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 Abstract 

Potentiometric sensors, comprising ion-selective electrodes (ISEs) and reference 

electrodes, are a large subgroup of electrochemical ion sensors. In view of affordable and 

portable analytical devices, all-solid-state ISEs and reference electrodes, in which a solid 

contact is used as an ion-to-electron transducer, are highly desirable. Compared with 

conventional ISEs, all-solid-state ISEs offer comparable electrochemical performance 

with the distinct advantages of simple maintenance and miniaturization. 

This dissertation focuses on the development of robust all-solid-state 

potentiometric ion-sensing systems. It starts with the investigation of colloid-imprinted 

mesoporous (CIM) carbon as a novel solid contact material. CIM carbon exhibits 

desirable properties as a solid contact material, including a low content of redox-active 

impurities and a high double layer capacitance. Therefore, sensors based on CIM carbon 

can be constructed with superior electrochemical performance, including excellent ionic 

response, reproducibility, signal stability, and resistance to common interfering agents. 

These outstanding characteristics make CIM carbon-based potentiometric sensors 

promising candidates for the next generation of commercial ion sensors. 

 To develop low-cost and simple ion sensors for point-of-care applications, this 

dissertation also involves the development of disposable ion-sensing platforms based on 

paper. The use of ISEs can be significantly simplified by embedding a conventional 

potentiometric cell into paper. Paper-based Cl– and K+ sensors are fabricated with highly 

reproducible and linear responses towards different concentrations of analyte ions in 

aqueous and biological samples. To further simplify the use of these paper-based ion 
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sensors, CIM carbon-based ISEs and reference electrodes can be integrated into the paper 

substrate, thus constructing all-solid-state paper-based ion-sensing platforms. 

 Finally, the dissertation explores the possibility of constructing robust calibration-

free ion sensors by covalently attaching a redox buffer to CIM carbon. Click chemistry 

and amide coupling reactions are evaluated for the attachment, and the cobalt-based 

redox buffer can be attached to CIM carbon. It is found that the open circuit potential of 

modified CIM carbon films can be affected by the oxidation states of the redox buffer, 

but a higher redox buffer loading is required to achieve high electrode-to-electrode 

reproducibility. Possible approaches to achieving such high redox buffer loading are 

discussed at the end of this dissertation.  



 

 v 

Table of Contents 

Acknowledgements .............................................................................................................. i 

List of Tables ...................................................................................................................... x 

List of Figures .................................................................................................................... xi 

List of Abbreviations ...................................................................................................... xxv 

Chapter 1. Introduction to All-Solid-State Ion-Selective Electrodes and Reference 

Electrodes ............................................................................................................................ 1 

1.1 Transduction Mechanism .......................................................................................... 6 

1.1.1 Transduction Mechanism of All-Solid-State ISEs ............................................. 7 

1.1.2 Transduction Mechanism of All-Solid-State Reference Electrodes ................ 16 

1.2 Performance Criteria for the Design of All-Solid-State Potentiometric Sensors ... 18 

1.2.1 E° Reproducibility ........................................................................................... 18 

1.2.2 Stability of the EMF Response ........................................................................ 25 

1.2.3 The Lower Detection Limit ............................................................................. 36 

1.3 Novel Sensor Designs ............................................................................................. 39 

1.4 Conclusions ............................................................................................................. 42 

1.5 Dissertation Overview ............................................................................................ 44 

Chapter 2. Ion-Selective Electrodes with Colloid-Imprinted Mesoporous Carbon as Solid 

Contact .............................................................................................................................. 48 

2.1 Introduction ............................................................................................................. 49 

2.2 Experimental ........................................................................................................... 52 



 

 vi 

2.3 Results and Discussion ........................................................................................... 58 

2.3.1 Structure of CIM Carbon ................................................................................. 58 

2.3.2 Purity and Surface Functionality of CIM Carbon ............................................ 60 

2.3.3 Capacitance of CIM Carbon ............................................................................ 62 

2.3.4 Ionic Response ................................................................................................. 65 

2.3.5 Water Layer Test .............................................................................................. 68 

2.3.6 Effects of Light, Oxygen, and Carbon Dioxide ............................................... 69 

2.3.7 Potential Stability ............................................................................................. 71 

2.4 Conclusions ............................................................................................................. 73 

2.5 Acknowledgements ................................................................................................. 74 

Chapter 3. All-Solid-State Reference Electrodes Based on Colloid-Imprinted Mesoporous 

Carbon and Their Application in Disposable Paper-Based Potentiometric Sensing 

Devices .............................................................................................................................. 75 

3.1 Introduction ............................................................................................................. 76 

3.2 Experimental ........................................................................................................... 79 

3.3 Results and Discussion ........................................................................................... 82 

3.3.1 Ionic Response of CIM Carbon-Based Reference Electrodes ......................... 82 

3.3.2 Use of CIM Carbon-Based Reference Electrodes to Measure Cl– Responses of 

a Ag/AgCl ISE .......................................................................................................... 84 

3.3.3 Effects of Light, Oxygen, and Carbon Dioxide ............................................... 87 

3.3.4 Long-Term Potential Stability ......................................................................... 89 

3.3.5 Design of Disposable Paper-Based Potentiometric Cl– Sensing Devices ........ 90 



 

 vii 

3.3.6 Use of a Reference Membrane to Eliminate Liquid Junction Potentials in 

Paper-Based Potentiometric Cl– Sensing Devices .................................................... 93 

3.3.7 Integration of a CIM Carbon–Reference Membrane Reference System into 

Paper-Based Potentiometric Cl– Sensing Devices .................................................... 95 

3.4 Conclusions ............................................................................................................. 96 

3.5 Acknowledgements ................................................................................................. 97 

Chapter 4. A Disposable Planar Paper-Based Potentiometric Ion-Sensing Platform ....... 98 

4.1 Introduction ............................................................................................................. 99 

4.2 Experimental ......................................................................................................... 100 

4.3 Results and Discussion ......................................................................................... 104 

4.3.1 Evaluation of HHCAE Membrane as Sensing Membrane for Potentiometric 

Ion Sensing.............................................................................................................. 104 

4.3.2 Design and Sensing Mechanism of Paper-Based Ion-Sensing Platform ....... 105 

4.3.3 Paper-Based Cl–-Sensing Platform with HHCAE Sensing Membranes ........ 111 

4.3.4 Paper-Based K+-Sensing Platform with Ionophore-Doped Sensing Membranes

................................................................................................................................. 114 

4.4 Conclusions ........................................................................................................... 117 

4.5 Acknowledgements ............................................................................................... 118 

Chapter 5. All-Solid-State Paper-Based Ion-Sensing Platform with Colloid-Imprinted 

Mesoporous Carbon as Solid Contact ............................................................................. 119 

5.1 Introduction ........................................................................................................... 120 

5.2 Experimental ......................................................................................................... 123 



 

 viii 

5.3 Results and Discussion ......................................................................................... 126 

5.3.1 Design of All-Solid-State Paper-Based Ion-Sensing Platform ...................... 126 

5.3.2 All-Solid-State Paper-Based Ion-Sensing Platform with a [Co(II/III)(C9,C9-

bipy)3](TPFPB)2/3 Redox Buffer ............................................................................. 131 

5.3.2 All-Solid-State Paper-Based Ion-Sensing Platform with a TCNQ/KTCNQ 

Redox Buffer ........................................................................................................... 135 

5.4 Conclusions ........................................................................................................... 141 

5.5 Acknowledgements ............................................................................................... 141 

5.6 Appendix……………………………………………………………………………..…………142 

Chapter 6. Redox Buffers Covalently Attached to Colloid-Imprinted Mesoporous Carbon

......................................................................................................................................... 147 

6.1 Introduction ........................................................................................................... 148 

6.2 Experimental ......................................................................................................... 152 

6.3 Results and Discussion ......................................................................................... 157 

6.3.1 Strategies to Prepare CIM Carbon-Based Redox Buffer ............................... 157 

6.3.2 Surface Modification of CIM Carbon through Electrochemical Reduction of 

Diazonium Salts ...................................................................................................... 162 

6.3.3 Covalent Attachment through Click Chemistry ............................................. 163 

6.3.4 Covalent Attachment through Amide Coupling ............................................ 169 

6.4 Conclusions ........................................................................................................... 186 

6.5 Acknowledgements ............................................................................................... 187 

Chapter 7. Conclusions and Outlook .............................................................................. 188 



 

 ix 

7.1 Summary of Results .............................................................................................. 189 

7.2 Outlook ................................................................................................................. 191 

References ....................................................................................................................... 196 

 

 



 

 x 

List of Tables 

Chapter 1 

Table 1.1 Electrode Capacitance Measured by Chronopotentiometry and Continuous 

Potential Drifts of All-Solid-State ISEs………………………………………………….33 

Chapter 2 

Table 2.1 Textural Data of CIM Carbon and 3DOM Carbon…………………………...59 

Table 2.2 Elemental Analysis Data for CIM Carbon and 3DOM Carbon………………61 

Table 2.3 Concentration of Functional Groups on the Surface of CIM Carbon and 3DOM 

Carbon……………………………………………………………………………………61 

Table 2.4 Specific Capacitance of CIM and 3DOM Carbon as Measured by Different 

Methods…………………………………………………………………………………..63 

Table 2.5 Potentiometric K+ Responses of Different Electrode Assemblies…………...66 

Chapter 3 

Table 3.1 Potentiometric Cl– Responses of a Ag/AgCl ISE vs. Reference Electrode 

Assemblies with a Reference Membrane (RM) or a Conventional Double Junction……86 

 



 

 xi 

List of Figures 
 

Chapter 1 

Figure 1.1 Schematic representation of a potentiometric cell containing an all-solid-state 

ISE and an all-solid-state reference electrode. The electrical potential profile within this 

cell is depicted, showing the interfacial potential difference at each interface. The 

measured potentiometric emf is the sum of all the phase boundary potentials…………...6 

Figure 1.2 Schematic representation of all relevant interfaces within different types of 

ISEs with cation (M+) selective membranes that contain an electrically neutral ionophore 

(L) and anionic sites (R–): (a) a conventional ISE with an inner filling solution; (b) an all-

solid-state ISE based on an anion (A–, R–) doped-conducting polymer (CP) solid contact 

(SC) with a high redox capacitance; (c) an all-solid-state ISE based on a high-surface-

area SC exhibiting a high double layer capacitance; (d) an all-solid-state reference 

electrode with a high-surface-area SC and a reference membrane containing a pair of ions 

that leach into the sample…………………………………………………………………8 

Figure 1.3 Electron micrographs of solid contact materials that can be used to form large 

contact areas between an electronically conducting solid contact and the ion sensing 

membrane, resulting in high double layer capacitances: (a) 3DOM carbon, (b) single-

walled carbon nanotubes, (c) graphene oxide, (d) CIM carbon, (e) platinum nanoparticles 

supported on carbon black, and (f) nanoporous gold film……………………………….15 

Figure 1.4 Aqueous layer tests of (a) a coated-wire electrode with a K+-selective 

membrane (ISM) on a gold electrode, and (b) an all-solid-state ISE with a CIM carbon 



 

 xii 

intermediate layer. The electrodes were immersed in a 0.1 M KCl solution for 24 h prior 

to measurement. At t = 1.15 h, the 0.1 M KCl solution was changed to a 0.1 M NaCl 

interfering ion solution, and at t = 5.06 h, the 0.1 M NaCl solution was changed back to a 

0.1 M KCl solution………………………………………………………………………27 

Figure 1.5 Potential stability evaluated by chronopotentiometry of a coated-wire 

electrode with a PVC-based sensing membrane on a gold substrate (top) and a CIM 

carbon-based all-solid-state ISE (bottom). Constant currents of +1 nA (t ≤ 60 s) and –1 

nA (t > 60 s) were applied to the electrodes while the emf was monitored. An expanded 

view that shows the Ohmic drop of the CIM carbon-based ISE at the current reversal 

point is shown in the inset………………………………………………………………..32 

Figure 1.6 Design of miniaturized potentiometric devices with integrated all-solid-state 

electrodes: (a) planar strip cell with measuring and reference electrode based on screen-

printed carbon nanotubes; (b) device based on conductive paper coated with carbon 

nanotubes for blood Li+ detection; (c) device utilizing paper-based microfluidic sampling 

with coated-wire Ag+-ISE and pseudo-reference Ca2+-ISE  (d) device with paper-based 

microfluidic sampling with an ISE and reference electrode based on PEDOT; (e) 

disposable paper-based Cl– sensing devices with stencil-printed Ag/AgCl electrodes as 

Cl–-ISEs. Reference half cells comprise a Ag/AgCl electrode (d, upper image) or an ionic 

liquid doped polymeric membrane on CIM carbon (d, lower image)…………………...40 

Chapter 2 

Figure 2.1 Photograph of a disassembled (left) and assembled (right) electrode setup 

including a gold electrode, a custom-made cylindrical electrode body, and a screw cap. 



 

 xiii 

The inset is a bottom view of the assembled electrode showing the ISE membrane with 

the CIM carbon film……………………………………………………...………………55 

Figure 2.2 Nitrogen sorption isotherm of CIM carbon and the corresponding BJH pore 

size distribution shown in the inset………………………………………………………59 

Figure 2.3 Schematic diagram of a CIM carbon-based SC-ISE with a TEM image 

showing the interconnected mesopores of CIM carbon. CIM carbon is used as an 

intermediate layer between the gold electrode and ISM…………………………………60 

Figure 2.4 Capacitance measurements of a gold/CIM carbon electrode using 0.1 M 

TEABF4 as the nonaqueous electrolyte. (a) CV with a scan rate of 0.5 mV/s. (b) 

Chronopotentiometry with a constant current of 0.1 mA. (c) EIS; the actual data is shown 

as the solid circles, and the solid line represents the data fit. The proposed equivalent 

circuit is shown in the inset………………………………………………………………64 

Figure 2.5 Potentiometric K+ response curves of SC-ISEs with different electrode 

configurations, i.e., a gold/CIM carbon/ISM with redox couple, a gold/CIM carbon/ISM, 

and a gold/ISM electrode. For clarity, response curves have been shifted vertically……66 

Figure 2.6 Water layer test for a gold/CIM carbon/ISM electrode. The electrode was 

immersed in a 0.1 M KCl solution for 24 h prior to the measurement. At t = 1.03 h, the 

0.1 M KCl solution was changed to a 0.1 M NaCl solution, and at t = 3.25 h, the 0.1 M 

NaCl solution was changed back to a 0.1 M KCl solution………………………………69 

Figure 2.7 Effects of light (top), O2 (middle), and CO2 (bottom) on the potential stability 

of gold/CIM carbon/ISM electrodes immersed in 1 mM KCl solution. For clarity, the emf 

responses of these electrodes have been shifted vertically………………………………70 



 

 xiv 

Figure 2.8 Potential stability of gold/ISM (top) and gold/CIM carbon/ISM (bottom) 

electrodes under constant currents of ±1 nA in 1 mM KCl solution. An expanded view 

showing the Ohmic drop of the gold/CIM carbon/ISM electrode at the current reversal 

point is shown in the inset………………………………………………………………..72 

Figure 2.9 Potentiometric emf stability of a gold/CIM carbon/ISM electrode measured in 

a 1 mM KCl solution at a constant temperature of 25 °C. The emf response of the 

electrode is shown as the black line, and the red line is the linear fit of the raw data used 

for the long-term drift calculation………………………………………………………..73 

Chapter 3 

Figure 3.1 Potentiometric responses of gold/CIM carbon/reference membrane electrodes 

in aqueous solutions of NH4Cl, KCl, NaCl, LiCl, MgCl2, and CaCl2 in the concentration 

range from 10-7 M to 10-1 M. The responses were measured by addition of aliquots of 

concentrated salt solutions under continuous stirring. The response curves have been 

shifted vertically for clarity………………………………………………………………84 

Figure 3.2 Potentiometric responses to Cl– of a Ag/AgCl ISE against reference electrodes 

with different electrode configurations, i.e., gold/CIM carbon/reference membrane (RM) 

without redox couple, gold/CIM carbon/reference membrane with redox couple, and a 

commercial double-junction reference electrode. The response curves have been shifted 

vertically for clarity………………………………………………………........................85 

Figure 3.3 Effects of light, O2, and CO2 on the potential stability of gold/CIM 

carbon/reference membrane electrodes. The effect of CO2 was studied both in an 



 

 xv 

unbuffered 1.0 mM NaCl solution and a 0.1 M phosphate buffer solution (pH 7.5). The 

response curves have been shifted vertically for clarity…………………………………88 

Figure 3.4 Potential stability of a gold/CIM carbon/RM electrode without redox couple, 

measured in a 1 mM NaCl solution at a constant temperature of 25 °C. The emf response 

of the electrode is shown as the black line, and the red line is the linear fit of the raw data 

used for the emf drift calculation………………………………………………………...90 

Figure 3.5 Photographs of paper-based potentiometric Cl– sensing devices with different 

designs. (a) Device with a Ag/AgCl ISE and a Ag/AgCl reference electrode. (b) Device 

with a Ag/AgCl ISE and a reference electrode with a reference membrane. (c) Device 

containing a Ag/AgCl ISE and a CIM carbon-based reference electrode with a reference 

membrane……………………………………………………………………………...…92 

Figure 3.6 Comparison of the response to LiCl of paper-based potentiometric Cl– sensing 

devices with and without reference membranes (RMs). The open and crossed circles 

represent the emf of the paper-based potentiometric Cl– sensing device without a 

reference membrane before (open circles) and after (crossed circles) subtraction of the 

calculated liquid junction potential. The solid circles represent the emf of the paper-based 

potentiometric Cl– sensing device with a reference membrane without any mathematical 

manipulation. Photographs of the two types of devices are shown on the top right……..94 

Figure 3.7 Potentiometric Cl– response curve of paper-based potentiometric Cl– sensing 

devices containing a Ag/AgCl ISE and a CIM carbon-based reference electrode with a 

reference membrane. A photograph of the device is shown on the bottom left. The 



 

 xvi 

average and standard deviation of each data point is based on measurements with three 

individual devices………………………………………………………………………..96 

Chapter 4 

Figure 4.1 (a) Schematic representation of a conventional ion-selective electrode (ISE) 

with a sensing membrane composed of a filter paper infiltrated with an HHCAE 

membrane as anion exchanger membrane. (b) Potentiometric Cl− responses of the ISEs 

shown in (a) tested with a commercial double-junction reference electrode. The 

calibration curve is based on three individual electrodes; error bars represent standard 

deviations……………………………………………………………………………….105 

Figure 4.2 (a) Photograph of a paper-based ion-sensing device. (b) Schematic 

representation of all relevant interfaces in a Cl– sensor with an HHCAE membrane, ionic 

liquid-doped reference membrane (RM), and two Ag/AgCl electrodes contacting a 0.1 M 

KCl reference electrolyte (RE). (c) Paper-based K+ sensor with a sensing membrane 

doped with ionophore (shown as an ellipse) and ionic sites (R–). (d) Electrical potential 

profile across the sensing device………………………………………………………..107 

Figure 4.3 SEM images of the device: (a) Top view showing the Ag/AgCl electrode. (b) 

Top view showing the reference membrane. (c) Cross-section of the paper not infiltrated 

with a sensing membrane. (d) Cross-section of paper infiltrated with an HHCAE 

membrane……………………………………………………………………………….109 

Figure 4.4 Photograph of a paper-based ion-sensing platform placed on a PVC sheet as a 

supporting substrate, with two alligator clips on the left for the emf measurements and 

two clips on the right to balance the device…………………………………………….110 



 

 xvii 

Figure 4.5 Potentiometric Cl− calibration curves of paper-based ion-sensing devices 

using Br−-loaded (open circle) and Cl−-loaded (solid circle) HHCAE membranes for Cl− 

sensing. Each data point is based on one device………………………………………..111 

Figure 4.6 Cl– response of paper-based Cl– sensors with HHCAE sensing membranes. (a) 

Potentiometric Cl– response curve of paper-based Cl– sensors to aqueous KCl solutions. 

(b) Potentiometric Cl– response curve of paper-based Cl– sensors to tenfold diluted blood 

serum samples. Each data point is based on three individual devices………………….113 

Figure 4.7 Potentiometric K+ calibration curves of paper-based ion-sensing devices using 

K+-ISE membranes without (open circle) and with (solid circle) 20 wt % ETH 500 as 

membrane additive. Each data point is based on one device…………………………...115 

Figure 4.8 Paper-based K+ selective sensors: (a) Response to K+ and Na+ (aqueous 

samples). (b) Response to K+ in a background of undiluted blood serum. Each K+ data 

point is from three individual devices………………………………………………….116 

Chapter 5 

Figure 5.1 (a) Photograph of an all-solid-state paper-based ion-sensing device with a 

CIM carbon-based ISE, a CIM carbon-based reference electrode, and a microfluidic 

sample zone defined by polyurethane. (b) Schematic representation of all relevant 

interfaces in a paper-based Cl– sensor with a commercial anion exchanger Fumion® FAA-

3 ionomer film as the sensing membrane and an ionic liquid-doped and plasticized PVC 

film as reference membrane. Both membranes are doped with a redox buffer containing a 

redox couple, shown as “Red” and “Ox”. (c) Electrical potential profile across the all-

solid-state paper-based ion-sensing platform, with the only sample-dependent interfacial 



 

 xviii 

potential being the phase boundary potential at the sensing membrane/sample 

interface.…...……………………………………………………………………………128 

Figure 5.2 SEM images of the all-solid-state paper-based ion-sensing platform. (a) Top 

view of the paper substrate. (b) Top view of the device showing the interface between the 

sensing membrane and the sample zone. (c) Top view of the device showing the interface 

between CIM carbon-based sensing electrode and the sensing membrane. (d) Magnified 

view of the CIM carbon-based sensing electrode. (e) High magnification image of 

uncoated CIM carbon showing the mesopores. (f) Cross-sectional view of the all-solid-

state paper-based ion-sensing platform showing the sensing membrane-infiltrated paper 

substrate with the CIM carbon-based sensing electrode………………………………..130 

Figure 5.3 Potentiometric Cl– responses of the all-solid-state paper-based ion-sensing 

platform with a redox buffer containing [Co(II/III)(C9,C9-bipy)3](TPFPB)2/3. The 

response was obtained with KCl solutions. (a) Potential trace of the paper-based Cl– 

sensors under different Cl– concentrations, each arrow indicating a different Cl– 

concentration and a new device. (b) Potentiometric Cl– calibration curve of the paper-

based Cl– sensors. Each data point is based on one device……………………………..132 

Figure 5.4 Potentiometric Cl– responses of all-solid-state paper-based ion-sensing 

platform with a redox buffer containing [Co(II/III)(C9,C9-bipy)3](TPFPB)2/3. The 

response was obtained with tenfold diluted blood serum solutions. (a) Potential trace of 

the paper-based Cl– sensors under different Cl– concentrations, each arrow indicating a 

different Cl– concentration and a new device. (b) Potentiometric Cl– calibration curve of 

the paper-based Cl– sensors. Each data point is based on one device…………………..134 



 

 xix 

Figure 5.5 Cyclic voltammograms for 1 mM TCNQ (top) and 0.5 mM KTCNQ (bottom) 

dissolved in acetonitrile solutions containing 0.1 M TEABF4 as a supporting electrolyte. 

Scan rate = 100 mV/s…………………………………………………………………...137 

Figure 5.6 Potentiometric Cl– calibration curves of CIM carbon-based all-solid-state bulk 

electrodes with a TCNQ/KTCNQ redox buffer doped in the sensing membrane. (a) 

Response to KCl solutions without electrode conditioning. (b) Response to KCl solutions 

after conditioning the electrodes in a 1 mM KCl solution for 24 h. (c) Response to tenfold 

diluted blood serum samples without electrode conditioning. (d) Response to tenfold 

diluted blood serum samples after conditioning the electrodes in a 1 mM KCl solution for 

24 h. n = 5 for electrodes tested with KCl aqueous solutions and n = 6 for electrodes 

tested with blood serum samples……………………………………………………….139 

Figure 5.7 Potentiometric Cl– responses of all-solid-state paper-based ion-sensing 

platform with a TCNQ/KTCNQ redox buffer doped in the sensing and reference 

membranes. The response was measured with KCl solutions (solid circle) and tenfold 

diluted blood serum samples (open circle). Each data point is based on one device…..140 

Figure 5.8 Potentiometric Cl– responses of an all-solid-state paper-based ion-sensing 

platform with a redox buffer containing [Co(II/III)(C9,C9-bipy)3](TPFPB)2/3. The devices 

were pre-conditioned under humidity for 30 h, and the response was obtained with 

aqueous KCl solutions. (a) Potential trace of paper-based Cl– sensors under different Cl– 

concentrations. (b) Potentiometric Cl– calibration curve of the paper-based Cl– sensors. 

Each data point is based on one device………………………………………………....143 



 

 xx 

Figure 5.9 Potentiometric Cl– responses of hybrid ion-sensing devices with a redox 

buffer containing [Co(II/III)(C9,C9-bipy)3](TPFPB)2/3. The responses were measured with 

10-fold diluted blood serum samples. (a) Device with a CIM carbon-based all-solid-state 

ISE and a conventional reference electrode. (b) Device with a conventional ISE and a 

CIM carbon-based all-solid-state reference electrode…………………………………144 

Figure 5.10 Potentiometric Cl– responses of an all-solid-state, paper-based ion-sensing 

platform with the redox buffer [Co(II/III)(C9,C9-bipy)3](TPFPB)2/3. The redox buffer was 

doped into the sensing/reference membranes that were mixed with CIM carbon to 

construct the all-solid-state ISE/reference electrodes, but was not doped into the 

sensing/reference membranes that contact the samples. The responses were collected both 

with aqueous KCl solutions (black square) and 10-fold diluted blood serum samples (red 

circle)………………………………………………………………………………146 

Chapter 6 

Figure 6.1 Schematic representations of a CIM carbon-based redox buffer and its 

application in all-solid-state potentiometric ion sensors. (a) A redox couple comprising 

both oxidized and reduced species is covalently attached to the surface of CIM carbon. 

(b) All relevant interfaces of an all-solid-state ISE with a CIM carbon-based redox buffer 

and a cation (M+) selective membrane that contains an electrically neutral ionophore (L) 

and anionic sites (R–)…………………………………………………………………...158 

Figure 6.2 Schematic representations of the covalent attachment of redox-active 

molecules onto the surface of CIM carbon. (a) Click chemistry. Azide groups are first 

introduced to the surface of CIM carbon, followed by subsequent click reaction to 



 

 xxi 

covalently attach redox-active molecules through a triazole linkage. (b) Amide coupling 

reaction. Nitro groups are first attached to CIM carbon, followed by reduction to amino 

surface functional groups. An amide coupling reaction is then performed to attach redox-

active molecules with carboxylic groups through an amide 

linkage……………………………………...…………………………………………...161 

Figure 6.3 Typical cyclic voltammograms of CIM carbon that had been surface-modified 

through the electrochemical reduction of diazonium salts. (a) Surface modification with 1 

mM of 4-azidobenzene diazonium tetrafluoroborate. (b) Surface modification with 0.1 M 

of 4-nitrobenzene diazonium tetrafluoroborate. Scan rate = 25 mV/s, supporting 

electrolyte: 0.1 M TEABF4, reference potential: Ag/Ag+, 10 mM Ag+..…...………......163 

Figure 6.4 FTIR spectrum of CIM carbon films modified with –N3 surface groups. An 

expanded view showing the evidence of the presence of –N3 groups is presented in the 

inset……..........................................................................................................................164 

Figure 6.5 XPS spectra of CIM carbon films before (black) and after (red) modification 

with –N3 surface groups. The high-resolution N1s spectrum of N3-modified CIM carbon is 

presented in the inset………………................................................................................165 

Figure 6.6 XPS spectra of N3-modified CIM carbon films before (black) and after (red) 

click reactions to attach ethynylferrocene to CIM carbon. The Fe2p peaks can be observed 

at about 710 eV (Fe2p(3/2)) and 723 eV (Fe2p(1/2))……………………………………….166 

Figure 6.7 Cyclic voltammogram of ferrocene attached to a planar glassy carbon 

electrode using click chemistry reaction (a). The scan rate was 100 mV/s and the 



 

 xxii 

reference was Ag/Ag+, 10 mM Ag+. The dependence of anodic and cathodic peak 

currents on the scan rate is shown in panel b…………………………………………..167 

Figure 6.8 XPS spectra of the control sample (red) and cobalt(II) tris(5-ethynyl-2,2′-

bipyridine) complex attached to CIM carbon (black) using click chemistry reaction (a). 

The corresponding high-resolution XPS N1s spectra are shown in panel b…………169 

Figure 6.9 FTIR (a) and XPS (b) spectra of CIM carbon films modified with –NO2 

surface groups…………………………………………………………………………..170 

Figure 6.10 High-resolution XPS N1s spectra of CIM carbon films. (top) CIM carbon 

film modified with –NO2 surface groups. (middle) Electrochemical reduction of –NO2 to 

–NH2 surface groups by a potentiostatic approach. Applied potential = –0.8 V, time = 2 h. 

(bottom) Chemical reduction of –NO2 to –NH2 surface groups by Na2S treatment……171 

Figure 6.11 XPS spectra of the control sample (black) and ferrocenecarboxylic acid 

attached to CIM carbon (red) using an amide coupling reaction……………………..173 

Figure 6.12 Cyclic voltammogram of ferrocenecarboxylic acid attached to a planar 

glassy carbon electrode through amide coupling (a). Scan rate = 100 mV/s, reference 

potential: Ag/Ag+, 10 mM Ag+. The dependence of anodic and cathodic peak currents on 

the scan rate is shown in panel b………………………………………………………..174 

Figure 6.13 Cyclic voltammogram of 0.5 mM Co(III)TCPP dissolved in tetrahydrofuran 

with 0.1 M supporting electrolyte TBAClO4. Three redox processes can be observed, 

which correspond to Co(II)/Co(III), formation of Co(III) π cation radical, and dication. 

Scan rate = 100 mV/s, reference potential: Ag/Ag+……………………………………175 



 

 xxiii 

Figure 6.14 XPS spectra of Co(III)TCPP-modified CIM carbon film (black, a) and the 

control sample (red, a). The high-resolution XPS Co2p spectrum of the Co(III)TCPP-

modified CIM carbon is presented in panel b, revealing two distinct peaks corresponsing 

to Co2p(3/2) (780 eV) and Co2p(1/2)
 (795 eV)……………………………………………..177 

Figure 6.15 XPS spectra of Co(III)TCPP-modified CIM carbon films. The amide 

coupling reactions were performed with NaOH or DIPEA added to the 

reaction……………………………………………………………………………….…178 

Figure 6.16 Cyclic voltammogram of 0.5 mM cobalt(II) tris(5-carboxy-2,2'-bipyridine) 

dissolved in 0.1 M phosphate-buffered saline (a). Scan rate = 100 mV/s, reference 

potential: Ag/AgCl. (b) XPS spectrum of the cobalt(II) tris(5-carboxy-2,2'-bipyridine) 

attached to CIM carbon…………………………………………………………………180 

Figure 6.17 XPS spectra of CIM carbon films modified with cobalt complexes with 

different oxidation states. Black: CIM carbon with Co(II) only. Blue: CIM carbon with 

1:1 molar ratio of Co(II) and Co(III). Red: CIM carbon with Co(III) only…………….181 

Figure 6.18 Open circuit potentials of CIM carbon films loaded with surface cobalt 

species with different oxidation states (a). Reference potential: Ag/Ag+, 10 mM Ag+. The 

dependence of open circuit potentials on the surface cobalt oxidation states is shown in 

panel b. Two individual electrodes were prepared and tested for each cobalt oxidation 

state……………………………………………………………………………………..183 

Figure 6.19 Potentiometric K+ calibration curves (0 h conditioning) of five individual all-

solid-state ISEs (represented by different colors) that are based on CIM carbon redox 



 

 xxiv 

buffer as the solid contact (a). (b) Calibration curves without the green trace without 

electrode conditioning and after 19 h electrode conditioning…………………………..184 

Chapter 7 

Figure 7.1 Chemical structures of alternative ligands and complexes to attach redox 

buffers to CIM carbon with potentially high surface loading. (a) 2,2’-Bipyridine-5-acetic 

acid. (b) 2,2’:6’,2”-Terpyridine-4’-acetic acid. (c) Diazonium derivative of a cobalt 

tris(bipyridine) complex that can be attached to an electrode surface via a single-step 

electrochemical reduction process……………………………………………………...193 

 

 

 

 

 

 

  



 

 xxv 

List of Abbreviations 

°C   Degrees Celsius 

3DOM   Three-dimensionally ordered macroporous 

BET   Brunauer-Emmett-Teller 

BJH   Barrett-Joyner-Halenda 

[C8min+][C1C1N–] 1-Methyl-3-octylimidazolium bis(trifluoromethylsulfonyl)imide 

CIM   Colloidal imprinted mesoporous 

CV   Cyclic voltammetry 

DIPEA   N,N-Diisopropylethylamine 

DMTMM 4-(4,6-Dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium 

chloride 

EDC 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide 

EIS   Electrochemical impedance spectroscopy 

EMF   Electromotive force 

F   Farad 

FTIR   Fourier-transform infrared spectroscopy 

g   Gram 

h   Hour 

HHCAE  Hydrophilic high-capacity anion exchange 

HOBt   Hydroxybenzotriazole 

ISE   Ion-selective electrode 

ISM   Ion-selective membrane 



 

 xxvi 

L   Liter 

LiTPFPB  Lithium tetrakis(pentafluorophenyl)borate 

M   Molarity 

mg   Milligram 

min   Minute 

mL   Milliliter 

mV   Millivolt 

NaTFPB  Sodium tetrakis[3,5-bis-(trifluoromethyl)phenyl]borate 

nm   Nanometer 

o-NPOE  o-nitrophenyl octyl ether 

pA   picoampere 

PEDOT  Poly(3,4-ethylenedioxythiophene) 

POT   Poly(3-octylthiophene) 

PSS   Poly(sodium 4-styrenesulfonate) 

PVC   Poly(vinyl chloride) 

SC-ISE  Solid-contact ion-selective electrode 

SEM   Scanning electron microscopy 

TBAClO4  Tetrabutylammonium perchlorate 

TCNQ   7,7,8,8-Tetracyanoquinodimethane 

TCPP   Tetrakis(4-carboxyphenyl)porphyrin 

TEABF4  Tetraethylammonium tetrafluoroborate 

TEM   Transmission electron microscopy 



 

 xxvii 

TGA   Thermogravimetric analysis 

THF   Tetrahydrofuran 

TTF   Tetrathiafulvalene 

XPS   X-ray photoelectron spectroscopy 

 

  



 

 1 

 

Chapter 1  

Introduction to All-Solid-State Ion-Selective Electrodes and 

Reference Electrodes 

 

Part of this chapter was reproduced from “Rational Design of All-Solid-State Ion-

Selective Electrodes and Reference Electrodes” by Hu, J.; Stein, A.; and Bühlmann, P. in 

TrAC, Trends Anal. Chem. 2016, 76, 102-114. Copyright © 2016 Elsevier. 
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Ion-selective electrodes (ISEs) are electrochemical ion sensors that convert the 

activity of a target ion into an electrical potential as the measurable signal. In 

potentiometry, they are coupled with reference electrodes and used under near-zero 

current conditions. Over the past half-century, ISEs have evolved into well-established, 

routine analytical tools, with sensors for more than 60 analytes, and they are widely used 

in various fields, including clinical analysis, environmental analysis, physiology, and 

process control.1-7 

Conventional ISEs have several limitations that need to be overcome to meet the 

demand for portable analytical devices with small sample volumes, easy maintenance, 

simple operation, and low cost. These ISEs contain liquid contacts (typically referred to 

as inner filling solutions) that separate the sensing membrane from the inner reference 

element. As a result, they are sensitive to evaporation of these inner filling solutions and 

changes in the sample temperature and pressure. Moreover, osmotic pressure originating 

from differences in the ionic strength of samples and the inner filling solution result in 

net water transport into or out of the inner filling solution, which can lead to large volume 

changes and delamination of the sensing membrane.8 Therefore, conventional ISEs have 

to be well maintained and used with care. Moreover, it is difficult to reduce the volume of 

the liquid contact to a value much lower than the milliliter level, which poses challenges 

for sensor miniaturization. Although micropipette-based microelectrodes with sensing 

areas less than 100 nm have been used for a long time,9 their fabrication requires a 

delicate process, and they are fragile, which limits their application. Next-generation 

devices require robust, miniaturized ion-sensing systems that can be integrated with 
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electronic control, measuring, and data acquisition units for acquiring complex biological 

and chemical information. Thus, it is highly desirable to eliminate the cumbersome liquid 

contacts by replacing conventional electrodes with all-solid-state potentiometric sensors. 

