 0.4 < 0.01 < 0.01 < 0.01 

C18:2 101.8 250.8 194.1 158.5 8.2 < 0.01 < 0.01 < 0.01 

C18:3 10.3 22.4 17.5 15.2 0.8 < 0.01 < 0.01 0.01 

True digesta flow, g/d         
C18:0 29.5 126.8 75.6 80.6 4.3 < 0.01 0.21 0.02 

C18:2 23.5 39.4 35.5 27.4 6.2 < 0.01 0.1 0.87 

C18:2c9t11  1.1 8.6 4.5 5.2 0.01 < 0.01 0.51 0.60 

C18:3 1.3 1.5 1.6 1.2 0.2 0.41 0.16 0.88 

g flow/g intake         
C18:0 6.00 9.60 9.10 6.6 0.9 < 0.01 < 0.01 0.17 

C18:2 0.22 0.15 0.20 0.18 0.03 < 0.01 0.32 0.18 

C18:2c9t11 / C18:2 0.01 0.03 0.02 0.03 0.003 < 0.01 0.07 0.34 

C18:3 0.13 0.06 0.10 0.09 1 < 0.01 0.47 0.66 
1SEM = Standard error of the mean 
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Figure 3.4 Interaction of dietary inclusion of distillers grains (DGS) and glycerin (GLY) 
(P < 0.01) on stearic acid C18:0 intake, g/d  
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Figure 3.5 Interaction of dietary inclusion of distillers grains (DGS) and glycerin (GLY) 
(P < 0.01) on linoleic acid C18:2 intake, g/d  
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Figure 3.6 Interaction of dietary inclusion of distillers grains (DGS) and glycerin (GLY) 
(P = 0.01) on linolenic acid C18:3 intake, g/d  
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Figure 3.7 Interaction of dietary inclusion of distillers grains (DGS) and glycerin (GLY) 
(P = 0.02) on stearic acid C18:0 in true digesta flow, g/d  
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Chapter IV. 

A META-ANALYSIS ON THE EFFECTS OF GROWING STRATEGY ON 

FEEDLOT AND CARCASS PERFORMANCE 

 

H.E. Larson, F. Owens, and A. DiCostanzo 

Department of Animal Science, University of Minnesota, St. Paul, MN 55108 

 

INTRODUCTION 

Interest in incorporating a growing phase stems from the understanding that rate 

of gain and feed conversion are enhanced following a period of energy intake restriction.  

This effect, referred to as compensatory gain, is driven by a series of physiological 

endocrine changes in growth hormone and insulin concentrations (Hornick et al., 2000).  

Restricting caloric intake during a growing period causes an animal to partition nutrients 

towards bone and muscle development, shifting the growth curve of the animal to delay 

maturity (i.e. fat deposition).  This “framing out” period results in an animal with greater 

potential to carry more carcass mass, thus lean growing cattle appearing to have 

undergone a period of nutrient restriction are often more desirable for placement in the 

feedlot. 

The ability to predict precisely how differences in growing strategies impact 

finishing and carcass performance is imperative to maximize the benefits of relying on a 

growing phase post-weaning.  However, specific effects of caloric intake, length of 

growing phase, and resulting rate of gain during growing phases on finishing 
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performance are not well elucidated.  This leads to making specific recommendations 

about a growing phase impossible.  Likely, differences in the duration of growing phase, 

severity of caloric restriction, maturity of animal at harvest, sex, genetic background, and 

diet composition all play a role in the observed inconsistencies between studies.  Carstens 

et al. (1991) determined that much of the compensatory gain response was related to 

changes in gut fill and composition of gain.  Hogg (1991) proposed that variability in 

finishing DMI following a growing phase is partially explained by dietary energy content 

fed during the growing phase.  Concurrently, Sainz et al. (1995) determined that 

compensating growth of cattle previously subjected to restricted caloric intake cattle is 

due to increased capacity for DMI, and not a reduction in metabolic rate resulting from 

lower caloric intake  

Growing phase strategies vary from feeding low energy dry lot rations to relying 

on grazing systems on native range pasture.   Days in the growing phase interact with 

caloric intake to determine performance response during the growing and finishing 

phases.  Previous meta-analyses (Galyean et al., 2011; Lancaster et al., 2014) suggested 

growing phase ADG, BW entering the finishing period, and DMI for days 8 to 28 of the 

finishing period were primary predictors of finishing performance and carcass 

characteristics.   Yet, interactions of length of growing phase and rate of gain have not 

been studied using a meta-analysis approach.  In this study, a meta-analysis approach was 

used to determine effects of growing phase days and rate of gain on performance of cattle 

at theoretically similar maturity.   

It was hypothesized that the response by cattle to growth manipulation during a 

growing phase results in predictable finishing and carcass performance.  The objective 
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was to model how feedlot and carcass performance is affected by growing phase 

strategies including high-energy feeding (placed directly on a finishing phase; HG), ad-

libitum feeding silage (grass, corn, and sorghum) diets (DL-Forg), moderate energy (0.88 

to 1.23 Mcal NEg/kg DM) diets (DL), grazing dormant native pastures (G), or winter 

wheat pastures (WW). 

 

MATERIALS AND METHODS 

 This study was a conducted by pooling pertinent information from previously 

published research studies.  No animals were used in the execution of this study as all 

data were obtained from previously published works.  Therefore, there was no 

requirement for an animal care and use protocol.  

Data selection criteria 

A dataset derived from 53 manuscripts previously published in peer-reviewed 

journals based on background and stocker phase strategy studies was constructed to 

determine how growing phase nutritional decisions, particularly days on feed and 

resulting ADG, affect finishing phase performance using a meta-analysis approach.  

