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Abstract

Internet of Things (IoT) is upon us with the number of IoT connected devices reach-

ing 17.68 billion in the year 2016 and keeps an increasing rate of 17%. The popularity

of IoT brings the prosperity and diversity of wireless technologies as one of its founda-

tions. Existing wireless technologies, such as WiFi, Bluetooth, and LTE, are evolving

and new technologies, such as SigFox and LoRa, are proposed to satisfy various needs

under emerging application scenarios. For example, WiFi is evolving to provide higher

throughput with the novel 802.11ac technology and the Bluetooth SIG has proposed

the Bluetooth Low Energy (BLE) technology to support low-power applications.

However, wireless technologies are victims of their own success. The vastly increasing

wireless devices compete for the limited wireless spectrum and result in the performance

degradation of each device. What makes it worse is that diverse wireless devices are

using heterogeneous PHY and MAC layers designs which are not compliant with each

other. As a result, sophisticated wireless coordination methods working well for each

homogeneous technology are not applicable in the heterogeneous wireless scenario for

the failure to communicate among heterogeneous devices.

This dissertation aims at fundamentally solving the burden of communication in

today’s heterogeneous wireless environment. Specifically, we try to build the direct

communication among heterogeneous wireless technologies, referred to as the cross-

technology communication (CTC). It is counter-intuition and long believed impossible,

but we find two opportunities in both the packet level and physical (PHY) layer to make

the challenging mission possible.

First, wireless devices are commonly able to do energy sensing of wireless packets

in the air. Energy sensing is capable to figure out packet level information, such as

the packet duration and timing. Based on the energy sensing capability, we design

DCTC, a CTC technology that piggyback cross-technology messages within the timing

of transmitted wireless packets. Specifically, we slightly perturb the timing of packets

emitted from a wireless device to form detectable energy patterns to establish CTC.

Testbed evaluation has shown that we can successfully transmit information at 760bps

while keeping the delay of each packet no longer than 0.5ms under any traffic pattern.
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Second, in the PHY layer, high-end wireless technologies are flexible, i.e., a larger

symbol set, in the modulation and demodulation. With careful choices of symbols, those

wireless technologies are able to emulate and decode the PHY layer signal of a low-end

one. We propose two systems BlueBee and XBee which aim at building direct com-

munication between two heterogeneous IoT technologies, Bluetooth and ZigBee, with

the idea of signal emulation and cross-decoding respectively. The former achieves signal

emulation by carefully choosing the Bluetooth payload bits so that the output signal

emulates a legitimate ZigBee packet which can be successfully demodulated by a com-

modity ZigBee devices without any changes. The latter proposes a general method to

support the bidirectional communication in the PHY-layer CTC by moving the complex-

ity to the high-end receiver for the demodulation of signal from a low-end transmitter.

Our testbed evaluation has shown that our technologies successfully boost the data rate

of the state of the arts by over 10,000x times, which is approaching the ZigBee standard.

This result makes CTC possible to play more roles in real-time applications, such as

network coordination.

In summary, this dissertation provides a new communication paradigm in a heteroge-

neous wireless environment, which is to provide direct communication for heterogeneous

wireless devices. Such communication is built upon two opportunities: (i) wireless de-

vices are capable to sense energy in the air so that specifically designed energy patterns

can transmit cross-technology information; (ii) a high-end wireless technology is more

flexible and possible to emulate and demodulate the signal from a low-end technology

for communication. The technologies developed in the dissertation will be the build-

ing blocks for the future designs of efficient channel coordination and ubiquitous data

exchange among heterogeneous wireless devices.
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Chapter 1

Introduction

IoT is a foundational technology that aims at connecting every physical object in the

world to the Internet to achieve ubiquitous resource access and management. It has

affected all aspects of our life from home automation, transportation, health care, man-

ufacturing, to the environment protection. The White House has announced a $160M

investment in the “Smart City” initiative in 2015. As a fundamental technology in IoT,

wireless technologies have grown rapidly both in the number and variety. According to

a study from Statista [1], the IoT connected devices reaching 17.68 billion in the year

2016 and is increasing at a rate of 17%. New wireless technologies, such as the LoRa,

NB-IoT, and SigFox are also developed to satisfy various application scenarios.

Along with the convenience brought by the boom of wireless technologies is the even

crowded and heterogeneous network environment. Due to the rare spectrum resource,

wireless technologies, such as WiFi, ZigBee, and Bluetooth share the common unli-

censed industrial, scientific and medical (ISM) radio band. The coexistence of wireless

technologies bring great challenges to the wireless connection, spectrum share, as well

as data fusion, and also known as one of the main sources of wireless interference and

poor link quality. Most existing wireless coordination methods that work well for the

homogeneous wireless technology are not applicable or perform poorly in today’s hetero-

geneous environment. It is still an open question how to mitigate the cross-technology

interference (CTI) and better coordinate wireless technologies [2, 3, 4, 5].

1
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1.1 Thesis Statement

The most challenging part of CTI is that heterogeneous wireless technologies are believed

not able to communicate with each other due to the heterogeneous physical (PHY)

layers. In other words, the signal from a heterogeneous wireless device is regarded

as noise and can not be demodulated. However, in this dissertation, we break this

stereotype and build direct communication between heterogeneous wireless technologies,

which we refer to as the cross-technology communication (CTC). With CTC, the new

paradigm of wireless communication, we not only ease the CTI problem but also pave

the way to the global optimization of the wireless spectrum allocation and usage.

Technically, CTC is possible for two reasons. First, each wireless device no matter

the PHY layer is commonly able to sense the wireless packet energy in the air, known

as the received signal strength (RSS). If carefully designed, we are able to carry cross-

technology information through the energy level of wireless packets in the air. Second,

the wireless signal is flexible and redundant. A high-end wireless technology has much

more degree of freedom in the signal modulation than a low-end one. Such large flexi-

bility makes it possible for a high-end technology to emulate the signal of a low-end one

in the PHY layer. The emulated signal follows the standards of the low-end technology

and can be directly demodulated without any hardware or software modifications. A life

analogy is that each language contains some borrowed words from a foreign language

which can be understood directly by people speaking the foreign language. With these

two insights, we pave the way to the CTC and get benefits from the wireless coexistence.

However, there are full of challenges in achieving CTC in both approaches. In the

first approach, although energy detection is commonly available in wireless devices, the

energy of a single wireless packet is always submerged in noise and hard to detect. It is a

question how to detect cross-technology message from the background noises. In the sec-

ond approach, it is a question how to bridge heterogeneous PHY layer (de)modulation.

And in both approaches, we need to carefully consider the cost of deployment. In other

words, the modification in the hardware and software should be small enough so that

the system is compatible with commercial off-the-shelf devices.
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1.2 Outline and Contributions

This dissertation studies how to build CTC both in the packet level and the PHY layer.

The outline and the primary contributions of the dissertation are as follows

• Packet Level Cross-technology Communication (Chapter 4)

This chapter studies how to build CTC based on the data packets energy patterns

universally interpretable regardless of underlying PHY layers, referred to as DCTC.

Unlike the state-of-the-art works which require injecting dummy packets of certain sizes

[6, 7], constructing customized preambles [8], or relying on the periodic beacon pack-

ets [9], the idea here is more general and friendly to existing wireless protocols. The

highlight of the DCTC design is that it resolves two unique challenges in the wireless

data traffic: (i) the traffic pattern is hard to estimate due to the variety of upper layer

applications and (ii) small perturbation in the wireless packets may have a huge impact

on the throughput. We tackle these issues by proposing a novel packet perturbation

method that is independent of the traffic pattern while the delay upperbound of the

perturbation method is small and guaranteed. Our experiment results have shown that

we can achieve a data rate of 760bps while guaranteeing the delay as small as 0.5ms so

that it won’t affect the upper layer applications.

• PHY Layer Cross-technology Communication (Chapter 5)

Although packet-level CTC methods work, they are intrinsically limited in the data

rate compared to the standard wireless protocols, such as the 250kbps ZigBee and

the 1Mbps Bluetooth, due to the sparse wireless packets in the air. To boost the

CTC data rate, in this chapter, we introduce another way to construct CTC. Instead of

relying on energy detection, we construct CTC based on the PHY layer signal emulation

to dramatically improve the CTC data rate approaching that of the standard wireless

protocols. Without loss of generality, we propose BlueBee, a PHY-layer CTC technology

from Bluetooth to ZigBee. BlueBee emulates normal ZigBee signal in the payload of a

normal Bluetooth packet without any hardware or firmware modification. The emulated

packet is fully compatible with the ZigBee standard so that it can be demodulated at

any commercial ZigBee receivers. Our extensive experiments have shown that BlueBee

achieves a data rate of 225kbps, approaching the cap ZigBee data rate, which is enough

for many real-time applications such as network coordination.
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• Bidirectional Cross-technology Communication (Chapter 6)

Signal emulation enables CTC from a high-end device to a low-end device but can

hardly provide feedback due to the lack of degree of freedom. In other words, a low-end

wireless technology cannot emulate the signal of a high-end one. The lack of bidi-

rectional communication greatly restricts the applications of PHY-layer CTC in real

network protocols. In this chapter, we study how to overcome the challenges of CTC

from a low-end transmitter to a high-end receiver. The main idea is to make the trans-

mitter unchanged but move the complexity to the high-end receiver. By cross-decoding

the native packets emitted from the low-end transmitter, we successfully enable bidi-

rectional communication for the PHY-layer CTC. We have evaluated our system on the

commercial Bluetooth and ZigBee platforms and achieved an over 90% success rate of

bidirectional communication which covers the gap left in existing PHY-layer CTC.



Chapter 2

Background

To provide sufficient context, this chapter discusses essential background concepts re-

lated to this dissertation, including IoT networking and wireless heterogeneity and co-

existence.

2.1 IoT Networking

IoT is short for “Internet of Things” which aims at connecting every physical object

to the Internet so that services and controls can reach every corner of our life. IoT

will enable a lot of smart applications including but not limited to home automation,

transportation, health care, manufacturing and environmental protection. To be non-

intrusive to the mobility of physical objects, wireless technologies such as WiFi, LTE,

ZigBee, and Bluetooth are the fundamental technologies in IoT networking.

Figure 2.1: Heterogeneous IoT networks in a smart home scenario

5
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Figure 2.1 demonstrates a typical IoT network in a smart home scenario where the

heterogeneous wireless technologies form networks of different scales. The Bluetooth

radio is popular in most wearable devices to form the personal area network (PAN).

The ZigBee radio is a low power technology suitable for battery operated machine-to-

machine communication, such as thermostats, smoke detectors, and humidity detectors.

WiFi and LTE are the choices for wide-band data communication the local area network

(LAN) and wide area network (WAN) respectively. These wireless technologies work

collaboratively to collect, forward, and process data to achieve home automation.

Table 2.1: Wireless technology specifications
ZigBee Bluetooth WiFi

(IEEE 802.15.4) (IEEE 802.15.1) (IEEE 802.11a/b/g/n)

Freq. band 2.4GHz ISM 2.4GHz ISM 2.4 & 5GHz ISM
Channel bandwidth 2MHz 1MHz 20/40/22MHz

Modulation OQPSK GFSK BPSK, QPSK, M-QAM
Spreading DSSS FHSS DSSS, CCK, MIMO, OFDM

Range 10-100 m 10m 100m
Max data rate 250kbps 1Mbps 600Mbps

Energy consumption Very low Low High

2.2 Wireless Heterogeneity and Coexistence

In Table 2.1, we have listed the technical specifications of the three most popular wireless

technologies, ZigBee, Bluetooth, and WiFi. To serve different applications and scenar-

ios, these three technologies are designed with heterogeneous channel bandwidth and

adopt different modulation and spread schemes. As a result, they show quite different

communication ranges, cap data rate, as well as energy consumption. For example, WiFi

occupies a wide bandwidth (20/40/22 MHz) and sophisticated and various modulation

schemes to provide reliable and speedy data communication. In contrast, Bluetooth

is designed for data exchanging over short distances. It sacrifices data communication

ranges (10m) for high data rate (1Mbps) with only 1MHz bandwidth. ZigBee, however,

is optimized in the reliability and energy consumption especially suitable for long-term

sensor deployment in the wild. All these technologies form separate networks in real

applications.
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Figure 2.2: Overlapping wireless channels in the ISM band

However, in Table 2.1, we observe all these technologies coexist in the 2.4GHz ISM

(industrial, scientific and medical) band for the rareness of the spectrum. In fact, the

channels of these technologies are partially or completely overlapped in the 2.4GHz

ISM band as shown in Fig. 2.2. Wireless packets will be disrupted if they collide in the

air. Although wireless MAC protocols design is a well-studied topic, sophisticated and

efficient methods such as time-division multiple access (TDMA) and Request to Send

/ Clear to Send (RTS/CTS) are not applicable in the cross-technology scenario for the

lack of communication. As a result, the cross-technology interference is still an unsolved

and challenging problem in academia.
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In our life, the public has been aware of the wireless interference and reported in

various domains. The number of news articles about wireless interference from Google

in a decade is depicted in Fig. 2.3. The number of news articles with the keyword

of ‘wireless interference’ was 242 a decade ago and increase by 32× to 7, 860 in 2018.

These articles cover a wide range of wireless applications from poor WiFi connectivity

at home to the interference of 5G radios with the weather satellites. So it is critical to

understand the mutual impact between heterogeneous wireless technologies in the over-

lapped spectrum to mitigate or even take advantage of the interference for a harmonious

wireless environment.



Chapter 3

Related Work

The diversity of wireless technologies makes the harmonious coexistence of heteroge-

neous wireless technologies on the common ISM band an even more challenging and

urgent problem. The efforts in the academia trying to relieve and solve this problem

can be categorized as follows: (i) wireless communication under cross-technology inter-

ference, (ii) packet-level cross-technology communication, and (iii) physical layer signal

manipulation between heterogeneous wireless devices.

3.1 Communication under Cross-Technology Interference

Popular wireless technologies on the 2.4G ISM band, such as WiFi, ZigBee, Bluetooth,

and LTE-U are competing for the spectrum. However, their heterogeneous PHY and

asymmetric link blind them from detecting the existence of each other, which bring

significant cross-technology interference(CTI)[2, 3, 4, 5]. To alleviate this issue, there

have been numerous research works on alleviating the CTI by detecting and avoiding

the interference, or recovering the corrupted signal from the interference[10, 11, 12, 13,

14, 15, 16, 17].

Although these solutions are effective, they generally require modification of the

PHY layer mechanisms, or suffer from the dynamic interference patterns. In contrast,

CTC requires no changes in the commodity devices and takes advantage of the hetero-

geneous wireless signal to build direct communication. It is potential to fundamentally

alleviate the CTI problem.

9
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3.2 Packet-level Cross-Technology Communication

In recent years, researchers propose cross-technology communication (CTC) which di-

rectly builds the communication between heterogeneous devices [9, 18, 6, 7, 8]. The core

idea of these CTC methods is that the sender creates special energy patterns by sending

out legacy packets, while the receivers detect these patterns by either the received signal

strength (RSS) sampling or the channel state information (CSI), which are supported

by the existing hardware. However, all existing methods have some limitations. For

example, Esense [6], and HoWiES [7] build the CTC from WiFi to ZigBee by sending

out multiple dedicated WiFi packets with specific packet durations to distinguish the

CTC packets from background noises. The injected packets will saturate the wireless

channel and disrupt existing wireless communication. FreeBee [9] is a non-disrupt CTC

design because it relies on the mandatory WiFi beacons, and embed CTC message

in a free channel by changing the transmission timings of existing beacons. However,

the performance of the design is limited by the sparse number of beacons in the air.

GSense[8] attach customized preambles before heterogeneous wireless packets which re-

stricts its deployment. Finally, B2W 2 [18] modulating the energy level of Bluetooth

packets and then demodulate through WiFi CSI at the receiver side, which is specific

to the frequency-hopping Bluetooth protocol and not generalized.

3.3 Physical Layer Signal Manipulation

Despite packet-level solutions, our ideas are also inspired by several recent works study-

ing the signal manipulation[19, 20, 21, 22, 23]. In [21], researchers build the legacy

WiFi packets via customized tags by utilizing the backscatter effect. In addition, in the

LTE system, Ultron [19] emulates the WiFi packets via a LTE transmitter to coordinate

between LTE and WiFi. However it requires the modification of existing LTE standard,

and the sent frames are no longer LTE-compliant MAC frames. WEBee[24] is the first

to introduce the ideal of signal manipulation into wireless communication, referred to

as signal emulation, without hardware or firmware modifications on the COTS devices.

However, signal emulation in WEBee requires the transmitter (i.e., the emulator) to be

much more powerful than the receiver to guarantee the emulation performance. It can

not be directly applied to the resource limited IoT devices such as ZigBee and Bluetooth.



Chapter 4

Packet Level Cross-technology

Communication

4.1 Introduction

This chapter studies how to build CTC in the packet level. The principal behind is that

wireless devices, despite of the technologies they use, are available and mandatory to

sense the energy of the channel (i.e., RSSI) in order to access the channel and commu-

nicate with each other. Although devices using different technologies can not decode

each other’s information due to incompatible physical layer, they are all able to identify

the existence of each other through channel energy sensing.

State-of-the-art techniques in this category commonly suffer from channel ineffi-

ciency [6, 7], low throughput [9], or disruption to existing networks [8], leaving signifi-

cant room for further improvement. To take advantage of all kinds of wireless packets in

the air while being non-intrusive to the upper layer applications, we introduce CTC via

data packets (DCTC). The key concept is utilizing existing data packets which are the

dominating portion of wireless network traffic. By slightly perturbing the transmission

timings of enqueued data packets, we construct specific energy patterns that can be

demodulated by heterogeneous wireless technologies. DCTC overcomes the limitations

of state-of-the-art techniques. More specifically, DCTC (i) significantly enhances CTC

throughput, while (ii) keeping the technology transparent to upper layer protocols and

applications.

11
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It is a non-trivial task. First, the dynamic nature of the volume, both bursty and

sparse, affect the opportunity for CTC modulation. Moreover, delay sensitivity of the

applications, especially real-time applications, such as audio/video streaming applica-

tions and online games, require the perturbation delay to be small enough to comply

with applications’ delay requirements.

To the best of our knowledge, this is the first work that achieves CTC with existing

data packets, naturally flowing through any network entity. It features (i) specific CTC

modulation independent of the arrival of future data packets, (ii) packet perturbation

with bounded delay even without the knowledge of incoming packet distribution, and

(iii) dynamic configuration accommodating CTC throughput to the amount of available

data packets. We have implemented our design on a wireless open-access research

platform (WARP[25]) and MICAz[26], compliant to the WiFi (i.e., 802.11) and ZigBee

(i.e., 802.15.4) standards respectively. Our experiment results demonstrate the average

perturbation delay of only 0.5ms while achieving 95% accuracy in transmitting DCTC

symbols from a WiFi AP to a ZigBee node, showcasing the reliability of DCTC as well

as its transparency to upper layer applications. We have also implemented our design

from a ZigBee node to a WiFi device to achieve bidirectional communication.

Our contributions in this chapter are as follows.

• We propose DCTC, a novel CTC framework that explores existing data traffic.

DCTC is designed to take advantage of the large volume of data traffic in the wild,

and achieves significantly higher throughput compared with the state-of-the-art

works, without incurring traffic overhead.

