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Abstract 

Precision medicine refers to matching the most accurate and effective treatment to each 

individual, and has the potential to manage diseases. In cancer, however, developing 

drug candidates and finding effective combination strategies are in great demand. Here, 

we present a framework covering drug development against a specific oncoprotein, 

effective combinations of drug and natural compounds, and a physiologically-

achievable chemoprevention strategy. First, HI-B1 is synthesized and identified as a 

direct β-catenin inhibitor. A colon cancer patient-derived xenograft (PDX) model with a 

high level of β-catenin is sensitive to HI-B1. Second, a combination of aspirin with a 

ginger extract shows synergistic effect. Combining a ginger extract with aspirin 

treatment can significantly reduce the effective dose of aspirin while retaining its 

therapeutic effects in PDX mouse models. Third, multiple phytochemicals at low doses 

accumulatively inhibit one key protein to exert their chemopreventive and therapeutic 

effects. Natural ERK2 inhibitors are discovered using chemoinformatics, 

crystallography, cell biology and biochemistry. Each outcome could be used in a 

precision oncology workflow to help prevent and treat cancer efficiently. 
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precision oncology 
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1.1 Summary 

Precision oncology is described as the matching of the most accurate and effective 

treatments with the individual cancer patient. Identification of important gene mutations, 

such as BRCA1/2 that drive carcinogenesis, helped pave the way for precision diagnosis 

in cancer. Oncoproteins and their signaling pathways have been extensively studied, 

leading to the development of target-based precision therapies against several types of 

cancers. Although many challenges exist that could hinder the success of precision 

oncology, cutting-edge tools for precision diagnosis and precision therapy will assist in 

overcoming many of these difficulties. Based on the continued rapid progression of 

genomic analysis, drug development, and clinical trial design, precision oncology will 

ultimately become the standard of care in cancer therapeutics. 

 

 

1.2 Introduction 

Improving efficacy, minimizing the adverse side effects of drugs, and overcoming 

acquired resistance to drug treatment have been major goals and emphases in cancer 

therapy. In order to attain the objectives of precision oncology, basic and clinical 

researchers have identified and clarified differences derived from genetic features 

between individuals. The existence of specific genetic differences between individuals is 

exemplified by the finding in 1932 that phenylthiocarbamide (PTC) exhibits the unusual 

property of either tasting very bitter or having no taste at all based on the individual’s 

genetics. Notably, this trait is inherited to the next generation (1-2). The “one-size-fits-all 
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strategy” is no longer relevant to cancer treatment. The tailoring of distinct treatments to 

each specific individual became known as “personalized medicine” (3) and later the name 

was changed to “precision medicine” (4). Many countries have now launched 

government-driven projects focusing on precision medicine, including the Precision 

Medicine Initiative (National Institutes of Health, USA) (4), Cancer Moonshot program 

(5) (National Cancer Institute, USA) and HORIZON 2020 Work Programme for 2016 to 

2017 (EU) (6).  

The accelerating momentum of precision medicine, and especially precision 

oncology, has stemmed from the increasing amount of “-omics” information acquired 

from patients and, importantly, the successful integration of the fields of basic and 

clinical cancer research (see a detailed discussion in Appendix). Next generation 

sequencing instrumentation is capable of sequencing several genomes a day at a cost of 

about $1,000 each, making this technology an essential and straightforward part of 

translational cancer research (7). Driver-gene mutations identified from comprehensive 

genome analyses are now frequently detected in many cancer patients; and the aberrant 

gene products are currently being targeted by specific antagonists or monoclonal 

antibodies (8). Oncologists are now able to stratify subsets of cancer and make informed 

therapeutic decisions. Consequently, targeted therapy has gained credibility in reinforcing 

and/or replacing conventional cytotoxic chemotherapy. Several targeted agents are 

presently approved by the FDA and are being used clinically against several types of 

cancer. 
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Here, we categorize the work flow of precision oncology into two segments, 

precision diagnosis and precision therapy, and provide milestones and important aspects 

characterizing each segment. By reviewing targeted therapies clinically approved against 

breast cancer, lung cancer and melanoma, we reveal the current status and expose 

possible challenges in precision oncology. Two of the most effective state-of-the-art tools 

for the success of precision oncology are also described.  

 

 

1.3 Precision oncology for patients–from precision diagnosis to 

precision therapy 

In order to better understand and utilize precision oncology (i.e., precision 

medicine as it applies to cancer), analyzing the procedures step by step is crucial. 

Precision oncology comprises precision diagnosis and precision therapy. Precision 

diagnosis begins with an accurate diagnosis of each individual cancer patient and ideally 

classifies subjects into cancer patients and individuals at high risk for specific cancers (9). 

By detecting biomarkers that are associated with specific cancer types such as BRCA1/2 

mutations in breast cancer (10-11), we can diagnose the current or potential risks of each 

individual. Accumulating evidence shows that multiple biomarkers (so called 

“signature”) can help in creating more precise and evidence-based therapeutic strategies 

to modulate cancer (12-13). Establishing molecular subtypes and categorizing tumors 

into one of the subtypes enhances the accuracy of therapeutic options (14). The 

information derived from precision diagnosis reveals the precise medical measures, 
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including surgery, radiation, chemotherapy, adjuvant therapy, supplements, and/or 

vaccines, that are needed for each individual.  

Precision therapy matches the most effective treatment to the individual cancer 

patient based on the genetic profile of the specific cancer, and can be divided into two 

categories that include precision chemotherapy and precise therapeutic procedures. 

Precision chemotherapy is the use of the correct drugs prescribed that assures maximum 

benefit with minimum risk or toxicity for the patient. Therapeutic measures could include 

surgery and radiation therapy tailored to the patient’s needs.  

 

 

1.4 Precision diagnosis 

Information-based diagnosis can assist clinicians, not only in identifying tumor 

type and stage, but in revealing important genetic mutations that drive carcinogenesis. 

Advances in technology have clearly resulted in more effective therapeutic decisions. 

Final goals include optimization of clinical outcomes, avoidance of unnecessary 

therapies, minimized side effects, and overcoming or avoiding drug resistance. 

  

1.4.1 BRCA1/2 are a milestone for precision diagnosis 

The discovery of the breast cancer susceptibility genes, BRCA1/2, was traced from a 

family with a history of breast cancer, and indicated the association between genetic 

features and the early onset of the disease (10-11). In addition to other breast cancer 

susceptibility genes, the BRCA1/2 mutation test is one of the most well-established 
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models in precision oncology. It has become a guideline that aids clinicians in creating 

prevention strategies and targeted therapies. More than one million individuals have been 

tested for BRCA1/2 mutations worldwide (15). 

The landscape of mutations in the BRCA1/2 genes has been extensively studied 

and the relationship between the mutations and breast cancer risk is also well-defined. 

More than 1,800 different variants (i.e., intronic changes, insertions, deletions and 

missense mutations) have been observed in BRCA1 and 2,000 different variants have 

been reported to occur in BRCA2 (15). BRCA1/2 mutations are currently the most 

significant gene variations in breast cancer surpassing tumor protein p53 (TP53), 

phosphatase and tensin homolog (PTEN), liver kinase B1 (LKB1) and cadherin1 (CDH1) 

mutations (15-17). BRCA1/2 mutations are estimated to account for approximately 15% 

of the relative familial risk of breast cancer (15). Mutations in BRCA1 and BRCA2 

reportedly contribute equally to early-onset breast cancer (18). 

 

1.4.2 Development and improvement of genetic tests 

 Recent progress in immunohistochemistry (IHC) has helped clinicians to identify 

the presence of specific biomarkers and to categorize patients in pathology (19). 

Detection of HER2 (20) in breast cancer and PD-L1 (21) in lung cancer based on IHC 

aided the prescription of suitable drugs for the patients. However, many other techniques 

are currently available to quantify changes in gene expression, and include RT-PCR (22), 

DNA arrays (23), NanoString technology (24), comparative genomic hybridization 

arrays, and single nucleotide polymorphism analysis (25). Genetic tests have been 
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developed for diagnostic, predictive and prognostic purposes and some have been 

approved by the FDA, whereas others are still under development for breast cancer (26-

34), lung cancer (35-41) and melanoma (42-46) (Table 1.1). Although the most 

significant genes, such as BRCA1/2, can only predict or explain a portion of disease 

susceptibility, the number of genes examined in a single test has continually increased to 

improve accuracy (13). Of particular note (Table 1.1), the 70-gene signature test for 

breast cancer (MammaPrint by Agendia) (26) showed the most efficacy in a clinical trial 

(47). The study in 6,693 women with early-stage breast cancer was conducted to examine 

whether the gene signature test could reduce the use of chemotherapy. For patients who 

had high clinical risk and low genomic risk for recurrence, the difference in the 5-year 

survival rates between chemotherapy (98.8%) and no-chemotherapy (97.3%) was only 

1.5% (47). The result shows that approximately 46% of women with breast cancer who 

are at high clinical risk might not require chemotherapy and that the 70-gene signature 

could aid in treatment decisions (47). The Oncotype Dx test by Genomic Health also 

helps clinicians in selecting proper treatment options for patients with invasive breast 

cancer (31, 48). The Oncotype Dx test generates a recurrence score (0-100) by analyzing 

the expression of 21 genes (49-50). Survival rates of patients with high recurrence scores 

(31 and higher) have been improved by adjuvant chemotherapy, whereas patients with 

low recurrence scores (less than 17) are unlikely to get benefits from the chemotherapy 

(48). 
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Table 1.1 Genetic tests for breast cancer, lung cancer and melanoma 
 

Type Test name Institution FDA 
approval 

No. 
of 
genes 

Ref. 

