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Abstract

The last few decades have seen a tremendous amount of innovation in computer system

design to the point where electronic devices have become very inexpensive. This has

brought us on the verge of a new paradigm in computing where there will be hundreds

of devices in a person’s environment, ranging from mobile phones to smart home devices

to wearables to implantables, all interconnected. This paradigm, called the Internet of

Things (IoT), brings new challenges in terms of power, cost, and security.

For example, power and energy have become critical design constraints that not only

affect the lifetime of an ultra-low-power (ULP) system, but also its size and weight.

While many conventional techniques exist that are aimed at energy reduction or that

improve energy efficiency, they do so at the cost of performance. As such, their im-

pact is limited in circumstances where energy is very constrained or where significant

degradation of performance or functionality is unacceptable. Focusing on the opposing

demands to increase both energy efficiency and performance simultaneously in a world

where Moore’s law scaling is decelerating, one of the underlying themes of this work has

been to identify novel insights that enable new pathways to energy efficiency in comput-

ing systems while avoiding the conventional tradeoff that simply sacrifices performance

and functionality for energy efficiency.

To this end, this work proposes a method to analyze the behavior of an application

on the gate-level netlist of a processor for all possible inputs using a novel symbolic

hardware-software co-analysis methdology. Using this methodology several techniques

have been proposed to optimize a given processor-application pair for power, area and

security.
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Chapter 1

Introduction

A large number of existing and emerging computing applications have ultra-low-power

requirements [4, 5, 6, 7, 8]. Notable among these are the internet of things, sensor

networks, wearable electronics, and biomedical devices. The low-power requirements of

these applications are due to the fact that the applications are either energy-constrained

(e.g., battery-powered applications), power-constrained (e.g., energy-harvesting applica-

tions), or both. These applications rely on low-power microcontrollers and microproces-

sors that have become the most widely-used type of processor in production [9, 10, 11].

In the low-power embedded systems used by these applications, energy efficiency is the

primary factor that determines critical system characteristics such as size, weight, cost,

reliability, and lifetime [12, 13].

One option to target these applications is to use application-specific integrated cir-

cuits (ASICs), given their energy efficiency advantages over general purpose processors

(GPPs). However, GPPs are the preferred solution for many low-power applications,

due to their evolving nature as well as the high costs of custom IC design. Exist-

ing power management techniques for GPPs trade off performance to reduce power.

However, power can only be reduced to the extent where the associated performance re-

duction is acceptable; existing power management techniques offer no solution for power

reduction beyond the point where performance reduction becomes unacceptable. Given

the stringent power and energy constraints of emerging and existing low-power systems,

solutions that sacrifice performance to reduce power may be unacceptable. Therefore,

one of the primary focuses of this work has been to reduce power without reducing

1



2

performance.

These novel opportunities are based on the observation that resources that an ap-

plication does not use do not contribute to application performance. Therefore, any

power expended by resources that an application does not use can theoretically be elim-

inated, bringing the power consumption of a GPP running an application closer to that

of an ASIC. To exploit this opportunity, this work proposes a novel hardware-software

co-analysis technique that determines the maximal set of hardware resources that an

application can use during execution, irrespective of application inputs. We then use

the input-independent activity profile of an application running on a GPP to identify

various opportunities to optimize the processor-application pair for power, cost and

security. Specifically, we propose the following optimizations.

Application-specific Timing Analysis: Using co-analysis, we will determine the longest

path exercised by an application. If the application-specific longest path is shorter than

the worst-case longest path of the design (i.e., the static critical path), we can determine

a lower-than-nominal minimum operating voltage that is guaranteed to be safe for the

application.

Application-specific Power Gating : We can use gate activity profiles to both group

gates into application-specific power domains and make application-specific power gat-

ing decisions. Application-specific power gating can provide opportunities to power

gate larger areas of logic for longer periods of time than state-of-the-art power gating

techniques.

Application-specific Peak Power Management : Co-analysis enables us to guaran-

tee application-specific bounds on the peak power and energy requirements of a GPP.

This allows us to determine the minimum application-specific guardband against volt-

age variations. For battery-powered and energy harvesting systems, this also enables

application-specific sizing for the battery and harvester, which can be significantly

smaller compared to application-oblivious sizing.

Application-specific Processor Pruning (Bespoke Processors): Based on the informa-

tion provided by the gate activity profiles, we can infer which gates will not be used by a

given application. Knowledge of which gates cannot be toggled can be used to produce

a trimmed ‘bespoke’ processor that has a lower area and cost. In settings where the
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costs of fabricating a processor are significantly reduced, such as printed plastic and or-

ganic processors that can be 3D printed, reducing costs to produce application specific

designs using co-analysis can be significantly valuable.

Application-specific Gate-level Information Flow Tracking : Augmenting co-analysis

with information flow tracking symbols where each net is marked as ‘trusted’ or ‘un-

trusted’ allows us to perform application-specific information flow tracking for a processor-

application pair. This software-based solution to gate-level information flow tracking

identifies all possible insecure information flows for the software running on a system, as

well as the instructions that can cause violations, and allows security vulnerabilities to

be eliminated through software modifications. By targeting only the vulnerabilities that

an application is susceptible to, we minimize, and in some cases completely eliminate,

the overhead of guaranteeing security for ULP systems

• Chapter 2 presents the proposed symbolic hardware software co-analysis technique

and subsequent chapters present various applications of the technique.

• In Chapter 3 describes how hardware-software co-analysis can be used to exploit

dynamic timing slack for power savings.

• Chapter 4 describes how hardware-software co-analysis can enable effective module-

oblivious power domain construction and management for greater leakage energy

savings.

• Chapter 5 describes the application of the hardware-software co-analysis technique

to estimate peak power and energy of a given application-processor pair.

• Chapter 6 describes another application of the technique to produce an application-

specific bespoke processor for a given application.

• Chapter 7 describes how the hardware-software co-analysis technique can be used

to validate a processor for information flow security at the gate-level and proposes

software techniques to ensure information flow security for embedded processors.

• In Chapter 8 concludes the thesis with discussion of future directions.



Chapter 2

Hardware-Software Co-Analysis

One of the key observations made in this research is that for many of the emerging

applications in the IoT space it is possible to have the complete hardware and

software specification of the system. With the growing movement towards open-

source hardware, this is getting more and more possible. Also, with the movement

towards a cloud service model of providing software or design information through a

secure portal this is possible. We leverage this observation in this research not only

to improve energy efficiency but also to reduce design and implementation costs and

improve the security of ultra-low-power systems.

Exploiting the complete knowledge of the hardware and software specification of

an embedded processor-application pair, we have developed a methodology that can

efficiently analyze the behavior of an application on the gate-level netlist of a proces-

sor, for all possible executions of the application. Using this analysis, one can identify

all parts of a processor that the application is guaranteed to not exercise. To capture

the behavior of the application for all possible executions, we symbolically simulate the

application binary on the gate-level netlist of the processor, where inputs to the appli-

cation are represented using symbols representing unknown logic values. By tracking

these symbols and the gate-level activity of the design, one can identify what function-

alities of a processor an application is guaranteed not to use at any time granularity

from a per-cycle basis up to an entire application.

Symbolic simulation has been applied in circuits for logic and timing verification,

as well as sequential test generation [14, 15, 16, 17, 18, 19]. Symbolic simulation has

4
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also been applied for software verification [20]. However, to the best of our knowledge,

symbolic co-analysis of software and hardware at the granularity of the gate-level has

never been studied. Using the information gathered during this co-analysis, we proposed

several novel optimizations both at the hardware and software level for power savings,

size and cost reduction, and security in ultra-low-power systems.

Hardware-Software Co-analysis

The set of gates that an application toggles during execution can vary depending

on application inputs. This is because inputs can change the control flow of execution

through the code as well as the data paths exercised by the instructions. Since exhaus-

tive profiling for all possible inputs is infeasible, and limited profiling may not identify

all exercisable gates in a processor, we have implemented an analysis technique based on

symbolic simulation [21], that is able to characterize the gate-level activity of a proces-

sor executing an application for all possible inputs with a single gate-level simulation.

During this simulation, inputs are represented as unknown logic values (Xs), which are

treated as both 1s and 0s when recording possible toggled gates.

Algorithm 1 describes input-independent gate activity analysis. Initially, the val-

ues of all memory cells and gates are set to Xs. The application binary is loaded into

program memory, providing the values that effectively constrain which gates can be

toggled during execution. During simulation, our simulator sets all inputs to Xs, which

propagate through the gate-level netlist during simulation.1 After each cycle is simu-

lated, the toggled gates are removed from the list of unexercisable gates. Gates where

an X propagated are considered as toggled, since some input assignment could cause

the gates to toggle. If an X propagates to the PC, indicating input-dependent control

flow, our simulator branches the execution tree and simulates execution for all possible

branch paths, following a depth-first ordering of the control flow graph. Since this naive

simulation approach does not scale well for complex or infinite control structures which

result in a large number of branches to explore, we employ a conservative approxima-

tion that allows our analysis to scale for arbitrarily-complex control structures while

1 Any data or signals that can be written by external events (e.g., interrupt signals or DMA
writes) are also considered unknown values (Xs) during our analysis. Firmware components of interrupt
handling, e.g., the jump table and interrupt service handling routine, are considered to be part of the
application binary (i.e., known values) during symbolic simulation. If an interrupt is enabled during an
instruction’s execution, then that instruction is considered as possibly modifying the PC.
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conservatively maintaining correctness in identifying exercisable gates. Our approxima-

tion works by tracking the most conservative gate-level state that has been observed for

each PC-changing instruction (e.g., conditional branch). The most conservative state

is the one where the most variables are assumed to be unknown (X). When a branch

is re-encountered while simulating on a control flow path, simulation down that path

can be terminated if the symbolic state being simulated is a substate of the most con-

servative state previously observed at the branch (i.e., the states match or the more

conservative state has Xs in all differing variables), since the state (or a more conserva-

tive version) has already been explored. If the simulated state is not a substate of the

most conservative observed state, the two states are merged to create a new conservative

symbolic state by replacing differing state variables with Xs, and simulation continues

from the conservative state. This conservative approximation technique allows gate ac-

tivity analysis to complete in a small number of passes through the application code,

even for applications with an exponentially-large or infinite number of execution paths.2

2 Some complex applications and processors might still require heuristics for exploration of a large
number of execution paths [22, 23]; however, our approach is adequate for ULP systems, representative
of an increasing number of future applications which tend to have simple processors and applications [24,
11]. For example, complete analysis of our most complex benchmark takes 3 hours.
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Algorithm 1 Input-independent Gate Activity Analysis

1: Procedure Annotate Gate-Level Netlist(app binary, design netlist)
2: Initialize all memory cells and all gates in design netlist to X
3: Load app binary into program memory
4: Propagate reset signal
5: s← State at start of app binary
6: Table of previously observed symbolic states, T .insert(s)
7: Stack of un-processed execution points, U .push(s)
8: mark all gates untoggled(design netlist)
9: while U != ∅ do

10: e← U .pop()
11: while e.PC next != X and !e.END do
12: e.set inputs X() // set all peripheral port inputs to Xs
13: e′ ← propagate gate values(e) // simulate this cycle
14: annotate gate activity(design netlist,e,e′) // unmark every gate toggled (or possibly toggled)
15: if e′.modifies PC then
16: c← T .get conservative state(e)
17: if e′ 6⊂ c then
18: T .make conservative superstate(c,e′)
19: else
20: break
21: end if
22: end if
23: e← e′ // advance cycle state
24: end while
25: if e.PC next == X then
26: c← T .get conservative state(e)
27: if e 6⊂ c then
28: e′ ← T .make conservative superstate(c,e)
29: for all a ∈ possible PC next vals(e′) do
30: e′′ ← e.update PC next(a)
31: U .push(e′′)
32: end for
33: end if
34: end if
35: end while
36: for all g ∈ design netlist do
37: if g.untoggled then
38: annotate constant value(g,s) // record the gate’s initial (and final) value
39: end if
40: end for



Chapter 3

Application-specific Timing

Analysis

Hardware-software co-analysis reveals which functionalities in a processor can be exer-

cised by an application and which functionalities will never be used by the application.

Through co-analysis, we have observed that the embedded software application running

on a low-power processor may not utilize all the functionalities provided by the pro-

cessor. Only the parts of the processor that can be utilized by the application need to

meet timing constraints to ensure that the application executes correctly. Therefore,

in scenarios where unused functionalities correspond to timing-critical logic, there may

exist timing slack between the most timing-critical functionalities that exist in the pro-

cessor and the most timing-critical functionalities that are exercised by the embedded

software application running on the processor. We call this application-specific timing

slack as dynamic timing slack (DTS). In this chapter, we will investigate the extent

to which application-specific DTS exists for low-power applications and processors and

can be exploited to improve their energy efficiency.

3.1 Workload-Dependent Dynamic Timing Slack

Most modern processors are synchronous or clocked. This means that computation is

performed in clock periods, where data is transmitted from a launch flip-flop (FF) to

a capture FF (endpoint) through combinational logic gates. Transmission from launch

8
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to capture FF begins with a clock signal to the launch FF and must complete before

the next clock signal reaches the capture FF (i.e., one clock period).1 For example, a

logic transition (toggle) of the path in Figure 3.1 initiated by a toggle at the Q-pin

of FF1 (the launch FF) must reach the D-pin of FF2 (the capture FF) in one clock

period. A path that respects these constraints is said to meet timing. If the combined

delay of gates G1 through G4 is greater than the clock period, the path does not meet

timing. A typical processor has a large number of paths [25], and traditionally, all paths

must meet timing. However, some paths may just meet timing with little time to spare

(timing-critical paths), while for other paths the correct data arrives at the D-pin of the

capture FF (endpoint) significantly before the end of a clock period.

Figure 3.1: A path in a synchronous circuit

Decreasing a processor’s operating voltage reduces power but also increases logic de-

lays, which can cause timing-critical paths to violate timing constraints. Note, however,

that if the output of a path (e.g., the D-pin of FF2 in Figure 3.1) is never toggled by an

application, the capture FF will capture the same (constant) value in each clock period,

and the non-toggling path will produce correct output values even if the path violates

timing constraints. Co-analysis reveals that many applications for low-power processors

do not utilize a GPP’s entire feature set [5, 7, 6]. Non-exercised features can mean that

only a subset of the paths in a processor are exercised (toggled). If the longest exercised

path in the processor is not a timing-critical path (i.e., it produces data at its endpoint

with time to spare), then there exists an opportunity to trade this extra timing slack

for reduced power at no performance cost by keeping frequency constant and reducing

1 For simplicity, this discussion omits details such as setup and hold time, guardbands, etc. that
are accounted for during timing analysis.
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the processor’s voltage to the lowest voltage where all exercised paths still meet timing.

Un-exercised paths are allowed to violate timing constraints. This is the opportunity

we exploit in this chapter.

Figure 3.2: The dynamic slack distributions for two applications (mult and binSearch)
on openMSP430 show that both applications do not exercise all of the endpoints in the
processor. Slack is normalized to the clock period.

We now provide a motivational example that illustrates the existence of DTS in a

low-power processor. Figure 3.2 compares several slack distributions for slack up to

40% of the clock period, for a fully synthesized, placed, and routed openMSP430 pro-

cessor [26]. In the figure, the x-axis has bins for various slack ranges (normalized to the

clock period), the left y-axis shows the number of processor endpoints with worst slack

in a particular range, and the right y-axis shows the number of paths with slack in a

particular range.2 The static slack distributions, Static and Path (Static), character-

ize the worst slacks of all endpoints and paths in the processor, respectively, whether

2 Worst slack is defined for an endpoint (FF) as the timing slack of the longest path terminating at
that endpoint. Since many paths lead to the same endpoint, the number of paths in a design is typically
several orders of magnitude larger than the number of endpoints [25]. In our processor, each endpoint
corresponds to tens or hundreds of thousands of paths.
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exercised or not [27, 28, 29]. Note that a large number of paths in the design are stat-

ically critical (over 325,000). This is consistent with previous observations on other

designs [30, 31]. Nevertheless, when a particular application is executed on the proces-

sor, it may not exercise all paths or path endpoints. The other two series in Figure 3.2

show the distributions of worst slacks for only the endpoints in the processor that are

exercised by multiplication (mult) and binary search (binSearch) applications. We call

these dynamic slack distributions, and we call the longest exercised paths in a design

the dynamic critical paths for a particular application [32, 33]. Slack distributions are

reported at the worst-case (slow) corner to isolate DTS from all other phenomena that

might affect the minimum operating voltage for an application (e.g., process, voltage,

temperature, or aging variations).