• Modulation in DCTC is done by perturbing the transmission timings of data

packets, where the amount of perturbation delay incurred is shown to be small

and bounded. This ensures transparency of our design to upper layer protocols

and applications.

• DCTC requires no hardware modification and is compatible with off-the-shelf de-

vices. Implementation of DCTC on WiFi and ZigBee platforms shows that DCTC

offers reliable symbol delivery with an average delay of less than 0.5ms. In addi-

tion, DCTC has little impact on the performance of popular network applications,

such as FTP, video streaming, and audio streaming.
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4.2 Motivation

This section begins with the insight on abundant CTC opportunities under today’s

typical environment, followed by the challenges in perturbing the timing of data packets.

4.2.1 Opportunity for CTC

State-of-the-art literatures achieve CTC either by injecting dummy packets [6, 7] or

utilizing mandatory beacons [9]. The former approach introduces additional traffic that

is disruptive to existing networks, with its significant spectrum occupancy. Although

the latter is free from the issue as it utilizes existing beacons, it suffers from low CTC

throughput due to the confined number of beacons and hence limited CTC opportu-

nities. Therefore, from the two methods, we note that the best of both worlds can be

reached by utilizing existing traffic with a sufficient volume.
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Figure 4.1: Distribution of network packets in four everyday life scenarios: residence,
hall, classroom, and lab.

Fig.4.1 demonstrates the compositions of WiFi traffic experimentally observed in

four typical everyday environments, including residence, hall, classroom, and lab. The

figure shows that, unlike the small volume of beacons, the data packets take up the

majority portion of the traffic in all four scenarios to reach over 40%. It is more than

7× of the amount of beacons. This indicates utilizing existing data traffic not only

enables establishing CTC with high spectrum efficiency (i.e., without dummy packets),

but also provides sufficient opportunities to reach high CTC throughput.
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4.2.2 Challenge of DCTC

Although the huge volume of data packets provide us with huge opportunity to estab-

lish CTC, perturbation of data packets may degrade the performance of upper layer

applications, such as the drop in throughput.
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Figure 4.2: The impact of packet delay on throughput, normalized to the highest
throughput of each experiment.

To study how severe packet delay (measured by round trip time, RTT) will affect the

throughput of upper layer applications. We test the normalized throughput (normalized

to the highest throughput) of both UDP and TCP traffic with different bandwidth

using Iperf[27]. The UDP bandwidth is chosen from 10Mbps to 21Mbps (saturation

bandwidth), while TCP throughput is tested by setting a large enough TCP window

size, due to the fact that TCP bandwidth can not be directly set in Iperf. In Fig.

4.2, we find that, the throughput of TCP traffic decreases dramatically when RTT is

higher than 10ms. That is because (i) TCP flow control mechanism restricts TCP

throughput, making it inversely proportional to RTT in theory, and (ii) ACK timeout

may be triggered when data packets are perturbed for a long time. Even though UDP

traffic doesn’t have flow control and ACK, its throughput starts to degrade when RTT

is 20ms in saturation case. That is due to transmission queue overflow.

From the study, we find that the throughput of both TCP and UDP traffic, especially

TCP traffic, will be affected by packet delay. Thus how to minimize packet perturba-

tion time, so that to minimize the increment of packet delay, is the main challenge in

establishing CTC via data packets.
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4.3 System Design

In this section, we first introduce the objective of our design, followed by an overview of

our system design, and finally the details of DCTC modulation/demodulation design.

4.3.1 Design Objective

Due to the critical impact of packet delay on the application throughput, our design aims

at establishing CTC via data packets (known as DCTC) that enhances CTC throughput

while keeping transparent to upper layer network applications. More specifically, our

design features (i) packet perturbation with bounded delay even without the knowledge

of incoming packet distribution, and (ii) dynamic DCTC throughput fitting incoming

packet rate.

4.3.2 Design Overview

DCTC is a bidirectional communication system between two heterogeneous wireless

communication technologies, WiFi and ZigBee. Without loss of generality, we use the

communication from a WiFi sender to a ZigBee receiver to illustrate our main design.

The opposite communication is based on similar principle. Fig 5.1 describes DCTC’s

design architecture in both the WiFi sender side and ZigBee receiver side, where the

grey boxes are existing protocols/applications, and the white boxes are DCTC’s layers.

Data traffic
Beacon

CTC via Data Packets

(DCTC)

WiFi AP

ZigBee
Demultiplexing

802.11 PHY/MAC

Multiplexing

Application Data

Modulator

Demodulator

RSSI sampler

Figure 4.3: An overview of DCTC system design.

At the sender side, the top layer lies the existing applications. DCTC’s opportunity

comes from the data traffic of internet applications, without any modification to exist-

ing applications. Then, DCTC has its multiplexing layer, which supports concurrent

transmission of multiple senders. Next, DCTC has its modulation layer, which shifts

transmission timing of the packets in the transmission buffer with reference to WiFi
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beacons to construct DCTC symbols. Finally, since DCTC is built upon the existing

802.11 MAC/PHY layers, it follows the existing protocols, such as channel sensing,

packet ACK and retransmission. These features enable DCTC to be transparent to the

existing physical layer protocols.

At the receiver side, DCTC utilizes the existing sampling ability of the ZigBee nodes

to sense the energy (RSSI) of the channel. Although the ZigBee receiver can not demod-

ulate WiFi signal directly due to the incompatible physical layers, DCTC demodulator

can demodulate DCTC symbols through RSSI sampling results. In addition, the DCTC

receiver relies on its de-multiplexing layer to recognize different senders.

4.3.3 Modulation

In CTC scenario, WiFi beacon has been proved to be reliably demodulated by hetero-

geneous radio through its energy pattern [9]. However, employing that idea directly

to data traffic is not practical. That is because regulating dynamic data traffic to be

periodic may cause huge increase in packet delay or severe buffer control problem. We

propose the modulation of DCTC which establishes detectable energy patterns while

introducing little and delay bounded perturbation to existing data traffic.

Without loss of generality, we use the process of modulating 1-bit information at a

single WiFi AP as an example. We regard the packets transmitted by other wireless

transmitters as background noise.

A WiFi AP will broadcast WiFi beacons periodically due to the 802.11 protocol.

Within a beacon period, we set some critical time points with period ∆, which is a

user defined parameter shared with both sides in advance. Critical time points have

alternating labels to indicate bit “0” and bit “1” respectively. To modulate a data

packet with minimum delay, we perturb it to cover the nearest critical time point.

Reference 0 1 0 1 0 1 Reference

∆ 

DATA DATA

Legends:       Beacon       Critical time point 

Figure 4.4: Illustration of DCTC symbol modulation
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In Fig. 4.4, we illustrate how to modulate bit “1”. To do that, we perturb all the

data packets to cover their closest time point “1”. The first packet has already covered

critical time point “1”, so we don’t move it. The second one, however, doesn’t cover

critical time point “1”, so we perturb it to cover the next time point “1”. Note we do

not regulate the random incoming data packets to be periodic, i.e., to cover all time

point “1”s, but to slightly adjust the energy pattern according to its original incoming

pattern. In this example, there are three critical time point “1”s, but data packets only

cover two of them. To extend the design to multi-bit case, we can either cut a beacon

period into small segments or a more advanced method discussed in Section 4.4.1.

4.3.4 Demodulation

To demodulate DCTC symbols, the ZigBee receiver needs to first synchronizes with the

WiFi sender by detecting beacons of the transmitter from all kinds of noise packets in the

air. Then it extracts DCTC symbols with reference to the beacons of the transmitter.

• Step 1: Synchronization: An 802.15.4-compliant ZigBee node recognizes WiFi

beacons under the presence of channel noise by detecting their periodic energy pattern.

The ZigBee node continuously senses the energy of the channel, and records the RSSI

values from the RF chip in its flash. Then it quantizes the captured RSSI values to

be high and low to indicate busy and idle channels (denoted as dark and white boxes

in Fig. 4.5). The threshold is set to be −75dBm following the CCA (clear channel

assessment) threshold for the 802.15.4 standard [28]. The sampling rate of the ZigBee

node is 7.8KHz, which makes a measurement spanning of 128µs to avoid time gaps in

sampling adjacent data packets.

Next, the ZigBee node applies folding to the quantized RSSI sequence, which is

a signal processing technique to extract periodic signal from noise [29]. The process

of folding is as follows. The received RSSI sample sequence is divided by the beacon

interval, which is a preset value for WiFi APs. All the samples are stacked together,

and a column-wise sum is applied to calculate the number of samples with high RSSI

values in each column, which is denoted as fold sum. Since WiFi beacons are periodic,

they will align column-wise and preserve a higher fold sum than other signals.

In Fig. 4.5, we illustrate how to detect beacon positions from a quantized RSSI

sequence. We cut the quantized RSSI sequence into 3 subsequences of length T = 5,
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Figure 4.5: Illustration of DCTC symbol demodulation

where T is the period of beacons. Then we stack them together and calculate the fold

sum. We find that the fold sum of the first column is the highest among all the columns.

Then we detect the beacon position at the first column.

Other RSSI Samples

Beacon

(a) Synchronization

Constellation

0 1 0

Success > 87%

(b) Symbol extraction

Figure 4.6: DCTC symbol demodulation in practice

In practice, as illustrated in Fig. 4.6(a), the beacon period is set to be 102.4ms,

which means there are 800 ZigBee RSSI samples in one beacon period. After folding,

we find that the fold sum at index 572 exceeds the fold sums of the others, and thus we

demodulate the beacon position.

• Step 2: DCTC Symbols Extraction: With reference to the WiFi beacon, we

check quantized RSSI samples every ∆ seconds at critical time points. Just as in the

modulation process, critical time points have alternating labels “0” or “1”. If the

channel RSSI is high at a certain critical time point, we regard the successful reception

of an according DCTC symbol “0” or “1”. Then we accumulate the DCTC symbols we

received within a beacon period. The dominating symbol in the whole beacon period is

interpreted as the symbol conveyed.
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In Fig. 4.6(b), we illustrate how to extract DCTC symbol in practice. We depict the

RSSI samples with high RSSI values in constellation figure. We find that over 87% of

the high RSSI values are near critical time point “1”, with the highest frequency appear

at exactly the time point “1”. Since the frequency of time point “1” is larger than that

of time point “0”, the beacon period is demodulated as symbol “1”.

4.3.5 Design Features

The main features of DCTC design is that the packet perturbation in the CTC modu-

lation has limited impact on the original network traffic and protocol shown as follows.

• Bounded Traffic Delay: The perturbation operation guarantees a bounded packet

delay. Since we perturb data packets to the nearest critical time point, each data

packet will be perturbed at most 2∆ to cover the correct time point. Considering that

the incoming data packets arrive in random, so the amount of perturbation is uniformly

distributed in the interval [0, 2∆). So the average amount of perturbation is ∆.

• Limited Impact on Throughput: The perturbation operation has limited impact

on the packet throughput for two reasons. First, in most time, packet intervals are

larger than the critical time point interval, i.e., data packets are perturbed to cover

different critical time points. In that case, perturbation of one packet won’t affect the

timing of the next one. Second, even though the incoming traffic is dense, we still

have room to flush out surplus data packets. We can flush out data packets between

two critical time points, because the receiver only detects at critical time points. Data

packets flushed within two critical time points won’t be demodulated as any symbol,

thus won’t affect symbol demodulation. In this way, the perturbation has little impact

on traffic throughput.

• Compatibility with CSMA: The perturbation operation is compatible with CSMA

random backoff. In CSMA, a random backoff timer is set when there are data packets

to transmit. The timer will count down whenever the channel is sensed to be idle.

The actual time backed off depends on the environment and hard to estimate, which

affects the accuracy of modulation. In our design, the modulation of data packets is

after CSMA’s random backoff, i.e., we add small additional time delay after normal

CSMA backoff. Thus we can control the timing of packets accurately while maintaining

compatible with CSMA protocol.
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4.4 Advanced Design

In this section, we propose several advanced designs that help improve the throughput

of DCTC while still maintaining transparent to upper layer applications. One is a

multi-bit embedding technique, the other is a multiplexing technique.

4.4.1 Multi-bit Embedding

Although we can modulate n bits within a beacon period by separating a beacon period

into n small segments. Its performance degrades at dynamic packet rate. Sometimes

there are insufficient data packets within one segment to modulate a symbol while

surplus data packets within another. To address that issue, the sender should be able

to dynamically decide when to modulate a bit depending on the incoming packet rate.

To do that, instead of using the whole beacon period to modulate one bit, the sender

can repeat a symbol a certain number of times, above some threshold, then turn to the

next bit. The threshold is set according to the channel noise level. Detailed discussion

is in Section 4.5.1.

One issue that needs to be solved is that, without using beacon as boundary, it

becomes hard to distinguish neighboring symbols, especially when we repeat a symbol

multiple times. For example, when the receiver receives four bit “1”s, we can not tell

whether the sender is transmitting four repeats of a single bit “1” or two bits that are

the same, i.e., two repeats of the first symbol “1” and two repeats of the second symbol

“1”.

To address this issue, we adopt a coding method similar to the hybrid ternary code

[30], which transfers any 0-1 sequence to a new sequence where no consecutive bits are

the same. To do that, we introduce a new bit “R”, which means “Redo”. To encode any

0-1 sequence, we simply scan from left to right, whenever we find a bit that is the same

as its previous one, we change it to be “R”. To decode the code, we just interpret “R”

as its previous symbol. For example, a sequence “111100” will be coded as “1R1R0R”,

where no consecutive bits are the same. The only change to the basic modulation is

that we now have three types of critical time points, “0”, “1”, and “R”, instead of two.

To demodulate the symbols, the receiver scans at critical time points and uses three

counters to count the number of each type of bits respectively. Whenever it has detected
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a threshold number of certain bit (e.g., five bit “1”s), it demodulates a bit (e.g., bit “1”).

Then the receiver clears the three counters and disables the counter for the bit already

demodulated (e.g. counter of bit “1”). That is because we know no consecutive bits are

the same. We will enable the bit counter after we have demodulated another bit.

With the multi-bit embedding technique, we can achieve multi-bit embedding adapt-

ing to the dynamic data traffic at the sender side, while still being able to demodulate

symbols at receiver side.

4.4.2 Multiplexing

Here we propose how to achieve multiplexing among multiple DCTC senders. That

means multiple DCTC senders can transmit at the same time while each of their receivers

can still demodulate DCTC symbols correctly. In this way, the accumulated DCTC

throughput can be improved.

Legends:       Beacon    Critical time point         Data packet

Reference 0 1 01 0

∆2 

∆1 
Reference 0 1 01 0

AP1

AP2

Figure 4.7: Illustration of DCTC multiplexing.

We achieve multiplexing by carefully choosing the critical time point intervals as-

signed to different APs, so that the critical time points from any two different WiFi

APs will meet at most once within any beacon periods. As illustrated in Fig. 4.7, AP1

and AP2 have their critical time points with interval ∆1 and ∆2 respectively. They can

modulate their DCTC symbol at their own critical time points without interfering with

each other. To find such pairs of critical time point intervals, we have the following

theorem.

Theorem 4.4.1. Let CTP1 be a sequence of critical time points with interval ∆1 and

CTP2 be a sequence of critical time points with interval ∆2. CTP1 and CTP2 will
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Figure 4.8: Simulation of DCTC’s performance under noise

overlap at most once within beacon period T if

LCM(∆1,∆2) ≥ T, (4.1)

where LCM is the the least common multiple.

Proof. We prove by contradiction. Assuming CTP1 and CTP2 overlap more than once

with T . Without loss of generality, we say they meet at least at time t1 and t2, where

0 < t2 − t1 < T . Then t2 − t1 is the common multiple of ∆1 and ∆2, and it is less than

T , which conflicts with the fact that LCM(∆1,∆2) ≥ T .

Theorem. 4.4.1 guarantees that two critical time point sequences have minimum

cross-talk interference between them. Thus we can achieve concurrent transmission of

multiple DCTC senders.

4.5 Analytics

In this section, we analyze the symbol error rate as well as the throughput of DCTC.

PN Noise rate

Ns Number of repeat symbols at the sender

Nr Threshold number of repeat symbols at the receiver

Rs Packet rate at the sender

∆ Critical time point interval

Table 4.1: Parameters
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4.5.1 Symbol Error Rate

The wireless channel is shared by multiple wireless devices and is always crowded with

wireless traffic. In CTC, packets from devices other than DCTC senders are regarded

as noise. So the noise ratio PN can also be regarded as the channel occupancy rate.

The noise in the air brings two problems to the accuracy of DCTC: (i) it may occupy

the correct time point at the sender side (but not heard by the receiver, due to hidden

terminal issue) and prevent the sender to perturb data packets to the right time point,

which we refer to as the false negative problem, or (ii) it may occupy the wrong time

point at the receiver side, causing the false detection of a wrong time point, which we

refer to as the false positive problem.

To address both problems, we repeat one symbol multiple times, denoted as Ns, at

the sender. If the receiver can detect certain number of the repeats, denoted as Nr, it

successfully demodulates a symbol. Thus the false negative rate PFN can be formulated

as

PFN =

Nr−1∑
k=0

(
Ns

k

)
(1− PN )kPNs−k

N , (4.2)

which means the probability that we can detect more than or equal to Nr correct time

points at the receiver side.

The false positive rate PFP is affected by the packet rate at the sender Rs. The

intuition is that, when packet rate is low, it takes more time for the sender to send

one symbol. So the receiver has more chance to be affected by the false negative issue

during one symbol time. The average time to send one symbol can be derived as Ns
Rs

,

which means the time DCTC sender takes to transmit Ns packets. During that time,

the number of critical time point sampled at the receiver side is Ns
Rs×∆ . Among them,

half number of the critical time points are the wrong ones. So the total number of

wrong critical time points at the receiver side is Nw = Ns
2Rs×∆ . False positive problem

happens when noise packets occupy more than Nr wrong critical time points, which can

be formulated as

PFP = 1−
Nr−1∑
k=0

(
Nw

k

)
P kN (1− PN )Nw−k. (4.3)

With the false negative and false positive rate, we can derive the symbol error rate
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(SER) as

SER = (1− PFN )× (1− PFP ). (4.4)

In Fig. 4.8(a) we depicts the false negative rate with increasing symbol duration,

which is Ns
R (R is fixed to 1000p/s). We find that when we increase the number of sym-

bols repeated at the sender, the false negative rate decreases dramatically. It decreases

to under 1% when we repeat a symbol 7 times at the sender. In Fig. 4.8(b), we study

the false positive rate with increasing packet rate while fixing Ns to be 5. We find that

false positive rate decreases under 10% when packet rate is larger than 800p/s. That is

because when packet rate increases, Nw decreases, so the receiver will have less chance

to be affected by noise.

4.5.2 Throughput

We need to achieve maximum DCTC throughput, which depends on both the demodu-

lation accuracy and DCTC data rate. To modulate a symbol more data packets (higher

Ns), we can guarantee higher symbol accuracy (Ps), but decrease the DCTC data rate

( RNs
). To maximize DCTC throughput, we formulate it to be an optimization problem,

maxNs,NrSER×
R

Ns
. (4.5)

Solving the optimization problem is out of the scope of this dissertation. We can use

some optimization toolboxes to find the solution.