English-language search of peer-reviewed journals was conducted using MNCAT 

Discovery, Science Direct and Google Scholar search engines with key words such as 

“background”, “stocker”, “growing cattle”, “growing”, “strategy” and “performance”.  In 

addition, to ensure the search engines did not overlook certain publications, Journal of 

Animal Science, the Professional Animal Scientist, Canadian Journal of Animal Science, 

Nebraska Beef Reports, and South Dakota Beef Research Reports were searched directly.  
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Strategies for feeding growing cattle evaluated were dry-lot feeding either silage 

(DL-forg; n = 32), a moderate energy diet (DL; n = 78), stocking cattle on winter wheat 

(WW; n = 16), or pasture/native range (G; n = 43).   Control treatments were comprised 

of observations where cattle were fed a high-energy finishing diet immediately post-

weaning.  These observations were grouped under the high-energy label (HG; n = 16).  

Observations derived from treatments where intake was restricted were not included.  

Based on reported experimental units, this data set encompasses performance data from 

8,730 head of cattle from growing to finishing phases.   

Selection criteria for the study required that performance data from post-weaning 

growing and finishing phase be presented as well as carcass performance.  Only data 

from treatments where a single growing phase strategy were selected; sequential 

application of two or more growing phase strategies was not considered.  Experiments 

were excluded if no interim weight was taken at end of the growing phase, prior to the 

start of the finishing phase.  Within each manuscript, data were recorded to identify 

manuscript (n = 53), separate experiments within manuscript (n = 72), and separate 

treatments within each study (n = 185).  Based on these three identifiers, one data ID 

value was created for each observation within the dataset (n = 185).  

Data Collection 

Classes were established for the growing strategy selected (HG, DL, DL-Forg, G, 

WW), use of technologies such as ionophores (y = yes, n = no), implants (y = yes, n = 

no), Tylan (y = yes, n = no), and sex (steer, heifer, or mixed group). Continuous variables 

of interest recorded from each study were initial growing phase BW, ADGgrowing, days-

on-feed (DOFgrowing), and final growing phase BW (Final BWgrowing).  Yield grade (YG) 
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was also recorded and utilized to determine degree of maturity at harvest.  Values for 

finishing and carcass performance served as dependent variables.  Finishing performance 

variables included DMI, ADG, DOF, and final BW.  Carcass performance variables 

included HCW, dressing percent (DP), longissimus muscle area (LMA), 12th rib fat 

thickness (FT), and marbling score (MARB). A value for revenue was generated based 

on total gain during both growing and finishing phases.  Total gain was calculated by 

multiplying ADGgrowing x DOFgrowing and ADGfinishing x DOFfinishing.  This value was then 

multiplied by the market price for weight class of the animal based on values reported in 

weekly USDA stocker cattle price report for week of November 3, 2017.  A summary of 

growing data utilized is presented in Table 4.1, while performance and carcass data 

summaries can be found in Tables 4.2 and 4.3, respectively. 

Degree of maturity calculations 

In an effort to correct for variability resulting from various end points (weight, 

days on feed, fat cover, visual or ultrasound appraisal of Choice grade) selected for each 

study, a variable describing degree of maturity was generated.   

Maturity in beef cattle is described as the point at which protein accretion 

plateaus.  Comparisons based on final weight are not equivalent, within or across studies, 

due to differences in composition of gain, particularly when considering the impact of 

various growing phase strategies on body composition.  Predictive models developed 

since publication of NRC (1984) correct differences in body composition by scaling 

observed weight to that of a moderate-frame, British calf reaching Choice grade.  This 

adjustment is based on 28% empty body fat (EBF) for the reference animal.   
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To correct for differences in maturity of cattle at slaughter, within the meta-

analysis data set, an adjustment for percent of mature weight was added to the model 

using relationship between EBF and empty body weight (EBW).  From the equation 

derived by Tedeschi et al. (2004), reported YGvalues were utilized to calculate EBF: 

YG + 0.604 / 0.127 = % EBF 

Empty body fat derived by this equation and HCW were used to predict EBW:  

EBWpredicted = 106.56 * (EBF)2 + 1771.9 * (EBF) – 52.364 

This equation was derived from NRC (2016) where EBF (kg) is predicted from EBW 

(kg).  Predicted EBW represents a size-scaled weight, which reflects percentage EBF at 

harvest for a given data point.  Actual EBW (National Research Council, 1984) was 

calculated as:  

EBW = SBW * 0.891 

Degree of maturity was then determined by dividing actual EBW by predicted empty 

body weight: 

Degree of maturity = EBWactual / EBWpredicted 

It follows that if data derived from a study in the meta-analysis data set have a value of 1 

for degree of maturity, then cattle represented by that data point were harvested at the 

appropriate EBW given their degree of fatness.  Similarly, cattle in data points with a 

value higher or lower than 1.0 would reflect cattle that were harvested heavier or lighter, 

respectively, than their scaled weight given empty body fat content at harvest. 

 

Statistical Analyses 



  108 

 

Data were analyzed using the PROC MIXED procedure of SAS 9.4 (SAS 

Institute Inc., Cary, NC), with treatment means weighted by experimental units (EU) per 

treatment.  Standard error (SE) values were not available for all variables of interest, 

therefore EU was utilized instead.  The inverse of SE was calculated for observations that 

contained it, but little difference was observed when comparing model fit of EU vs. 1/SE 

weighing for this subset.  Treatment within study was incorporated as the subject of the 

random statement to model the within-subject variation.   