The following observations and inferences can be drawn from Figure 3.2.

• Several endpoints of the processor (and hence, orders of magnitude more paths) are

not exercised when a particular application is executed. This is demonstrated by the

difference between the static slack distribution and the two dynamic slack distributions.

For example, the processor contains seven endpoints (and hundreds of thousands of

paths) with worst slack in the range [0.0 - 0.1] and 17 endpoints in the range of [0.1 -

0.2], but binSearch does not exercise any of those endpoints (or their associated paths).

• Different applications exercise different processor features and can have different dy-

namic critical paths. Consequently, the amount of available DTS can be different for

different applications. For example, since binSearch does not exercise any endpoints

with worst slack less than 0.2, its normalized DTS is at least 0.2. On the other hand,

mult exercises one endpoint with worst slack in the range [0.0 - 0.1] (the multiplier

overflow register), and it has less DTS than binSearch.

• DTS represents an opportunity to save power without sacrificing performance. For

example, if binSearch is executing on the processor, the operating voltage can be reduced

while keeping frequency constant, such that paths with timing slacks of up to 20% of

the clock period of the processor violate timing constraints (since these paths are not

exercised by the application). This generates power savings without affecting either

the functionality or performance of the processor for binSearch. Note also that unlike

timing speculative approaches that save power by reducing safety guardbands (e.g.,

Razor [34, 35, 36]), exploiting DTS does not require guardband reduction and therefore
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is completely non-speculative. Exploiting DTS simply involves adjusting the voltage

of the processor to the minimum safe voltage for the subset of processor logic that

is exercised by an application. Guardbands for the exercised logic are not violated.

Given that DTS exists for some applications, “free” power savings can be attained at

no performance cost and no risk to timing safety by adjusting the operating voltage of

the processor to exploit DTS while leaving design guardbands in place.

3.2 Quantifying DTS in Processors

Low-power embedded systems are a promising context for exploiting DTS, since em-

bedded applications typically do not use all of the hardware features provided by a

processor. Such applications may, therefore, not exercise the most timing critical logic

in a processor [37, 33, 38]. Also, low-power processors are optimized to minimize area

and power rather than maximize performance (e.g., many common microcontrollers

have a small number of pipeline stages3 ), which typically results in relatively less bal-

anced logic across pipeline stages or more delay variation across processor logic within

a pipeline stage. This may increase available DTS, since in a design with larger delay

variation, finite options for cell drive strength, threshold voltage, layout, etc. mean

that not all paths will become timing-critical after design optimization.4 Previous re-

search has also observed that only a fraction of logic in an embedded design may be

timing-critical [39].

Preliminary measurement-based results provide evidence of DTS in common low-

power processors. Experiments were performed for PIC24FJ64GA002 and MSP430F1610

processors by fixing the operating frequency and lowering the supply voltage to observe

whether different applications exhibit different minimum safe operating voltages. Ta-

ble 3.1 reports the minimum voltage at which each application operates without errors,

along with the power savings with respect to operation at the nominal voltage. The

observed Vmin varies by up to 120 mV for different applications on PIC24 and by up to

160 mV on MSP430, suggesting the existence of significant DTS.5

3 Many PIC and Atmel microcontrollers have only two stages.
4 Preliminary results show significant power reduction from exploiting DTS for a processor that

was synthesized, placed, and routed using an aggressive industry-standard design methodology that
minimizes timing slack as much as possible.

5 Some fraction of the Vmin differences across benchmarks in measured results could theoretically be
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Table 3.1: Observed Vmin on PIC24 (Vnom = 2.0V ) and MSP430 (Vnom = 3.3V ) for
different sensor network benchmarks [1].

PIC24 MSP430
Benchmark Vmin(V ) Pwr Saved (%) Vmin(V ) Pwr Saved (%)
binSearch 1.82 20.2 2.87 30.3

div 1.83 20.3 2.87 33.7
inSort 1.85 17.2 2.90 36.2

intAVG 1.89 13.1 2.77 38.4
intFilt 1.83 20.0 2.92 30.5
mult 1.82 20.4 2.76 41.7
rle 1.77 25.5 2.83 35.9

tHold 1.83 20.1 2.86 34.4
tea8 1.82 20.4 2.82 39.5

3.3 Identifying and Exploiting Application-Specific DTS

DTS identification is based on the observation that if part of a processor design can-

not be exercised by its embedded software application, then it can be constrained to

a constant value or ignored during design timing analysis to expose DTS and reveal a

more aggressive operating voltage. To expose DTS, the constraints identified during

hardware-software co-analysis (i.e., nets in the design that can never be toggled by the

application) are applied to the gate-level netlist, and static timing analysis is performed

on the constrained design to determine the minimum voltage at which the design is

guaranteed to operate safely for the given application. Application-specific timing anal-

ysis is performed for worst case process, voltage, and temperature (PVT) conditions

such that the minimum operating voltage reported is guaranteed to be safe independent

of PVT variations.

All paths that pass through an un-toggled net or gate can be ignored during application-

specific timing analysis. Such paths, by definition, are not toggled by the application,

and the application will complete successfully even if these paths do not meet timing

constraints.

Once all constraints identified by co-analysis have been applied to a design, application-

specific timing analysis checks whether all of the exercisable paths remaining in the

due to input-dependent voltage and temperature variations, in spite of ultra-low currents. Preliminary
results reported in Section 3.4 isolate the impact of DTS alone, since they are captured assuming worst
case variations and inputs.
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design (e.g., the dynamic critical paths) meet timing constraints. The minimum safe

operating voltage for the constrained design can be determined by lowering the volt-

age in steps and performing constrained timing analysis at each step to find the lowest

voltage at which all paths in the constrained design meet timing constraints.

Figure 3.3: DTS identification enabled by hardware-software co-analysis.

For an example of how co-analysis can automatically identify un-exercised logic in a

design that can be constrained to expose DTS, consider the inst_alu register in open-

MSP430. This 12-bit one-hot encoded register selects the function unit that will execute

an instruction. A bit that selects a particular function unit is set by an instruction that

executes on the function unit. Not all applications utilize the entire instruction set, and

a bit in inst_alu will not be toggled by an application that does not use the function

unit selected by the bit. For example, a run length encoding (rle) application we evalu-

ated does not use right shift or left shift instructions. Thus, the select bits corresponding

to these instructions’ function units remain as constant zeros during co-analysis. On

the other hand, an embedded encryption application (tea8) does use shift operations,

demonstrating that different applications use different functionalities and may expose

different amounts of DTS. Co-analysis reports a constraint for the shifter select bit in

inst_alu for rle but not for tea8.
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Figure 3.3 illustrates how co-analysis can automatically identify constraints for un-

exercised nets in inst_alu with a simplified example (a processor with only 4 operation

types). As described above, a select bit in inst_alu only toggles during the execu-

tion of an embedded software application if the application contains an instruction that

executes on the function unit selected by the bit. Performing co-analysis on a thresh-

olding application (tHold) generates toggles in the adder and comparator select bits in

inst_alu (colored blue in Figure 3.3), since tHold contains an inc (increment) instruc-

tion (which executes on the adder) and a cmp (compare) instruction. The code does not

contain any and or shift instructions, however, so the corresponding select bits remain

constant at zero during co-analysis of tHold. Applying these constraints propagates a

controlling value to the select gates for the corresponding functional units and elimi-

nates the logic (labeled inactive) from consideration during application-specific timing

analysis, potentially exposing DTS.

3.4 Results

Evaluation of the methodology shows potential for significant power savings from ex-

ploiting DTS through application-specific timing analysis. Table 3.2 presents the power

reduction for an openMSP430 processor afforded by DTS identification based on hardware-

software co-analysis and application-specific timing analysis. The table shows the

amount of DTS as a percentage of the clock period, the minimum safe operating voltage

reported, and the power savings afforded for each application. The voltage reduction

allowed from exploiting DTS is non-speculative and requires no reduction in operating

frequency, so reported benefits are essentially “free” power savings. The baseline for the

results is the processor operating at nominal frequency and voltage (100MHz and 1V for

openMSP430). Over the range of applications, average power savings from exploiting

DTS are 25%.

The results in Table 3.2 show that different applications can expose different amounts

of DTS, resulting in different minimum safe operating voltages. This is because different

applications exercise different processor features, resulting in a different set of logic

constraints. For example, relatively less DTS is available for AutoCorr, FFT, intFilt,

and mult, because these applications use openMSP430’s hardware multiplier – one of
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Table 3.2: Power savings from exploiting DTS.
Benchmark DTS (%) Vmin(V ) Pwr Saved (%)
binSearch 32.01 0.86 28.38

div 31.42 0.86 28.42
inSort 31.79 0.86 28.40

intAVG 31.73 0.86 28.36
intFilt 21.64 0.90 21.10
mult 12.34 0.94 13.54
rle 31.76 0.86 28.34

tHold 32.13 0.86 28.37
tea8 31.42 0.86 28.36

AutoCorr 10.04 0.95 11.15
ConvEnc 31.73 0.86 28.39

FFT 10.04 0.95 11.14
Viterbi 31.43 0.86 28.50

the most timing-critical modules in the processor.

3.4.1 Comparison with Related Work

DVFS:

In this work, we exploit DTS for power reduction by reducing voltage without reduc-

ing frequency, such that all exercised parts of a processor design meet timing constraints.

Related work on DVFS [40, 41, 42, 43, 44, 45] also reduces power by reducing voltage;

however, DVFS reduces frequency along with voltage to ensure timing safety. Fig-

ure 3.4 compares power and energy reduction achieved by DVFS and DTS at different

DVFS operating points (V/f). The “Power” series in Figure 3.4 shows power reduction

for DVFS along with additional power reduction achieved by exploiting DTS at each

operating point. DTS is orthogonal to DVFS and as such, DTS can be exploited for

additional power savings at any DVFS operating point, even at the nominal operating

point, where DVFS is not exploited to reduce power. Furthermore, while DVFS may

lead to significant performance reduction, especially when performance is strongly cor-

related with frequency (e.g., in a system with embedded memories, like openMSP430),

exploiting DTS at any operating point introduces no additional performance degrada-

tion, since DTS allows voltage reduction without any frequency reduction. Results for

power-delay product (PDP) reduction show that DVFS can lead to an increase in energy

(negative PDP reduction) at some operating points while DTS always reduces energy.
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Figure 3.4: DVFS reduces frequency along with voltage and may lead to performance
degradation. DTS enables voltage reduction without any reduction of frequency. Fur-
thermore, the benefits of DTS are orthogonal to those of DVFS and can be extracted
in addition to any benefits produced by DVFS.

Better-than-worst-case Design:

Our DTS identification methodology performs analysis at the worst-case design cor-

ner, leaving unexploited benefits at better-than-worst-case (BTWC) operating condi-

tions. Below, we describe how our DTS identification approach can be combined with

BTWC design techniques to reclaim benefits of guardband reduction while safely ex-

ploiting DTS. We also compare our approach for exploiting DTS against two popular

BTWC design techniques – critical path monitors (CPMs) [46] and Razor [34, 35, 36].

CPMs: CPMs exploit static timing slack by monitoring circuits that track the static

critical paths of a processor and adjusting the voltage to ensure that the circuit and

processor meet timing constraints when the processor operates at an aggressive BTWC

operating point. CPMs are less intrusive and have lower design and verification overhead

than many comparable BTWC techniques and may also be more conservative, since

they cannot track local process, voltage, and temperature (PVT) variations. For our

evaluations of designs that employ CPMs, we select the operating point to maintain

guardbands for local PVT variations. Compared to the power of the processor, the

power overhead of CPM circuits is negligible.

The timing slack in guardbands under BTWC conditions (exploited by CPMs) is
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orthogonal to DTS (timing slack between un-exercised static critical paths and exercised

dynamic critical paths). As such, DTS exploitation techniques can be used synergis-

tically with CPMs for additional power reduction by using CPMs to track dynamic

critical path delay rather than static critical path delay. We refer to CPMs that track

dynamic critical path delay as dynamic critical path monitors (DCPMs) as opposed to

conventional static critical path monitors (SCPMs). Since our DTS identification tech-

niques identify the dynamic critical paths exercised by an application, tuning CPMs to

track dynamic critical path delay is feasible using tunable CPMs [47, 48].

Razor: Razor introduces error detection and correction circuitry to a processor and

adjusts the processor’s voltage to operate at the minimum energy operating point, close

to the point of first failure. Since Razor determines an aggressive operating voltage

by observing when errors exceed a predefined threshold, it can eliminate guardbands

and also exploit DTS. While Razor can potentially exploit DTS, it suffers from adding

non-trivial area, design, and verification overheads making it unpalatable to ultra-low-

power processors. Our approach, on the other hand, is non-speculative – software

analysis determines an application-specific Vmin (or fmax) that is guaranteed to be safe,

irrespective of the input or operating conditions, since we perform input-independent

analysis at the worst-case (slow) corner. As a result our technique has little or no

hardware overhead and provides benefits even during worst-case operating conditions.

Finally,our approach for exploiting DTS can even be used for existing processors and

applications, without need for re-designing and re-certifying the processor.

To evaluate Razor, we first identify flip-flops (FFs) that need to be replaced with

Razor FFs by selecting the minimum safe operating voltage for the processor under

typical case operating conditions and identifying all the FFs that can violate timing

constraints at this voltage under worst case operating conditions. After replacing these

FFs with Razor FFs containing an extra (shadow) latch, clock buffer, XOR gate for

error detection, and MUX for error correction, an “OR” network was added to combine

the error signals to be sent to the voltage regulator, and hold time constraints were

placed on the Razor FFs during layout of the synthesized netlist to generate the placed

and routed netlist. Implementing Razor in this fashion resulted in an area overhead of

14% for openMSP430. Note, however, that this is an optimistic evaluation of Razor, as

the Razor overheads for meta-stability detectors, error correction (dynamic performance
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and power overheads), clock gating, error rate measurement, and voltage control logic

were not considered. Also, the design was not able to meet the hold time constraint for

all Razor FFs (one of several difficult challenges for Razor designs [36]). Although we

did not account any error correction overheads, we evaluated the Razor-based design at

a reduced voltage corresponding to a 1% error rate for each benchmark.
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Figure 3.5: Comparison of power savings for DTS, Razor, and CPMs under different
operating conditions.

Figure 3.5 compares power reduction achieved by DTS exploitation, SCPMs, DCPMs+DTS,

and Razor under different operating conditions (worst, typical, best). SCPMs achieve

significant power reduction at BTWC operating points (typical, best) but no reduction

under worst case conditions. DTS, however, can be exploited for significant power sav-

ings (25%) even in worst case conditions. Exploiting DTS synergistically with CPMs

(DCPMs+DTS) achieves significant additional benefits over SCPMs at BTWC operat-

ing points.

As mentioned above, Razor can potentially exploit DTS in addition to static timing

slack resulting from BTWC operating conditions. Under best-case conditions, Razor can

reduce power more than DTS+DCPMs, since CPMs maintain guardbands to protect

against local variations. Under worst-case conditions, exploiting DTS (with or without

DCPMs) reduces power more than Razor, even though Razor exploits DTS. This is due
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to the power overheads associated with Razor-based design. Nevertheless, both best-case

and worst-case conditions are rare. Under typical conditions, Razor and DCPMs+DTS

achieve similar power savings. However, our automated techniques for exploiting DTS

may be more attractive, especially in ultra-low-power embedded designs, due to the

area, design, and verification overheads of Razor.



Chapter 4

Application-specific Power Gating

The activity profile generated by hardware-software co-analysis (Chapter 2) can be used

to identify times when an application is guaranteed not to exercise a specific set of gates

in the processor. Information about when a set of gates is guaranteed to be inactive can

be produced at any granularity, ranging from a single gate to the entire processor. This

information can be used to group gates into application-specific power domains based

on correlated periods of inactivity and to inform the processor when to power a set of

gates (domain) on or off to save power for a specific application.

Table 4.1: Power Domains

in Recent Processors

Processor #domains

TI MSP430 Wolverine “many” [49]

ARM Cortex-A9 14 [50]

ARM Cortex-A15 8 [51]

Atmel SAML21 5 [52]

Intel Atom E6 15+ [53, 54]

While a large body of work exists on power

gating at the processor or core level [55, 56,

57, 58, 59, 60], emerging power- and energy-

constrained applications have fueled recent work

on aggressive module-based power gating tech-

niques, in which register-transfer level (RTL)

modules are powered down during periods of in-

activity [61, 59, 62, 63, 64, 65, 66, 67, 68, 69, 70,

71, 72]. Table 4.1 shows the number of power domains supported in some recent micro-

processors / microcontrollers. As can be seen, power gating is already being performed

aggressively; many processors have a large number of power domains.