In Fig. 4.8(c), we depict the DCTC throughput with increasing packet rate. We find

that when the packet rate increases, DCTC throughput also increases. When the error

rate is 20%, the DCTC throughput increases from 47bps to 160bps. The throughput

increases faster when packet rate is large because the decrease in SER.

4.6 Evaluation

In this section, we evaluate DCTC’s performance in throughput, transparency, error

rate under noise, multiplexing and receiver overhead.
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WiFi (WARP)

ZigBee
Data Source

Figure 4.9: Experiment setting.

4.6.1 Setting

We have implemented bidirectional DCTC communication between WiFi and ZigBee

nodes through data packets from applications. Fig. 4.9 shows the experiment setting of

our design. We use a laptop as a data packet generator through network applications.

The laptop is connected to a WiFi AP equipped with DCTC design. Although we

have implemented DCTC on both off-the-shelf WiFi chipset (laptop) and WARP [25],

which is a wireless research platform implemented with WiFi PHY/MAC layers, the

following evaluation results are based on WARP platform, for its convenience in changing

parameter setting. We also have 5 ZigBee-compliant MICAz nodes, which can sample

the channel and capture RSSI values at 7.8KHz, and records them within its 512KB

on-board flash. WiFi AP works on WiFi channel 1, and ZigBee works on ZigBee channel

11− 14, overlapped with WiFi channel 1.

4.6.2 Throughput

We here compare the throughput of DCTC with the state of the art.

•WiFi→ZigBee: Fig. 4.11 compares the achievable throughput of DCTC from WiFi

to ZigBee with two state-of-the-art works, ESense and FreeBee. According to the au-

thor, with multiple ESense senders working in parallel, ESense achieves a bit rate of

1.63Kbps. Since five consecutive packets are need in ESense to guarantee reliable trans-

mission of a symbol, the actual throughput of ESense is 326bps. Under the same set-

ting, asynchronous FreeBee achieves 560bps in throughput via concurrent transmission

of hundreds of FreeBee senders. For DCTC, the maximum throughput is restricted by

the sampling interval at the receiver side. The ZigBee receiver samples one RSSI value
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Figure 4.10: DCTC’s transparency to upper layer applications

every 128µs, and we need one time point for each of the two symbols. In addition, we

can guarantee reliable (> 95%) symbol detection by repeating a symbol 5 times, which

results in a throughput of 760bps for DCTC, which is 1.3× of FreeBee, and 2.3× of

ESense.

• ZigBee→WiFi: Here we test the performance of DCTC from ZigBee network to

WiFi. FreeBee achieves throughput of 146bps from ZigBee to WiFi. In DCTC, since

WiFi can sample the channel much faster, the bottleneck is the transmission rate of

ZigBee node. The maximum transmission rate of MICAz is 1000p/s, also we can guar-

antee over 95% accuracy by demodulating 5 data packets. So DCTC’s throughput from

ZigBee to WiFi is 190bps, which is 1.3× of FreeBee.
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ZigBee ->WiFi
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Figure 4.11: Throughput of bidirectional communication between WiFi and ZigBee.

4.6.3 Transparency

In this part, we evaluate DCTC’s transparency in packet round trip time and through-

put. In addition, we will also use some popular network applications, such as FTP,

audio streaming, and video streaming to evaluate DCTC’s impact on real network ap-

plications.

• End-to-End Delay Here we study DCTC’s impact on network end-to-end delay.

In the experiment, the critical time point interval is set to be 512µs, and we use the

Linux command “Ping” to test the RTT, which is an indicator of end-to-end delay, w/

and w/o perturbation. In addition, we use DummyNet to emulate different network

end-to-end delay.

In Fig. 4.10(a), the black area is the additional delay introduced by DCTC. We

find that the RTT w/ DCTC is within 2ms of RTT w/o DCTC. Considering that it is

natural to have 1ms fluctuation in the normal RTT due to dynamic network situation,

results in Fig. 4.10(a) can show that our design guarantees a bounded perturbation

delay.

• End-to-End Throughput Here we compare how our design will affect the through-

put of normal WiFi traffic, both TCP and UDP traffic. We use Iperf[27] to generate

TCP and UDP traffic. TCP is given a large enough window size and UDP is set a

constant bandwidth of 10Mbps.

From Fig. 4.10(b), we find that when RTT is 20ms, the throughput of TCP traffic

degrades about 15.3%. As the RTT increases, the throughput difference between TCP

w/ and w/o DCTC becomes smaller. That is because DCTC has a bounded delay to

original TCP traffic, and the throughput of TCP traffic is almost inverse proportional to
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RTT. As a result, when RTT is small, throughput degradation is large and it decreases

as RTT increases. The impact of DCTC on TCP throughput can be omitted when RTT

is larger than or equal to 40ms. From Fig. 4.10(c), we find that the throughput of UDP

traffic keeps stable as the round trip time increases. We find that the UDP throughput

w/ and w/o DCTC are almost the same, which verifies the transparency of DCTC to

the network traffic.

• Impact on Network Applications Here we use 3 applications: FTP, Audio stream-

ing, and Video streaming. The performance of the applications are as follows:

(i) FTP traffic: We construct FTP traffic with the tool vsftpd [31] on Linux plat-

form. We transfer a large file of size 55MB through an AP equipped with DCTC layer.

Without DCTC, it takes about 48s to finish transmitting the file (RTT = 30ms). With

DCTC, the increment of ftp completion time is shown in Fig. 4.10(d). The increment

of ftp completion time decreases as the RTT increases. When network RTT is 30ms,

the increment in completion time is 14.6%, and the increment decreases to 3.7% when

network RTT is 60ms. It shows that the impact on FTP is small and won’t affect

normal functionality, especially for long-distance file transmission. Since FTP is upon

TCP protocol, the result is consistent with DCTC’s impact on TCP throughput.

(ii) Audio & Video traffic: We set up an audio & video streaming server using the

tool PLEX [32] and connect it to an AP equipped with DCTC layer. Then we play

the audio & video stream in web browser from a remote laptop. We find that even in

a network with high RTT (60ms) we can play a MP3 audio stream and a high quality

video stream (> 720p) smoothly. The reason is that DCTC has a limited impact on the

TCP and UDP throughput. So applications built upon them can work well as usual.

4.6.4 SER

We here evaluate the SER for ZigBee nodes to demodulate DCTC symbol. In the

experiment, one laptop is connected to WiFi AP (WARP) and generates UDP packets.

The WiFi AP establishes DCTC symbols using the data packets flowing through it at

WiFi. The WiFi AP works at the 20MHz WiFi channel 1, which covers four 2MHz

ZigBee channel from 11 to 14. We transmit more than 3,000 DCTC symbols with the

packet rate of laptop varies from 100p/s to 500p/s and the DCTC throughput fixed to

be 10bps.



29

Packet rate (p/s)
100 150 200 250 300 350 400 450 500

S
y
m

b
o

l 
e

rr
o

r 
ra

te

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035
Ch. 11
Ch. 12
Ch. 13
Ch. 14

(a) Demodulation error rate with different
packet rate

Packet rate (p/s)
100 150 200 250 300 350 400 450 500

T
h

ro
u

g
h

p
u

t 
(b

p
s
)

0

20

40

60

80

100
Ch. 11
Ch. 12
Ch. 13
Ch. 14

(b) DCTC throughput with increasing
packet rate

Figure 4.12: DCTC’s SER and throughput with increasing packet rate

In Fig. 4.12(a), we find that the symbol error rate decreases as the packet rate

increases. When packet rate is higher than 250p/s, SER of all four ZigBee channels

becomes lower than 1%. That is because with higher packet rate, we use more data

packets to modulate one symbol, so that the symbol error rate is lower. We note that

Fig. 4.12(a) shows that we can demodulate DCTC symbols with high accuracy at all

four ZigBee channels, which provides the potential for cross-channel broadcast from

WiFi to ZigBee through data traffic.

4.6.5 Impact of Traffic Volume

In Fig. 4.12(b), we study the DCTC throughput as WiFi packet rate increases. We

find that the DCTC throughput increases as WiFi packet rate increases. When packet

rate is 500p/s, DCTC can reach about 90bps in throughput. That means DCTC can

adapt to the volume of network traffic and make full use of DCTC opportunity. In

addition, the DCTC throughputs at different ZigBee channels are close. That is because

a WiFi sender covers four ZigBee channels and can broadcast to ZigBee devices at these

channels.
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4.6.6 Multiplexing

In Fig. 4.13, we study the concurrent DCTC symbol transmission. We have five WiFi

APs that are embedded with DCTC. The critical time point interval of these APs are

set 10ms, 11ms, 13ms, 15ms, and 17ms respectively, which have minimum cross-talk

interference between each two of them. We open these WiFi APs one after another and

evaluate the DCTC throughput of a single AP as well as the aggregated throughput of

multiple APs.
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Figure 4.13: Concurrent DCTC symbol transmission with up to 5 APs (D1 - D5)

We find that when only one AP is on, its DCTC throughput can be as high as 9.3bps.

As more APs add in, the DCTC throughput of the AP slightly decreases. When there

are 5 APs working together, the throughput of a single DCTC sender is about 7.7bps,

due to noise in the busy channel. However, the aggregated throughput of the five APs

is almost 4.1× the throughput of one AP.

4.6.7 Receiver Overhead

In this section we demonstrate the light-weight memory storage and computing cost

for DCTC. So that it can work on off-the-shelf ZigBee nodes and won’t disturb legacy

network protocol.

• Storage: In DCTC, the most storage cost is in detecting the position of WiFi beacons.

We need to store enough RSSI samples temporarily to detect the position of periodic

WiFi beacon. We need to store 800 quantized RSSI samples in each beacon period,
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which occupies 800bits. In addition, we need to fold 5 times to reliably demodulate

beacon position, which causes a total storage of 500Bytes, less than 0.1% of MICAz’s

512KByte memory.

• Computation: The steps of DCTC modulation can be divided into 4 parts: (i)

sampling RSSI, (ii) calculating fold sum, (iii) locating beacon position, (iv) checking

critical time points, and (v) demodulating DCTC symbol. Among them, (i) is auto-

matically done whenever ZigBee nodes are open. After collecting enough RSSI samples

(i.e., ρ×f×T ), we need to do ρ×f×T addition or comparison in (ii) and (iii). The cost

of step (iv) and (v) are related to critical time point interval ∆, the number of symbols

in one beacon period n, and number of concurrent APs k. The total cost of addition

and comparison is k × f×T
∆×n per symbol. That means the computation cost increases

linearly with the number of APs.

4.7 Conclusion

In this chapter, we propose DCTC, a novel CTC system based on existing data traffic

in the network. Different from other related studies in CTC, we focus on making full

use of the large amount of data packets in the air to improve DCTC’s throughput,

while reducing its effect on original data traffic. Our approach not only generates

detectable energy patterns, but also guarantees perturbation delay bound. We have

implemented bidirectional DCTC communication between two heterogeneous wireless

technologies, WiFi and ZigBee. Experiment results show that we can achieve reliable (>

95%) bidirectional DCTC communication, while achieving 2.3× throughput compared

to the state of the art.



Chapter 5

PHY Layer Cross-technology

Communication

5.1 Introduction

Despite their effectiveness of packet level CTC methods, their data rates are inherently

limited as they adopt coarse-grained ‘packets’ as the basis for modulation (analogous to

‘pulse’ in typical digital communication). For instance, the data rate of BLE to ZigBee

communication in the state of the art is limited to 18bps [9]. This not only constraints

the usage, but also indicates spectrum inefficiency compared to 250kbps and 1Mbps if

used for legacy ZigBee and Bluetooth.

To boost the CTC data rate, this chapter introduces exploring PHY-layer informa-

tion for constructing CTC. Specifically, we propose BlueBee, which paves the way to

practical CTC via physical-layer emulation. By smartly selecting the payload bits in a

Bluetooth packet, BlueBee effectively encapsulates a ZigBee packet within a Bluetooth

packet payload. This is fully compatible with legacy ZigBee devices while reaching the

ZigBee bitrate cap of 250kbps. In other words, BlueBee does not require any hardware

or firmware change to either Bluetooth transmitter or ZigBee receiver, offering full com-

patibility (i.e., implementable as an application) to existing billions of commodity IoT

devices, smartphones, PCs, and peripherals.

The emulated ZigBee packet transmitted from Bluetooth is, in fact, indistinguishable

by the ZigBee receivers. This is surprising, especially when the bandwidth of Bluetooth

32
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(1MHz) is only half of that of ZigBee (2MHz). The BlueBee design stems from two key

technical insights: (i) similarity of (de)modulation techniques of Bluetooth and ZigBee

and (ii) error tolerance of ZigBee demodulation (OQPSK/DSSS). Specifically, both

technologies use the phase differences between samples, referred to as phase shifts, to

indicate symbols, which makes emulation possible. Although the ZigBee signal cannot

be perfectly emulated due to a narrower bandwidth of Bluetooth, BlueBee is optimally

designed such that the inevitable error is minimized and kept under the tolerance of (i.e.,

the error is successfully corrected by) ZigBee’s OQPSK/DSSS demodulator. BlueBee

effortlessly runs on commodity Bluetooth devices by simply putting specific bit patterns

in the Bluetooth packet payload. It achieves 250kpbs at 90% frame reception ratio

(FRR), 10,000 times faster than the state-of-the-art [9]. Also, BlueBee effectively utilizes

the frequency hopping feature of Bluetooth to support concurrent communication across

devices operating on different channels. Lastly, BlueBee offers reliable communication

under dynamic wireless channel conditions. The contribution of this work is three-fold.

• We design BlueBee, the first CTC technique that emulates a legitimate ZigBee

frame within the payload of a legitimate Bluetooth packet. The design does not

require any modification to the hardware or the firmware, for either the transmitter

(Bluetooth) or the receiver (ZigBee), enabling full compatibility to billions of

existing commodity devices.

• We address several unique challenges of signal emulation, including (i) optimized

ZigBee phase shifts emulation using Bluetooth signal, (ii) supporting concurrent

communication and low duty cycle operation under frequency hopping of Blue-

tooth, and (iii) link layer reliability under dynamic channel conditions. These

solutions offer general insights for other signal emulation between heterogeneous

devices.

• We design and implement BlueBee on both the USRP platform and commodity

devices. Our extensive experiments demonstrate that BlueBee establishes a high

throughput and reliable communication under various environments and settings.

Compared to a 18bps rate achieved by the state-of-the-art CTC from Bluetooth to

ZigBee [9], BlueBee’s reliable throughput of 225kbps indicates performance gain

of more than 10,000 times!
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5.2 Motivation

With the rapid development of wireless technologies, such as WiFi, Bluetooth, and

ZigBee, the ISM band suffers from the cross-technology interference (CTI) and channel

inefficiency [33, 34, 35]. That is because the wireless technologies coexisting in the ISM

band have heterogeneous PHY layer and can not communicate directly, thus not able

to effectively coordinate channel use. To achieve effective channel use, the traditional

approach is to use a multi-channel gateway. And recently, researchers also propose

cross-technology communication (CTC) techniques as a promising solution for channel

coordination. However, neither the traditional gateway approach nor the existing CTC

technologies work well for the channel coordination due to their intrinsic limitations.

• Limitation of Gateway. Multi-radio gateway is a usual and straightforward solu-

tion to bridge multi-technology communicatio [36, 37, 4, 38, 39]. However, a gateway

introduces not only additional hardware cost but also the labor intensive deployment

cost, which would be prohibitive for the mobile and ad hoc environment. Also, a dual-

radio gateway increases the traffic overhead by doubling traffic volume in the ISM band,

which further intensifies the cross-technology interference.

• Limitation of Packet-Level CTC. The recent cross-technology communication

aims at direct communication among heterogenous wireless technologies, thus make

explicit channel coordination available. For examples, heterogeneous devices can allo-

cate the channel in a way similar to the RTS/CTS in the 802.11 protocol [40], thus

leading to a better channel efficiency. Unfortunately, to our knowledge, existing CTC

designs [9, 6, 7] rely on sparse packet level information such as the beacon timing [9]

and multi-packet sequence patterns [41], introducing a delay of at least hundreds of

milliseconds. Such a delay prevents the existing solutions from coordinating channels

effectively in real-time.

In contrast to the limitations of gateway approach and existing CTC approaches,

BlueBee is able to transmit a ZigBee packet directly from a Bluetooth radio within a few

milliseconds, for the first time, making channel coordination feasible. In the chapter,

although our description will be based on one specific Bluetooth protocol, Bluetooth

Low Energy (BLE), the idea can be generalized to other Bluetooth protocols, such as

Bluetooth Classic (discussed in Section 5.7.1).
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Figure 5.1: The system architecture of the BlueBee.

5.3 BlueBee in a Nutshell

Overview. BlueBee is a high data-rate CTC communication from BLE to ZigBee,

while being compatible to both ZigBee and BLE protocols. The basic idea of BlueBee

is illustrated in Fig. 5.1 – BlueBee encapsulates a legitimate ZigBee frame within the

payload of a legitimate BLE frame, by carefully choosing the payload bytes. At the

PHY layer, the selected payload resembles (i.e., emulates) the signal of a legitimate

ZigBee frame. When the BlueBee-emulated BLE packet reaches a ZigBee device, the

payload part is detected (via preamble) and demodulated, just like any other ZigBee

packet originated from a ZigBee sender. We note that the header and trailer of the BLE

frame are incompatible to ZigBee and is naturally disregarded, or equivalently, treated

as noise. In fact, such a design makes BlueBee transparent; At the sender, the BLE

device can not distinguish whether it is a normal BLE packet or it contains emulated

ZigBee frame because it is merely a byte pattern in the payload. Conversely, at the

receiver, the ZigBee device can not tell whether the frame is from a ZigBee device or is

emulated by a BLE device, due to the indistinguishable PHY layer waveform.

Cost Spectrum Efficiency Throuput Multi-channel CTC

Gateway Medium Medium High Not Support

ESense [6] Low Low Low Not Support

FreeBee [9] Low Medium Low Not Support

B2W 2 [18] Low Medium Low Support

BlueBee Low High High Support

Table 5.1: Comparison of BlueBee and existing CTC solutions
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Unique Features. In Table 5.1, we illustrate the technical advantages of BlueBee, as

the first PHY-layer CTC, compared to the gateway approach and the state-of-the-art

packet-level CTC approaches. BlueBee overcomes the shortages of existing gateway

approach by providing direct communication between heterogeneous devices. As op-

posed to the gateway, BlueBee does not incur deployment cost or additional traffic.

At the same time, it offers significantly higher communication throughput and lower

transmission delay compared to the CTC presented until now. Also, BlueBee enables

multi-channel concurrent CTC by the inherent frequency hopping in the BLE commu-

nication.

BlueBee also has a few innovative and unique features in compatibility: First, it is

the first CTC design from BLE to ZigBee that requires neither hardware nor firmware

change. Other designs require at least firmware changes [9, 41, 6] at the receivers.

Second, BlueBee is “dual-standard compliance” in a sense that a frame can be received

and demodulated by both ZigBee and BLE receivers.

5.4 BlueBee Design

This section illustrates the BlueBee design in detail.

5.4.1 Background

We first give a brief introduction of how a BLE transmitter and a ZigBee receiver work

in relation to BlueBee, followed by the feasibility of signal emulation.

NRZ

I/Q

Modul.