Breast 
cancer 

MammaPrint Agendia 

Yes 

70 (26) 
Prosigna NanoString Tech. 50 (30) 
GeneSearch BLN test Veridex 2 (27) 
INFORM HER2 Dual 
ISH 

Ventana 1 (29) 

HER2 CISH pharmDx 
Kit 

Dako 1 (28) 

Oncotype Dx Genomic Health 

No 

21 (31) 
EndoPredict Sividon 

Diagnostics 
11 (32) 

Breast Cancer Index test BioTheranostics 7 (33) 
FEMTELLE Sekisui 

Diagnostics 
2 (34) 

Lung 
cancer 

Therascreen EGFR RGQ 
PCR kit 

QIAGEN 

Yes 

1 (37) 

cobas EGFR Mutation 
Test 

Roche 1 (35) 

VENTANA ALK 
(D5F3) CDx Assay 

Ventana Medical 
Systems 

1 (38) 

Vysis ALK Break Apart 
FISH Probe Kit 

Abbott Molecular 1 (36) 

Lung Cancer Mutation 
Panel  

Quest Diagnostics  

No 

34 (39) 

Lung Cancer 
Comprehensive Mutation 
and Translocation Panel 

ARUP 
Laboratories 

11 (40) 

SnaPshot Multiplex 
System 

Thermo Fisher 11 (41) 

Melanoma 

cobas 4800 BRAF V600 Roche Yes 1 (42) 
THxID-BRAF bioMerieux 1 (43) 
53-Immune Gene 
Network Panel 

Icahn School of 
Medicine Mount 
Sinai No 

53 (44) 

myPATH Myriad 23 (45) 
Sentosa SQ Melanoma 
Panel 

Vela Diagnostics 10 (46) 
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1.5 Precision therapy 

    Precision therapies have been applied in breast cancer, lung cancer and 

melanoma, but many challenges still need to be addressed. 

 

1.5.1 Breast cancer and targeted therapy 

 The most well-known target-based treatment against breast cancer is directed at 

the estrogen receptor (ER) and the human epidermal growth factor receptor 2 (HER2; 

Table 1.2) (51). The discovery of these two protein receptors opened a new avenue for 

targeted therapy that showed improved efficacy compared to aromatase inhibitors, which 

suppress plasma estrogen levels in postmenopausal women (52). Tamoxifen, a pro-drug 

targeting the ER, is metabolized in the liver into active metabolites that have a higher 

affinity for the ER compared to the parental tamoxifen (53). Trastuzumab is a 

monoclonal antibody targeting HER2 and is used in patients with breast cancers 

overexpressing this receptor (Table 1.2) (54-55). Trastuzumab inhibits the activity of 

HER2, which forms heterodimers with other tyrosine kinase receptors (i.e., EGFR, HER3 

and HER4) and promotes tumorigenesis (56). From a clinical trial of 469 women with 

metastatic breast cancer overexpressing HER2, combinational treatment with 

trastuzumab and standard chemotherapy attenuated disease progression compared to 

standard chemoptherapy alone (i.e., median, 4.6 vs. 7.4 months) (57). The objective 

response rate (i.e., 32 vs. 50%) and survival time (i.e., median, 20.3 vs. 25.1 months) 

were also improved by the addition of trastuzumab to the chemotherapy (57). A 

combination of pertuzumab, trastuzumab, and chemotherapy (i.e., docetaxel) improved 



 

 10 

the median overall survival time (i.e., 40.8 vs. 56.5 months) compared to trastuzumab-

only plus chemotherapy (58). A conjugate drug of a HER2 monoclonal antibody and a 

cytotoxic drug, ado-trastuzumab emtansine, prolonged progression-free survival and 

overall survival with lower adverse effects compared with a combination of lapatinib and 

chemotherapy (Table 1.2) (59). 

 

 

Table 1.2 Targeted therapies in breast cancer 

Target gene Alteration Drug type Examples 
HER2/ERBB2 Amplification/mutation HER2 

inhibitor 
Trastuzumab,  
Ado-trastuzumab 
emtansine, 
Pertuzumab,   
Lapatinib 

ER 
 
 

- ER inhibitor Tamoxifen 
Amplification ER 

downregulator 
Fulvestrant 

EGFR Amplification/mutation EGFR 
inhibitor 

Gefitinib, Erlotinib, 
Afatinib, Osimertinib, 
Olmutinib, Cetuximab 

PI3-K Amplification/mutation mTOR 
inhibitor 

Rapamycin, 
Everolimus AKT1/2/3 Amplification 

PTEN Mutation/deletion 
mTOR Amplification 
KRAS Amplification/mutation BRAF, MEK 

inhibitor 
Vemurafenib, 
Trametinib BRAF Amplification/mutation 

NF1 Mutation 
CDKN1B Alteration CDK4 

inhibitor 
Palbociclib 

CCND1 Amplification 
BRCA1/2 Mutation/deletion PARP 

inhibitor 
Olaparib 

ATM Mutation 
ATR Mutation 
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1.5.2 Challenges of targeted breast cancer therapies 

 The identification of driver genes in breast cancer increases the likelihood of 

matching the correct, most effective drug to the right patient. Only a few genes, however, 

have been validated to act as driver genes. BRCA1/2, estrogen receptor alpha (ESR1), 

HER2, PI3-K/Akt/mTOR, Egfr, cyclin dependent kinase 4 (CDK4)/Rb, Ras/Raf/mitogen-

activated protein kinase kinase (MEK) are known to be critical in breast cancer therapy 

(Table 1.2) (60-61). For instance, somatic mutations of PI3-K occur in more than 10% of 

all breast cancers (61) and Akt1 and Akt3 mutations and PTEN deletion contribute to the 

activation of the PI3-K pathway (25, 62). Nevertheless, approximately 50% of the 

familial relative risk (the ratio of the risk of disease for a relative of an affected individual 

to that for the general population) of breast cancer is still unexplained (15). Couch et al. 

estimated that contributions of genes including BRCA1/2, TP53, PTEN, LKB1, CDH1, 

and known/predicted single nucleotide polymorphisms in breast cancer, and the current 

knowledge of genetic variations, only covered half of the breast cancer risk (15). 

Variants of uncertain significance (VUS) add another layer of complication in 

breast cancer treatment. VUS refers to changes in a normal gene sequence for which the 

clinical association with disease is unclear (63). Although many efforts have been made 

to evaluate and classify genetic variants, including missense, intronic, and small in-frame 

insertions and deletions (64-66), the rarity of the individual VUS makes interpretation 

difficult because of insufficient statistical power.  

 Furthermore, some breast cancer patients lack good target proteins for therapy. 

Triple-negative breast cancer (TNBC), for example, is negative for ER and progesterone 
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receptor (PgR) and lacks HER2 amplification and therefore cannot be treated with classic 

endocrine therapy or HER2-targeted therapy (67-68). The loss of HER2 expression in 

metastatic tumors compared with HER2-amplified primary breast cancers is frequently 

observed, and ER-positive/PgR-positive/HER2-amplified tumors become TNBC after 

chemotherapy (51, 69-70). Although alternative molecular targets, such as EGFR, which 

is frequently amplified and is related to poor prognosis (71-72), are being elucidated 

(Table 1.2), TNBC has only a small number of therapeutic options, and remains a 

difficult type of cancer in the field of breast cancer therapy (73). 

 

1.5.3 Lung cancer and targeted therapies 

 FDA approval of gefitinib, an epidermal growth factor receptor (EGFR) inhibitor 

(74), accelerated target-based therapy in lung cancer patients replacing cytotoxic 

chemotherapy for first-line therapy (75-76). For patients with EGFR-activating mutations 

(exon19del or L858R), erlotinib (77-78) also performed better than conventional 

chemotherapies, such as cisplatin. EGFR-targeted therapy was combined with cytotoxic 

drugs as a combination therapy that showed improved progression-free survival (79-80). 

However, almost all patients treated with the EGFR inhibitors acquired resistance to the 

drugs due to secondary EGFR mutations such as T790M (81-82). Second-generation 

EGFR inhibitors (e.g., afatinib (83-84)) were designed to target mutant EGFR better than 

the wild-type receptor. Third-generation EGFR inhibitors, including osimertinib and 

olmutinib, irreversibly bind to EGFR T790M and have been approved for use in the U.S 

and South Korea, respectively (Table 1.3) (85-87). 
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 Crizotinib is an FDA-approved inhibitor of anaplastic lymphoma kinase (ALK), 

Ros proto-oncogene 1 (ROS1), and Met proto-oncogene (MET; Table 1.3). ALK is a cell 

surface protein that stimulates signaling pathways, such as the Ras/Raf/MEK, PI3-

K/mTOR, and Janus kinase (JAK)/signal transducer and activator of transcription 

(STAT) pathways (88), and is activated by gene translocation and fusion with other genes 

(89-94). ROS1 is an orphan receptor tyrosine kinse (RTK) activated by chromosomal 

rearrangement and fusion with other genes (95). MET, another type of RTK, is 

overexpressed/amplified or exhibits an exon 14 skip-mutation in non-small cell lung 

cancer (NSCLC) patients (96). Crizotinib has shown its superiority over standard 

chemotherapy in ALK-positive lung cancer patients (97-98) and ROS1-rearranged 

NSCLC patients (99). Lung adenocarcinoma patients harboring the MET exon 14 splice 

site mutation also responded to crizotinib (100). However, ALK mutations, such as 

R1174L, L1196M and R1275Q, conferred resistance to crizotinib and led to the 

development of second-generation ALK inhibitors. FDA has approved the use of ceritinib 

(101), which targets the L1196M gatekeeper mutation, and alectinib (102), which targets 

the R1174L, L1196M and R1275Q mutations. 