While RTL modules form convenient boundaries for defining power domains, module-

based domains may not be the best option for supporting aggressive power gating. Logic

is grouped into a module based on common functionality and not necessarily correlated

21
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activity. In this section, we propose research on application-specific module-oblivious

power gating. A module-oblivious power domain is an arbitrary set of gates that have

correlated activity profiles, as determined by hardware-software co-analysis (Chapter 2).

Module-oblivious power domains may contain only a subset of gates in a module, may

contain gates from multiple (often many) modules, and may also consist of logic from

non-microarchitectural modules (e.g., uncore, debug logic, peripherals, etc.). The goal of

grouping logic into module-oblivious power domains based on correlated activity rather

than module membership is to enable larger segments of logic to be power gated for

longer periods of time, thus saving more energy.

4.1 A Case for Module-oblivious Power Domains

There are several reasons why module-oblivious power domains may provide signifi-

cantly more opportunities for power gating than module-based domains in microproces-

sors. One reason is that logic in microarchitectural modules is grouped together largely

based on functionality or position in the processor pipeline, which does not necessarily

imply correlation in terms of activity. It may often be the case that different logic par-

titions within the same microarchitectural module have very different activity profiles.

For example, it is common for several modules to contain some parts that are nearly

always active and other parts that are nearly always idle. This weak or anti-correlation

between the activity profiles of different parts within a module limits the effectiveness

of power gating for module-based domains. Similarly, logic that spans across module

boundaries may exhibit correlated activity, such as logic in one module that drives logic

in another module. Although the entire modules containing the driving and driven logic

are unlikely to have correlated activity, the driving and driven parts of the modules do

have highly correlated activity. Also, such logical components are typically in close

proximity in a chip layout, making them good candidates to be placed in the same

domain for power gating.

Figure 4.1 shows activity profiles for the frontend and execution unit modules of the

openMSP430 processor [26], where each module has been divided into two sub-modules.

In the figure, a high/low value indicates that a sub-module is active/idle. Since both the

frontend and execution unit have at least one part active during nearly every instant of



23

Figure 4.1: Uncorrelated activity within a module can prevent power gating of module-
based domains, whereas module-oblivious domains allow more aggressive power gating.

this time period, there is no opportunity to power gate either module (see blue activity

profiles). Stated differently, fndA and exuA prevent the frontend and execution unit

from being power gated, even though fndB and exuB are almost completely idle. If,

however, fndA and exuA were combined to form one power domain and fndB and exuB

formed a second domain, the second domain could be power gated during this time

period (see red activity profiles). Uncorrelated activity within modules and correlated

activity across module boundaries indicates that there may be significant opportunities

to perform more aggressive power gating with module-oblivious power domains.

Figure 4.2 is a heat map that shows the correlation between each pair of sub-modules

in the openMSP430 processor, where correlation equals the fraction of cycles in which

two sub-modules exhibit the same activity (active or idle). The dashed black boxes

along the main diagonal encircle correlation scores for sub-modules that belong to the

same module. It can be observed that not all parts of a module have correlated ac-

tivity, and in many cases, different parts of the same module have highly uncorrelated

activity. Tracing down a row corresponding to a given sub-module, it can be observed

that there always exist one or more sub-modules from different modules that have more

correlated activity profiles than a sub-module from the same module. For example, in

the row showing correlations for the last sub-module in the frontend, we have encircled

all the (10) sub-modules from different modules that are more strongly correlated to
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Figure 4.2: Different parts of the same module can have uncorrelated activity profiles.
For nearly all module partitions, there is a partition from a different module with more
correlated activity than another partition from the same module.

this frontend sub-module than any of the other frontend sub-modules. These observa-

tions suggest that module-based power domains may often miss opportunities to power

gate idle logic, whereas module-oblivious power domains may provide significantly more

opportunities to power gate larger areas of logic for longer periods of time.

4.2 Forming Module-oblivious Power Domains

One approach for module-oblivious domain formation is to use hierarchical agglomer-

ative clustering [73], in which every gate is initially placed in a separate cluster, and

clusters are combined until the desired number of domains is formed. This clustering

technique combines a set of N clusters into N-1 clusters, based on an optimization objec-

tive. In this case, the objective function uses activity profiles for the clusters (obtained

from hardware-software co-analysis of representative applications) to determine which
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Figure 4.3: Breakdown of domain composition for four module-oblivious power domains
formed using hierarchical agglomerative clustering. All four domains have gates from
at least eight microarchitectural modules.

combination of clusters maximizes the potential energy savings achieved by power gat-

ing the resulting domains. Since a gate may end up in a domain containing gates from

other modules, the resulting domains are module-oblivious. Figure 4.3 shows the com-

position of four module-oblivious power domains created using the approach described

above.

4.2.1 Application-specific Power Domain Management

To reap the potential power benefits provided by module-oblivious domains, a power

domain management technique is needed that can determine when domains are idle /

active and power them off / on accordingly. Unfortunately, existing techniques that

are used to manage module-based domains through software or hardware cannot be

used for module-oblivious domains. Consider existing software-based management tech-

niques [74, 61]. These techniques infer when power domains will be inactive by analyzing
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an application binary. Software-based management is possible when the activity of do-

mains can be inferred from software, as is the case for many module-based domains [55].

In the example code listing in Figure 4.4, domain D0 is a module-based domain corre-

sponding to the adder in the execution unit. Since the adder module has a well-defined

architectural function, it is possible to infer from software when the domain needs to be

powered on. For example, instructions 4 (compare) and 9 (subtraction) use the adder,

so domain D0 must be powered on when those instructions reach the execution stage.

The adder can potentially be powered off for other instructions, since they do not use

the adder.

1.mov #0, r4; 
2.mov #0, r5;
3.mov &0x0020, r15; 
4.cmp r15, #10000;
5.jl else
then:
6.mov #1000, r4
7.jmp end
else: 
8.mov #1000, r5
end:
9.sub r4, r5, r6; 

OFF ?

OFF ?

OFF ?

ON ?

OFF ?

OFF ?

OFF ?

OFF ?

ON ?

D0			D3

 

 

D0/adder
D3/glue
D3/clk−module
D3/dbg
D3/eu−other
D3/eu−alu
D3/eu−reg−file
D3/frontend
D3/mbb
D3/mult
D3/sfr

Figure 4.4: It is possible to infer the activity of a module-based domain (e.g., D0 – the
adder in the execution unit) based on software alone. It is not possible to infer the
activity of a module oblivious domain (e.g., D3) based on software alone.

For a module-oblivious domain, however, it is not possible to infer domain activity

from software alone. A module-oblivious domain does not have a well-defined archi-

tectural function. It is a collection of gates with correlated activity profiles that may

belong to many modules and contribute to many functionalities, making it impossible

to infer activity of module-oblivious domains from software alone. For example, domain

D3 in Figure 4.4 corresponds to a module-oblivious domain containing gates from ten

different modules. The collection of gates has no architectural meaning, and it is not

possible to infer when the gates will be active or inactive based on software alone.
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module domain_activity_detector_D0 (
inst_type , // from decode
wkup_adder);

input [11:0] inst_type;
output wkup_adder;
wire wkup_adder = {inst_type[‘ADD] |
inst_type[‘SUB] | inst_type[‘ADDC] |
inst_type[‘SUBC] | inst_type[‘CMP] |
inst_type[‘REL_JMP] | inst_type[‘RETI ]};

endmodule

Figure 4.5: Verilog statements for inferring the activity of the execution unit adder
module synthesize to 6 gates.

Similarly, existing hardware-based domain management techniques are not feasi-

ble for module-oblivious domains. Hardware-based domain management techniques

use hardware monitors to dynamically determine when a power domain is idle / ac-

tive based on processor control signals [57, 56, 58, 72, 66, 67]. This can be relatively

straightforward for module-based designs, since RTL modules are encapsulated, with a

well-defined interface (port list) and functional description. For example, consider D0

in Figure 4.4 – the adder module. To determine if this domain will be active, hardware-

based management logic only needs to detect if a decoded opcode corresponds to one of

the instructions that uses the adder. Figure 4.5 shows the verilog statements that can

be added to the decode stage to infer the activity of the adder. Synthesized, this logic

corresponds to only 6 gates.

On the other hand, domain management logic for module-oblivious domains is not

simple. Since module-oblivious domains are not nicely encapsulated with a well-defined

interface and function, the only way to infer their activity in hardware is to monitor

activity on all input nets that cross the domain boundary. Additionally, state elements

(flip-flops) inside the domain must be monitored for activity, since a state machine inside

the domain could be active even without triggering any activity at the domain boundary.

As such, the number of signals that must be monitored to infer domain activity is

prohibitively large. Figure 4.6 shows the verilog statements that infer the activity of

the module-oblivious domain D3 from Figure 4.4. Synthesized, this logic corresponds
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module domain_activity_detector_D3 (
in, // domain inputs
ff_d , // domain ff D-pins
ff_q , // domain ff Q-pins
clk , wake_up_domain );

input [704:0] in; input [648:0] ff_d;
input [648:0] ff_q; input clk;
output wake_up_domain; reg [704:0] in_delay;

always @ (posedge clk)
begin

in_delay <= in;
end

wire [704:0] in_toggled = in ^ in_delay;
wire [648:0] ff_toggled = ff_d ^ ff_q;
wire any_input_toggled = {| in_toggled };
wire any_ff_toggled = {| ff_toggled };
wire wake_up_domain = {any_input_toggled | any_ff_toggled };
endmodule

Figure 4.6: Verilog statements for inferring the activity of the module-oblivious domain
D3 from Figure 4.4 synthesize to 4010 gates.

to 4010 gates. For the entire openMSP430 processor, we estimated the area and static

power overheads of hardware-based management of four module-oblivious domains to be

184% and 174%, respectively, precluding any possible power reduction from aggressive

power gating.

Any viable technique for managing module-oblivious power domains must be based

on inferring software-induced activity at the gate level such that (a) the activity of

module-oblivious domains can be inferred and (b) the prohibitive overheads associated

with hardware-based monitoring of an arbitrary set of gates can be avoided. The anno-

tated symbolic execution tree produced by hardware-software co-analysis can be used,

along with gate-to-domain mapping information, to annotate static instructions in a

binary with power gating decisions for all domains in the processor. All domains that

contain at least one active gate in a given cycle must be turned on. To ensure that a

domain is turned on in time, binary annotation marks a domain as active during the

N cycles leading up to a period of activity, where N is the wakeup latency required to
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power on the domain.

If a domain is not active for any dynamic instance of a particular static instruction

(even considering wakeup overheads), the domain can be powered off. The annotated bi-

nary contains application-specific domain management decisions, indicating when each

domain must be turned on and when each domain can be turned off. We will explore

a variety of microarchitectural support mechanisms for communicating software-based

power gating decisions to domain control logic. Since the decisions are annotated in

the application binary, microarchitecture support mechanisms used in previous works

on software-based power gating [74] can be used to communicate power gating decisions

determined by co-analysis, including insertion of power gating instructions, utilizing

reserved instruction bits, and storing gating decisions in a table referenced by an in-

struction’s address (PC).

We now illustrate the proposed approach for management of module-oblivious power

domains with an example. Figure 4.7 revisits the example code from Figure 4.4 to

demonstrate that the proposed technique based on hardware-software co-analysis can

infer the activity of module-oblivious domains, which was impossible to infer from soft-

ware alone.

Figure 4.7 shows the annotated symbolic execution tree generated by co-analysis.

Co-analysis simulates the application starting at instruction 1. When an input value is

read in instruction 3, instead of storing the input bits, unknown logic values (Xs) are

stored in r15. During instruction 5, an X propagates to the PC inputs, since the result of

the comparison in instruction 4 is unknown (X). At this point, a branch is created, and

the simulation state is stored in a stack for later analysis with the address of instruction

8 (else:) in the PC inputs. Simulation continues through the left control flow path

to completion, starting with instruction 6. After finishing instruction 9, the stored

simulation state is popped off the stack and the right control flow path is simulated to

completion, starting with instruction 8.

During simulation, each dynamic instruction is annotated with domain activity for

each domain (D1 and D2 in Figure 4.7). ON means that at least one gate in the domain

might be active during that instruction; OFF means that all of the domain’s gates are

guaranteed to be inactive during that instruction. Next, the domain states (ON/OFF)

from the symbolic execution tree are mapped to the static instructions in the application
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1.mov #0, r4; 

2.mov #0, r5;

3.mov &0x0020, r15; 

4.cmp r15, #10000;

5.jl else

then:

6.mov #1000, r4

7.jmp end

else: 

8.mov #1000, r5

end:

9.sub r4, r5, r6; end:

9.sub r4, r5, r6; 

then:

6.mov #1000, r4

7.jmp end

1.mov #0, r4; 

2.mov #0, r5;

3.mov &0x0020, r15; 

4.cmp r15, #10000;

5.jl else

else: 

8.mov #1000, r5

end:

9.sub r4, r5, r6; 

ON OFF

ON OFF

ON OFF

ON OFF

ON OFF

ON OFF

ON OFF
ON OFF

ON OFF ON ON

ON OFF

ON OFF

ON OFF

ON OFF

ON OFF

ON OFF

ON OFF

ON OFF

ON ON

Static Instruction Stream 
(Binary)

Dynamic Instruction Stream 
(Execution Tree)

D1   D2

D1   D2

D1   D2

D1   D2

D1   D2 D1   D2

Figure 4.7: Illustration of binary annotation for application-specific power gating of an
example code (an if-else block). For simplicity, this example only shows domain-level
activity, assumes that each instruction takes a single cycle, and assumes a wake-up
latency of zero cycles.

binary. Consider static instruction 1 (mov #0, r4). There is only one dynamic instance

of the instruction in the symbolic execution tree, and for this instance, domain D1 is

ON and D2 is OFF. Therefore, the corresponding static instruction is annotated with

the information that D1 is ON and D2 is OFF.

Now consider static instruction 9 (sub, r4, r5, r6). There are two dynamic in-

stances of the instruction in the execution tree. The activity of D1 is consistent across

the two instances (D1 is ON for both); therefore, the static instruction is annotated with

the information that D1 is ON. The activity of D2, however, is not consistent across

the two dynamic instances of instruction 9; D2 is OFF in one and ON in the other.

In this case, the conflict is resolved conservatively by marking D2 as ON in the static

instruction annotation. This ensures safety for all possible executions of the application.
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4.3 Microarchitecture Support for Software-based Power

Gating

The previous section describes a technique that can infer the activity of module-oblivious

domains without costly hardware-based monitoring and use inferred domain activity to

make safe and profitable domain management decisions. This section describes microar-

chitectural support for communicating domain management decisions to the control

logic that powers the domains off and on.

Power Gating Instructions:

A straightforward way to generate power gating control signals is to insert instructions

in the binary that direct power domains when to turn off and on. To ensure that a power

domain is powered on before it is used, the wakeup instruction for a domain must arrive

wakeup-latency cycles before an instruction, IA, that will activate the domain. For an

in-order processor, we insert the wakeup instruction wakeup-latency instructions ahead

of IA. This guarantees that the domain will be powered up even if instructions have

variable latencies. A power down instruction for a domain is inserted immediately

after the last instruction that specifies that the domain must be powered on. Since

GBA marks domains as active (ON) during their entire wakeup and activity period, the

wakeup instruction is simply inserted before the first instruction that marks a domain

as ON, and the power down instruction is inserted after the last instruction that marks

a domain as ON. For example, in Figure 4.7 an instruction that turns D1 ON and D2

OFF is inserted before instruction 1, while an instruction to turn D2 ON is inserted

before instruction 9. Note that a similar support mechanism has been used in prior

work on software-based power gating of functional units for embedded processors [74].

Reserved Instruction Bits:

Another option for indicating when domains should be powered on and off is to modify

the ISA of the processor to reserve some bits in the instruction to indicate the ON/OFF

state of each domain. The number of bits required is equal to the number of domains.

The main benefit of this technique is that it does not require extra instructions to be

inserted in the binary. However, since the number of bits that can be reserved in the

instruction for power gating would likely be small, this technique can only support a
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small number of power domains. Also, reserving instruction bits for power-gating deci-

sions may increase code size if the instruction length must be increased to accommodate

the bits.