Gaussian

Pulse Shaping
BLE bits

0, 0, 1, 1

Phase Shift 

Instant Phase

!"# !""#

!"""#

Radio

Front-end

Emulated 

ZigBee Signals

Square Wave 

-1, -1, 1, 1

!"$#

Figure 5.2: BLE as the transmitter with GFSK modulation.

BLE Transmitter. BLE uses Gaussian Frequency Shift Keying (GFSK) modulation,
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which is normally realized by phase shift over time 1 . Fig. 5.2 illustrates the entire

procedure from payload bits to corresponding radio waves from steps (i) to (iv). In (i)

BLE bits first go through a non-return-to-zero (NRZ) module that modulates series of

BLE bits to series of squarewaves with amplitudes of either -1 or 1. Since each wave is

1µs long and carries a single bit, this leads to the 1Mbps bitrate of BLE. (ii) This wave

passes through the Gaussian low pass filter, which shapes the waves into a band-limited

signal. This baseband signal corresponds to phase shifts of ±π/2 when multiplied to the

carrier. (iii) Taking integral of the series of waves to t yields phase with respect to time

(i.e., instant phase). This is essentially a time-domain representation of the accumulated

phase shifts from the previous step. (iv) The In-phase and Quadrature (I/Q) signal is

calculated through the cosine and sine of the instant phase, respectively, which are

multiplied to the carrier and pushed into the air through the BLE RF front-end.

The goal of BlueBee is to construct time-domain waveforms that can be demodulated

by a commodity ZigBee receiver. In other words, emulate ZigBee signal at BLE. To do

so, we imagine ZigBee signal containing the data of our choice is emitted from the BLE

RF front-end, and reverse engineer steps (iv) to (i) accordingly. In step (iv), ZigBee

signal in the air is sampled at BLE sampling rate (1Msps). From the sampled I/Q

signals, the corresponding instant phases are obtained. Reversing step (iii) yields the

phase shifts between consecutive BLE samples, where the corresponding series of square

waves are found by reversing step (ii). Finally, these waves are mapped to data bits at

the BLE packet payload which can be freely set, indicating that the targeted ZigBee

signal is emulated simply by setting the BLE packet payload with the correct bits.

Such an approach enables the emulated waveform to be seamlessly demodulated by

commodity ZigBee radios as legitimate ZigBee packets, without any change incurred to

BLE’s GFSK modulator. However, such emulation is not trivial due to various con-

straints, such as the narrower bandwidth of BLE (1MHz) compared to ZigBee (2MHz),

which will be discussed in the later part of the section.

ZigBee Receiver. As Fig. 5.3 depicts, BlueBee enables BLE to transmit emulated

ZigBee packets which can be demodulated by any commodity ZigBee device through

the standard Offset Quadrature Phase Shift Keying (OQPSK) demodulation procedure.

1 Note that a frequency shift keying s(t) = Acos(2π(f ±∆f)t) is equivalent to a phase shift keying
of s(t) = Acos(2πft± Φ(t)), where Φ(t) = 2π∆ft.
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Figure 5.3: ZigBee as the receiver with OQPSK demodulation.

This is initiated by step (a), where ZigBee captures the BLE signal on the overlapping

2.4GHz ISM through the analog-to-digital converter (ADC), to obtain I/Q samples. A

pair of I/Q samples are often referred to as a complex sample s(n) = I(n) + jQ(n).

In step (b), the phase shifts between consecutive complex samples are computed from

arctan(s(n)×s∗(n−1)), where s∗(n−1) is the conjugate of s(n−1). In step (c) positive

and negative phase shifts are quantized to be 1 and -1, corresponding to ZigBee chips 1

and 0.

Symbol (4 bits) Chip Sequence (32 bits)

0 0 0 0 11011001110000110101001000101110

0 0 0 1 11101101100111000011010100100010

... ...

1 1 1 1 11001001011000000111011110111000

Table 5.2: Symbol-to-chip mapping in ZigBee (802.15.4)

Finally, in (d), 32 ZigBee chips are mapped to a ZigBee symbol, by looking up

a symbol-to-chip mapping table (Table 5.2) predefined in DSSS. There are 16 dif-

ferent symbols where each represents log216 = 4 bits. We note that in the face of

noise/interference the phases may suffer from errors (+ ↔ −), which induce reversed

chips (1 ↔ 0). In such case, the closest symbol with smallest Hamming distance is

selected.

5.4.2 Opportunities and Challenges of Emulation

Conceptually, emulation of ZigBee signal via BLE is possible due to two key technical in-

sights. First is the similarity of (de)modulation techniques of BLE and ZigBee. That is,

BLE’s GFSK and ZigBee’s OQPSK commonly utilize phase shifts between consecutive

samples to indicate symbols (chips for ZigBee). Furthermore, ZigBee only considers sign
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(+ or -) of the phase instead of a particular phase value, which offers great flexibility

in emulation. However, the challenge comes from the fact that the bandwidth of BLE

(1MHz) is only half of that of ZigBee (2MHz). This fundamentally limits BLE’s rate of

phase shifts. In other words, phase shifts in BLE are not sufficiently fast to express all

ZigBee chips, leading to inevitable errors in emulation. This shortage is covered by the

second key component to BlueBee emulation – i.e., DSSS in ZigBee.

DSSS maps 32bit chip sequences to 4bit symbols (Table 6.1), leaving tolerance mar-

gin for robustness against noise and interference. Due to this margin, a ZigBee symbol

can be correctly decoded if the Hamming distance between the received and ideal chip

sequence is within a threshold of 12 (may be adjusted up to 20 [34]). This tolerance

margin can be exploited to recover from the inevitable error caused by the bandwidth

asymmetry. In the following sections, we provide a detailed illustration on the two

insights, and how BlueBee is designed to effectively explore them to enable CTC.

In-phase

 OQPSK Emulation

1st BLE

Symbol

2nd BLE

Symbol

3rd BLE

Symbol

4th BLE

Symbol RF End

Quadrature

8 ZigBee Chips

Figure 5.4: Emulating ZigBee with BLE

5.4.3 OQPSK Emulation

Emulating ZigBee’s OQPSK modulation with BLE is a nontrivial problem due to the

narrower bandwidth of BLE compared to ZigBee (1MHz vs 2MHz). Fig. 5.4 illustrates

the emulation process with an example of 8 ZigBee chips, where it starts by cutting

the sequence into two-chips pieces (one In-phase chip and one Quadrature chip) with

durations of 1µs. Each of the pieces is then emulated to be a BLE symbol which we will
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discuss in detail in the following section. We note that the technique introduced only

involves setting bit pattern of BLE packet payload, and does not enforce any change to

hardware or firmware.

Q

I

ZigBee

Q

I

(a) ZigBee signal with two chips, ‘11’

Q

IQ

I

BLE

(b) Emulation of (a) by BLE

Figure 5.5: (a) ZigBee signal indicating two chips, ‘11’, as phase shifts from T1 to T2,
and from T2 to T3 are both positive (π/2). (b) is the emulated signal of (a), by BLE
(which is in fact BLE symbol ‘1’). When fed into ZigBee receiver this signal is sampled
at T1, T2, and T3 to give two consecutive positive (π/4) phase shifts. This yields ZigBee
chips of ‘11’, indicating successful emulation.

Let us now look into how the emulation is performed on a two-chip piece divided in

Fig. 5.4. Recall that OQPSK (i.e., ZigBee) observes phase shifts between consecutive

samples, whose signs are translated to chips of -1 and 1 (steps (a) and (b) in Fig. 5.3).

The left in Fig. 5.5(a) depicts ZigBee signal (not emulated) containing two chips of ‘11’,

where T1 − T3 are the timings of three consecutive samples every 0.5µs, the ZigBee

sampling rate. On the right, the constellation of the samples at the corresponding

timings are plotted with arrows. The phase shift between the arrows of T1 and T2 is

π/2. Since a positive value, this is translated to chip of ‘1’. The next chip is computed

similarly between samples T2 and T3, which also yields a chip of ‘1’.

Now we see ZigBee signal can be successfully emulated by BLE, which is demon-

strated in the left in Fig. 5.5(b). Although the signal appears to be distinct from ZigBee

signal (left in Fig. 5.5(a)), it still delivers the same chips of ‘11’ to ZigBee receiver. The

key point here is that only sign of phase shift is considered (not the amount). To un-

derstand this, we first notice that the left in Fig. 5.5(b) reflects the bandwidth of BLE

being only half of ZigBee – i.e., the sinusoidal curves indicating I/Q signals have half the

frequency, or equivalently, double the period. When this signal is fed into the ZigBee

receiver and sampled at T1−T3, the resulting constellation is as the right in Fig. 5.5(b).

From the plot, phase shift between T1 and T2 is π/4 (i.e., positive), which yields chip
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of ‘1’. The same applies to the phase shift between T2 and T3. This indicates that the

BLE signal in the left in Fig. 5.5(b)) indeed yields the same chip sequence of ‘11’ at

the ZigBee receiver, as the ZigBee signal in the left in Fig. 5.5(a). In other words, the

ZigBee signal is successfully emulated by the BLE.

In fact, from the BLE’s perspective, the signal at the left of the Fig. 5.5(b) is simply

a BLE signal representing phase shift of π/2. This is because the sampling rate of BLE

is half of the ZigBee, due to the bandwidth difference and the corresponding Nyquist

sampling rate. Specifically, BLE samples T1 and T3 whose phase difference is π/2.

Conversely speaking, by letting BLE to transmit bits corresponding to phase shift of

π/2, the BLE devices is able to deliver chip sequences of ‘11’ to a ZigBee receiver. This

is the key enabler to BlueBee, where ZigBee packet is encapsulated within a BLE packet

simply through payload bit patterns.

Q

I

Q

I

ZigBee

(a) Inconsistent phase shifts at ZigBee

Q

IQ

I

BLE

!

(b) Imperfect signal emulation at BLE

Figure 5.6: Impact of inconsistent ZigBee phase shifts

From the example in Fig. 5.5(b), we have found that a single phase shift in BLE is

interpreted as two phase shifts in ZigBee, as per bandwidth difference. That is, BLE

has lower degree of freedom, where it can change phase shifts (− ↔ +) every 1µs

whereas it is 0.5µs for ZigBee. Due to this, while ZigBee chip sequences are of ‘11’

or ‘00’ (‘consistent phase’ hereafter, since phase shifts are kept consistent at + or -)

can be perfectly emulated, this is not the case for sequences ‘01’ or ‘10’. Fig. 5.6(a)

demonstrates ZigBee chip sequence of ‘10’. As shown in Fig. 5.6(b) BLE emulates this

to be ‘11’ or ‘00’, incurring 1 chip error in either cases. While such a chip error is

inevitable due to the nature of BLE’s narrower bandwidth, interestingly, its impact on

decoded bits can be significantly reduced depending on the BLE phase shift. That is, by

smartly emulating chip sequence ‘01’ to either ‘11’ or ‘00’ (same to ‘10’), we maximize

the probability of DSSS to map the received chip sequences to the correct symbol.
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Figure 5.7: Comparison between BLE emulated signal and the desired ZigBee signal

As a proof of concept example, we emulate a 32-chip ZigBee symbol ‘0’ (i.e., ‘0000’

in Table 6.1) from BLE. In Fig. 5.7(a), the time domain I/Q signals for both ZigBee

and BLE are compared, which are quite different due to the disparate pulse shapes, i.e.,

Gaussian for BLE and half sine for ZigBee. As discussed earlier, phase shifts depicted

in the upper part of the Fig. 5.7(b) demonstrate that the shift per 0.5µs is ±π/4 for

BLE, where it is ±π/2 for ZigBee. Moreover, some errors are observed where the phase

shifts are inconsistent at ZigBee.This is also reflected in the chips (lower in Fig. 5.7(b)),

which we consider in emulating DSSS so as to minimize the error in the decoded bits.

This is explained in detail in the following section.

5.4.4 Optimal DSSS Emulation

In this section, we discuss how BlueBee minimizes the impact of the inevitable chip

error introduced in OQPSK emulation, via DSSS. To start, let us first go through a

simplified walk-through example: Fig 5.8 illustrates an emulation in the 4-bit hamming

space (simplified from 32 in ZigBee DSSS). In this hamming space, there are three ideal

symbols, which need to be emulated using the method introduced in Section 4.3. Due to

the limited capability of BLE, BlueBee can only generate limited number of emulation

symbols marked with dashed rectangles in this figure. Other symbols in this hamming

space cannot be represented by BlueBee. Let Si denote the ith ideal symbol, and Ei to

denote the ith emulated symbol. Then, we define two symbol (Hamming) distances as:
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Figure 5.8: An example of optimized emulation

Definition 1. Intra symbol distance Dist(Ei, Si) is hamming distance from the emula-

tion symbol Ei to the ideal symbol Si.

Definition 2. Inter symbol distance Dist(Ei, Sj) is hamming distance from the emula-

tion symbol Ei to the ideal symbol Sj, where j 6= i.

Take Fig. 5.8 for example. To emulate the ideal symbol ‘1110’, BlueBee can generates

two emulatable symbols ‘1100’ and ‘1111’, which have the same intra symbol distances

of 1. After this, BlueBee considers the inter symbol distance from these emulation

symbol to the other two ideal symbols. For emulation symbol ‘1100’, it has the inter

symbol distance of 1 and 3 to the ideal symbol ‘0100’ and ‘0010’ respectively. Similarly

for emulation symbol ‘1111’, it has the inter symbol distance of 3 and 3 respectively. As

a result, BlueBee chooses the ‘1111’ as the emulation choice, since it has the maximum

value of the minimum inter symbol distance (i.e., maximum margin).

The previous example illustrates the idea of DSSS emulation in the 4-bit hamming

space. Now we will talk about how BlueBee optimizes the DSSS emulation in the

standard ZigBee symbol space, following the same principles.

Intra Symbol Distance. Each 4-bit ZigBee symbol is mapped to 32 chips. Dividing

the 32 chips into 16 consecutive pairs of chips and counting ‘01’ or ‘10’ yields the number

of chip errors in the ZigBee emulation by BLE, or equivalently, Dist(Ei, Si) (i.e., intra-

symbol Hamming distance). This value is constant for a given symbol, since emulation

of ‘01’ or ‘10’ always induce 1 chip error, regardless of being emulated to ‘00’ or ‘11’.

For example, in Fig. 5.9, we have plotted the intra hamming distances for all possible

ZigBee symbols. We find the maximum intra hamming distance is 8, such as the intra

hamming distance of ZigBee symbol ‘0000’ . Note that the intra symbol hamming

distance can not be optimized, because there will always be one chip error at whatever

bits BLE choose to emulate inconsistent ZigBee phase shifts.
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Figure 5.9: Intra symbol Hamming distance between emulated and ideal ZigBee symbols

Inter Symbol Distance. Although the intra symbol distance of each symbol is fixed,

BlueBee tries to increase the inter symbol distance for improving the reliability. this is

because the inter-symbol Hamming distance Dist(Ei, Sj), i 6= j, depends on how ‘01’ or

‘10’ are emulated. For example, ‘01’ can be emulated via either ‘00’ or ‘11’. Therefore, a

ZigBee symbol can be emulated in 2Dist(Ei,Si) different sequences, where BlueBee chooses

the emulation symbol with the maximum minimum inter-symbol hamming distance.

This optimization can be described in the following equation:

argmax
Ei

min{Dist(Ei, Sj), i 6= j} (5.1)

We note that the computation is light weight with the limited search space of 0 ≤ i, j ≤
15. Furthermore, this only needs to be computed once, and thus can be precomputed

and loaded on the device prior to running BlueBee.

5.4.5 Dealing with the BLE Data Whitening

0 1 2 3 4 5 6

Data

(Payload)

Whitened Data

(Symbol)

Figure 5.10: BLE data whitening through LFSR
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Due to security concerns, the symbol transmitted by BLE is not the plain message

of payload. Instead, a scramble technique called data whitening is adopted on BLE

payload to randomize the matching between the payload bytes and the bytes transmitted

in the air. Therefore, it is crucial to overcome the data whitening on BLE to control

transmitted signal through BLE payload.

In fact, recent literature have shown that BLE’s LFSR circuit is reversible [42, 20];

Technically, BLE uses the 7-bit linear feedback shift register (LFSR) circuit with the

polynomial x7 +x4 + 1 as shown in Fig. 6.14. The circuit is used to generate a sequence

of bits to whiten the incoming data by XOR operation. The initial state of the LFSR

circuit is the current channel number (i.e., from 0 to 39) in binary representation defined

in the BLE specification. BlueBee reverse engineers the whitening process to generate

the BLE payload according to the carefully chosen bytes for emulation. This makes

BlueBee fully compatible to commodity BLE devices, validated with extensive testbed

implementations and evaluations on commodity devices in Sec. 5.8.

5.5 Concurrent Communication

One specific feature of BLE is the frequency hopping, which helps BLE devices to avoid

busy channels occupied by other ISM band radios. In BlueBee, this feature allows one

BLE device to hop among the 2.4GHz band and communicate with multiple ZigBee

devices at different channels. Furthermore, we can control BLE frequency hopping

sequence, while still following BLE frequency hopping protocol. In this section, we will

first introduce briefly BLE frequency hopping protocol, followed by our design of two

BlueBee channel scheduling solutions.

5.5.1 BLE Frequency Hopping

BLE has 40 2MHz wide channels, labeled as channel 0 to channel 39. Among them,

channel 37, 38, and 39 are advertising channels and the others are data channels. Once

connection is established on the advertising channels, two paired devices will hop among

the data channels.

In BLE, a simple yet effective frequency hopping protocol is used to determine the

next channel to hop. The first channel is always ‘0’, and after a time duration of
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hopping interval, the BLE device will hop to the next channel with an increment of

hopping increment. In formula

Cnext = Ccurrent + hoppingInc (mod37), (5.2)

where Cnext and Ccurrent indicate next and current channel respectively, 37 is the total

number of BLE data channels, and hoppingInc is the hopping increment. In Fig. 5.11

we illustrate a frequency hopping sequence on 5 channels (i.e., channel ‘0’ to channel

‘4’) with a hopping increment of 2 and hopping interval of t.

To avoid collision with other wireless radios on the same ISM band, BLE adopts

adaptive frequency hopping (AFH) when packet accept ratio is low on certain channels.

In BLE AFH, a 37-bit channel map is used to maintain the channel link quality where

‘0’ indicates a bad channel and ‘1’ indicates a good channel. Let us use Sgood and Sbad

to indicate the good and bad channel sets respectively. Whenever the next channel will

be a bad channel, it will be replaced by another channel in the Sgood. More specifically,

a remapIndex will be calculated through

remapIndex = Cnext mod |Sgood|, (5.3)

and Cnext will be replaced by Sgood(remapIndex). For example, in Fig. 5.12, the

channel 1 and channel 2 are bad channels. So whenever BLE devices hop to these two

channels, they will be remapped to channel 3 and channel 4 respectively following the

Equ. 5.3.
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5.5.2 BlueBee Channel Scheduling

With AFH, the frequency to visit different channels becomes uneven. For example, in

Fig. 5.12, channel 0 will only be visited once during one hopping period (i.e., 5 hops in

the example) half the frequency of channel 3 and 4. In real network environment, AFH

will cause unfair services to ZigBee nodes at BLE-ZigBee overlapped channels (i.e., 2410,

2420, ... 2480MHz). In other words, the QoS of BlueBee can not be guaranteed. To

resolve this issue, we want to balance BLE’s frequency of visiting overlapped channels

in a non-disruptive way.