In all-solid-state ISEs and reference electrodes, a solid contact is formed between the 

sensing membrane and an electron-conducting substrate to replace the liquid contact, 

serving as an ion-to-electron transducer. Note that all-solid-state ISEs are not to be 

confused with ISEs that comprise a solid-state ion-selective membrane, an expression 

that has historically been reserved for ion-selective membranes prepared from inorganic 

materials such as LaF3 or Ag2S.10 In this chapter, discussions are limited to all-solid-state 

electrodes with polymeric sensing membranes. It has been more than four decades since 

the first all-solid-state electrode was proposed, and all-solid-state ISEs and reference 

electrodes are generally considered to be the future of potentiometric sensors. However, 

major challenges still remain.11-13  

In 1970, Hirata and Date proposed an all-solid-state Cu2+ ISE that contained a Pt 

wire coated with a Cu2S-impregnated silicone rubber sensing membrane.14 This was 

followed by Cattrall et al., who used a Pt wire coated with a Ca2+ ionophore-doped 

polymeric membrane, thereby constructing the first coated-wire electrode comprising an 

ionophore.15 The resulting Ca2+-ISE is generally considered to be the ancestor of present-

day ionophore-based all-solid-state ISEs. As Nikolskii and Materova summarized three 

decades ago, three conditions need to be fulfilled for stable and reliable response of all-

solid-state ISEs: (1) reversible transitions from ionic to electronic conduction and vice 
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versa, (2) ideally nonpolarizable interfaces with high exchange current densities, and (3) 

absence of side reactions.16  

Although the design of the coated-wire electrode was simple, it was not reliable 

due to the interrupted ion-to-electron transduction at the ‘blocked’ solid 

contact/membrane interface.15 No charged species could transfer between the membrane 

and the metal contact, resulting in a purely capacitive interface to the metal wire. Because 

of the small interfacial contact area, coated-wire electrodes easily pick up noise. They 

also exhibit large signal drifts, which may be due to both residual currents passing 

through the membrane but also the formation of an aqueous layer. It was hypothesized 

based on the observation of O2 interference that an O2/H2O half-cell can form at the 

metal/membrane interface,17,18 but it is very likely that this O2/H2O half-cell is not 

reversible. Various solid-contact sensors with improved designs were proposed in the 

literature but many of them still do not match the performance of conventional electrodes, 

and quality control criteria for all-solid-state ISEs were not critically discussed until 

recently.8,19 Yet, through persistent efforts made by the community, the performance of 

all-solid-state electrodes has been dramatically improved, with significant advances 

brought about by the introduction of novel solid-contact materials, the understanding of 

the transport and accumulation of water in membranes, the control of transmembrane ion 

fluxes, and the development of novel ion-sensing platforms. Also, complementary to 

zero-current potentiometry, a new family of all-solid-state ion sensors has emerged that 

takes advantage of dynamic electrochemical instrumental control techniques,20 such as 

ion transfer voltammetry,21,22 chronopotentiometry,23,24 and constant potential 
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coulometry.25-27 Regardless of the mode in which these all-solid-state sensors are 

operated, their electrochemical performance is highly dependent on the solid contact that 

is employed. Among all the solid contacts, conducting polymers and high-surface-area 

nanostructured materials are the most studied candidates for commercial all-solid-state 

potentiometric sensors and have been reviewed previously.28,29  

This chapter provides an overview of how potentiometric all-solid-state ISEs and 

reference electrodes function and gives guidance on how to improve their performance. 

Also, it provides an overview of this dissertation. Section 1.1 describes the ion-to-

electron transduction mechanism of all-solid-state ISEs and reference electrodes, with an 

emphasis on the interface between the solid contact and the sensing membrane. Section 

1.2 discusses the design of high-performance, all-solid-state potentiometric sensors for 

specific applications, with a focus on improving the electrode reproducibility in order to 

achieve calibration-free sensors (Section 1.2.1), enhancing potential stability for accurate 

measurements (Section 1.2.2), and lowering detection limits for trace-level analysis 

(Section 1.2.3). Section 1.3 presents recent research on the design of simple and 

miniaturized potentiometric ion-sensing devices, highlighting disposable and paper-based 

ion sensors. The chapter ends with our own perspective of the field (Section 1.4), as well 

as an overview of this dissertation (Section 1.5). This chapter focuses primarily on the 

design of the solid contact and its impact on the performance of all-solid-state ISEs and 

reference electrodes. For those who are new to the field, reviews on potentiometric ion 

sensors1-6 can serve as introductory reading material. Those interested in non-

potentiometric, dynamic control techniques are referred to another recent review.20 
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Figure 1.1 Schematic representation of a potentiometric cell containing an all-solid-state 

ISE and an all-solid-state reference electrode. The electrical potential profile within this 

cell is depicted, showing the interfacial potential difference at each interface. The 

measured potentiometric emf is the sum of all the phase boundary potentials. 

1.1 Transduction Mechanism 

Figure 1.1 represents a typical all-solid-state potentiometric cell that comprises an 

all-solid-state ISE, an all-solid-state reference electrode, and a high impedance voltmeter 

to ensure near-zero current conditions. The measured electromotive force (emf) is the 

difference in electrical potential between the connecting leads (e.g., Cu wires) of the ISE 

and of the reference electrode. As illustrated by the electrical potential profile in Figure 

1.1, the measured emf is equal to the sum of all the interfacial potentials within the cell. 
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In an ideally currentless system, there are no potential drops through bulk phases since 

there is no Ohmic drop, and the only sample-dependent potential is the interfacial 

potential at the sample/ion-selective membrane interface. 

1.1.1 Transduction Mechanism of All-Solid-State ISEs 

For any ISE, the input signal is the activity of a specific ion and the output is an 

electrical potential. This part of the overall signal transduction occurs at the interface of 

the sample and the ISE membrane.1,30,31 Behind that interface, i.e., within the ion-

selective membrane, the charge carriers that are free to move are still ions. However, at 

some point between this membrane and the connecting lead occurs the second half of the 

overall signal transduction, i.e., the conversion of the charge carrier from ions to 

electrons. A conventional ISE usually contains a AgCl-coated Ag wire as inner reference 

electrode in contact with an inner filling solution that contains Cl– at a fixed 

concentration (Figure 1.2a). Consequently, ion-to-electron transduction is achieved by the 

reversible redox reaction AgCl(s) + e– ⇄ Ag(s) + Cl–(aq), which defines the interfacial 

potential between the AgCl/Ag electrode and the inner filling solution (Δφa3). For the 

sample/ISE membrane and the ISE membrane/inner filling solution interfaces, the charge 

carrier is the target ion. In the case of ISEs with polymeric sensing membranes, the 

potential differences across the latter two interfaces (Δφa1 and Δφa2, respectively) are 

defined by the distribution of the target ion across two immiscible phases, which can be 

described quantitatively by the classical phase-boundary-potential model.1,30,31  
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Figure 1.2 Schematic representation of all relevant interfaces within different types of 

ISEs with cation (M+) selective membranes that contain an electrically neutral ionophore 

(L) and anionic sites (R–): (a) a conventional ISE with an inner filling solution; (b) an all-

solid-state ISE based on an anion (A–, R–) doped-conducting polymer (CP) solid contact 

(SC) with a high redox capacitance; (c) an all-solid-state ISE based on a high-surface-

area SC exhibiting a high double layer capacitance; (d) an all-solid-state reference 

electrode with a high-surface-area SC and a reference membrane containing a pair of ions 

that leach into the sample.  



 

 9 

1.1.1.1 Solid Contacts with a High Redox Capacitance 

Figure 1.2b represents an all-solid-state ISE containing a conducting polymer as a 

solid contact with a high redox capacitance. Conducting polymers are effective ion-to-

electron transducers because they are both electrically conductive and exhibit ionic 

conductivity through doping. They can be conveniently deposited on an electron-

conducting substrate by electrochemical polymerization or drop-casting of a polymer 

solution, techniques that are both suitable for mass fabrication. Similarly as in the case of 

the internal reference of conventional ISEs, all-solid-state ISEs with a conducting 

polymer as solid contact convert the charge carrier from ions to electrons through the 

oxidation/reduction (doping/undoping) of the underlying conducting polymer. This type 

of redox reaction can be described by the following processes:  

                       CP+A– 
(solid contact) + M+ (membrane) + e– ⇄ CP°A– M+ 

(solid contact)                (1.1a) 

                          CP+R– 
(solid contact) + e– ⇄ CP° 

(solid contact) + R–
(membrane)                         (1.1b) 

in which CP stands for the conducting polymer, and A– refers to a doping ion (e.g., 

poly(sodium 4-styrenesulfonate) polyanion, PSS–). M+ and R– represent the analyte ion 

(e.g., K+) and hydrophobic counter ion (e.g., a tetraphenylborate derivative), respectively, 

which may transfer across the interface between the ISE membrane and the conducting 

polymer film. The ratio of the contributions from the two reactions 1.1a and 1.1b may be 

quantified by the transference numbers of M+ and R– and is related to their individual ion 

mobilities. For conducting polymers doped with a large immobile polyelectrolyte (e.g., 

PSS–), the ion exchange at the ISE membrane/conducting polymer interface is dominated 

by cations (e.g., M+, 1.1a), whereas small anion-doped conducting polymers 
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predominantly exchange anions (e.g., R–, 1.1b). Consequently, the interfacial potential at 

the interface between the conducting polymer and the electron-conducting substrate 

(Δφb3) is controlled by the redox reactions 1.1a and 1.1b in the conducting polymer layer, 

whereas the potential difference across the interface of the ISE membrane and the 

conducting polymer (Δφb2) is determined by the ion distribution between these two 

phases. The overall observed capacitance of some conducting polymer-based all-solid-

state ISEs, however, can be significantly lower than that of the conducting polymers 

themselves in the absence of the ISE membranes.32,33 This phenomenon was 

systematically studied by Maksymiuk et al. using two types of poly(3,4-

ethylenedioxythiophene) (PEDOT) membranes doped with bulky PSS– ions that were 

immobilized in the PEDOT, as well as mobile Cl– counter ions that can reversibly transfer 

into the contacting Cl–-ISE membrane. It was found that the reduced capacitance of the 

all-solid-state ISE can be attributed to the low amount of ions transferrable across the 

conducting polymer/ISE membrane interface, which may be ascribed to the low 

concentration of mobile ions in the conducting polymer or concentration polarization 

effects.34 The ability of conducting polymers to be oxidized or reduced gives them redox 

buffer capacity, although the conducting polymers are not ideal redox buffers due to the 

continuum of redox potentials that they represent (see Section 1.2.1).  

Among the many conducting polymer solid contacts that have been investigated, 

polypyrrole,35 poly(3-octylthiophene) (POT),36 polyaniline,37 and PEDOT32 are the most 

commonly used ones. On the one hand, polypyrrole, polyaniline, and PEDOT are 

typically stable in a highly oxidized (p-doped) state with a high redox capacitance and 
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electronic conductivity, but are electroactive within a broad range of potentials, as 

discussed in Section 1.2.1. As a result, they may participate in chemical reactions that 

cause drift of the emf response. For example, it was reported that a polyaniline layer is 

highly pH sensitive due to the partial conversion of its conducting emeraldine salt form to 

its non-conducting emeraldine base form.38 This conversion can lead to inadequate long-

term potential stability for polyaniline-based ISEs with sensing membranes permeable to 

H+ and OH–,39 which has made polyaniline a less common conducting polymer used for 

all-solid-state ISEs and reference electrodes. On the other hand, POT is less subject to 

reactions with ambient species such as oxygen because it has a relatively high oxidation 

potential and is usually used in an undoped ion-free form. Therefore, POT films have a 

relatively low redox capacitance and electronic conductivity,5 and ion-to-electron 

transduction at their interfaces occurs mainly through the electrical double layer that 

forms at the solid contact/membrane boundary, as discussed in Section 1.1.1.2. POT 

films can also be doped with anions through electropolymerization, which assures that 

some of the POT is in an oxidized form and enables reversible interfacial charge 

transfer.21,40 A recent study of electropolymerized POT solid contacts using surface 

synchrotron radiation-X-ray photoelectron spectroscopy and near-edge X-ray absorption 

fine structure analysis showed structural evidence that the lipophilic anions of a 

plasticized poly(vinyl chloride) (PVC) ISE membrane penetrated only into the outermost 

surface layer (≤14 Å) of POT. This suggests that, in the case of the sensors investigated 

in that study, ion-to-electron transduction at the POT layer is a surface-confined process, 

and indicates that the thickness and the extent of ion diffusion within the conducting 
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polymer layer has only minimal effects on the performance of these all-solid-state ISEs.41 

The extent to which other ISE membrane matrixes may be more compatible with this and 

other underlying conducting polymers and, therefore, form less sharply defined 

membrane/conducting polymer interfaces with more mutual interpenetration is not clear 

yet. 

Conducting polymers are not the only suitable redox-reaction-based transducers 

though. The redox properties needed for effective ion-to-electron transduction can also be 

provided by other electroactive species, such as lipophilic silver complexes,42 redox-

active self-assembled monolayers based on fullerene and tetrathiafulvalene (TTF),43,44 

ferrocene,45 Prussian blue46 and its analogues,47 arenethiolate monolayer-protected gold 

nanoclusters,48 lipophilic Co(II)/Co(III) salts,49,50 7,7,8,8-tetracyanoquinodimethane 

(TCNQ),51,52 TTF with its radical salts,53 as well as LiFePO4/FePO4 redox couple.54 

Generally, these redox-active ion-to-electron transducers transduce ionic signals to 

electrical signals through redox reactions of the type Ox + e– ⇄ Red. Devices with such 

transducer layers are discussed in the following sections. 

1.1.1.2 Solid Contacts with a High Double Layer Capacitance 

For all-solid-state ISEs without redox properties, ion-to-electron transduction is 

the result of the electrical double layer forming at the ISE membrane/solid contact 

interface (Figure 1.2c). This interface can be schematically described as an asymmetrical 

electrical capacitor, in which one side carries charge in the form of ions, i.e., cations and 

anions from the ion-selective membrane, and the other side is formed by electrical charge, 

i.e., electrons or holes in the solid contact.55 Unlike in the case of conducting-polymer 
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solid contacts, the interfacial potential at the ISE membrane/solid contact interface (Δφc2) 

is neither defined by ion partitioning between two phases nor by a redox reaction. Instead, 

it relies on the quantity of charge in the electrical double layer. The experimental 

evidence for this double layer at the interface of a carbon nanotube solid contact and an 

ISE membrane containing sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate 

(NaTFPB) was obtained using synchrotron radiation-X-ray photoelectron spectroscopy. 

Under electrode polarization conditions, considerable enrichment of TFPB–, followed by 

Na+, was observed at the back side of the ISE membrane contacting the carbon nanotube 

layer, supporting the hypothesis that a double layer is formed at the solid contact/ISE 

membrane interface.56 

The ion-to-electron transduction through the interfacial electrical double layer is 

also true for coated-wire electrodes, in which a metal is used as the solid contact and is 

covered with an ISE membrane, without any intermediate transduction layer. 

Unfortunately, coated-wire electrodes suffer from erratic responses due to the eventual 

formation of an undesired aqueous layer between the membrane and the underlying metal. 

Moreover, signal drift can arise as the result of the purely capacitive ‘blocked’ nature and 

small contact area of the interface between the sensing membrane and the underlying 

metal. A coated-wire electrode can be easily polarized by the small but non-zero currents 

(i.e., pA or less) that are common in potentiometric measurements with routinely used 

voltmeters, which exhibit a finite input impedance and not the infinite input impedance of 

an ideal voltmeter (see also Section 1.2.2.2). 
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A straightforward approach to increase the double layer capacitance is to increase 

the interfacial contact area between the ISE membrane and the underlying solid contact 

without necessarily increasing the geometric projection of the solid contact. This strategy 

can be demonstrated by using porous materials. Porous carbons, such as porous graphite 

rods57,58 and compressed charcoal,59,60 were used in early works as solid contact materials, 

although no attempts were made to quantify the interfacial contact area or to relate the 

large contact area to response characteristics. In recent years, the importance of the large 

interfacial areas was recognized and, consequently, various nanostructured carbon 

materials with well-controlled structures and tunable surfaces have been employed as 

novel solid contacts, such as three-dimensionally ordered macroporous (3DOM) carbon 

(Figure 1.3a),61 carbon nanotubes (Figure 1.3b),62 fullerene,63,64 graphene (Figure 1.3c),65-

68 colloid-imprinted mesoporous (CIM) carbon (Figure 1.3d),69 and porous carbon 

spheres.70 These carbon materials are chemically stable under potentiometric conditions 

and exhibit high specific surface areas due to their unique nanostructures. Besides their 

use for potentiometric ion sensing, porous materials with high surface areas have also 

been widely studied for other electrochemical applications, such as biosensing, energy 

conversion, and energy storage.71,72  



 

 15 

 

Figure 1.3 Electron micrographs of solid contact materials that can be used to form large 

contact areas between an electronically conducting solid contact and the ion sensing 

membrane, resulting in high double layer capacitances: (a) 3DOM carbon, (b) single-

walled carbon nanotubes, (c) graphene oxide, (d) CIM carbon, (e) platinum nanoparticles 

supported on carbon black, and (f) nanoporous gold film. Adapted with permission from 

ref. 73 (a), ref. 62 (b), ref. 66 (c), ref. 69 (d), ref. 74 (e), ref. 75 (f), © 2008, 2010, 2012, 

2013, 2014 American Chemical Society. 
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To maximize the contact area between the sensing membrane and the carbon, 

solutions of the membrane components are usually drop-cast onto the carbon layer for 

maximum penetration. This results in a bicontinuous composite material that exhibits 

both ionic and electrical conductivity, with ions moving in the ion-selective membrane 

phase and electrons travelling through the carbon framework. Effective ion-to-electron 

transduction has been demonstrated not only at high-surface-area carbon materials but 

also for nanostructured noble metals, such as gold nanoparticles,76 platinum nanoparticles 

supported on carbon black (Figure 1.3e),74 nanoporous gold films (Figure 1.3f),75 as well 

as nanocomposites containing graphene loaded with platinum nanoparticles.77   

1.1.2 Transduction Mechanism of All-Solid-State Reference Electrodes 

 In potentiometric measurements, reference electrodes are equally as important as 

ISEs. Their purpose is to provide stable and reproducible sample-independent electrical 

potentials. Nowadays, a conventional reference electrode usually contains a Ag/AgCl half 

cell and contacts samples through a concentrated aqueous salt solution (referred to as salt 

bridge), although in simplified devices the chloride-containing reference solution into 

which the AgCl-coated silver wire is inserted serves itself as the salt bridge. The liquid 

junction potential at the interface between the salt bridge and the sample is ideally 

dominated by the high concentration of ions in the salt bridge and is, therefore, sample-

independent.78,79 To keep liquid junction potentials not only sample independent but also 

small, an equitransferrent salt is typically used as bridge electrolyte, which comprises a 

cation and an anion with nearly the same ion mobility. 
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 Similar to all-solid-state ISEs, all-solid-state reference electrodes do not rely on a 

liquid contact to an internal reference element and instead rely on a solid contact layer 

sandwiched in between a hydrophobic reference membrane and an underlying electron-

conducting substrate. The operation principle of all-solid-state reference electrodes is 

somewhat different from that of their ISE counterparts. As illustrated in Figure 1.2d, 

polymeric reference membranes are typically loaded with ions that slowly but 

continuously leach into the sample. Ideally, the interfacial potential at the 

membrane/sample interface (Δφd1) only depends on the local distribution of the doping 

ions across these two immiscible phases and is not affected by the sample. Reference 

membranes have been doped with various salts, including polyionic salts,80 salts with 

varying lipophilicities,81-83 and ionic liquids.84 A reference membrane can contain an inert 

electrolyte such as tetraalkylammonium tetrakis(4-chlorophenyl)borate with intermediate 

lipophilicity,80 which was demonstrated with polypyrrole- and PEDOT(PSS)-based 

reference electrodes81 as well as reference electrodes with carbon solid contacts such as 

carbon nanotubes85,86 and graphene.87 Also, reference membranes loaded with ionic 

liquids were applied in all-solid-state reference electrodes with PEDOT,88 3DOM 

carbon,89 CIM carbon,90 and lipophilic Co(II)/Co(III) salts91 to form the solid contact. It 

should be noted that the formulation of a reference membrane is as important as the 

choice of the solid contact, and the optimum composition of the reference membrane 

should be considered with respect to particular applications. The interfacial potential at 

the membrane/solid contact interface (Δφd2) is ideally not affected by the samples but is 

governed by redox reactions involving a conducting polymer or other redox-active 
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transducers, or is stabilized by the electrical double layer at the interface of high-surface-

area solid contacts. Readers interested in all-solid-state reference electrodes are also 

referred to a recent book.92  

1.2 Performance Criteria for the Design of All-Solid-State Potentiometric Sensors 

1.2.1 E° Reproducibility 

 Conventional ISEs have to be recalibrated frequently, which requires a supply of 

calibrating solutions and either automation or trained personnel to carry out the 

calibration protocols. To avoid such obstacles, calibration-free sensors with high device-

to-device reproducibility are highly desirable, in particular for portable point-of-care 

devices and remotely operated environmental sensing. In this dissertation, reproducibility 

is discussed with a view to the repeatability of the standard potential, E° (i.e., the 

calibration curve intercept of the calibration curve), for multiple electrodes, rather than 

variations in the calibration slope, which is expected to be very close to the theoretical 

value for reliable devices. Different applications require different measuring accuracies. 

For example, according to the U.S. Code of Federal Regulations,93 in clinical laboratories 

the acceptable measuring error for Na+ is ±4 mM,  which corresponds to a variation in the 

electrode potential of approximately 0.7 mV. Therefore, assuming either negligible 

electrode drifts or single use devices, no Na+-ISE calibration would be needed for clinical 

measurements if for a range of different electrodes the variation of E° were less than 0.7 

mV. A type of electrode that provides this reproducibility of E° and potential stability 

could be referred to as calibration-free. It should be noted that a well-defined ion-to-
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electron transduction is essential but does not guarantee good E° reproducibility. Since 

the electrical potential and, therefore, the E° of an ISE is affected by all interfacial 

potential differences within the electrochemical cell (as illustrated by Figure 1.1), not 

only the interface of the sample and the sensing membrane but also all other interfacial 

potentials have to be controlled well to ensure that variations in E° remain small.  

 As mentioned in Section 1.1.1.1, conducting polymers affect E° in two ways. 

Ideally, the redox potential of the conducting polymer layer defines the interfacial 

potential at the conducting polymer/electron-conducting substrate interface, and the 

distribution of ions affects the potential drop across the membrane/conducting polymer 

interface (Figure 1.2b). However, unlike redox-active species of low molecular weight 

with well-defined redox potentials, a conducting polymer film usually exhibits a 

continuum of redox potentials that can be affected by variations in crystallinity of the 

conducting polymer film,94 slowness of conformational changes following redox 

reactions,95 changes in the glass transition temperature that depend on the doping level,96 

formation of intermolecular bonds between neighboring chains,97 the ability of 

counterions to penetrate the conducting polymer film,41 and the dependence of the film 

morphology on the fabrication process.98 Consequently, it is a challenge to control the E° 

of devices that comprise a conducting polymer film to the level that a highly reproducible 

all-solid-state electrode is obtained. It was reported that all-solid-state ISEs employing 

well-defined polyaniline nanoparticles (mean particle size 8 nm) together with silicone 

rubber sensing membranes showed good E° reproducibility, but the reproducibility of E° 

was not explicitly discussed.99  
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Only a few approaches were reported to control the E° of all-solid-state ISEs 

based on conducting polymers. Bobacka et al. reported a method of adjusting the E° 

values of PEDOT(PSS)-based ISEs after device fabrication by application of a potential 

or current.100 Similarly, E° values can be adjusted by short-circuiting these ISEs with a 

reference electrode immersed into the same solution as the ISEs.101 After three days, the 

potential values of multiple equally treated electrodes were reported to approach each 

other. Improved reproducibility could be achieved by short circuiting for an ever longer 

time period, but it would be time-consuming due to the reduced driving force towards the 

end of the process. When the short-circuiting was performed between two identically 

prepared ISEs, the electrode potentials became nearly equal overnight. However, the Eº 

values of these electrodes started to drift again after current was no longer allowed to 

flow, which could be explained by spontaneous redox reactions of the conducting 

polymer. Improved potential stability and E° reproducibility were achieved by pre-

polarizing the conducting polymer to its stable equilibrium state before the application of 

the ISE membrane. For a demonstration, polypyrrole films were doped with a highly 

hydrophobic anion perfluorooctane sulfonate and polarized to a pre-determined 

equilibrium potential at which the polypyrrole films exhibited the highest potential 

stability. After the application of K+-ISE membranes, the resulting all-solid-state K+-ISEs 

demonstrated a high E° reproducibility with a standard deviation of 0.7 mV (n=4) as well 

as a low E° drift of 69 µV/h over 46 days. However, larger electrode E° variations were 

observed for a larger batch of electrodes fabricated using the same method. This may be 

improved by using microfabricated substrate electrodes and clean-room conditions.102 
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 As an alternative to the conducting polymer approach, the interfacial potential 

across the interface to an underlying electron-conducting substrate can be controlled by 

use of a well-defined redox buffer that contains both the oxidized and reduced forms of a 

redox couple. In the same way as a pH buffer resists pH changes when small quantities of 

acids or bases are added into a solution, a redox buffer guarantees highly reproducible 

potentials and resists changes in the electrical potential caused by redox-active 

interferences. The electrical potential of a redox buffer is determined by its standard 

redox potential and the ratio of the oxidized and reduced species of the redox couple, as 

predicted by the Nernst equation103:  

E = E°' + 
RT
nF

ln
aox

ared
												                                      (1.2) 

where E is the electrical potential of the redox buffer, E°’ is the standard potential of the 

redox couple, R is the ideal gas constant, F is the Faraday constant, T is the temperature, 

n is the number of moles of electrons transferred in the redox reaction, and aox and ared are 

the activities of the oxidized and reduced species of the redox couple, respectively. 

Redox buffers consisting of cobalt(II/III) tris(1,10-phenanthroline) or of the more 

hydrophobic cations cobalt(II/III) tris(4,4’-dinonyl-2,2’-bipyridyl) were doped as 

tetrakis(pentafluorophenyl)borate (TPFPB–) salts into ionophore-free ion-exchange 

membranes49 and ionophore-doped membranes,50 respectively. The E° values of the 

resulting all-solid-state electrodes correlated well with the ratios of the Co(II) and Co(III) 

species, as predicted by the Nernst equation, confirming the effectiveness of these 

compounds as redox buffers. Importantly, E° values were reproducible with a standard 

deviation less than 1 mV. The challenge of approach to calibration-free electrodes is the 
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gradual change of E° caused by the transfer of the redox-active species from the sensing 

membrane into the sample in exchange for ionophore-facilitated analyte ions entering the 

sensing membrane. The covalent attachment of the redox-active species to a polymer or 

to inorganic membrane components is being investigated as a solution to this problem.104 

Few other solid contacts that contain both the oxidized and reduced forms of a 

redox couple were reported. Ionophore complexes of Ag+ were doped into a sensing 

membrane in contact with a Ag° epoxy substrate, forming a Ag+/° redox couple to 

enhance the electrode reproducibility.42 However, the extension of this approach appears 

to be limited to Ag+-ISEs. Doping of ISE membranes with a small amount of a Ag+ 

complex along with an ionophore for another analyte ion is conceivable for the 

preparation of ISEs for other ions, but the amount of Ag+  in these sensing membranes 

can be depleted by ion-exchange with analyte ions when these electrodes are used in 

solutions free of Ag+. In another report, redox-active self-assembled monolayers whose 

redox potential was controlled by an applied current were used to improve the electrode 

potential stability,44 but a precise control of the ratio of the oxidized and reduced species 

was difficult, and the redox buffer capacity was evidently limited by the comparatively 

small redox buffer capacity of the monolayer on a planar substrate. In another approach, 

ISE membranes that contained arenethiolate monolayer-protected gold nanoclusters were 

prepared, with equimolar amounts of nanoclusters with two charge states differing only 

by one electron (i.e., nanoclusters° and nanoclusters+). This approach was reported to 

yield E° values with a standard deviation of less than 1 mV.48 The fabrication of ISEs of 

this type is rather complex and may not be suitable for mass fabrication. Recently, 
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standard deviations of E° less than 1 mV were also reported for all-solid-state ISEs 

comprising membranes doped with TTF or its radical salt TTF+NO3
– as ion-to-electron 

transducers.53 Although the authors did not intentionally prepare transduction layers that 

contained both TTF and TTF+, it is possible that the high E° reproducibility originated 

from the presence of a TTF/TTF+ redox buffer, since the electrodes with a TTF+ layer 

were obtained by electrochemical oxidation of electrodes membranes doped with TTF. 

Very recently, intercalation compounds were reported by Schuhmann et al. as a 

new family of solid contact materials exhibiting high E° reproducibility. LiFePO4 is a 

well-studied cathode material in Li+-ion batteries that can reversibly intercalate and 

deintercalate Li+ ions upon the electrochemical reduction and oxidation of its Fe(II/III) 

center, with very well defined redox potential and large redox capacity. When LiFePO4 

was coated with a Li+-ISE membrane, the interfacial potential at the solid contact/ISE 

membrane was well controlled by the LiFePO4/FePO4 redox couple with a standard 

deviation of the electrode E° of 1.4 mV.54 Following this principle, the same research 

group utilized Prussian blue analogues (i.e., MxTy[Fe(CN)6]z, where M is the primary ion 

and T is a transition metal center) as solid contacts to develop all-solid-state ISEs for K+, 

Na+ and Ca2+ detection. The E° variations of these electrodes were generally good and in 

the range of 1.0 – 3.0 mV.47 Unlike most solid contact materials that can be coupled with 

various ISE membranes for sensing different ions, the match of a specific intercalation 

compound for each individual primary ion is required for sensors based on this approach 

to ensure a well-defined and reversible interface between the solid contact and the ISE 

membrane. 
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For carbon-based solid contacts without well-defined redox-active species, the 

interfacial potentials at the membrane/solid contact interface (Δφc2) and solid 

contact/electron-conducting substrate interface (Δφc3) are affected by redox-active 

impurities within the system, thus influencing the E° reproducibility. For example, it was 

shown by acid-base titrations and cyclic voltammetry that CIM carbon69 contains a much 

lower amount of oxygen-based surface functionalities than 3DOM carbon,73 which is 

consistent with the better E° reproducibility of CIM carbon-based electrodes. The 

standard deviation of E° of CIM carbon-based ISEs was 7.3 mV while this value was 27 

mV for ISEs with a 3DOM carbon solid contact. The E° reproducibility of such 

electrodes can be significantly improved by adding a high-capacity redox buffer into the 

system. For instance, doping of an ISE membrane with a lipophilic Co(II)/Co(III) redox 

buffer salt in combination with a CIM carbon solid contact improved the E° 

reproducibility.69 Due to the effect of the redox buffer, the standard deviations of E° was 

reduced to 1 mV. In another work, a hybrid transducer layer comprising graphene, a 

silver substrate, and the lipophilic silver tetrakis[3,5-bis(trifluoromethyl)phenyl]borate 

was developed.105 This resulted also in a standard deviation of E° of approximately less 

than 1 mV. 

Besides the solid contact itself, the selection of the electron-conducting substrate 

can also affect the interface between the solid contact and the electron-conducting 

substrate. Recently, Lindner et al. studied the equilibration times of all-solid-state ISEs 

with the same PEDOT(PSS) transduction layer and ion-selective membrane composition 

but different electron-conducting substrates (i.e., glassy carbon, Au, and Pt). When these 
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all-solid-state ISEs were exposed to an aqueous solution for the first time, electrodes built 

on glassy carbon and Au substrates had much shorter equilibration times than electrodes 

with a Pt substrate.106 A follow-up study by the same group revealed that these different 

electron-conducting substrates affect electrode equilibration times by causing different 

degrees of oxidation of the electropolymerized PEDOT(PSS) solid contacts that were 

otherwise prepared under the same conditions. Those PEDOT(PSS) films contained 

different  PSS– doping levels that can lead to different extents of hydrophobicity, thus 

influcencing sensor equilibration times. This effect is more noticable when the film 

thickness is less than 2 µm.107 In another study, electrodes with Au substrates were 

reported to exhibit a higher E° reproducibility than otherwise identical electrodes with 

glassy carbon substrates.49 This difference can be attributed to the surface chemistry of 

the underlying electron-conducting substrate, which is affected by the intrinsic substrate 

properties as well as the fabrication process. Therefore, when designing all-solid-state 

electrodes, careful consideration should be given to the selection of the electron-

conducting substrate, as commonly used underlying substrates (i.e., glassy carbon, Au, 

and Pt) cannot be used equivalently. 

1.2.2 Stability of the EMF Response 

 For any analytical device, a stable signal is a prerequisite for a reliable 

measurement. The stability of the emf response of an all-solid-state ISE or reference 

electrode can be characterized by the level of potential drift that is unrelated to changes in 

the ionic composition of the sample. On the one hand, the potential drift of an electrode 

(observed as a drift of E°) is related to non-idealities of the sensor, such as slow 
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equilibrium processes and polarizable interfaces. On the other hand, interferents such as 

light, O2, and CO2 can cause all-solid-state electrodes with inadequate transducers to 

respond seemingly erratically. In this section, we discuss aspects to consider when trying 

to improve the potential stability of all-solid-state potentiometric electrodes. 

1.2.2.1 Trans-Membrane Transport and Accumulation of Water 

 Although it was reported earlier that water can be taken up into ISE 

membranes,108,109 it was only in 2000 that Pretsch and co-workers showed that the 

unintentional accumulation of a thin layer of water at the ISE membrane/solid contact 

interface affects the electrode potential in a predictable way long before the ISE 

membrane detaches from the underlying metal substrate.110 In the literature, this thin 

layer of water is usually referred to as aqueous layer, water layer or water film. All-solid-

state electrodes with such an aqueous layer suffer from potential drifts, sensitivity to 

osmolality changes, and ultimately mechanical failure due to membrane delamination. 

For a particular interface between a PVC sensing membrane and a silicon wafer substrate, 

the thickness of this aqueous layer was determined to be 100 ± 10 Å,111 showing that the 

volume of this unintended inner filling solution can be extremely small. Importantly, the 

composition of this aqueous layer is sample-dependent since both primary and interfering 

ions can diffuse through the ISE membrane and, eventually, into the aqueous layer. 