PC Monitoring:

Another alternative is to maintain a software-populated table that holds the addresses

of annotated instructions, along with corresponding information about which domains

should be turned ON or OFF when that instruction’s address enters the PC. Every

N instructions, the application populates the table with the addresses of annotated

instructions in the next window of N instructions. When the PC matches one of the

addresses in the table, the power domain control signals stored in that table entry are

sent to the respective power domains to switch them on or off. This technique requires

some software overhead to re-populate the table and hardware overhead to implement

the table as a CAM.

4.4 Results

Evaluation of the methodology suggests that application-specific power gating of module-

oblivious domains can have significant benefits over state-of-the-art module-based power

gating. Figure 4.8 compares the leakage energy savings provided by our approach

(co-analysis) against (1) state-of-the-art hardware-based management based on Idle-

Count [75] with different idle periods (5, 10, 100) and (2) oracular management, which

shows how our approach compares to optimal power gating. Results are shown for four

power domains and different domain wakeup latencies.1 The stacked bars in the figure

correspond to three different scenarios. The overall height of a stack shows the poten-

tial benefits of the technique when no implementation or instrumentation overheads are

considered, i.e., the maximum potential benefits. The next level in a stacked bar shows

benefits after domain isolation and state retention overheads are accounted for, and the

lowest level in a stack shows benefits when accounting for isolation, retention, and soft-

ware instrumentation overheads. Note that we use the industry-standard unified power

format (UPF) to fully implement power gating designs and accurately account for all

1 The domain wakeup latency of 1 cycle is the most realistic for most small embedded processors [76,
58] We also evaluated 100- and 1000-cycle wakeup latencies, which show the same trend as 10-cycle
results. Additionally, evaluations for two and three power domains show the same trend.
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implementation overheads of power gating. Note also that for our instrumentation over-

heads, these preliminary results conservatively assume the software approach with the

highest overhead – binary instrumentation with dedicated power gating instructions.
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Figure 4.8: Comparison of leakage energy savings provided by different domain manage-
ment and formation techniques. Results in each stack (from top to bottom) correspond
to maximum potential benefits of the technique, benefits after accounting for isolation
and retention, and benefits after isolation, retention, and instrumentation.

On average, power gating on module-oblivious domains provides 2× more savings

than hardware-based management of module-based domains. Preliminary results show

that co-analysis is a very effective management technique for module-oblivious do-

mains, as its power benefits are within 3.0% of optimal (oracle) management of module-

oblivious domains. Co-analysis can also be used to generate domain management deci-

sions for existing module-based domains, saving 6.0% more energy than hardware-based

domain management for module-based domains, even when assuming no hardware over-

head for implementing IdleCount.

A preliminary analysis of the performance impact of instrumentation overhead for

module-oblivious power gating shows that application-specific power gating based on co-

analysis has lower overhead than state-of-the-art hardware-based domain management

(IdleCount), even assuming the most costly proposed binary instrumentation technique

(dedicated power gating instructions). Note that existing software-based power gating

approaches would have comparable instrumentation overhead to power gating based

on co-analysis; however, existing software-based approaches cannot manage module-

oblivious domains, and thus, cannot tap into the higher level of leakage savings that

they provide over module-based domains.
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Figure 4.9: “Cool” map for module-based domains shows little opportunity for saving
power in the processor

Figure 4.9 and Figure 4.10 are visualizations of opportunites to save power using

power gating for module-based and module-oblivious power domains, respectively. Con-

trasting these figures shows why module-oblivious domains provide more opportunities

for power gating than module-based domains. Each figure is a type of correlation ma-

trix that shows the power gating correlation between different sub-module pairs (sub-

module1, sub-module2) in the processor, where power gating correlation is defined as

the fraction of cycles that the two sub-modules, sub-module1 and sub-module2, are idle

at the same time. We have defined the color scale such that cooler colors mean that

the sub-modules are more frequently idle at the same time and therefore can be power

gated together. Figure 4.9 shows power gating correlation for module-based domains,

and Figure 4.10 is for module-oblivious domains. The different sub-modules in the two

matrices are arranged such that sub-modules belonging to the same domain form ad-

jacent rows and columns. The dashed boxes along the main diagonal encircle all the

power gating correlation scores for pairs of sub-modules that belong to the same power

domain.
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Figure 4.10: “Cool” map for module-oblivious domains shows a large opportunity for
saving power in the processor

Module-based domains do not account for the fact that different parts of the same

microarchitectural module may have uncorrelated activity profiles; as a result, they

provide fewer opportunities for power gating. A single sub-module (even a single gate!)

with high activity or uncorrelated idle times can sabotage power gating opportunities for

an entire domain. For example, even though large portions of the domains in Figure 4.9

are “cool”, the small number of “hot” cells in each domain prevent many power gating

opportunities. Figure 4.9 shows that in many cases, moving a small number of gates

to a different domain could provide more opportunities for power gating larger areas of

logic for longer periods of time. This explains the significant improvement in benefits

seen in Figure 4.8 for module-oblivious power gating over module-based power gating.

By forming domains that contain logic from different modules with similar activity

profiles, module-oblivious domains do not allow more active logic to ruin power gating

opportunities for less active logic in the same module.



Chapter 5

Application-specific Peak Power

and Energy Estimation

Since co-analysis of hardware and software (see Chapter 2) can identify all instances

when the gates in a processor can possibly toggle for an application, the results of

co-analysis can be used to determine application-specific peak power and energy re-

quirements for a low-power embedded system. Low-power systems can be classified into

three types based on how they are powered [77]. As illustrated in Figure 5.1, some are

powered directly by energy harvesting (Type 1), some are battery-powered (Type 3),

and some are powered by a battery and use energy harvesting to charge the battery

(Type 2). For each of these classes, the size of energy harvesting and/or storage com-

ponents determine the form factor. Consider, for example, the wireless sensor node in

Figure 5.2 [78]. The two largest system components that predominantly determine the

system size and weight are the energy harvester (solar cell) and the battery.

Going one step further, since the energy harvesting and storage requirements of a

low-power system are determined by its power and energy requirements, the peak power

and energy requirements of a low-power system are the primary factors that determine

critical system characteristics such as size, weight, cost, and lifetime [77]. In Type 1

systems, peak power is the primary constraint that determines system size, since the

power delivered by harvesters is proportional to their size. In these systems, harvesters

36
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Figure 5.1: Low-power systems are commonly powered by energy harvesting, battery,
or a combination of the two, where harvesters are used to charge the battery.

must be sized to provide enough power, even under peak load conditions. In Type 3 sys-

tems, peak power largely determines battery life, since it determines the effective battery

capacity [12]. As battery discharge rate increases, effective capacity drops [13, 12]. This

effect is exaggerated in low-power systems, where near-peak power is consumed for a

short time, followed by a much longer period of low-power sleep, since pulsed loads with

high peak current reduce effective capacity even more drastically than sustained current

draw[13].

Table 5.1: Power density for

different types of energy har-

vesters. [2]

Harvester type Power Density

Photovoltaic (sun) 100 mW/cm2

Photovoltaic (indoor) 100 µW/cm2

Thermoelectric 60 µW/cm2

Ambient airflow 1 mW/cm2

In Type 2 and 3 systems, peak energy

requirements also matter. For example, en-

ergy harvesters in Type 2 systems must be

able to harvest more energy than the system

consumes, on average. Similarly, battery life

and effective capacity are dependent on en-

ergy consumption (i.e., average power) [13].

Figure 5.3 summarizes how peak power and

energy requirements impact sizing parameters for the different classes of low-power

systems. Finally, Tables 5.1 and 5.2 list the power and energy densities for different

types of energy harvesters and batteries, respectively. These data provide a rough sense

of how size and weight of a low-power system scale based on peak power and energy

requirements.
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Figure 5.2: In most low-power systems, like this wireless sensor node, the size of the
battery and/or energy harvester dominates the total system size.

5.1 Conventional Peak Power and Energy Estimation

Table 5.2: Specific energy and en-

ergy density for different battery

types [3].

Battery Specific Energy Energy Density

Type [J/g] [MJ/L]

Li-ion 460 1.152

Alkaline 400 0.331

Carbon-zinc 130 1.080

Ni-MH 340 0.504

Ni-cad 140 0.828

Lead-acid 146 0.360

There are several possible approaches

to determine peak power and energy

requirements for a low-power proces-

sor (Figure 5.4). The most conserva-

tive approach involves using processor

design specifications provided in data

sheets. These specifications characterize

the peak power that can be consumed

by the hardware at a given operating

point and can be directly translated into

a bound on peak power. This bound is

not application-specific and is thus conservative; however, it is safe for any application

that can be executed on the hardware. A more aggressive technique for determining

peak power or energy requirements is to use a peak power or energy stressmark. A
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Figure 5.3: Harvester and battery size calculations for Type 1, 2, and 3 low-power
systems.

stressmark is an application that attempts to activate the hardware in a way that max-

imizes peak power or energy. A stressmark may be less conservative than a design

specification, since it may not be possible for an application to exercise all parts of the

hardware at once. The most aggressive conventional technique for determining peak

power or energy of a low-power processor is to perform application profiling on the

processor by measuring power consumption while running the target application on the

hardware. Since profiling is performed with specific input sets under specific operating

conditions, peak power or energy bounds determined by profiling might be exceeded

during operation if application inputs or system operating conditions are different than

during profiling. To ensure that the processor operates within its peak power and energy

bounds, a guardband is applied to profiling-based results.
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Figure 5.4: The conventional methodology for sizing energy harvesting and storage com-
ponents involves determining peak power and energy requirements for a processor and
selecting components that provide enough power and energy to satisfy the requirements
over the lifetime of the system.

5.2 Input-Independent Peak Power Requirements

Most low-power processors run the same application or computation over and over

in a compute / sleep cycle for the entire lifetime of the system [79]. As such, the

power and energy requirements of low-power processors tend to be application-specific.

This is not surprising, considering that different applications exercise different hardware

components at different times, generating different application-specific loads and power

profiles.

However, while the peak power and energy requirements of low-power processors

tend to be application-specific, conventional design-based and stressmark-based tech-

niques for determining peak power and energy requirements are not application-specific.

A profiling-based approach is application-specific, but it must use guardbands to inflate

the peak power requirements observed during profiling, since it is not possible to de-

termine bounds that are guaranteed for all possible input sets. Existing conventional

techniques cannot accurately bound the power and energy requirements of an applica-

tion running on a processor, leading to over-provisioning that increases critical system

characteristics like size, weight, and cost.

Motivation for input-independent application-specific peak power and en-

ergy requirements

Preliminary measurement-based results provide motivation for application-specific

peak power and energy requirements. Figure 5.5 compares the peak power observed for
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different applications running on an MSP430F1610 processor.1 The results show that

peak power can be different for different applications. Thus, a peak power bound that is

not application-specific will overestimate the peak power requirements of applications,

leading to over-provisioning of energy harvesting and storage components that deter-

mine system size and weight. Figure 5.5 also shows that the peak power requirements
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Figure 5.5: The peak power of a low-power processor is different for different applications
and different inputs. Input-induced peak power variations are shown as error bars.

of applications are significantly lower than the rated peak power of the chip (4.8 mW),

so using design specifications to determine peak power requirements can lead to signif-

icant over-provisioning and inefficiency. The figure also confirms that peak power of an

1 MSP430 is one of the most popular processors used in low-power systems [49, 80]



42

application depends on application inputs and can vary significantly for different inputs

(input-induced variations shown as error bars). For different inputs, the applications in

Figure 5.5 show input-induced variations in peak power of over 25%. This means that

profiling cannot be used to accurately determine peak power requirements, since not all

input combinations can be profiled, and the peak power for an unprofiled input could

be significantly higher than the peak power observed during profiling.
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Figure 5.6: Measured instantaneous power of MSP430F1610 for an application is sig-
nificantly lower, on average, than both the rated and observed peak power.

In energy-constrained systems, like battery-powered systems (Type 2 and 3), both

peak energy and peak power determine the size of energy harvesting and storage com-

ponents. Thus, determining an accurate bound on the peak energy requirements of a

low-power processor is also important. Figure 5.6 shows the instantaneous power profile

for an embedded application, demonstrating that on average, instantaneous power can

be significantly lower than peak power. Therefore, we can more accurately determine

optimal component sizes in an energy-constrained system by generating an accurate

bound on peak energy, rather than conservatively integrating rated power over time.

5.3 Determining Application-specific Peak Power and En-

ergy

This section describes how the activity-annotated symbolic execution tree created by

co-analysis (see Chapter 2) can be used to determine the peak power requirements of
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a low-power processor and application pair. Algorithm 2 describes how to use activity-

annotated execution tree generated from hardware-software co-analysis (see Chapter 2)

to compute peak power requirements for a ULP processor-application pair.

Algorithm 2 Input-independent Peak Power Computation

1. Procedure Calculate Peak Power
2. {E—O} VCD ← Open {Even—Odd} VCD File // maximizes peak power in even—odd cycles
3. T ← flatten(Execution Tree) // create a flattened execution trace that represents the execution tree
4. for all {even—odd} cycles c ∈ T do
5. for all toggled gates g ∈ c do
6. if value(g,c) == X && value(g,c-1) == X then
7. value(g,c-1) ← maxTransition(g,1) // returns the value of the gate in the first cycle of the gate’s

maximum power transition
8. value(g,c) ← maxTransition(g,2) // returns the value of the gate in the second cycle of the gate’s

maximum power transition
9. else if value(g,c) == X then

10. value(g,c) ← !value(g,c-1)
11. else if value(g,c-1) == X then
12. value(g,c-1) ← !value(g,c)
13. end if
14. end for
15. {E—O} VCD ← value(*,c-1)
16. {E—O} VCD ← value(*,c)
17. end for
18. Perform power analysis using E VCD and O VCD to generate even and odd power traces, PE and PO

19. Interleave even cycle power from PE with odd cycle power from PO to form peak power trace, Ppeak

20. peak power ← max(Ppeak)

The first step in determining the peak power from the symbolic execution tree is to

concatenate the execution paths in the execution tree to form a single execution trace.

The execution trace contains Xs, and the goal of the peak power computation is to

assign values to the Xs in the way that maximizes power for each cycle in the execution

trace. The power of a gate in a particular cycle is maximized when the output value of

a gate transitions (toggles). Since a transition occurs over two cycles, maximizing the

dynamic power in a particular cycle, c, of the execution trace involves assigning values

to any Xs in the activity profiles of the current cycle, c, and the previous cycle, c − 1,

to maximize the number of transitions in cycle c.

The number and power of transitions are maximized as follows. When the output

value of a gate in only one of the cycles, c or c − 1, is an X, the X is assigned the

value that assumes that a transition happened in cycle c. When both the values are Xs,

the values are assigned to produce the transition that maximizes power in cycle c. The

maximum power transition can be found by a look-up in the standard cell library for the

gate. Since constraining Xs in two consecutive cycles to maximize power in the second
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cycle may not maximize power in the first cycle, we produce two separate activity traces

– one that maximizes power in all even cycles and one the maximizes power in all odd

cycles. To find the peak power of the application, we first run activity-based power

analysis on the design using the even and odd activity traces to generate even and odd

power traces. We then form a peak power trace by interleaving the power values from

the even cycles in the even power trace and the odd cycles in the odd power trace. This

peak power trace bounds the peak power that is possible in every cycle of the execution

trace. The peak power requirement of the application is the maximum per-cycle power

value found in the peak power trace. A peak energy trace can be derived from the peak

power trace by multiplying the per-cycle peak power values in the peak power trace by

the clock period.

1 2 3 4 5 6 7 8 9
g1 0 0 1 X X X 0 0 0
g2 0 X X X X X X 0 0
g3 0 0 0 1 X X X X 0

1 2 3 4 5 6 7 8 9
g1 0 0 1 0 0 1 1 0 0
g2 0 1 0 1 0 1 1 0 0
g3 0 0 0 1 0 1 0 1 0

1 2 3 4 5 6 7 8 9
g1 0 0 1 0 1 1 0 0 0
g2 0 0 1 0 1 0 1 0 0
g3 0 0 0 1 0 0 1 1 0

Figure 5.7: To determine a bound on peak power, we generate two activity traces – one
that maximizes power in even cycles (left) and one that maximizes power in odd cycles
(right).