To achieve that, we can take advantage of the 37-bit channel bit map in BLE. As

mentioned earlier, the channel bit map is used to calculate the next channel to hop if

AFH is enabled. In addition, current BLE protocol supports the update of the channel

bit map during normal transmission to adapt to the fast-changing network environment.

So we can control the hopping behavior of BLE by only updating the channel bit map.

For different optimization goals in application scenarios, we propose two concurrent

BlueBee solutions.

Maximum-throughput solution. By updating the channel bit map, we can control

the set of channels BLE device can hop on. To maximize the throughput of concurrent

BlueBee, we can leave the ZigBee-BLE overlapped channels in the channel bit map if

they are marked as idle in the original channel bit map (i.e., Sgood), while blacklisting

the non-overlapped channels. The channel bit map needs to be set only once in the

connection initialization stage, so the network overhead is very low. Note that what

we do is just choosing a subset channels from the idle channels, so we will not disrupt

the original functionality of BLE channel hopping, which is to avoid channel collision.

In addition, such change is supported by BLE standard through host (i.e., user) level

commands such as the HCI set AFH Channel Classification [43].

Load balanced solution. In some scenarios, the fairness of CTC is more important,

such as the multi-channel synchronization problem. The maximum-throughput design

may not guarantee a load balanced CTC on different channels. Here a simple yet effec-

tive heuristic method is proposed to balance the BLE’s frequency hopping on overlapped

channels while still being compliant to BLE’s AFH protocol. More specifically, we can

balance the BlueBee traffic by slightly modify Sgood and Sbad in the channel bit map.
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The basic idea is that for each unbalanced channel c (i.e., visited less than other over-

lapped channels), we find another channel c′ in Sgood whose remapped channel will be

c. Then we mark c′ as a bad channel in the channel bit map, so that whenever BLE

devices hop to c′, the channel will be remapped to c. Of course we need to guarantee

|Sgood| unchanged so that the remapIndex is unchanged. To do that we choose to mark

one bad channel to be good in the channel bit map, so that |Sgood| still keeps the same.
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Figure 5.13: The steps of BlueBee channel scheduling

In Fig. 5.13(a) and Fig. 5.13(b) we illustrate our scheduling algorithm. In the

example, we try to rebalance channel 0 and channel 4. We find channel 0 are visited

less than channel 4, so we want to redirect frequency hopping to channel 0. We first

assume all the channels need remapping (marked as red), except channel one. Then we

find the channel whose remapped channel will be channel 0, which is channel 3, as shown

in Fig. 5.13(a) . We add channel 3 to Sbad to replace one channel in Sbad, i.e., channel

1, so that |Sgood| doesn’t change as shown in Fig. 5.13(b). Finally we have rebalanced

channel 0 and channel 4. Admittedly, it is a best effort scheduling method, because

sometimes it is unable to balance all the overlapped channels due to too many bad

channels. In that case, we won’t disrupt a lot of good channel to achieve the rebalance

goal.

5.6 Link Layer Protection

In this section, we introduce the link layer protection method of BluBee, i.e. multiple

preambles, link layer coding, and the adaptive protection based on BLE link statistics.
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5.6.1 Frame Retransmission

To improve the transmission reliability, BlueBee can transmit the same Bluetooth packet

multiple times for emulating the ZigBee packets, in case some of the emulated ZigBee

packet is dropped at the receiver side. The ZigBee receiver is able to receive the correct

information if there is at least one copy of the same ZigBee packet is correctly received,

i.e., the packet passes through the CRC checksum as specified in the 802.15.4 standard

[44]. The frame retransmission technique is naturally compatible with the ZigBee pro-

tocol at the receiver side. That is because the ZigBee receiver will automatically ignore

retransmitted ZigBee frames if already received one according to the 802.15.4 standard.

The number of frame retransmission is related to the frame reception ratio (FRR).

Assuming that the reception of each emulated ZigBee frame is independent of the others,

after transmitting k copies, we will successfully receive at least one ZigBee frame with

probability 1−(1−FRR)k. As demonstrated in our experiment, the successful reception

of the BlueBee packet varies with different SNR situations. Supposing we have a FRR

of 70%, then after 6 retransmissions, the final successful reception rate is more than

99.9%, suggesting that BlueBee can achieve a very high FRR by simply retransmitting

the emulated frames. Note that the retransmission will not cause significant overhead

to the channel efficiency, since CTC is usually used for the control purpose with little

total traffic demand.

5.6.2 Repeated Preamble

In addition to the frame retransmission technique mentioned above, BlueBee also utilizes

the repeated preamble technique to further improve the reliability. In the commodity

ZigBee chips, the demodulation of possible ZigBee packets starts by searching for the

specific preamble, which consists of eight ‘0’ symbols, followed by the symbols ‘a7’,

which is the start frame delimiter (SFD). Since this preamble detection is done before

ZigBee can receive any frames, it cannot be protected using upper layer coding. To

improve the packet reception rate, BlueBee sends out multiple repeated preambles, as

shown in Fig. 5.14. If the first preamble is successfully received, the ZigBee receiver will

then discard the remaining preambles in the upper layer decoding. Otherwise, ZigBee

still has a second chance to detect the preamble.
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Figure 5.14: Reliable CTC with repeated preamble

5.7 Discussion

5.7.1 Compatibility with Bluetooth Classic

BLE is defined in Bluetooth core specification 4.0 [43]. Another well known Bluetooth

technique is Bluetooth Classic, defined in Bluetooth core specification 1.0. There are

some connection and distinctive difference between these two techniques. First, in

modulation, although both adopts GFSK, Bluetooth Classic’s modulation index is 0.35

while BLE’s modulation index is between 0.45 and 0.55. The difference in modulation

index affects the shape of the final signal. As mentioned earlier, the phase shift error

brought by pulse shape can be mediated through phase shift quantization at ZigBee

receiver, which means BlueBee can still be used in Bluetooth Classic. Second, Bluetooth

Classic has 79 channels distributed from 2402MHz to 2480MHz spaced 1MHz apart.

So it can cover all ZigBee channels. Third, on the frequency hopping, Bluetooth Classic

will hop among all 79 channels following a frequency hopping pattern calculated through

master device’s MAC address and clock. Its hopping interval will always be 625µs.

The hopping interval is long enough to transmit a Bluetooth emulated ZigBee packets.

Although the channel scheduling methods will be different, the same heuristic method

can be used to find a channel scheduling solution.

5.7.2 Feasibility of Reverse Communication

Although in this chapter, we focus on the communication from BLE to ZigBee, the

reverse communication (e.g., CTC from ZigBee to BLE) might be needed to provide

the feedback (e.g., ACKs for BLE to ZigBee packets) from ZigBee. The reverse com-

munication from ZigBee to BLE is also possible through the phase shift emulation.

More specifically, due to the similarity in (de)modulation, a BLE receiver can get the
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information about the phase shifts of a ZigBee symbol in the air, but only in coarse

grain (i.e., 1Mbps BLE data rate compared to the 2Mbps ZigBee chips) restricted to

its limited bandwidth. However, a BLE receiver is still able to derive the corresponding

ZigBee symbols from the detected phase shift information because ZigBee chips are re-

dundant. We will make the communication from ZigBee to BLE and its compatibility

with commodity devices our future work.

5.8 Evaluation

In this section, we evaluate the performance of BlueBee across various domains, such

as CTC performance comparison, communication reliability, support in mobility and

low-duty cycle, and the example application of coexistence between ZigBee and BLE.

BlueBee 

(USRP N210)

BlueBee 

(CC2540)

ZigBee 

(USRP N210)

BLE 

(CC2540)

ZigBee 

(CC2530, CC2420)

BlueBee 

(Nexus 5X)

Figure 5.15: Experiment Setting for BlueBee

5.8.1 Platform Setting

Fig. 5.15 demonstrates the evaluation platform of BlueBee. We have implemented

BlueBee as a sender on (i) a GNU radio BLE implementation called scapy radio [45]

with a USRP-N210 platform, (ii) a commodity BLE CC2540 development kit [46], and

(iii) a commodity smartphone Nexus 5X. Note that, we use USRP here only for its

convenience to change parameters in the experiments. Our design is compatible with

the widely used BLE 4.0 chips, such as CC2540, as well as smartphones with the latest

BLE 4.2 protocol, such as Nexus 5X, which is back compatible to BLE 4.0 and supports
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the long BLE frame up to 257 bytes.

As for the receiver side, we have tested the BlueBee on the following platforms: 1)

A commodity BLE receiver (i.e., CC2540 development kit); 2) Commodity ZigBee re-

ceivers including CC2530 and CC2420 (i.e., MICAz and TelosB); and 3) 802.15.4 imple-

mentation on USRP N210 to provide detailed examination of the PHY level emulation

performance. The arrows from BlueBee to three receivers indicate that a broadcast

frame from BlueBee (either USRP or commodity devices) can be decoded by both com-

modity ZigBee receivers and commodity BLE receivers simultaneously, indicating the

emulated frames are both BLE-compliant and ZigBee-compliant.

5.8.2 CTC Throughput

To evaluate the CTC throughput of BlueBee, we compare its throughput with the

state-of-the-art packet level CTC methods.

Compare with FreeBee

The only state-of-the-art CTC work on BLE to ZigBee communication is FreeBee [9].

FreeBee’s throughput is 17bps with a single CTC transmitter, while the throughput

of BlueBee is 225kbps, 13, 000× the throughput of FreeBee. Admittedly, FreeBee has

its unique advantage of a free channel design, which differentiates it from those CTC

designs that saturate the channel for high throughput. BlueBee can also beat existing

packet-level CTC technologies that can saturate the channel for high throughput.

Compare with Other Packet-Level CTC

Here we compare BlueBee with other state-of-the-art packet-level CTC technologies,

including Esense ( WiFi → ZigBee), and B2W 2 (BLE → WiFi) in throughput. Note

that, these CTC techniques have a high-bandwidth radio (i.e., 20MHz WiFi radio)

either at the sender or at the receiver. From Fig. 5.16, we can see that BlueBee can

surpass the state-of-the-art packet-level CTC by 70×−100×. It indicates the intrinsic

advantage of PHY-layer CTC over packet-level CTC.
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Figure 5.16: Comparison with the state of the arts

5.8.3 Emulation Reliability

Here we evaluate the emulation reliability of BlueBee, including PHY-layer reliability

(i.e., phase shift and hamming distance) and link-layer reliability (i.e., frame reception

ratio). To provide the details, we test these experiments under various situations, in-

cluding different transmission power, distances, scenarios, and different packet duration.
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Figure 5.17: Performance of phase shift emulation

Emulated Signals

Since BlueBee’s BLE sender emulates the phase shifts in legitimate ZigBee frames, we

first examine the performance of signal emulation.

Recall that in the Section IV, ZigBee’s OQPSK demodulation is based on the phase

shifts, whose positive and negative sign will be further decoded as BLE symbol ‘1’ and
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‘0’. In Fig. 5.17(a), we plot the phase shift of received ZigBee symbol and an ideal Zig-

Bee symbol. We find that BLE can emulate consistent phase shifts (i.e., slowly changing

phase shifts) while failing to emulate inconsistent phase shifts (i.e., fast changing phase

shifts) due to its limited bandwidth. Note that the 64 samples for a ZigBee symbol is

due to the oversampling of commodity ZigBee devices. The 64 samples will then be

decimated to 32 chips for decoding. In Fig. 5.17(b), the distribution of the Hamming

distances of decoded ZigBee symbols is plotted. We find that most Hamming distances

are in the range of [6, 10] especially in [8, 9], showing that the number of error chips

caused by inconsistent phase shifts is small and within the tolerance of ZigBee.
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Figure 5.18: Hamming distance improvement of DSSS emulation

Since the ZigBee’s OQPSK demodulation needs to consider the closest hamming

distance, the inter-symbol hamming distance also affects the accuracy of emulation.

In Fig. 5.18, we illustrate the performance gain when BlueBee considers the intra

symbol hamming distance. For example, after the optimization, the hamming distance

improvement is in Figure 5.18. In the basic design, the hamming distance difference

ranges from 3 to 7, while the hamming distance difference of 3 suggests very little

protection from the background noises. With the optimization of BlueBee, we manage

to increase this hamming distance difference for the emulated ZigBee symbols, as shown

in Figure 5.18. This means that BlueBee can tolerate more background noises than the

basic design, leading to a better reliability.
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Figure 5.19: FRR comparison under BLE and ZigBee

Dual-standard Compliance

In BlueBee, a legitimate ZigBee packet is embedded in a legitimate BLE frame. To verify

and evaluate such embedding, we have implemented BlueBee on various hardwares,

including 1) software defined radio, i.e., USRP N210 and 2) commodity BLE devices,

i.e., CC2540 development kit. At the receiver side, we use both commodity BLE receiver

(i.e., CC2540) and commodity ZigBee receiver (i.e., MICAz). As shown in Fig. 5.19,

BlueBee, either the USRP implementation or commodity device implementation, can

achieve over 99% frame reception ratio (FRR) at commodity BLE receiver, showing

that it is a BLE compliant design. In addition, BlueBee’s USRP and commodity device

implementations can achieve an over 90% FRR and an over 85% FRR at commodity a

ZigBee receiver, showing that it is also a ZigBee compliant design.

The characteristic of dual-standard compliance indicates BlueBee can achieve cross-

technology broadcast. That means we can construct a dual-standard frame where part

of it is a ZigBee frame and part of it is a BLE frame. Each technology can identify their

parts by detecting legitimate preamble and header while regarding the rest as noise.

Impact of Distance

We also evaluate the frame reception ratio (FRR) where the BLE sender sends out

emulated ZigBee frames on both USRP and commodity CC2540 development kit. Fig.

5.20(a) depicts the FRR when USRP N210 emulates the ZigBee frames with the trans-

mission power of 0dBm, the maximum energy level allowed in BLE standard [43]. In all
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Figure 5.20: FRR with distance

the experiments, the average FRR is within 92% to 86%, demonstrating the reliability

of BlueBee, at a transmission distance of 10m (the usual communication range between

two BLE devices) Note that the FRR slightly decreases with the increasing of distance,

due to the lower SNR. Even so, in all the experiments, the FRRs are all above 85%.

The experiments on commodity CC2540 development kit have similar trend. During

these experiments, the FRR is above 73% for all the different transmission distances.
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Figure 5.21: FRR with different frame duration
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Impact of Frame Duration

In BLE specification 4.2 [43], the maximum payload for BLE has been extended from

39bytes to 257bytes, which means the frame duration will grow from around 0.3ms to

over 2ms. So we here study the impact of frame duration on BlueBee’s performance.

In Fig. 5.21, we study the FRR with frame duration ranging from 0.3ms to 1.2ms,

following the latest standard. We find that the increase in frame duration will slightly

decreases FRR, about 2% decrease. That is because a longer frame is usually more

vulnerable to environment noise and interference [12]. Even so, over 90% FRR shows

BlueBee’s resistance to the impact of long frame.
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Figure 5.22: FRR with Tx power and distances

In Fig. 5.22 we study the frame reception ratio (FRR) of BlueBee with impact of

various Tx power and distance from a USRP to a commodity CC2530 ZigBee device for

its convenience to control transmission power. We find that when Tx power increases

from −2dBm to 2dBm , most FRR also increases from 85% to 90%. Then we fix the

Tx power, and study the FRR of BlueBee with different distances. We find that when

the distance is as far as 10m , the FRR is still over 80%. Note that the transmission

power of a typical BLE device is 0dBm and the typical transmission range is 10m. That

means BlueBee can work well with typical BLE setting.
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Protection in the link layer-multiple header

In Fig. 5.23 we study the performance of our link layer protection by repeated preambles.

Typical preamble length in ZigBee is 8 ZigBee symbols ‘0’.The number of ‘0’s can be

changed with at least four ‘0’s. We change the length of ZigBee preamble from 4 symbols

to 16 symbols which doubles the length of preamble. We can see from the figure, with

a typical preamble length of 8 symbols, FRR is about 84%, When we increase the

preamble length to 12 symbols, the FRR jumps to about 95%, a 13% improvement. The

experiments prove the effectiveness of our multiple preamble technique. Even when we

reduce the preamble length to 4 symbols, we find that the average FRR is still about

78%, which shows the robustness of BlueBee.

5.8.4 BlueBee Channel Scheduling

In this section, we evaluate the performance of the BlueBee scheduling algorithm to

evenly distribute the BlueBee emulation frames. Three TelosB nodes are set to ZigBee

channel 22, 24, and 26, which have the same central frequencies with BLE channel 27, 32,

and 39 respectively. The BLE sender is implemented on the USRP N210-platform, with

a total number of 999 emulation frames. To test the performance, BlueBee adopts out

traffic adaptive algorithm to evenly distribute the CTC traffic among ZigBee channels,

i.e. 333 frames at each ZigBee channel (i.e., 33% of all packets).

Fig. 5.24 depicts the number of successful receptions at each ZigBee channel. It is

obvious that these ZigBee nodes working at different ZigBee channels are able to receive
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Figure 5.24: Concurrent CTC on three ZigBee channels

the similar number of frames (only 1% difference), demonstrating the efficiency of the

traffic adaption method based on the existing BLE channel bitmap. Note that the ratio

of received packet will be slightly lower in ZigBee channel 26 because it overlaps with

BLE advertising channel 39, which is very busy.
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Figure 5.25: BluBee’s support for low duty cycle network

5.8.5 Low Duty Cycle Support

In this section, we study the BLE’s support to the low duty cycle network due to the

fact that ZigBee devices are usually work on low duty cycle mode to save energy. Low

duty cycle scenario becomes even critical due to the fact that the BLE transmitter

will do frequency hopping. In the experiment, we transmit BLE frame from USRP to
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MICAz, a commodity ZigBee device. The BLE transmitter’s hopping interval is set

to be 10ms, within the range of available hopping interval in the standard. From Sec.

5.5.1 we know that BLE will always return to the start channel after 37 hops, which

means the transmission interval of BLE to a ZigBee node at a specific channel will be

370ms. To make successful CTC from BLE to ZigBee in low duty cycle mode, BLE will

retransmit each frames 20 times. As shown in Fig. 5.25, FRR increases when ZigBee’s

duty cycle becomes larger. When the duty cycle is larger than 10%, 100% FRR is

reached. However, even when BLE’s duty cycle is only 1.5%, a FRR of at least 88% still

can be reached. This experiment indicate that BlueBee has the potential to be used in

a low duty cycle as a long lasting coordinator.
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Figure 5.26: BluBee’s support for mobile scenario

5.8.6 Mobility Support

In this part, we study the impact of mobility on the performance of BlueBee because

BLE radios are widely used in mobile scenario such as in smart wristbands. In the

experiment, a USRP with BlueBee sender is put on a table broadcasting emulated

ZigBee frames on a fixed channel. A person carrying a commodity ZigBee node, i.e.,

MICAz node, is walking, jogging, and running with different speed at about 10m away.

As shown in Fig. 5.26, there is only a slightly decrease in FRR when the speed increases.

Even when the person is running at speed 8m/s, we can still achieve about 90% FRR.