 BRAF is a signaling protein activated by various RTKs. In NSCLC, 2-4% of 

patients possess BRAF V600 mutations (96). Although BRAF inhibitors (vemurafenib 

and dabrafenib) were originally developed for the treatment of melanoma, recent clinical 

trials with the inhibitors showed potential in BRAF V600 mutant NSCLC patients (Table 

1.3). Vemurafenib resulted in tumor regression in the majority (14 of 19) of NSCLC 

patients, and the objective response rate was 42% (103). In a phase 2 trial, dabrafenib 
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treatment with trametinib, a MEK inhibitor, reached 63% overall response in BRAF 

V600E-mutant NSCLC patients, who had documented tumor progression after previous 

platinum-based chemotherapy (104). 

 Immunotherapy has received substantial attention recently as a cancer therapy. 

Unlike other therapies, the goal of immunotherapy is to boost or restore the ability of 

immune cells to kill tumor cells (105). Tumor cells suppress and evade the immune 

system through interactions between the programmed cell death protein 1 (PD-1) of T-

cells and the PD ligand 1 (PD-L1) of tumor cells (106). Two monoclonal antibodies 

against PD-1 (Table 1.3), including nivolumab (107-110) and pembrolizumab (111-112), 

have received FDA approval for second-line treatment against NSCLC that express PD-

L1.  

 

Table 1.3 Targeted therapies in lung cancer 

Target 
gene 

Alteration Drug type Candidate 

EGFR Amplification EGFR inhibitor Gefitinib, Erlotinib, 
Afatinib, Osimertinib, 
Olmutinib 

ALK Translocation/mutation ALK inhibitor Crizotinib, Alectinib, 
Ceritinib 

MET Amplification MET/ROS1 inhibitor Crizotinib, 
Cabozantinib RET Amplification/mutation 

ROS1 Fusion 
PD-L1 - PD-1 inhibitor Nivolumab, 

Pembrolizumab 
HER2 Amplification HER2 inhibitor Trastuzumab, Afatinib, 

Dacomitinib 
BRAF Amplification/mutation BRAF inhibitor Vemurafenib, 

Dabrafenib 
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1.5.4 Challenges of targeted lung cancer therapies 

 The war against drug resistance is probably the most difficult challenge in lung 

cancer treatment. Clonal evolution, the accumulation of genetic and epigenetic changes 

over time in individual cells (113-114), is now believed to be the root of drug resistance 

(115-116). Biopsies that were taken after the failure of rociletinib targeting EGFR mutant 

(T790M)-expressing lung cancer (117) showed that at least a portion of the resistant 

tumor still expressed the T790-wild-type protein (116). The wild-type clones existed 

before treatment with rociletinib. Piotrowska et al. concluded that combination treatment 

using rociletinib targeting mutant EGFR T790M clones and other drugs targeting wild-

type EGFR T790 are required to further improve the drug response rate and final 

outcomes (116). However, when first-generation EGFR inhibitors (gefitinib and 

erlotinib) and third-generation EGFR inhibitors (rociletinib/CO-1686, 

osimertinib/AZD9291, olmutinib/HM61713 and WZ4002) were used in combination, a 

new mutation of C797S emerged and complicated the therapeutic options (118). Studies 

showed that if the C797S mutation was on a different allele of T790M, combination 

treatment with gefitinib and WZ4002 inhibited EGFR signaling. In contrast, if C797S and 

T790M were on the same EGFR allele, the combination of gefitinib and WZ4002 was not 

effective (118). Monitoring changes in cancer cells at the molecular level will be helpful 

in preventing and resolving drug resistance in lung cancer. 
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1.5.5 Melanoma and targeted therapies 

 BRAF in the mitogen-activated protein kinase (MAPK) pathway (Ras-Raf-MEK-

ERK) is constitutively activated by mutations in 40% of melanomas (119). The most 

common mutations are V600E and V600K, representing 73% and 19%, respectively 

(120). The growth of BRAF V600E-expressing melanoma can be inhibited directly by 

vemurafenib (121) or dabrafenib (Table 1.4) (122). Drug resistance, also called “bypass 

tracks”, is increasingly relevant as targeted therapy emerges (123). Patients with BRAF 

mutations acquired resistance due to increased expression and phosphorylation of 

platelet-derived growth factor receptor beta (PDGFβ) and N-Ras (124). The MEK 

inhibitor, trametinib, also suppresses BRAF V600E- or V600K-expressing melanomas by 

targeting the BRAF downstream MAPK pathway (Table 1.4) (125). Because drug 

monotherapies commonly result in resistance (124, 126), combination treatment with a 

BRAF inhibitor and a MEK inhibitor has been prescribed to increase the patient’s 

response rate and also lengthen their survival time (127). Especially, combination therapy 

as a first-line approach increased overall survival rates in a clinical trial (128). In patients 

with BRAF V600 mutations, a combination of cobimetinib (MEK inhibitor) and 

vemurafenib treatment showed median overall survival of 22.3 months, compared with 

17.4 months by placebo and vemurafenib treatment (128). 

 Melanoma cells express the CTLA-4 and PD-1 immune receptor proteins that are 

normally expressed in T-cells. Because each of these two proteins can inhibit activation 

of T-cells and down-regulate the immune response, the abnormal expression of CTLA-4 

and PD-1 in tumor cells is suggested as a molecular mechanism of immune evasion in 
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tumors (129). Ipilimumab, a CTLA-4 monoclonal antibody, was approved by the FDA 

for treatment of patients with metastatic melanoma (Table 1.4) (130-131). The PD-1 

monoclonal antibodies, nivolumab (132-134) and pembrolizumab (135), were also 

effective against metastatic melanoma (Table 1.4). Ipilimumab and nivolumab are also 

used in combination to treat melanoma (136). 

 

1.5.6 Challenges of targeted melanoma therapies 

 Similar to other types of cancer, one of the greatest challenges in melanoma 

treatment is the relapse and development of resistant disease after therapy. Recently, even 

patients who have undergone immunotherapy were shown to acquire resistance to PD-1 

blockade in melanoma (137). Zaretsky et al. reported a delayed relapse of patients who 

had had initial tumor regression induced by continuous pembrolizumab treatment. The 

analyses of biopsies showed that JAK1/2 truncating mutations resulted in loss of PD-L1 

expression and changed the molecular profile of the melanoma (137-138). Overall, 

although immunotherapy has become a promising and unique strategy for cancer 

treatment, an integrative strategy should be prepared to prevent drug resistance. 

 

Table 1.4 Targeted therapies in melanoma 

Target 
gene 

Alteration Drug type Candidate 

BRAF Amplification/mutation BRAF inhibitor Vemurafenib, Dabrafenib 
MEK Amplification/mutation MEK inhibitor Trametinib, Cobimetinib 
CTLA-4 Amplification CTLA-4 

inhibitor 
Ipilimumab 

PD-1 - PD-1 inhibitor Nivolumab, Pembrolizumab 
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1.6 Tools for precision oncology 

 The demand for new diagnostic and treatment tools has been driven by precision 

oncology. In particular, the use of liquid biopsies and patient-derived xenograft (PDX) 

models has received considerable attention from researchers and clinicians. For precision 

diagnosis, having new diagnostic platforms like liquid biopsies is crucial because this 

type of assay can gather information from patients in a manner that is minimally-

invasive. For precision therapy, testing drugs in a paradigm like the PDX model is 

beneficial because this model can be used to represent tumors of patients before drugs are 

subscribed.  

 

1.6.1 Liquid biopsies 

 A biopsy is an examination of tissue obtained from a living body to discover the 

presence, cause, or extent of a disease. Although biopsies have become more important as 

the field of precision oncology continues to expand, sampling some types of tumors is 

still difficult and can result in diagnostic errors. To address this problem, biofluid 

samples, including serum, plasma, saliva, urine and cerebrospinal fluid, are now being 

used to screen for tumors, characterize molecular features, and analyze tumor types (139-

142). Liquid biopsies can provide clear information regarding the genetic makeup of each 

tumor. Because liquid biopsies are relatively non-invasive, clinicians can repeat sampling 

and monitor disease progression over time without performing solid-tissue biopsies. 

Circulating tumor cells (CTCs) and cell-free DNA (cfDNA) are promising components of 

liquid biopsies.  
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 CTCs are cancer cells that are shed into the vascular system from the primary 

tumor and are circulating around the body in the blood (143). CTCs have been detected in 

patients with metastatic tumors at an average concentration of 1-10 cells/ml, but are 

extremely rare in individuals without tumors or with non-malignant tumors (139, 144-

145). Circulating non-tumor epithelial cells in the blood of patients undergoing surgery 

and the difficulty in identifying markers of CTCs pose challenges to this technology. 