Figure 5.7 illustrates activity trace generation. We use the example of three gates

with overlapping Xs that must be assigned to maximize power in every cycle. We show

two assignments – one that maximize peak power in all even cycles (left), and one that

maximizes peak power in all odd cycles (right). Assuming, for the sake of example, that

all gates have equal power consumption and that the 0 → 1 transition consumes more

power than the 1 → 0 transition for these gates, the highest possible peak power for
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this example happens in cycle 6 in the “even” activity trace, when all the gates have a

0→ 1 transition.

5.4 Results

Evaluation of the peak power and energy estimation methdologies suggest that application-

specific peak power and energy bounds may enable significant benefits for low-power

systems. Figure 5.8 compares peak power requirements reported by input-independent

application-specific analysis (X-based) against the conventional techniques for deter-

mining peak power requirements (design specification, stressmark, and guardbanded

input-based profiling). We also compare our input-independent approach against (input-

based) profiling without guardbanding to evaluate how tight of a bound our technique

provides. Our results show that the proposed technique provides the most accurate

bound on peak power. Across a range of applications, the peak power requirements

reported by the proposed technique are only 1% higher, on average, than the high-

est observed input-based peak power for the applications. Other techniques for de-

termining peak power and energy requirements are significantly less accurate, which

can lead to inefficiency in critical system parameters such as size and weight. The

peak power requirements reported by X-based application-specific analysis are 23%

lower than guardbanded application-specific requirements, 30% lower than guardbanded

stressmark-based requirements, and 27% lower than design specification-based require-

ments, on average.

Since our technique is application-specific and does not require guardbands, one

question is, “Why is the bound provided by X-based analysis more conservative for

some applications than others?” The answer is that X-based analysis becomes more

conservative when there is greater possibility for input-dependent variation in power,

because it provides a bound on power for all possible inputs. For example, the multi-

plier is a relatively large, high-power module, with high potential for input-dependent

variation in power consumption. For some inputs (e.g., X ∗ 0), power consumed by the

multiplier is minimal, since there are no partial products to compute. For other inputs

(e.g., two very large numbers), the power consumed by the multiplier is much larger.

Since our symbolic simulation technique assumes Xs for inputs, we always assume the
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Figure 5.8: The proposed application-specific technique for determining peak power
requirements provides the most accurate (least conservative) guaranteed bound on peak
power.

highest possible power for a multiply instruction. Therefore, X-based peak power re-

quirements for applications that contain a large number of multiplications may be more

conservative than X-based requirements for other applications.

Conversely, the tea8 application, which performs encryption, only uses low-power

ALU modules – shift register and XOR, that have significantly less potential for input-

induced power variation. As a result, X-based analysis closely matches input-based

profiling results for this application. For all application, even those with more potential

for input-induced power variation, our X-based analysis technique provides a peak power

bound that is more accurate than those provided by conventional techniques.
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Figure 5.9: The proposed application-specific technique for determining peak energy
requirements is more accurate than existing conventional techniques.

The proposed application-specific technique also shows potential to provide more

accurate bounds on peak energy than conventional techniques. In Figure 5.9, the

application-specific (X-based) peak energy requirements are 23% lower than guard-

banded application-specific requirements, 31% lower than guardbanded stressmark-

based requirements, and 48% lower than design specification-based requirements, on

average. As described above, more accurate peak power and energy requirements can

be leveraged to reduce critical system parameters like size and weight. For example,

reduction in a Type 1 system’s peak power requirements allows a proportionally smaller

energy harvester to be used, and system size is roughly proportional to harvester size in

Type 1 systems. In Type 2 systems, it is the peak energy requirement that determines
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the harvester size; reduction in peak energy requirement reduces system size roughly

proportionally. Since required battery capacity depends on a system’s peak energy

requirement, and effective battery capacity depends on the peak power requirement,

reductions in peak power and energy requirements both reduce battery size for Type 2

and 3 systems.

5.4.1 Optimizations

Our technique can be used to guide application-level optimizations that reduce peak

power. Here, we discuss three software optimizations, based on by our technique, that

we applied to the benchmark applications to reduce peak power. The optimizations

were derived by analyzing the processor’s behavior during the cycles of peak power

consumption. This analysis involves (a) identifying instructions in the pipeline at the

peak, and (b) identifying the power contributions of the microarchitectural modules to

the peak power to determine which modules contribute the most.

The first optimization aims to reduce a peak by “spreading out” the power consumed

in a peak cycle over multiple cycles. This is accomplished by replacing a complex instruc-

tion that induces a lot of activity in one cycle with a sequence of simpler instructions

that spread the activity out over several cycles.

The second optimization aims to reduce the instantaneous activity in a peak cycle

by delaying the activation of one or more modules, previously activated in a peak cycle,

until a later cycle. For this optimization, we focus on the POP instruction, since it

generates peaks in some benchmarks. The peaks are caused since a POP instruction

generates high activity on the data and address buses and simultaneously uses the

incrementer logic to update the stack pointer. To reduce the peak, we break down the

POP instruction into two instructions – one that moves data from the stack, and one

that increments the stack pointer.

The third optimization is based on the observation that for some applications, peak

power is caused by the multiplier (a high-power peripheral module) being active simul-

taneously with the processor core. To reduce peak power in such scenarios, we insert a

NOP into the pipeline during the cycle in which the multiplier is active.

The three optimizations we applied to our benchmarks to reduce peak power are

summarized below. The optimizations are shown in Figure 5.10.
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mov &0x013a, r15;
pop r2;

mov &0x013a, r15
mov #0, r9
mov @r1, r2
add #2, r15

OPT	1

(a) OPT 1

mov &0x013a, r15;
pop r2;

mov &0x013a, r15
mov #0, r9
mov @r1, r2
add #2, r1

OPT	1

(b) OPT 2

mov -6(r4), &0x0132
mov -4(r4), &0x0138
mov 0x013a, r15

mov -6(r4), &0x0132
mov -r(r4), &0x0138
nop
mov 0x013a, r15

OPT	3

(c) OPT 3

Figure 5.10: Instruction optimization transforms for peak power reduction.

• Register-Indexed Loads (OPT 1): A load instruction (MOV) that references the

memory by computing the address as an offset to a register’s value involves several

micro-operations – source address generation, source read, and execute. Breaking the

micro-operations into separate instructions can reduce the instantaneous power of the

load instruction. The ISA already provides a register indirect load operation where the

value of the register is directly used as the memory address instead of as an offset. Using

another instruction (such as an ADD or SUB), we can compute the correct address and

store it into another register. We then use the second register to execute the load in

register indirect mode.

• POP instructions (OPT 2): The micro-operations of a POP instruction are (a)

read value from address pointed to by the stack pointer, and (b) increment the stack

pointer by two. POP is emulated using MOV @SP+, dst. This can be broken down to

two instructions –

MOV @SP, dst and ADD #2, SP.

• Multiply (OPT 3): The multiplier is a peripheral in openMSP430. Data is MOVed

to the inputs of the multiplier and then the output is MOVed back to the processor. For

a 2-cycle multiplier, all moving of data can be done consecutively without any waiting.

However, this involves a high power draw, since there will be a cycle when both the

multiplier and the processor are active. This can be avoided by adding a NOP between

writing to and reading from the multiplier.
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Figure 5.11: Peak power reduction (left axis) and peak power dynamic range reduction
(right axis) achieved by optimizations. These reductions are enabled by our analysis
tool and provide further reduction in energy harvester size.

Figure 5.11 shows the reduction in peak power achieved by applying the optimiza-

tions motivated by our technique. Results are quantified in terms of peak power reduc-

tion, as well as reduction in peak power dynamic range, which quantifies the difference

between peak and average power. Peak power dynamic range decreases as peaks are re-

duced closer to the range of average power. Reduction in peak power dynamic range can

improve battery lifetime in Type 2 and 3 systems, and reduction in peak power require-

ments can be leveraged to reduce harvester size in Type 1 systems. Our results show

that peak power can be reduced by up to 10%, and 5% on average. Peak power dynamic

range can be reduced by up to 34%, and 18% on average. Figure 5.12 shows the peak

power traces for an example application before and after optimization, demonstrating

that optimization can reduce the peak power requirements for an application.

Since optimizations that reduce peak power can increase the number of instructions

executed by an application, we evaluated the performance and energy impact of the
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Figure 5.12: A snapshot of instantaneous power profiles for mult before and after opti-
mization.

optimizations. Figure 5.13 shows the results. Applying the optimizations suggested by

our technique degrades performance by up to 5% for one application, and by 1% on

average. On average, the optimizations increase energy by 3%. Although the optimiza-

tions increase energy slightly, they can still enable reduction in size for Type 1 systems,

in which harvester size is dictated by peak power, and may also reduce the size of Type

2 and 3 systems, where both peak power and energy determine the size of energy storage

and harvesting components (see Figure 5.3).
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Chapter 6

Application-specific ‘Bespoke’

Processors

One straightforward application of gate activity information gathered from hardware-

software co-analysis in Chapter 2 is eliminating all the gates that are guaranteed not to

be exercised for an application. A large class of emerging applications is characterized by

severe area and power constraints. For example, wearables [5, 6] and implantables [81,

82] are extremely area- and power-constrained. Several IoT applications, such as stick-

on electronic labels [83], RFIDs [84], and sensors [8, 85], are also extremely area- and

power-constrained. Area constraints are expected to be severe also for printed plastic

[86] and organic [87] applications.

Cost concerns drive many of the above applications to use general purpose micro-

processors and microcontrollers instead of much more area- and power-efficient ASICs,

since, among other benefits, development cost of microprocessor IP cores can be amor-

tized by the IP core licensor over a large number of chip makers and licensees. In

fact, ultra-low-area- and power-constrained microprocessors and microcontrollers pow-

ering these applications are already the most widely used type of processing hardware

in terms of production and usage [9, 10, 11], in spite of their well-known inefficiency

compared to ASIC and FPGA-based solutions [88]. Given this mismatch between the

extreme area and power constraints of emerging applications and the relative inefficiency

53
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of general purpose microprocessors and microcontrollers compared to their ASIC coun-

terparts, there exists a considerable opportunity to make microprocessor-based solutions

for these applications much more area- and power-efficient.

One big source of area inefficiency in a microprocessor is that a general purpose

microprocessor is designed to target an arbitrary application and thus contains many

more gates than what a specific application needs (Figure 6.1). Also, these unused gates

continue to consume power, resulting in significant power inefficiency. While adaptive

power management techniques (e.g., power gating) help to reduce power consumed by

unused gates, the effectiveness of such techniques is limited due to the coarse granularity

at which they must be applied, as well as significant implementation overheads such as

domain isolation and state retention. These techniques also worsen area inefficiency.

We propose a novel approach - bespoke processors - to significantly increase the area

and power efficiency of a microprocessor for a given application by eliminating all logic

in the microprocessor IP core that will not be used by the application. Eliminating

logic that is guaranteed to not be used by an application can produce a design that

has significantly lower area and power than the original microprocessor IP that targets

an arbitrary application. As long as the approach to create a bespoke processor is

automated, the resulting design retains the cost benefits of a microprocessor IP, since

no additional hardware or software needs to be developed. Also, since no logic used

by the application is eliminated, area and power benefits come at no performance cost.

The resulting bespoke processor does not require programmer intervention or hardware

support either, since the software application can still run, unmodified, on the bespoke

processor.

6.1 Tailoring a Bespoke Processor

A bespoke processor, tailored to a target application, must be functionally-equivalent

to the original processor when executing the application. As such, the bespoke imple-

mentation of a processor design should retain all the gates from the original processor

design that might be needed to execute the application. Any gate that could be toggled

by the application and propagate its toggle to a state element or output port performs a

necessary function and must be retained to maintain functional equivalence. Conversely,
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Figure 6.1: A significant fraction of gates in an openMSP430 processor are not toggled
when an application executes on the processor. Each bar represents gates not toggled
by any input for an application; the interval shows the range of unexercised gates for
different inputs.

any gate that can never be toggled by the application can safely be removed, as long

as each fanout location for the gate is fed with the gate’s constant output value for the

application. Removing constant (untoggled) gates for an application could result in sig-

nificant area and power savings and, unlike conventional energy saving techniques, will

introduce no performance degradation (indeed, no change at all in application behavior).

Figure 6.2 shows our process for tailoring a bespoke processor to a target application.

The first step – input-independent gate activity analysis – is the proposed hardware-

software co-analysis from Chapter 2. The second phase of our bespoke processor design

technique – gate cutting and stitching – uses gate-level activity information gathered

during gate activity analysis to prune away unnecessary gates and reconnect the cut

connections between gates to maintain functional equivalence to the original design for

the target application. Below we discuss the cutting and stitching process in detail.

6.1.1 Cutting and Stitching

Once gates that the target application cannot toggle have been identified, they are cut

from the processor netlist for the bespoke design. After cutting out a gate, the netlist

must be stitched back together to generate the final netlist and laid-out design for the
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Gate-level	
Netlist	

Gate	Ac.vity	
Analysis	
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Applica.on	
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List	of	Unused	
(Untoggled)	Gates		

Bespoke	Processor	
Tailored	to	
Applica.on	

Figure 6.2: Our technique performs input-independent gate activity analysis to deter-
mine which gates of a processor cannot be toggled in any execution of the application.
These gates are then cut from the design to form a custom, bespoke processor with
reduced area and power.

Gate-level	
Netlist	

Cut		
Unused	Gates		

Set	Unconnected	
Gate	Inputs	to	
Constant	Values	

Bespoke	Gate-
level	Netlist	

Place		
&	Route	

Synthesis	
Bespoke	GDSII	

File	

List	of	Unused	
Gates	

List	of	Constant	
Gate	Values	

Figure 6.3: Tool flow for cutting and stitching.

bespoke processor. Figure 6.3 shows our method for cutting and stitching a bespoke

processor. First, each gate on the list of unusable (untoggled) gates is removed from the

gate-level netlist. After removing a gate, all fanout locations that were connected to the

output net of the removed gate are tied to a static voltage (‘1’ or ‘0’) corresponding to the

constant output value of the gate observed during simulation. Since the logical structure

of the netlist has changed, the netlist is re-synthesized after cutting all unusable gates

to allow additional optimizations that reduce area and power. Since some gates have

constant inputs after cutting and stitching, they can be replaced by simpler gates. Also,

toggled gates left with floating outputs after cutting can be removed, since their outputs

can never propagate to a state element or output port. Since cutting can reduce the

depth of logic paths, some paths may have extra timing slack after cutting, allowing

faster, higher power cells to be replaced with smaller, lower power versions of the cells.
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Finally, the re-synthesized netlist is placed and routed to produce the bespoke processor

layout, as well as a final gate-level netlist with necessary buffers, etc. introduced to meet

timing constraints.

6.1.2 Illustrative Example

Cycle	 A	 B	 C	 D	 tmp0	 tmp1	 tmp2	 OUT	

0	 1	 0	 X	 1	 0	 0	 1	 0	

1	 1	 0	 1	 1	 0	 0	 1	 0	

2	 1	 0	 0	 1	 0	 0	 1	 0	

A	
B	
C	
D	

OUT	

a	
b	

c	
d	

Original	Circuit:	

D	
OUT	d	

A<er	S>tching:	

1	

D	
OUT	

A<er	Synthesis:	
e	

A<er	Place	&	Route:	

D	

OUT	

Cycle	 A	 B	 C	 D	 tmp0	 tmp1	 tmp2	 OUT	

3	 1	 X	 0	 1	 0	 X	 1	 0	

4	 1	 0	 X	 1	 0	 0	 1	 0	

5	 0	 X	 0	 1	 1	 X	 1	 0	

Cycle	 A	 B	 C	 D	 tmp0	 tmp1	 tmp2	 OUT	

3	 1	 0	 1	 0	 0	 0	 1	 1	

4	 1	 0	 X	 1	 0	 0	 1	 0	

5	 0	 X	 0	 1	 1	 X	 1	 0	

6	 X	 0	 0	 1	 X	 X	 1	 0	

7	 X	 0	 0	 0	 X	 X	 1	 1	

Gate	Ac>vity	Analysis:	
tmp0	

tmp1	
tmp2	

A	
B	
C	
D	

OUT	

a	
b	

d	

A<er	CuGng:	

A	
B	
C	

a	
b	

Figure 6.4: An example of gate activity analysis and cutting and stitching.