Linear regression was used to model prediction values for finishing and carcass 

performance.  Statistical significance for the effect of growing phase covariates and class 

variables on finishing and carcass performance was declared at P ≤ 0.05 with trends 

established at 0.05 ≥ P ≤ 0.10.  No differences in Aikaike information criterion were 

observed between random and no intercept models.  A random intercept model would 

allow for the response function to remain explained by predictive variables not accounted 

for in the model.  While a no-intercept model forces all regressions through (0, 0) 

implying when all predictive variables in the model are set to 0, the response function is 

also 0.  Because the objective was to model the impact of growing strategies on finishing 

responses, a no-intercept model was selected and the discrete variable of growing 

strategy assumed to explain any variation not accounted for in the model.  Regressions 

models were selected by backward elimination; discrete variables or covariates were 

removed from model if P-value was greater than 0.10.  Discrete variables from growing 

phase including strategy (HG, DL, DL-Forg, G, WW), ionophore use (y, n), liver abscess 

antibiotic use (y,n), impant use (y,n) and sex (steer, heifer, mixed) were all treated as 

random effects.  Fixed and random effects of covariates, which included ADGgrowing, 
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DOFgrowing, Initial BWgrowing, and Final BWgrowing as well as the interactions of ADGgrowing 

by DOFgrowing and DOFgrowing by Initial BWgrowing, were tested.  In order to extend 

conclusions to the larger population and not confine the results to the parameters tested 

within meta-analysis, it is necessary to treat all covariates as random variables 

(SAS/STAT ® 9.2 User’s Guide Introduction to Regression Procedures, 2008).  By 

testing random effects, there is not one assumed population effect but rather the 

population effect is distributed amongst variables (Gloudemans et al., 2012).  Based on 

the described parameters, the model for this meta-analysis can be described as a within-

subject, no intercept, random effects model. 

Calculating equivalent effects of two continuous variables 

 A two variable multiple regression is represented by the following equation: 

Y = b0 + b1X + b2Z 

The response variable is represented by Y, while X and Z are continuous predictor 

variables with their coefficients (b1 and b2).  Equivalent effects of two continuous 

variables within a regression equation were calculated by setting the two variables with 

their coefficient equal to each other and solving for the variable of interest.   

b1 X = b2 Z 

X = b2 Z / b1 

For variables with interaction effect, the coefficient from the interaction was added to the 

covariate coefficient prior to division, yielding the following equation: 

X = (b2 + b3) Z / b1 

 

Calculating intersect points for two continuous variables 
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The intersect point for regression equations containing two interactive continuous 

covariates was solved using methods outlined by Aiken and West (1991).  Intersecting 

variables (X and Z) and their coefficients as well as the regression intercept were 

incorporated into the following equation: 

Y = b1 X + b2 Z + b3 XZ + b0  

In order to solve for the intersect, two levels (h and l) of Z variable were selected to 

create two equations to solve for Y: 

Yh = (b1 + b3 Zh) X + (b2 Zh + b0)  

Y l = (b1 + b3 Zl) X + (b2 Zl + b0)  

These two equations were then set equal to each other to determine their point of 

intersection.  When simplified the following equation was derived to solve for X crossing 

point: 

Xcross = -b2 / b3 

This methodology was repeated with two levels of variable X to yield the following 

equation for the crossing value for covariate Z: 

Zcross = -b1 / b3 

Calculations for Gross Profit from Growing Strategy 

 Gross profit was calculated using historical data from USDA, National 

Agricultural Statistics Service for 2017.  Profit for cattle at the end of the growing phase 

was calculated by generating a regression of feeder cattle prices for 227 kg to 318 kg 

cattle and applying the equation to each of the BW at end of the growing phase (Final 

BWgrowing).  Separate regression equations were generated for each mo of the yr to ensure 

any market volatility was captured within final profit values.  Profit at the end of the 
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finishing period was generated from monthly market price for fed cattle marketed in 

Nebraska (USDA).  

RESULTS AND DISCUSSION 

Differences in performance by growing strategy 

The decision to use a growing strategy is dictated by a number of factors specific 

to the operation. Of particular importance are pen space and feed type and availability.  It 

is challenging to pinpoint which strategy is most economically favorable because cattle 

response during the finishing phase will vary based on the growing strategy selected.  

Thus, it is import to understand the performance differences that exist between nutritional 

growing strategies (Table 4.5).    

Observations described by Owens et al. (1993) provide support that finishing 

DMI is affected by growing nutritional strategy selection.  Cattle grazing were observed 

by Owens et al. (1993) to have greater DMI when entering the feedlot compared to cattle 

placed in the feedlot immediately post-weaning.  The current meta-analysis review 

demonstrated finishing DMI was greatest (P < 0.01) for cattle stocked on winter wheat 

(WW) and cattle fed a forage-based growing diet (DL-Forg) and lowest (P < 0.01) for 

cattle fed rations with high energy density in place of a growing phase (HG) (Table 4.5).  

The weight and volume consumed by forage feeding would explain an increase in 

capacity to consume due to an increase in gut fill (Allen, 2000).  Therefore, greater 

finishing DMI was expected for cattle fed either of the forage or grazing growing-phase 

strategies (Table 4.5).  This likely reflects a larger rumen capacity.  This larger rumen 

mass was apparent in the lower dressing percentages of cattle fed corn silage or grazing 

native range compared to other strategies (P < 0.01; Table 4.5).  Cattle that grazed WW 
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had the greatest (P < 0.01) dressing percentage of all strategies.  This increased dressing 

percentage could indicate that visceral mass lost at slaughter was matched by carcass 

weight gain or that ruminal mass contracted once grazing WW ended.  Carstens et al. 

(1991) determined that much of the compensatory gain response was correlated to 

changes in gut fill and energy density of ADG.  Finishing ADG was greater (P < 0.05) 

for cattle grazing pasture (G) or WW, compared to dry-lot cattle fed either silage (DL-

Forg), or a less energy dense dry-lot ration (DL) (Table 4.5).  This greater finishing ADG 

value confirms the value of a larger rumen capacity of cattle from a forage-fed growing 

phase.  This response was not observed with silage-fed cattle (DL-Forg); the extent of 

this response may be limited in silage-fed cattle for other reasons.   

When ADG increases, carcass composition of gain must also be considered.  

Choice of growing phase strategy impacted LMA and BF, but not MARB; and therefore 

was not included in the model for MARB.  Longissimus muscle area was found to be 

greatest (P < 0.01) for cattle that grazed WW and G.  Cattle fed moderate energy or 

silage were intermediate while those placed on a finishing diet after weaning had the 

smallest LMA.  An increase in muscling is often cited as a reason to add a growing phase 

(Owens et al., 1993); these data confirm that assertion of increased muscle hypertrophy.  

Cattle grazing winter wheat  had greater (P < 0.01) BF compared with all other strategies.  