Because of the strong interactions between ionophores and primary ions, replacing 

interfering ions in this layer by primary ions takes much longer than the reverse.  
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Figure 1.4 Aqueous layer tests of (a) a coated-wire electrode with a K+-selective 

membrane (ISM) on a gold electrode, and (b) an all-solid-state ISE with a CIM carbon 

intermediate layer. The electrodes were immersed in a 0.1 M KCl solution for 24 h prior 

to measurement. At t = 1.15 h, the 0.1 M KCl solution was changed to a 0.1 M NaCl 

interfering ion solution, and at t = 5.06 h, the 0.1 M NaCl solution was changed back to a 

0.1 M KCl solution. 

As shown in Figure 1.4, cation-selective electrodes that are conditioned 

sequentially in concentrated solutions of the primary and interfering ions for several 

hours exhibit a positive potential drift upon changing from primary to the interfering ion, 

and a negative drift is observed when the sample is changed back to a primary ion 

solution.110 This asymmetry enables simple testing protocols to confirm the presence of 

an aqueous layer. As Lindner and Gyurcsányi emphasized, electrodes that contain thick 
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membranes with low water diffusion coefficients should be tested over extended periods 

of time, and highly discriminated ions are not suited for such a test because they do not 

enter the membrane to a sufficiently large extent.8 

The first step to impede the formation of a detrimental aqueous layer is to use a 

sensing membrane fabricated from a polymer matrix that absorbs only small amounts of 

water. The uptake of water into and diffusion within ISE membranes based on 

poly(acrylates),112 silicone rubber,112 and PVC113 were studied using attenuated total 

reflectance Fourier transform infrared spectroscopy (ATR-FTIR). It was found that the 

diffusion coefficient of water in poly(acrylate) membranes was approximately one order 

of magnitude lower than in plasticized PVC and silicone rubber-based membranes, while 

the water diffusion coefficients for PVC and silicone rubber membranes were almost the 

same. However, at “infinitely” long times, the water uptake into poly(acrylate) 

membranes was higher than for PVC membranes, while the silicone rubber membranes 

exhibited the lowest water uptake.112 Coulometric Karl Fischer titrations showed that 

water uptake is also affected by the electrolyte solutions to which the electrodes are 

exposed for conditioning.114 Water transport was also studied using a holographic 

approach, revealing that the diffusion of water vapor through a poly(acrylate) membrane 

can proceed with little condensation within the membrane. This process is driven by the 

vapor pressure differences across the membrane, rather than by osmotic pressure 115. 

Since all sensing membranes take up water to some extent, choosing a solid contact with 

a high hydrophobicity is the next important step to avoid water accumulation. For 

example, it was shown that a poly(methyl methacrylate)–poly(decyl methacrylate) ISE 
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membrane was susceptible to the pooling of water, with micrometer sized droplets 

forming at the interface of the ISE membrane and a gold substrate, while addition of a 

POT layer in between the ISE and the gold contact successfully eliminated aqueous layer 

formation.116,117 In another study, a silicone rubber-based ISE membrane was combined 

with a POT solid contact. Due to the very low water content, equilibrium was quickly 

reached, with excellent initial potential stability. When unconditioned electrodes were 

allowed to contact the conditioning solution for the first time, a potential drift of 4 mV 

was observed during the first 4 h, and the electrode potential remained stable during the 

subsequent 20 h of testing.118 A similarly stable initial potential was observed with a 

plasticized PVC K+-ISE membrane coupled with a pre-polarized hydrophobic 

polyazulene solid contact that exhibited a water contact angle of 98 ± 11˚. After the first 

contact with aqueous solution, the potential drift of all-solid-state ISEs based on 

polyazulene was only 0.1 mV/h within 49.5 h, which is 5 times lower than that of POT-

based electrodes.119 For oxidized conducting polymers doped with ions to compensate the 

positive charges, an excess of salt trapped in the membrane during polymerization can 

also contribute to the formation of an aqueous layer, which was demonstrated with a 

polypyrrole solid contact electropolymerized in the presence of K4Fe(CN)6. When the 

excess salt of K4Fe(CN)6 in the polypyrrole film was removed by thorough washing, the 

observed aqueous layer was effectively suppressed.120 

 Because of the hydrophobic nature of carbon, the formation of an aqueous layer 

seems not to be a problem for electrodes based on carbon solid contacts with 

conventional PVC sensing membranes. However, it should be noted that an aqueous layer 
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can still form if a significant amount of hydrophilic functional groups (e.g., hydroxyl 

groups) is present on the surface of the carbon contact. For example, all-solid-state ISEs 

with 3DOM carbon solid contacts do not suffer from the formation of an aqueous layer 

due to the hydrophobic nature of the 3DOM carbon surface.61 However, when 3DOM 

carbon was oxidized using concentrated nitric acid, ketone, phenol, lactone and 

carboxylic acid surface functionalities are formed on the carbon surface, and an aqueous 

layer was observed.73  

1.2.2.2 Potential Stability under Constant Ambient Conditions 

 Beyond the slow ionic equilibrium induced by formation of an aqueous layer, 

drifts in sensor response can also arise from electrode polarization in a constant 

measuring environment. Ideally, a solid contact should have a nonpolarizable interface 

with a high exchange current density that is not influenced by the very small input current 

of the measuring amplifier.16 However, in practice all solid contacts can be polarized to 

some extent. When a polarizable electrode reaches steady state equilibrium in a constant 

ambient environment, it exhibits the same potential as a capacitor that is charged 

galvanostatically: 

     E = E0 + i (R + t/C)                                                    (1.3) 

 where E is the electrode potential, i is the current, R is the bulk resistance of the 

electrode, t is the time, and C is the electrode capacitance at low frequencies. Therefore, 

the time dependence of the electrode potential (ΔE/Δt) is related to the electrode 

capacitance as well as the applied current: 

Potential drift = ΔE/Δt = i/C                                             (1.4) 
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It can be seen from equation (1.4) that a sufficiently large electrode capacitance is 

necessary for a satisfactory potential stability, although all-solid-state electrodes are 

usually operated under potentiometric near-zero current conditions in which the residual 

current is extremely small (i.e., pA or less). This is achieved by use of voltmeters with a 

high input impedance (as large as 1013 to 1015 Ω). To further stabilize the electrode 

potential by means of the electrode design, solid contacts with a high redox or double 

layer capacitance are highly desired. For example, potential drifts of 200 to 500 µV/h 

were observed with all-solid-state electrodes comprising single-walled carbon 

nanotubes121,122 or nanoporous gold films75 as solid contacts, and approximately 10–50 

µV/h for electrodes with 3DOM carbon,61,89 graphene,65,66 arenethiolate monolayer-

protected gold nanoclusters,48 TCNQ,52 porous carbon spheres,70 polypyrrole doped with 

hexacyanoferrate,123 and lipophilic multi-walled carbon nanotubes.124 Benefiting from the 

large interfacial area between the solid contact and the sensing membrane, excellent 

potential stabilities with drifts less than 10 µV/h were reported for electrodes based on 

CIM carbon69,90 and platinum nanoparticles supported on carbon black.74 A stable signal 

is of great importance for those applications in which continuous monitoring of an 

analyte over an extended time period is needed. Besides the polarization of the solid 

contact/sensing membrane interface, mechanical failure and membrane-related processes 

can also contribute to potential drifts. For example, a gradual decrease in adhesion 

between the sensing membrane and the solid contact was observed upon extended 

exposure of all-solid-state electrodes to aqueous solutions,125 and leaching or 
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decomposition of membrane components can lead to the deterioration of a sensor’s 

response, as discussed in detail elsewhere.8  

 

Figure 1.5 Potential stability evaluated by chronopotentiometry of a coated-wire 

electrode with a PVC-based sensing membrane on a gold substrate (top) and a CIM 

carbon-based all-solid-state ISE (bottom). Constant currents of +1 nA (t ≤ 60 s) and –1 

nA (t > 60 s) were applied to the electrodes while the emf was monitored. An expanded 

view that shows the Ohmic drop of the CIM carbon-based ISE at the current reversal 

point is shown in the inset. Reprinted with permission from ref. 69, © 2014 American 

Chemical Society 

For those applications in which long-term monitoring is not needed, or when the 

electrodes are frequently calibrated, a small signal drift can be tolerated. Assuming an 

acceptable potential drift of 1 mV/h and a potentiometric residual current of 1 pA in a 

moderately accurate measurement, it can be calculated from equation (1.4) that a minimal 

electrode capacitance of 3.6 µF is required. Actual electrode capacitances can be 
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determined with chronopotentiometry. As suggested by Bobacka,32 an electrode can be 

polarized with a few nA (usually 1 nA) of direct current while the electrode potential is 

recorded. The bulk resistance of the electrode can be calculated from the Ohmic drop (iR) 

when the current is reversed (Figure 1.5). This approach has become a standard method 

to evaluate potential stabilities of all-solid-state electrodes. Examples of potential drifts 

for applied currents of 1 nA and the resulting electrode capacitances for different solid 

contact materials are summarized in Table 1.1.  

Table 1.1 Electrode Capacitance Measured by Chronopotentiometry and Continuous 
Potential Drifts of All-Solid-State ISEs 

solid contact emf drift with 1 nA 
applied (µV/s) 

capacitance 
(µF) 

emf drift 
(µV/h) ref. 

PEDOT(PSS)a 4.9 204 - 32 

TCNQa 6.5 154 9.2 52 

gold nanoclustersa 8.5 118 10.1 48 

TTFa 16.5 61 - 53 

Pt nanoparticles on 
carbon blackb 0.6 1666 6.3 74 

CIM carbonb 1.0 1000 1.3 69 

3DOM carbonb 1.6c 625c 11.7 61 

grapheneb 12.8 78 12.6 65 

carbon nanotubesb 17.0 60 - 62 
a Solid contact with high redox capacitance. 
b Solid contact with high double layer capacitance. 
c Unpublished results. 
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1.2.2.3 Interferences from Light, O2, and CO2 

 It is well known that some conducting polymers are photosensitive organic 

semiconductors that can convert light into electrical energy; because of this, they are 

widely used in the photovoltaic industry. Not surprisingly, light sensitivity is a concern 

for some conducting polymer-based all-solid-state electrodes. Lindfors systematically 

compared the effects of light on the potential stability of conducting polymer films (i.e., 

polypyrrole, PEDOT, polyaniline, and POT) deposited on glassy carbon electrodes. It 

was found that except for POT, these conducting polymers exhibited no significant 

response towards illumination with room light. However, when these conducting 

polymers were exposed to more intensive light, only the polyaniline film retained a 

relatively stable potential.126 The excellent light resistance of polyaniline was later 

confirmed for an all-solid-state ISE with a silicone rubber sensing membrane and a 

transducer layer containing polyaniline nanoparticles deposited on glassy carbon or gold 

electrodes.99 In the case of electrodes comprising highly photosensitive conducting 

polymers, light interference may be avoided by protecting the photosensitive material 

from light, as this is similarly the case for Ag/AgCl internal reference electrodes 

protected by a conventional ISE body. For all-solid-state electrodes with other 

transducers, such as carbon and redox-active species without a suitable band gap, 

potentiometric responses are not affected by light.   

 O2, CO2, and other small neutral molecules can readily diffuse through a sensing 

membrane, reaching the solid contact and causing seemingly erratic responses if the all-

solid-state electrode is not adequately designed. The effect of O2 was observed in early 
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reports of coated-wire electrodes, and it was hypothesized that an O2/H2O half-cell is 

formed at the metal/PVC interface.17,18 It is very likely that this O2/H2O half-cell is not 

reversible and thus its half-cell potential is not predictable. The potentiometric response 

of conducting polymers can be affected by the presence of O2 due to the oxidation of the 

conducting polymer, and possibly the formation of charge-transfer complexes between 

the two species.127 It was reported that PEDOT is less sensitive to O2 than polypyrrole, 

whose potential changed by as much as 25 mV upon exposure to dissolved O2 for 1 h.128 

Such undesired potential changes can be eliminated by use of a redox buffer with 

adequate buffer capacity, as demonstrated in all-solid-state electrodes with redox-active 

self-assembled monolayers,44 arenethiolate monolayer-protected gold nanoclusters,48 and 

lipophilic Co(II)/Co(III) salts.49,50,91 For carbon-based solid contacts, a clean surface 

without redox-active impurities is highly desirable.  

The interference of CO2 is usually considered to be a strong indicator of the 

presence of an aqueous layer between the solid contact and the sensing membrane, since 

CO2 can reach the (unbuffered) aqueous layer and alter its pH.8 Sensitivity towards CO2 

can also be induced by interactions of CO2 with surface functionalities on the solid 

contact, even in the absence of an aqueous layer. For example, while there is no evidence 

for an aqueous layer in the case of 3DOM and CIM carbon due to the hydrophobic nature 

of their surfaces, 3DOM carbon-based ISEs were subject to a potential drift of 11.8 mV/h 

upon CO2 exposure61 while ISEs based on CIM carbon were not affected by CO2.69 The 

superior CO2 resistance of the CIM carbon can be attributed to the low amount of surface 
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functional groups on CIM carbon. As long as there is no aqueous layer and the ambient 

CO2 concentration is constant, some CO2 sensitivity may be acceptable, though. 

1.2.3 The Lower Detection Limit 

 Until the late 1990, most ISEs could only detect sample concentrations down to 

micromolar levels, which strongly limited their application in situations in which trace-

level measurements are required. The realization of Pretsch et al. that the lower detection 

limit of conventional ISEs is often determined by transmembrane ion fluxes from the 

inner filling solution into the sample quickly led to the lowering of detection limits down 

to picomolar levels by minimizing such ion fluxes.129 Although all-solid-state ISEs do not 

contain inner filling solutions as large reservoirs of the primary ions, their lower detection 

limits are still similar to those of conventional ISEs. This is explained by primary ions 

that can leach from the sensing membrane into the sample, as it was observed by atomic 

absorption spectrometric measurements.130 

The first effort to lower the detection limits of all-solid-state ISEs was based on 

the use of a solid contact consisting of a conducting polymer doped with a primary ion-

complexing agent to reduce the contamination of the membrane/sample interface with 

primary ions. Michalska et al. reported that the incorporation of 

ethylenediaminetetraacetate into a poly(3-methylthiophene) transducer layer induces a 

super-Nernstian response for Ca2+ activities lower than 10-5 M, and that the lifetime of the 

electrodes was less than ten days, possibly because this hydrophilic complexing agent 

eventually leaches into the sample.131 A more robust system with a lifetime of more than 

six weeks was reported subsequently, using a polypyrrole solid contact doped with the 
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Ca2+ complexing ligand Tiron that enables nanomolar detection of Ca2+.132 For a 

conventional ISE, primary ion fluxes can be driven backwards through the membrane 

into the inner filling solution by the application of a galvanostatic current.133 This 

approach was also demonstrated with all-solid-state ISEs, taking advantage of the redox 

properties of conducting polymers. When an anodic current was applied to a polypyrrole 

film, polypyrrole was oxidized, accompanied by transport of the primary ion Cl– from the 

sensing membrane into the polypyrrole film. Therefore, it reduced the loss of Cl– into the 

sample and lowered the detection limit for chloride by two orders of magnitude.134 

However this method is difficult to use in routine analysis because the optimal current 

depends on the sample composition and the previous history of the membrane. It was 

shown by theoretical studies that the traditional steady-state treatment is invalid in this 

regard, and that the current- and concentration-driven ion fluxes depend on each other, 

making it difficult to achieve reliable elimination of ion fluxes.135,136 Since the 

undesirable aqueous layer can serve as a reservoir of primary ions, it should be avoided 

for trace-level measurements. As discussed in Section 1.2.2.1, the hydrophobic polymer 

matrix poly(methyl methacrylate)–poly(decyl methacrylate) with low water diffusivity 

can be combined with a lipophilic POT solid contact to suppress water-layer 

formation.116,117 This strategy can also be used to achieve low detection limits. Trace-

level detection was shown for Ag+, Pb2+, Ca2+, K+, and I–, with detection limits from the 

submicromolar to the subnanomolar range.137,138 Recently, the same combination of 

sensing membrane and transducer layer was deposited onto a filter paper modified with 

single-walled carbon nanotubes, and the resulting paper-strip ISEs exhibited nanomolar 
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detection limits for Cd2+, Ag+, and K+.139 At these impressively low concentration levels, 

interfering ions strongly compete with primary ions to generate the potentiometric 

response, and detection limits are often determined by equilibrium selectivity.1,140 One 

approach to enhance selectivities and to achieve low detection limits is to use fluorous 

sensing membranes with noncoordinating and weak solvating properties.141,142 Highly 

selective all-solid-state ISEs were developed with fluorous sensing matrixes and 3DOM 

carbon solid contacts for the trace-level detection of Ag+,143 and perfluorinated anionic 

surfactants in the environment.144 Both types of sensors exhibited subnanomolar 

detection limits. 

No matter what solid contacts are employed, proper conditioning protocols are 

crucial for low detection limits. Usually, electrodes are conditioned in two steps, starting 

from a higher primary ion concentration such as 1 mM or 1 µM to replace the counterions 

originally present in the freshly prepared sensing membrane with analyte ions, which is 

then followed by a second step of conditioning of the sensing membranes in an analyte 

solution of much lower concentration, such as 1 µM or 1 nM. Although time-consuming, 

this is an effective and probably the most robust approach to achieve low detection limits 

for adequate all-solid-state ISEs with conventional PVC sensing membranes, as first 

demonstrated with a polypyrrole solid contact for Pb2+ detection,120 and recently 

successfully applied to 3DOM carbon-based ISEs for K+ and Ag+,145 POT derivative-

based solid-contact ISEs for Cd2+,146 and electrodes with PEDOT(PSS) contacts for Pb2+ 

measurements.147 Radu et al. proposed a pretreatment protocol that involves conditioning 

of PEDOT-based ISEs in a solution of the ionophore in a mixed solvent consisting of 
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tetrahydrofuran and water. It was suggested that during this conditioning process, 

primary ions poisoning the membrane/sample interface are transported into the 

membrane together with the lipophilic ionophore, thus minimizing ion fluxes from the 

membrane into the sample. The required conditioning time was reported to be reduced to 

approximately 1 h, and the detection limit for CO3
2– was lowered by four orders of 

magnitude to 5 ppt.148 The practical application of this approach may be limited by the 

solubility of lipophilic ionophores in the conditioning solution. 

1.3 Novel Sensor Designs 

Over the past three decades, the interest in the development of simple and 

portable analytical devices has continued to grow due to the high demand for point-of-

care and in-field testing applications, especially for the emerging market of developing 

countries. All-solid-state ISEs and reference electrodes are advantageous over their 

conventional counterparts because they are miniaturizable and can be compatible with 

scalable fabrication techniques (e.g., screen-printing). Therefore, they have been widely 

employed in the designs of miniaturized ion-sensing devices, such as microelectrodes149 

and electronic tongues.150,151 In this section, we present recent trends of this rapidly 

growing field by highlighting strip-type potentiometric sensors and paper-based ion-

sensing devices developed in the past few years. 
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Figure 1.6 Design of miniaturized potentiometric devices with integrated all-solid-state 

electrodes: (a) planar strip cell with measuring and reference electrode based on screen-

printed carbon nanotubes; (b) device based on conductive paper coated with carbon 

nanotubes for blood Li+ detection; (c) device utilizing paper-based microfluidic sampling 

with coated-wire Ag+-ISE and pseudo-reference Ca2+-ISE  (d) device with paper-based 

microfluidic sampling with an ISE and reference electrode based on PEDOT; (e) 

disposable paper-based Cl– sensing devices with stencil-printed Ag/AgCl electrodes as 

Cl–-ISEs. Reference half cells comprise a Ag/AgCl electrode (d, upper image) or an ionic 

liquid doped polymeric membrane on CIM carbon (d, lower image). Reprinted with 

permission from ref. 152 (a), ref. 90 and ref. 153 (e), © 2011, 2014, 2015 American 

Chemical Society; from ref. 154 (b), ref. 155 (d), © 2014, The Royal Society of 

Chemistry; from ref. 156 (c), © 2012, Wiley-VCH. 
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Strip-type potentiometric sensors known as Ektachem slides were available for K+ 

analysis in the early 1980s,157 and have recently been adapted for the construction of 

miniaturized ion sensors. Rius et al. developed a strip-type potentiometric cell on a 

polyethylene terephthalate substrate, with a carbon nanotube-based all-solid-state ISE and 

a reference electrode fabricated by screen-printing (Figure 1.6a).86,152 This cell was 

successfully used for K+ analysis in saliva and beverage samples. To reduce cost and 

increase flexibility, paper was employed as a substrate to mechanically support the solid 

contact for the construction of strip-type cells. Conductive papers based on carbon 

nanotubes158,159 and graphene87 were reported, and the resulting electrochemical cells 

exhibited comparable performance to their bulk counterparts. Using a cell assembled 

from a separate strip-type ISE and reference electrode (Figure 1.6b), Li+ levels in whole 

blood can be measured with a sample volume of 50 µL.154 Furthermore, carbon nanotube-

based conductive paper was combined with a POT solid contact and a poly(methyl 

methacrylate)–poly(decyl methacrylate) sensing membrane to achieve nanomolar 

detection limits for Cd2+, Ag+, and K+.139 

Besides mechanically supporting solid contacts, paper can also be used for 

microfluidic sampling in simple and affordable analytical devices, because it can 

transport fluids by capillary forces.160 This concept was first applied to potentiometric 

sensors in a paper-based bioassay, where the Ag+ generated in the system was detected 

by a coated-wire Ag+-ISE coupled with a Ca2+-ISE as a pseudo-reference (Figure 

1.6c).156 Following the same principle, paper was used as a disposable sampling tool to 

transport sample solutions to the sensing area of ion-sensing devices with a bulk PEDOT-
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based all-solid-state ISE and a reference electrode (Figure 1.6d)155 as well as commercial 

solid-state membrane ISEs.161 Eventually, when paper functions as both the mechanical 

support and the microfluidic sampling tool, single-use ion-sensing platforms can be 

constructed with very low cost. Figure 1.6e presents two simple potentiometric Cl– ion-

sensing devices based on paper, which comprise a stencil-printed Ag/AgCl electrode 

serving as a solid-state Cl–-selective electrode and contain the sample by a hydrophobic 

barrier either based on printed wax (Figure 1.6e, upper device)153 or polyurethane (Figure 

1.6e, lower device).90 For the upper device, the reference system was provided by a 

conventional Ag/AgCl electrode coupled with 1 M KCl reference electrolyte. The 

reference electrolyte can be eliminated by the integration of a miniaturized CIM carbon-

based reference electrode, as shown in the lower device. Neither of the two devices 

requires any pretreatment (i.e., conditioning), and both of them require sample volumes 

as low as 10 µL. Simple and affordable paper-based ion-sensing devices have also been 

developed with coulometric,162 chronopotentiometric,163 and colorimetric techniques,164 

which opens up new opportunities for miniaturized ion sensing. 

1.4 Conclusions 

 Over the past decade and a-half, all-solid-state potentiometric sensors have 

become promising candidates for the construction of ion-sensing instrumentation with 

high portability, simplicity of use, affordability, and flexibility. Signal stability has been 

improved and detection limits were lowered through persistent research efforts in the 

development of new solid contact materials, effective approaches to enhance 

reproducibility, and the better control of the ion-to-electron transduction, water uptake, 
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and transmembrane ion fluxes. Milestones include, but are not limited to, the 

understanding of the effects of water-layer formation (2000),110 the first measurements 

with subnanomolar detection limit (2004),137 the introduction of nanostructured carbon 

materials as solid contacts (2007/8),61,62 and the development of well-defined redox 

buffers as inner reference (2013).49 

 Looking beyond, exciting opportunities await. Calibration-free and pretreatment-

free all-solid-state electrodes are still at an early age of development. Methods for the 

accurate control of cell potentials (i.e., Eº) and robust redox buffers with a high buffer 

capacity are needed for highly reproducible potentiometric responses, which are essential 

for calibration-free single-use ion sensors and long term monitoring with a minimal 

recalibration frequency. The development of new solid contact materials and the 

optimization of current systems are still of interest. The combination of redox and 

double-layer capacitance within the same solid contact has been realized with 

nanostructured conducting polymers (i.e., 3DOM PEDOT(PSS))165 and nanocomposites 

(e.g., graphene and polyaniline).166 All-solid-state electrodes with both high 

reproducibility and signal stability will benefit from both redox properties and high 

contacting areas. Affordable solid contact materials suitable for mass production and 

mass fabrication are still needed for commercial devices. Eventually, all-solid-state 

potentiometric sensors will likely replace conventional electrodes and be integrated into 

modern analytical devices, providing advantages of low cost, ease of operation, and small 

sample volumes.  
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1.5 Dissertation Overview 

 The goal of this dissertation research was to develop robust all-solid-state 

potentiometric ion-sensing systems with high electrode stability and reproducibility. The 

dissertation involves fundamental inquiries on further understanding the ion-to-electron 

transduction mechanism of all-solid-state potentiometric ion sensors, revealing the 

specific properties that an adequate solid contact should exhibit, and seeking approaches 

to generate stable and reproducible sensor performance. Depending on specific targeted 

applications, the ion-sensing system can contain robust all-solid-state ISEs and reference 

electrodes as bulk electrodes that are used for routine and long-term measurements, or the 

proposed ion-sensing system can be a simple and affordable paper-based platform with 

miniaturized high-performance all-solid-state electrodes integrated. The goal can be 

divided into three specific objectives as follows: 

(1) Development of a novel solid contact material 

At the time when this thesis work started (i.e., fall 2012), no solid contact material 

had been reported in literature that exhibited both a high interfacial capacitance to reduce 

the sensor drift to lower than 10 µV/h, as well as a clean material surface that is essential 

to achieve a highly reproducible E˚ with a standard deviation less than 1 mV. Although 

all-solid-state ISEs and reference electrodes based on 3DOM carbon demonstrated high 

potential stability benefiting from the high surface area from the macropores,61,89 its 

monolithic nature poses challenges for sensor miniaturization and mass production. Also, 

3DOM carbon contains large amounts of redox-active surface functionalities, which 

strongly affects the electrode E° reproducibility. To address these issues, CIM carbon is 
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proposed as a novel solid contact material. CIM carbon consists of accessible and 

interconnected mesopores that can be infiltrated by a sensing membrane, providing large 

interfacial contact area with high double-layer capacitance. Also, the carbon precursor of 

CIM carbon is a synthetic high-purity hydrocarbon material, so that CIM carbon is 

expected to exhibit very low amount of redox-active surface impurities. Furthermore, 

CIM carbon is prepared in a flexible powder form, which is favorable in terms of sensor 

fabrication and miniaturization.  

Based on the above hypothesis, Chapter 2 presents a detailed discussion of the 

structural features, electrochemical properties, and surface chemistry of CIM carbon, 

together with its evaluation as a solid contact material in all-solid-state ISEs. The results 

demonstrate that CIM carbon is an excellent ion-to-electron transducer to construct all-

solid-state ISEs, especially for long-term measurements. Chapter 3 discussses the use of 

CIM carbon in all-solid-state reference electrodes, and explores the possibility of sensor 

miniaturization by intergrating CIM carbon-based reference electrodes into paper-based 

ion-sensing platforms. 

(2) Development of simple and affordable ion-sensing platforms 

With the ever-growing demand for in-field and point-of-care testing applications, 

paper-based analytical devices have attracted enormous attention due to their ability to 

combine simplicity, affordability, scalability and flexibility. Previous paper-based ion-

sensing devices are based on potentiometry,153,158 coulometry,162 chronopotentiometry,163 

and colorimetry,164 with paper serving either as a substrate to mechanically support the 

solid contact or a microfluidic sampling tool. Although these devices can be used for 
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measuring various ions in aqueous solutions, they usually require cumbersome 

preparation protocols prior to measurements, such as sensor assembly, membrane 

conditioning, and sensor calibration. Also, the demonstration of sensor performance of 

these devices in biological samples is rare. 

With the motivation of developing a pretreatment-free device, Chapter 4 discusses 

the design and evaluation of a planar paper-based ion-sensing platform with a 

conventional ISE and reference electrode embedded into the paper substrate. The device 

relies on a symmetrical design with each interfacial potential well-defined, so that the 

sensor response can be theoretically predicted and the resulting sensor is calibration-free. 

Besides aqueous solutions, the proposed ion-sensing platform also functions in undiluted 

blood serum samples with high selectivity and reproducibility. To further simplify the use 

of the device, Chapter 5 explores the opportunity of integrating CIM carbon-based all-

solid-state ISEs and reference electrodes onto the paper substrate to construct a 

pretreatment-free all-solid-state ion-sensing device. 

(3) Development of an all-solid-state redox buffer  

As discussed in Section 1.2.1, a robust redox buffer is of vital importance for the 

development of calibration-free potentiometric ion sensors with high E° reproducibility. 

Current state-of-the-art redox buffers are based on hydrophobic cobalt(II/III) salts that are 

doped in the sensing membrane. Although proof-of-concept calibration-free ion sensing 

was demonstrated, the redox buffer can leach out of the sensing membrane over time, 

thus leading to undesired large potential drifts and deteriorated E° reproducibility.50 To 
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construct robust calibration-free all-solid-state ion sensors that can be used for long-term 

measurements, the loss of the redox buffer must be prevented.  

One approach to address this issue is to graft the redox buffer onto the solid 

contact through covalent linkage. CIM carbon is considered as a good solid contact 

material in this regard. It consists of accessible and interconnected mesopore structure 

with large surface area onto which the redox buffer can be anchored. More importantly, 

CIM carbon exhibits low amounts of redox-active impurities on the surface, so that the 

grafted redox buffer can function with minimal redox interference arising from the redox-

active surface impurities. By covalently attaching the redox buffer onto the surface of 

CIM carbon, the interfacial potential at the solid contact/sensing membrane interface can 

be well-controlled, leading to high E° reproducibility of the resulting all-solid-state ISEs 

and reference electrodes. 

Based on the aforementioned assumptions, Chapter 6 presents the evaluation of 

two approaches to covalently attach the cobalt-based redox buffer on the surface of CIM 

carbon. CIM carbon is first modified with azide or amine surface functional groups as 

anchoring points, and then the cobalt complexes are attached to the surface through click 

chemistry or amide coupling reactions. The CIM carbon surface chemistry, reactivity and 

the resulting surface coverage of the cobalt complexes are discussed in detail. 

This dissertation ends with Chapter 7, which summarizes the state of the art of 

this thesis and identifies the author’s view on the exciting opportunities ahead for the 

continuation of this research direction. 
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Chapter 2  

Ion-Selective Electrodes with Colloid-Imprinted Mesoporous 

Carbon as Solid Contact 

 

Reproduced with permission from “Ion-Selective Electrodes with Colloid-Imprinted 

Mesoporous Carbon as Solid Contact” by Hu, J.; Zou, X. U.; Stein, A.; and Bühlmann, P. 

in Anal. Chem. 2014, 86, 7111-7118. Copyright © 2014 American Chemical Society.  

 

Parts of this chapter relate to U.S. patent application (14/716564) entitled “Ion-Selective 

Electrodes and Reference Electrodes with a Solid Contact Having Mesoporous Carbon” 

by Hu, J.; Stein, A.; and Bühlmann, P. filed on 26 May 2015. 

 

Xu Zou contributed to this chapter by synthesizing the cobalt-based redox buffer. 
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2.1 Introduction 

Ion-selective electrodes (ISEs) are widely used in various application fields, 

including clinical analysis, process control, and environmental monitoring.1-3,5,30 To 

achieve sensor miniaturization, small sample volumes, easy maintenance, and scalability 

for mass production, solid-contact ion-selective electrodes (SC-ISEs), in which a solid 

contact is used as the ion-to-electron transducer, have attracted much attention.5,8,11,12  

The first proposed SC-ISE, the coated-wire electrode, was extremely simple but 

unreliable due to the ill-defined interfacial potential between the ion-selective membrane 

(ISM) and the underlying conducting metal.15 To stabilize this interfacial potential, 

intermediate layers consisting of conducting polymers with high redox capacitance, such 

as derivatives of polypyrrole,35 polythiophene,36 and polyaniline,37 were introduced. 

Some of these sensors have shown interference from gases128 or are affected by the build-

up of an unintended water layer between the ISM and the solid contact.110 More 

importantly, conducting polymer films do not have a well-defined redox potential but 

instead exhibit a continuum of redox potentials (which manifests itself, e.g., by broad, 

scan rate independent peaks in cyclic voltammograms).97 There are several causes for this 

energetic inhomogeneity, including the coexistence of crystalline and amorphous 

regions,94 slow conformational changes as the result of oxidation or reduction (often 

referred to as redox transformations, the slowness of which manifests itself in 

hysteresis),95,167 changes in the glass transition temperature as a result of doping,96 the 

formation of intermolecular bonds between neighboring chains,97 and the dependence of 

the film morphology on the method of film fabrication.98,168 Moreover, the penetrability 
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of counterions and, concomitantly, the film capacitance depend on the counterion size,169 

and, likely, the local polymer morphology. Consequently, it is difficult to obtain high 

device-to-device reproducibility and to minimize long-term drift resulting from reactions 

of the conducting polymer with ambient redox-active species such as oxygen. 

More recently, nanostructured carbon materials such as three-dimensionally 

ordered macroporous (3DOM) carbon,61,73 carbon nanotubes,55,62 fullerene,63 and 

graphene65-67 have gained the attention of electrochemists due to their intrinsic 

hydrophobicity and electric conductivity. SC-ISEs based on these carbon materials have 

exhibited few problems with water layer formation and interference by O2, CO2, or light. 

Among the sensors with one of these carbon materials as an interlayer, the 3DOM 

carbon-based SC-ISEs have shown the most favorable long-term potential stability, 

which can be explained by the high capacitance of the interface between this carbon 

material and the ISM. 

3DOM carbon consists of a glassy carbon skeleton with interconnected 

macropores that can be infiltrated with the ISM to form a bicontinuous structure, in 

which electrons are conducted through the carbon framework while ions move through 

the infused ISM. Its large interfacial contact area and high capacitance lead to excellent 

long-term stability of 3DOM carbon-based SC-ISEs, with a drift as low as 11.7 µV/h.61,73 

With these sensors, a subnanomolar detection limit of Ag+ 145 and trace-level detection of 

perfluorinated surfactants in lake water144 have been achieved. However, 3DOM carbon 

prepared from resorcinol-formaldehyde precursors contains significant amounts of redox-

active surface functional groups73 that can affect the reproducibility of the calibration 
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curve intercept, Eo. As a consequence, SC-ISEs that use 3DOM carbon still require 

calibration. Moreover, the monolithic nature of 3DOM carbon as used in the past is 

problematic in view of mass production of sensors. 

To address issues of Eo reproducibility and with the ultimate goal to prepare 

calibration-free SC-ISEs, we report here the investigation of colloid-imprinted 

mesoporous (CIM) carbon as a new solid contact material. Similar to 3DOM carbon, 

CIM carbon exhibits open and interconnected pores that can form a bicontinuous carbon 

and pore space. It can be synthesized by employing a colloidal imprinting method, in 

which colloidal silica is used as the template and mesophase pitch as the carbon 

precursor.170 Both of these starting materials are inexpensive and commercially available, 

and the synthesis can be easily scaled up. The mesopore size and pore volume of CIM 

carbon can be tuned by the size of the colloidal silica particles, usually ranging from 

approximately 10 to 50 nm depending on the source of colloidal silica.171 Due to its pore 

texture, CIM carbon exhibits a higher capacitance than 3DOM carbon. In addition, the 

high purity carbon precursor for CIM carbon, i.e., the mesophase pitch, introduces fewer 

redox-active surface functional groups. While pitch materials obtained from coal tar or 

petroleum products have mixed compositions and are difficult to purify, the type of 

mesophase pitch used here as precursor for the preparation of CIM carbon is a fully 

synthetic material prepared by condensation of an aromatic hydrocarbon, accounting for 

its exceptional purity and low oxygen content.172 Moreover, unlike monolithic 3DOM 

carbon, CIM carbon is prepared in powder form and can be made into thin films for mass 

production and fabrication. CIM carbon has been used as a template for zeolite 
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synthesis173 and as a stationary phase for reversed-phase liquid chromatography,174 but its 

utilization as a solid contact material for ISEs is novel. 