Both indoor and outdoor environment show similar results.
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5.8.7 Application

In this section, we will introduce two applications for BlueBee.

BLE scheduling

ZigBee w/  CSMA

ZigBee w/ BlueBee

ZigBee w/o CSMA

Figure 5.27: Channel coordination between ZigBee and BLE

Application1: Channel Coordination In this section, we demonstrate one possible

application built upon BlueBee, i.e. the channel coordination between incompatible

ZigBee and BLE. Note that BlueBee enables many possible benefits as stated in Section

II, and we only introduce its channel coordination due to the limitation of space as

shown in Fig. 5.27.

In this experiment, the two ZigBee TelosB devices are communicating on ZigBee

channel 26, to avoid other possible ISM band interference. One BLE sender is trans-

mitting its advertising frames on frameBLE channel 39, which overlaps with the ZigBee

channel 26. Since BLE does not perform CSMA before transmission, the BLE frames

might corrupt the ZigBee frames when they collide into each other.
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Figure 5.28: PRR under different coordination methods



62

To evaluate the performance, we conduct experiments on different coordination

methods, such as no CSMA, with CSMA, and our channel scheduling method. In our

channel scheduling, when the BLE wants to transmit the BLE frames, it first broad-

casts the scheduling frame using BlueBee, which contains the future channel usage of

BLE. After successfully receiving these frames, the ZigBee transmitter will coordinate

the timing of the transmitted frames accordingly.

Fig. 5.28 shows the experimental results. Compared with no CSMA, and with

CSMA, BlueBee successfully improves the frame reception ratio to 98%, clearly demon-

strating the channel efficiency of BlueBee’s coordination. This implies that effective ra-

dio coordination can be achieved through CTC, which opens a door for cross-technology

MAC design in the future.

Smartphone 

(BlueBee)

Smart Bulb 

(ZigBee)

Figure 5.29: BlueBee smart light bulb control

Application2: Smart Light Control BlueBee can be easily deployed on commodity

smartphones with BLE support, e.g., Nexus 5X smartphone, and benefit the smart home

devices in real life. In Fig. 5.29, we implement BlueBee on a Nexus 5X smartphone to

control ZigBee light bulbs at one of the overlapped channels, i.e., 2.48GHz. Available

commands including the on/off status, the color, the intensity, and which light bulb to

control. BlueBee achieves direct control of ZigBee devices from a BLE radio without a

ZigBee-BLE gateway [47] and any hardware modification at either side. BlueBee can

be easily generalized to other IoT control scenario. It is a key enabler for other IoT

cross-technology control design under commodity ZigBee and BLE devices.
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5.9 Conclusion

In this chapter we present BlueBee, a new PHY layer cross-technology communication

technique proposing a direction of emulating legitimate ZigBee frames using BLE radio.

BlueBee paves the road to practical CTC by offering over 10, 000× the throughput

compared to the state-of-the-art CTC designs that rely on coarse-grained packet-level

information. The emulation is achieved simply by selecting the payload bytes of BLE

frames to provide unique dual-standard compliance and transparency where neither

hardware nor firmware changes are required at the BLE senders and ZigBee receivers.

BlueBee includes advanced features such as multi-channel concurrent CTC via adaptive

frequency hopping in BLE operation. Comprehensive testbed evaluation on both USRP

and commodity ZigBee/BLE devices show that BlueBee achieves 99% accuracy, while

providing reliability under mobile and duty cycled scenarios.



Chapter 6

Bidirectional Cross-technology

Communication

6.1 Introduction

PHY-layer CTC with signal emulation yields vastly increased rate reaching the limits

defined by the standards. However, it is applicable mainly when the transmitter is a

high-end platform (e.g., WiFi→ ZigBee in [24]). This is because powerful radios support

sophisticated modulations offering higher degrees of freedom in waveform control with

greater capability in signal emulation. However, due to the asymmetric nature of CTC

in terms of the transmitter and receiver, the reverse communication, i.e., from a low-end

transmitter to a high-end receiver, is limited. This calls for a new fundamental technique

that effectively enables the PHY-layer CTC in the case of low-end transmitter incapable

of signal emulation due to the radio or computational limits.

In this chapter, we propose the first receiver-side CTC, which aims at moving the

complexity to the receiver side, as opposed to the transmitter-side CTC with signal

emulation. This is inspired by the observation that the bit stream yield by any native

demodulator reflects some universal and intrinsic properties of the waveform in the air,

such as the amplitude, frequency, or phase. In addition, different modulation techniques

are intrinsically related. For example, the frequency-shift keying and phase shift keying

are tied because the frequency is the time derivative of phase [48]. Therefore a frequency-

shift keying demodulator is able to cross-decode phase-shift keying signal with an upper

64
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layer interpreter to recover the phase information from the demodulated bits, which

indicates frequency shifts. Specifically, this work proposes XBee, a receiver-side CTC

at Bluetooth Low Energy (BLE) for cross-decoding ZigBee packets. At the transmitter

side, native ZigBee packets equivalent to homogeneous communication are sent; At the

receiver side, the BLE receiver is able to cross-decode every ZigBee symbols upon the

bits yielding by the native BLE demodulator. This is particularly challenging to achieve

on commercial platforms, which hide physical layer signal via abstraction. Through the

adoption of cross-decoding, XBee first achieves PHY-layer CTC from a low-end device to

a high-end device. Its data rate is 15,000x higher than the existing packet-level ZigBee to

BLE CTCs, and comparable with the state-of-the-art PHY-layer CTCs through signal

emulation, enabling CTC bidirectionality.

The specific technical contribution of XBee can be summarized as:

• We design and implement XBee, a PHY-layer CTC uniquely based on cross-

decoding at the receiver side. This is achieved solely by a careful examination

of the bit patterns which are observable on commercial BLE devices, which en-

ables XBee to operate without any hardware or firmware modification. Most

importantly, the transmitter side stays the same as in homogeneous communica-

tion.

• Interestingly, XBee explores the opportunity within the sampling offset, to over-

come the intrinsic uncertainty in cross-decoding. This is counterintuitive as sam-

pling offset is detrimental to decoding, and is compensated in normal communi-

cation. XBee also features link layer designs including scheduling protocol that

ensures compatibility with the BLE standard as well as non-disruptiveness to other

devices in the BLE network.

• We implement XBee for extensive evaluations on its rate, reliability under various

environment and parameter setting. Our experiment results have shown that XBee

can achieve 250kbps with 85% accuracy, increasing the data rate of the existing

packet-level CTCs by 15,000x, and comparable to the state-of-the-art PHY-layer

CTCs.
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6.2 Motivation

Spectrum sharing is becoming even more prevalent with the explosively growing body of

wireless devices and standards, as well as expanding open spectrum – from traditional

5GHz, 2.4GHz, and 900MHz bands to 600MHz, TV spectrum, and 7GHz high-frequency

which turned unlicensed recently between 2014-2016 [49, 50, 51]. Spectrum crowded

with diverse wireless technologies with incompatible physical layers inevitably leads to

cross-technology interference (CTI), which becomes one of the root causes of network

performance degradation.

To this end, connectivity among heterogeneous technologies is critical to alleviate

CTI and, at the same time, explore the potential of cross-technology collaboration.

In other words, to draw the full capability of wireless-rich IoT. Recently, researchers

propose the cross-technology communication (CTC) aiming at building the direct com-

munication among heterogeneous wireless technologies. Existing CTC works can be

categorized as packet-level CTC and the PHY-layer CTC. Packet-level CTC works

have intrinsic limitations, while within PHY-layer CTC, all existing works are based

on transmitter-side signal emulation.

• Limitations of Packet-Level CTC. Earlier set of CTC designs use packet level

information, such as the packet duration [6, 7], beacon interval [9], data traffic pattern

[52, 41, 53], and energy amplitude [54] to convey messages across technologies. Such

approaches, due to the coarse packet-level granularity, have intrinsic limitations in the

data rate confined to a few tens bps at the highest.

• Limitations of Existing PHY-layer CTC. To overcome these limits, the lat-

est CTC designs [24, 55] utilize fine-grained physical layer information for high-speed

CTC that approach the maximum rate defined by the standard. Technically, PHY-layer

CTC introduced until now are based on transmitter-side signal emulation, where the

transmitter approximates the target waveform by exploring the signal degree of free-

dom offered by the transmitter’s modulator. For example in [24], a WiFi to ZigBee

PHY-layer CTC is proposed. The WiFi transmitter carefully selects payload where

the corresponding OFMD QAM constellation points approximate that of the ZigBee’s

OQPSK signal so that the emulated signal can be demodulated by the ZigBee receiver

with its native demodulator.
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Despite PHY-layer CTC’s significant advancement in the data rate, the technique

of signal emulation – which the current PHY-layer CTC designs are commonly de-

pendent upon – applicable only for a higher-end transmitter to a lower-end receiver

scenario. This is because sophisticated radios in higher-end systems offer higher degrees

of freedom in modulation. In other words, they support assembling (i.e., modulating)

complicated signals (e.g.., OFDM QAM in WiFi), and therefore are more capable of

emulating simpler signals desired at lower-end receivers (e.g., OQPSK in ZigBee). Due

to this technical reason and the asymmetric nature of CTC, PHY-layer CTC in reverse

direction, from a lower-end transmitter to a higher-end receiver, is difficult to achieve

through the known technique (i.e., signal emulation) and remains an open issue.

• The Need for Receiver-Side Cross-decoding. This work is motivated by the fun-

damental but missing piece – enabling PHY-layer CTC from lower-end transmitted to

higher-end receiver – which is the key technique to achieve bidirectional communication

in PHY-layer CTC. This is achieved by enabling cross-decoding of the native trans-

mitter packet at the receiver. For example, a commercial BLE device (receiver) runs

a mechanism that interprets the message within an unmodified ZigBee (transmitter)

packet. In other words, cross-decoding is pushing the complexity to the receiver side

(conversely to the signal emulation) which is the higher-end. Along with the previous

designs, this is the key to accomplishing PHY-layer CTC in all directions; thus bring-

ing true ubiquitous connectivity among heterogeneous wireless systems and further,

enabling cross-technology channel negotiations and advanced collaborations in practice.

To make our description specific, in the chapter, we focus on the cross-decoding of

ZigBee packets at a BLE receiver, which is a missing piece left by existing transmitter-

side signal emulation [55]. The CTC between ZigBee and Bluetooth, the two most

popular technologies in IoT will trigger a lot of interesting applications as illustrated in

Fig. 6.1, such as (a) In the gym, workout equipment attached with ZigBee radio can

communicate with the wearable Bluetooth devices to make customized workout plan;

(b) In the smart home, smart devices with ZigBee radio are able to associate to the

Bluetooth speaker to play essential messages; (c) In the factory, ZigBee sensors can

notify a Bluetooth camera to monitor the pipeline when abnormal events are detected;

(d) In the indoor navigation, the ZigBee landmarks can help smartphones achieve fine-

grained navigation.
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(a) (b)

(c) (d)

Figure 6.1: IoT applications with the cooperation of heterogeneous wireless technologies.

6.3 XBee In a Nutshell

• Overview. XBee is a PHY-layer CTC supporting CTC message from ZigBee to

BLE with receiver-side cross-decoding. By pushing the complexity to the receiver side,

i.e., the BLE side, XBee supports transmitting CTC messages in native ZigBee symbols.

The BLE receiver simply demodulates all the input ZigBee signal into BLE bits. Then a

cross-decoding module will interpret the demodulated bits into original ZigBee symbols

to recover the CTC message. To trigger the cross-decoding as well as specify the receiver,

a specific ZigBee symbol sequence is chosen to work as a BLE receiver ID, as illustrated

in Fig. 6.2, which will match a manipulated BLE access address at the receiver side.

BLE DevicesZigBee Devices

ZigBee Payload

BLE 

Receiver ID

Ignore

CTC Message 0 1 0 1 1 1 0 1

Access 

Address 

Cross-decoding 

CTC Message

Figure 6.2: The system architecture of XBee.
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• Unique features XBee is the first PHY-layer CTC based on receiver-side cross-

decoding. By pushing the complexity to the receiver, it covers the essential but missing

piece left by the state-of-the-art PHY-layer CTC based on transmitter-side signal em-

ulation, paving the way to accomplish PHY-layer CTC in all directions. In addition,

XBee is friendly to the transmitter, for the messages are in native ZigBee symbols.

Finally, XBee needs no hardware or firmware modification at either the transmitter or

receiver, making it easy to deploy onto millions of existing ZigBee and BLE devices.

6.4 XBee Design

6.4.1 Background

We first introduce the background of ZigBee transmitter and the BLE receiver, followed

by the details of XBee design.

Radio
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Mapping
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Pulse Shaping

Half-Sine

Pulse Shaping
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Figure 6.3: ZigBee as the transmitter.

Symbol (4 bits) Chip Sequence (32 bits)

0x0 11011001110000110101001000101110

0x1 11101101100111000011010100100010

... ...

0xF 11001001011000000111011110111000

Table 6.1: Symbol-to-chip mapping in ZigBee (802.15.4)

• ZigBee Transmitter ZigBee adopts direct sequence spread spectrum (DSSS) and

offset quadrature phase-shift keying (OQPSK) in its modulation. In Fig. 6.3, we illus-

trate the whole procedure from a ZigBee symbol to the transmitted I/Q signal in the

air from step (i) to (v). A ZigBee symbol is the minimum unit of a ZigBee frame. Each

ZigBee symbol contains 4-bit information, i.e., from symbol ‘0x0’ to symbol ‘0xF’. In
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the PHY layer, a ZigBee symbol first goes through DSSS, where each ZigBee symbol

will be extended to 32 chips according to the symbol-chip mapping table, i.e., Table

6.1, in the IEEE 802.15.4 standard, as illustrated in step (i). Then the 32 chips will go

through the OQPSK modulation, where the odd chips are allocated to the in-phase and

the even chips are allocated to the quadrature. Both the in-phase and quadrature chip

sequences will go through a half-sine pulse shaping module, as illustrated in step (ii)

and (iii), to shape the chips to a sinusoidal wave. What unique in OQPSK is that the

quadrature chip sequence will further have a half-chip delay, as illustrated in step (iv).

Finally, the in-phase and quadrature signals are merged and transmitted to the air.

Constellation

Phase Shift

In-phase

Quadrature

1 1 1 0

1 0 1 1

Half chip 

offset

One chip 

duration

Time0 1 2 3 4

Time-domain

Signal

Time
+ + + +

- - -

Figure 6.4: Time-domain signal and phase shift of ZigBee symbol ‘1’.

The transmitted ZigBee signal shows particular property in the constellation. In Fig.

6.4, the time-domain signal of the first 8 chips of ZigBee symbol ‘1’ is plotted. Each

ZigBee chip lasts 1µs. In the constellation, the change in phase between consecutive

samples, referred to as the phase shift, is calculated. Due to the half-chip offset in

OQPSK, the phase shifts will only take two values, π
2 or −π

2 , representing positive or

negative phase shifts.

Cross- 

decoding

ADC ∠s(n) × s∗(n − 1) ZigBee

Symbols

I/Q Phase

Phase Shift BLE bits 

0, 0, 1, 1

Decoded 

ZigBee Symbols

!"# !$#

!%# !&#

Figure 6.5: BLE as the receiver.
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• BLE receiver In the PHY layer, BLE adopts the Gaussian Frequency Shift Keying

(GFSK), where each BLE bit indicates either a positive or a negative frequency shift. As

illustrated in Fig. 6.5, at the demodulator, BLE adopts the quadrature demodulator to

detect frequency shifts through the phase shifts 1 [56]. More specifically, a BLE receiver

first samples the channel, i.e., gets the complex I/Q samples s(n) = I(n) + jQ(n), in

step (a) and feeds to its demodulator. The demodulator calculates the change in phase,

i.e., the phase shifts, between consecutive I/Q samples to figure out the signal frequency

shift. More specifically, the BLE demodulator uses the formula arctan(s(n)×s∗(n−1)),

where s∗(n− 1) is the conjugate of s(n− 1) in step (b). In step (c), the phase shifts are

quantized to be BLE bit 0 or 1 according to the sign of phase shifts to be negative or

positive. Finally, the cross-decoding block, illustrated in step (d), interprets the BLE

bits yielding from the native demodulator to ZigBee symbols. Since each BLE bit lasts

1µs, while each ZigBee symbol lasts 16µs, 16 BLE bits are interpreted as one ZigBee

symbol.

6.4.2 Opportunities and Challenges

Cross-decoding is feasible due to the following two technical insights. First, the phase

shift is the intrinsic feature of phase modulated signal such as ZigBee signal and is

also used at the BLE receiver to figure out signal frequency shift. Second, at the BLE

receiver, the phase shifts are quantized so that only the sign (+/-) of the phase shifts

matters, which brings a lot of freedom in cross-decoding.

However, the challenges come from the fact that the BLE bandwidth is 1MHz, only

half that of ZigBee. The low bandwidth is corresponding to the low sample rate, or

equivalently the larger sample interval according to the Nyquist theorem. As a result,

BLE receiver is not able to get full ZigBee symbol information from sampling. Later

on, we will see this makes one ZigBee symbol corresponds to multiple possible BLE bit

sequences at the BLE receiver. How to figure out and deal with the uncertainty are

challenging issues in cross-decoding.

1 Note that frequency is the derivative of phase, so a frequency shift keying s(t) = Acos(2π(f±∆f)t)
is equivalent to a phase shift keying of s(t) = Acos(2πft± Φ(t)), where Φ(t) = 2π∆ft.
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6.4.3 Cross-decoding

XBee’s core technique of cross-decoding interprets ZigBee packet only from the bit pat-

terns obtained at the BLE receiver, making the design fully compatible with commercial

devices. To achieve this, we first offer insights on BLE output bits when it is fed with

different ZigBee signals, which can be inversely applied to derive ZigBee chips (and thus

symbols) – i.e., cross-decoding. The limited bandwidth of BLE (1MHz) compared to

ZigBee (2MHz) makes BLE bits only partially reflect ZigBee signal.

RF End

I/Q Samples

(8 ZigBee Chips)

1!"#!"#!"$

Two-chips Pieces Phase Shifts BLE Bits

Figure 6.6: BLE receiver yields a bit for every 1us corresponding to two ZigBee chips.

We illustrate cross-decoding with a walk-through example in Fig. 6.6 with 8 ZigBee

chips lasting 4µs. At the BLE receiver, ZigBee chips are first cut into four 1µs pieces.

We refer to each piece as the two-chip piece for its containing the phase shift information

of two ZigBee chips. A two-chip piece will finally be demodulated as a single BLE bit

‘1’ or ‘0’ according to the accumulated phase shift.

Q

IZigBee
Q

I

Q

BLE Bit 1

+

++

Figure 6.7: BLE bit when phase shifts in two chips are consistent. Phase shift of ‘++’
yields bit ‘1’ at the BLE receiver. Likewise, ‘−−’ yields ‘0’.
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We now take a closer look at the demodulation of the two-chip pieces. We first

study the case when the two chips incur consecutive two positive (++) phase shifts, as

shown in Fig. 6.7. In the figure, ZigBee has a π
2 phase shift every 0.5us, from T1 to T2

and from T2 to T3. The BLE receiver, however, with its bandwidth limited to 1MHz,

samples at only T1 and T3. The accumulated phase shift from T1 to T3 is positive (i.e.,

π), so BLE outputs bit ‘1’. Similarly, BLE conveys bit ‘0’ upon two chips with both

negative (−−) phase shifts. This demonstrates the clear relationship between consistent

two-chip pieces and the BLE bits, which, however, does not hold when phase shifts due

to the two chips are inconsistent (i.e., ‘+-’ or ‘-+’).