The significance of degree of maturity as a covariate in BF analysis demonstrates that 

cattle grazing WW were harvested at weights beyond expected maturity given their EBF.  

Previous meta-analyses (Galyean et al., 2011; Lancaster et al., 2014) conducted to predict 

finishing performance from growing phase characteristics have failed to utilize a maturity 

correction factor.  Therefore, their findings were that BW at start of finishing was most 
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effective for predicting finishing performance.  This would give an advantage to cattle 

finished at greater weights without considering body fat composition.    

 Final BW differences are similar to those observed for dressing percentage; with 

greatest BW achieved by WW or G and lowest final BW attained by HG (P < 0.01; Table 

4.5).  The addition of a growing phase knowingly delays the onset of maturity allowing 

animals to increase frame growth with the intention of increasing final BW (Owens et al., 

1993; Hornick et al., 2000).  The final BW means presented provide convincing evidence 

to support beneficial compensatory gain effects for all growing strategies evaluated.   

Interpretation of interacting covariates within regression models 

When examining feedlot and carcass performance attributes by growing strategy 

it becomes clear that factors, like ADGgrowing, DOFgrowing, initial BWfinishing, etc., interact 

to create the optimal compensatory gain response.  Two interacting growing phase 

variables, DOF and initial BW, affected carcass performance.  Previously, a meta-

analysis conducted by Lancaster et al. (2014) also determined the importance of BW as 

BW at the end of the growing phase.   

Optimal combinations of DOFgrowing and initial BWgrowing differed between 

performance characteristics (Table 4.6) but as an average across dressing percent, LMA, 

Final BWfinishing, and HCW it was identified that maximized performance occurred when 

cattle were fed at or less than 80 DOFgrowing and began the growing phase at 

approximately 240 kg.  Lighter-weight cattle are more responsive to benefits of growing 

systems, and there is a limit to how long these animals should have restricted caloric 

intake to maximize the benefits of compensatory gain (Droulliard et al., 1991a,b).  These 

data are confounded within standardized values for other attributes of growing 
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performance (ie- ADGgrowing).  Taylor et al. (2013) reported no differences in feed 

efficiency for steers in  growing phases of either 79 or 93 d, although DMIfinishing and 

ADGfinishing were greater for steers with longer DOFgrowing and slower ADGgrowing.  They 

also found no differences in LMA or dressing percentage.  Therefore, supporting that 80 

d may be optimum for a growing strategy.   

Utilizing interactions to determine critical points of interest 

  Final BW was predicted by the interacting effects of ADGgrowing and DOFgrowing.  

Thus, to predict optimum relationships between ADGgrowing and DOFgrowing, critical points 

of interest were determined.  Figure 4.1 depicts the relationship between Initial BWgrowing 

and a 0.1 kg increase in final BWfinishing.  Because ADGgrowing directly relates to final 

BWfinishing increases without impact of Initial BWgrowing its effect is modeled as static 

across all values of Initial BWgrowing.  However, the linear relationship between the 

impact of DOFgrowing and Initial BWgrowing characterizes their interactive relationship.  The 

point where the line crosses the X-axis represents the critical point of interest for this 

interaction.  Figure 4.1 depicts the impact of DOFgrowing on final BWfinishing to match the 

impact of an increase of 0.1 kg ADGgrowing as Initial BWgrowing shifts.  The critical point 

(X = 230 kg) is represented by the asymptote.  This critical point represents the point at 

which beyond it, additional DOFgrowing positively benefit final BWfinishing.  Positive final 

BWfinishing performance will be observed for cattle with Initial BWgrowing below this 

critical point; however performance of cattle in these scenarios would benefit from 

ADGgrowing, rather than DOFgrowing.  In practical application, this means for lighter weight 

cattle (lighter than 230 kg) entering the growing phase, ADGgrowing carries great 
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importance for improving final BWfinishing.  Table 4.6 lists the critical point for Initial 

BWgrowing in relation to DOFgrowing for REA, DP, Final BWfinishing, and HCW.        

Evaluating economic impacts of adding a growing phase 

Due to the intentional energy restriction that occurs with growing strategies, 

economic benefits are not seen prior to finishing phase when caloric intake is restored 

and compensatory gain occurs.  Figure 4.3 demonstrates this idea as gross profit from 

cattle without a growing phase (i.e.- HG) demonstrate much greater revenue than 

counterparts with a growing phase.  As cattle shift from growing to finishing phase and 

compensatory gain occurs there is an obvious increase in the economic value of these 

same cattle.  Figure 4.4 shows the roles reversed with HG cattle grossing the least profit 

relative to cattle raised with growing phase.  Of the growing phase groups, WW cattle 

grossed the largest profit – most likely due to greater final BWfinishing achieved.  However, 

neither of these figures account for  the differences in feeding program duration.  Figure 

4.5 depicts gross profit/head by DOF to better demonstrate the differences in program 

length to achieve similar profit.  The slopes of each of these line segments (Table 4.7) 

depicts the ‘potential to gain’ for that animal, with greater slopes indicating more 

aggressive gains.  Slopes for the first line segment (0, 0) to mid-point rank themselves 

according to ADGgrowing, with cattle without a growing phase gaining the most per 

DOFgrowing and grazing cattle gaining the least.  What perhaps is of more interest is the 

slope of the second line segment.  This value for ‘potential to gain’ serves as a reference 

for animals on a traditional growth curve.  Because restricting intake early in the growing 

phase delays the onset of maturity, shifting the growth curve so more aggressive growth 

occurs later, a greater slope value for the second line segment is expected.  As expected, 
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HG cattle appear to have undergone more aggressive growth early on; their growth 

potential has begun to plateau by end of feeding period ($0.35/d).  The higher potential to 

gain values for cattle fed through a growing phase within finishing period are what 

allowed for increased final profit relative to cattle not subjected to a growing phase.  