However, because dynamic changes occur in surface markers of CTCs, analysis of 

DNA/RNA from CTCs can enable clinicians to predict tumor progression and drug 

susceptibility of the patient (142, 146). A clinical trial with CTCs showed its promise as a 

prognostic marker and limitation as an indicator of changing chemotherapy (147). The 

trial divided patients with metastatic breast cancer into four groups. Patients whose CTC 

number was not increased at baseline remained on initial therapy (arm A), and patients 

whose CTC numbers had been increased, but later decreased after 21 days of therapy, 

also remained on the initial therapy (arm B). Patients whose CTC numbers were 

consistently increased were randomly assigned to maintain initial therapy (arm C1) or 

changed to an alternative therapy (arm C2). Overall survival rates between arms A, B, 

and C (sum of C1 and C2) showed significant differences between groups (i.e., 35 vs. 23 

vs. 13 months, respectively). However, no difference was observed between overall 

survival of arm C1 and C2. This result indicates that CTC is a strong prognostic marker 

of overall survival in patients with metastatic breast cancer, although changing 

chemotherapy option based on CTC does not prolong the overall survival rate (147). In 
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summary, monitoring the efficacy of adjuvant therapies is feasible with CTC-based liquid 

biopsies, and analyses of CTCs will be one of the key players in precision diagnosis. 

 cfDNA refers to tumor DNA released from primary cancers into the biofluids of 

cancer patients (142). The majority of cfDNA is derived from cells that have undergone 

apoptosis or necrosis and then release fragments of DNA of approximately 150-180 bp in 

length (140, 142). Similar to acquiring CTC, tumor cell-derived cfDNA is difficult to 

obtain because of the extensive amount of cfDNA that is also released from non-

malignant cells (148). Nevertheless, cfDNA could provide a better diagnostic tool than 

CTCs from the same patient to detect mutations (149). Because cfDNA could be used to 

monitor clonal evolution and emergence of drug resistance (150), this type of analysis 

might assist clinicians in making tailored therapeutic decisions for cancer patients in the 

future. 

 

1.6.2 Patient-derived xenograft (PDX) models 

 The PDX model uses actual patient tumor fragments that have been sectioned 

from the cancer patient and implanted into immunodeficient mice (151). By treating mice 

harboring the PDX tumor fragment, the efficacy of a drug can be predicted before being 

subscribed to the actual patient. Thus PDX is a platform that provides evidence-based 

guidelines in choosing the correct and most effective drug to prescribe to a patient. For 

preclinical drug development, the PDX model overcomes the important limitation of 

using conventional cancer cell lines, which have developed characteristics that do not 

accurately reflect the actual cancer patient tumor. Conventional cell line-based xenografts 
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lack the broad diversity and heterogeneity of cancer (152). In contrast, the PDX model 

preserves the heterogeneity and microenvironment of the original tumor after being 

passaged in mice (151-152). In 1985 the PDX model was confirmed to have good 

predictive value in showing that drug responses from PDX models corresponded very 

well with the response from patients (153). The tumor heterogeneity of the PDX was 

shown to be well preserved in patient-derived tumor cells (PDTC) (154). These results 

support the potential of the PDTC-PDX pipeline for drug development. Although the lack 

of functional immune reactions in this model is a limitation, humanized mice that mimic 

the human immune system and resultant microenvironment allow researchers to better 

understand translational oncology (155). Overall, this clinically relevant mouse model 

should be beneficial in drug development and precision therapy for cancer patients. 

 Establishing PDX models worldwide reflects the high expectations of translating 

preclinical research to the clinic. Novartis, a large pharmaceutical company 

(Switzerland), has established about 1,000 PDX models expressing a diverse pool of 

driver mutations in cancer (156). EurOPDX, a European consortium for PDX, has 

established more than 1,500 subcutaneous and orthotopic PDX models (157) and the 

Jackson Laboratory (ME, USA) has created about 550 PDX models (157). The US-China 

(Henan) Hormel Cancer Institute (Zhengzhou, China) has established unique PDX 

models that include Wilms’ tumor and esophageal cancer models. Dana-Farber Cancer 

Institute (MA, USA) established a Public Repository of Xenografts (PRoXe), which 

includes PDXs of leukemia and lymphoma (158). Of particular note, EurOPDX launched 
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cBioPortal where information on models and their molecular annotation have been 

opened to the public to provide a platform of PDX studies (159). 

 

 

1.7 Limitations and prospects of precision oncology 

 Despite the growing enthusiasm and enormous investment in precision oncology, 

empirical evidence and verification is still critically needed showing that precision 

therapy is significantly better than conventional treatments (160-161). Results from one 

of the first clinical trials based on precision oncology were not promising (162). In this 

trial, the genomic information of patients was analyzed and patients who had targetable 

driver mutations were subjected to precision therapy. Unfortunately, the use of 

molecular-targeted drugs did not result in improved progression-free survival compared 

to treatments based on the clinicians’ choice (i.e., randomized trial). Another study that 

enrolled patients with different types of tumors, including colon, thyroid and ovarian 

cancer expressing the BRAF V600 mutation, showed similar results (103). In this study, 

vemurafenib, an FDA-approved drug against melanoma, was only effective on some of 

the non-melanoma patients. These results suggest that prescription of drugs against a 

certain type of cancer does not guarantee success in treatment of other types of cancers 

although they harbor the same mutation/alteration on the target protein. 

 Several factors could have led to the lack of success of the current precision 

oncology-based trials (163). One factor could be the lack of specific molecular-targeted 

drugs. Drugs are not yet available for many drivers in carcinogenesis at least partly due to 
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the tremendous cost in money and time. Furthermore, many drugs are so toxic that 

clinicians are forced to reduce the dose, which results in only a partial inhibition of the 

targeted pathway giving the tumor the opportunity to develop resistance to the drugs. 

Other factors include tumor heterogeneity and constant evolution (115, 164). In addition, 

the genomic signature from one part of the tumor measured at a certain time point likely 

does not represent other parts or different time points of tumor development. These 

features pose a huge hurdle to precision oncology. 

 To address tumor heterogeneity and evolution, the National Cancer Institute 

recently revealed a new trial design of genomically-informed precision therapy referred 

to as the NCI-MATCH (Molecular Analysis for Therapy Choice) Trial (165-166). NCI-

MATCH aims to identify ‘actionable mutations’ and test whether a drug or drug 

combinations are active against specific molecular abnormalities (166). The multi-arm 

phase 2 trial initially aimed to screen 3,000 patients and enroll 1,000 adults with 

advanced solid tumors for which standard therapy has not yet been developed. The initial 

trial with 10 treatment arms has completed accrual and patient recruitment was closed in 

November 2015 for planned interim analysis. Based on the low number of actionable 

mutations and the enrollment number exceeding expectations from the interim analysis, 

the trial reopened on May 31, 2016, extending treatment arms to 24 and aiming to screen 

6,000 patients (167). Genetic variants of the patients will be analyzed for 143 genes and 

the patients assigned to one of several different treatment groups (165). The hope is that 

this new design will increase the flexibility of clinical decisions and improve the overall 

outcome of the patients. 
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 One of the most promising and successful examples of precision oncology is the 

treatment of chronic myeloid leukemia (CML) with imatinib (168). The high proportion 

of the clonal BCR–ABL translocation in CML enabled almost all CML patients to benefit 

from imatinib (169). Likewise, finding concurrent driver mutations or clonal markers will 

benefit a large group of people. The hope is that predicting/monitoring changes in cells 

and dividing patients with subgroups before or at the point of cancer relapse will improve 

clinical outcomes.  

 Pan-cancer precision diagnosis and therapy are emerging. For instance, 

pembrolizumab, a PD-1 inhibitor, is approved by the FDA for treatment of metastatic 

melanoma (170), metastatic NSCLC (171), Hodgkin’s lymphoma (172), and metastatic 

head and neck squamous cell carcinomas (173). Although the proportion of patients who 

are eligible for the treatment is lower than that of imatinib-CML cases, this target-based 

approach provided a better treatment option compared to adjuvant chemotherapy. 

Furthermore, RTK inhibitors also aim to cover patients across various cancer types. One 

of the newest approaches is a fibroblast growth factor receptor (FGFR) inhibitor that 

directly targets its genetic alterations. BGJ398, a FGFR1-3 inhibitor, was tested in 

patients with advanced solid tumors including lung, breast, bladder, colon and liver (174). 

The phase 1 trial showed that BGJ398 exhibits anti-tumor activity against FGFR1-

amplified NSCLC and FGFR3-mutant bladder cancer (174). For precision diagnosis, 

eligible patients for targeted therapies will be screened and for precision therapy, the 

targeted drug(s) will be administered at a correct dose to benefit each individual. 
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 The advances in lipidomics, proteomics and metabolomics will aid in the 

implementation of precision oncology. In the field of lipidomics, arachidonic acid is a 

signaling precursor that has attracted interest for anti-cancer therapy (175-176). A recent 

study of lipidomic profiling showed that lung tumors possess higher levels of arachidonic 

acid-containing phospholipids and phosphatidylinositols compared to normal tissue 

(176). Myc inactivation caused a significant decrease in arachidonic acid and its lipid 

metabolites (176). These results suggest that arachinonic acid and its metabolites can 

serve as biomarkers in precision diagnosis. In the field of proteomics, cryo-electron 

microscopy (cryo-EM) has received considerable attention as a tool for “visual 

proteomics” (168, 177). For example, the structure of the ATP-binding cassette subfamily 

G2 (ABCG2), a human multidrug transporter, revealed that two cholesterol molecules are 

bound to a hydrophobic pocket between the transmembrane domains (178). The cryo-EM 

structure provides structural insights of cholesterol recognition and pharmacokinetics of 

ABCG2 in precision therapy. In the field of metabolomics, gut microbiota possess a large 

repertoire of metabolizing xenobiotics, small molecules that are foreign to the human 

body (179). For example, irinotecan becomes SN-38, an active topoisomerase inhibitor in 

the body (180). SN-38 is glucuronidated by host liver enzymes and loses its activity (SN-