Herein, we report the use of CIM carbon with 24-nm diameter mesopores as a 

new solid contact material. Benefiting from the aforementioned characteristics, CIM 

carbon-based SC-ISEs exhibit excellent Nernstian response and potential stability. No 

water layer or interferences by light, O2, or CO2 are observed. When combined with a 

redox buffer layer provided by the tetrakis(pentafluorophenyl)borate (TPFPB–) salts of 

cobalt(II) and cobalt(III) tris(4,4’-dinonyl-2,2’-bipyridyl) ([Co(C9,C9-bipy)3]2+/3+),50 SC-

ISEs can be fabricated with a standard deviation of E° as low as 0.7 mV. This suggests 

that for many applications these sensors can be used without prior calibration. 

2.2 Experimental 

Materials. Reagents were obtained from the following sources: mesophase pitch 

from Mitsubishi Gas Chemicals (Tokyo, Japan), Ludox AS-40 colloidal silica, sodium 

ethoxide solution (21 wt % in ethanol), bromocresol green/methyl red (mixed indicator 

solution in methanol), tetraethylammonium tetrafluoroborate (TEABF4), and valinomycin 

from Sigma-Aldrich (St. Louis, MO), o-nitrophenyl octyl ether (o-NPOE), and high 

molecular weight poly(vinyl chloride) (PVC) from Fluka (Buchs, Switzerland), sodium 

tetrakis[3,5-bis-(trifluoromethyl)phenyl]borate (NaTFPB) from Dojindo (Kumamoto, 

Japan), and lithium tetrakis(pentafluorophenyl)borate (LiTPFPB) ethyl etherate from 

Boulder Scientific (Boulder, CO). All chemicals were used as received without further 

purification. Deionized water was purified to a resistivity of 18.2 MΩ/cm with a Milli-Q 

PLUS reagent-grade water system (Millipore, Bedford, MA). The redox couple 
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consisting of [Co(II)(C9,C9-bipy)3](TPFPB)2 and [Co(III)(C9,C9-bipy)3](TPFPB)3 was 

synthesized as reported.50 

CIM Carbon Synthesis. The CIM carbon was synthesized using a modification 

of a previously reported route.170 A mass of 5 g of mesophase pitch was manually ground 

and dispersed in 100 mL of an ethanol/water mixture (~60:40 volume ratio) at 50 °C. 

Under vigorous stirring, 100 mL of Ludox AS-40 colloidal silica suspension was added 

gradually into the flask, and the resulting mixture was stirred overnight at 50 °C. The 

resulting mixture was transferred to an open plastic beaker, stirred, and kept at 50 °C 

overnight to allow solvent evaporation. The obtained pitch–silica composites were then 

transferred into a porcelain combustion boat and heated under a N2 flow (0.5 L/min) with 

a heating ramp of 5 °C/min to 400 °C, at which temperature it was kept for 2 h. The 

subsequent carbonization at 900 °C for 2 h in a N2 atmosphere converted the pitch–silica 

composites to carbon–silica composites. To remove the silica spheres, the carbon–silica 

composites were then soaked in 6 M KOH aqueous solution and kept for 48 h at 180 °C 

in a Teflon-lined steel autoclave. The obtained CIM carbon was filtered and washed with 

copious amounts of water until the pH was 7. Before use, the CIM carbon was pyrolyzed 

under a 5% H2, 95% N2 flow (0.6 L/min) at 900 °C for 5 h to reduce absorbed moisture 

and functional groups on the carbon surface with preservation of mesopores.175 

Electrode Fabrication. The 2 mm diameter gold disk electrodes (gold disks 

embedded into a cylindrical plastic body, CH Instruments, Austin, TX) were polished 

over polishing cloths with aqueous dispersions of alumina (0.3 and 0.05 µm, Buehler, 

Lake Bluff, IL). They were cleaned by ultrasonication in water and ethanol, and dried 
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with a flow of argon. CIM carbon powder was manually ground for 5 min. The CIM 

carbon suspension was prepared by ultrasonicating 47.5 mg of CIM carbon and 2.5 mg of 

PVC as binder in 1 mL of freshly distilled tetrahydrofuran (THF) for 30 min. An amount 

of 30 µL of the CIM carbon suspension was dropcast onto gold electrodes and left to dry, 

forming CIM carbon films with a thickness of approximately 200 µm. 

Precursor solutions for valinomycin-doped K+-ISMs were prepared by dissolving 

in 1 mL of freshly distilled THF 66 mg of PVC as polymer matrix, 132 mg of o-NPOE as 

plasticizer, 2.0 mg of valinomycin as ionophore, and 1.2 mg of NaTFPB (75 mol % with 

respect to the ionophore) to provide for ionic sites. Solutions for K+-ISMs doped with the 

redox couple were prepared by dissolving in 1 mL freshly distilled THF 66 mg of PVC, 

132 mg of o-NPOE, 2.0 mg of valinomycin, 0.6 mg of LiTPFPB ethyl etherate (46 mol % 

with respect to the ionophore) to provide for anionic sites, and 1.4 mmol/kg each of 

[Co(II)(C9,C9-bipy)3](TPFPB)2 and [Co(III)(C9,C9-bipy)3](TPFPB)3.  

To form ISMs with a thickness of approximately 100 µm, two portions of one of 

the above solutions (20 µL, followed by 30 µL) were dropcast onto the CIM carbon layer 

on a gold disk electrode. As a precaution to avoid the possible delamination of the ISMs 

and CIM carbon films from the gold electrodes, the coated electrodes were mounted into 

cylindrical bodies custom-made from the DupontTM Delrin® acetal resin. A screw cap at 

the opposite end of the electrode allowed to gently press the ISM with the CIM carbon 

film onto the electrode (see Figure 2.1 and Figure 2.3). (Use of gold disk electrodes 

embedded into or printed onto a PVC compatible polymer, rather than the commercial 

gold disk electrodes as used here, would make the cylindrical bodies unnecessary.) Prior 
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to measurements, the electrodes with the redox couple were conditioned in a 1.0 mM KCl 

solution for 1 h, and those without the redox couple for 24 h. The short conditioning time 

of the electrode membranes containing the redox couple minimized the loss of redox 

couple species by leaching into the aqueous solution, as discussed in ref. 50.  

 

Figure 2.1 Photograph of a disassembled (left) and assembled (right) electrode setup 

including a gold electrode, a custom-made cylindrical electrode body, and a screw cap. 

The inset is a bottom view of the assembled electrode showing the ISE membrane with 

the CIM carbon film. 

CIM Carbon Characterization. Acid–base titrations to determine surface 

functional groups were performed according to a previously reported procedure.73,176 C, 

H, N elemental analyses were performed by Atlantic Microlab (Norcross, GA). 

Transmission electron microscopy (TEM) was carried out with a Technai T12 
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microscope (FEI, Hillsboro, OR) operating at 120 kV with emission currents ranging 

from 7 to 12 µA. Nitrogen-sorption measurements were performed on an Autosorb iQ2 

gas sorption analyzer (Quantachrome, Boynton Beach, FL), with samples outgassed at 1 

mTorr at 200 °C for 12 h before measurements. Specific surface areas were calculated by 

the Brunauer–Emmett–Teller (BET) method, and the pore sizes and volumes were 

estimated from the pore size distribution curves obtained from the adsorption branches of 

the isotherms using the Barrett–Joyner–Halenda (BJH) method. 

Potentiometric Measurements. Electrode potentials were measured with an 

EMF 16 potentiometer (input impedance 10 TΩ) controlled by EMF Suite 1.03 software 

(Lawson Labs, Malvern, PA). A double-junction type external reference electrode 

(DX200, Mettler Toledo, Switzerland; 3.0 M KCl saturated with AgCl as inner filling 

solution and 1.0 M LiOAc as bridge electrolyte) was used. Activity coefficients were 

calculated according to a two-parameter Debye-Hückel approximation,177 and all emf 

values were corrected for liquid-junction potentials with the Henderson equation.10 

Capacitance Measurements. A three-electrode setup was used for measurements 

of the capacitance of CIM carbon. A gold electrode with a CIM carbon film was used as 

the working electrode, a Pt wire as the counter electrode, and a Ag wire in 

AgNO3/acetonitrile as a nonaqueous reference electrode. To ensure complete wetting of 

CIM carbon, 0.1 M TEABF4 in propylene carbonate was used as the nonaqueous 

electrolyte. The electrolyte solution was purged with argon for 15 min prior to each 

measurement. 
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For cyclic voltammetry experiments, a potential window of 0.6 V centered at 0.0 

V with a scan rate of 0.5 mV/s was used. The capacitance was calculated by averaging 

the absolute value of the two current values at 0.0 V. This average current was then 

divided by the scan rate and the mass of the CIM carbon to give a specific capacitance 

value in F/g. 

Electrochemical impedance spectroscopy (EIS) experiments were carried out on a 

Solartron 1255B frequency response analyzer with an SI 1287 electrochemical interface 

(Farnborough, Hampshire, U.K.) controlled by ZPlot software, and the data was fit using 

ZView software (Scribner Associates, Southern Pines, NC). The frequency range was 1 

MHz to 0.01 Hz, with an ac amplitude of 10 mV versus the open circuit potential. 

For chronopotentiometry experiments involving a CIM carbon film on a gold 

electrode, a constant current of 0.1 mA was applied to the working electrode until an 

upper potential limit of 1.0 V was reached, at which time an equal but opposite current 

was applied to discharge the device until a lower potential limit of 0.0 V was reached. 

The specific capacitance in F/g was calculated by dividing the applied current by the 

mass of the CIM carbon and by the slope of the discharge curve in a potential versus time 

graph.  

For chronopotentiometry measurements with CIM carbon-based ISEs, a gold 

electrode coated with CIM carbon and an ISM without a redox couple was used as the 

working electrode, a 1 mM KCl solution was used as aqueous electrolyte, and an aqueous 

double-junction Ag/AgCl electrode (with a 1.0 M LiOAc bridge electrolyte and AgCl-

saturated 3.0 M KCl inner reference electrolyte) and a Pt wire served as the reference and 
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counter electrodes, respectively. A constant current of +1 nA was applied to the ISE for 

60 s, followed by a reverse current of the same magnitude for the same length of time.32 

The capacitance of the electrode was calculated by using the constant current divided by 

slope of the discharge curve in a potential versus time graph. 

2.3 Results and Discussion 

2.3.1 Structure of CIM Carbon  

The CIM carbon prepared in this work consisted of remarkably uniform 

mesopores of about 24 nm (Figure 2.2 and Table 2.1) due to the monodispersity of the 

colloidal silica particles that were used to template the pores.170 As Figure 2.3 shows, 

these mesopores are highly interconnected but randomly distributed, which is different 

from the periodic nature of 3DOM carbon. After manual grinding for 5 min, CIM carbon 

particles have irregular shapes with average sizes of approximately 15 µm. When used in 

a SC-ISE, these particles are bound together by the PVC binder as well as the plasticized 

ISM.  
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Figure 2.2 Nitrogen sorption isotherm of CIM carbon and the corresponding BJH pore 

size distribution shown in the inset.  

 

 

Table 2.1 Textural Data of CIM Carbon and 3DOM Carbon 

 

BET 
surface 

area 
(m2/g) 

mesopore 
surface 

area 
(m2/g) 

micropore 
surface 

area 
(m2/g) 

mesopore 
volume 

 
(cm3/g) 

micropore 
volume 

 
(cm3/g) 

average 
pore 

diameter 
(nm) 

CIM carbon 442 321 117 1.65 0.07 23.7 

3DOM 
carbon73 

247 25 192 0.03 0.09 1.8 
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Figure 2.3 Schematic diagram of a CIM carbon-based SC-ISE with a TEM image 

showing the interconnected mesopores of CIM carbon. CIM carbon is used as an 

intermediate layer between the gold electrode and ISM. 

2.3.2 Purity and Surface Functionality of CIM Carbon  

CIM carbon exhibits higher purity and fewer surface functional groups than 

3DOM carbon because its carbon precursor, the mesophase pitch used here, is a 

polyaromatic resin produced by catalytic synthesis from naphthalene, comprising only 

carbon and hydrogen.172 In comparison, the resorcinol-formaldehyde precursor of 3DOM 

carbon contains a considerable amount of oxygen, which can introduce oxygen-based 

impurities. As shown in Table 2.2, the oxygen content of CIM carbon is 0.43 wt %, i.e., 

1.7 wt % lower than that of 3DOM carbon synthesized from resorcinol–formaldehyde. 

The surface functionality of CIM carbon was characterized by acid–base titrations with 

four different bases, as previously reported.73,176 In contrast to 3DOM carbon (see Table 

2.3), no phenol functional groups are detected, and the ketone content is cut in half. We 
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assume that the residual trace amount of oxygen in CIM carbon arises from the KOH 

hydrothermal treatment used to remove the silica template as well as from small amounts 

of unremoved silica.  

Table 2.2 Elemental Analysis Data for CIM Carbon and 3DOM Carbon a 

 
C 

(wt %) 

H 

(wt %) 

O 

(wt %) 

N 

(wt %) 

CIM carbon 96.02 0.46 0.43 0.00 

3DOM carbon73 92.95 0.27 2.13 0.00 

a All elemental analysis values are ±0.3% according to Atlantic Microlab. 

 

Table 2.3 Concentration of Functional Groups on the Surface of CIM Carbon and 

3DOM Carbon 

 
ketone 

(mmol/g) 

phenol 

(mmol/g) 

lactone and lactol 

(mmol/g) 

carboxylic acid a 

(mmol/g) 

CIM carbon 0.17 0.00 0.00 0.00 

3DOM carbon73 0.34 0.27 0.00 0.00 
a The titration method cannot distinguish between carboxylic acid and anhydride 

functional groups, which may also be present. 
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2.3.3 Capacitance of CIM Carbon 

Mesoporous carbon materials are well known for their high double-layer 

capacitance due to their large surface areas and highly accessible mesopores.178 In this 

study, three electrochemical techniques, i.e., cyclic voltammetry (CV), 

chronopotentiometry, and electrochemical impedance spectroscopy (EIS) were used to 

determine the specific capacitance of the CIM carbon. For all the measurements, a gold 

electrode with a CIM carbon film was used as the working electrode, with 0.1 M 

TEABF4 in propylene carbonate as the electrolyte solution that effectively wets CIM 

carbon. 

In the CV measurement obtained with a scan rate of 0.5 mV/s, a symmetrical 

curve without Faradaic currents, typical for capacitive behavior, is observed (Figure 2.4a). 

The absence of Faradaic currents demonstrates the low amount of redox-active surface 

functional groups on the CIM carbon. For chronopotentiometry, a constant current of 

+0.1 mA was applied to the working electrode until the potential reached +1.0 V, and 

then a current of –0.1 mA was applied until the potential reached 0.0 V. Except for the 

immediate voltage drop after current reversal, the chronopotentiogram appears 

symmetrical with respect to charging and discharging (Figure 2.4b). For the EIS data 

(Figure 2.4c), the capacitance of CIM carbon can be represented by the impedance of the 

electrode at low frequencies ranging from 1 to 0.01 Hz. This data can be fitted with a 

constant phase element (CPE1 in Figure 2.4c) with a capacitance of 27 mF and a phase 

value of 0.94, representing capacitive behavior. The specific capacitance of CIM carbon 

is obtained by dividing the absolute capacitance of the working electrode by the mass of 
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CIM carbon. Those values are summarized and compared with the corresponding values 

for 3DOM carbon in Table 2.4. It is very likely that the different values determined with 

these electrochemical techniques are affected by the different magnitudes of current 

passing through the working electrode, which can affect the rate of ion transport across 

the interconnected mesopores of CIM carbon.179  

Table 2.4 Specific Capacitance of CIM and 3DOM Carbon as Measured by Different 

Methods  

 CV a 
(F/g) 

chronopotentiometryb 
(F/g) 

EIS 
(F/g) 

CIM carbon 31.3 40.7 20.5 

3DOM carbon73 3.9 2.3 1.8 
a Scan rate 0.5 mV/s. b Current 0.1 mA. 
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Figure 2.4 Capacitance measurements of a gold/CIM carbon electrode using 0.1 M 

TEABF4 as the nonaqueous electrolyte. (a) CV with a scan rate of 0.5 mV/s. (b) 

Chronopotentiometry with a constant current of 0.1 mA. (c) EIS; the actual data is shown 

as the solid circles, and the solid line represents the data fit. The proposed equivalent 

circuit is shown in the inset. 
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Due to the occurrence of redox reactions in the CV and chronopotentiometry 

experiments for 3DOM carbon,73 specific capacitance values determined by EIS are more 

suitable for comparison. This data shows that CIM carbon has a specific capacitance of 

20.5 F/g, which is 11 times higher than that for 3DOM carbon. The large capacitance of 

CIM carbon is due to its interconnected mesopores with average diameters of 24 nm that 

are accessible to the electrolyte, whereas less accessible micropores of 1.8 nm in average 

diameter contribute to most of the surface area of 3DOM carbon (see Table 2.1). From 

nitrogen-sorption data (Figure 2.1), the mesopore surface area of CIM carbon was 

determined to be 321 m2/g, which is nearly 13 times that of 3DOM carbon. This ratio is 

in good agreement with the observed specific capacitance values for these two carbon 

materials. 

2.3.4 Ionic Response 

The ionic response of the CIM carbon-based SC-ISEs was measured by 

successive dilution of a 0.1 M KCl solution while monitoring the emf. For comparison, 

three different electrode assemblies were used, i.e., a gold electrode with an ISM 

(gold/ISM), a gold electrode with a CIM carbon intermediate layer and an ISM 

(gold/CIM carbon/ISM), and a gold electrode with a CIM carbon layer and an ISM doped 

with the redox couple of [Co(II)(C9,C9-bipy)3](TPFPB)2 and [Co(III)(C9,C9-

bipy)3](TPFPB)3 (gold/CIM carbon/ISM with redox couple). The corresponding 

calibration curves and other potentiometric K+ response characteristics of these electrodes 

are shown in Figure 2.5 and summarized in Table 2.5. 
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Figure 2.5 Potentiometric K+ response curves of SC-ISEs with different electrode 

configurations, i.e., a gold/CIM carbon/ISM with redox couple, a gold/CIM carbon/ISM, 

and a gold/ISM electrode. For clarity, response curves have been shifted vertically. 

Table 2.5 Potentiometric K+ Responses of Different Electrode Assemblies 

electrode type slope 
(mV/decade) a 

E° 
(mV) a 

detection limit 
(M) 

linear range 
(M) 

gold/CIM 
carbon/ISM with 

redox couple 
57.3 ± 0.5 237.5 ± 0.7 10-5.4 10-5.0 – 10-1.0 

gold/CIM 
carbon/ISM 

59.5 ± 0.6 58.8 ± 7.3 10-5.6 10-5.2 – 10-1.0 

gold/ISM 64.0 ± 1.4 466.6 ± 32.2 10-5.5 10-5.2 – 10-1.0 
a Average and standard deviation of slopes and E° values determined individually for 6 
different electrodes of each type of electrode. E° values refer to the potential of the ISE 
cell obtained by extrapolation of the linear section of the emf response to the K+ 
activity of 1.0 M. 
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Since there is no ion- and electron-conducting intermediate layer for the gold/ISM 

interface, the corresponding electrodes behaved quite poorly, as expected for coated wire 

electrodes. The reproducibility of the emf of these electrodes can be represented by the 

standard deviation of E°, which is as large as 32.2 mV due to the ill-defined interfacial 

potential. The slightly larger than Nernstian slope of 64.0 mV/decade is likely an artifact 

from the instability of E°. When CIM carbon is used as an intermediate layer between the 

gold electrode and the ISM, a Nernstian response with a slope of 59.5 mV/decade in the 

range from 10-5.2 to 10-1.0 M is observed. This response is consistent with a high stability 

of the interfacial potential of the solid contact and can be attributed to the ability of the 

CIM carbon to combine ionic and electronic conduction when the interconnected 

mesopores are filled with the ionophore-doped solvent polymeric sensing phase. The 

detection limit of these sensors is 10-5.6 M, and might be further improved by using 

reagents of higher purity and more dilute conditioning and starting solutions.145 Since no 

internal reference is present, the standard deviation of E° of these electrodes is 7.3 mV. 

The best results were obtained after the introduction of the redox couple as an internal 

reference standard since the interfacial potential between the CIM carbon and the ISM is 

well controlled by the redox couple.49,50 With a standard deviation of E° as low as 0.7 

mV, these SC-ISEs may be used for some applications without calibration. We assume 

that the low amount of redox active impurities on the surface of CIM carbon is of 

particular importance for the proper functioning of the redox couple so that the interfacial 

potential between the CIM carbon and the ISM is controlled by the redox couple rather 

than redox active impurities. 
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2.3.5 Water Layer Test 

The formation of an unintentional thin water layer between the ISM and the solid 

contact is a common problem for SC-ISEs when these electrodes are exposed to aqueous 

solutions for long periods of time. The presence of this water layer can be tested with a 

method proposed by Pretsch et al. and is indicated by a positive potential drift when 

changing from a primary cation solution to a solution of a (discriminated) interfering 

cation, and a negative potential drift when changing back to the primary cation 

solution.110  

In this experiment, the gold/CIM carbon/ISM electrodes were initially 

conditioned in a 0.1 M KCl solution for 24 h. At t = 1.03 h, the 0.1 M KCl solution was 

replaced by a 0.1 M NaCl solution, and an immediate potential drop of 176 mV was 

observed, confirming a high selectivity for K+ over Na+. At t = 3.23 h, the return to the 

0.1 M KCl solution resulted in an immediate potential increase back to the original value 

(Figure 2.6). During these processes, no potential drift was observed, indicating that no 

water layer had formed in the CIM carbon-based SC-ISEs. The absence of a water layer 

can be attributed to the highly hydrophobic surface of CIM carbon.  
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Figure 2.6 Water layer test for a gold/CIM carbon/ISM electrode. The electrode was 

immersed in a 0.1 M KCl solution for 24 h prior to the measurement. At t = 1.03 h, the 

0.1 M KCl solution was changed to a 0.1 M NaCl solution, and at t = 3.25 h, the 0.1 M 

NaCl solution was changed back to a 0.1 M KCl solution.  

2.3.6 Effects of Light, Oxygen, and Carbon Dioxide 

Light, O2, and CO2 have been reported to cause interference for several SC-ISEs, 

especially for SC-ISEs with an interlayer of a conducting polymer.128 A SC-ISE can be 

photosensitive if the solid contact is an organic semiconductor with a suitable band gap. 

In addition, O2 and CO2 can diffuse across the ISM to reach the solid contact and cause 

interference. Specifically, O2 can affect the phase boundary potential by forming an 

irreversible O2 half-cell when redox active species are present, and CO2 can alter the 

local pH when a water layer exists between the solid contact and the ISM.8,17  
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In this study, the effect of light on the CIM carbon-based SC-ISEs was 

investigated by continuously recording the emf of gold/CIM carbon/ISM electrodes in a 1 

mM KCl solution while turning on/off the ambient light. Effects of O2 or CO2 were tested 

by bubbling these gases through the solution, followed by purging with Ar to remove O2 

or CO2. As illustrated in Figure 2.7, when the sensors were exposed to light, O2, or CO2, 

no significant effect was recorded. The excellent resistance to these interferents relies on 

the low extent of surface functionality and the high hydrophobicity of the surface of CIM 

carbon. 

 

Figure 2.7 Effects of light (top), O2 (middle), and CO2 (bottom) on the potential stability 

of gold/CIM carbon/ISM electrodes immersed in 1 mM KCl solution. For clarity, the emf 

responses of these electrodes have been shifted vertically. 
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2.3.7 Potential Stability 

The potential stability of gold/CIM carbon/ISM electrodes without redox couple 

was evaluated by chronopotentiometry32 by applying consecutively current pulses of +1 

nA and –1 nA for 60 each while recording the potential. For comparison, gold/ISM 

electrodes without CIM carbon were also tested. As shown in Figure 2.8, the gold/ISM 

electrodes are subject to potential drifts up to 0.9 mV/s because of the ill-defined phase 

boundary potential and low capacitance. When CIM carbon is used as the intermediate 

layer between the gold electrode and the ISM, the potential drift is significantly reduced 

to 1.0 ± 0.2 µV/s (n=3), with an Ohmic drop of 0.36 mV. The capacitance of the 

electrode is calculated to be 1.0 mF, with a total resistance of 0.36 MΩ. Due to the high 

double-layer capacitance resulting from the interconnected mesopores of CIM carbon, 

gold/CIM carbon/ISM electrodes exhibit a higher capacitance than other SC-ISEs with 

valinomycin-doped membranes, such as the electrodes previously studied with interlayers 

of poly(3,4-ethylenedioxythiophene) (300 µF),32 carbon black with platinum 

nanoparticles (217 µF),74 graphene (83 µF),67 and carbon nanotubes (60 µF).62  

Although chronopotentiometry shows on a short timescale a very good potential 

stability with a relatively large applied current (in comparison to the residual current in 

potentiometry), other factors such as a gradual decrease in adhesion between the ISM and 

the substrate125 might also lead to the deterioration of the electrode response on a longer 

timescale. Therefore, continuous tests of gold/CIM carbon/ISM electrodes without redox 

couple were performed for 70 h in 1 mM KCl solution at a constant temperature of 25 °C 

using temperature-controlled samples. These experiments showed an emf drift of 1.3 ± 
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0.3 µV/h (n=3) for gold/CIM carbon/ISM electrodes (Figure 2.9), making these 

electrodes the most stable SC-ISEs reported so far. We propose that the high double-layer 

capacitance of CIM carbon contributes to this superior electrochemical performance. 

 

Figure 2.8 Potential stability of gold/ISM (top) and gold/CIM carbon/ISM (bottom) 

electrodes under constant currents of ±1 nA in 1 mM KCl solution. An expanded view 

showing the Ohmic drop of the gold/CIM carbon/ISM electrode at the current reversal 

point is shown in the inset. 
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Figure 2.9 Potentiometric emf stability of a gold/CIM carbon/ISM electrode measured in 

a 1 mM KCl solution at a constant temperature of 25 °C. The emf response of the 

electrode is shown as the black line, and the red line is the linear fit of the raw data used 

for the long-term drift calculation. 

2.4 Conclusions 

This work has demonstrated that CIM carbon can be used as a novel solid contact 

material to construct SC-ISEs. Sensors with a CIM carbon interlayer exhibit good 

Nernstian responses with excellent resistance to interference by light, O2, and CO2 and no 

indication for the formation of a water layer. Due to the bicontinuous mesopore structure 

and large double-layer capacitance of CIM carbon, outstanding potential stability is 

achieved under conditions where either a large current is present or continuous 

potentiometric measurements are conducted (at least in tests up to 70 h). When a redox 

couple is incorporated into the ISM, SC-ISEs can be constructed with a standard 
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deviation of E° as low as 0.7 mV, which suggests the use for calibration free applications. 

A challenge for ongoing work lies in the development of even more hydrophobic redox 

couples that will make it possible to perform long-term experiments with ISEs with CIM 

carbon solid contacts that exhibit the same excellent long-term stability possible with 

CIM carbon solid contacts and the E° reproducibility provided by redox buffers. 

Compared to other solid contact materials, CIM carbon is cheaper and easier to prepare 

and process, which makes it more suitable for scale-up than 3DOM carbon. These 

outstanding characteristics make CIM carbon-based SC-ISEs promising candidates for 

the next generation of commercial ISEs. 

2.5 Acknowledgements 

This research was supported by the University of Minnesota Initiative for 

Renewable Energy and the Environment (IREE). Portions of this work were carried out 

in the University of Minnesota Characterization Facility, which receives partial support 

from the NSF through the MRSEC, ERC, MRI, and NNIN programs. We thank Stephen 

Rudisill for taking the TEM image of CIM carbon. 

 



 

 75 

Chapter 3  

All-Solid-State Reference Electrodes Based on Colloid-

Imprinted Mesoporous Carbon and Their Application in 

Disposable Paper-Based Potentiometric Sensing Devices 

 

Reproduced with permission from “All-Solid-State Reference Electrodes Based on 

Colloid-Imprinted Mesoporous Carbon and Their Application in Disposable Paper-Based 

Potentiometric Sensing Devices” by Hu, J.; Ho, K. T.; Zou, X. U.; Smyrl, W. H.; Stein, 

A.; and Bühlmann, P. in Anal. Chem. 2015, 87, 2981-2987. Copyright © 2015 American 

Chemical Society.  

 

Parts of this chapter relate to U.S. patent application (14/716564) entitled “Ion-Selective 

Electrodes and Reference Electrodes with a Solid Contact Having Mesoporous Carbon” 

by Hu, J.; Stein, A.; and Bühlmann, P. filed on 26 May 2015. 

 

Kieu Ho and Xu Zou contributed to this chapter by providing help with the experiments 

and synthesizing the cobalt-based redox buffer, respectively. 
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3.1 Introduction 

Ion-selective electrodes (ISEs) are widely used in clinical analysis, process 

control, and environmental monitoring.1,3-5,30 In view of the need for affordable and 

portable analytical devices for small sample volumes, miniaturizable all-solid-state ISEs 

are highly desirable but are only meaningful if the reference electrode is also 

miniaturized. While the development of all-solid-state ISEs represents a highly active 

research field,5,8,180 much less work has been performed to develop all-solid-state 

reference electrodes,12 even though the accuracy of potentiometric measurements relies 

equally on both the reference and measurement half cell. 

Conventional reference electrodes are typically Ag/AgCl or Hg/Hg2Cl2 half cells 

and are connected to the sample through a salt bridge. The latter usually contains an 

aqueous solution of an equitransferent salt that minimizes the liquid junction potential at 

the interface of the bridge electrolyte and the sample.78 Although very stable and reliable, 

such reference electrodes exhibit disadvantages owing to the presence of the salt bridge, 

such as the need for frequent maintenance, a large size, and the mutual contamination of 

the bridge electrolyte and sample.181,182  

A recent example that demonstrates the difficulty of integrating conventional 

reference electrodes into affordable and disposable sensing devices is that of the paper-

based ion sensors that were recently developed for the analysis of Cl–, K+, Na+, and 

Ca2+.153 Different from other paper-based potentiometric sensors where paper was used 

either as a substrate to mechanically support the solid contact86,87,152,154 or as a 

microfluidic sampling tool,155 wax-imprinted paper used in this design served as a 
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substrate to support the electrodes, the reference electrolyte, and the sample. Although 

highly miniaturized, these ion sensors still employed a conventional reference system that 

contained a stencil-printed Ag/AgCl electrode coupled with a KCl solution as reference 

electrolyte.153 This conventional reference system requires the manual application of the 

reference electrolyte and, therefore, still relies on transport and storage of supply 

reagents. This demonstrates the need for replacing conventional designs.  

 One of the key components of an all-solid-state reference electrode is a 

hydrophobic reference membrane attached to an electronically conducting solid contact, 

thus resembling the setup of an all-solid-state ISE. The reference membranes are usually 

doped with ions that can leach into the samples on a slow but continuous basis so that the 

phase boundary potentials at the reference membrane/sample interfaces are sample-

independent and defined by the interfacial distribution of the doping ions. Several ions 

have been doped into reference membranes, including polyions,183 ionic liquids,84,88,184 

lipophilic and hydrophilic salts.81,82,185 At the reference membrane/solid contact interface, 

the interfacial potential can be stabilized by employing various solid contacts that are also 

used in all-solid-state ISEs. The most common solid contacts include conducting 

polymers5,35,81,185,186 and nanostructured carbon materials, such as three-dimensionally 

ordered macroporous (3DOM) carbon,61,89 carbon nanotubes,62,85,86 and graphene.65,87 

Several miniaturized potentiometric cells into which an all-solid-state ISE and reference 

electrode are integrated have been proposed.87,152,154,155  

The electrochemical performance of these all-solid-state reference systems is 

highly dependent on the solid contact between the reference membrane and the 
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underlying electron conductor. We demonstrated previously that a highly capacitive 

interface between the ISE membrane and the solid contact provides for a high potential 

stability of all-solid-state ISEs,61 and we have shown that the same is also true for 

reference electrodes with a reference membrane/solid contact interface.89 In particular, 

3DOM carbon-based reference electrodes were found to exhibit a potential drift as low as 

42 µV/h over 26 days, which is very favorable in terms of continuous long-term use.89 

However, in regard to device-to-device reproducibility, it is a disadvantage that the 

3DOM carbon derived from resorcinol and formaldehyde contains some redox-active 

surface functional groups that can affect the reproducibility of the calibration curve 

intercept, Eº.73 Moreover, the monolithic nature of 3DOM carbon is not optimal for mass 

production and integration into miniaturized potentiometric sensing devices. 

To address these issues, we report here the use of colloid-imprinted mesoporous 

(CIM) carbon as a solid contact to construct all-solid-state reference electrodes. CIM 

carbon was recently introduced as a solid contact material to fabricate all-solid-state 

ISEs.69 It consists of open and interconnected mesopores that can be filled with a 

polymeric sensing phase to provide a bicontinuous arrangement of carbon and polymer 

phases.170 It has a very high level of purity because it is prepared from a pure 

hydrocarbon mesophase-pitch precursor. The use of CIM carbon combined with the 

hydrophobic redox buffer consisting of cobalt(II) and cobalt(III) tris(4,4’-dinonyl-2,2’-

bipyridyl) ([Co(C9,C9-bipy)3]2+/3+) has enabled the construction of all-solid-state ISEs 

with a standard deviation of Eº as low as 0.7 mV. 69 Benefiting from the high double-

layer capacitance provided by its interconnected mesopores, the emf drift of these all-
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solid-state ISEs is 1.3 µV/h over 70 h. Moreover, the synthesis of CIM carbon can be 

easily scaled up, and CIM carbon is prepared in powder form and, therefore, can be made 

into thin films, suspensions, or potentially carbon inks for production and fabrication on 

an industrial level. 

Herein, we use CIM carbon with 24 nm diameter mesopores to fabricate all-solid-

state reference electrodes. The reference membranes are doped with the ionic liquid 1-

methyl-3-octylimidazolium bis(trifluoromethylsulfonyl)imide ([C8min+][C1C1N–]) to 

define the potential at the reference membrane/sample interface,84 as well as a 

hydrophobic redox buffer consisting of [Co(II)(C9,C9-bipy)3](TPFPB)2 and 

[Co(III)(C9,C9-bipy)3](TPFPB)3 to define the potential at the CIM carbon/reference 

membrane interface.50 Benefiting from the high capacitance of the interface between the 

CIM carbon and the reference membrane, outstanding potential stability is observed, with 

a potential drift as low as 1.7 µV/h over 110 h, making CIM carbon-based reference 

electrodes the most stable all-solid-state reference electrodes reported so far. To 

demonstrate their compatibility with miniaturized potentiometric systems, CIM carbon-

based reference electrodes are integrated into disposable paper-based Cl– sensing devices 

to replace the conventional Ag/AgCl reference electrodes, eliminating the reference 

electrolyte and the associated liquid junction potentials.  