Cattle grazing WW had the greatest potential to gain in finishing phase ($0.76/d) 

followed by those fed moderate energy diets in dry lot cattle (DL) ($0.65/d), cattle 

grazing (G) native range/pasture ($0.61/d), and those fed silage in a dry lot (DL-Forg) 

($0.58/d). For the majority of simulated cattle, the profit/d exceeded traditional yardage 

costs  ($0.37/d) indicating they retained reasonable profit margins between input and 

output costs.  Cattle finished without a growing  phase did not maintain these same profit 

margins (relative to traditional yardage costs), which may have influenced why in certain 

months when prices were low, these cattle yielded net profit loss in the finishing phase. 

CONCLUSIONS 

Overall growing strategies can be a valuable tool for increasing pounds of beef 

/carcass, but understanding how management decisions, especially changes in targeted 

ADGgrowing, DOFgrowing and initial BWgrowing, affect finishing and carcass performance is 

the key to a successful growing program.   Differences do exist between strategies, 

however, often times changing growing strategy is not an option for producers due to 

feed or space limitations.  Instead, understanding the physiology behind the differences in 

performance responses and how equivalent changes in DOFgrowing and ADGgrowing can be 

used to mitigate management challenges provides a way for producers to benefit from 

this data regardless of the strategy implemented.   
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Table 4.1 Summary of growing data utilized to analyze the impact of growing strategy 
and performance on finishing and carcass performance 
 
 
Variable n Mean SD Minimum Maximum 

High Grain (HG) 
Initial BW, kg 14 223 371 142 391 
DOF 13 84 100 56 154 
ADG, kg 13 1.44 1.04 1.06 2.32 
Final BW, kg 15 308 379 238 469 

 Dry Lot (DL)  
Initial BW, kg  79 279 233 76 391 
DOF 79 90 125 55 196 
ADG, kg 79 1.09 1.12 0.58 2.40 
Final BW, kg 80 330 398 81 482 

Dry Lot Forage (DL-Forg) 
Initial BW, kg 44 227 202 136 391 
DOF 44 97 74 56 141 
ADG, kg 43 0.86 1.06 0.39 1.38 
Final BW, kg 43 301 218 238 458 

Grazing (G) 
Initial BW, kg 66 238 113 149 276 
DOF 66 198 448 70 443 
ADG, kg 66 0.58 0.85 0.15 0.89 
Final BW, kg 66 358 188 255 455 

Winter Wheat (WW) 
Initial BW, kg 28 223 129 184 261 
DOF 28 125 189 74 201 
ADG, kg 28 0.93 1.34 0.37 1.37 
Final BW, kg 28 344 286 229 432 
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Table 4.2 Summary of finishing performance data utilized to analyze the impact of 
growing strategy and performance on finishing and carcass performance 

 

Variable n Mean SD Minimum Maximum 
High Grain (HG) 

Final BW, kg 16 519 259 458 597 
ADG, kg 16 1.44 1.51 1.02 1.91 
DOF 16 159 222 37 196 
DMI, kg/d 15 8.87 5.27 6.58 12.20 

Dry Lot (DL) 
Final BW, kg 80 529 246 325 714 
ADG, kg 80 1.37 1.14 0.67 1.95 
DOF 80 112 130 44 258 
DMI, kg/d 80 9.43 5.58 5.64 12.10 

Dry Lot  Forage (DL-Forg) 
Final BW, kg 44 510 237 421 619 
ADG, kg 44 1.42 1.14 0.67 2.02 
DOF 34 132 124 72 173 
DMI, kg/d 43 10.02 4.01 7.19 11.40 

Grazing (G) 
Final BW, kg 66 526 225 452 632 
ADG, kg 66 1.42 1.53 0.79 2.12 
DOF 66 117 122 81 222 
DMI, kg/d 66 10.83 5.16 7.90 12.50 

Winter Wheat (WW) 
Final BW, kg 28 528 310 372 628 
ADG, kg 28 1.56 1.13 1.15 1.90 
DOF 28 118 109 70 156 
DMI, kg/d 25 10.90 2.76 9.70 11.80 
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Table 4.3 Summary of carcass performance data utilized to analyze the impact of 
growing strategy and performance on finishing and carcass performance 

 

Variable n Mean Std Dev Minimum Maximum 
High Grain (HG) 

HCW, kg 16 325 163 294 371 
Dressing Percent, % 16 62.6 12.0 60.0 66.4 
BF, cm 14 1.3 1.1 0.9 1.6 

LMA,  sq cm 14 78 30 71 94 
Marbling1 16 575 413 448 719 
Yield Grade 16 2.7 4.2 1.0 3.5 

Dry Lot (DL)  

HCW, kg 76 318 150 179 426 
Dressing Percent, % 76 60.18 9.92 53.16 64.88 
BF, cm 79 1.2 1.2 0.1 1.7 

LMA , sq cm 77 82 32 71 104 
Marbling1 64 540 420 57 713 
Yield Grade 78 2.7 3.3 1.0 4.3 

Dry Lot Forage (DL-Forg) 
HCW, kg 44 306 187 241 379 
Dressing Percent, % 44 59.7 14.1 52.6 66.8 
BF, cm 35 1.2 0.7 0.7 1.6 

LMA , sq cm 43 77 40 65 99 
Marbling1 33 527 205 400 635 
Yield Grade 32 2.8 3.3 1.0 3.7 

Grazing (G) 
HCW, kg 66 316 181 38 397 
Dressing Percent, % 66 60.3 11.0 56.0 64.4 
BF, cm 56 1.2 1.3 0.9 2.4 

LMA , sq cm 49 77 41 67 99 
Marbling1 59 499 203 437 680 
Yield Grade 43 2.6 2.6 1.4 3.5 

Winter Wheat (WW) 
HCW, kg 28 336 204 247 424 
Dressing Percent, % 28 63.7 8.6 60.3 67.5 
BF, cm 16 1.5 1.1 1.1 1.9 

LMA , sq cm 16 78 48 66 101 
Marbling1 25 555 440 487 710 
Yield Grade 16 3.1 3.1 1.6 3.5 
1Marbling Score: 400 – slight, 500 – small, 600 – modest  
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Table 4.4 Regression Coefficient and Fit Statistics for Covariates for all dependent variable models 
 