38G). However, bacterial β-glucuronidase hydrolyzes and reactivates SN-38G in the 

large intestine causing intestinal damage and diarrhea (180). Accumulative knowledge of 

microbiota in each patient could enhance the efficacy of precision therapy and lower 

adverse side effects. 
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 To summarize, precision oncology has emerged to improve efficacy, minimize 

side effects of drugs and avoid drug resistance in cancer therapy. Precision oncology is 

categorized into two segments, precision diagnosis and precision therapy. In precision 

diagnosis, mutations of important genes such as BRCA1/2 have led clinicians to tailor 

treatment options to individuals. Improvement on genetic tests facilitated molecular 

target-based precision therapy. In breast, lung and melanoma, drugs that inhibit important 

target proteins prolonged progression-free survival and overall survival of the patients 

compared to genotoxic chemotherapy. Although difficulties due to clonal evolution and 

cancer heterogeneity still exist, state-of-the-art tools such as liquid biopsies and PDX 

models will enhance the efficacy of precision diagnosis and precision therapy, 

respectively. Supported by government-driven projects worldwide, precision oncology 

will be the standard pipeline of cancer therapy. 
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Chapter 2: 

A small molecule inhibitor of the β-catenin-TCF4 

interaction suppresses colorectal cancer growth  

in vitro and in vivo 
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2.1 Summary 

Colorectal cancer is associated with aberrant activation of the Wnt pathway. β-

Catenin plays essential roles in the Wnt pathway by interacting with T-cell factor 4 

(TCF4) to transcribe oncogenes. We synthesized a small molecule, referred to as HI-B1, 

and evaluated signaling changes and biological consequences induced by the compound. 

HI-B1 inhibited β-catenin/TCF4 luciferase activity and preferentially caused apoptosis of 

cancer cells in which the survival is dependent on β-catenin. The formation of the β-

catenin/TCF4 complex was disrupted by HI-B1 due to the direct interaction of HI-B1 

with β-catenin. Colon cancer patient-derived xenograft (PDX) studies showed that a 

tumor with higher levels of β-catenin expression was more sensitive to HI-B1 treatment 

compared to a tumor with lower expression levels of β-catenin. The different sensitivities 

of PDX tumors to HI-B1 were dependent on the β-catenin expression level and 

potentially could be further exploited for biomarker development and therapeutic 

applications against colon cancer. 

 

 

2.2 Introduction 

Colon cancer is the third most common cancer diagnosed in both men and women 

in the United State (181). Although the incidence rate of colon cancer is decreasing due 

to introduction of colonoscopy and removal of precancerous lesions, incidence and death 

rates are still increasing among people younger than 50 years old (181). Chemotherapy of 

colon cancer has been heavily dependent on 5-fluorouracil (5-FU), a genotoxic drug that 
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blocks DNA synthesis and replication. Since target-based intervention was introduced in 

cancer therapy, epidermal growth factor receptor (EGFR) inhibitors combined with 5-

FU-based treatment have increased the overall survival rate of colorectal cancer patients 

with K-ras wild-type gene expression (182-183). However, the elucidation of additional 

important targets and the development of specific inhibitors are still challenging goals. 

β-catenin is a central component of the Wnt signaling pathway, and aberrant 

expression or prolonged activation of β-catenin is frequently associated with various 

diseases, including cancer (184-186). The role of β-catenin and Wnt signaling in 

carcinogenesis has been studied extensively in cancer, especially in colorectal cancer. 

The expression level and the activity of β-catenin is tightly regulated by its upstream 

regulator, the destruction complex, which includes the tumor suppressor adenomatous 

polyposis coli (APC), glycogen synthase kinase 3β (GSK3β), casein kinase 1α (CK1α) 

and the scaffold protein AXIN (187). When translocated from the cytosol to the nucleus, 

β-catenin binds with T-cell factor 4 (TCF4) to transcribe target genes such as axin2 (188), 

cyclin D1 (189) and c-myc (190).  

The importance of the Wnt pathway in tumorigenesis has made it a promising 

target for drug development (186). Over the past decade, the down-regulation of Wnt 

signaling in cancer cells was achieved by small molecules (191). Compounds that target 

upstream of β-catenin include tankyrase inhibitors IWR-1 (192) and XAV939 (193) and 

casein kinase 1α activator pyrvinium (194). These inhibitors facilitate β-catenin 

degradation by enhancing the activity of the β-catenin destruction complex. Direct 

inhibition of β-catenin by PKF115-584 (195) and CGP049090 (196) reduces target gene 
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expression without affecting the protein expression level of β-catenin. Methyl 3-([(4-

methylphenyl)sulfonyl]amino)benzoate (MSAB) was recently reported to target β-catenin 

and induce ubiquitination (197). MSAB selectively killed Wnt-dependent cancer cells 

(197). Despite these efforts, the effectiveness of Wnt/β-catenin inhibitors in clinical trials 

is yet to be proven, and strategies to identify patients who will respond to the inhibitors 

are still largely elusive (186). 

The patient-derived xenograft (PDX) model comprises a surgically dissected 

clinical tumor sample that is implanted into immuno-deficient mice (159). Unlike 

established cell lines that are cultured in vitro for many passages, the PDX tumor is 

believed to recapitulate tumor heterogeneity and, thus, better reflects the features of the 

original human cancer (151-152). In particular, the PDX model has become a valuable 

tool to test small molecules with anti-cancer activities in drug discovery and biomarker 

development (152, 198). Although the PDX model can be perceived as time-consuming 

to establish and might be highly variable, drug responses obtained from PDX mice are 

highly consistent with responses observed in human patients (159). For example, the 

overall response rates of EGFR antibodies in PDX colorectal cancer studies were similar 

to those found in the clinic (199-200). A comparative analysis of EGFR antibody 

sensitivities in PDX models (201) and patient (202) populations in different studies 

revealed that the response rate in PDX can reflect the clinical outcome (159).  

Herein, we synthesized a small molecule, referred to as HI-B1, and report that the 

small molecule shows an inhibitory effect against β-catenin/TCF4 luciferase activity in 

colon cancer cells. HI-B1 preferentially causes apoptosis of cancer cells in which the 
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survival is dependent on β-catenin. The inhibition of the β-catenin/TCF4 pathway by HI-

B1 resulted in apoptosis and binding assays show that β-catenin is a direct target protein 

of HI-B1. HI-B1 disrupts the interaction between β-catenin and TCF4 in vitro and ex 

vivo. A PDX colon cancer study showed that HI-B1 inhibits the growth of tumors with a 

high expression level of β-catenin, but was not effective against tumors with a low level 

of β-catenin. We anticipate that these preclinical results will provide the groundwork for 

translational research of β-catenin inhibitors and development of biomarkers to match 

patients with inhibitors in era of precision oncology. 

 

 

2.3 Results 

2.3.1 HI-B1 preferentially attenuates growth and induces apoptosis of 

cancer cells in which β-catenin is essential for survival. 

HI-B1 was synthesized (Figure 2.1a), and subjected to a β-catenin/TCF4 

luciferase assay to test its efficacy against the Wnt/β-catenin signaling pathway. HI-B1 

inhibited β-catenin/TCF4 luciferase activity in a dose-dependent manner in two different 

colon cancer cell lines (Figure 2.1b).  Because the inhibition of Wnt/β-catenin activity 

can reportedly kill cancer cells (192, 195-196, 203-207), the effect of HI-B1 on cell 

growth and apoptosis was investigated. HI-B1 treatment suppressed growth of several 

types of colon cancer cells (DLD1, CACO2 and HCT116), but did not affect the H838 

lung cancer cell line (Figure 2.1c). Because H838 was reported as a cell line that 

expresses little or no β-catenin (208), the specificity of HI-B1 on the β-catenin pathway 
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was further examined. By using short hairpin RNA that target β-catenin, we were able to 

find cell lines in which the survival is dependent on β-catenin. Knockdown of β-catenin 

resulted in apoptosis in DLD1, CACO2 and HCT116 cells, whereas H838 and CCD-

18Co cells were only marginally affected by the knockdown (Figure 2.1d). HI-B1 

treatment also preferentially resulted in more apoptosis in DLD1, CACO2 and HCT116 

compared to H838 and CCD-18Co cells (Figure 2.1e).  

 

 

 

 

 

Figure 2.1a Chemical structure of HI-B1. 
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Figure 2.1b The effect of HI-B1 on β-catenin/TCF4 luciferase activity. DLD1 (upper 

panel) and CACO2 (lower panel) cells were transfected with TOPFlash, which contains 

TCF4 binding sequences, or FOPFlash (as a negative control) and then treated with 

different doses of HI-B1 for 24 hr. Firefly luciferase activity was normalized with Renilla 

luciferase activity. 
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Figure 2.1c The effect of HI-B1 on cell viability. Cells were treated with HI-B1 at 

different doses for 48hr and then viability was assessed by MTS assay. 
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Figure 2.1d The effect of β-catenin knock-down on apoptosis in DLD1, CACO2, 

HCT116, H838 and CCD-18Co cell lines. Cells were incubated for 48 hr after the shRNA 

infection and antibiotic selection. Apoptosis was measured by annexin V/propidium 

iodide staining and flow cytometry. 
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Figure 2.1e The effect of HI-B1 on apoptosis in DLD1, CACO2, HCT116, H838 and 

CCD-18Co cell lines. Cells with β-catenin-dependent growth (DLD1, CACO2 and 

HCT116) and β-catenin independent growth (H838 and CCD-18Co) were treated with 

HI-B1. Apoptosis was measured after 48 hr of treatment with flow cytometry. All values 

of graphs present mean ± standard deviation (SD) (in triplicate). Significant differences 

were calculated by one-way ANOVA compared with DMSO-treated group or sh-mock 

group (*P < 0.05, **P < 0.01, ***P < 0.001). 
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2.3.2 HI-B1 inhibits anchorage-independent growth of colon cancer cells 

by reducing β-catenin target gene expression. 