3.2 Experimental 

Materials. Reagents were obtained from the following sources: mesophase pitch 

from Mitsubishi Gas Chemicals (Tokyo, Japan), Ludox AS-40 colloidal silica from 

Sigma-Aldrich (St. Louis, MO), o-nitrophenyl octyl ether (o-NPOE) and high molecular 
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weight poly(vinyl chloride) (PVC) from Fluka (Buchs, Switzerland), ionic liquid 

[C8min+][C1C1N–] from IOLITEC (Tuscaloosa, AL), Tecoflex SG-80A polyurethane 

from Thermedic Polymer Products (Woburn, MA), and AGCL-675 Ag/AgCl ink from 

Conductive Compounds (Hudson, NH). All chemicals were used as received without 

further purification. Deionized water was purified to a resistivity of 18.2 MΩ/cm with a 

Milli-Q PLUS reagent-grade water system (Millipore, Bedford, MA). CIM carbon and 

the redox couple consisting of [Co(II)(C9,C9-bipy)3](TPFPB)2 and [Co(III)(C9,C9-

bipy)3](TPFPB)3 were prepared as previously reported.50,69,170 

Electrode Fabrication. The 2 mm diameter gold disk electrodes (CH 

Instruments, Austin, TX) were polished over polishing cloths with aqueous dispersions of 

alumina (0.3 and 0.05 µm, Buehler, Lake Bluff, IL). They were cleaned by 

ultrasonication in water and ethanol and dried with a flow of argon. CIM carbon powder 

was manually ground for 5 min using a pestle. The CIM carbon suspension was prepared 

by ultrasonicating 47.5 mg of CIM carbon and 2.5 mg of PVC as binder in 1 mL of 

freshly distilled tetrahydrofuran (THF) for 30 min. An amount of 30 µL of the CIM 

carbon suspension was drop-cast onto the gold electrodes and left to dry, forming CIM 

carbon films with a thickness of approximately 200 µm. 

Precursor solutions for reference membranes were prepared by dissolving in 2 mL 

of freshly distilled THF 60 mg the ionic liquid [C8min+][C1C1N–], 120 mg of PVC as 

polymeric matrix, and 120 mg of o-NPOE as plasticizer, as described by Zhang et al.89 

Moreover, 1.4 mmol/kg each of [Co(II)(C9,C9-bipy)3](TPFPB)2 and [Co(III)(C9,C9-
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bipy)3](TPFPB)3 was added to this solutions as an internal reference. The precursor 

solutions were stirred for 2 h to ensure complete dissolution. 

To form reference membranes with a thickness of approximately 100 µm, two 

portions of the precursor solutions (20 µL, followed by 30 µL after 1 min) were drop-cast 

onto the CIM carbon layer on a gold electrode. The coated electrode was then mounted 

into a cylindrical body with a screw cap at the opposite end, as previously reported (see 

Figure 2.1 and Figure 2.3 in Chapter 2).69 Prior to measurements, these electrodes were 

conditioned in a 1.0 mM NaCl solution for 1 h.50 

Fabrication of Paper-Based Cl– Sensing Devices. Paper-based sample zones 

and microfluidic channels were defined by patterning polyurethane lines that penetrated 

through the whole thickness of ashless filter papers (Whatman Grade 589/2 white 

ribbon). Approximately 2.5 g of polyurethane was dissolved in 40 mL of THF, and this 

solution was then applied to both sides of the paper using a capillary, forming 

polyurethane lines approximately 2 mm in width. The Ag/AgCl electrodes were patterned 

on paper by stencil printing. A hand-cut Frisket Film (low tack, Grafix, Maple Heights, 

OH) was used as the stencil and Ag/AgCl ink was applied to the openings of the stencil 

using a rubber brush, followed by a curing process at 100 ºC for 15 min.  

To form 2-mm wide reference membranes, a 5 µL microcapillary was used to 

apply the precursor solution onto paper. To ensure the full penetration of the membrane 

components through the entire thickness of the paper, the precursor solution was applied 

on both sides of the paper 4 times with a 1 min time interval between applications to 

allow THF to evaporate. A CIM carbon-reference membrane suspension was prepared by 
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ultrasonicating for 30 min 60 mg of CIM carbon in 1 mL of the solution containing the 

reference membrane components. The resulting suspension was then applied onto paper 

using a capillary to form a homogenous mixture of CIM carbon and reference membrane, 

with an effort to maximize the contact area between this homogenous mixture and the 

reference membrane, which was applied separately.  

 Potentiometric Measurements. Electrode potentials were measured with an 

EMF 16 potentiometer (input impedance 10 TΩ) controlled by EMF Suite 1.03 software 

(Lawson Labs, Malvern, PA). To test the electrochemical performance of the CIM 

carbon-based all-solid-state reference electrodes, a conventional double-junction external 

reference electrode (DX200, Mettler Toledo, Switzerland; 3.0 M KCl saturated with 

AgCl as inner filling solution and 1.0 M LiOAc as bridge electrolyte) was used. To test 

the response of paper-based Cl– sensing devices, two copper alligator clips were used to 

connect the Ag/AgCl and CIM carbon electrodes to a potentiometer. All of the paper-

based Cl– sensing devices were used without preconditioning, i.e., without exposure of 

the Ag/AgCl electrode and the reference membrane to aqueous solutions prior to 

measurements. Activity coefficients were calculated according to a two-parameter 

Debye-Hückel approximation.177 

3.3 Results and Discussion 

3.3.1 Ionic Response of CIM Carbon-Based Reference Electrodes 

A good reference electrode should not respond to any sample species. To test 

whether this was also true for all-solid-state reference electrodes consisting of a gold 
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electrode coated with a CIM carbon layer and a reference membrane doped with the 

hydrophobic redox buffer [Co(C9,C9-bipy)3]2+/3+ and the ionic liquid [C8min+][C1C1N–], 

the ionic responses of such electrodes were measured against a conventional double-

junction reference electrode. The resulting emf responses are shown in Figure 3.1. 

Overall, the obtained calibration curve intercept, Eº, is -120.6 ± 3.7 mV for 3 electrodes, 

and for a given electrode, the Eº is -120.8 ± 8.0 mV in 6 electrolytes. For each electrolyte, 

there is only a very small emf response of the CIM carbon-based reference electrodes in 

the concentration range from 10-7 M to 10-1 M, demonstrating the low potential 

variability of CIM carbon-based reference electrodes to ions with different charges and 

hydrophilicities. The change in emf over the entire range of activities is 1.9 ± 0.8 

mV/decade for NH4
+, 1.1 ± 0.6 mV/decade for K+, 0.9 ± 0.5 mV/decade for Na+, 0.9 ± 

0.6 mV/decade for Li+, 1.1 ± 1.0 mV/decade for Mg2+, and 0.5 ± 0.3 mV/decade for Ca2+ 

(n=3). This low dependence of the emf on the concentrations of ions is consistent with 

the phase boundary potential at the reference membrane/sample interface being defined 

by partitioning of the ionic liquid between the hydrophobic reference membrane phase 

and the aqueous sample phase. Unlike in the case of an ISE membrane, transfer of sample 

ions into the reference membrane is not occurring to an extent that it affects the phase 

boundary potential.  
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Figure 3.1 Potentiometric responses of gold/CIM carbon/reference membrane electrodes 

in aqueous solutions of NH4Cl, KCl, NaCl, LiCl, MgCl2, and CaCl2 in the concentration 

range from 10-7 M to 10-1 M. The responses were measured by addition of aliquots of 

concentrated salt solutions under continuous stirring. The response curves have been 

shifted vertically for clarity. 

3.3.2 Use of CIM Carbon-Based Reference Electrodes to Measure Cl– Responses of a 

Ag/AgCl ISE 

To assess the suitability and reproducibility of CIM carbon-based reference 

electrodes in ion-selective potentiometry, Cl– measurements were performed with a 

AgCl-coated Ag wire as the ISE and two different reference electrode assemblies (i.e., 

gold/CIM carbon/reference membrane with or without redox couple). For comparison, a 

conventional double-junction reference electrode was also employed. The Cl– responses 

were measured by successive dilution of a 0.1 M NaCl solution while monitoring the 
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emf. The corresponding potentiometric Cl– response characteristics are shown in Figure 

3.2 and summarized in Table 3.1. 

 

Figure 3.2 Potentiometric responses to Cl– of a Ag/AgCl ISE against reference electrodes 

with different electrode configurations, i.e., gold/CIM carbon/reference membrane (RM) 

without redox couple, gold/CIM carbon/reference membrane with redox couple, and a 

commercial double-junction reference electrode. The response curves have been shifted 

vertically for clarity. 

 As Table 3.1 shows, CIM carbon-based reference electrodes both with and 

without the hydrophobic redox couple yield Nernstian responses (i.e., -55.5 ± 1.0 

mV/decade with a reference membrane with the redox couple and -57.7 ± 2.3 mV/decade 

when no redox couple was used), with values that are within error indistinguishable from 

the response slope obtained with a conventional double-junction reference electrode (i.e., 
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-55.9 mV/decade). The detection limits obtained from these different reference electrodes 

were all approximately 10-4.4 M. These values are close to the intrinsic detection limit for 

Cl– using a Ag/AgCl ISE (i.e., 10-4.9 M), which is determined by the solubility of AgCl.  

Table 3.1 Potentiometric Cl– Responses of a Ag/AgCl ISE vs. Reference Electrode 

Assemblies with a Reference Membrane (RM) or a Conventional Double Junction a 

reference electrode 
slope 

(mV/decade) 

E° 

(mV) 

detection limit 

(M) 

gold/CIM carbon/RM 

without redox couple -57.7 ± 2.3 122.9 ± 12.9 10-4.4 

gold/CIM carbon/RM 

with redox couple -55.5 ± 1.0 82.8 ± 2.8 10-4.4 

conventional  

double-junction 
-55.9 -12.1 10-4.5 

 

a Means and standard deviations for five separate measurements with one Ag/AgCl 

ISE and five different reference electrodes. The E° values were obtained by 

extrapolation of the linear section of the emf response to a Cl– activity of 1.0 M. 

Since there is no internal reference for the gold/CIM carbon/reference membrane 

electrodes without redox couple, the standard deviation of Eº (12.9 mV) is relatively 

large. This value is comparable to what has been observed in the past for many solid 

contact ISEs and is not necessarily problematic if devices are properly calibrated, but it is 

unsuitable for calibration-free measurements with disposable miniaturized sensing 

devices. The poor electrode-to-electrode repeatability can be significantly improved by 
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doping the reference membrane with the hydrophobic redox couple [Co(C9,C9-

bipy)3]2+/3+, reducing the standard deviation of Eº to 2.8 mV.  

3.3.3 Effects of Light, Oxygen, and Carbon Dioxide  

Light, O2, and CO2 have been reported to interfere with the response of some all-

solid-state ISEs,12 and the possibility of such interferences should also be considered for 

all-solid-state reference electrodes. Generally, photosensitivity can be observed with 

conducting polymer and semiconductor solid contacts that have a suitable band gap.8 

Interference caused by CO2 can be attributed to changes in the pH of a water layer formed 

at the solid contact-membrane interface,110 and O2 can interfere by forming an 

irreversible O2 half-cell at the surface of the underlying electron conductor or by 

oxidizing functional groups on organic conductors.128  

 The effect of light on gold/CIM carbon/reference membrane electrodes was 

investigated by continuously recording their emf values versus a conventional double-

junction electrode while switching off and on the fluorescent tube lights in the laboratory. 

The effects of O2 or CO2 were tested by bubbling these gases into 1.0 mM NaCl sample 

solutions, followed by purging with Ar to remove those gases again. As shown in the top 

two traces of Figure 3.3, no significant effects of light and O2 were observed. While the 

insensitivity to light is due to the absence of a band gap of CIM carbon in the visible 

range, the excellent resistance to O2 can be attributed to the low amounts of redox-active 

impurities and the absence of functional groups on the surface of CIM carbon.  
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Figure 3.3 Effects of light, O2, and CO2 on the potential stability of gold/CIM 

carbon/reference membrane electrodes. The effect of CO2 was studied both in an 

unbuffered 1.0 mM NaCl solution and a 0.1 M phosphate buffer solution (pH 7.5). The 

response curves have been shifted vertically for clarity. 

When CIM carbon-based reference electrodes were exposed to CO2 in an 

unbuffered solution, however, a potential drift of 9.5 mV/h is observed (Figure 3.3, 3rd 

trace from the top). This drift can be attributed to a decrease of the solution pH, 

promoting the co-ion extraction of H+ and the ionic liquid anion, [C1C1N–] into the 

reference membrane. This affects the phase boundary potential at the reference 

membrane–sample interface, as we have reported previously.89 This effect, combined 

with fluctuations in the stir rate, may have affected the noise level of the data shown in 

Figure 3.1. To eliminate this effect and make it possible to study the influence of CO2 on 

the CIM carbon–reference membrane interface, a phosphate buffer (pH = 7.5) was used, 
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stabilizing the pH of the sample solution. As shown in the bottom trace of Figure 3.3, no 

significant effect of CO2 is observed with this pH buffered sample system, demonstrating 

the excellent resistance of the CIM carbon–reference membrane interface to CO2. Use of 

an ionic liquid that is less subject to protonation would enable the construction of CIM 

carbon-based reference electrodes with resistance to CO2 in pH unbuffered solutions. 

3.3.4 Long-Term Potential Stability  

Potential stability is another important aspect for all-solid-state ISEs and reference 

electrodes, especially when they are used to continuously monitor the concentration of an 

analyte over an extended period of time. In this study, the potential stability of CIM 

carbon-based reference electrodes was assessed by monitoring the potentials of these 

references electrodes continuously for 110 h in a 1.0 mM NaCl solution at a constant 

temperature of 25 ºC (Figure 3.4). To avoid leaching of the redox couple from the 

reference membrane into the sample as a cause of potential drifts, gold/CIM 

carbon/reference membrane electrodes without redox couple were used. Due to the large 

double-layer capacitance of the CIM carbon layer, the potential drift of these reference 

electrodes was as low as 1.7 ± 1.2 µV/h (n = 3), which is on the same level as for CIM 

carbon-based ISEs (i.e., 1.3 ± 0.3 µV/h).69 For measurements that require long-term 

potential stability with high Eº reproducibility, a more hydrophobic redox couple or a 

redox couple covalently attached to the polymer backbone could be employed. 
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Figure 3.4 Potential stability of a gold/CIM carbon/RM electrode without redox couple, 

measured in a 1 mM NaCl solution at a constant temperature of 25 °C. The emf response 

of the electrode is shown as the black line, and the red line is the linear fit of the raw data 

used for the emf drift calculation. 

3.3.5 Design of Disposable Paper-Based Potentiometric Cl– Sensing Devices 

Because they combine affordability, scalability, simplicity, and flexibility, paper-

based analytical devices have recently attracted much attention.187-189 In particular, 

miniaturized potentiometric Cl– sensing devices were fabricated on wax-printed paper, 

with two stencil-printed Ag/AgCl electrodes serving as the ISE and the reference 

electrode. These devices resembled the one shown in Figure 3.5a but had a wax rather 

than a polyurethane barrier to contain aqueous solutions. For measurements, one droplet 

each of the sample and a reference electrolyte solution had to be applied onto the paper 

close to the corresponding electrodes, resulting in spontaneous wicking of the two liquids 
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into the central contacting area to complete the electric circuit.153 While these Cl– sensing 

devices have the advantage of being simple to use, they are subject to sample dependent 

liquid junction potentials at the sample/reference electrolyte interface and require the 

manual application of not only the sample but also a reference electrolyte solution. 

 To further simplify these paper-based potentiometric sensing devices and improve 

their accuracy, CIM carbon-based reference electrodes were used in this work to replace 

the conventional Ag/AgCl reference electrodes. Three designs were tested in a step-by-

step approach to the final device. To start, a design similar to the one used for the 

previously reported paper-based Cl– sensing devices, i.e., with two stencil-printed 

Ag/AgCl electrodes, was used (Figure 3.5a). However, instead of printed wax,153 

polyurethane was used to form the hydrophobic barriers that define the microfluidic 

channels. Polyurethane was chosen not only because it is inexpensive, readily 

commercially available, and can be inkjet-printed for mass fabrication,190 but also 

because its use avoids the melting process that is required to fabricate wax-printed paper 

devices.153,191 In a second step, to eliminate the liquid junction potentials at the 

sample/reference electrolyte interface, a reference membrane was integrated into the 

central zone of the device, as shown in Figure 3.5b. Finally, a CIM carbon-reference 

membrane reference system was used to replace the conventional Ag/AgCl reference 

electrode (Figure 3.5c). 
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Figure 3.5 Photographs of paper-based potentiometric Cl– sensing devices with different 

designs. (a) Device with a Ag/AgCl ISE and a Ag/AgCl reference electrode. (b) Device 

with a Ag/AgCl ISE and a reference electrode with a reference membrane. (c) Device 

containing a Ag/AgCl ISE and a CIM carbon-based reference electrode with a reference 

membrane. 
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3.3.6 Use of a Reference Membrane to Eliminate Liquid Junction Potentials in 

Paper-Based Potentiometric Cl– Sensing Devices 

To assess the effectiveness of reference membranes to eliminate the liquid 

junction potentials in paper-based potentiometric Cl– sensing devices, Cl– measurements 

were performed using a 1.0 M LiCl reference electrolyte and sample solutions containing 

different LiCl concentrations. LiCl was chosen here on purpose because of the large 

difference in the ionic mobilities of Li+ and Cl–, which results in liquid junction potentials 

as large as tens of millivolts. This offered the advantage that pinholes through the paper-

supported reference membrane, which would have compromised the intended use of the 

reference membranes, would have been readily recognized by the occurrence of large 

liquid junction potentials within such pinholes.  

As shown in the lower trace of Figure 3.6 (open circles), the Cl– sensing devices 

without reference membranes (as shown in Figure 3.5a) exhibit a sub-Nernstian response 

with a slope of -38.8 ± 1.3 mV/decade, while their counterparts with reference 

membranes (Figure 3.5b) yielded a Nernstian response with a slope of -57.1 ± 1.5 

mV/decade in the range from 10-1.0 to 10-3.5 M (solid circles). The inferior response slope 

of the Cl– sensing devices without reference membranes could be improved by 

mathematically correcting liquid junction potentials using the Henderson equation, as 

illustrated in the top trace in Figure 3.6 (crossed circles).10 The corrected response slope 

of -57.0 ± 1.3 mV/decade matches with the results for the devices with reference 

membranes, which demonstrates that the behavior of the system is well understood. 
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However, corrections of liquid junction potentials are not readily possible for real 

samples with complex and unknown compositions.192  

 

Figure 3.6 Comparison of the response to LiCl of paper-based potentiometric Cl– sensing 

devices with and without reference membranes (RMs). The open and crossed circles 

represent the emf of the paper-based potentiometric Cl– sensing device without a 

reference membrane before (open circles) and after (crossed circles) subtraction of the 

calculated liquid junction potential. The solid circles represent the emf of the paper-based 

potentiometric Cl– sensing device with a reference membrane without any mathematical 

manipulation. Photographs of the two types of devices are shown on the top right. 
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3.3.7 Integration of a CIM Carbon–Reference Membrane Reference System into 

Paper-Based Potentiometric Cl– Sensing Devices  

The use of these disposable paper-based Cl– sensing devices can be further 

simplified by employing an all-solid-state CIM carbon-based reference electrode to 

replace the conventional Ag/AgCl reference electrode, eliminating the reference 

electrolyte (Figure 3.5c). To test their electrochemical performance, 10 µL aliquots of 

sample solution containing different concentrations of NaCl were applied to the area 

around the Ag/AgCl ISE. The resulting Cl– response curve is shown in Figure 3.7. In this 

potentiometric cell, all phase boundary potentials are well defined. Specifically, the phase 

boundary potential between the sample and Ag/AgCl is defined by the redox reaction 

AgCl(s) + e– ⇄ Ag(s) + Cl– (aq), the phase boundary potential at the sample/reference 

membrane interface is defined by the ionic liquid, and the phase boundary potential at the 

reference membrane/CIM carbon interface is defined by the redox couple. As a result, 

these paper-based Cl– sensing devices exhibit a highly reproducible Nernstian response 

with a slope of -59.8 ± 0.9 mV/decade and a E° of 19.8 ± 2.1 mV over the range from 10-

1.0 to 10-3.5 M. This demonstrates that CIM carbon-based reference systems can be 

successfully integrated into miniaturized potentiometric systems based on paper. 
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Figure 3.7 Potentiometric Cl– response curve of paper-based potentiometric Cl– sensing 

devices containing a Ag/AgCl ISE and a CIM carbon-based reference electrode with a 

reference membrane. A photograph of the device is shown on the bottom left. The 

average and standard deviation of each data point is based on measurements with three 

individual devices. 

3.4 Conclusions 

This work has demonstrated that CIM carbon can be used as a solid contact 

material to fabricate all-solid-state reference electrodes. This permits the construction of 

high-performance all-solid-state potentiometric ISEs and reference electrodes with the 

same type of solid contact, polymer matrix, fabrication process, and electrode 

configuration. CIM carbon-based reference electrodes exhibit a very low dependence of 

the half-cell potential in solutions of various electrolytes with concentrations in a wide 

range. Due to the low amounts of redox-active impurities on the surface of CIM carbon, 
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phase boundary potentials at the membrane/CIM carbon interfaces can be defined well by 

the [Co(C9,C9-bipy)3]2+/3+ redox couple, permitting a high electrode-to-electrode 

reproducibility of Eº. The interconnected mesopores of CIM carbon offer the added 

advantage of a high double-layer capacitance, resulting in potential drifts as low as 1.7 

µV/h and making these electrodes the most stable all-solid-state reference electrodes 

reported so far. 

We also demonstrated that the CIM carbon-based reference system can be 

integrated into a disposable paper-based potentiometric Cl– sensing device, replacing the 

conventional Ag/AgCl reference electrode, eliminating the need for reference electrolyte, 

and eliminating liquid junction potentials. These miniaturized Cl– sensing devices with 

CIM carbon-based reference systems are inexpensive, easy to handle, and offer very 

reproducible Cl– measurements with sample volumes as low as 10 µL. Ongoing research 

involves the development of paper-based potentiometric sensing devices for other ions 

employing the same CIM carbon-based reference system, and the development of even 

more hydrophobic redox buffers to extend the calibration-free character of these devices 

to long term measurements. 
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Chapter 4 

A Disposable Planar Paper-Based Potentiometric Ion-Sensing 

Platform 

 

Reproduced with permission from “A Disposable Planar Paper-Based Potentiometric Ion-

Sensing Platform” by Hu, J.; Stein, A.; and Bühlmann, P. in Angew. Chem, Int. Ed. 2016, 

55, 7544-7547. Copyright © 2016 Wiley-VCH.  
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4.1 Introduction 

Ion sensing is an important topic in various fields, such as clinical and 

environmental analysis.1,4,5,180 As often introduced in general chemistry courses, selective 

and quantitative ion sensing can be achieved with a potentiometric cell that comprises an 

ion-selective electrode (ISE), a reference electrode, and a voltmeter as a readout tool. It 

has been estimated that each year over a billion measurements with ISEs are performed 

globally in clinical laboratories alone.1 Besides detection of analytes with low (e.g., K+, 

Na+, Cl–) and high valence charges (e.g., heparin),193 biosensing of proteins194 and 

detection of electrically neutral species have been achieved with ISEs.195 

With the growing demand for point-of-care and in-field testing, paper has recently 

attracted much attention as a simple, affordable, flexible, and scalable substrate for 

microfluidic assays.160,187,189,196,197 While paper-based colorimetric sensors offer the 

advantage of simple data interpretation, detection with electrochemical techniques is 

insensitive to color interferences and generally more quantitative.188,198 Existing paper-

based ion sensors rely on various techniques, including potentiometry,139,153,156,158 

coulometry,162 chronopotentiometry,163 and colorimetry.164 Paper was used in these 

devices either as a microfluidic sampling tool, or a substrate to mechanically support the 

sensing components. Strip-type ISEs known as Ektachem slides were available in the 

1980s,157 and were recently adapted with a paper substrate to support carbon nanotubes or 

conducting polymer as solid contacts.139,158 Although miniaturizable, these devices need 

cumbersome electrode conditioning and individual calibration. A more integrated device, 

reported by Whitesides et al., utilizes a reusable ISE membrane placed between two 
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disposable wax-imprinted paper substrates.153 With different ISE membranes, various 

clinically relevant ions can be detected. However, the ISE membranes have to be well 

conditioned, and the devices have to be carefully assembled and calibrated, which may 

impede their practical use. 

With the motivation of developing a simple and pretreatment-free device, we 

herein report a disposable planar paper-based ion-sensing platform with a potentiometric 

cell embedded into paper. In contrast to strip-type or other ion sensors that have to be 

calibrated individually, devices based on this highly integrated platform are suitable for 

single use and do not require any pretreatment or assembly. By design, each interfacial 

potential within these cells is well defined, so that their responses can be theoretically 

predicted, and highly reproducible measurements are achieved. For a demonstration of 

clinical applications, ion sensors were fabricated and successfully used for Cl– and K+ 

sensing in biological samples with a small sample volume of 20 µL. By using specific 

sensing membranes, this platform can potentially be adapted for detecting other ions that 

are currently measured with a conventional ISE setup. The fabrication of these planar 

devices can be readily scaled up by printing, and their integration into complex paper-

based devices for complete analysis is conceivable too. 

4.2 Experimental 

Materials. Reagents were obtained from the following sources: Fumion® FAA-3 

ionomer anion exchanger from FuMA-Tech GmbH (Bietigheim-Bissingen, Germany), 

the ionic liquid 1-methyl-3-octylimidazolium bis(trifluoromethylsulfonyl)imide 

[C8min+][C1C1N−] from IoLiTec (Tuscaloosa, AL, USA), o-nitrophenyl octyl ether (o-
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NPOE), high molecular weight poly(vinyl chloride) (PVC), and tetradodecylammonium 

tetrakis(4-chlorophenyl)borate (ETH 500) from Fluka (Buchs, Switzerland), anhydrous 

tetrahydrofuran (THF), valinomycin, and potassium tetrakis(4-chlorophenyl)borate from 

Sigma-Aldrich (St. Louis, MO, USA), Tecoflex SG-80A polyurethane from Thermedic 

Polymer Products (Woburn, MA, USA), AGCL-675 Ag/AgCl ink from Conductive 

Compounds (Hudson, NH, USA), and Autonorm™ freeze-dried blood serum from SERO 

(Stasjonsveien, Norway). All chemicals were used as received without further 

purification. Deionized water was purified to a resistivity of 18.2 MΩ/cm with a Milli-Q 

PLUS reagent-grade water system (Millipore, Bedford, MA, USA).  

 Precursor Solutions of Sensing Membranes and Reference Membranes. 

Fumion® FAA-3 ionomer anion exchanger was used to prepare the hydrophilic high-

capacity anion exchange (HHCAE) membranes and was obtained in the Br− form. To 

exchange the Br− counter ions with Cl−, the anion exchanger was conditioned 

sequentially in aqueous solutions of 1 M KCl for 1 day and 1 mM KCl for 2 days. Then, 

the Cl−-loaded Fumion® FAA-3 ionomer was dried at 70 ºC overnight. Precursor 

solutions for the fabrication of the HHCAE membrane were prepared by dissolving 150 

mg of Cl−-loaded Fumion® FAA-3 ionomer in 2 mL of methanol. Prior to use, the 

resulting solution was allowed to pass through a 5 µm syringe filter. 

Precursor solutions for the deposition of K+-selective membranes were prepared 

by dissolving 5.0 mg of valinomycin as ionophore, 1.7 mg of potassium tetrakis(4-

chlorophenyl)borate (75 mol% with respect to the ionophore) as ionic sites, 50 mg of 

ETH 500 as inert electrolyte, 66 mg of PVC as polymer matrix, and 132 mg of o-NPOE 
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as plasticizer in 1 mL of anhydrous THF. 

Precursor solutions for reference membranes were prepared by dissolving 60 mg 

of the ionic liquid [C8min+][C1C1N−], 120 mg of PVC as polymeric matrix, and 120 mg 

of o-NPOE as plasticizer in 2 mL of anhydrous THF, as previously reported.89,90  

Fabrication of Sensors Based on a Paper-based Ion-Sensing Platform. Paper-

based sample zones and microfluidic channels were defined by patterning polyurethane 

lines that penetrated the whole thickness of filter paper (Whatman Grade 589/2 white 

ribbon for Cl− sensors and Whatman Grade 2 for K+ sensors) pieces. When choosing 

specific papers for specific applications, the surface chemistry, the pore structure and the 

cost of the paper should be carefully considered.199 Note that the role of each of these 

parameters is not fully understood yet; for example, it is not clear at this point which of 

these parameters are predominantly responsible for the poor performance of membranes 

without the ETH 500 additive. 

Approximately 2.5 g of polyurethane was dissolved in 40 mL of THF, and this 

solution was then applied to both sides of the filter paper using a glass capillary tube, 

forming polyurethane barriers against hydrophilic samples approximately 2 mm in width. 

The Ag/AgCl electrodes were patterned on paper by stencil printing. A hand-cut Frisket 

Film (low tack, Grafix, Maple Heights, OH, USA) was used as the stencil, and Ag/AgCl 

ink was applied to the openings of the stencil using a rubber brush. This was followed by 

a curing process at 100 ºC for 15 min.  

To form approximately 1-mm wide sensing and reference membranes, a 10 µL 

microcapillary was used to apply the corresponding precursor solutions onto the filter 
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paper. The resulting membrane widths were 1.4 ± 0.1 mm for the sensing membranes and 

1.3 ± 0.1 mm for the reference membranes (n = 10). Where necessary, the viscosity of the 

precursor solutions was adjusted by dilution with additional aliquots of corresponding 

solvents for better penetration into the filter paper. To ensure full penetration of the 

membrane components through the entire thickness of the paper, the precursor solutions 

were applied to both sides of the paper twice each.  

 Potentiometric Measurements. Electrode potentials were measured with an 

EMF 16 high-impedance voltmeter (input impedance 10 TΩ) controlled by EMF Suite 

1.03 software (Lawson Labs, Malvern, PA, USA). Two copper alligator clips were used 

to connect the two Ag/AgCl electrodes to the voltmeter. All of the devices were used 

without preconditioning, i.e., without exposure of the Ag/AgCl electrodes and the 

reference membrane to aqueous solutions prior to measurements. A series of samples 

containing different concentrations of Cl− and K+ was obtained by sequential dilution of a 

KCl solution. A series of blood serum samples with various Cl− concentrations was 

prepared by adding small amounts of a 0.8 M KCl solution into tenfold diluted blood 

serum; samples of blood serum containing various K+ concentrations were obtained by 

adding small amounts of a 0.8 M KCl solution into undiluted blood serum. Activity 

coefficients were calculated according to a two-parameter Debye–Hückel 

approximation.177 After the samples and reference electrolytes were applied to the 

corresponding sensing zones, it took approximately 20 s for the solutions to be wicked 

onto the sensing membranes. Then, the emf response over the following 30 s was 

collected and analyzed. 
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4.3 Results and Discussion 

4.3.1 Evaluation of HHCAE Membrane as Sensing Membrane for Potentiometric 

Ion Sensing 

Commercial high-capacity ion-exchange membranes are commonly used in fuel 

cells and electrodialysis, but their applications in potentiometric sensors have not been 

explored until recently.200 To evaluate the suitability of a commercial HHCAE Fumion® 

FAA-3 ionomer as anion exchanger for potentiometric ion sensing, the precursor 

solutions for the preparation of HHCAE membranes were allowed to penetrate a piece of 

filter paper to form a sensing membrane. The resulting sensing membrane was assembled 

into a conventional ISE body, as shown in Figure 4.1a, with a 1 mM KCl inner filling 

solution in contact with a Ag/AgCl wire as inner reference. The potentiometric Cl− 

responses of these ISEs were tested with a commercial double-junction reference 

electrode. As the calibration curve in Figure 4.1b shows, these electrodes exhibited 

Nernstian responses with a slope of –57.4 ± 0.5 mV/decade and Eº = 10.3 ± 2.2 mV (n = 

3), demonstrating their suitability for potentiometric ion sensing. 
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Figure 4.1 (a) Schematic representation of a conventional ion-selective electrode (ISE) 

with a sensing membrane composed of a filter paper infiltrated with an HHCAE 

membrane as anion exchanger membrane. (b) Potentiometric Cl− responses of the ISEs 

shown in (a) tested with a commercial double-junction reference electrode. The 

calibration curve is based on three individual electrodes; error bars represent standard 

deviations. 

4.3.2 Design and Sensing Mechanism of Paper-Based Ion-Sensing Platform 

The paper-based ion-sensing platform was fabricated by integrating a 

potentiometric cell into a piece of filter paper (Figure 4.2a). To define microfluidic 

channels that contain aqueous solutions, a polyurethane-based hydrophobic barrier was 

deposited into paper. Polyurethane is used because it is affordable, readily available, 

inkjet-printable,190 and it avoids the melting process that is required for wax-printed 

barriers used in previously reported paper-based devices.191 As a potentiometric cell, this 
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device contains an ISE with a sensing membrane and a reference electrode with a 

reference membrane; both of the membranes are embedded into paper. The sensing 

membrane can be an ionophore-doped ISE membrane, or a hydrophilic high-capacity ion-

exchange membrane that is particularly suitable for biological samples.200 For a 

demonstration of clinical applications, we used a commercial HHCAE membrane 

(Fumion® FAA-3 ionomer) and a valinomycin-doped ISE membrane for Cl– and K+ 

sensing, respectively. The reference membrane was loaded with an ionic liquid that can 

leach into the adjacent aqueous solutions on a slow but continuous basis, thus providing 

sample-independent potentials.84,89 It avoids direct contact between the sample and 

reference electrolyte, thus eliminating undesirable liquid-junction potentials that can 

cause large measuring errors.90 Analogous to a conventional ISE that contains a AgCl-

coated Ag wire as an inner reference coupled with an inner filling solution, this paper-

based device utilizes stencil-printed Ag/AgCl electrodes coupled with 0.1 M KCl 

reference electrolyte as inner references for both the ISE and reference electrode. 
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Figure 4.2 (a) Photograph of a paper-based ion-sensing device. (b) Schematic 

representation of all relevant interfaces in a Cl– sensor with an HHCAE membrane, ionic 

liquid-doped reference membrane (RM), and two Ag/AgCl electrodes contacting a 0.1 M 

KCl reference electrolyte (RE). (c) Paper-based K+ sensor with a sensing membrane 

doped with ionophore (shown as an ellipse) and ionic sites (R–). (d) Electrical potential 

profile across the sensing device. 
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To ensure calibration-free operation, each interfacial potential within the cell has 

to be well defined and highly reproducible.30,201 For this device (Figure 4.2b), the 

interfacial potential at the interface between the Ag/AgCl electrode and reference 

electrolyte (Δφa1 and Δφa6) is defined by the redox reaction AgCl(s) + e–  « Ag(s) + Cl–

(aq), which is fixed by using a 0.1 M KCl reference electrolyte. At the sample/reference 

membrane (Δφa4) and reference membrane/reference electrolyte interfaces (Δφa5), the 

interfacial potentials are governed by partitioning of the ionic liquid between the 

membrane and aqueous phases, making them sample-independent. For the sensing 

membrane, the distribution of the primary ion (Cl– or K+) between the membrane and 

adjacent aqueous solutions determines the two interfacial potentials (Δφa2/b2 and Δφa3/b3); 

therefore, their concentration dependence can be quantitatively predicted by the Nernst 

equation.1,5 Since Δφa2/b2 is controlled by 0.1 M KCl reference electrolyte, Δφa3/b3 is the 

only sample-dependent potential within the cell. The measured electromotive force (emf) 

is the sum of all interfacial potentials of the cell (Figure 4.2d), which are well-defined 

and, therefore, reproducible and predictable. Consequently, the response of the device 

can be theoretically predicted, and is, in principle, calibration-free. 

The structural features of the device were characterized by scanning electron 

microscopy (SEM). As shown by a top view (Figure 4.3a and Figure 4.3b), the surface of 

the cellulose fibers is fully coated by the sensing components (e.g., Ag/AgCl electrode 

and reference membrane). The sample/sensing membrane interface is located in the 

cross-section of the paper, into which the membrane is embedded. As the SEM images of 

the cross-section show (Figure 4.3c and Figure 4.3d), the voids between the cellulose 
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fibers are filled by the sensing membrane, forming a homogenous sensing network and 

providing good contact between the sample and sensing components. 