This section illustrates how bespoke processor design tailors a processor design to a

particular application, as described in 6.1.1. Figure 6.4 illustrates the bespoke design

process. The left part of Figure 6.4 shows input-independent gate activity analysis for a

simple example circuit (top right). During symbolic simulation of the target application,

logical 1s, 0s, and unknown symbols (Xs) are propagated throughout the netlist. In cycle

0, A and B have known values that are propagated through gates a and b, driving tmp0

and tmp1 to ‘0’. The controlling value at gate c drives tmp2 to ‘1’, despite input C being

an unknown value (X). Inputs A and B are not changed by the simulation of the binary

until after cycle 2, when an X was propagated to the PC (not shown) that requires two

different execution paths to be explored. In the left path, input B becomes X in cycle

3, causing tmp1 to become X as well. However, since input C is a ‘0’, tmp2 is still a ‘1’.

In the right execution path, inputs A and B both have Xs and logic values that may

toggle tmp1 in cycles 5-7, but for each of these cycles, input C is a ‘0’, keeping tmp2

constant at ‘1’. Since tmp2 is never toggled during any of the possible executions of the
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application, gate c is marked for cutting, and its constant output value (‘1’) is stored

for stitching. Although gate d is never toggled in cycles 0-2 or down the left execution

path, it does toggle in the right execution path and thus cannot be marked for cutting.

Gates a and b also toggle and thus are not marked for cutting.

Once gate activity analysis has generated a list of cuttable gates and their constant

values, cutting and stitching begins. Since gate c was marked for cutting, it is removed

from the netlist, leaving the input to its fanout (d) unconnected. During stitching,

d’s floating input is connected to c’s known constant output value for the application

(‘1’). After stitching, the gate-level netlist is re-synthesized. Synthesis removes gates

that are not driving any other gates (gates a and b), even though they toggled during

symbolic simulation, since their work does not affect the state or output function of the

processor for the application. Synthesis also performs optimizations, such as constant

propagation, which replaces gate d with an inverter, since the constant controlling input

of ‘1’ to the XOR gate makes it function as an inverter. Finally, place and route produces

a fully laid-out bespoke design.

6.2 Correctness of operation

In this section, we show that the transformations we perform to create a bespoke pro-

cessor implementation produce a design that is functionally equivalent to the original

processor design for the target application. I.e., the bespoke design implements the same

function and produces the same output as the original design for all possible executions

of the application.

Theorem : A bespoke processor implementation BA of processor P tailored to an ap-

plication A is functionally-equivalent to processor P with respect to application A; BA
produces the same output as P for any possible execution of A.

Proof : The first step in creating BA – input-independent gate activity analysis –

identifies the subset E of all gates in the processor that can possibly be exercised by

A, for all possible inputs. The analysis also identifies the constant output values for all

gates U that can never be exercised by A. It follows that E ∩ U = ∅ and E ∪ U = G,

where G is the set of all gates in P. Cutting and stitching (Section 6.1.1) removes all

gates in the set U and ties their output nets to their known constant values, such that
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the functionality of all gates in U is maintained in BA. All gates in E remain in the

bespoke design, so all gates in E have the same functionality and produce the same

outputs in BA and P. Since E ∪ U = G, it follows that BA is functionally equivalent to

P for A and produces the same output as P for all possible inputs to A. �

6.3 Results

In this section, we evaluate bespoke processors. We first consider area and power ben-

efits of tailoring a processor to an application, then evaluate design approaches that

can be used to support bespoke processors throughout the product life-cycle, including

procedures for verifying bespoke processors, techniques to design bespoke processors

that support multiple known applications, and strategies to allow in-field updates in

bespoke processors.
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Figure 6.5: The height of a bar represents the fraction of gates that can be toggled by a
benchmark. Components within each bar represent each module’s contribution to the
fraction of gates toggled by the benchmark.

Figure 6.5 shows the fraction of gates in the original processor design that could be

toggled by each benchmark.1 The components within each bar represent each module’s

contribution to the fraction of gates that can be toggled by the benchmark. The first

bar in the figure shows each module’s contribution to the total gates in the baseline

design. We observe that each benchmark can toggle only a relatively small fraction of

the gates in the baseline design. At most, 57% of the gates in the baseline design can

1 Unlike Figure 6.1, which presents results from profiling, Figure 6.5 shows results from input-
independent gate analysis.
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be toggled, and 11 benchmarks toggle less than half the gates. Even though a large

fraction of the gates of the baseline processor cannot be toggled by each benchmark,

each benchmark can toggle a different set of gates. For example, autocorr1, which

uses the largest fraction of the gates in the baseline processor, does not exercise the

clock module, while tHold, which toggles the smallest fraction of the baseline gates,

does exercise gates in the clock module.

Some modules, such as the multiplier, are used by some benchmarks and not oth-

ers. However, module usage differs by application. For example, intFilt can never

toggle about half of the multiplier gates due to constraints the binary places on filter

coefficients, whereas mult toggles almost all the gates in the multiplier. Other modules,

such as the frontend, are toggled by all applications, but each application can toggle a

different subset of frontend gates. While these results show that a bespoke processor

can have a significantly lower gate count than the general purpose processor it is derived

from, they also confirm that hardware-software co-analysis is necessary to identify all

the gates that can be eliminated in a bespoke design. Elimination of gates based on

techniques such as profiling or static analysis will either fail to guarantee correctness or

will miss opportunities to eliminate gates that an application can never use.
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Figure 6.6: Reduction (%) in gate count, area, and power for a bespoke design, compared
to the baseline processor.

Bespoke processors have fewer gates, lower area, and lower power than their general

purpose counterparts. Figure 6.6 shows the reduction in gates, area, and power afforded
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Figure 6.7: Reduction (%) in gate count, area, and power for bespoke designs, compared
to application-specific coarse-grained module-level bespoke design.

by bespoke processors tailored to each benchmark. The benchmark FFT, which has the

smallest gate count reduction (44%),2 still reduces area by 47% and power by 37%,

relative to the baseline design. Area savings are up to 92% (dbg), while power savings

are up to 74% (dbg).

Figure 6.5 shows that some modules could be wholly removed for specific benchmarks

(e.g., the multiplier can be removed for binSearch, since it cannot use any gates in

the multiplier). For such modules, it is possible to use an Xtensa-like approach [89],

enabled by our input-independent gate activity analysis, where modules in which no

gates are usable by an application are removed from the design. Figure 6.7 shows

the benefits of bespoke processors relative to coarse-grained bespoke designs in which

wholly-unusable modules have been removed from the processor. Note that compared to

an Xtensa-like approach, a coarse-grained bespoke design does not need any knowledge

of the microarchitecture, as the unusable gates are identified automatically by hardware-

software co-analysis. The results show that the fine-grained gate-level bespoke design

can provide up to 75% power reduction (22% minimum, 35% on average) over coarse-

grained module-level bespoke design.

Additional power savings may be possible when cutting, stitching, and re-synthesis

2 Note that gate count reduction reported in Figure 6.6 is different than fraction of toggled gates in
Figure 6.5, since bespoke design also removes some toggled gates that cannot propagate their toggles
to state elements or output ports.
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Table 6.1: Benefits of exploiting timing slack created by cutting, stitching, and re-
synthesis.

Benchmark Timing
Slack (%)

Vmin (V) Addl. Power Savings
from Slack (%)

Total Power Sav-
ings (%)

binSearch 24.30 0.81 36.86 72.1
div 24.51 0.82 34.53 69.9

inSort 22.24 0.83 33.25 67.6
intAVG 23.37 0.83 33.35 67.7
intFilt 23.23 0.84 31.31 58.5
mult 20.45 0.91 20.33 59.3
rle 22.10 0.83 33.31 66.8

tHold 24.07 0.81 36.90 73.5
tea8 23.55 0.83 33.23 65.7
FFT 21.74 0.90 20.13 50.0

Viterbi 23.48 0.83 33.18 64.9
convEn 23.96 0.83 33.03 63.9

autocorr1 18.48 0.91 18.31 50.3
irq 17.91 0.92 16.24 57.7
dbg 45.70 0.60 67.73 91.5

removes gates from critical paths, exposing additional timing slack that can be exploited

for energy savings. Table 6.1 shows timing slack exposed during bespoke processor

tailoring for each benchmark. Exposed timing slack can be used to reduce the operating

voltage of the processor without reducing the frequency.3 Table 6.1 also shows the

minimum safe operating voltage for each bespoke design (assuming worst-case PVT

variations), the additional power savings afforded by exploiting timing slack in bespoke

designs, and the total power savings achieved with respect to the baseline design from

eliminating unusable logic and exploiting exposed timing slack for voltage reduction.

6.3.1 Supporting Multiple Programs and In-field Updates

Bespoke processors are able to support multiple programs by including the union of

gates needed to support all of the programs. Figure 6.8 shows gate count, power, and

area for bespoke processors tailored to N programs, normalized to the baseline pro-

cessor. For each value of N , the bars show the ranges of these metrics across bespoke

3 Exposed timing slack could also be used to increase operating frequency (performance) of a bespoke
design. On average, frequency can be increased by 13% in the bespoke designs.
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processors tailored to all combinations of N programs. For many combinations of pro-

grams, even for up to ten programs, only 60% or less of the gates are needed. In fact,

despite supporting ten programs, the area and power of a bespoke processor can be

reduced by up to 41% and 20%, respectively. However, supporting multiple programs

can limit the extent of gate cutting and the resulting area and power benefits when

the applications exercise significantly different portions of the processor. For example,

the two-program bespoke processor with the largest gate count is one tailored to dbg

and irq. Each application uses components of the processor that are not exercised by

the other program; dbg exercises the debug module, while irq exercises the interrupt

handling logic. The resulting gate reduction of 18% still produces area and power bene-

fits of 26% and 19%, respectively. Although supporting multiple programs reduces gate

count, area, and power reduction benefits, the area and power will never increase with

respect to the baseline design. In the worst case, the baseline processor can run any

combination of program binaries.
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Figure 6.8: Normalized gate count, area, and power ranges for all possible bespoke
processor supporting multiple applications.

We consider two approaches to designing bespoke processors that can be updated

in the field. First, we evaluate a method that allows a bespoke processor to handle

common, minor programming bugs. Second, we evaluate a method that allows a bespoke

processor to handle infrequent, arbitrary software updates.
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Table 6.2: Milu produces three types of mutants. Type I: Logical conditional operator
mutants. Type II: Computation operator mutants. Type III: loop conditional operator
mutants.

Benchmark Type I Type II Type III Total

binSearch 0 0 15 15
inSort 8 0 15 23

rle 0 20 25 45
tea8 48 24 10 82

Viterbi 24 24 35 83
autocorr 12 0 10 22

In-field updates may often be deployed to fix minor correctness bugs (e.g., off-by-

one errors, etc.) [90]. To emulate in-field updates to fix bugs, we use the Milu mutation

testing tool [91] to generate “updates” corresponding to bug fixes. Table 6.2 lists the

breakdown of mutants by type generated by Milu for the six benchmarks with the most

mutants. If a benchmark has zero mutants for a particular type, no mutation sites

of that type were found in that benchmark by Milu. Type I mutants are conditional

operator mutants (e.g., A||B → A&&B). Type II mutants are computation operator

mutants (e.g., A+B → A×B). Type III mutants are loop conditional operator mutants

(e.g., i < 32→ i 6= 32).

Table 6.3: Percentage of mutants (in-field updates) of different types that are supported
by the bespoke design for the base software implementation. “-” denotes that a given
benchmark did not have any mutants of that type.

Benchmark
Type I Type II Type III Total

% % % %

binSearch - - 73 73
inSort 25 - 27 26

rle - 100 84 91
tea8 58 75 100 68

Viterbi 92 83 80 84
autocorr 50 - 40 45

Table 6.3 lists the percentage of mutants (i.e., in-field updates to fix bugs) that

are supported by the original bespoke design (generated for a “buggy” application).

Many minor bug fixes can be covered by a bespoke processor designed for the original
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Figure 6.9: Normalized gate count, area, and power vs the baseline design for designs
supporting all mutants (in-field updates).

application without any modification. I.e., the mutants representing many in-field up-

dates only use a subset of the gates in the original bespoke processor. This means that

these mutants will execute correctly on the original bespoke processor tailored to the

original “buggy” application. We see that between 25% and 100% of various mutants

are covered, and 70% of all mutants are covered. This shows that a bespoke processor

will maintain some of the original general purpose processor’s ability to support in-field

updates. If a higher coverage of possible bugs is desired, the automatically-generated

mutants can be considered as independent programs while tailoring the bespoke pro-

cessor for the application. Figure 6.9 shows the increase in gate count, area, and power

required to tailor a bespoke processor to the six benchmarks with the most mutants

by including all possible mutants (i.e., bug fixes) generated by Milu during bespoke

design. Providing support for simple in-field updates incurs a gate count overhead of

between 1% and 40%. Despite this increase in gate count, total area benefits for the

bespoke processors are between 23% and 66%, while total power benefits are between

13% and 53%. Therefore, simple in-field updates can be supported while still achieving

substantial area and power benefits.

A bespoke processor tailored to a specific application can be designed to support

arbitrary software updates by designing it to support a Turing-complete instruction

(e.g., subneg) or set of instructions, in addition to other programs it supports. For our
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single-application bespoke processors, the average area and power overheads to support

subneg are 8% and 10%, respectively. Average area and power benefits for subneg-

enhanced bespoke processors are 56% and 43%, respectively.

Note that an instruction in a bespoke processor’s target application is not guaranteed

to be supported in a different application (e.g., an update), since the processor eliminates

gates that are not needed to support the possible instruction sequences in the target

application’s execution tree; a different sequence of the same instructions may need

those gates for execution. For example, if all operands to add instructions in a bespoke

processor’s target binary have had their least significant eight bits masked to 0 by

a preceding and instruction, gates corresponding to the least significant bits of the

ALU’s adder may be removed in the bespoke processor. Therefore, the same bespoke

processor may not support a different program where the add instruction is not preceded

by the masking and. While full support for instructions is not guaranteed in general by

bespoke processors, we are able to guarantee support for Turing-complete instructions

/ instruction sequences (e.g., subneg), since a software routine written using a Turing-

complete instruction / instruction sequence consists entirely of multiple instances of the

same instruction / instruction sequence.

6.3.2 System Code

The evaluations above were performed for a bare-metal system (application running on

the processor without an operating system (OS)). While this setting is representative

of ultra-low-power processors and a large segment of embedded systems [92, 93],4

use of an OS is common in several embedded application domains, as well as in more

complex systems. Thus, we also evaluated bespoke design for our applications running

on the processor with an OS (FreeRTOS [96]). Application analysis of system code for

FreeRTOS reveals that 57% of gates are not exercisable by the OS, including the entire

hardware multiplier. When our benchmarks are evaluated individually with FreeRTOS,

37% of gates are unused in the worst case, 49% on average. When running FreeRTOS

together with all 15 benchmarks, 27% of gates are unused.

4 Many embedded processors provide bare-metal development toolchains [94, 95].



Chapter 7

Software-based Gate-level

Information Flow Security

In this chapter we show how the hardware-software co-analysis proposed in Chapter 2

can be used to track information flow of an application at the gate-level of an ultra-

low-power embedded microprocessor. As the internet of things progresses toward the

internet of everything, higher connectedness implies more security attack vectors and a

larger attack surface. In the last couple of years, reported IoT attacks include compro-

mising baby monitors to enable unauthorized live feeds, interconnected cars to control

a car in motion, smart watches and fitness trackers to steal private information and

health data, power grids and steel mills to render them offline, and medical devices with

detrimental, perhaps fatal, consequences on patients’ health. Consequently, security

and privacy have become first order design concerns for IoT systems. However, IoT

systems are often ill-protected, in spite of their critical security implications, due to

their limited energy and area budget to spend on security.

Prior work on gate-level information flow tracking shows that information security

guarantees can be provided through techniques that track information flows at the

gate level, but unfortunately, such solutions rely on non-commodity, secure-by-design

processors; the ultra-low power and area constraints of ULP systems may make such ap-

proaches infeasible. However, we have observed that many of the architectural changes

required in existing secure-by-design processors arise because prior works assume that

67
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all software running on a system besides the kernel is completely unknown, in order

to provide a security guarantee for all applications. Since the application running on

a ULP system is often simple, we have introduced application-specific information flow

tracking that takes all of a system’s software into consideration during security analysis,

enabling gate-level information flow security guarantees for commodity systems, without

the programmability, performance, and monetary costs of a specialized secure-by-design

processor. Our software-based solution to gate-level information flow tracking identifies

all possible insecure information flows for the software running on a system, as well

as the instructions that can cause violations, and allows security vulnerabilities to be

eliminated through software modifications. By targeting only the vulnerabilities that

an application is susceptible to, we minimize, and in some cases completely eliminate,

the overhead of guaranteeing security for ULP systems.