Q

I

Q

IZigBee

BLE

Q

IBit ?

+

-

Figure 6.8: Inconsistent phase shifts leave BLE bit undetermined.

• The impact of inconsistent phase shift: We illustrate the inconsistent phase

shift case, i.e., one positive and one negative, in Fig. 6.8. In the figure, the phase shifts

from T1 to T2 and T2 to T3 are different in the constellation, which makes the overall

phase shift 0 theoretically. In this case, we are not able to determine the final BLE bit,

which we refer to as the undetermined bits. However, in a practical system, the phase

shift will not stay at 0, factors such as the unsynchronized transmitter and receiver or

the signal distortion in the air, will break the balance and make the final phase shift

prone to either the positive or the negative side.

As a proof of concept, in Fig. 6.9, we use USRP BLE receiver to demodulate over

1000 random ZigBee symbols, and outputs the phase shift of each two-chip piece before

interpreting them into BLE bits. Then we plot the distribution of the phase shift of the

four possible groups of the ZigBee two-chip pieces, according to the combinations of ‘+’

and ‘-’, i.e., ‘++’, ‘+-’, ‘-+’, and ‘- -’. From the figure we can see, almost all the phase

shifts of the ‘++’ and ‘- -’ groups are positive and negative respectively, which will
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Figure 6.9: Phase shift distribution of all four groups of two-chips pieces.

be uniquely demodulated as BLE bits ‘1’ and ‘0’ respectively. The other two groups

cannot be uniquely demodulated, because they distribute on both the positive and

negative sides. In addition, the phase shifts of the group ‘++’ and ‘- -’ are mostly over

π/2 or less than −π/2, while that of the other two groups accumulate near ±π/4. That

is because consistent phase shifts (i.e., ‘++’ and ‘- -’) will sum up, while inconsistent

phase shifts (i.e., ’+-’ and ’-+’) will cancel out each other.

-

Q

+
T1 T2 T3

I

Figure 6.10: Sample offset affects BLE bit sequence.

• Exploring the sample offset: The actual output of undetermined bits largely

depends on the sample offset between the transmitter and receiver, when they are not

well synchronized. The sample offset may become prone to either the left or the right of

the two-chips piece boundary. Without loss of generality, in Fig. 6.10, we illustrate the

case when the samples have a left offset from the boundary T1, T2, and T3 by ∆t. In the

constellation, the unsynchronized samples extend the duration of positive phase shifts,

i.e., the red arrow from T1−∆t to T2, and shorten that of the negative phase shift, i.e.,

the blue arrow from T2 to T3 − ∆t. So the positive phase shift dominates and makes

the two-chip piece demodulated as BLE bit ‘1’. How about the other undetermined



75

two-chip pieces? We do not need to analyze them one by one. Due to the relatively

stable sample interval during a short time, i.e., within a ZigBee packet, all the samples

share the same sample offset and can be derived accordingly. The stable sample interval

also greatly reduces the computation cost. For n undetermined bits, we do not need to

calculate 2n variations, but only 2, either all the samples have a left offset or all have a

right offset.
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(b) Right sample offset

Figure 6.11: Distribution of the four groups of two-chips pieces with different sample
offset

As a proof of concept, in Fig. 6.11(a) and 6.11(b), we illustrate the impact on phase

shift distribution given the knowledge of sample offset. Here use the same data as in

Fig. 6.9, but we first separate the data based on the sample offset of a packet to be left

(Fig. 6.11(a) ) or right (Fig. 6.11(b)). We can see the ZigBee two-chip pieces groups

‘+ -’ and ‘- +’ can now be uniquely demodulated. More specifically, the overall phase

shift is positive if a two-chip piece ‘+ -’ offset to the left and negative if it offsets to the

right. Vice versa for the ‘- +’ case. The results back up our finding that it is the sample

offset that affects the actual output of undetermined two-chip pieces.

• Cross-decoding at Commodity BLE Receiver: Above discussion showed how a

ZigBee symbol may yield two different bit sequences depending on (left or right) sample

offset at the BLE receiver. In this part of the section, we illustrate how the original

ZigBee symbols are recovered (i.e., cross-decoded) from the two-bit sequences. We

initiate the step by step description with an example in Fig. 6.12; the determined bits

(from consistent phase shift) are marked as grays boxes, where they remain the same

regardless of the left/right offset. Conversely, undetermined bits (from inconsistent

phase shift), indicated as white boxes, depends on sample offset. In other words, the
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ZigBee Transmitter BLE Receiver

1 0 0 1 0 0 …

1 0 1 0 1 0 …

One ZigBee Symbol

…

Bit sequence with left offset

Bit sequence with right offset

Figure 6.12: BLE receiver yields a two different bit sequences for any ZigBee symbol
due to right/left sample offset. The two sequences share bits determined bits (in gray
boxes), where the bits are flipped for undetermined bits (in white boxes).

two-bit sequences yield from left/right sample offset share the same bits in gray boxes,

where those in white boxes are flipped (0↔1). Recall that there are 16 ZigBee symbols;

since each symbol may yield two-bit sequences at the BLE receiver, cross-decoding turns

out to be simply mapping each of the 32 possible bit sequences to a most likely ZigBee

symbol. This is formulated as two matrices that map bit sequences to the corresponding

ZigBee symbols, where one matrix holds the mapping for 16-bit sequences under left

sample offset while the other holds those under right sample offset.
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Figure 6.13: Cross-decode ZigBee symbols through BLE bit mapping.

Fig. 6.13 illustrates the process of cross-decoding via matrix mapping. The bit se-

quence output at the commercial BLE receiver is cut into small chunks of length 16 to

match the duration of a ZigBee symbol (i.e., 16us). As the received bits are naturally

prone to error in practice, each 16 bit sequence is compared with the ideal bit sequence

corresponding to the ZigBee symbols under left/right sample offset – in other words,

each column of the left/right mapping matrix. Specifically, this is computed by XNOR

between the input bit sequence and the ideal bit sequence, which yields the number of bit
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match between the two. The ZigBee symbol that corresponds to the ideal bit sequence

with the maximum bit match is the result of cross-decoding. From cross-decoded Zig-

Bee symbols, XBee extracts the message including frame header, payload, and FCS. We

note that mapping matrices are constant as therefore XBee computationally lightweight,

enabling non-disruptive operation under low-end BLE devices. Specifically, the compu-

tational cost is only O(n), where n is the number of input bits. We measure the XBee

energy consumption in Sec. 6.7.5.

To summarize, XBee cross-decodes ZigBee symbols directly from the bits retrieved

from a commercial BLE device. By smartly leveraging sampling offset, an unavoidable

phenomenon in practice, XBee effectively recovers original ZigBee symbols under very

light-weight computation. That is, surprisingly, XBee successfully receive 2MHz-wide

ZigBee signal using BLE hardware constrained to 1MHz bandwidth.

6.5 How XBee works

In this section, we will discuss how to apply the cross-decoding technique at the BLE

receiver along with all the BLE protocol constraints such as packet detection, data

whitening, and scheduling.

6.5.1 XBee Packet Detection

According to the BLE frame format, a 32-bit access address is attached ahead of any

BLE frame, which is used to identify the BLE frame in a specific BLE connection. Its

value can be determined by the user and shared between the transmitter and receiver

in the association process.

In XBee, for each ZigBee-to-BLE connection, we assign a unique receiver ID at the

ZigBee transmitter before any CTC message, as illustrated in Fig. 6.2. This receiver ID

is in native ZigBee symbol, and lasts 2-symbol long, corresponding to 32 BLE bits. At

the BLE receiver side, we use the 32 BLE bit sequence corresponding to the ‘receiver ID’

as the access address. Then the ZigBee packet can be recognized by the BLE receiver

as a valid BLE packet and go further into the demodulation and cross-decoding.

In addition, as we mentioned earlier, a receiver ID in ZigBee symbols will correspond
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to two BLE bit sequences depending on the sample offset. In the access address detec-

tion, we allow bit sequences matching either access addresses due to different sample

offsets to pass. By looking at which access address matches the receiver ID, we are able

to figure out whether there exists a left offset or right offset between the transmitter

and receiver and choose the corresponding mapping matrix for cross-decoding.

6.5.2 Reverse Data Whitening

Till now, we have assumed that we have direct access to the BLE bit stream from the

native demodulator for the simplicity of description. However, in real BLE platform,

we only have access to the payload bytes. Between the raw BLE bytes and the payload

bytes, for the security issue, there is a scrambler layer, known as the data whitening. The

data whitening process in BLE is through a linear-feedback shift register (LFSR) shown

in Fig. 6.14. More specifically, the LFSR circuit will output a scramble seed which is

used ‘whiten’ the received bytes by doing the XOR operation with them. The scramble

seed is initialized as the channel number (i.e., from 0 to 39) and change iteratively after

each byte through the formula x7+x4+1 as shown in Fig. 6.14. To recover the raw BLE

bytes from the payload bytes, we need to generate the same sequence of BLE scramble

seeds and XOR them byte by byte with the BLE payload bytes.

0 1 2 3 4 5 6

Received 

Bytes

Payload 

Bytes

Whitening Seed Generator

Reverse 

Whitening

Figure 6.14: Reverse BLE data whitening

6.5.3 XBee Scheduling

Two specific difference between ZigBee and BLE network are that BLE devices need

association and will do frequency hopping. To break the barrier between ZigBee and

BLE, we need to design the MAC layer association and channel scheduling methods.

We start with a brief introduction of how BLE association and frequency hopping

works. The 40 BLE channels, i.e., channel 0 to 39, are classified as the 3 advertising
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channels, i.e., 37, 38, 39, and 37 data channels. Before communication, two BLE devices

must first associate at one of the three advertising channels. More specifically, one BLE

device, referred to as the BLE slave device, will keep broadcasting its availability for

connection through an advertising packet. Another device, referred to as the BLE

master device, will choose to connect to the BLE slave device by replying ‘request

connection’ message and necessary connection parameters, such as the channel hopping

increment in frequency and the hopping interval in time. Then they will exchange

packets following the associated channel hopping schedule as illustrated in Fig. 6.15.

BLE master

BLE slave

ZigBee

…

ZigBee 

Channel 26

BLE Data 

Channel

ZigBee-BLE 

Overlapping Channel

XBeeXBee

Advertising

Channel

Figure 6.15: ZigBee devices in BLE network.

Similarly, in XBee, the association protocol between a ZigBee device and the BLE

network is designed so that the ZigBee device can connect to existing BLE network. A

ZigBee device will start by broadcasting its availability for connection with a specific

receiver ID at ZigBee channel 26, which is also BLE broadcasting channel 39. If the BLE

master device is willing to connect to a ZigBee device, it will listen for a specific access

address corresponding to the ZigBee receiver ID, besides the normal access address for

BLE advertising packets. After receiving the request from the ZigBee device, the BLE

master device will use signal emulation technique [55] to reply necessary connection

information, such as the hopping increment and hopping interval in a ZigBee compli-

ant frame. The ZigBee device can either choose to follow BLE’s hopping schedule on

the ZigBee-BLE overlapping channels if it supports frequency hopping, e.g., the Wire-

lessHart ZigBee protocol, or stay on one overlapping channel and wait for the arrival of

the BLE device at most after 37 hops [57].

The join of a ZigBee device in the BLE network will not disrupt normal BLE con-

nection. That is because the schedule of BLE communication is in a slotted manner. In
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other words, all associated devices to a BLE master devices will be given separate time

slots, so that the BLE master device can communicate with normal BLE devices while

keeping the connection with the ZigBee device through CTC. Thus we have achieved a

hybrid network with both ZigBee and BLE devices working harmoniously.

6.6 Discussion

6.6.1 Receiver ID Protection

Recall that the ZigBee transmitter attaches a receiver ID ahead of any CTC message,

which will be recognized as the BLE access address. The successful detection of the

receiver ID is critical to BLE cross-decoding, because otherwise the whole packet will

be regarded as noise and discarded. To protect the receiver ID, we simply repeat it

multiple times. For example, in Fig. 6.27, we repeat the receiver ID two times, and the

BLE receiver is able to identify the ZigBee packet if it successfully detects any of the

receiver IDs. The cross-decoding will start after the last repeat of receiver ID.

CTC MessageID

Repeated 

Receiver ID

XBee Frame Format

ID

Figure 6.16: Reliable XBee with repeated receiver ID

6.6.2 Receiver Oversampling

In XBee, one challenge is the low bandwidth and the corresponding low sample rate

at the BLE receiver side. However, we note that in commodity devices the receiver

may oversample the channel, e.g., sample at 2MHz instead of 1MHz, to make the

system more robust. Even in that case, our arguments still satisfy, because the BLE

demodulator will only yield bit stream at 1MHz no matter how fast it samples at the

PHY layer, which can not fully represent the phase shift information in the ZigBee

two-chips pieces.
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6.7 Evaluation

In this section, we compare the performance of XBee with the state of the art and

evaluate its performance under various settings.

CC2540

CC2530

USRP N 210

CC2650

XBee (USRP)

XBee (Commodity BLE)ZigBee (Commodity)

BLE (Commodity)

Figure 6.17: Experiment setting for XBee

6.7.1 Platform Setting

Fig. 6.17 demonstrates platforms for XBee evaluation. We have implemented XBee

on USRP N210 with BLE PHY, as well as on commercial off-the-shelf (COTS) BLE

CC2650 evaluation board. We also use COTS ZigBee and BLE with CC2530 and

CC2540 boards, respectively, as transmitters. All experiments are repeated multiple

times for statistical results.

6.7.2 Data Rate

We first evaluate the data rate of XBee in comparison to the standard ZigBee and state-

of-the-art CTC techniques. The study spans both packet-leve CTC designs [9, 52, 41]

and more recent PHY-layer CTCs [24, 55].

• Versus packet-level CTC: We first compare XBee’s data rate with three packet

level CTCs, i.e., FreeBee[9], DCTC [52], and C-Morse [41]. As shown in Fig. 6.18, the

data rate of FreeBee with 14bps where DCTC and C-Morse have rates of 190bps and

215bps. Such designs use coarse-grained packet-level information (e.g., packet timing,

patterns, etc.) and thus are intrinsically limited in performance. XBee, by directly

utilizing the physical layer information, reaches significantly higher rate. XBee on USRP

and commodity chip can achieve a data rate of 212kbps and 217kbps respectively, which
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Figure 6.18: XBee data rate compared with three state-of-the-art packet level CTCs

outperforms FreeBee by over 15,000×, and DCTC and C-Morse by over three orders of

magnitude. This demonstrates the practicality of XBee over packet-level competitors.
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Figure 6.19: XBee data rate VS. state-of-the-art PHY-layer CTCs

• Versus state-of-the-art PHY-layer CTC: The recent advances in CTC intro-

duced PHY-layer designs based on signal emulation, namely WEBee and BlueBee

[24, 55]. Work along this line commonly leverage the transmitter’s high degree of

freedom in signal manipulation, to generate waveform closely follows that of the re-

ceiver technology. XBee is a new PHY-layer CTC taking the unique approach of cross-

decoding, which, by transferring the complexity to the receiver side, enables CTC under

transmitter with a limited degree of freedom (i.e., low-end RF). We compare the per-

formance of XBee to the state-of-the-art PHY-layer CTC designs by measuring how

closely they approach the ZigBee standard data rate of 250Kbps. Fig. 6.19 shows that

WEBee and BlueBee achieve 125kbps and 225kbps, respectively. XBee, by reaching

217kbps, outperforms WEBee by 1.7× and is comparable to BlueBee. In contrast to

XBee, BlueBee’s receiver’s bandwidth (2MHz ZigBee) is wider than that of the sender
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(1MHz BLE). BlueBee benefits from this to retrieve more fine-grained phase informa-

tion, thus reaching slightly higher performance. The result validates that XBee, by only

utilizing receiver-side technique (i.e., cross-decoding), achieves performance similar to

the state-of-the-art PHY-layer CTCs that rely on sophisticated transmitter-side signal

processing. This is an indication that XBee successfully fills in the gap towards CTC

bidirectionality accompanied with known PHY-layer CTCs, as experimentally evaluated

in Sec. 6.7.6.

6.7.3 Symbol Error Rate

Here we evaluate the ZigBee symbol error rate (SER) via cross-decoding.
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Figure 6.20: SER with different distance.

In Fig. 6.20, we study the ZigBee SER when a 4.3dBm commodity ZigBee Tx is

put [1m, 7m] away from a USRP BLE receiver. We find the average SER is about 1% at

1m and gradually increases to about 2.2% at 7m. That’s because BLE signal is usually

low in Tx power, and will quickly attenuate in the air.

6.7.4 Frame Reception Ratio

In this part of the section, we study the impacts of the factors that affect the frame

reception ratio (FRR) of XBee.

• Impact of Distance & Tx Power Like any other communication systems, XBee’s

performance is affected by distance and Tx power. The show their impact, FRR at

the distance range of [1m, 7m], and Tx power of [4.5dBm, −1.5dBm]. Both XBee

implementation on USRP and commodity BLE devices are tested for completeness.
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Figure 6.21: FRR with different Tx power and distance.

Fig. 6.21(a) reveals that the FRR of XBee on USRP gradually decreases from 90%

to 80% with an increase in distance and the decrease in Tx power when the distance

is within 5m. A sharp decrease occurs at the distance of 7m, at a low Tx power of

1dBm or lower. In Fig. 6.21(b), XBee on the commodity device reaches FRR over

60% when the distance is shorter than 3m. The performance on commodity devices is

worse than that of the USRP. While the details of commodity hardware are hidden, we

believe that the performance gap is mainly due to cheap RF components in commodity

BLE with low antenna gains and inaccurate phase detection, which is subject to change

for different hardware and vendors. With the aim to provide stable and reproducible

results, and to offer thorough analysis and deep understanding, we use USRP in the

following parts of the section (unless otherwise stated).

Tx Power (dBm) -22 -16 -10 -3 1 4.5

Rx RSS (dBm) -75 -71 -64 -57 -53 -50

Table 6.2: Rx RSS changes linearly with the Tx power.

To understand the relationship between the FRR and the Rx RSS, we studied the

relationship between the Tx power and Rx RSS. In the experiment, we use the CC2530

ZigBee device with the CC2540 BLE device. We connect the Tx and Rx with a cable

with a 30dBm attenuator. In Table. 6.2, we show the relationship between the Tx

power and the Rx RSS. We find that throughout the 30dB Tx power range, the Tx

power almost changes linearly with the Rx RSS. Combined with the results in Fig.

6.21, we can tell the relationship between the FRR and the Rx RSS.

• LoS Locations We evaluate the FRR in various locations within a university building,

including the lobby (F1), a meeting room with minimal obstacles (F2), a lab (F3), and
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Figure 6.22: LoS scenarios.

the hallway (F4). The distance between the ZigBee transmitter and the XBee receiver

was kept at 1m while maintaining the line of sight (LoS). As illustrated in Fig. 6.22,

the average FRR in the lobby and the hallway are both over 85%, while falling as low

as 80% in the lab environment. This is because the lab is crowded with many WiFi

(e.g., laptops) and Bluetooth (e.g., wireless mouse) devices causing strong interference.