 

Figure 4.3 SEM images of the device: (a) Top view showing the Ag/AgCl electrode. (b) 

Top view showing the reference membrane. (c) Cross-section of the paper not infiltrated 

with a sensing membrane. (d) Cross-section of paper infiltrated with an HHCAE 

membrane. 
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Figure 4.4 shows a device placed on a piece of a polyvinyl chloride sheet as a 

mechanical support, with the two Ag/AgCl electrodes connected to a voltmeter using 

alligator clips. For a measurement, 20 µL of the 0.1 M KCl reference electrolyte is 

applied to each of the areas close to the Ag/AgCl electrodes, and 20 µL of the sample is 

applied to the sample zone. In principle, the sample volume could be further reduced by 

patterning smaller sensing areas into paper using inkjet printing. Due to the single-use 

nature of the device, at least ten individual devices are needed for a calibration curve with 

ten different concentrations.  

 

Figure 4.4 Photograph of a paper-based ion-sensing platform placed on a PVC sheet as a 

supporting substrate, with two alligator clips on the left for the emf measurements and 

two clips on the right to balance the device. 
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4.3.3 Paper-Based Cl–-Sensing Platform with HHCAE Sensing Membranes 

 The Fumion® FAA-3 ionomer anion exchanger was obtained from the 

manufacturer with Br– as counterions. To ensure an accurate Cl– response, Cl– 

substitution was required before device fabrication. When paper-based devices with 

membranes prepared from ion exchanger in Br– form were used for Cl− sensing (Figure 

4.5, open circle), a sub-Nernstian response was obtained with a reduced slope of -46.3 

mV/decade but a surprisingly high linearity (R2 = 0.9886). The Cl− response of these 

devices was significantly improved by using Cl−-loaded HHCAE membranes, leading to 

a Nernstian slope of –57.3 mV/decade with an R2 value of 0.9976. 

 

Figure 4.5 Potentiometric Cl− calibration curves of paper-based ion-sensing devices 

using Br−-loaded (open circle) and Cl−-loaded (solid circle) HHCAE membranes for Cl− 

sensing. Each data point is based on one device. 
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When the optimized HHCAE membrane is used for Cl– detection with samples of 

aqueous solutions (Figure 4.6a), these devices exhibit highly reproducible responses with 

an Eº of –63.6 ± 2.0 mV and the theoretically predicted (Nernstian) slope of –56.6 ± 1.0 

mV/decade in the range from 10-0.7 to 10-3.1 M, which covers the clinically relevant range. 

This Eº and slope reproducibility are similar as for conventional ISEs with HHCAE 

membrane-infiltrated papers as sensing membranes (Eº = 10.3 ± 2.2 mV and slope = –

57.4 ± 0.5 mV/decade, see Figure 4.1). When a 0.1 M KCl solution is used as both the 

sample and reference electrolyte, a symmetrical potentiometric cell is formed, and the 

theoretical emf is 0 mV.202 As Figure 4.6a shows, the measured emf is 0.3 ± 2.1 mV (n = 

3), correlating well with the predicted value. Although the HHCAE membrane exhibits 

limited selectivity towards various hydrophilic anions, it is chosen specifically for clinical 

Cl– sensing (98–107 mM in blood serum) because its use reduces interference from 

lipophilic ions (e.g., Br– or SCN–)203 and biofouling caused by lipids,200 and also resists 

Donnan failure at high ion concentrations due to its high ion-exchange capacity.204  

The performance of paper-based Cl– sensors was also tested in biological samples. 

A series of blood serum samples with different Cl– concentrations was prepared by 

adding 0.8 M KCl aqueous solutions into tenfold diluted blood serum samples with a 

certified Cl– concentration (99 mM for undiluted blood serum). As shown in Figure 4.6b, 

reproducible and Nernstian responses are obtained in diluted blood serum samples with a 

slope of –55.7 ± 1.0 mV/decade and an Eº of –68.8 ± 1.6 mV. The resistance of the 
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devices is 1.2 ± 0.8 MΩ (n = 27), demonstrating that they are compatible with affordable 

low-impedance voltmeters as a readout tool. 

 

Figure 4.6 Cl– response of paper-based Cl– sensors with HHCAE sensing membranes. (a) 

Potentiometric Cl– response curve of paper-based Cl– sensors to aqueous KCl solutions. 

(b) Potentiometric Cl– response curve of paper-based Cl– sensors to tenfold diluted blood 

serum samples. Each data point is based on three individual devices. 
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4.3.4 Paper-Based K+-Sensing Platform with Ionophore-Doped Sensing Membranes 

Besides functioning with HHCAE membranes for Cl– sensing, the paper-based 

ion-sensing platform is also compatible with ISE membranes exhibiting high selectivity. 

This is essential for K+ sensing in blood, since the K+ level (3.5–5.1 mM) in blood serum 

is much lower than that of the interfering ion Na+ (135–145 mM).203  

In this study, a valinomycin-doped K+-ISE membrane was used as the sensing 

membrane, with 20 wt % of an inert electrolyte (ETH 500) as a membrane additive. The 

effect of ETH 500 was evaluated by testing paper-based devices with K+-ISE membranes 

without and with ETH 500 as a membrane additive. As shown in Figure 4.7, the devices 

without ETH 500 exhibit a non-satisfactory response slope of 48.8 mV/decade with an R2 

of 0.9759. The quality of the K+ response curve was improved by adding 20 wt % ETH 

500 into the K+-ISE membrane, leading to a linear slope of 53.3 mV/decade with an R2 of 

0.9989. The exact reason of this effect is unknown, but it is very likely that the addition 

of ETH 500 improved the sensor response by reducing the resistance of the sensing 

membrane. After adding 20 wt % of ETH 500 into the ISE membranes, the resistance of 

the devices decreased from 10.9 ± 1.2 MΩ (n = 8) to 4.4 ± 0.8 MΩ (n = 21). 
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Figure 4.7 Potentiometric K+ calibration curves of paper-based ion-sensing devices using 

K+-ISE membranes without (open circle) and with (solid circle) 20 wt % ETH 500 as 

membrane additive. Each data point is based on one device. 

The response curve of the optimized devices with samples of KCl solutions is 

shown in Figure 4.8a, where highly reproducible responses are obtained in a clinically 

relevant range from 10-1.0 to 10-3.1 M, with a linear slope of 53.3 ± 0.7 mV/decade and an 

Eº value of 59.6 ± 1.6 mV. Interestingly, the experimentally observed lower detection 

limit is 10-3.1 M, which is higher than for a conventional valinomycin-based K+-ISE. 

Similar behavior was reported previously, where paper was used as a sampling tool for 

Ag+ detection.156 The reason for the different detection limit is not yet known, but it is 

likely that the slightly anionic surface of cellulose contributes to this behavior.199 When a 

0.1 M KCl solution was used as sample, the observed emf was –0.9 ± 1.9 mV (n = 3), 

matching well with the predicted value (i.e., 0 mV). Compared to devices with HHCAE 
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membranes, the cell resistance increases to 4.4 ± 0.8 MΩ (n = 21) with the K+-ISE 

membranes, but is still sufficiently low to be compatible with low-cost voltmeters. 

 

Figure 4.8 Paper-based K+ selective sensors: (a) Response to K+ and Na+ (aqueous 

samples). (b) Response to K+ in a background of undiluted blood serum. Each K+ data 

point is from three individual devices. 
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The selectivity of the K+-sensing device was evaluated by testing its response 

with NaCl solutions. As shown in Figure 4.8b, no significant Na+ response is recorded 

even at high Na+ concentrations (0.1 M). Finally, K+ calibrations were performed with a 

series of samples of undiluted blood serum containing various K+ concentrations with a 

high Na+ background (certified as 140 mM). It can be seen in Figure 4.8b that these 

devices exhibit reproducible responses in undiluted blood serum with a well-retained 

linear slope of 53.6 ± 1.8 mV/decade and an Eº of 27.6 ± 3.2 mV, demonstrating their 

high sensitivity and selectivity in biological media. By using different ISE membranes, 

sensors for other clinically relevant ions can also be fabricated in the same way. 

According to the U.S. Code of Federal Regulations, in clinical laboratories the 

acceptable measuring error is ± 5% for Cl– and ±0.5 mM for K+,93 which corresponds to a 

variation in emf of approximately 1.1 mV and 2.6 mV, respectively. In this study, the 

obtained Eº variations of paper-based ion sensors in blood serum samples are ±1.6 mV 

(Cl–) and ±3.2 mV (K+), which are close to the requirement for calibration-free ion 

sensing. Improvement of the Eº reproducibility for practical uses may be achieved by 

detailed sensor optimization (e.g., through the selection of the ionic liquid and mass 

production using inkjet printing). Further improvements of the Eº reproducibility (e.g., to 

±0.2 mV)205 may be achieved with highly reproducible all-solid-state ISEs and reference 

electrodes coupled with robust redox buffers,50,69,90 which are under development. 

4.4 Conclusions 

In conclusion, a disposable and low-cost paper-based ion-sensing platform was 

developed with a potentiometric cell embedded into paper. These devices are simple to 
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use, do not need any pretreatment (“conditioning”), and only require a low sample 

volume of 20 µL. They are compatible with HHCAE and ionophore-doped ISE 

membranes to detect clinically relevant ions in biological samples with high sensitivity 

and reproducibility, and could be potentially adapted to detect other charged analytes by 

changing the sensing membrane. 
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Chapter 5  

All-Solid-State Paper-Based Ion-Sensing Platform with 

Colloid-Imprinted Mesoporous Carbon as Solid Contact 

 

Parts of this chapter relate to U.S. patent application (14/716564) titled “Ion-Selective 

Electrodes and Reference Electrodes with a Solid Contact Having Mesoporous Carbon” 

by Hu, J.; Stein, A.; and Bühlmann, P. filed on 26 May 2015. 

 

Wenyang Zhao contributed to this chapter by taking the SEM images. 
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5.1 Introduction 

 Due to its abundance, low-cost and suitability for mass manufacturing, paper has 

recently been explored as a substrate to fabricate disposable analytical platforms for 

various analytes.196,206-210 Compared to their conventional counterparts that usually rely 

on expensive consumables and frequent maintenance, paper-based analytical devices are 

more affordable and simpler to use. These features make them very attractive for clinical 

applications, especially in developing countries with limited resources. 

 Ion sensing has long been an interest in analytical chemistry, and is of vital 

importance in many fields such as clinical analysis, process management and 

environmental analysis.1,5,7 With the growing demand for point-of-care and in-field 

testing applications, increased research efforts have been focused on novel miniaturized 

ion-sensing systems with small sample volumes, simple operation, reduced cost, and 

increased manufacturability. Paper is frequently used as a key component in these 

devices.201  

Depending on the specific sensor design, paper provides different functions for 

the ion sensors reported in the literature. It is commonly used as a disposable microfluidic 

sampling tool to replace conventional sample holders (e.g., beakers or tubing), because 

paper transports fluids by capillary forces. It was reported that paper can be sandwiched 

between an all-solid-state ISE and a reference electrode to transport the sample solutions 

from other areas to the sensing electrodes.155,156 With the addition of a complexing agent 

in a pretreated microfluidic paper substrate, a separation system was achieved in which 

the transport of interfering ions was significantly slowed down by complexation, and thus 
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only the target ion could reach the sensing electrodes.211 Besides microfluidic sampling, 

paper can also serve as a porous matrix to mechanically support the other components of 

the sensor. For example, strip-type ion-sensing devices were developed with carbon 

nanotubes154,158 or graphene87 deposited onto a paper substrate as the ion-to-electron 

transducer, and Li+ measurements in whole blood were demonstrated with such sensor 

design.154 With an additional hydrophobic layer of sputtered gold and poly(3-

octylthiophene) on top of a carbon nanotube-coated conductive paper, nanomolar 

detection limits for Cd2+, Ag+, and K+ were achieved.139 In another report, a suspension 

of gold nanoparticles was printed onto a paper substrate, followed by an infrared sintering 

process to produce gold electrodes. The electrodes were subsequently coated with the 

conductive polymer poly(3,4-ethylenedioxythiophene) as the solid contact to construct a 

flexible paper-based potentiometric ion sensor.212 When paper was used both as a 

microfluidic sampling tool and a mechanical support, a three-dimensional paper-based 

ion sensor was developed with a conventional reusable poly(vinyl chloride) sensing 

membrane sandwiched between two disposable paper substrates containing sample and 

reference zones. With careful sensor assembly, various clinically relevant ions could be 

detected with aqueous sample solutions.153  

Although many attractive features (e.g., a low detection limit and suitability for 

biological samples) have been demonstrated with the aforementioned state-of-the-art 

paper-based ion-sensing devices, these devices all require cumbersome pretreatment 

protocols including sensor conditioning and calibration, which may impede their practical 

use, especially when they are used by less skilled operators. To address this issue, 
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Chapter 4 introduced a conditioning-free and calibration-free paper-based ion-sensing 

platform that is designed for single-use operation. The device is based on a conventional 

potentiometric cell that is imbedded into the paper substrate, with an inner reference 

system composed of Ag/AgCl electrodes and KCl reference electrolytes.213 Because of a 

symmetrical cell design and a precise control of each interfacial potential, the response of 

this paper-based ion-sensing platform can be theoretically predicted, and the device can 

be used to detect ion concentrations in undiluted blood serum without prior sensor 

calibration. The use of the Ag/AgCl/KCl inner reference system, however, complicates 

the measuring protocol by requiring the supply and application of a KCl reference 

electrolyte. Therefore, it is desirable to eliminate the KCl reference electrolyte and further 

simplify the sensor operation.  

 This chapter explores the possibility of constructing an all-solid-state paper-based 

ion-sensing device that only needs one droplet of sample, but does not need any sensor 

pretreatment (i.e., conditioning and calibration) or supply reagents (i.e., reference 

electrolyte). This is the ultimate goal for a robust and simple paper-based ion sensor that 

can provide useful measurements in real-life applications. The device described in this 

chapter relies on several building blocks that were discussed in the previous chapters. It 

contains an all-solid-state ion-selective electrode (ISE) and an all-solid-state reference 

electrode that are both based on colloid-imprinted mesoporous (CIM) carbon, and these 

two miniaturized electrodes are integrated into the paper substrate with a symmetrical cell 

design. Unlike the device in Chapter 4 that employs a conventional Ag/AgCl/KCl inner 

reference system, a redox buffer is doped into the ISE and reference membranes to 
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control the interfacial potentials at the CIM carbon/ISE membrane and CIM 

carbon/reference membrane interfaces. For this purpose, two types of redox buffers were 

evaluated, i.e., either the tetrakis(pentafluorophenyl)borate salts of cobalt(II/III) tris(4,4’-

dinonyl-2,2’-bipyridyl) ([Co(II/III)(C9,C9-bipy)3](TPFPB)2/3)50 or 7,7,8,8,-

tetracyanoquinodimethane (TCNQ) and its anion-radical derivative potassium-

tetracyanoquinodimethane (KTCNQ).52,214 As a proof of concept, an all-solid-state paper-

based Cl−-sensing platform was constructed and tested with both aqueous and blood 

serum samples. It was found that the proposed sensor design is feasible, and the sensor 

performance is strongly dependent on the redox buffer doped into the sensing 

membranes. 

5.2 Experimental 

Materials. Reagents were obtained from the following sources: Fumion® FAA-3 

ionomer anion exchanger from FuMA-Tech GmbH (Bietigheim-Bissingen, Germany), 

the ionic liquid 1-methyl-3-octylimidazolium bis(trifluoromethylsulfonyl)imide 

[C8min+][C1C1N−] from IoLiTec (Tuscaloosa, AL, USA), TCNQ, tetraethylammonium 

tetrafluoroborate (TEABF4), o-nitrophenyl octyl ether (o-NPOE), high molecular weight 

poly(vinyl chloride) (PVC) from Sigma-Aldrich (St. Louis, MO, USA), Tecoflex SG-

80A polyurethane from Thermedic Polymer Products (Woburn, MA, USA), and 

Autonorm™ freeze-dried blood serum from SERO (Stasjonsveien, Norway). All 

chemicals were used as received without further purification. Deionized water was 

purified to a resistivity of 18.2 MΩ/cm with a Milli-Q PLUS reagent-grade water system 

(Millipore, Bedford, MA, USA). CIM carbon,69 KTCNQ,215 and the redox couple 
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consisting of [Co(II)(C9,C9-bipy)3](TPFPB)2 and [Co(III)(C9,C9-bipy)3](TPFPB)3
50 were 

prepared as previously reported. 

 Precursor Solutions of Sensing Membranes and Reference Membranes. 

Fumion® FAA-3 ionomer anion exchanger was used as the sensing membrane and loaded 

with Cl− counter ions using a previously reported procedure.213 150 mg of Cl−-loaded 

Fumion® FAA-3 ionomer was dissolved in 2 mL of methanol under magnetic stirring. 

Precursor solutions for reference membranes were prepared by dissolving 60 mg of the 

ionic liquid [C8min+][C1C1N−], 120 mg of PVC as a polymeric matrix, and 120 mg of o-

NPOE as plasticizer in 2 mL of anhydrous THF. The redox buffers containing 1.4 

mmol/kg of [Co(II/III)(C9,C9-bipy)3](TPFPB)2/3 or 3 mmol/kg of TCNQ/KTCNQ were 

added into both the sensing membrane and reference membrane precursor solutions as 

inner reference components. 

Fabrication of All-Solid-State Paper-Based Ion-Sensing Platform. Paper-

based sample zones and microfluidic channels were defined by patterning polyurethane 

lines that penetrated the whole thickness of filter paper (Whatman Grade 589/2 white 

ribbon, GE Healthcare, Chicago, IL, USA) pieces. Approximately 2.5 g of polyurethane 

was dissolved in 40 mL of THF, and this solution was then applied to both sides of the 

filter paper using a glass capillary tube, forming polyurethane barriers against hydrophilic 

samples approximately 2 mm in width.  

To form approximately 1-mm wide sensing and reference membranes, a 10 µL 

microcapillary was used to apply the corresponding precursor solutions onto the filter 

paper. Where necessary, the viscosity of the precursor solutions was adjusted by dilution 
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with additional aliquots of corresponding solvents for better penetration into the filter 

paper. To ensure full penetration of the membrane components through the entire 

thickness of the paper, the precursor solutions were applied to both sides of the paper 

twice each.  

The CIM carbon-sensing membrane suspension was prepared by ultrasonicating 

75 mg of CIM carbon in 1 mL of the sensing membrane precursor solution for 30 min. In 

a similar way, CIM carbon-reference membrane suspensions were prepared by 

ultrasonicating for 30 min 60 mg of CIM carbon in 1 mL of the precursor solution 

containing the reference membrane components. The resulting sensing and reference 

suspensions were then applied onto paper using a capillary to form a homogenous 

mixture of CIM carbon and the corresponding membranes, with an effort to maximize the 

contact area between this homogenous mixture and the membrane. 

 Electrochemical Measurements. Electrode potentials were measured with an 

EMF 16 high-impedance voltmeter (input impedance 10 TΩ) controlled by EMF Suite 

1.03 software (Lawson Labs, Malvern, PA, USA). Two copper alligator clips were used 

to connect the two CIM carbon-based sensing and reference electrodes to the voltmeter. 

A series of samples containing different concentrations of Cl− and K+ was obtained by 

sequential dilution of a KCl solution. A series of blood serum samples with various Cl− 

concentrations was prepared by adding small amounts of a 0.8 M KCl solution into 

tenfold diluted blood serum. Activity coefficients were calculated according to a two-

parameter Debye–Hückel approximation.177 After the samples and reference electrolytes 

were applied to the corresponding sensing zones, it took approximately 10 s for the 
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solutions to be wicked onto the sensing and reference membranes. Then, the emf 

response over the following 30 s was measured. 

 Cyclic voltammograms of TCNQ and KTCNQ were obtained at room 

temperature with a CHI600C potentiostat (CH Instruments, Austin, TX). A three-

electrode setup was used, with a gold electrode as the working electrode, a Pt wire as the 

counter electrode, and a Ag wire in 10 mM AgNO3/acetonitrile as a nonaqueous 

reference electrode. A 0.1 M TEABF4 acetonitrile solution was used as a supporting 

electrolyte solution. 

5.3 Results and Discussion 

5.3.1 Design of All-Solid-State Paper-Based Ion-Sensing Platform 

 The all-solid-state paper-based ion-sensing platform was fabricated by integrating 

a CIM carbon-based ISE and a CIM carbon-based reference electrode onto the paper 

substrate (Figure 5.1a). CIM carbon was chosen as the solid contact material not only 

because it exhibits a low amount of redox-active impurities, which is desirable for 

constructing electrodes with high electrode-to-electrode reproducibility, but also because 

it is compatible with mass production techniques that can be used to fabricate paper-

based sensors on a large scale (e.g., printing).69 Both CIM carbon-based sensing and 

reference electrodes are contacted with the corresponding sensing and reference 

membranes, which are applied separately and embedded into the paper. For a 

demonstration, the commercial Fumion® FAA-3 ionomer films were used as an anion 

exchanger for Cl− sensing, and the ionic liquid [C8min+][C1C1N−] was doped into the 
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reference membrane to provide a sample-independent reference potential. Similar to the 

paper-based device described in Chapter 4, the all-solid-state paper-based ion-sensing 

platform utilizes a polyurethane-based hydrophobic barrier that defines a sample zone. In 

this sensor design, paper serves both as a microfluidic sampling tool as well as a 

supportive porous matrix into which the sensing components are embedded. 

 To ensure single-use operation and calibration-free ion sensing, high electrode E˚ 

reproducibility with multiple devices is required.201 This can be achieved by precisely 

defining each interfacial potential within the device (see Figure 5.1b). To this end, a 

redox buffer (i.e., [Co(II/III)(C9,C9-bipy)3](TPFPB)2/3 or TCNQ/KTCNQ) was doped into 

both the sensing and reference membranes to control the phase boundary potentials at the 

CIM carbon/sensing membrane interface (Δφ1) and the CIM carbon/reference membrane 

interface (Δφ4). In addition, the interfacial potentials at the sensing membrane/sample 

interface (Δφ2) and the sample/reference membrane interface (Δφ3) were defined by the 

partition of the primary ion (i.e., Cl−) and the ionic liquid (i.e., [C8min+][C1C1N−]), 

respectively. Therefore, the only sample-dependent interfacial potential was the phase 

boundary potential at the sensing membrane/sample interface (Δφ2), with all other 

interfacial potentials being sample-independent but well-defined. The measured overall 

electromotive force (emf) was the electrical potential difference between the two CIM 

carbon-based electrodes, which was the sum of all interfacial potentials within the cell 

(Figure 5.1c). By such a design, the correlation between the measured emf and the 

concentration of Cl− can be established. 
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Figure 5.1 (a) Photograph of an all-solid-state paper-based ion-sensing device with a 

CIM carbon-based ISE, a CIM carbon-based reference electrode, and a microfluidic 

sample zone defined by polyurethane. (b) Schematic representation of all relevant 

interfaces in a paper-based Cl– sensor with a commercial anion exchanger Fumion® FAA-

3 ionomer film as the sensing membrane and an ionic liquid-doped and plasticized PVC 

film as reference membrane. Both membranes are doped with a redox buffer containing a 

redox couple, shown as “Red” and “Ox”. (c) Electrical potential profile across the all-

solid-state paper-based ion-sensing platform, with the only sample-dependent interfacial 

potential being the phase boundary potential at the sensing membrane/sample interface. 
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 The paper-based ion-sensing platform was characterized by scanning electron 

microscopy (SEM) to reveal the structural features of the device. Figure 5.2a presents the 

non-ordered pore structure of the paper substrate made from hydrophilic cellulose fibers. 

The cellulose fibers can be coated and penetrated by the sensing membrane, thus creating 

a sensing interface between the sample and the membrane (Figure 5.2b and f). Instead of 

utilizing a conventional ISE coupled with an Ag/AgCl electrode and KCl reference 

electrolyte, the sensing membrane was contacted with a CIM carbon-based ISE on the 

other side (Figure 5.2c), in which the ionic signal (i.e., the ion concentration) was 

converted to an electronic signal (i.e., an electrical potential) through the electrical double 

layer at the CIM carbon/sensing membrane interface. A magnified image of the CIM-

carbon based electrode shows a particle size of approximately 10 µm (Figure 5.2d), and 

smaller CIM carbon particles may be achieved through ball milling or probe sonication to 

make the device fabrication process compatible with printing as a large-scale 

manufacturing method. The highly porous surface of CIM carbon can be seen in the high 

magnification image in Figure 5.2e. When CIM carbon was mixed with the precursor 

solution of the sensing membrane under sonication, the sensing components could 

infiltrate the highly interconnected mesopores of CIM carbon to form a bicontinuous, 

ionically and electronically conducting structure with a large interfacial contacting area. 

Therefore, effective ion-to-electron transduction could be achieved. A cross-sectional 

view of the device is available in Figure 5.2f. It can be seen that the sensing membrane 

penetrated the entire thickness of the paper substrate, and a good contact was formed 

between the sensing membrane and the CIM carbon transduction layer. 
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Figure 5.2 SEM images of the all-solid-state paper-based ion-sensing platform. (a) Top 

view of the paper substrate. (b) Top view of the device showing the interface between the 

sensing membrane and the sample zone. (c) Top view of the device showing the interface 

between CIM carbon-based sensing electrode and the sensing membrane. (d) Magnified 

view of the CIM carbon-based sensing electrode. (e) High magnification image of 

uncoated CIM carbon showing the mesopores. (f) Cross-sectional view of the all-solid-

state paper-based ion-sensing platform showing the sensing membrane-infiltrated paper 

substrate with the CIM carbon-based sensing electrode. 
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5.3.2 All-Solid-State Paper-Based Ion-Sensing Platform with a [Co(II/III)(C9,C9-

bipy)3](TPFPB)2/3 Redox Buffer 

 The potentiometric Cl– response of the all-solid-state paper-based ion-sensing 

platform was evaluated with both aqueous KCl solutions and tenfold diluted blood serum 

samples containing different concentrations of Cl–. For each measurement, 20 µL of the 

sample was applied to the sample zone of the device, and the potential difference 

between the two CIM carbon-based electrodes was measured once the sample reached the 

sensing and reference membranes.  

When [Co(II)(C9,C9-bipy)3](TPFPB)2 and [Co(III)(C9,C9-bipy)3](TPFPB)3 were 

doped into the sensing and reference membranes as the redox buffer, the devices 

exhibited a potential drift of –0.17 ± 0.03 mV/s (n = 8) when KCl solutions were used as 

samples (Figure 5.3a). This potential drift is approximately one order of magnitude 

higher than that of the device described in Chapter 4 (i.e., –0.012 ± 0.028 mV/s, n = 8), 

but is relatively consistent so that meaningful data can still be extracted. Calibration 

curves for Cl– were obtained by collecting the average potentials of the devices over the 

first 30 s of measurements. As presented in Figure 5.3b, a good Nernstian response was 

obtained, with a slope of –60.6 mV/decade and an R2 value of 0.991. The observed linear 

range of the all-solid-state paper-based Cl– sensor is from 10-1.1 to 10-3.1 M, with a lower 

detection limit of 10-3.14 M. This lower detection limit is very close to that of the device 

described in Chapter 4 (i.e., 10-3.10 M), and is mostly limited by the high-capacity anion 

exchange film used as the sensing membrane.204,213  
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Figure 5.3 Potentiometric Cl– responses of the all-solid-state paper-based ion-sensing 

platform with a redox buffer containing [Co(II/III)(C9,C9-bipy)3](TPFPB)2/3. The 

response was obtained with KCl solutions. (a) Potential trace of the paper-based Cl– 

sensors under different Cl– concentrations, each arrow indicating a different Cl– 

concentration and a new device. (b) Potentiometric Cl– calibration curve of the paper-

based Cl– sensors. Each data point is based on one device. 
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 To explore the suitability of the all-solid-state paper-based ion sensors for clinical 

applications, the response of the Cl– sensor was also tested with tenfold diluted blood 

serum samples containing different concentrations of Cl– ions (Figure 5.4). The potential 

drift of the device is –0.034 ± 0.075 mV/s (n = 10), with a much larger device-to-device 

variation as compared to the drift observed with KCl solutions. The corresponding 

calibration curve is depicted in Figure 5.4b, in which the recorded data deviates 

significantly from the mathematical linear fit. Based on linear regression, the response 

slope is –59.9 mV/decade, but the R2 value of 0.628 is low. 

 The poor performance of the all-solid-state paper-based ion sensors with 

biological samples is not surprising, though. It is known that the redox buffer 

[Co(II/III)(C9,C9-bipy)3](TPFPB)2/3 can leach from the hydrophobic sensing membrane 

into hydrophilic sample solutions, thus leading to large potential drifts and decreased 

electrode-to-electrode E˚ reproducibility.50 Compared to aqueous KCl solutions, blood 

serum samples are more lipophilic, which accelerates the loss of redox buffer out of the 

sensing membrane into the sample. This can possibly explain the loss of good response 

linearity when switching from KCl solutions to biological samples, even though the 

measuring period was only about 1 min. 
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Figure 5.4 Potentiometric Cl– responses of all-solid-state paper-based ion-sensing 

platform with a redox buffer containing [Co(II/III)(C9,C9-bipy)3](TPFPB)2/3. The 

response was obtained with tenfold diluted blood serum solutions. (a) Potential trace of 

the paper-based Cl– sensors under different Cl– concentrations, each arrow indicating a 

different Cl– concentration and a new device. (b) Potentiometric Cl– calibration curve of 

the paper-based Cl– sensors. Each data point is based on one device. 
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5.3.2 All-Solid-State Paper-Based Ion-Sensing Platform with a TCNQ/KTCNQ 

Redox Buffer 

 Besides [Co(II/III)(C9,C9-bipy)3](TPFPB)2/3, a redox couple consisting of TCNQ 

and its ion-radical salt KTCNQ was also evaluated as a redox buffer. TCNQ has long 

been of interest in molecular electronics due to its exceptional ability to accept electrons 

to form simple and stable charge-transfer complexes and ion-radical salts.215-220 TCNQ 

ion-radical salts were used in potentiometric ion sensors as early as in the 1970s, where 

they were employed as solid-state ion-selective membranes based on the selective 

distribution of the primary ion (e.g., Ag+) between the sample solution and the TCNQ 

ion-radical salts (e.g., AgTCNQ).51  

Recent publications by Paczosa-Bator et al. report outstanding electrochemical 

performance of all-solid-state ISEs based on TCNQ, NaTCNQ, or a mixture of the 

two.52,214 When TCNQ was used as the ion-to-electron transducer between a glassy 

carbon electrode and a K+-ISE membrane, high electrode E˚ reproducibility was achieved 

with a standard deviation of E˚ as low as 1.4 mV.52 In follow-up work, TCNQ and 

NaTCNQ were mixed with various carbon nanomaterials (i.e., graphene, carbon 

nanotubes, ordered mesoporous carbon CMK-3, and carbon black) with a 1:1:1 weight 

ratio to serve as the solid contact. The resulting all-solid-state ISEs all exhibited good 

electrode E˚ reproducibility with a standard deviation of E˚ less than 4.0 mV. The 

reported potential stability is remarkable as well, with a drift less than 10 µV/h over a 

measuring period of 72 h.214 It should be noted that in these two papers, a high E˚ 

reproducibility was observed after the electrodes had been conditioned in aqueous 
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solutions for 24 h. This is very different from the all-solid-state K+-ISEs based on the 

[Co(II/III)(C9,C9-bipy)3](TPFPB)2/3 redox buffer, which exhibited significantly decreased 

E˚ reproducibility upon electrode conditioning due to the loss of the redox buffer (i.e., 

standard deviation of E˚ increased from 0.7 mV after 1 h of conditioning to 16.3 mV after 

24 h of electrode conditioning).50 Therefore according to the reported data, TCNQ and its 

ion-radical salt may not suffer as much from the leaching problem as the 

[Co(II/III)(C9,C9-bipy)3](TPFPB)2/3 redox buffer does, and appear to be an effective 

redox buffer pair. 

To evaluate the suitability of TCNQ/TCNQ− as a redox buffer, cyclic 

voltammograms for TCNQ and KTCNQ were collected. TCNQ is known to exhibit two 

reversible one-electron redox processes, in which TCNQ is first reduced to TCNQ˙− and 

then further reduced to TCNQ2−.221,222 As shown in Figure 5.5, two pairs of well-defined 

redox peaks are observed with a peak separation of 59 mV and 63 mV, indicating fast 

and reversible electron transfer. The calculated standard potentials (i.e., the midpoint 

potential, (Epa + Epc)/2) are –248 mV and –786 mV (vs. Ag/Ag+) for the TCNQ˚/˙− and 

TCNQ˙−/2− redox processes, respectively. The potential separation of these two processes 

is 538 mV, which matches well with the literature value (i.e., 550 mV).222 Since the 

observed standard potential of the TCNQ˚/˙− redox process is close to 0 V, both the 

oxidized and reduced species within the redox couple are expected to be stable. 

Therefore, the TCNQ/KTCNQ couple can be considered a good candidate to prepare a 

redox buffer because of its fast and reversible electron transfer process, as well as its 

chemical and electrochemical stability. 
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Figure 5.5 Cyclic voltammograms for 1 mM TCNQ (top) and 0.5 mM KTCNQ (bottom) 

dissolved in acetonitrile solutions containing 0.1 M TEABF4 as a supporting electrolyte. 

Scan rate = 100 mV/s. 

 To further evaluate the effectiveness of E˚ control of the TCNQ/KTCNQ redox 

buffer in potentiometric ion sensing, 3 mmol/kg of TCNQ and KTCNQ with 1:1 molar 

ratio were doped into the sensing membrane to construct CIM carbon-based all-solid-

state bulk ISEs. The electrodes contained CIM carbon films sandwiched between gold 

electrodes and hydrophilic high-capacity anion exchanger sensing membrane that were 

doped with TCNQ/KTCNQ (the same electrode configuration as in Figure 2.3). To study 

the effect of electrode conditioning on the E˚ reproducibility, Cl– calibrations were 

performed both without conditioning and after conditioning the electrodes in a 1 mM KCl 

solution for 24 h. 
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 When the electrodes were tested with aqueous KCl solutions without conditioning 

(Figure 5.6a), a linear response was obtained with a close to Nernstian slope of –53.9 ± 

1.2 mV/decade and a fairly reproducible E˚ of –47.0 ± 4.3 mV (n = 5). This E˚ 

reproducibility is in good agreement with literature, where TCNQ/NaTCNQ was used 

with other nanostructured carbon materials to construct all-solid-state ISEs (i.e., standard 

deviation of E˚: 2.4 mV for graphene, 3.7 mV for carbon nanotubes, 3.2 mV for carbon 

black, and 3.2 mV for ordered mesoporous carbon CMK-3).214 After conditioning the 

electrodes for 24 h, however, larger electrode-to-electrode variations were observed, with 

the standard deviation of E˚ increasing to 14.0 mV (Figure 5.6b). This behavior differs 

from the high electrode reproducibility reported by Paczosa-Bator et al.,214 but is very 

similar to that of all-solid-state K+-ISEs based on the [Co(II/III)(C9,C9-bipy)3](TPFPB)2/3 

redox buffer, whose standard deviation of E˚ increased from 0.7 to 16.3 mV after 

conditioning the electrodes in an aqueous solution for additional 23 h.50  

 The all-solid-state ISEs with the TCNQ/KTCNQ redox buffer were also tested 

with tenfold diluted blood serum samples. It can be seen from Figure 5.6c and 5.6d that 

after 24 h of electrode conditioning, the sub-Nernstian slope improved from –39.4 ± 3.4 

mV/decade to –53.8 ± 1.0 mV/decade, but was accompanied by a significantly decreased 

E˚ reproducibility from –33.8 ± 4.4 mV to 10.4 ± 19.0 mV (n = 6). It is therefore 

concluded that TCNQ/KTCNQ may be used as a redox buffer for single-use devices but 

with a large ISE measuring error of approximately 4 mV, and decreased electrode-to-

electrode E˚ reproducibility can be expected when the device is used for long-term 

measurements, most likely due to the leaching of TCNQ/KTCNQ into the sample. 
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Figure 5.6 Potentiometric Cl– calibration curves of CIM carbon-based all-solid-state bulk 

electrodes with a TCNQ/KTCNQ redox buffer doped in the sensing membrane. (a) 

Response to KCl solutions without electrode conditioning. (b) Response to KCl solutions 

after conditioning the electrodes in a 1 mM KCl solution for 24 h. (c) Response to tenfold 

diluted blood serum samples without electrode conditioning. (d) Response to tenfold 

diluted blood serum samples after conditioning the electrodes in a 1 mM KCl solution for 

24 h. n = 5 for electrodes tested with KCl aqueous solutions and n = 6 for electrodes 

tested with blood serum samples. 
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 The TCNQ/KTCNQ couple was also used to dope the sensing and reference 

membranes of the all-solid-state, paper-based ion-sensing platform, and the performance 

of the resulting device is shown in Figure 5.7. Compared to the device with 

[Co(II/III)(C9,C9-bipy)3](TPFPB)2/3 redox buffer, a similar Nernstian response was 

acquired with a slope of –63.6 mV/decade in KCl solutions, but with decreased linearity 

(R2 = 0.984). When the devices were tested with tenfold diluted blood serum samples, the 

Nernstian response appears to be preserved, but with a lower R2 value of 0.856. 