7.1 Information Flow Security

Information flow security aims to (1) determine if any information flows exist from one

state element (e.g., a variable in a program) to another state element and to (2) prevent

or warn users of such flows when a flow violates an information flow policy. Past work

[97, 98, 99, 100, 101, 102] has performed information-flow tracking at the software level

and demonstrated its effectiveness at detecting a set of security vulnerabilities without

modification of the hardware (i.e., applicable on commodity hardware). Other work

[103, 104, 105, 106] proposes hardware modifications for improved efficiency and accu-

racy of ISA-level information flow tracking. Unfortunately, these approaches not only

require hardware modifications, but they may still miss information flows that crop up

as a result of the low-level implementation details of a processor [107]. Our approach

aims to achieve the advantages of both software-based and hardware-based information

flow tracking – applicability to unmodified commodity hardware, accuracy in tracking

information flows, and minimal runtime overhead – without the corresponding limita-

tions.

In order to track all forms of digital information flow, Tiwari et al. [107] proposed

gate-level information flow tracking (GLIFT). As shown in Figure 7.1, GLIFT augments
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Figure 7.1: Example truth table for gate-level information flow tracking of a NAND
gate. A ‘1’ in the taint value columns (shaded gray) represents a tainted value (e.g.,
untrusted or secret values).

each gate in a design with taint-tracking hardware. The taint of a gate’s output is

determined by the values and taints of its inputs.By propagating taint values through

each gate, tainted data (e.g., untrusted or secret) can be tracked from input ports (or

other marked data, including instructions in program memory) through the processor

at the gate level to guarantee that no tainted data reaches an output port that should

remain untainted (e.g., a trusted or non-secret output). When fabricated with the base

design, GLIFT can dynamically track taints at a high degree of accuracy, albeit at up

to a 3× overhead in hardware. More recently, GLIFT has been used to statically track

information flows [108]. In this work, an analysis called *-logic is used to statically track

taints for a microkernel with no non-determinism running on hardware designed to be

easily verifiable. The focus was on performing gate-level information flow tracking for a

specific, application-agnostic secure-by-design system. We focus, instead, on performing

application-specific gate-level information flow tracking for arbitrary IoT applications

on commodity hardware, including applications with control dependencies on unknown,

tainted inputs. When analyzed with *-logic, such applications could unnecessarily taint

all software-exercisable gates

Based on the insights and verification of GLIFT, several secure-by-design processors
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have been built. They range from a predication-based, non-Turing-complete proces-

sor [107] to processors that can handle arbitrary computations through hardware com-

partmentalization [109, 108]. While these processors can guarantee that any software

that runs on them cannot violate a non-interference information security policy (i.e., no

untrusted inputs can affect trusted outputs and no secret inputs can affect non-secret

outputs), they can be limited in their programmability (e.g., [107] requires all loops to be

statically bounded while [109] does not naturally support unbounded or variable-length

operations) and require hardware modifications (e.g., partitioned memory structures

and memory bounds checking hardware). The cost of any re-design of a commodity

microcontroller may be prohibitive. In this paper, we design full systems that ensure

the same non-interference policy as [108] (i.e., no untrusted input can affect a trusted

output and no secret input can affect a non-secret output), but on a per-application

basis.

Recently, a body of work has emerged on developing hardware description languages

and tools to design and verify information flow secure hardware [110, 111, 112, 113].

While such works can prove that a hardware design meets an information flow security

policy, even one that is commercial, such as ARM’s Trustzone [113], these approaches

cannot verify commodity hardware that does not already implement information flow

security. Our approach targets commodity hardware, in addition to emerging hardware,

and allows application developers to demonstrate the security of their applications at a

fine-grained level.

7.2 Application-Specific Gate-Level Information Flow Track-

ing

Performing gate-level information flow tracking that is application-specific comes with

several challenges. While it does allow secure-by-design systems to be built on commod-

ity hardware, it requires a means of identifying all possible insecure information flows

that may occur in a system, for all possible executions of the system’s software, for

any possible inputs that may be applied to the system. In this section, we describe an

automated technique that takes as input the hardware description (gate-level netlist) of
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a processor, the software that runs on the system, and labels identifying trusted / un-

trusted (or secure / insecure) inputs and outputs in the system and efficiently explores

all possible application-specific execution states for the system to identify all possible

insecure information flows in the system. The output from our automated framework

can be used to verify the information flow security of a system as well as to guide and

automate software modification to eliminate information flow security vulnerabilities in

the system.

Figure 7.2 shows the process for verifying a security policy using application-specific

gate-level information flow tracking. The first step performs offline input-independent

gate-level taint tracking of an entire systems binary running on a gate-level description

of a processor. The initial components that are tainted are specified by the information

flow security policy (e.g., ports labeled as untrusted or memory locations labeled as

secret). The result of taint tracking is a per-cycle representation of tainted state (both

gates and memory bits). The second step performs information flow policy checking

where the information flow checks specified by the information flow security policy are

verified on the per-cycle tainted state. The result is a list of possible violations of the

information flow security policy.

Gate-level	
Processor	
Description

Input-
independent	
Gate-level	

Taint	Tracking

Information	Flow	
Policy	Checking

Application	+	
System	
Binary

Per-cycle	Tainted	
State

Information	Flow	
Violations

Information	
Flow	Policy

Figure 7.2: Application-specific gate-level information flow tracking evaluates specific
information flow security policies across all possible executions of the entire system
binary, producing a list of all possible violations.
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7.2.1 Input-independent Gate-level Taint Tracking

Algorithm 3 describes our input-independent gate-level taint tracking. It is an aug-

mented version of Algorithm 1 described in Chapter 2 where net values also maintain

taint information. Initially, the values of all memory cells and gates are set as unknown

values (i.e., Xs) and are marked as untainted. The system binary, consisting of both

tainted and untainted partitions,1 is loaded into program memory. Our tool performs

input-independent taint tracking based on symbolic simulation, where each bit of an

input is set to an unknown value symbol, X. Additionally, inputs or state elements may

be tainted according to the specified information flow security policy (e.g., the non-

interference policy described in Section 7.1). Throughout simulation, logical values are

propagated throughout the circuit as standard ternary logic. Taint values, which are

dependent on both the taint values of inputs and their logical values, are propagated as

described in [107] and exemplified in Figure 7.1.

A key difference between our input-independent gate-level taint tracking and prior

analyses such as *-logic occurs when an unknown symbol propagates to the PC. For

example, directly applying a *-logic analysis on commodity hardware to an application

where the PC becomes unknown and tainted results in most of the gates in the hard-

ware also becoming unknown and tainted, since most gates are impacted by the PC.

However, in our analysis, if an X propagates to the PC, indicating input-dependent

control flow, our simulator branches the execution tree and simulates execution for all

possible branch paths, following a depth-first ordering of the control flow graph. This

combined with maintaining conservative state at each branch (described in Chapter 2)

ensures scalability of our technique.

The result of the simulation is a pruned execution tree that stores both the logical

and taint values at each point. Due to the conservative approximation technique (see

Chapter 2) we can perform input-independent gate-level taint tracking in a tractable

amount of time, even for applications with an exponentially-large or infinite number of

execution paths.2

1 Note that tainted and untainted code partitions do not indicate that the corresponding instructions
are marked as tainted or untainted in the program memory, although our tool allows them to be.

2 Some complex applications and processors might still require heuristics for exploration of a large
number of execution paths [22, 23]; however, our approach is adequate for ultra-low-power systems,
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Algorithm 3 Input-independent Gate-level Taint Tracking

1. Procedure Taint Tracking(system binary, design netlist, security policy)
2. Initialize all memory cells and all gates in design netlist to untainted X
3. Mark tainted ports and gates according to security policy
4. Load system binary into program memory
5. Propagate reset signal
6. s← State at start of system binary
7. Table of previously observed symbolic states, T .insert(s)
8. Symbolic execution tree, S.set root(s)
9. Stack of un-processed execution points, U .push(s)

10. mark all gates untoggled(design netlist)
11. while U != ∅ do
12. e← U .pop()
13. while e.PC next != X and !e.END do
14. e.set inputs X() // set all peripheral port inputs to Xs
15. e.set taints(security policy) // taint appropriate state according to security policy
16. e′ ← propagate gate values(e) // simulate this cycle
17. t← propagate taint values(e′,e) // determine taint values for e’
18. S.add simulation point(e′,t) // store logical and taint state
19. if e′.modifies PC then
20. c← T .get conservative state(e)
21. if e′ 6⊂ c then
22. T .make conservative superstate(c,e′)
23. else
24. break
25. end if
26. end if
27. e← e′ // advance cycle state
28. end while
29. if e.PC next == X then
30. c← T .get conservative state(e)
31. if e 6⊂ c then
32. e′ ← T .make conservative superstate(c,e)
33. for all a ∈ possible PC next vals(e′) do
34. e′′ ← e.update PC next(a)
35. U .push(e′′)
36. end for
37. end if
38. end if
39. end while

7.2.2 Information Flow Checking

The result of input-independent gate-level taint tracking is a conservative symbolic exe-

cution that represents all possible executions of the entire system’s binary. This symbolic

execution tree is annotated with logical gate values and associated taint values. Using

these taint values, information flow checking can be performed where the specific secu-

rity policy is checked. An example information flow security policy is defined by [108]:

input and output ports are labeled as trusted or untrusted and, independently, as secret

representative of an increasing number of future uses which tend to have simple processors and appli-
cations [24, 11]. For example, complete analysis of our most complex system takes 3 hours.
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or non-secret (i.e., untrusted and secret are two taints that are analyzed separately). An

attacker is assumed to have complete control over all untrusted inputs to the device and

controls the initial implementation of untrusted code, which is known at analysis time.

No untrusted information can flow out of a trusted port, and no secret information can

flow out of a non-secret port.

7.3 Guaranteeing Information Flow Security

In this section, we describe software-based techniques that eliminate information flow

security vulnerabilities in applications. Section 7.3.1 establishes conditions that are

sufficient to guarantee information flow security, and Section 7.3.2 describes software

transformations that are designed to guarantee that an application that is vulnerable

to insecure information flows will satisfy the sufficient conditions. In Section 7.3.3, we

prove that the transformations satisfy the sufficient conditions and ensure information

flow security.

7.3.1 Sufficient Conditions that Guarantee Information Flow Security

In this section, we lay out a set of conditions that are sufficient for guaranteeing the

non-interference information flow security policy described in Section 7.1. Later, we will

show how our application-specific approach to information flow security satisfies these

conditions.

(1) All processor state elements are untainted before untainted code (i.e., trusted or

non-secret code) is executed.

(2) Tainted code does not taint an untainted memory partition used by untainted code.

(3) Untainted code does not load data from a tainted memory partition.

(4) Untainted code does not read from tainted input ports.

(5) Tainted code does not write to untainted output ports.

While the conditions above are not necessary for guaranteeing information flow

security, they are sufficient; i.e., a system that maintains the conditions will not leak

information. For an information leak of tainted data to occur, tainted data must be

accessible to an untainted task in some state or memory element or through a port; a

leak occurs when an untainted task propagates accessible tainted data to an untainted
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output that it has access to, or when a tainted task sends tainted data directly to an

untainted output. The conditions above are sufficient to guarantee information flow

security because they preclude all possible direct (through a port) or indirect (through

state or memory) channels through which tainted information could leak. The first four

conditions preclude all possible indirect information flows of tainted data, stating that if

an untainted task executes in a taint-free processor, its memory partition remains taint-

free, and it does not load tainted data from tainted memory or ports, its computations

and outputs will remain untainted. The last condition precludes direct information

flows of tainted data, stating that a tainted task is not allowed to write to untainted

output ports.

Since the set of conditions above are sufficient, a system that meets the conditions

guarantees non-interference. Secure-by-design processors use hardware-based informa-

tion flow control mechanisms to guarantee that the above conditions are met for all

possible applications that execute on the processor [107, 109, 108]. However, none of

the conditions above are actually necessary to guarantee non-interference. For example,

it is acceptable for state elements to be tainted when an untainted task executes (a vio-

lation of condition 1), as long as the computations performed by the task do not depend

on any tainted state elements. Similarly, exceptions can be made for all the sufficient

conditions (they are not necessary). Thus, as long as the original non-interference prop-

erty (see Section 7.1) holds, any or all of the sufficient conditions described above may

be relaxed. This insight has several interesting implications. (1) Since our symbolic

analysis technique for input-independent gate-level taint tracking can check whether

the non-interference property holds for all possible executions of a known application

without forcing the application to meet the conditions above, it is possible to provide a

security guarantee for any application that has no possible violations, even on a com-

modity processor that is not secure by design. (2) Since symbolic input-independent

gate-level taint tracking can identify all possible instances where an application causes

the non-interference property to be violated for a system, it can be used to identify

locations where an application must be modified to prevent insecure information flows,

as well as to verify whether a modified application is secure. (3) Some applications have

no possibility of violating one or more of the conditions above. Therefore, some secu-

rity mechanisms applied by secure-by-design processors represent unnecessary overhead
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for those applications. On the other hand, if insecure information flows can be elimi-

nated through software modifications, the modifications can specifically target only the

insecure information flows to which an application is vulnerable, potentially reducing

the overhead of providing security for the system and enhancing programmability (by

imposing fewer restrictions on software).

7.3.2 Software Techniques to Eliminate Insecure Information Flows

When the sufficient conditions for information flow security described in the previous

section are not satisfied, it is possible for tainted information to leak. For example,

allowing an untainted task to read and operate on tainted data may result in tainting

of a processor’s control flow state, and subsequently the execution of an untainted

task. Specifically, if a processor’s program counter (PC) becomes tainted, then all

subsequent instructions will be tainted. Therefore, the control flow of an untainted

computational task can also become tainted if it executes after a tainted task that

taints the processor’s control flow state. In fact, once the PC is tainted by a tainted

task, it is possible that control may never become untainted, even if control is returned

to untainted code. Preventing information flows from tainted to untainted code must

include prevention of all direct information flow (e.g., the tainted code cannot call a

yield function to return to untainted execution) and all indirect information flow (i.e.,

there must exist a mechanism that deterministically bounds the execution time of the

tainted code). To avoid information leaks through control flow, there must exist an

untaintable, deterministic mechanism that recovers the PC to an untainted state that

fetches code from an untainted code partition.

Another common way for information to leak in a commodity processor is through

the memory. If code that is allowed to handle tainted information writes to data memory

using a fully tainted address, then the entire data memory, including partitions belonging

to untainted code, will become tainted. For example, if tainted code reads a value from

a tainted input port and then uses the value as an index to write into an array, the

tainted address causes the entire data memory to become tainted, not just the memory

location pointed to by the address. To avoid such leaks, a mechanism is needed to

guarantee that no possible execution of tainted code can write to an untainted data

memory partition.



77

For cases where an application violates the sufficient conditions and is vulnerable to

insecure information flows, we propose two software transformations, analogous to the

hardware mechanisms presented in [109], that target and prevent insecure information

flows.

Untainted Timer Reset: An untainted timer can be used to reset the PC to an

untainted location after a deterministic execution time of running tainted code, thus

guaranteeing that tainted code cannot affect the execution of untainted code. However,

on a commodity processor (e.g., openMSP430), generating such a timer is challenging

for two reasons. First, common mechanisms for setting the PC, such as interrupts,

still depend on the current, possibly tainted state of the pipeline to determine when

the PC is reset. Second, the timer must not become tainted. As an example, on the

openMSP430, a timer could be directly tainted by tainted code writing to its memory-

mapped control register. To overcome these challenges, we propose using the watchdog

timer that is common to many microcontrollers to reset the entire processor after a

deterministic-length period of tainted execution. We use our symbolic simulation-based

analysis to guarantee that the watchdog remains untainted.

Figure 7.3 shows our proposed watchdog timer reset. During the execution of a

context switch in an untainted system code partition, the watchdog timer is set to a

predetermined value for the computational task that is being switched in. The untainted

system code then transfers execution to the tainted computational task. This tainted

task can make full use of the processor, except writing to the watchdog or an untainted

memory space partition or port, possibly propagating taints throughout the pipeline.