 

Dependent 

Variable 

Growing 

Phase 

R2 Intercept Regression Coeffiecients for Covariates within Model 

DMI finishing, kg HG 0.60 6.59 1.2362(Per_Mat) + 0.0096(DOF_PF) + 0.1766(ADG_PF) - 0.0093(DOF_PF)(ADG_PF) + 

out_BW_PF(0.0036) 
 

DL 
 

7.15 1.2362(Per_Mat) + 0.0096(DOF_PF) + 0.1766(ADG_PF) - 0.0093(DOF_PF)(ADG_PF) + 

out_BW_PF(0.0036) 
 

DL_Forg 
 

7.72 1.2362(Per_Mat) + 0.0096(DOF_PF) + 0.1766(ADG_PF) - 0.0093(DOF_PF)(ADG_PF) + 

out_BW_PF(0.0036) 
 

G 
 

7.21 1.2362(Per_Mat) + 0.0096(DOF_PF) + 0.1766(ADG_PF) - 0.0093(DOF_PF)(ADG_PF) + 

out_BW_PF(0.0036) 
 

WW 
 

7.98 1.2362(Per_Mat) + 0.0096(DOF_PF) + 0.1766(ADG_PF) - 0.0093(DOF_PF)(ADG_PF) + 

out_BW_PF(0.0036) 

ADGfinishing, kg HG 0.28 1.48 0.1849(Per_Mat) - 0.0015 (DOF_PF) 
 

DL 
 

1.58 0.1849(Per_Mat) - 0.0015 (DOF_PF) 
 

DL_Forg 
 

1.56 0.1849(Per_Mat) - 0.0015 (DOF_PF) 
 

G 
 

1.92 0.1849(Per_Mat) - 0.0015 (DOF_PF) 
 

WW 
 

1.87 0.1849(Per_Mat) - 0.0015 (DOF_PF) 
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Dependent 

Variable 

Growing 

Phase 

R2 Intercept Regression Coeffiecients for Covariates within Model 

Dressing % HG 0.39 0.67 0.000075(Out_BW_PF) - 0.00086(DOF_PF) + 0.01294(ADG_PF) - 0.00038(In_BW) + 

0.00000337(DOF_PF)(In_BW) 
 

DL 
 

0.67 0.000075(Out_BW_PF) - 0.00086(DOF_PF) + 0.01294(ADG_PF) - 0.00038(In_BW) + 

0.00000337(DOF_PF)(In_BW) 
 

DL_Forg 
 

0.66 0.000075(Out_BW_PF) - 0.00086(DOF_PF) + 0.01294(ADG_PF) - 0.00038(In_BW) + 

0.00000337(DOF_PF)(In_BW) 
 

G 
 

0.68 0.000075(Out_BW_PF) - 0.00086(DOF_PF) + 0.01294(ADG_PF) - 0.00038(In_BW) + 

0.00000337(DOF_PF)(In_BW) 
 

WW 
 

0.70 0.000075(Out_BW_PF) - 0.00086(DOF_PF) + 0.01294(ADG_PF) - 0.00038(In_BW) + 

0.00000337(DOF_PF)(In_BW) 

LMA, sq cm HG 0.55 74.33 10.6674(Per_Mat) + 9.95(ADG_PF) - 0.2619(DOF_PF) - 0.08689(In_BW) + 0.001084 

(DOF_PF)(In_BW) 
 

DL 
 

79.01 10.6674(Per_Mat) + 9.95(ADG_PF) - 0.2619(DOF_PF) - 0.08689(In_BW) + 0.001084 

(DOF_PF)(In_BW) 
 

DL_Forg 
 

77.46 10.6674(Per_Mat) + 9.95(ADG_PF) - 0.2619(DOF_PF) - 0.08689(In_BW) + 0.001084 

(DOF_PF)(In_BW) 
 

G 
 

82.12 10.6674(Per_Mat) + 9.95(ADG_PF) - 0.2619(DOF_PF) - 0.08689(In_BW) + 0.001084 

(DOF_PF)(In_BW) 
 

WW 
 

81.40 10.6674(Per_Mat) + 9.95(ADG_PF) - 0.2619(DOF_PF) - 0.08689(In_BW) + 0.001084 

(DOF_PF)(In_BW) 
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Dependent 

Variable 

Growing 

Phase 

R2 Intercept Regression Coeffiecients for Covariates within Model 

BF, cm HG 0.20 1.48 (-0.00086)(DOF_PF)-0.00059(Out_BW_PF) 
 

DL 
 

1.49 (-0.00086)(DOF_PF)-0.00059(Out_BW_PF) 
 

DL_Forg 
 

1.43 (-0.00086)(DOF_PF)-0.00059(Out_BW_PF) 
 

G 
 

1.55 (-0.00086)(DOF_PF)-0.00059(Out_BW_PF) 
 

WW 
 

1.79 (-0.00086)(DOF_PF)-0.00059(Out_BW_PF) 

Marbling1 
 

0.14 592.08 73.3999(ADG_PF) - 0.2984(Out_BW_PF) - 41.7885 (Per_Mat) 

Final 

BWfinishing, kg 

HG 0.58 434.80 67.35(Per_Mat) + 85.5164(ADG_PF) - 0.08907(Out_BW_PF) - 1.6039(DOF_PF) - 

0.3546(In_BW) + 0.006955(DOF_PF)(In_BW) 
 

DL 
 

464.65 67.35(Per_Mat) + 85.5164(ADG_PF) - 0.08907(Out_BW_PF) - 1.6039(DOF_PF) - 

0.3546(In_BW) + 0.006955(DOF_PF)(In_BW) 
 

DL_Forg 
 

465.54 67.35(Per_Mat) + 85.5164(ADG_PF) - 0.08907(Out_BW_PF) - 1.6039(DOF_PF) - 

0.3546(In_BW) + 0.006955(DOF_PF)(In_BW) 
 