Therefore, TCNQ/KTCNQ is not a satisfactory redox buffer for this application, and a 

more robust redox buffer is still needed to improve the measuring accuracy of the all-

solid-state paper-based ion sensors. 

 

Figure 5.7 Potentiometric Cl– responses of all-solid-state paper-based ion-sensing 

platform with a TCNQ/KTCNQ redox buffer doped in the sensing and reference 

membranes. The response was measured with KCl solutions (solid circle) and tenfold 

diluted blood serum samples (open circle). Each data point is based on one device. 
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5.4 Conclusions 

 This chapter explores the possibility of constructing a pretreatment-free all-solid-

state paper-based ion-sensing platform that is based on a CIM carbon solid contact and a 

redox buffer. The transduction mechanism of the sensor, in which each interfacial 

potential was well defined, was discussed in detail, and proof-of-concept ion sensors 

were constructed with two types of redox buffers [Co(II/III)(C9,C9-bipy)3](TPFPB)2/3 and 

TCNQ/KTCNQ. While the feasibility of the sensor design was demonstrated with 

aqueous KCl solutions, the sensor performance relies strongly on the redox buffer used in 

the system, and a more robust redox buffer system is required for this all-solid-state 

paper-based ion sensor to function in real-life applications. It appears that the leaching of 

the redox buffer is still a key problem, even for devices like this that are designed for 

single use. Therefore, covalent attachment of the redox buffer to the sensing membrane 

or CIM carbon will be a promising solution. Once such covalent attachment is 

successfully implemented, this sensor design should be revisited to pursue robust all-

solid-state paper-based ion-sensing platforms that can be eventually commercialized and 

used with real-life samples. 
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5.6 Appendix 

 Several additional experiments were performed for the development of all-solid-

state paper-based ion-sensing platforms described in this chapter, and the results are 

presented in this Appendix. 

Pre-conditioning Devices in a Humid Environment. To improve the potential 

stability of the all-solid-state paper-based ion-sensing platforms, the paper-based devices 

were pre-conditioned by exposing them to a humid environment for 30 h prior to 

measurement. It was hypothesized that the relatively large potential drift observed in 

Figure 5.3 was related to the water uptake process of the dry sensing and reference 

membranes once they were in contact with aqueous samples, and a pre-conditioning 

process under humidity could pre-saturate the sensing and reference membranes with 

water, thus eliminating the large potential drift during the actual measurement. 

The devices were pre-conditioned in a closed desiccator that was filled with water 

at the bottom for 30 h. After the pre-conditioning, Cl– responses were collected with 

aqueous KCl solutions and the results are shown in Figure 5.8. Compared to the potential 

response in Figure 5.3, the pre-conditioned devices appear to exhibit a more stable 

potential output, as presented in Figure 5.8a. The Cl– response curve, however, is 

meaningless with a slope of –23.1 mV/decade and an R2 value of 0.193 (Figure 5.8b). It 

is very likely that the redox buffer doped in the sensing and reference membranes leached 

out into the wetted sample zones during the pre-conditioning process, thus leading to the 

loss of Nernstian response of the devices. 
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Figure 5.8 Potentiometric Cl– responses of an all-solid-state paper-based ion-sensing 

platform with a redox buffer containing [Co(II/III)(C9,C9-bipy)3](TPFPB)2/3. The devices 

were pre-conditioned under humidity for 30 h, and the response was obtained with 

aqueous KCl solutions. (a) Potential trace of paper-based Cl– sensors under different Cl– 

concentrations. (b) Potentiometric Cl– calibration curve of the paper-based Cl– sensors. 

Each data point is based on one device. 

 Hybrid Devices with a [Co(II/III)(C9,C9-bipy)3](TPFPB)2/3 Redox Buffer. To 

better understand the behavior of the all-solid-state paper-based ion-sensing platform in 

blood serum samples, hybrid devices that comprise either an all-solid-state ISE with a 

conventional reference electrode, or a conventional ISE with an all-solid-state reference 

electrode were constructed and tested. Herein the conventional ISE or reference electrode 

refers to a stencil-printed Ag/AgCl electrode with 0.1 M KCl reference solution, coupled 

with an ISE or reference membrane. Based on the results reported in Chapter 4, it was 

assumed that the conventional ISE and reference electrode exhibit good response in blood 

serum samples. 
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 The responses of the hybrid devices were obtained with 10-fold diluted blood 

serum samples, and the corresponding calibration curves are presented in Figure 5.9. It 

can be seen that the hybrid device with a CIM carbon-based all-solid-state ISE and a 

conventional reference electrode exhibits a response slope of –67.1 mV/decade (R2 = 

0.917), whereas the device containing a conventional ISE and a CIM carbon-based all-

solid-state reference electrode has a response slope of –33.9 mV/decade and an R2 value 

of 0.889. The results show that diluted blood serum samples affect both the all-solid-state 

ISE and reference electrode, and the observed effect is higher on the reference electrode 

side than the ISE side. 

 

Figure 5.9 Potentiometric Cl– responses of hybrid ion-sensing devices with a redox 

buffer containing [Co(II/III)(C9,C9-bipy)3](TPFPB)2/3. The responses were measured with 

10-fold diluted blood serum samples. (a) Device with a CIM carbon-based all-solid-state 

ISE and a conventional reference electrode. (b) Device with a conventional ISE and a 

CIM carbon-based all-solid-state reference electrode. 
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Devices with [Co(II/III)(C9,C9-bipy)3](TPFPB)2/3 Redox Buffer Not 

Contacting Samples. As it was hypothesized that the leaching of the redox buffer caused 

the loss of good linearity of the all-solid-state ion sensors in diluted blood serum samples, 

devices were constructed in a way to avoid the direct contact between the redox buffer 

and the sample, thus possibly eliminating the problem of leaching. Herein, the redox 

buffer [Co(II/III)(C9,C9-bipy)3](TPFPB)2/3 was doped into the sensing/reference 

membranes that were mixed with CIM carbon to construct the all-solid-state 

ISE/reference electrodes, but it was not doped into the sensing/reference membranes that 

contact samples.  

When the new devices were tested with aqueous KCl solutions, a super-Nernstian 

response was obtained with a slope of –65.8 mV/decade and an R2 value of 0.956 (Figure 

5.10). The response is inferior compared to the devices with the redox buffer contacting 

samples (i.e., slope of –60.6 mV/decade and an R2 value of 0.991, as shown in Figure 

5.3). Similar results were observed with 10-fold diluted blood serum samples, in which a 

sub-Nernstian response was obtained with a slope of –48.1 mV/decade and an R2 value of 

0.709 (Figure 5.10). It can be concluded that the avoidance of the contact between redox 

buffer and sample did not improve the linearity and reproducibility of the sensor in 

diluted blood serum samples. It is likely that by using such sensor design, an uncontrolled 

interface between the redox-buffer-doped and non-redox-buffer-doped membranes was 

introduced into the system, thus affecting the reproducibility of the sensor. 
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Figure 5.10 Potentiometric Cl– responses of an all-solid-state, paper-based ion-sensing 

platform with the redox buffer [Co(II/III)(C9,C9-bipy)3](TPFPB)2/3. The redox buffer was 

doped into the sensing/reference membranes that were mixed with CIM carbon to 

construct the all-solid-state ISE/reference electrodes, but was not doped into the 

sensing/reference membranes that contact the samples. The responses were collected both 

with aqueous KCl solutions (black square) and 10-fold diluted blood serum samples (red 

circle). 
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Chapter 6 

Redox Buffers Covalently Attached to Colloid-Imprinted 

Mesoporous Carbon 

 

Parts of this chapter relate to U.S. patent application (15/655457) entitled 

“Electrochemical Sensors with a Chemically Attached Molecular Redox Buffer” by Hu, 

J.; Stein, A.; Bühlmann, P.; and Zhen, V. X. filed on 20 July 2017. 

 

Xue Zhen contributed to this chapter by providing valuable suggestions on experimental 

procedures and data interpretation. 
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6.1 Introduction 

Driven by the growing demand for point-of-care and onsite measuring 

applications, modern chemical sensor research has focused on the development of new 

materials and methodologies that enable robust sensors with less maintenance and simple 

measuring protocols.7,201,223 Ion-selective electrodes (ISEs) represent a large subgroup 

of chemical sensors that are routinely used in various fields, such as process management 

and clinical analysis. Over the past 40 years, ISEs have evolved into well-established 

analytical tools, with sensors for more than 60 different analytes.1,5,30 However, 

conventional ISEs have to be recalibrated frequently, which requires calibrating solutions 

and either automated mechanisms or trained personnel to perform the calibration 

protocols. Therefore, the elimination of sensor calibration can significantly simplify the 

use of ISEs and open up opportunities for new applications, such as single-use ion 

sensors. 

There are two key parameters to construct an ISE calibration curve: the slope and 

the intercept (i.e., electrode standard potential, or E˚). The variation in the calibration 

slope depends on the robustness of the ISE sensing membrane and is generally negligible. 

Thus, the reason for frequent electrode recalibration usually lies in the unacceptable 

repeatability of the electrode E˚ values. Since there is no E˚ control mechanism for 

conventional ISEs, the E˚ can be quite different (as large as 10 mV) for multiple ISEs 

even though they are fabricated in a same way. Also, the E˚ of an individual electrode can 

drift significantly in an unpredictable way, which can lead to large measuring errors if the 

electrode is not recalibrated prior to measurements. Therefore, to claim calibration-free 
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ion-sensing operations, the electrode E˚ must be well-controlled in such a way that the 

device-to-device reproducibility is maintained during the entire life time of the sensor. 

Different applications require different measurement accuracies. For example, an 

accuracy of ±0.05 pH unit is typically acceptable for a pH electrode used in industrial 

process, which corresponds to an ISE response of approximately ±2.9 mV. Clinical 

applications usually require higher measurement accuracy. According to the U.S. Code of 

Federal Regulations, in clinical laboratories the acceptable measuring errors for K+ and 

Na+ are ± 0.5 mM and ± 4 mM, respectively.93 This leads to an acceptable error of 

approximately 2.8 mV for a K+-ISE and 0.7 mV for a Na+-ISE. Therefore, no Na+ 

calibration would be needed in clinical laboratories if for multiple Na+-ISEs the E˚ 

variation is smaller than 0.7 mV during the entire life time of the sensor. A type of 

electrode with such E˚ reproducibility can be referred to as calibration-free. 

The introduction of all-solid-state ISEs opens up great opportunities for the 

development of calibration-free ion sensors because of the possibility of fine-tuning the 

properties of the solid contact materials.201 All-solid-state ISEs with high device-to-

device reproducibility have become a major target in the field, with many approaches 

reported to control the electrode E˚ as discussed in Section 1.2.1 in Chapter 1. These 

approaches include tuning the oxidation states of conductive polymers,100-102 utilizing 

intercalation compounds with well-defined redox potentials,47,54 and introducing redox 

buffers as membrane additives.49,50,53,214 Among them, the redox buffer approach is the 

most promising method because of its ability to precisely control the electrode E˚ by 

tuning the composition of the redox buffer. A well-defined redox buffer contains both the 
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oxidized and reduced species of a redox couple. Similar to a pH buffer whose pH can be 

controlled by an acid and its conjugate base, the electrical potential of a redox buffer is 

determined by its standard redox potential and the ratio of the oxidized and reduced 

species of the redox couple, which can be predicted by the Nernst equation103:  

E = E˚’ + 
RT
nF

ln
aox

ared
												                                      (6.1) 

where E is the electrical potential of the redox buffer, E˚’ is the standard reduction 

potential of the redox couple, R is the ideal gas constant, F is the Faraday constant, T is 

the temperature, n is the number of moles of electrons transferred in the redox reaction, 

and aox and ared are the activities of the oxidized and reduced species of the redox couple, 

respectively. 

When a well-defined redox buffer is doped in the sensing membrane, the 

interfacial potential at the solid contact/ISE membrane interface can be controlled and 

stabilized. This was previously demonstrated with redox buffers consisting of 

cobalt(II/II) tris(1,10-phenanthroline) or of the more hydrophobic cobalt(II/III) tris(4,4’-

dinonyl-2,2’-bipyridyl) complexes. Results showed that the electrode E˚ values correlated 

well with the ratios of Co(II) and Co(III) species as predicted by the Nernst equation, and 

were highly reproducible with a standard deviation less than 1 mV.49,50 When the redox 

buffer containing the cobalt(II/III) tris(4,4’-dinonyl-2,2’-bipyridyl) complex was 

combined with colloid-imprinted mesoporous (CIM) carbon as the solid contact, all-

solid-state ISEs could be fabricated with an initial E˚ standard deviation as low as 0.7 

mV.69 The redox buffer, however, leached out of the ISE membrane during the 

measurement, thus causing large potential drifts and reduced E˚ reproducibility over time. 
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After conditioning the electrodes in an aqueous solution for 24 h, the standard deviation 

of electrode E˚ increased from 0.7 mV to 16.3 mV for an all-solid-state ISE based on the 

cobalt(II/III) tris(4,4’-dinonyl-2,2’-bipyridyl) redox buffer.50 Therefore, to construct 

robust calibration-free all-solid-state ISEs with a meaningful life time, the redox buffer 

must be immobilized within the sensor to ensure high electrode E˚ reproducibility as well 

as stability. 

To address this issue, this chapter explores the possibility of covalently attaching 

a redox buffer to the surface of CIM carbon to develop CIM carbon-based redox buffer. 

CIM carbon is an ideal substrate to anchor redox buffer, not only because its highly 

accessible surface with a large specific surface area onto which the redox buffer can be 

attached, but also because it contains low amounts of redox-active impurities that can act 

as redox interferences.69 Surface modification was performed to immobilize anchoring 

points to the surface of CIM carbon, and cobalt-based complexes were then attached 

through click chemistry (copper(I)-catalyzed azide-alkyne cycloaddition) or amide 

coupling reactions. Each step of the modification was characterized using surface 

analysis techniques. It was found that a cobalt-based redox buffer can be attached to CIM 

carbon with a relatively low surface loading of 0.1 atom%, and the open circuit potential 

of CIM carbon films can be affected by the oxidation states of the attached redox buffer. 

To achieve robust all-solid-state ISEs with highly reproducible electrode E˚ values, 

however, a higher surface loading of the redox buffer is required. Possible approaches of 

achieving such high surface loading are discussed in Section 7.2. 
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6.2 Experimental 

Materials. Reagents were obtained from the following sources: Teflon dispersion 

(60 wt% in H2O), ethynylferrocene, ferrocenecarboxylic acid, sodium ascorbate, 4-

nitrobenzene diazonium tetrafluoroborate, disodium sulfide, N-(3-dimethylaminopropyl)-

N’-ethylcarbodiimide hydrochloride (EDC·HCl), 1-hydroxybenzotriazole (HOBt), N,N-

diisopropylethylamine (DIPEA), tetraethylammonium tetrafluoroborate (TEABF4), 

tetrabutylammonium perchlorate (TBAClO4), o-nitrophenyl octyl ether (o-NPOE), high 

molecular weight poly(vinyl chloride) (PVC), valinomycin, potassium tetrakis(4-

chlorophenyl)borate, potassium hexafluorophosphate (KPF6) from Sigma-Aldrich (St. 

Louis, MO, USA), 5-ethynyl-2,2′-bipyridine from Ark Pharm (Arlington Heights, IL, 

USA), 5-carboxy-2,2'-bipyridine from Enamine (Monmouth Junction, NJ, USA), 4-(4,6-

dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM), 

tris(benzyltriazolylmethyl)amine, tetrakis(4-carboxyphenyl)porphyrin (TCPP) from TCI 

Chemicals (Tokyo, Japan), lithium tetrakis(pentafluorophenyl)borate ethyl etherate 

(LiTPFPB) from Gelest (Morrisville, PA, USA) and cobalt(II) tetrakis(4-

carboxyphenyl)porphyrin (Co(II)TCPP) from Porphychem (Dijon, France). All chemicals 

were used as received without further purification. Deionized water was purified to a 

resistivity of 18.2 MΩ/cm with a Milli-Q PLUS reagent-grade water system (Millipore, 

Bedford, MA, USA). CIM carbon,69 4-azidobenezene diazonium tetrafluoroborate,224 and 

cobalt(III) tetrakis(4-carboxyphenyl)porphyrin chloride (Co(III)TCPP)225 were prepared 

according to previously reported procedures.  

Preparation of CIM Carbon Film. CIM carbon powder was combined with 5 
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wt% Teflon binder and pressed under a roller press to form a film of ~100–200 µm 

thickness. The film was then cut into individual electrodes using a 7/32 inch punch, and 

dried at 110 ˚C under vacuum overnight. 

Synthesis of Cobalt Bipyridine Complexes. The cobalt(II) tris(5-ethynyl-2,2’-

bipyridine) complex was synthesized by dissolving 11 mg of CoCl2·6H2O and 25 mg of 

5-ethynyl-2,2’-bipyridine in 3 mL of methanol. The solution was heated at 70 ˚C for 2 h 

to form the complex. After the solution was cooled down, 80 mg of LiTPFPB was added 

into the solution to form a precipitate. The precipitate was filtered, washed with hexanes, 

and redissolved in methanol. The cobalt(II) tris(5-ethynyl-2,2’-bipyridine) complex was 

obtained by evaporating methanol under vacuum. 

The cobalt(II) tris(5-carboxy-2,2’-bipyridine) complex was synthesized by 

dissolving 24 mg of CoCl2·6H2O and 60 mg of 5-carboxy-2,2’-bipyridine in 5 mL of 

methanol. The obtained solution was heated at 50 ˚C for 2 h to form the complex. The 

solution was then evaporated to obtain the cobalt(II) tris(5-carboxy-2,2’-bipyridine) 

complex. 

The cobalt(II) tris(2,2’-bipyridine) complex was synthesized by dissolving 200 

mg of CoCl2·6H2O and 400 mg of 2,2’-bipyridine in 10 mL of water. The solution was 

heated at 50 ˚C for 2 h. Then, 323 mg of KPF6 was added into the solution to obtain a 

precipitate. The precipitate was filtered out, washed with water, and dried under vacuum. 

The cobalt(III) tris(2,2’-bipyridine) complex was synthesized by dissolving 500 mg of 

CoSO4·7H2O and 920 mg of 2,2’-bipyridine in 25 mL of water. 30% H2O2 was added 

dropwise into the above solution under stirring until all the cobalt (II) was oxidized to 
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cobalt (III) (confirmed by the disappearance of paramagnetic broad peaks higher than 10 

ppm in proton nuclear magnetic resonance spectroscopy, or proton NMR). 985 mg of 

KPF6 was then added into the mixture to obtain a precipitate. The precipitate was filtered 

out, washed with water, and dried under vacuum. 

Covalent Attachment of Redox-Active Molecules on CIM Carbon through 

Click Chemistry. An electrolyte was prepared in an ice bath by dissolving 1 mM 4-

azidobenzene diazonium tetrafluoroborate and 0.1 M supporting electrolyte TEABF4 in 

acetonitrile. CIM carbon films were presoaked in the electrolyte for 1 h to ensure the 

electrolytes could diffuse into the mesopores, and bubbles were observed on the CIM 

carbon surface, indicating good electrolyte wetting. After presoaking, CIM carbon film 

was put on top of a gold electrode and mechanically held there using an electrode body. 

To modify the CIM carbon with –N3 surface functional groups, a potential scan of 

0.2 V to -0.6 V (vs Ag/Ag+ with 10 mM Ag+) was applied to the CIM carbon film with a 

scan rate of 25 mV/s for 5 cycles. N3-modified CIM carbon films were washed with 

acetonitrile and soaked in acetonitrile on a shaker overnight to remove physically 

absorbed unreacted diazonium salts. The click reaction was conducted by soaking azide-

modified CIM carbon film overnight on a shaker in a dimethyl sulfoxide/water solution 

containing 1 mM of ethynylferrocene or cobalt(II) tris(5-ethynyl-2,2’-bipyridine) 

complex, 1 mM of copper sulfate, 10 mM of sodium ascorbate (to reduce Cu(II) to Cu(I) 

catalyst), and 1 mM of tris(benzyltriazolylmethyl)amine as the Cu(I) stabilizer. After the 

reaction, the CIM carbon film was thoroughly washed with dimethyl sulfoxide and 

methanol overnight with the assistance of a shaker. 
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Covalent Attachment of Redox-Active Molecules on CIM Carbon through 

Amide Coupling. For –NO2 attachment, an electrolyte was prepared by dissolving 0.1 M 

of 4-nitrobenzene diazonium tetrafluoroborate and 0.1 M of TEABF4 in acetonitrile. CIM 

carbon films were presoaked in the electrolyte for 1 h to ensure the electrolytes could 

diffuse into the mesopores. A potential scan of 0.5 V to -0.2 V (vs Ag/Ag+ with 10 mM 

Ag+) was applied to the CIM carbon film with a scan rate of 25 mV/s for 3 – 5 cycles. 

The modified CIM carbon films were washed thoroughly with acetonitrile and soaked in 

acetonitrile and methanol on a shaker overnight to remove physically absorbed unreacted 

diazonium salts.  

To reduce –NO2 to –NH2 groups, CIM-NO2 was soaked in a 0.8 M solution of 

disodium sulfide ethanol/water (1:1 v/v) at 50 ˚C overnight. The resulting CIM-NH2 

films were washed thoroughly with ethanol and water using a shaker.  

Amide coupling reactions between CIM-NH2 films and redox-active molecules 

with –COOH groups were performed using DMTMM or EDC/HOBt as the coupling 

reagents. For amide coupling reactions involving ferrocenecarboxylic acid and 

Co(III)TCPP, CIM-NH2 films were soaked in a methanol solution containing 2 mM of 

ferrocenecarboxylic acid (or 1 mM of Co(III)TCPP) and 2 mM of DMTMM for 24 h. 

The resulting CIM carbon films were washed thoroughly with methanol using a shaker. 

For amide coupling reactions that involve cobalt(II) tris(5-carboxy-2,2’-bipyridine) 

complex, the CIM-NH2 films were soaked for 24 h in a dimethylformamide solution 

containing 2 mM of cobalt(II) tris(5-carboxy-2,2’-bipyridine) chloride, 2 mM of 

EDC·HCl, 2 mM of HOBt, and 2 mM of DIPEA. The resulting carbon films were washed 
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with dimethylformamide and ethanol extensively with the assistance of a shaker. 

Preparation of CIM Carbon-Based Redox Buffer and K+-ISEs. The cobalt(II) 

tris(5-carboxy-2,2’-bipyridine)-modified CIM carbon films were soaked for 24 h in a 

dimethylformamide solution containing 5 mM Co(II) tris(bipyridine) and 5 mM Co(III) 

tris(bipyridine) complexes. The resulting carbon films were thoroughly washed with 

dimethylformamide, ethanol, and methanol using a shaker, and dried under vacuum to 

obtain a CIM carbon-based redox buffer. 

A K+-ISE membrane precursor solution was prepared by dissolving 66 mg of 

PVC as polymer matrix, 132 mg of o-nitrophenyl octyl ether as plasticizer, 2.0 mg of 

valinomycin as ionophore, and 0.67 mg of potassium tetrakis(4-chlorophenyl) borate (75 

mol % with respect to the ionophore) to provide for ionic sites in 1 mL of anhydrous 

tetrahydrofuran. 40 µL of the precursor solution was dropcast onto the redox buffer-

modified CIM carbon film that was placed on a gold electrode. The solvent 

tetrahydrofuran was allowed to evaporate overnight, thus forming a homogenous sensing 

membrane on the modified CIM carbon film. The gold electrode coated with CIM carbon 

film and the sensing membrane was then mounted into a cylindrical electrode body 

custom-made from DuPont Delrin acetal resin, as described in Section 2.1. 

Electrochemical Measurements. Unless otherwise noted, cyclic voltammograms 

were collected at room temperature in a solution containing 0.1 M of TEABF4. A three-

electrode electrochemical cell was used with Ag/Ag+ (with 10 mM Ag+) as the reference, 

modified electrode as the working electrode, and a Pt wire as the counter electrode. 

Potentiometric measurements were conducted using a two-electrode setup, with an 
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aqueous double-junction Ag/AgCl electrode (with a 1.0 M LiOAc bridge electrolyte and 

AgCl-saturated 3.0 M KCl inner reference electrolyte) as the reference electrode. 

Surface Analysis. Fourier-transform infrared (FTIR) spectra of functionalized 

CIM carbon samples were obtained using KBr pellets with a Nicolet Magna-IR 760 

spectrometer. The modified CIM carbon films were also characterized by X-ray 

photoelectron spectroscopy (XPS) using a Surface Science SSX-100 instrument with an 

Al anode (Kα X-rays at 1486.66 eV) operated at 10 kV and 20 mA. Measurements were 

performed at room temperature, with a high vacuum below 10-8 Torr in the analysis 

chamber. 

6.3 Results and Discussion 

6.3.1 Strategies to Prepare CIM Carbon-Based Redox Buffer 

 Figure 6.1a shows a schematic representation of an all-solid-state redox buffer 

based on CIM carbon, in which both oxidized and reduced species of a redox couple are 

covalently attached to the carbon surface. To maximize buffer capacity (i.e., the ability to 

resist electrical potential change caused by redox interference), the molar ratio of the 

oxidized and reduced species should be 1:1. When CIM carbon-based redox buffer is 

used as the solid contact in an all-solid-state ISE, the interfacial potentials at the CIM 

carbon/ISE membrane interface (Δφ2) and at the CIM carbon/conducting substrate 

interface (Δφ3) can be controlled by the redox buffer attached to CIM carbon, thus 

enabling highly reproducible and stable electrode E˚. 
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Figure 6.1 Schematic representations of a CIM carbon-based redox buffer and its 

application in all-solid-state potentiometric ion sensors. (a) A redox couple comprising 

both oxidized and reduced species is covalently attached to the surface of CIM carbon. 

(b) All relevant interfaces of an all-solid-state ISE with a CIM carbon-based redox buffer 

and a cation (M+) selective membrane that contains an electrically neutral ionophore (L) 

and anionic sites (R–). 

 A few requirements must be fulfilled for an adequate redox buffer. First and 

foremost, a well-defined redox buffer should have a well-defined redox potential. 

Conductive polymers usually exhibit high redox capacitance, but a continuum of less 

well-defined redox potentials that can be related to the inhomogeneity in crystallinity, 

conformation, film morphology, and so on.201 Therefore, compared to molecular redox 

species that exhibit well-defined redox potentials, conductive polymers are less attractive 

for redox buffer applications. Besides well-defined redox potentials, both the oxidized 

and reduced species of the redox buffer should be chemically and electrochemically 

stable with reversible redox activity. In this regard, the standard reduction potential of the 

redox couple should be close to 0 V (vs Ag/AgCl) so that the redox couple cannot be 
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easily oxidized or reduced by redox-active interferents that are present in the system. 

Although ferrocene is a well-studied redox molecule with a suitable standard reduction 

potential of 0.40 V (vs SHE), it cannot be used for redox buffer applications because its 

oxidized form ferrocenium ion is not stable under certain circumstances. It was reported 

that Cl– ions can induce the degradation of ferrocenium ions into non-reducible FeCl4
– in 

both organic electrolytes and ferrocene-doped ISE membranes, which can lead to 

irreversible redox chemistry.226 Furthermore, the redox couple should also exhibit fast 

electron-transfer rates, thus enabling adequate ion-to-electron transduction when the 

redox buffer is used as the transducer layer in an all-solid-state ISE. Based on the above 

considerations, cobalt complexes were chosen as promising candidates for redox buffers 

because of their well-defined and reversible redox chemistry, fast electron-transfer 

kinetics, as well as good chemical and electrochemical stability.49,50,227 

 To immobilize the redox buffer to CIM carbon, surface functionalization of CIM 

carbon is needed to create anchoring points for the following attachment. Numerous 

approaches have been reported to modify the surface of carbon materials. For example, 

surface oxidation can be performed to introduce oxygen-containing functional groups 

(e.g., phenol, ketone, lactone) to the carbon surface, which serve as starting points for the 

subsequent reactions for attachment.228 However, surface oxidation is usually conducted 

in an uncontrolled way (e.g., by boiling the carbon material in concentrated nitric acid) 

that can generate large amounts of hydrophilic redox-active surface functionalities, which 

can interfere with the grafted redox buffer and also induce water-layer formation at the 

solid contact/ISE membrane interface. Therefore surface oxidation is not suitable for the 
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preparation of CIM carbon-based redox buffer. Compared to surface oxidation, 

electrografting allows surface modification to proceed in a controlled manner that results 

in a cleaner electrode surface, and thus is more suitable for the preparation of all-solid-

state redox buffer based on CIM carbon.229-231  

 Herein, the surface of CIM carbon is functionalized using the electrografting 

method through the diazonium chemistry. Two types of subsequent chemical reactions 

were evaluated, as depicted in Figure 6.2. The first reaction was click chemistry 

(copper(I)-catalyzed azide-alkyne cycloaddition), where azide (–N3) groups were 

introduced to CIM carbon through the electrochemical reduction of an aryl diazonium 

salt that bears the azide group (i.e., 4-azidobenzene diazonium tetrafluoroborate). A click 

reaction was then performed to attach a cobalt tris(5-ethynyl-2,2′-bipyridine) complex to 

the surface of CIM carbon through a triazole linkage (Figure 6.2a). The second reaction 

was an amide coupling reaction, in which nitro (–NO2) groups were first attached to CIM 

carbon via diazonium chemistry (i.e., 4-nitrobenzene diazonium tetrafluoroborate) and 

then reduced to amino (–NH2) groups. The amide coupling reaction was then conducted 

to immobilize a cobalt tris(bipyridine) complex or cobalt porphyrin complex derivative 

with –COOH groups (Figure 6.2b). In each case, a ferrocene derivative (i.e., 

ethynylferrocene or ferrocenecarboxylic acid) was used as a model molecule to 

demonstrate the feasibility of covalently attaching a redox-active molecule to the surface 

of CIM carbon using this type of chemical reaction. 
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Figure 6.2 Schematic representations of the covalent attachment of redox-active 

molecules onto the surface of CIM carbon. (a) Click chemistry. Azide groups are first 

introduced to the surface of CIM carbon, followed by subsequent click reaction to 

covalently attach redox-active molecules through a triazole linkage. (b) Amide coupling 

reaction. Nitro groups are first attached to CIM carbon, followed by reduction to amino 

surface functional groups. An amide coupling reaction is then performed to attach redox-

active molecules with carboxylic groups through an amide linkage. 
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6.3.2 Surface Modification of CIM Carbon through Electrochemical Reduction of 

Diazonium Salts 

 Figure 6.3 represents typical cyclic voltammograms of –N3 and –NO2 attachments 

to CIM carbon through the electrochemical reduction of aryl diazonium salts. It is well 

known that diazonium salts can be reduced through a one-electron transfer process to 

produce dinitrogen and a phenyl radical that can directly react with the electrode surface. 

The corresponding cathodic reduction potential depends on the functional group that is 

attached to the phenyl ring.230 For both 4-azidobenzene diazonium and 4-nitrobenzene 

diazonium salts, a broad irreversible cathodic wave can be observed during the first scan, 

which corresponds to the cleavage of dinitrogen from diazonium salts. On the following 

scans, the intensity of the cathodic wave decreased significantly due to the blocking of 

the electrode by the organic groups that were attached to the electrode surface. 

Interestingly, a second cathodic reduction wave at about 0.13 V showed up for 4-

nitrobenzene diazonium salt (Figure 6.3b). This phenomenon was observed in literature 

as well, especially when the concentration of the diazonium salt was high. Previous 

studies suggest that this second cathodic reduction wave may be attributed to the 

adsorption and reduction of diazonium salts at different sites of the electrode.232,233 
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Figure 6.3 Typical cyclic voltammograms of CIM carbon that had been surface-modified 

through the electrochemical reduction of diazonium salts. (a) Surface modification with 1 

mM of 4-azidobenzene diazonium tetrafluoroborate. (b) Surface modification with 0.1 M 

of 4-nitrobenzene diazonium tetrafluoroborate. Scan rate = 25 mV/s, supporting 

electrolyte: 0.1 M TEABF4, reference potential: Ag/Ag+, 10 mM Ag+. 

6.3.3 Covalent Attachment through Click Chemistry 

Azide Attachment to CIM Carbon. The first step of the click chemistry 

approach is to covalently attach azide functional groups to the surface of CIM carbon. 

FTIR spectroscopy was used to detect the presence of azide groups on the CIM carbon 

film (Figure 6.4). Azide groups usually exhibit IR absorptions near 2100 cm-1 due to the 

asymmetrical vibrations.234 The observed absorptions were at 2120 cm-1 and 2093 cm-1, 

in agreement with observations for previously reported azide-modified carbon nanofibers 

(i.e., 2113 cm-1 and 2083 cm-1).235 The reason for the presence of two absorption peaks is 

not clear yet, but it is possible that the two peaks correspond to the phenyl azides attached 

to basal- and edge-planes of CIM carbon.  
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Figure 6.4 FTIR spectrum of CIM carbon films modified with –N3 surface groups. An 

expanded view showing the evidence of the presence of –N3 groups is presented in the 

inset. 

XPS was also used to confirm the presence of –N3 groups on the surface of CIM 

carbon. Compared to unmodified CIM carbon that does not contain nitrogen (Figure 6.5, 

black trace), it can be clearly seen that a N1s peak appears in the survey scan of azide-

modified CIM carbon (Figure 6.5, red trace). By integrating the areas of the peaks in 

XPS, the N content was calculated to be 4.40 atom%, so that the surface loading of –N3 

was 1.47% (each –N3 contains 3 N atoms) with respect to all the atoms on the carbon 

surface. Assuming an accessible surface area of 442 m2/g for CIM carbon,69 the surface 

coverage of –N3 groups was estimated to be 1.6 molecules/nm2. This value is 

approximately double that of the previously reported azide coverage on planar graphitic 

surfaces (i.e., 0.7 molecules/nm2) through a chemical modification method.236 
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The high-resolution N1s spectrum of the azide-modified CIM carbon shows two 

peaks at 400.8 eV and 404.3 eV with an area ratio of 7:3 (Figure 6.5, inset). This N1s 

spectrum is characteristic for the azide group, and is consistent with previously reported 

values for azide attached to glassy carbon (i.e, 400 eV and 404 eV, area ratio of 2:1).237 

The observed fluorine originated from the Teflon binder that was used to make the CIM 

carbon film. Based on the results obtained from FTIR and XPS, it can be concluded that –

N3 groups were successfully attached to the surface of CIM carbon. 