When the untainted watchdog expires, it resets the entire pipeline with a power-on

reset (POR).3 Since this reset is untainted, the state within the pipeline will be reset to

untainted values, including the PC. While using the watchdog timer flushes tainted data

from the processor, the subsequent reset state is only untainted if the watchdog timer

itself remains untainted. Since applications are known during analysis, the symbolic

simulation used during input-independent gate-level taint tracking allows us to identify

whether or not any tainted code can write to the control register of the watchdog timer

during any possible execution of the tainted code. If there is no possibility of tainted

3 We assume that the POR does not reset memory. This is a reasonable assumption, since many
microcontrollers have non-volatile memory, including TI’s MSP430FRXX series.
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ADDR Instruction

0 nop

1 mov #100, r10

2 nop

3 nop

4 dec r10

5 jnz #2

6 jmp #0

Untainted
Tainted

PROGRAM	MEMORY

0x0000

ADDR Instruction

0 ; enable interrupts
mov #0x0008, r2  

1 ; enable watchdog
mov #0x5a0b, &WDTCTL   

2 nop

3 mov #100, r10

4 nop

5 nop

6 dec r10

7 jnz #2

8 nop

... ...

64 nop

PC

0x0001
PC

0x0002
PC

0x0003
PC

0x0004
PC

0x0041
PC

0x0000
PC

0x0002
WDG

0x0003
WDG

0x0040
WDG

0x0000
WDG

0x0000
PC

Figure 7.3: Untainted timer reset example: by starting a watchdog timer in the un-
tainted portion of the code we ensure that the PC becomes untainted after the watchdog
(WDG) issues a reset, restoring the system to an untainted (or trusted) state.

code writing to the control register of the watchdog timer, the write enable input for

the control register is verified to be untainted. The only information this can leak is the

fact that the tainted code does not access the watchdog timer – a known requirement

for guaranteeing information flow security using our approach.

Note that this mechanism works naturally in multi-programming and task switching

environments that are common in realtime embedded systems. Before context switching

to a tainted computational task, the untainted system code simply sets the watchdog

timer to the appropriate interval for the task – either the maximum length of the task

or the length of an OS time slice, depending on the usage scenario. Expiration of the

timer resets the processor to an untainted state, as usual, which also resets the PC. The

code at PC=0 either contains or vectors to the system routine for switching in the next
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context.

If a tainted computational task wants to use the watchdog timer, it may not be

possible to certify the system as secure unless a) it is impossible for the tainted task to

cause a control flow violation or b) an alternative, functionally-equivalent (or otherwise

acceptable) option can be used in place of the watchdog timer. Microprocessors typically

provide several hardware timers, and it may be possible to emulate the functionality

desired by the tainted task using a different timer. If it is not possible to use another

available timer, software optimizations such as prediction may be used to eliminate the

possibility of control flow violations.

Software Masked Addressing:

ADDR Instruction

0 mov #4096, &DMEM_250

1 mov #49, r15

2 mov.b #1, 0(r15)

3 mov #32, r15

4 ; read untrusted input
mov @r15, r15

5 mov #512, r14

6 add r15, r14

7 mov #500, 0(r14)

8 mov r15, &DMEM_200

ADDR Instruction

0 mov #4096, &DMEM_250

1 mov #49, r15

2 mov.b #1, 0(r15)

3 mov #32, r15

4 ; read untrusted input
mov @r15, r15

5 mov #512, r14

6 add r15, r14

7 and #0x03FF, R14

8 bis  #0x0400, R14

9 mov #500, 0(r14)

10 mov r15, &DMEM_200

DATA	MEMORY

Untainted
Tainted

PROGRAM	MEMORY

0x400

0x500

0x400

0x500

Figure 7.4: Memory mask example: By adding two instructions to addresses 7 and 8
in the right-hand code that mask the address to only use the tainted task’s memory
partition, no untainted memory locations get tainted.

Figure 7.4 shows our proposed memory bounds masking. The left side shows the

original assembly code where a tainted address is used to store data, tainting the entire

data memory. On the right side, the assembly code is modified to mask the memory
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address to guarantee that it falls within the region of data memory to which tainted

code is allowed to write. Input-independent taint tracking can then verify that no taint

is propagated to memory regions that are untainted. While simple masking solves the

memory address taint problem for the case where the PC remains untainted, masking

alone cannot guarantee information flow security when the PC becomes tainted. In

this case, the tainted PC taints the masking instructions themselves. However, dur-

ing application-specific gate-level information flow tracking, the program, including the

added masking instructions, is known. In this case, our information flow tracking anal-

ysis can verify that no possible execution of the tainted code can generate an address

outside of the regions of data memory that are allowed to be tainted. If there is no possi-

bility of being able to write outside of allowed memory regions, there is no possibility of

information flow, either explicit or implicit, between the allowed and disallowed memory

regions. The only information flow that can leak is the information that the tainted

application does not write outside of its allowed memory region – a known condition for

guaranteeing information flow security.

7.3.3 Proving Information Flow Security

Theorem : For a system S consisting of a processor P and application A, if application-

specific gate-level information flow tracking TS of S reports that S is secure (i.e., satisfies

the non-interference property), tainted data in P will never influence the execution of a

trusted computational task AI in S, and P will never propagate tainted data through

an untainted output.

Proof : For tainted data to influence the execution of AI , a taint must propagate from a

tainted input of S to an untainted output written by AI either through a state element

of P, through the memory, or directly from a port.

Case 1 – taint propagation through a state element: For taintedness to influence AI
through a state element E , E must be tainted by a tainted computational task AJ and

remain tainted while AI is executing on P. However, in any case where TS identifies a

possible tainted information flow from AJ to AI , A is modified to invoke the watchdog

timer mechanism to reset all state elements in the processor after the execution of AJ
and before the execution of AI . Therefore, taint propagation through a state element

is impossible, as long as AJ does not interfere with the untainted operation of the
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watchdog timer. Since TS checks all possible execution states of A on P and also

reports that A is insecure if a taint propagates to the watchdog timer in any possible

state, assurance of security from TS means that it is impossible for tainted data to

propagate through a state element and influence the execution of AI .
Case 2 – taint propagation through memory: For taintedness to influence AI through

the memory, a tainted computational task AJ must write to some memory locationM
outside its tainted memory partition, and AI must read from that memory location

while it is executing on P. However, in any case where TS identifies that AJ could

write outside of its memory partition, A is modified such that masking instructions are

inserted to ensure thatAJ can only write inside its own memory partition. Furthermore,

TS checks all possible execution states of A on P and reports that A is insecure if a

tainted write is performed to untainted memory or a read is performed from tainted

memory by any untainted computational task. Therefore, assurance of security from TS
means that it is impossible for tainted data to propagate through memory and influence

the execution of AI .
Case 3 – taint propagation through a port: For taintedness to propagate to an output

through a port, either some AI must read from a tainted port or some AJ must write

directly to an untainted port. Both cases are reported as insecure by TS as it evaluates

all possible execution states of A. Therefore, assurance of security from TS means that

it is impossible for tainted data to influence the execution of AI or propagate to an

untainted output from a port. �

7.4 Results

We evaluate the information flow security of each benchmark running as a tainted

computational task on the system (ports it uses are labeled tainted). System code is

an untainted task consisting of the instructions needed to restart the benchmark after

each execution.

7.4.1 Information Flow Violations

Application-specific gate-level information flow tracking reports all possible information

flow violations for an application. Table 7.1 shows which of the unmodified benchmarks
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violated the sufficient conditions described in Section 7.3.1. Seven benchmarks do not

violate any of the conditions. Effectively, our analysis shows that these benchmarks

cannot violate our information flow security policy on this processor. However, six

benchmarks violate sufficient conditions 1 and 2.4 These benchmarks require the

techniques described in Section 7.3.2 to guarantee information flow security. After

performing software modifications identified by our toolflow, all condition violations

are eliminated.5 Thus, symbolic gate-level information flow tracking in conjunction

with software modification is able to guarantee information flow security for these ap-

plications on a commodity processor without hardware-based information flow control

mechanisms.

Table 7.1: Benchmarks that violate sufficient
conditions 1 and 2 for information flow secu-
rity (see Section 7.3.1) before and after mod-
ification.

Benchmark
No Mod Modified
C1 C2 C1 C2

binSearch X X - -
div X X - -
inSort X X - -
intAVG X X - -
intFilt - - - -
mult - - - -
rle - - - -
tHold X X - -
tea8 - - - -
FFT - - - -
Viterbi X X - -
ConvEn - - - -
autocorr - - - -

Table 7.2: Performance overhead (%) for
watchdog timer reset and memory address
masking applied with and without applica-
tion analysis.

Benchmark
W/o With
App App

binSearch 34.63 34.63
div 33.16 33.16
inSort 37.92 10.00
intAVG 45.56 11.90
intFilt 19.58 0
mult 150.9 0
rle 45.61 0
tHold 106.2 106.2
tea8 93.89 0
FFT 17.63 0
Viterbi 1.029 1.029
ConvEn 19.69 0
autocorr 42.15 0

4 None of our benchmarks violate sufficient conditions 3, 4, or 5; however, this is not surprising for
well-written code, since the conditions preclude scenarios like reading memory out of bounds or illegal
port accesses.

5 When *-logic analysis was used to verify information flow security on the six applications with
information flow violations, it identified that the condition violations were not removed. This is because
these applications have control dependences on an unknown, tainted input, which causes *-logic to taint
the PC and make it unknown, resulting in 70% of the gates in openMSP430 becoming unknown and
tainted, even those required by the software techniques to remain untainted (e.g., the watchdog timer).
Therefore, a direct application of *-logic analysis would not allow the software-based techniques to be
verified on commodity hardware.
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7.4.2 Runtime Overheads of Software-based Gate-level Information

Flow Security

Since we eliminate possible tainted information flows through software modification,

guaranteeing information flow security in our approach incurs performance and energy

overheads whenever an application has potential violations to eliminate. The right col-

umn of Table 7.2 (With App) shows the performance overhead of using the watchdog

timer and memory masking to eliminate information flow security vulnerabilities in our

benchmark applications. Since application-specific gate-level information flow tracking

is able to identify and eliminate only the tainted information flows that an application is

vulnerable to, applications that are not vulnerable to tainted information flows require

no modifications and incur no overhead. For applications where modifications are nec-

essary, masking is applied to store instructions that may be tainted, and the watchdog

timer is used to deterministically bound the execution time of tainted computational

tasks.

Since the openMSP430 watchdog has a maximum interval length of 32768 cycles,

which may not be long enough to bound the longest execution time of a computational

task, we evaluate a system that implements time-slicing (e.g., as an RTOS might sched-

ule one computational task across multiple time slices). Also, since the execution time

of a task may not be an even multiple of one of the available watchdog timer inter-

vals (64, 512, 8192, and 32768 cycles), an infinite idle loop is added at the end of each

benchmark to fill the remainder of the final time slice. The number and duration of

time slices are selected to minimize overhead, based on the available watchdog timer

intervals and the overhead of state checkpointing and recovery (context switching) for

time slicing.6 Intuitively, using fewer, longer time slices for a given task duration incurs

less overhead for context switching but may incur more idling overhead in waiting for

the final watchdog interval to complete. Our toolflow accounts for the overheads of con-

text switching and scheduling the watchdog timer, along with the maximum duration

of a computational task, to select the number and duration of watchdog intervals that

minimize overhead while providing a deterministic bound on execution time.

Since application-specific gate-level information flow analysis indicates precisely which

6 For openMSP430, the overhead of saving and restoring a task’s state is 20 cycles, and watchdog
timer initialization and reset takes 10 cycles.
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computational tasks need to be protected by a watchdog timer and which store instruc-

tions need to be protected by address masking, the techniques can be applied only

where necessary. On the other hand, guaranteeing information flow security for an un-

known application requires masking of every store and time bounding of every tainted

task using a deterministic timer, since all sufficient conditions must be satisfied to

guarantee non-interference, even though they may not be necessary for a particular

application (Section 7.3.1). Without the ability to identify all possible tainted infor-

mation flows for all possible executions of an application on a commodity processor

using input-independent gate-level information flow tracking, an “always-on” approach

for information flow control would be required.

The left column of Table 7.2 (W/o App) shows the performance overhead of using

masking for all stores and time bounding for all tainted tasks, representing a case where

application analysis is not available and all sufficient conditions must be enforced. In

this case, performance overhead is 3.3× higher than in the case where application analy-

sis is able to target only the possible insecure information flows for an application. Even

considering only the applications that have possible information flow security violations,

applying software-based techniques only where necessary reduces performance overhead

by 24%. Overall, application-specific information flow analysis can minimize the over-

head of providing information flow security guarantees on a commodity processor using

software-based techniques.

7.4.3 Information Flow Secure Scheduling: A System-level Use Case

In this section, we show that we can use the techniques developed in this work to guar-

antee information flow security at the system level; we focus on an IoT system that

performs scheduling between multiple tasks. Specifically, we show that without any

modifications to the processor, we can guarantee that (1) there are no insecure informa-

tion flows across scheduled tasks, and (2) no task can affect the scheduling performed

by the system software. In order to demonstrate these properties, we construct an IoT

system in which FreeRTOS [96] performs task scheduling between two tasks – div and

binSearch – where binSearch is an untrusted task (its input and output ports are

marked as untrusted), and FreeRTOS and div are both trusted.

The control flow of binSearch depends on an untrusted input value. Thus, in the
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baseline case, after binSearch is scheduled on the processor, the processor’s control flow

becomes tainted. Among the consequences of this tainting are that (1) the trusted task

div becomes untrusted the next time it is scheduled, and (2) the scheduling of FreeRTOS

itself is compromised, since it too becomes untrusted as a result of the tainted task.

To provide information flow security for this system, we modify the system’s applica-

tion, consisting of FreeRTOS and the two computational tasks. 330 store instructions

in binSearch are identified as potential security violations, and our toolflow applies

memory masking to these instructions. Also, our toolflow invokes the watchdog timer

mechanism around the untrusted task. This modification is performed in FreeRTOS

system code. The value of the reset interrupt vector is set to a location in the middle of

FreeRTOS’s scheduler interrupt. On a watchdog-invoked reset, scheduling is performed

as usual with the exception that the watchdog timer is also reset with the scheduling

timer prior to restoring the context of the next task from its own stack. After modifi-

cation, application-specific information flow tracking verifies that the application runs

successfully without any tainting of the trusted task or the RTOS.

We measure the performance overhead of our modification using input-based gate-

level simulations; runtime is measured from when the first task is scheduled to when both

tasks have completed. The total performance overhead of adding the watchdog timer

reset and memory masking is only 0.83%. The overhead is low since only binSearch

requires memory masking and the modifications required to add the watchdog timer to

FreeRTOS’s system code are small (e.g., FreeRTOS already requires context saving and

restoring).

The above example shows that we can guarantee gate-level information flow secu-

rity with low-overhead software modifications for an application built on a commodity

RTOS. More broadly, this shows that our techniques are applicable at the system-level

and can be used to verify complex and system-level security properties.
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Conclusion and Discussion

For many emerging applications such as the internet of things and sensor networks, new

challenges in design have shown up in terms of power, area, cost and security. Power

and energy, for example, have become critical design constraings that not only affect

the lifetime of an ultra-low-power (ULP) system, but also its size and weight. To this

end this research has proposed a novel application specific hardware-software co-analysis

technique that is based on symbolic simulation to capture the behavior of an application

on a processor for all possible inputs to that application.

This novel hardware-software co-analysis technique has been shown to optimize a

processor-application pair for power, area, cost and security. Specifically, using this

technique we showed that an application specific Vmin can be determined by exploiting

available dynamic timing slack (DTS), saving power at no performance cost. We then

showed that using the technique module-oblivious power domains can be designed that

save double the leakage energy compared to traditional module-based power domains.

The technique has been shown to also better estimate the peak power and energy

of a processor application pair enabling a smaller and cheaper overall system. We

also showed that application of the hardware-software co-analysis technique can enable

automatic generation of application-specific ‘bespoke’ processors drastically reducing the

design costs of application-specific designs. Finally, augmenting the hardware-software

co-analysis methdology with taint information we showed that we can track information

flow for an application on a processor at the gate-level enabling secure software on legacy

ULP systems.

86
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The methodology proposed in this research is novel and can enable further research

in this direction such as designing application specific instruction set architectures from

a generic instruction set architecture. This work can also enable construction of design-

aware compilers which can use the information from the hardware-software co-analysis

technique to choose better instructions for a certain optimization metric. The core tech-

nique of hardware-software co-analysis can be further improved by adding ‘hints’ from

the software level abstraction during gate-level simulation leading to faster simulation

times and less conservative activity information.
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