G 
 

512.74 67.35(Per_Mat) + 85.5164(ADG_PF) - 0.08907(Out_BW_PF) - 1.6039(DOF_PF) - 

0.3546(In_BW) + 0.006955(DOF_PF)(In_BW) 
 

WW 
 

501.05 67.35(Per_Mat) + 85.5164(ADG_PF) - 0.08907(Out_BW_PF) - 1.6039(DOF_PF) - 

0.3546(In_BW) + 0.006955(DOF_PF)(In_BW) 
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Dependent 

Variable 

Growing 

Phase 

R2 Intercept Regression Coefficients for Covariates within Model 

HCW, kg DL 0.54 35.11 37.6798(Per_Mat) + 62.1982(ADG_PF) -1.633(DOF_PF) - 0.4911(In_BW) + 

0.007022(DOF_PF)(In_BW) 
 

DL_Forg 
 

35.55 37.6798(Per_Mat) + 62.1982(ADG_PF) -1.633(DOF_PF) - 0.4911(In_BW) + 

0.007022(DOF_PF)(In_BW) 
 

G 
 

35.59 37.6798(Per_Mat) + 62.1982(ADG_PF) -1.633(DOF_PF) - 0.4911(In_BW) + 

0.007022(DOF_PF)(In_BW) 
 

HG 
 

37.38 37.6798(Per_Mat) + 62.1982(ADG_PF) -1.633(DOF_PF) - 0.4911(In_BW) + 

0.007022(DOF_PF)(In_BW) 
 

WW 
 

25.75 37.6798(Per_Mat) + 62.1982(ADG_PF) -1.633(DOF_PF) - 0.4911(In_BW) + 

0.007022(DOF_PF)(In_BW) 

1Marbling Score: 400 – slight, 500 – small, 600 – modest 
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Table 4.5 Least squares means for differences in finishing and carcass performance as affected by growing strategy 

  HG DL DL-Forage G WW SEM1 P-value2 

DMI finishing, kg/d 9.6 c 10.2 a 10.8 b 10.3 ac 11.0 b 0.3 < 0.01 

ADGfinishing, kg/d 1.28 a 1.39 a 1.36 a 1.72 b 1.68 b 0.10 < 0.01 

Dressing Percent, % 59.6% ab 59.6% a 58.8% a 60.9% b 62.7% c 0.4% < 0.01 

LMA, sq cm 74.7 d 79.4 ab 77.8 ad 82.5 c 81.7 bc 1.2 < 0.01 

BF, cm 1.1 a 1.1 a 1.0 a 1.1 a 1.4 b 0.1 < 0.01 

Final BWfinishing, kg 482 c 512 a 512 a 560 b 548 b 10 < 0.01 

HCW, kg 287 a 306 a 306 a 343 b 346 b 7 < 0.01 
HG = No growing phase 
DL = Drylot 
DL-Forg = Drylot silage only 
G = Pasture/native range 
WW= Winter wheat 
1SEM = standard error of the mean 
2P-value for effect of growing strategy on dependent finishing variable prediction 
abcdUnlike superscripts differ (P < 0.05) 
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Figure 4.1 Critical point (x = 230.4 kg) for the effect of initial body weight at the start of growing 
on equivalent DOFgrowing needed to impact final body weight to same extent as 0.1 kg 
ADG change 
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Table 4.6. Critical point for Inital BW growing to positively affect the magnitude of impact of DOFgrowing on finishing variables of interest  

 

Finishing variable Initial BW, Kg 
LMA  255 
DP 242 
Final BW 231 
HCW 233 
 

 

 

 

 

 

 

 

 

126 



  127 

 

Figure 4.2 Relationship between body weight at start of growing (Initial BW) and the increase in final body weight for each 0.1 kg increase in 
growing ADG or each 10 d increase in growing DOF  
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Table 4.7 Value for slopes derived from gross profit by DOF to examine differences in potential to gain profit   

 Growing Phase, $/d Finishing Phase, $/d 

No growing (HG) 2.92 0.35 

Dry lot (DL) 2.44 0.65 

Dry lot silage fed (DL_Forg) 2.25 0.58 

Grazing (G) 1.18 0.61 

Winter Wheat (WW) 1.82 0.77 
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Figure 4.3 Changes in gross profit per head at end of growing phase from January to October 
2017 
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Figure 4.4 Changes in net profit per head (gross profit at end of finishing – cost of to purchase 
animal at end of growing period) during finishing phase from January to October 2017 
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Figure 4.5 Changes in gross profit per head by days on feed (DOF) over entire feeding period 
from January to October 2017 (center dot represents gross profit at end of growing phase, right 
most dot represents gross profit at end of finishing phase)  
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APPENDEX 

Figure A1.11 Diagram bacterial groups involved in the primary and alternative biohydrogenation 
pathways for linolenic (C18:2) and linoleic acid (C18:3) in the rumen (adapted from 
Harfoot and Hazelwood, 1997 and Kramer et al., 2004) (Chapter I: part I) 
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Figure A1.12 Diagram of volatile fatty acid production pathways of rumen microbes (Chapter I: 
part I) 
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Table A1.11 Influence of pH on lipolysis and biohydrogenation of linoleic and linolenic acid in vitro (Van Nevel and Demeyer, 1996) (Chapter I: 
part I) 

 Freed Fatty Acids (mg) Disappearance (%) 

pH 18:2 18:3 18:2 18:3 

6.78 ± 0.04 16.53a 2.16a 94.6a 100.0a 

6.34 ± 0.07 15.97a 2.04a 97.8a 100.0a 

5.98 ± 0.06 15.16a 2.01a 95.2a 100.0a 

5.56 ± 0.06 9.61b 1.21b 80.5ab 89.9b 

5.22 ± 0.06 4.36c 0.48c 59.5b 68.8b 

xyzlinoleic acid = 18:2; linolenic acid (ALA) = 18:3; Freed fatty acids = FA liberated from TAG as representative of lipolysis; disappearance 
(%) of FA as consequence of biohydrogenation 

abcdiffering superscripts indicate significance p < 0.05 
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Table A1.12 Effect of antimicrobial additives on inhibition of lipolysis and volatile fatty acid (VFA) production (Van Nevel and Demeyer, 1995) 
(Chapter I: part I) 