Because β-catenin is a primary driver in colon cell transformation (209), the effect 

of HI-B1 was examined using soft agar, a laboratory measurement of cell transformation 

and anchorage-independent growth of cancer cells. Results indicated that HI-B1 

treatment significantly inhibited anchorage-independent growth of DLD1 and HT-29 

colon cancer cells (Figure 2.2a). The growth of CACO2, another colon cancer cell line, 

was also suppressed by HI-B1 in a 7-day proliferation assay (Figure 2.2b).  To further 

confirm the effect of HI-B1 on the β-catenin pathway, an H-ras/β-catenin-induced foci 

formation assay was conducted. According to previous studies (210-211), constitutively 

active Ras facilitates nuclear translocation of β-catenin to induce cell transformation. In 

agreement with these results (211), foci formation of NIH3T3 cells was substantially 

induced by co-transfection of H-ras and β-catenin, but not by single gene transfection 

(Figure 2.2c). Notably, HI-B1 attenuated H-ras/β-catenin-induced foci formation. These 

results reveal that HI-B1 inhibits anchorage-independent growth and foci formation 

where β-catenin plays an important role. 

We next focused on the details of the Wnt/β-catenin signaling pathway affected 

by HI-B1. Quantitative real-time PCR results showed that HI-B1 treatment decreased 

mRNA expression of cyclin D1 and axin2 in DLD1 and CACO2 cell lines (Figure 2.2d). 

HI-B1 also down-regulated cyclin D1 and c-Myc protein levels (Figure 2.2e). Of 

particular note, the β-catenin protein level was not changed by HI-B1 either at the protein 

or mRNA level. This suggests that HI-B1 could inhibit the nuclear translocation of β-
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catenin (212) or directly bind to β-catenin and suppress its activity (186). Cytosolic and 

nuclear fractions were treated or not treated with HI-B1 and results showed that nuclear 

translocation of β-catenin was not altered by the compound, which suggested a direct-

binding mechanism of action (Figure 2.2f).  

 

 

 

Figure 2.2a The effect of HI-B1 on anchorage-independent growth of DLD1 and HT29 

colon cancer cell lines. Cells were seeded into 0.3%-agar-containing medium with 

various concentrations of HI-B1 and the numbers of colonies was counted at Day 7. 
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Figure 2.2b The inhibitory effect of HI-B1 on CACO2 cell growth. Cells were seeded on 

6-well plates with various concentrations of HI-B1 and then stained with crystal violet 

solution at Day 7. 

 

 

 

Figure 2.2c The inhibitory effect of HI-B1 on β-catenin/H-ras-induced cell 

transformation of NIH-3T3. Foci formation was induced by co-transfection of β-catenin 

and H-ras (H12V) in NIH3T3. After transfection, cells were treated with HI-B1 and 

stained with crystal violet solution (Day 14). The medium was changed every other day. 
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Figure 2.2d The effect of HI-B1 on mRNA expression of β-catenin target genes in DLD1 

and CACO2 cells. After 24 hr of HI-B1 treatment, mRNA was harvested from the cells 

and relative amount was measured by qRT-PCR. All values of graphs present mean ± SD 

(in triplicate). Significant differences were calculated by one-way ANOVA compared 

with DMSO-treated group (*P < 0.05, **P < 0.01, ***P < 0.001).  
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Figure 2.2e The effect of HI-B1 on cyclin D1 and c-Myc protein expression. After 24 hr 

of HI-B1 treatment, protein was harvested from the cells and relative amount was 

measured by western blotting.  

 

 

Figure 2.2f The effect of HI-B1 on β-catenin translocation in DLD1 cell. The cytosol and 

the nucleus portions of the cells were fractionated at 24hr of HI-B1 treatment. Lamin B 

and α-tubulin were used as a cytosol and a nucleus marker, respectively. 
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2.3.3 HI-B1 directly binds with β-catenin, but not TCF4, to disrupt the 

β-catenin/TCF4 interaction. 

To determine whether HI-B1 binds to β-catenin, HI-B1 was conjugated to 

Sepharose 4B-beads and incubated with cell lysates. β-Catenin was detected by Western 

blot and results showed that HI-B1 directly binds with β-catenin (Figure 2.3a). Notably, 

TCF4, which is a binding partner of β-catenin, with which it forms a complex and 

induces gene transcription, was not bound to HI-B1. The interaction between β-catenin 

and TCF4 has been implicated as a core element of the Wnt pathway in colorectal cancer 

cell growth (213). The binding of HI-B1 with β-catenin disrupted the interaction between 

β-catenin and TCF4 in vitro (Figure 2.3b). His-tagged β-catenin and GST-tagged TCF4 

were incubated with or without HI-B1 and His-β-catenin was pulled down with nickel 

beads. The amount of TCF4 co-immunoprecipitated with β-catenin was decreased in HI-

B1 treated groups. The effect of HI-B1 against β-catenin/TCF4 complex formation was 

also confirmed in DLD1 and CACO2 cell lines (Figure 2.3c). These results demonstrate 

that HI-B1 directly binds with β-catenin and disrupts the β-catenin/TCF4 interaction. 

We next conducted in silico docking, to predict the important binding residues of 

HI-B1. A nitrogen atom was found to be responsible for a hydrogen bond with β-catenin 

(Figure 2.3d). HI-B1-NC, a derivative of HI-B1 in which the nitrogen atom (N) is 

substituted with a carbon atom (C), was synthesized and its biological activities were 

compared with HI-B1. The N to C substitution completely attenuated the effect of HI-B1 

against DLD1 colon cancer cell growth (Figure 2.3e). The inhibitory effect on β-

catenin/TCF4 luciferase activity was also eliminated by the substitution (Figure 2.3f). 
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Overall, the nitrogen atom of HI-B1was found to be important for its direct binding with 

β-catenin. 

 

 

 

Figure 2.3a Binding assay of HI-B1 on β-catenin ex vivo. HI-B1 was conjugated with 

Sepharose 4B beads and incubated with cell lysates. Protein co-immunoprecipitated with 

the beads was analyzed by western blotting. 
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Figure 2.3b The effect of HI-B1 on β-catenin/TCF4 interaction in vitro. HI-B1 disrupts 

the formation of the β-catenin/TCF4 complex in vitro. His-tagged β-catenin (126-686) 

was immunoprecipitated with nickel beads and the amount of TCF4 was detected by 

western blotting. 

 

 

 

Figure 2.3c The effect of HI-B1 on β-catenin/TCF4 interaction in DLD1 and CACO2 

cell lines. Cell lysates were harvested after 24hr of HI-B1 treatment. β-Catenin was 

immunoprecipitated and binding proteins was detected by western blotting. 
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Figure 2.3d Molecular docking predicts the interaction of HI-B1 and β-catenin. A 

nitrogen atom of HI-B1 forms a hydrogen bond with β-catenin (upper panel) from Extra 

precision (XP) docking in silico (lower panel).  
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Figure 2.3e The effect of HI-B1 and HI-B1-NC on cell viability. HI-B1 and HI-B1-NC 

(a nitrogen atom was substituted with a carbon) were treated to DLD1 cells (n=3). 

Proliferation was measured by MTS assay at 48 hr. 

 

 

Figure 2.3f The effect of HI-B1 and HI-B1-NC on luciferase activity. β-catenin/TCF4 

luciferase activity was measured by luminometer at 24 hr. Significant difference with 

DMSO-treated group by One-way ANOVA (*P < 0.05, **P < 0.01, ***P < 0.001).
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2.3.4 HI-B1 suppresses polyp formations in APCmin model and decreases 

the growth of patient-derived xenograft (PDX) tumors with a high 

expression level of β-catenin. 

To verify the efficacy of HI-B1 in vivo, a PDX colon cancer model was utilized. 

Tumor fragments were from two different patients (JG5 and JG14) and 

immunohistochemistry analysis of the two PDX tumors indicated a difference in β-

catenin expression. JG5 had a high level of β-catenin expression compared to JG14 

(Figure 2.4a). The effect of HI-B1 was examined on each of the two colon cancer PDX 

models to determine whether the expression level of β-catenin could be a predictive 

marker for sensitivity to a β-catenin inhibitor. Interestingly, HI-B1 treatment reduced the 

weight and volume of the JG5 PDX tumor, but had no effect on the JG14 PDX tumor 

(Figure 2.4b and c). Although the efficacy of HI-B1 against only two PDX tumors with 

differential levels of β-catenin expression, this suggests that tumors with higher levels of 

β-catenin might be more sensitive to β-catenin inhibitor treatment. The decrease in c-myc 

expression by HI-B1 was confirmed by immunohistochemistry (Figure 2.4d). Further 

studies testing HI-B1 in more PDX tumors will be needed. 

To further confirm the in vivo efficacy of HI-B1, the APCMin mouse model was 

utilized. This mouse model exhibits aberrant activation of β-catenin, and HI-B1 treatment 

reduced the number of polyps (Figure 2.4e). In addition, the mRNA expression levels of 

c-myc and cyclin D1 (Figure 2.4f and g) were also decreased. Overall, these results 

indicate that HI-B1 inhibits β-catenin-driven tumorigenesis in vivo. 
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Figure 2.4a β-Catenin expression levels in colon cancer PDX. Integrated optical density 

(IOD) of immunohistochemistry was quantified using Image-Pro Plus software. 