 

Figure 6.5 XPS spectra of CIM carbon films before (black) and after (red) modification 

with –N3 surface groups. The high-resolution N1s spectrum of N3-modified CIM carbon is 

presented in the inset. 
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Ferrocene Attachment to CIM Carbon through Click Chemistry. Before 

attaching the cobalt complex, ethynylferrocene was first attached to azide-modified CIM 

carbon to demonstrate the feasibility of immobilizing a redox-active molecule on the 

surface of CIM carbon using click chemistry. Ferrocene was chosen because of its fast 

charge transfer ability and because it has been well studied, thus enabling a better 

understanding of the system. The obtained ferrocene-modified CIM carbon film was 

characterized by XPS. Fe2p peaks from ferrocene can be clearly observed in the XPS 

spectrum for the ferrocene-modified CIM carbon (Figure 6.6, red trace). Based on XPS 

data, the surface Fe content was calculated to be 0.65 atom%, indicating a yield of 44%. 

If the reaction efficiency was 100%, the theoretical surface loading of Fe from ferrocene 

would equal the surface loading of –N3 anchoring points, which is 1.47 atom%. 

 

Figure 6.6 XPS spectra of N3-modified CIM carbon films before (black) and after (red) 

click reactions to attach ethynylferrocene to CIM carbon. The Fe2p peaks can be observed 

at about 710 eV (Fe2p(3/2)) and 723 eV (Fe2p(1/2)). 
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Using the same click chemistry conditions, ethynylferrocene was also 

successfully attached to an azide-modified planar glassy carbon electrode. This can be 

demonstrated by the cyclic voltammogram of the resulting electrode, as shown in Figure 

6.7a. With a scan rate of 100 mV/s, a pair of well-defined and reversible redox peaks 

arising from ferrocene was observed, with a peak separation as low as 28 mV. A plot of 

scan rate and peak currents (Figure 6.7b) shows that both anodic and cathodic peak 

currents are proportional to the scan rate, with high coefficients of determination (R2 = 

0.9997 and 0.9999). This result confirms that the observed redox activity is indeed a 

surface-controlled process, and the above experiments demonstrate that it is feasible to 

graft redox-active molecules to the surface of CIM carbon through click chemistry. 

 

 

Figure 6.7 (a) Cyclic voltammogram of ferrocene attached to a planar glassy carbon 

electrode using click chemistry reaction. The scan rate was 100 mV/s and the reference 

was Ag/Ag+, 10 mM Ag+. The dependence of anodic and cathodic peak currents on the 

scan rates are shown in panel b. 
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Attachment of Cobalt(II) Tris(5-ethynyl-2,2′-bipyridine) to CIM Carbon 

Using Click Chemistry. Following the demonstration of ferrocene attachment, the cobalt 

complex cobalt(II) tris(5-ethynyl-2,2′-bipyridine) was attached to azide-modified CIM 

carbon films using the same click chemistry reaction. For a control experiment, cobalt(II) 

tris(2,2′-bipyridine) without ethynyl groups (necessary for click chemistry reaction) was 

tested as well. The XPS spectra of the two samples are shown in Figure 6.8a.  

Strong evidence showing the completion of the click reaction between azide-

modified CIM carbon and cobalt(II) tris(5-ethynyl-2,2′-bipyridine) was obtained from 

XPS high-resolution N1s spectra. As previously discussed, –N3 groups exhibit two peaks 

at 400 eV and 404 eV in the high-resolution XPS N1s spectrum, and these two peaks can 

become one broadened peak at 400 eV due to the formation of a triazole linkage after the 

completion of click reaction.236,237 This feature was observed when the cobalt complex 

was attached to CIM carbon, as shown in Figure 6.8b (top). For the control experiment 

with the cobalt(II) tris(2,2′-bipyridine) complex, two distinct N1s peaks remained, 

corresponding to the unreacted –N3 surface functional groups on CIM carbon. 

The cobalt surface loading, however, is 0.05 atom%, which is much lower than 

that of ferrocene (i.e., 0.65 atom%) attached to CIM carbon using the same click 

chemistry method. Also, it was found that the Cu(I) catalyst used in click chemistry 

reactions could contaminate the surface of CIM carbon, possibly due to the formation of 

a Cu complex with the bipyridine ligands. This Cu impurity may interfere with the redox 

buffer and eventually affect the E˚ reproducibility of the resulting all-solid-state ISEs. 
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Therefore, extra steps of Cu removal are required to prepare electrodes using click 

chemistry reactions. 

 

 

Figure 6.8 XPS spectra of the control sample (red) and cobalt(II) tris(5-ethynyl-2,2′-

bipyridine) complex attached to CIM carbon (black) using click chemistry reaction (a). 

The corresponding high-resolution XPS N1s spectra are shown in panel b. 

6.3.4 Covalent Attachment through Amide Coupling 

Nitro and Amine Attachment to CIM Carbon. In a similar way to the –N3 

attachment, –NO2 surface functional groups were grafted to CIM carbon through the 

reduction of diazonium salts. The successful attachment of –NO2 groups was evidenced 

by the IR absorptions at 1520 and 1344 cm-1 (vs reported values of 1520 and 1340 cm-1), 

which correspond to the asymmetric and symmetric stretching of –NO2 groups, 

respectively.230,231 The absence of an N2
+ IR absorption in the range of 2130–2300 cm-1 

indicates that the observed nitro groups are covalently attached rather than physically 

absorbed to the carbon surface (Figure 6.9a). The N surface loading was calculated to be 
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1.60 atom% (or an estimated surface coverage of 1.7 molecules/nm2) on the basis of XPS 

data (Figure 6.9b), which agreed well with the results of –N3 attachment (i.e., 1.6 

molecules/nm2). The presence –NO2 groups was further confirmed by a strong 

characteristic peak at 406 eV in the high-resolution XPS N1s spectrum (Figure 6.10, 

top).230,238 

 

Figure 6.9 FTIR (a) and XPS (b) spectra of CIM carbon films modified with –NO2 

surface groups. 

Both electrochemical and chemical approaches were evaluated to reduce the 

surface –NO2 groups to –NH2 groups on CIM carbon. For the electrochemical approach, 

a constant cathodic potential of –0.8 V was applied to a nitro-modified CIM carbon film 

for 2 h. But it can be seen in Figure 6.10 (middle) that this method was insufficient in 

terms of –NO2 reduction as an XPS N1s peak at 406 eV, characteristic for nitro groups, 

was still present after the treatment. For the chemical reduction approach, the –NO2 

groups attached to CIM carbon were successfully reduced to –NH2 groups using Na2S as 

a reducing agent. After the chemical reduction, the XPS N1s peak at 406 eV in nitro-
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modified CIM carbon films disappeared, and a strong peak at 400 eV was observed 

(Figure 6.10, bottom), corresponding to –NH2 groups on the surface of CIM carbon.238,239 

These results demonstrate that CIM carbon can be modified with –NH2 surface groups 

through this two-step process. 

 

Figure 6.10 High-resolution XPS N1s spectra of CIM carbon films. (top) CIM carbon 

film modified with –NO2 surface groups. (middle) Electrochemical reduction of –NO2 to 

–NH2 surface groups by a potentiostatic approach. Applied potential = –0.8 V, time = 2 h. 

(bottom) Chemical reduction of –NO2 to –NH2 surface groups by Na2S treatment. 
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Ferrocene Attachment to CIM Carbon through Amide Coupling. To evaluate 

the feasibility of covalently attaching a redox-active molecule onto CIM carbon using an 

amide coupling reaction, ferrocenecarboxylic acid was used to react with amine-modified 

CIM carbon films with DMTMM as the amide coupling reagent. For a control 

experiment, CIM carbon films were also soaked in a solution containing 

ferrocenecarboxylic acid but without the DMTMM amide coupling reagent. 

XPS data reveal the successful attachment of ferrocene to CIM carbon (Figure 

6.11). Compared to the control sample that did not exhibit any Fe signal, strong Fe2p XPS 

peaks were observed for the ferrocene-modified CIM carbon film. This comparison also 

demonstrates that the observed Fe on CIM carbon was covalently attached rather than 

physically absorbed. The surface loading of Fe was calculated to be 1.05 atom% and was 

relatively high compared to the surface loading of the initial –NO2 anchoring points (i.e., 

1.60%). The ferrocene surface coverage was estimated to be 1.1 molecules/nm2, which is 

on the same level as a previously reported ferrocene coverage on carbon nanofibers 

through covalent linkage (i.e., 0.9 molecules/nm2).235 
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Figure 6.11 XPS spectra of the control sample (black) and ferrocenecarboxylic acid 

attached to CIM carbon (red) using an amide coupling reaction. 

Using the same DMTMM-catalyzed amide coupling reaction, ferrocenecarboxylic 

acid was also successfully attached to a planar glassy carbon electrode. As shown in 

Figure 6.12a, the resulting electrode exhibited a pair of well-defined redox peaks with a 

peak separation of 45 mV for a scan rate of 100 mV/s. A plot of the dependence of peak 

currents on the scan rates (Figure 6.12b) shows that both anodic and cathodic peak 

currents are proportional to the scan rate, with high coefficients of determination (R2 = 

0.9991 and 0.9982). These results confirm that the observed redox activity is due to a 

surface-controlled process, and they demonstrate that it is feasible to attach a redox-

active molecule on CIM carbon and glassy carbon through an amide coupling reaction. 
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Figure 6.12 Cyclic voltammogram of ferrocenecarboxylic acid attached to a planar 

glassy carbon electrode through amide coupling (a). Scan rate = 100 mV/s, reference 

potential: Ag/Ag+, 10 mM Ag+. The dependence of anodic and cathodic peak currents on 

the scan rates is shown in panel b. 

Cobalt Porphyrin Attachment to CIM Carbon through Amide Coupling. To 

covalently attach a redox buffer to CIM carbon through an amide coupling reaction, two 

cobalt complexes with carboxylic acid groups were evaluated. The first was the 

cobalt(III) porphyrin complex Co(III)TCPP. Co(III)TCPP was synthesized according to 

previously reported procedures,225 and its suitability for redox buffer application was 

studied using cyclic voltammetry. 

A typical cyclic voltammogram of dissolved Co(III)TCPP is shown in Figure 

6.13. It can be seen that Co(III)TCPP exhibits three pairs of redox peaks, which 

resembles the behavior of cobalt tetraphenyl porphyrin complexes without the carboxylic 

groups.240 From the cathodic to anodic potentials, the three one-electron transfer reactions 
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can be attributed to the Co(II)/Co(III) process (Figure 6.13, I), the formation of Co(III) π 

cation radical (Figure 6.13, II), and the formation of dication (Figure 6.13, III), 

respectively.240 The midpoint potential (i.e., the average of the reduction and oxidation 

peak potentials) of the Co(II)/Co(III) process was 0.193 V versus Ag/Ag+, indicating 

good electrochemical stability of the Co(II/III)TCPP redox couple. Therefore, the 

Co(II/III)TCPP redox couple may be a good candidate for redox buffer. 

 

Figure 6.13 Cyclic voltammogram of 0.5 mM Co(III)TCPP dissolved in tetrahydrofuran 

with 0.1 M supporting electrolyte TBAClO4. Three redox processes can be observed, 

which correspond to Co(II)/Co(III), the formation of Co(III) π cation radical, and the 

formation of dication, respectively. Scan rate = 100 mV/s, reference potential: Ag/Ag+. 
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The DMTMM-catalyzed amide coupling reaction was used to attach Co(III)TCPP 

to amine-modified CIM carbon. The reaction conditions were the same as those used for 

successful attachment of ferrocenecarboxylic acid, and a control experiment without the 

coupling reagent DMTMM was performed as well. After reaction, an XPS survey scan 

showed two weak Co2p peaks around 780 eV (Figure 6.14a, black trace), with a relatively 

low cobalt surface loading of 0.30 atom% compared to the surface loading of anchoring 

points (i.e., 1.60 atom%) and that of ferrocene immobilized using the same method (i.e., 

1.05 atom%). The high-resolution XPS Co2p spectrum revealed two distinct peaks at 780 

eV and 785 eV (Figure 6.14b), which corresponded to Co2p(3/2) and Co2p(1/2), respectively. 

For the control experiment without amide coupling reagent, no cobalt was detected from 

an XPS survey scan (Figure 6.14a, red trace). This confirms that the observed cobalt on 

CIM carbon was not physically absorbed but indeed covalently attached. 
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Figure 6.14 XPS spectra of Co(III)TCPP-modified CIM carbon film (black, a) and the 

control sample (red, a). The high-resolution XPS Co2p spectrum of the Co(III)TCPP-

modified CIM carbon is presented in panel b, revealing two distinct peaks corresponsing 

to Co2p(3/2) (780 eV) and Co2p(1/2)
 (795 eV). 

 Attempts were made to increase the surface cobalt loading by increasing the 

efficiency of the amide coupling reaction. A reported mechanism of DMTMM-catalyzed 

amide coupling reaction reveals that in homogenous solutions, the –COOH groups have 

to be deprotonated by –NH2 groups for the reaction to proceed.241 In the CIM carbon 

system, however, –NH2 groups were grafted on the surface of CIM carbon so that they 

may not be readily available to deprotonate the –COOH groups. Therefore, different 

concentrations (i.e., 0.1 mM and 0.5 mM) of two types of bases (i.e., NaOH and DIPEA) 

were added into the reaction mixture to assist the deprotonation of the –COOH groups. 

The resulting cobalt surface loading, however, remained in the range of 0.15 to 0.30 

atom% based on XPS data (Figure 6.15), showing no improvement compared to results 

obtained without an additional base as shown above.  
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Figure 6.15 XPS spectra of Co(III)TCPP-modified CIM carbon films. The amide 

coupling reactions were performed with NaOH or DIPEA added to the reaction.  

 Although the achievable surface cobalt loading was relatively low, attempts of 

preparing the redox buffer with Co(II/III)TCPP were made. Several trials of synthesizing 

Co(II)TCPP were made under the protection of nitrogen and argon, but failed because the 

obtained product was oxidized to Co(III) based on proton NMR. Co(II)TCPP was also 

obtained from a commercial source, but was readily oxidized to Co(III) in methanol and 

tetrahydrofuran. Therefore, Co(II)TCPP is challenging to obtain, possibly because it 

could be readily oxidized, and a glove box may be required to synthesize Co(II)TCPP 

with high purity and perform the subsequent amide coupling reaction. 
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Attachment of Cobalt(II) Tris(5-carboxy-2,2’-bipyridine) to CIM Carbon 

through Amide Coupling. The second cobalt complex evaluated was cobalt(II) tris(5-

carboxy-2,2'-bipyridine). To determine its suitability for the application of a redox buffer, 

the cyclic voltammogram of cobalt(II) tris(5-carboxy-2,2'-bipyridine) was collected. As 

shown in Figure 6.16a, well-defined and reversible redox peaks were observed. The 

midpoint potential of cobalt(II) tris(5-carboxy-2,2'-bipyridine) was 0.153 V (vs Ag/AgCl) 

with a peak separation of 81 mV, indicating good electrochemical stability and fast 

electron-transfer kinetics of the cobalt(II/III) tris(5-carboxy-2,2'-bipyridine) redox couple. 

Therefore, the cobalt tris(5-carboxy-2,2'-bipyridine) complex is considered to be a good 

candidate for application as a redox buffer. 

The amide coupling reaction between cobalt(II) tris(5-carboxy-2,2'-bipyridine) 

and amine-modified CIM carbon films was performed using EDC/HOBt as the coupling 

reagents. EDC/HOBt were used as the coupling reagents instead of DMTMM because of 

their solubility in dimethylformamide, a solvent that can dissolve the cobalt(II) tris(5-

carboxy-2,2'-bipyridine) complex with hexafluorophosphate as the counter ion. After the 

reaction, an analysis based on an XPS survey spectrum revealed that the cobalt surface 

loading obtained by this approach was 0.20 atom% (Figure 6.16b). This surface loading 

is on a similar level as that of cobalt(III) porphyrin (i.e., 0.15 – 0.30 atom%), but much 

lower than that of ferrocene (i.e., 1.05 atom%). 
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Figure 6.16 Cyclic voltammogram of 0.5 mM cobalt(II) tris(5-carboxy-2,2'-bipyridine) 

dissolved in 0.1 M phosphate-buffered saline (a). Scan rate = 100 mV/s, reference 

potential: Ag/AgCl. (b) XPS spectrum of the cobalt(II) tris(5-carboxy-2,2'-bipyridine) 

attached to CIM carbon. 

Redox Buffer Based on Cobalt(II/III) Tris(5-carboxy-2,2′-bipyridine) 

Attached to CIM Carbon. In spite of the relatively low cobalt surface loading, a redox 

buffer based on cobalt(II/III) tris(5-carboxy-2,2′-bipyridine) attached to CIM carbon was 

prepared and evaluated. To maximize buffer capacity, the oxidation states of the surface 

cobalt needs to be tuned to reach a 1:1 ratio of the Co(II) and Co(III) species. This can be 

achieved through electron transfer by soaking the cobalt(II) tris(5-carboxy-2,2'-

bipyridine)-modified CIM carbon film in a solution containing both Co(II) and Co(III) 

species.  

Herein, cobalt(II) tris(5-carboxy-2,2'-bipyridine)-modified CIM carbon films 

were soaked in dimethylformamide solutions containing different ratios of Co(II) and 

Co(III) species (i.e., 10 mM Co(II) tris(bipyridine), 5 mM Co(II) tris(bipyridine) + 5 mM 
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Co(III) tris(bipyridine), and 10 mM Co(III) tris(bipyridine)) to obtain CIM carbon films 

with different surface cobalt oxidation states (i.e., CIM-Co(II), CIM-Co(II/III) and CIM-

Co(III)). Thorough washing was performed afterwards to remove the Co(II) and Co(III) 

complexes that were not attached to the surface and were merely introduced to control the 

redox states of the covalently attached species. XPS results revealed that the obtained 

CIM carbon films exhibited cobalt surface loadings in the range of 0.10 – 0.20 atom% 

(Figure 6.17), similar to that of cobalt(II) tris(5-carboxy-2,2'-bipyridine)-modified CIM 

carbon prior to the adjustment of surface cobalt oxidation states (i.e., 0.20 atom%). 

 

Figure 6.17 XPS spectra of CIM carbon films modified with cobalt complexes with 

different oxidation states. Black: CIM carbon with Co(II) only. Blue: CIM carbon with 

1:1 molar ratio of Co(II) and Co(III). Red: CIM carbon with Co(III) only. 
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To evaluate the effectiveness of controlling interfacial potentials using a redox 

buffer covalently attached to CIM carbon, the open circuit potentials of the obtained CIM 

carbon films (i.e., CIM-Co(II), CIM-Co(II/III) and CIM-Co(III)) were tested. For each 

sample, two individual carbon films were prepared and measured. As Figure 6.18a 

shows, the open circuit potentials of the two individual electrodes bearing the same cobalt 

oxidation states are close to each other, and the potentials for all cobalt-modified CIM 

carbon films are stable during the measuring period of 120 s. The dependence of open 

circuit potentials on the surface cobalt oxidation states is summarized in Figure 6.18b. It 

can be seen that the average open circuit potentials are –267.0 mV for CIM-Co(II) films, 

–223.5 mV for CIM Co(II/III) films, and –176.8 mV for CIM-Co(III) films. This result 

demonstrates that the open circuit potential of CIM carbon films can be affected by the 

surface cobalt oxidation states, even with a low cobalt surface loading of 0.10 – 0.20 

atom%. It is assumed that the low amount of redox-active impurities on the surface of 

CIM carbon is of particular importance for the proper functioning of the redox buffer 

covalently attached to CIM carbon with such a low surface loading. Otherwise, the open 

circuit potentials of CIM carbon would have been determined by the redox-active surface 

impurities rather than the redox buffer. 
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Figure 6.18 Open circuit potentials of CIM carbon films loaded with surface cobalt 

species with different oxidation states (a). Reference potential: Ag/Ag+, 10 mM Ag+. The 

dependence of open circuit potentials on the surface cobalt oxidation states is shown in 

panel b. Two individual electrodes were prepared and tested for each cobalt oxidation 

state. 

Finally, all-solid-state ISEs were fabricated to evaluate the effectiveness of the 

CIM carbon-based redox buffer for electrode E˚ control in potentiometric ion sensing. 

The all-solid-state ISE contained a CIM-Co(II/III) film as the solid contact, sandwiched 

between a gold electrode and a K+-ISE membrane based on plasticized PVC. A total 

number of five individual electrodes were prepared, and their K+ responses were 

measured without electrode conditioning (i.e., soaking the electrode in a 1 mM KCl 

solution). The individual calibration curves before electrode conditioning are shown in 

Figure 6.19a, and the electrode E˚ based on five electrodes is 322.8 ± 53.0 mV. It can be 



 

 184 

seen in Figure 6.19a that the potential of a specific electrode (green trace) differs 

significantly from that of the rest of other four electrodes, and this may be attributed to 

significant variations in the manual electrode fabrication process. 

 

Figure 6.19 Potentiometric K+ calibration curves (0 h conditioning) of five individual all-

solid-state ISEs (represented by different colors) that are based on CIM carbon redox 

buffer as the solid contact (a). (b) Calibration curves without the green trace without 

electrode conditioning and after 19 h electrode conditioning. 

If one excludes that specific electrode (green trace in Figure 6.19a), the rest of the 

four electrodes exhibit an electrode E˚ of 299.3 ± 7.0 mV without electrode conditioning. 

After conditioning of the electrodes in a 1 mM KCl solution for 19 h, the electrode E˚ 

remained stable and was 296.9 ± 6.9 mV. This standard deviation of E˚ (i.e., 7.0 mV and 

6.9 mV) is very similar to previous results of CIM carbon-based ISEs without redox 

buffer as the membrane additive (i.e., 7.3 mV).69 Therefore, although the redox buffer 

attached to CIM carbon with a low surface loading can affect the open circuit potential of 

CIM carbon, it cannot sufficiently control the interfacial potential at the CIM carbon/ISE 
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membrane interface to the extent needed for calibration-free ion sensing (e.g., E˚ 

variation < 2.8 mV for K+ measurements in clinical laboratories). Higher redox buffer 

surface loading is required (i.e., > 1.0 atom%) to achieve all-solid-state ISEs with higher 

electrode E˚ reproducibility. 

Interestingly, despite the relatively large electrode-to-electrode E˚ variation, the 

E˚ stability of the prepared all-solid-state ISEs is remarkable. Between the first contact of 

the dry electrodes with aqueous solutions and 19 h of electrode conditioning in a 1 mM 

KCl solution, the electrode E˚ remained very stable with a potential change as low as 2.4 

mV. This E˚ shift is much lower than that of electrodes based on cobalt(II/III) tris(4,4’-

dinonyl-2,2’-bipyridyl) redox buffer with the same plasticized PVC membrane matrix 

(i.e., potential drift up to 44 mV within the first 1 h of dry electrodes contacting aqueous 

solutions),50 and is even smaller than that of electrodes based on hydrophobic silicone 

rubber membranes and poly(3-octylthiophene) solid contacts that are designed to quickly 

reach water uptake equilibrium (i.e., penitential drift of 4 mV during the first 4 h of 

contacting with aqueous solutions).118 The exact reason for such high initial electrode E˚ 

stability is still unknown, but the stability may be attributed to combined effects of E˚ 

control from the redox buffer attached to CIM carbon as well as the hydrophobic nature 

of the CIM carbon surface. High initial electrode E˚ stability is essential for single-use 

and easy-to-use ion sensors without the requirement of cumbersome electrode 

conditioning. Research efforts may be directed to this direction to realize conditioning-

free ion sensing operations. 
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6.4 Conclusions 

In conclusion, two approaches (i.e., click chemistry and amide coupling) were 

evaluated to graft a redox buffer to the surface of CIM carbon to prepare CIM carbon-

based redox buffer. For each approach, anchoring points were successfully attached to 

CIM carbon, followed by successful covalent attachment of ferrocene derivatives with a 

high surface loading. It was therefore demonstrated that covalent attachment of redox-

active species to the surface of CIM carbon is feasible.  

Several cobalt complexes were also attached to the surface of CIM carbon 

through click chemistry or amide coupling reactions. It was found that the achievable 

cobalt surface loading was relatively low compared to the iron loading in ferrocene-

modified CIM carbon samples, and it is very likely that the low cobalt surface loading 

arises from the low stability of cobalt complexes on the electrode surface. When 

cobalt(II) tris(5-carboxy-2,2'-bipyridine) was grafted to CIM carbon through amide 

coupling, a cobalt surface loading of 0.20 atom% was achieved, and a redox buffer based 

on cobalt(II/III) tris(5-carboxy-2,2'-bipyridine)-modified CIM carbon was prepared. 

Results showed that the open circuit potential of cobalt(II/III) tris(5-carboxy-2,2'-

bipyridine)-modified CIM carbon can be affected by the surface cobalt oxidation states, 

even at low cobalt surface loadings. To achieve high electrode-to-electrode E˚ 

reproducibility, however, higher redox buffer surface loadings (> 1.0 atom%) are 

required. 

Future work should be focused on identifying redox-active complexes that are 

stable on the electrode surface and can also fulfill the requirements outlined in Section 
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6.3.1. Several alternative approaches to increasing the surface loading of redox buffer 

have been proposed and are discussed in detail in Section 7.2. Once a more effective 

method is identified, the application of redox buffers covalently attached to CIM carbon 

should be re-evaluated for potentiometric ion sensing, and robust calibration-free and 

conditioning-free all-solid-state ion sensors can be developed. 
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Chapter 7 

Conclusions and Outlook 
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7.1 Summary of Results 

 The first objective of this dissertation was to develop a novel solid contact 

material to fabricate high-performance all-solid-state potentiometric sensors, including 

all-solid-state ion-selective electrodes (ISEs) and reference electrodes. This objective was 

successfully achieved by introducing colloid-imprinted mesoporous (CIM) carbon as a 

new solid contact material, as described in Chapter 2 and Chapter 3. CIM carbon exhibits 

several unique properties that are desirable for an ion-to-electron transducer material. It 

comprises interconnected mesopores that can be infiltrated with an ISE sensing phase, 

providing large interfacial contact area with high double layer capacitance. As a result, 

the all-solid-state ISEs and reference electrodes based on CIM carbon exhibit remarkable 

potential stability, and they are the most stable all-solid-state potentiometric sensors 

reported so far. Besides high double layer capacitance, CIM carbon also contains very 

low amounts of redox-active impurities on its surface, which is very desirable for the 

construction of all-solid-state potentiometric sensors with high electrode-to-electrode 

reproducibility. When combined with a hydrophobic redox buffer as internal reference, 

highly reproducible all-solid-state ISEs can be achieved, with a variation of standard 

electrode potential as low as 0.7 mV. Furthermore, the possibility of sensor 

miniaturization was explored by integrating CIM carbon-based reference electrodes into a 

paper-based ion-sensing platform. It was demonstrated that the conventional 

Ag/AgCl/KCl reference system can be successfully replaced by a miniaturized CIM 

carbon-based reference electrode. 



 

 190 

 The second objective of this dissertation research was to develop affordable ion-

sensing platforms with simple operations and small sample volumes. This objective was 

achieved by introducing a pretreatment-free planar paper-based ion-sensing platform, as 

described in Chapter 4. This paper-based ion sensor employed a conventional ISE and 

reference electrode that were embedded into the paper substrate. As a potentiometric 

sensor, each interfacial potential within the cell was well-defined by design so that the 

response of the device can be theoretically predicted. Consequently, the proposed paper-

based ion-sensing platform does not need sensor calibration in principle. As a proof-of-

concept, single-use paper-based K+ and Cl– sensors were constructed and tested. It was 

found that these paper-based ion sensors exhibit highly reproducible Nernstian responses 

with both aqueous solutions and undiluted blood serum samples. To further simplify the 

use of the device, an all-solid-state paper-based ion-sensing platform was proposed and 

explored in Chapter 5. CIM carbon-based all-solid-state ISE and reference electrode were 

integrated onto the paper substrate, creating a sensor design that only requires one droplet 

of the sample but without the need for other reagents. The all-solid-state ion-sensing 

platform was designed to be calibration-free by defining each interfacial potential within 

the potentiometric cell, and the sensor performance strongly relied on the redox buffer 

that was doped into the sensing membranes. It was found that a more robust redox buffer 

is needed to construct a fully functional all-solid-state paper-based ion-sensing platform 

that can be used with biological samples. 

 The last objective of this dissertation research was to develop an all-solid-state 

redox buffer by covalently immobilizing a redox buffer on the surface of CIM carbon. 
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Significant progress was achieved, and an all-solid-state CIM carbon-based redox buffer 

was developed with a relatively low buffer loading. To covalently attach a redox buffer to 

CIM carbon, two approaches (i.e., click chemistry and amide coupling reactions) 

involving multiple steps were proposed and evaluated. It was found that ferrocene 

derivatives can be successfully attached to CIM carbon with a high surface loading via 

both click chemistry and amide coupling reactions, whereas the achievable surface 

loadings of various cobalt-based redox-active complexes were relatively low. When an 

all-solid-state redox buffer was constructed with cobalt(II/III) tris(5-carboxy-2,2'-

bipyridine) attached to CIM carbon, the open circuit potentials of the resulting CIM 

carbon films can be affected by the oxidation states of the surface cobalt on CIM carbon, 

demonstrating the effectiveness of this CIM carbon-based all-solid-state redox buffer. To 

construct robust calibration-free potentiometric ion sensors, however, a CIM carbon-

based all-solid-state redox buffer with higher buffer surface loading is needed. Possible 

approaches to achieving such high buffer capacity are discussed in detail in Section 7.2. 

7.2 Outlook 

To increase the surface loading of a redox buffer that is covalently attached to 

CIM carbon, the stability of the redox-active complexes on the electrode surface needs to 

be improved. For this purpose, a few alternatives have been identified, potentially 

increasing the redox buffer loading on the surface of CIM carbon.  

The first alternative is to use 2,2’-bipyridine-5-acetic acid (Figure 7.1a) as the 

ligand to bind cobalt on the surface of CIM carbon. Compared to the ligand 2,2’-

bipyridine-5-carboxylic acid that was evaluated in Section 6.3.4, 2,2’-bipyridine-5-acetic 
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acid contains a CH2 spacer that separates the carboxyl group from bipyridine. As the 

cobalt metal center strongly withdraws electrons, it may destabilize the amide bond that 

is essential to attach the complex to CIM carbon. An additional CH2 spacer between the 

cobalt center and the carboxyl group can significantly reduce this effect, thus increasing 

the stability of the amide bond. In this way, a higher cobalt surface loading can be 

expected. 

To further increase the binding ability, a tridentate ligand 2,2’:6’,2”-terpyridine-

4’-acetic acid (Figure 7.1b) can be used. This ligand not only exhibits a –CH2 separator 

between the carboxyl group and terpyridine, but also contains three nitrogen atoms that 

are available to bind with cobalt. It has been demonstrated in previous reports that cobalt 

complexes based on terpyridine exhibit fast and reversible electron-transfer kinetics, and 

therefore they were used as redox mediators for dye-sensitized solar cells,227,242 and Li-O2 

batteries.243 For a preliminary electrochemical study, a cyclic voltammogram of 1 mM 

cobalt(II) bi(terpyridine) complex was collected (data not shown). A pair of well-defined 

redox peaks was observed, with a midpoint potential of –0.137 V (vs Ag/Ag+) and a peak 

separation of 73 mV. These results further confirm the suitability of cobalt terpyridine 

complexes for redox buffer applications. Since 2,2’:6’,2”-terpyridine-4’-acetic acid is 

commercially available, it is a promising candidate to prepare CIM carbon-based all-

solid-state redox buffer with high buffer surface loading. 
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Figure 7.1 Chemical structures of alternative ligands and complexes to attach redox 

buffers to CIM carbon with potentially high surface loading. (a) 2,2’-Bipyridine-5-acetic 

acid. (b) 2,2’:6’,2”-Terpyridine-4’-acetic acid. (c) Diazonium derivative of a cobalt 

tris(bipyridine) complex that can be attached to an electrode surface via a single-step 

electrochemical reduction process. 

 Besides the choice of the ligand, cobalt complexes can also be prepared in the 

form of diazonium salts (Figure 7.3c) and directly attached to an electrode surface 

through a single-step electrochemical reduction process as described in Section 6.3.2. The 

synthetic route and effectiveness of this approach have been demonstrated in previous 

reports, where diazonium derivatives of ruthenium based complexes were successfully 

synthesized and attached to the surface of carbon nanotubes,244 and boron doped 

diamond.245 Compared to the previous multi-step approaches that involve click chemistry 

and amide coupling reactions, this method can significantly simplify the material 

preparation process, thus making it very attractive for producing CIM carbon-based redox 

buffers on a large scale.  
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 Once the redox buffer is covalently attached to CIM carbon with a high surface 

loading, it has great potential to be employed in various applications, where the precise 

control of interfacial potential can benefit the application.  

First and foremost, robust all-solid-state potentiometric ISEs and reference 

electrodes can be constructed with redox-buffer-modified CIM carbon as the solid 

contact. Benefiting from the combination of the redox buffer and high double layer 

capacitance of CIM carbon, sensors with high electrode-to-electrode reproducibility and 

potential stability can be obtained, and calibration-free ion-sensing operations can be 

achieved. Due to the high reproducibility and stability, these sensors can be used in a 

large variety of applications, such as remote environmental sensing, industrial on-line 

monitoring, and implantable medical devices. Besides bulk electrodes, CIM carbon-based 

redox buffers can also be used in single-use potentiometric ion sensors, such as the paper-

based ion-sensing platform introduced in Chapter 5. Highly reproducible and 

miniaturized all-solid-state ISEs and reference electrodes can be integrated onto the paper 

substrate, thus constructing all-solid-state paper-based ion-sensing devices that can be 

used with biological samples. By changing the components in the ISE membrane, paper-

based ion sensors with different types of ISEs and one reference electrode can be 

fabricated, enabling the detection of multiple ions (e.g., K+, Na+, Cl–) with a single 

device. Eventually, the method of printing CIM carbon-based redox buffer can be 

developed to fabricate devices on a large scale. 

  Beyond current-less potentiometric sensors, CIM carbon-based redox buffers can 

also benefit electrochemical sensors that rely on current-based techniques, such as ion-
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transfer voltammetry.20,246,247 In ion-transfer voltammetry, an external potential is 

scanned to facilitate ion transfer between the interface of two immiscible phases (e.g., 

aqueous and organic phases), thus creating a current response. The formal transfer 

potential depends on transfer free energy of the specific ion that is related to its identity, 

and the peak current is dependent on the ion concentration.248 Similar to all-solid-state 

potentiometric sensors, conductive polymers can be used as an ion-to-electron transducer 

to construct all-solid-state voltammetric sensors.21,22,249 However, as discussed in Section 

1.2.1, conducting polymer films usually exhibit a continuum of redox potentials, which 

may affect the response of the all-solid-state voltammetric sensors, especially when the 

current flow is high. Therefore, CIM carbon-based redox buffer can be employed to 

replace conductive polymers as the ion-to-electron transducer. Because the redox 

potential of CIM carbon-based redox buffer is well defined and the buffer capacity is 

high, the potential shift caused by current flow can be minimized, and calibration-free all-

solid-state voltammetric sensors can be achieved. 

 Looking beyond this dissertation, exciting opportunities await. The research of 

CIM carbon-based ion sensors has been brought to a transition point from fundamental 

inquiry to application-orientated development. It is the author’s firm belief that the 

technology developed in this dissertation will be eventually applied in commercialized 

ion-sensing devices with low cost, simple operation, high reliability, and small sample 

volumes. 
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