Drawer Pocket

Paper Human

Figure 6.23: NLoS scenarios.

• NLoS Locations We also study the performance of XBee under various realistic

NLoS scenarios, where the ZigBee transmitter is sitting in a drawer, in a pocket, on

the desk covered by some paper, or obstructed by the human body. And a USRP BLE

receiver is put 1m away. We note that this experiment was conducted in a large meeting

room with mostly open space (F2 in Fig. 6.22) to factor out other channel effects (e.g.,

multipath). Fig. 6.23 depicts the results – While the pocket scenario shows the highest

impact, FRR is kept at a reasonable level of above 80%, which demonstrates XBee’s

reliability under various NLoS scenarios in practice.
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Figure 6.24: Interference on different channels.

• Impact of Channel XBee operates on all the overlapping channels between ZigBee

and BLE, ranging from [2410MHz, 2420MHz, ..., 2480MHz]. Among them we choose

three representative channels: one is overlapping with the WiFi channel, i.e., 2440MHz,

another is the BLE advertising channel, i.e., 2480MHz, and the third is a relative clean

channel, i.e., 2450MHz, as illustrated in Fig. 6.24. We compare the impact of different

sources of wireless interference, i.e., WiFi and BLE advertising packets. From Fig. 6.24,

we find the average FRR of XBee on channels 2440MHz and 2450MHz are both over

85%, while the FRR on channel 2480MHz is slightly lower, around 80%. We believe

that is due to the huge amount of BLE advertising packets on the channel 2480MHz

interfering with the cross-decoding.
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Figure 6.25: Low noise scenarios: cable and over the air

• Cross-decoding Under Low Noise In this experiment, we factor out the effect of

the wireless channel to provide insights into the performance limits of cross-decoding.

To do completely remove wireless noise, we connect the ZigBee transmitter and the

USRP XBee receiver through a cable. We also measure low noise scenario over the air,
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by putting the transmitter and the receiver pair side by side. Fig. 6.25 demonstrates

that, in both cases, FRR was kept similar at 85%, which is effectively the maximum

performance of XBee under the ideal channel.
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Figure 6.26: FRR under varying frame durations.

• Impact of Packet Duration Compared to BLE 4.0 standard which restricts payload

size to be 33 bytes at maximum, the newly introduced BLE 4.2 allows a much longer

payload of up to 251 bytes. This provides the opportunity to cross-decode long ZigBee

frames. This naturally leads to a question of the impact of the frame length on XBee’s

performance. To investigate this, we first place ZigBee (CC2530) transmitter nearby

(i.e., 1m) the USRP XBee receiver to minimize channel effects. The antenna gains are

30dB at the Tx and 10dB at the Rx. Under this setting, we increase the frame duration

from 160µs to 1920µs, corresponding to 20 and 240 BLE payload bytes, which closely

approaches the BLE 4.2 limit. As shown in Fig. 6.26, the FRR of XBee decreases with

the frame duration, from 90% to 66% due to a higher chance of corruption, as in any

wireless communication designs. It shows XBee’s FRR is kept a reasonable level of 65%

under a long frame size of 1920µs defined by the latest BLE 4.2 standard – indicating

XBee is able to support long and bursty data delivery.

• Repeated Receiver ID Recall that receiver ID corresponds to the preamble in BLE.

Therefore, successful detection of the receiver ID is critical for XBee to successfully re-

ceive frames (i.e., cross-decode). To this end, we evaluate how the repetition of the

receiver ID affects FRR. Fig. 6.27 demonstrates the increase in FRR with more repe-

tition of receiver ID. A single receiver ID (i.e., repeat = 1) yields FRR=50%, however,

appending two receiver IDs (i.e., repeat = 2) quickly increases the FRR to 85%. Increas-

ing the repetition over two does not offer notable gain while increasing the overhead.
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Figure 6.27: Repeats of receiver ID

Therefore XBee uses two receiver IDs by default.

6.7.5 Energy Consumption

Here we study the energy consumption of XBee on the commodity CC2650 BLE board.

Recall that the additional energy consumption brought by XBee is the cross-decoding

through matrix multiplication in Fig. 6.13. To measure the energy cost, we measure the

average computation time the BLE board takes to cross-decode each ZigBee symbol,

then multiplied by the average power of the CC2650 BLE board. Our measurement

finds that it takes 174µs on average to cross-decode a ZigBee symbol. The average

power consumption of the board is 4.35mW when active [58]. So it takes 0.7µJ to

cross-decode a ZigBee symbol.

6.7.6 Application: Bidirectional CTC

XBee is a receiver-side design, which can be applied alongside existing transmitter-side

PHY-CTC to achieve bidirectionality – an essential function for multiple critical aspects

of networking. We demonstrate the feasibility of bi-directional CTC, with a case study

of ZigBee and BLE. This is achieved by utilizing [55], a state-of-the-art BLE to ZigBee

CTC technique, with XBee. Specifically, we implement an acknowledge mechanism via

the following two steps. First, a commodity ZigBee device sends native ZigBee frames

to a BLE receiver. Upon correct cross-decoding at the BLE receiver via XBee, the BLE

device sends back cross-technology ACKs through signal emulation in [55]. The packet

interval at the ZigBee transmitter is set between [50ms, 500ms]. The result depicted

in Fig. 6.28 shows that the frame reception and ACK rates are both low when under
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short transmission interval. They improve as the frame interval grows larger. This is

because the USRP-based receiver has a delay in receiving, processing, and sending back

ACK, ranging between [50ms, 100ms]. The long delay causes ACKs to collide with the

coming ZigBee to BLE packets. When the frame interval is large enough, e.g., 500ms,

XBee correctly cross-decodes 85% of the frames, and acknowledges 95% of the decoded

frames, thereby successfully demonstrating bidirectional CTC in practice. We believe

this will be a key enabler to sophisticated cross-technology protocol designs at the upper

layers.
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Figure 6.28: Acknowledged ZigBee packets

6.8 Conclusion

In summary, XBee is the first receiver-side PHY-layer CTC with cross-decoding. By

moving the complexity to the receiver side, it covers the fundamental but missing piece to

enable PHY-layer CTC from lower-end transmitted to higher-end receiver to accomplish

PHY-layer CTC in all directions, paving the way for advanced cross-technology channel

negotiations and collaborations in practice.
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Discussion

In this section, we discuss several critical concerns in CTC, including the roles CTC

played in the IoT security, cutting-edge research directions, costs in deploying CTC,

and its counterpart in the real world.

7.1 CTC in IoT Security

CTC enables direct communication between heterogeneous wireless devices. It in-

evitably brings security concerns if the techniques are used in wrong places. Here we

discuss CTC threat models, the vulnerability of existing ZigBee/BLE protocols, and

possible ways to detect and protect from CTC transmitters.

7.1.1 CTC thread model

Since the packet-level and PHY-layer CTC have distinct features, we discuss their threat

models respectively.

Packet-level CTC. Packet-level CTC solutions are commonly achieved through

building covert channels between heterogeneous devices upon packet-level information

such as energy level [54, 18], packet length [6], and packet reorder [52, 41]. However,

such covert channels are not under the control of existing security mechanism in IoT

protocols. That is because existing security mechanisms are mainly built on the contents

of packets, which are orthogonal to the packet characteristics. So it is essential to build

efficient detection methods to avoid stealthy data leakage.

90
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PHY-layer CTC. PHY-layer CTC solutions, on the other hand, are built upon the

payloads of valid wireless packets. They inherit the native (de)modulation procedure so

that they are capable of packet sniffering and injection. Potential attacks include the

man-in-the-middle (MITM) attack, Denial-of-Service (DoS), and packet replay attack.

7.1.2 Vulnerability in IoT protocols

At the meantime, IoT protocols are inherently vulnerable, because they are usually

designed to be simple to satisfy the limited power supply and computation capability

on the board. The typical vulnerabilities of Bluetooth Low Energy (BLE) and ZigBee

are as follows.

Bluetooth Low Energy Pairing process is essential in BLE. Most existing BLE

devices work in the Just Works mode. In this mode, the packets exchange message

in plain text, which provides no security against MITM attacks. To counter MITM,

enhanced mechanisms like Passkey Display, Out of Band (OOB), and the latest Numeric

Comparison (LE Secure Connections Pairing) must be adopted [59].

ZigBee The ZigBee protocol also suffers from some protocol vulnerabilities. Among

them are the default link key values used by manufactures, unauthenticated acknowl-

edgement packets (ACK) generated by a malicious attacker, and unencrypted keys when

a non-preconfigured device joins a network [60]. All these protocol drawbacks make Zig-

Bee devices vulnerable to MITM, DoS, and replay attacks.

7.1.3 Detection of CTC Attack

According to the [61], packet level CTC can be effectively classified via a decision

tree with features like energy, packet duration, and packet interval. The classification

accuracy is claimed to be 94.7%. To protect from packet level CTC, a jamming based

solution is adopted to successfully disrupt the covert channel.

On the other hand, attacks from PHY-CTC are no more than the known cyber

attacks in the homogeneous technology. Existing security mechanism is still applicable

to protect from the attacks. However, existing security protocols can not tell whether

the attacker is a normal device or a heterogeneous one, making it hard to distinguish the

attacker. Here we provide several methods in the PHY layer that can help us identify
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CTC attackers.

Energy sensing In PHY-CTC, a CTC packet is embedded within another wireless

packet. This is abnormal because the channel is usually idle before and after a non-

collided packet in real-world wireless communication. As a result, the high energy levels

before and after a legitimate packet are strong clues for a CTC transmitter.

Spectrum analysis Heterogeneous wireless devices occupy different width of spec-

trum. In the frequency domain, it is illustrated as different envelopes of the signal. If the

envelope at the receiver side is much wider/narrower than a homogeneous transmitter.

It is possible to be a CTC transmitter.

7.2 Cutting-edge Research Directions

There are a lot of CTC solutions proposed since it was first proposed in 2009[6]. Despite

the engineering efforts to make CTC possible, novel ideas are also proposed and deeply

affect the followers. The cutting-edge research directions in CTC includes but not

limited to:

Covert channels transparent to the upper layers Packet-level CTC solutions

are essentially building covert wireless channels upon exiting wireless traffics. Such a

covert channel can be built upon energy level, packet length, and packet reorder. The

main concern in designing such covert channels is how to build reliable communication

channels while being transparent to the upper layer data traffic. This line of research

also inspires studies in the security of CTC itself [61] to avoid the leakage of sensitive

information in such covert channels.

Signal emulation under constraints. Since the idea of signal emulation first pro-

posed in WEBee [24], a lot of follow-up works study better emulation techniques under

constrained wireless modulation schemes. Research topics include: 1) How to choose the

best modulation schemes for emulation? Emulation in the ZigBee phase shifts is proved

to achieve better performance than the direct signal emulation under the same QAM

resources [62, 55]; 2) How to instruct CTC emulation with the hints from the receiver

side? In other words, the emulated signal is not necessarily the same as that at the

receiver side, only if it can be demodulated. Based on this idea, BlueBee[55] and XBee

[63] successfully build CTC for low-end IoT devices; 3) How to design proper coding
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schemes to overcome the emulation errors? TwinBee [64] takes advantage of the cyclic

shift feature of ZigBee DSSS modulation to successfully overcome the emulation errors

due to WiFi cyclic prefix; 4) What are the theoretical boundary of signal emulation in

CTC? Theoretical analysis of CTC performance boundary given transmitter’s coding

schemes is still an open question to explore.

Tradeoff between heterogeneous wireless technologies Another branch of

PHY-CTC focuses on constructing some mixed signal that conveys messages to het-

erogeneous wireless receivers. In other words, a transmitter emits some special signal

mixing a legitimate WiFi and a ZigBee packet. At the receiver sides, both WiFi and

ZigBee can demodulate intended signal [53]. There is a tradeoff whether the signal is

more like WiFi or ZigBee. Some machine learning techniques are adopted to do such ad-

justment [65]. Of course, according to the information theory, the mixed signal sacrifices

reliability, i.e., SNR at both receivers.

7.3 Costs in CTC

Of course the benefits of CTC come along with certain costs. These costs can be

categorized as the configuration cost, bandwidth cost, management cost, as well as the

hardware cost. Comparison results are shown in Table 7.1.

Config. Band. Manage. Hardware Data
Cost Cost Cost Cost Rate

Gateway Low Medium Medium Medium High

Packet-CTC High None High None Low

PHY-CTC Medium Low Medium None High

Table 7.1: Comparison of the costs of the gateway and existing CTC solutions

Configuration Cost: Configuration cost includes all the necessary hardware/software

configuration and computation. The gateway solution has low cost in the configuration.

The packet-level CTC, however, requires complex configuration, since it builds covert

channels with customized (de)modulation schemes. Constructing PHY-CTC is no more

than transmitting/receiving a normal wireless packet, but it requires some computa-

tional cost in generating CTC bytes. It includes complex matrix multiplication and

inversion. However, there are some techniques to reduce such costs like i) combining
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multiple matrix operations; ii) precomputing the bytes for all possible symbols and

stored them on the board; and iii) connecting to a remote server to do the CTC con-

version in real-time [66].

Bandwidth Cost: The bandwidth cost includes the impact on the other wireless

communication in the air. The gateway solution will increase the network overhead

due to the packets flowing into and outside the gateway. The packet-CTC solutions are

free in bandwidth cost if they piggyback messages along with packet-level information

in existing wireless packets [9, 52, 41, 67]. The PHY-CTC is no more than transmit-

ting/receiving a normal wireless packet, so its impact on the spectrum without the

duplication of wireless packets in the air.

Management Cost: Management costs include the MAC layer coordination as

well as the network layer scheduling. The gateway solution requires the conversion of

wireless packets in the PHY/link/network layers so that it still needs some medium

operation cost inside the gateway. The packet-CTC requires high costs for the network

supply of its customized modulation. The PHY-CTC requires medium operation cost to

overcome the heterogeneity link and network compatibility. However, till now, studies

of CTC network protocols are still in the early ages and might be a promising topic in

the future.

Hardware Cost: Hardware costs include the purchase of new hardware. It costs

about $2, 000 to purchase new commercial hardware [68]. In contrast, there is no cost

in CTC solutions because they are built upon existing wireless hardware.

7.4 CTC Counterparts

In the industry, a counterpart of CTC is the software-defined radio (SDR). In contract

to the several thousand dollars commercial SDR [68], deploying CTC techniques on an

existing wireless device is free. As a result, CTC satisfies the requirement for the flexible

and large-scale deployment of IoT devices in the real-world IoT application scenarios.

In addition, more and more combo chips appear in the market, such as the ZigBee-

Bluetooth combo chip [69] and some WiFi-Bluetooth combo chips [70]. In the combo

chips, multiple wireless devices are not simply adhered on the same board, instead,

they share the same radio, amplifier, and other signal processing parts in common.
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Wireless combo chips can be viewed as some ”intermediate” form between SDR and a

specialized wireless chip. The studies of CTC will help the industry understand what

are the bottlenecks in combining multiple wireless technologies on a single chip, and

eventually push the birth of some universal CTC platforms.



Chapter 8

Future Work

8.1 Short-term Plan

Enhanced cross-technology communication. Existing CTC technologies are com-

monly based on mature and popular wireless standards, such as the WiFi 802.11a/b/g

standards. However, recent advances in WiFi technology have come out with latest

standards such as 802.11n, 802.11ac, and 802.11ax, which support multiple-input and

multiple-output (MIMO), wider bandwidth up to 160MHz, and orthogonal frequency-

division multiple access (OFDMA). These technologies bring opportunities to dramati-

cally increase CTC data rate, along with the challenges of complex physical layer designs

and fine-grained spectrum use. An interesting question is how to develop CTC tech-

nologies to take advantage of the latest standards.

Ubiquitous connectivity. Existing CTC technologies are largely designed for wireless

technologies on the 2.4GHz ISM band, such as WiFi (2.4GHz), ZigBee, and Bluetooth.

Few studies are done with wireless technologies on other ISM bands, such as the LTE

on 5GHz band and the LoRa, SigFox, and 802.11ah on the sub-1GHz band. In addi-

tion, the wireless communication and backscatter communication can also be bridged

by using the wireless device, such as the WiFi device as the RFID reader. I believe

bringing wireless technologies in all bands into a unified system will be a milestone to-

wards ubiquitous connection.

96
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Enhanced spectrum efficiency and fairness. The heterogeneous MAC layer is also

a big challenge besides the physical layer. There are several problems to solve in order

to let multiple technologies share the spectrum: (i) some wireless technologies, such

as WiFi and ZigBee, adopt carrier sense to share the spectrum while others, such as

Bluetooth, uses frequency hopping. It is a problem how to design a new MAC protocol

compatible with different schemes. (2) When different wireless technologies are sharing

the spectrum, the goal of MAC protocol design is not to optimize the throughput of a

certain technology, but instead the throughput of the heterogeneous network. For exam-

ple, a low-rate device might need to ask if any high-rate devices want to use the spectrum

before it occupies the channel. This will finally lead to harmonious network coexistence.

Seamless network handover. In the mobile scenario, a user may be frequently

changing among several networks. Network handover is slow, especially among hetero-

geneous wireless networks. CTC breaks the boundary between wireless technologies,

which enables the share of information, such as the signal strength and authentica-

tion information, among heterogeneous wireless technologies, so that the devices can

intelligently decide when to do a handover to achieve seamless network handover.

8.2 Long-term Plan

Collaborative network model. The introduction of CTC technology breaks the as-

sumption that wireless technologies are identical, thus we need to remodel the wireless

network embracing all wireless devices. A specific feature of the new model is that

each device can intelligently choose which wireless standard it should use based on the

current network environment.

Abstractive user interface. To better serve the upper layer user, user interface ab-

straction is an emergent and necessary task I plan to work on to hide the complex

network details. Due to the new network topology, it should be redesigned how to hide

the sophisticated network architecture to guarantee the quality of service for the user.

For example, data traffic may arrive a smartphone user through both the WiFi and

Bluetooth link. The user interface should hide the details of heterogeneous wireless

technologies and provide a unified interface.
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Collaborative data fusion. CTC enables collaborative data fusion. The technique of

data fusion blends diverse information acquired from various sources to gain a precise

view of the physical world. This is critical especially in detecting emergent events in

IoT. CTC brings two distinct changes compared with traditional data fusion: (1) Uni-

versal data fusion is available on each wireless device, no matter its technology, which

is more responsive and energy efficient; (2) Localized IoT devices can have access to the

Internet with existing infrastructure, such as WiFi and LTE base stations, so that they

can easily upload and store data at the cloud. I believe the collaborative data fusion

will greatly change the Big Data collection and intelligent analysis.

Collaborative privacy preserving. The fusion of wireless networks will also bring

privacy and security problems, which is also what I plan to work on. CTC might be

used as a source of attack by adversaries. Sophisticated privacy and security algorithms

have been introduced within a certain technology, such as the wired equivalent privacy

(WEP) and Wi-Fi protected access (WPA) algorithms in the WiFi network. But it is not

the case for low-power standards such as the Bluetooth Low Energy, which deliberately

avoids complex encryption methods for energy concern. As a result, adversaries might

use CTC technology as a back door to attack existing systems.
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