 

 

Figure 2.4b HI-B1 inhibits JG5 tumor growth. HI-B1 was administered per os (p.o) 

(orally) three times a week at a dose of 50 mg/kg (n = 8/group). Tumor size was 

measured three times a week and the weight was measured at the end of experiments.  
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Figure 2.4c HI-B1does not affect JG14 tumor growth. 

 

Figure 2.4d The effect of HI-B1 on c-Myc expression of JG5 PDX tumor. In the JG5 

PDX tumor, c-Myc Expression level change by HI-B1 treatment was measured by IHC.  

 

 

  

Figure 2.4e HI-B1 reduced polyp formation driven by aberrant activation of β-catenin in 

APCmin mouse model. The indicated doses of HI-B1 were administered p.o. for 10 weeks, 

and mice were sacrificed for analysis of intestinal carcinogenesis (n = 6/group). 
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Figure 2.4f The effect of HI-B1 on c-myc mRNA expression in APCmin mouse model. 

Small intestine tissue was prepared from the same position of ileum from mice, and then 

mRNA expression levels of c-myc was quantified by qRT-PCR. 

 

 

Figure 2.4g The effect of HI-B1 on cyclin D1 mRNA expression in APCmin mouse model. 

Small intestine tissue was prepared from the same position of ileum from mice, and then 

mRNA expression levels of cyclin D1 was quantified by qRT-PCR. (One-way ANOVA; 

*P < 0.05, **P < 0.01, significant difference compared to the vehicle group.) 
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2.4 Discussion 

Most cases of sporadic colon cancer are caused by genetic mutations of several 

Wnt pathway proteins, including APC, axin and β-catenin, resulting in stabilization of β-

catenin and the formation of the β-catenin/TCF4 complex (185, 214). Although a number 

of inhibitors against the Wnt pathway and β-catenin have already been identified, the 

development of β-catenin inhibitors with specificity on the β-catenin pathway still has 

value. In this study, the identification of HI-B1 as an inhibitor of β-catenin/TCF4 

luciferase activity (Figure 2.1b) provided an opportunity to develop a drug candidate 

against the β-catenin pathway. The molecular mechanism of HI-B1 was investigated and 

revealed its direct binding to β-catenin and disruption of the β-catenin/TCF4 interaction 

(Figure 2.3b and c). Based on the promising in vitro experimental results, we sought to 

establish its efficacy in vivo. A PDX tumor expressing high levels of β-catenin was more 

sensitive to β-catenin inhibitor treatment compared to another tumor expressing lower 

levels of β-catenin (Figure 2.4b and c). Notably, we showed that a β-catenin inhibitor 

could attenuate the growth of a colon cancer patient-derived tumor, and that sensitivity to 

the inhibitor might be dependent on the expression level of β-catenin.  

Our study provides a rationale for detecting β-catenin levels when Wnt/β-catenin 

inhibitors are tested to colon cancer patients. The significant difference between β-catenin 

expression levels of colon cancer patients (Figure 2.4a) was rather unexpected, regarding 

the well-known importance of β-catenin in colorectal cancer (186). As HER2 (human 

epidermal growth factor receptor 2)-targeted drugs, such as lapatinib and trastuzumab, 

are recommended only to HER2-positive breast cancer patients (215), HI-B1 was only 
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effective in PDX where β-catenin is highly expressed (Figure 2.4b and c). These results 

suggest that β-catenin expression level might be correlated with the efficacy of Wnt/β-

catenin inhibitors against colon cancer. Such information could be further exploited for 

biomarker development and therapeutic applications against colon cancer, especially in 

ongoing clinical trial of Wnt pathway inhibitors. 

 

 

2.5 Materials and Methods 

2.5.1 Reagents  

All antibodies were commercially available, including β-catenin, β-actin, cyclin 

D1, α-tubulin and GST from Santa Cruz Biotechnology (Santa Cruz, CA), c-Myc and 

TCF4 from Cell Signaling Technology (Beverly, MA), lamin B from Calbiochem (San 

Diego, CA). The luciferase assay substrate and the Cell Titer 96 Aqueous One Solution 

Reagent [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)- 

2H-tetrazolium, inner salt (MTS)] kit were from Promega (Madison, WI). 

 

2.5.2 Synthesis of 4-(5-fluoro-1H-benzo[d]imidazol-2-yl)-N,N-

dimethylaniline (HI-B1) 

To a solution of 4-(Dimethylamino)benzaldehyde (2.98 g, 20 mmol) in ethanol 

(40 mL), Sodium dithionite (3.48 g, 20 mmol) in water (20 mL) was added. The resulting 

mixture was stirred at room temperature for 20 min and then 4-Fluoro-1,2-

phenylenediamine (2.52 g, 20 mmol) was added portion wise. The resulting reaction 
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mixture was refluxed for about 14 h. The solution was then diluted with water. The 

obtained brown precipitate was filtered and purified by recrystallization from ethanol to 

give 2.5 g of 4-(5-fluoro-1H-benzo[d]imidazol-2-yl)-N,N-dimethylaniline. Nuclear 

magnetic resonance (NMR) spectra were determined in acetone-d6 using a Varian 

instrument (1H, 400 MHz). 1H NMR (400 MHz, DMSO-d6) δ 7.97 (d, J = 8.8 Hz, 2H), 

7.50 (dd, J = 8.4, 4.8 Hz, 1H), 7.32 (dd, J = 9.1, 2.4 Hz, 1H), 7.02 (td, J = 8.6, 2.4 Hz, 

1H), 6.85 (d, J = 8.8 Hz, 2H), 3.01 (s, 6H). Electrospray ionisation mass spectrometry 

(ESI-MS) calculated (M+H)+ 256.1172, found 256.1294. 

 

2.5.3 Cell culture 

All cell lines were purchased from American Type Culture Collection (ATCC, 

Manassas, VA) except for LIM1215 from Sigma-Aldrich (St. Louis, MO). Cells were 

comprehensively authenticated by PCR using human-specific primers and morphology 

checks through microscopes before being frozen as recommended (216), and free of 

mycoplasma from Hoechest 33258 staining (217-218). Each vial of frozen cells was 

thawed and used in experiments for a maximum of 8 wk. Cells were cultured in RPMI 

1640 (DLD1, LIM1215, H838) or MEM (CACO2, LS174T, WiDr, CCD-18Co) or 

McCoy’s 5A (HCT116, HT29) or DMEM (293T) containing penicillin (100 units/mL), 

streptomycin (100 µg/mL), and 10% fetal bovine serum (FBS; Gemini Bio-Products, 

Calabasas, CA). The NIH3T3 cell line was cultured in DMEM with 10% calf serum (CS; 

Gemini Bio-Products). All cells were incubated at 37°C with 5% CO2.  
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2.5.4 Luciferase assay 

Transient transfection was performed using jetPEI (Promega). Assays to detect 

firefly luciferase and Renilla activities were performed according to the manufacturer’s 

manual (Promega). Briefly, cells were seeded onto 10-cm plates and co-transfected with 

400 ng of the Renilla luciferase internal control gene and 4 μg of the TOPFlash luciferase 

reporter construct containing three tandem Tcf consensus binding sites upstream of 

luciferase cDNA, or the FOPFlash luciferase reporter construct, a plasmid with mutated 

Tcf binding sites. After 16 h of transfection, cells were trypsinized and seeded onto 48-

well plates, and then treated with respective compounds for 24 hr. Luciferase and Renilla 

activities were measured using their respective substrates. 

 

2.5.5 MTS assay 

Cells were seeded (1 × 103 cells/well) in 96-well plates, incubated overnight and 

then treated with different doses of HI-B1. After incubation for 2 days, 20 μL of 

CellTiter96 Aqueous One Solution (Promega) were added and then cells were incubated 

for 1 hr at 37°C in a 5% CO2 incubator. Absorbance was measured at 492 nm. 

 

2.5.6 Lentivirus production and infection 

The shRNA of β-catenin clones (sh-ctnnb1 #1: TRCN0000003843, 

AGGTGCTATCTGTCTGCTCTA; #3: TRCN0000003845, 

GCTTGGAATGAGACTGCTGAT; #5: TRCN0000010824, 

CCATTGTTTGTGCAGCTGCTT) were purchased from University of Minnesota 
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Genomics Center (Minneapolis, MN). The lentiviruses were generated from 293T 

packaging cells. The cell culture supernatant fraction containing lentivirus was harvested 

from 293T cells at 24 or 48 hr after transfection. The cells were infected with the 

lentiviruses in the presence of 10 μg/ml of polybrene (Sigma Aldrich, St. Louis, MO). 

After 24 hr of infection, the cells were treated with puromycin for selection, and then 

pooled for subsequent analysis. 

 

2.5.7 Flow cytometry for analysis of apoptosis 

For analysis of apoptosis, cells (1.5 × 105 cells per well) were seeded into six-well 

plates and cultured overnight, then exposed to 50 μM HI-B1 for 48 h. Cells were 

trypsinized, washed twice with cold PBS. They were then resuspended with PBS and 

incubated for 5 min at room temperature with annexin V-FITC plus propidium iodide. 

Cells were analyzed using a FACSCalibur flow cytometer (BD Biosciences, San Jose, 

CA).  