  Inhibition of 

Additive Bacteria affected Lipolysis (%) VFA Production (%) 

Amoxicillin Broad Spectrum 18.2 6.4 

Avoparcin Gram positive 10.4 3.9 

Salinomycin sodium Gram positive 20.1 12.2 

Lincomycin hydrochloride Anaerobic gram positive 14.5 14.8 

Lasalocid sodium (Bovatec) Gram positive 19.3 6.3 

Monensin (Rumensin) Gram positive 16.7 8.7 

Terramycin Broad spectrum 15.7 17.4 

Virginiamycin Gram positive 16.2 14.5 

Mentronidazole Gram negative  9.1 10.4 
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Table A1.13 Effect of three diets fed to sheep on ruminal biohydrogenation and absoption of linolenic acid (C18:3) (Bauchart D. and Poncet C., 
unpublished data published in Chilliard et al., 2000) (Chapter I: part I) 

  Hay : Concentrate 

  Fresh Grass 75:25 30:70 

FA intake (g/100g DM) 2.38 0.88 0.88 

C18:3 intake (g/d) 14.00 0.85 0.46 

C18:3 % total FA 56.20 8.80 4.50 

C18:3 hydrogenation (%) 96.0 93.0 87.0 

C18:3 Presented at Sm. Intestine (g) 0.57 0.06 0.06 

C18:3 absorbed (g/d) 0.49 0.04 0.05 

Biohydrogenation escapex, % 4.10 7.05 10.87 

Absorption Efficiencyx, % 85.9 66.6 83.3 

Efficiency of Utilizationx, % 3.50 4.71 9.05 

x biohydrogenation escape = C18:3 presented at small intestine / C18:3 in diet; absorption efficiency = C18:3 absorbed / C18:3 presented at 
small intestine; Efficiency of utilization = biohydrogenation escape x absorption efficiency 
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Figure A1.13 Efficiency of transferring C18:3 infused into the abomasum or small intestine of 
dairy cow to milk (Chilliard et al., 1991; Drackley et al., 1992; Christensen et al., 1994; 
LaCount et al., 1994; Ottou et al., 1995; Litherland et al., 2005) (Chapter I: part I) 
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Figure A1.14 Relationship between duodenal flow of fatty acids and the quantity of fatty acids 
absorbed (dotted line y=x; regression line y=0.66x + 57.8 (R2 = 0.87)) (Lock et al., 2006) 
(Chapter I: part I) 
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Table A1.14 Cost per bushel of flaxseed to break even with cost of 8% dietary inclusion in finishing diet when paid premium for flax feed beef 
above market live price (Chapter I: part I) 

 Premium above live weight market price ($1.18) 

 10% 20% 30% 40% 50% 

Live wt price $1.30 $1.42 $1.53 $1.65 $1.77 

Price per buy $2.07 $4.06 $6.03 $8.10 $10.16 

xsimulated steers were fed from 750 to 1400 lb with average DMI of 23 lb with 7.0lb F:G (performance data collected from Maddock et al., 
2006) 

ybushel of flax is represented by 56 lb 
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Figure A1.21 Growth of steers in growing and finishing phases when calories are not restricted, 
restricted via limited intake, or restricted via changes in caloric density of diet (● high 
concentrate both growing and finishing; □ concentrate limit fed both growing and 
finishing ■ concentrate ad libitum limit fed in growing phase and ad libitum in finishing 
▲forage ad libitum for growing phase and concentrate ad libitum in finishing) (Sainz et 
al., 1995) (Chapter I: part II) 
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Figure A1.22 Monthly changes in live cattle price at slaughter from 2012 to 2016 (USDA, ERS) 
(Chapter I: part II). 
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Table A1.21 Profit from cattle raised with or without a growing phase factoring in yardage costs for increased days on feed (DOF) using estimated 
final weights from Sainz et al. (1995) and historical fed cattle live weight prices from USDA ERS (Chapter I: part II). 

Year Month Final wt, kg $/kg Yardage/d DOF Gross profit* Difference in 
Profit 

2014 July 450 $3.50 $0.37 140 $1,521.01 
 

2014 September 500 $3.52 $0.37 200 $1,684.46 $163.45 

2016 July 450 $2.57 $0.37 140 $1,106.50 
 

2016 September 500 $2.33 $0.37 200 $1,092.00 -$14.50 

*Gross profit = ($/kg * Final wt (kg)) - (yardage/d * DOF) 
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Figure A4.1 Observed DMI, kg/d, regressed on predicted DMI, kg/d with solid line representing 
perfect fit between predicted and observed variables from chapter IV.   
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Figure A4.2 Observed ADG, kg, regressed on predicted ADG, kg with solid line representing 
perfect fit between predicted and observed variables from chapter IV.   
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Figure A4.3 Observed dressing percent, %, regressed on predicted dressing percent, %, with 
solid line representing perfect fit between predicted and observed variables from chapter IV.   
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Figure A4.4 Observed LMA, sq cm, regressed on predicted LMA, sq cm, with solid line 
representing perfect fit between predicted and observed variables from chapter IV.   
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Figure A4.5 Observed 12th rib fat thickness, cm, regressed on predicted 12th rib fat thickness, 
cm, with solid line representing perfect fit between predicted and observed variables from chapter 
IV.   
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Figure A4.6 Observed marbling score regressed on predicted marbling score with solid line 
representing perfect fit between predicted and observed variables from chapter IV (marbling 
score: 400 – slight, 500 – small, 600 – modest).  
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Figure A4.7 Observed Final BW, kg, regressed on predicted Final BW, kg with solid line 
representing perfect fit between predicted and observed variables from chapter IV.   
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Figure A4.8 Observed HCW, kg, regressed on predicted HCW, kg, with solid line representing 
perfect fit between predicted and observed variables from chapter IV.   
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