 

2.5.8 Anchorage-independent cell transformation assay  

Cells (8 × 103/well) suspended in 10% Basal Medium Eagle (Sigma Aldrich) 

were added to 0.3% agar with different doses of HI-B1 in a top layer over a base layer of 

0.5% agar with the same concentration of HI-B1. The cultures were maintained at 37°C 

in a 5% CO2 incubator for 1 wk and then colonies were counted under a microscope 

using the Image-Pro Plus software (v.6.1) program (Media Cybernetics, Rockville, MD). 
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2.5.9 7-day proliferation assay 

CACO2 cells were seeded into 6-well plates (2 × 105 cells/well) and cultured with 

or without different doses of HI-B1. After 7 days of incubation, cells were fixed with 4% 

paraformaldehyde (in PBS), and then stained with 0.5% crystal violet (in water) (219). 

 

2.5.10 Foci formation assay 

Transformation of NIH3T3 cells was performing following standard protocols. 

Cells were transiently transfected with combinations of pcDNA3-H-RasG12V (100 ng), 

pcDNA3-β-catenin (1 μg) and pcDNA3-mock (as compensation to achieve equal 

amounts of DNA) plasmids and incubated overnight. Then the cells were cultured in 5% 

CS-DMEM with or without HI-B1 for 2 wk. The media were changed every other day. 

Foci were fixed and stained with 0.5% crystal violet (220). 

 

2.5.11 Western blot analysis  

Cells were disrupted on ice for 30 min in cell lysis buffer (20 mM Tris pH 7.5, 

150 mM NaCl, 1 mM Na2EDTA, 1 mM EGTA, 1% Triton X-100, 2.5 mM sodium 

pyrophosphate, 1 mM β-glycerophosphate, 1 mM sodium vanadate, and 1 mM PMSF 

[phenylmethylsulfonyl fluoride]) with protease inhibitor cocktail (Roche, Switzerland). 

The supernatant fraction was harvested after centrifugation at 13,000 rpm for 10 min. 

Protein concentrations were determined with the Bio-Rad protein assay reagent 

(Richmond, CA). For nuclear and cytosol fractions, NE-PER Nuclear and Cytoplasmic 

Extraction Reagents (Thermo Scientific, Waltham, MA) were used according to the 
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manufacturer’s protocol. The protein lysates were separated by SDS-PAGE and 

transferred to polyvinylidene fluoride membranes in 20 mM Tris-HCl (pH 8.0), 

containing 150 mM glycine and 15% (v/v) methanol. Membranes were blocked with 5% 

non-fat dry milk in 1 x TBS containing 0.05% Tween 20 (TBS-T) and incubated with 

primary antibodies at 4°C overnight. Protein bands were visualized by the LAS4000 

Biomolecular Imager (GE Healthcare, United Kingdom) and Western Lightning Plus 

ECL (Perkin Elmer, Waltham, MA) after incubation with appropriate secondary 

antibodies. 

 

2.5.12 Quantitative PCR (qRT-PCR) 

Total RNA from cells was extracted using RNeasy Plus Mini Kit (Qiagen, 

Valencia, CA) following the manufacturer’s instructions. The reverse transcription 

reaction was performed with the amfiRivert cDNA Synthesis Platinum Master Mix 

(GenDepot, Barker, TX). Expression of the indicated genes was assessed with a 7500 real 

time PCR system (Applied Biosystems, Carlsbad, CA) using the Power SYBR Green 

Master Mix (Life Technology, Grand Island, NY). Reaction plates were incubated in a 

96-well thermal cycling plate at 95°C for 10 min and then underwent 40 cycles of 15 s at 

95°C and 1 min at 59°C. All reactions were performed in triplicate. Relative quantitation 

(RQ) was calculated using the 2−ΔCt method, where ΔCt symbolizes the change in Ct 

between the sample and reference mRNA. The following primers were used to detect 

expression: GAPDH, 5’-AGCCACATCGCTCAGACAC-3’ (forward), 5’-

GCCCAATACGACCAAATCC-3’ (reverse); cyclin D1, 5’- 
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AGCTCCTGTGCTGCGAAGTGGAAAC -3’ (forward), 5’- 

AGTGTTCAATGAAATCGTGCGGGGT -3’ (reverse); AXIN2, 5’-

CTGGCTCCAGAAGATCACAAAG-3′ (forward) and 5′-

ATCTCCTCAAACACCGCTCCA-3′ (reverse); β-catenin, 5’-

ACCTTTCCCATCATCGTGAG-3′ (forward), 5’-AATCCACTGGTGAACCAAGC-3’ 

(reverse). 

 

2.5.13 Protein purification 

 A construct comprising residues 126-686 of human β-catenin (AB451264) was 

subcloned into pET-46 Ek/LIC vector (EMD Millipore). The recombinant His-fusion β-

catenin was expressed in E.coli BL21 (DE3) and purified by affinity chromatography 

using nickel-nitrilotriacetic acid-agarose. (HisPur™ Ni-NTA, Thermo Scientific).The 

protein was eluted from the resin with 250 mM imidazole, 150 mM NaCl, 20 mM tris, 

pH 8.0, and purified further on a gel-filtration HiLoad 16/60 Superdex-200 column (GE 

Healthcare) equilibrated with buffer (150 mM NaCl, 20 mM CAPS, pH 10.5). 

 

2.5.14 Ex vivo pull-down assays 

Cell lysates (500 µg) were incubated with HI-B1-Sepharose 4B (or Sepharose 4B 

only as a control) beads (50 µL 50% slurry) in reaction buffer (50 mM Tris, pH 7.5, 5 

mM EDTA, 150 mM NaCl, 1 mM DTT, 0.01% NP-40, and 2 mg/mL bovine serum 

albumin). After incubation with gentle rocking overnight at 4°C, the beads were washed 
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3 times with buffer (50 mM Tris, pH 7.5, 5 mM EDTA, 150 mM NaCl, 1 mM DTT, and 

0.01% NP-40) and the binding proteins were visualized by Western blotting. 

 

2.5.15 Co-immunoprecipitation assay 

Cells were treated with the indicated concentrations of HI-B1 for 24 hr and then 

disrupted with lysis buffer. Immunoprecipitation was performed by incubating overnight 

with anti-β-catenin. Protein G Agarose beads (50 μl) (GenDepot, Barker, TX) were added 

and the solution was incubated for 6 hr at 4°C. The beads were washed 3 times with lysis 

buffer. Bound proteins were harvested and visualized by Western blotting. 

 

2.5.16 In silico molecular docking 

The Glide module from Schrödinger Suite 2011 was used for prediction of a small 

molecule-protein binding mode. A crystal structure of a human β-catenin structure (PDB 

ID:1JPW) was downloaded from Protein Data Bank. The binding pocket was selected 

around the K312 and K435 residues, which are reported to be important in the β-

catenin/TCF4 binding mode. The XP (extra precision) docking was repeated more than 

30 times, and the most frequent outcomes of β-catenin in chemical-protein interaction 

were selected as possible binding residues. 
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2.5.17 Animal Experiment protocols 

All animal experiments were reviewed and approved by the Institutional Animal 

Care and Use Committees of the University of Minnesota (Minneapolis, MN) and 

Zhengzhou University (Zhengzhou, Henan, China). 

 

2.5.18 Patient-derived xenografts (PDX) 

Fresh tumor tissue fragments were collected from colon cancer patients and 

transferred at 4°C in FBS-free RPMI 1640 medium with antibiotics. Tumor tissues were 

trimmed into 3–5 mm sizes within 2 hr after surgical resection, and implanted 

subcutaneously in 6 to 8 week-old female SCID mice (Vital River Laboratories Co., Ltd., 

Beijing, China). Once mass formation reached 1500 mm3, mice of this first generation of 

xenografts (named P1) were sacrificed and the tumors were passaged and expanded for 3 

more generations (P2 and P3). When P4 tumors reached an average volume of 50 mm3, 

mice were divided into different groups (n = 8/group) and treated with vehicle or HI-B1 

50 mg/kg, respectively, 3 times a week by oral gavage. HI-B1 was dissolved in 5% 

DMSO and 5% PEG containing PBS. Mice were sacrificed at the end of the experiment 

and tumors extracted. Tumor volume was calculated using the following formula: tumor 

volume (mm3) = (length × width ×height × 0.5). These studies were approved by the 

Ethics Committee of Zhengzhou University. Patients whose tumors were used in these 

studies were completely informed and provided consent. 
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2.5.19 APCmin mouse model 

C57BL ⁄6J-ApcMin/+ mice (APCmin mice, RRID:IMSR_JAX:002020) were 

purchased from the Jackson Laboratory (Bar Harbor, ME), bred and genotyped according 

to the manufacturer’s protocol. Male 6-week-old mice were treated with vehicle or 2 or 

10 mg/kg/day of HI-B1 by oral gavage for 10 weeks (n = 6/group). At the end of the 

experimental period, the intestine and colon were removed, opened longitudinally, and 

fixed flat between filter paper sheets in 10% buffered formalin overnight. These sections 

were stained with a 0.2% methylene blue (Sigma-Aldrich) solution, and the mucosal 

surfaces were assessed for counting polyps with a stereoscopic microscope. One cm-long 

sections were prepared from the same position of ileum across the groups, and mRNA 

was extracted for further real-time PCR analysis. 

 

2.5.20 Immunohistochemistry  

Colon cancer patients-derived xenograft samples were fixed in 10% formalin 

overnight, embedded in paraffin, and sectioned at 5 μm of thickness. The sections were 

stained with haematoxylin and eosin (H&E) according to standard protocols. 

Immunohistochemistry 

staining for β-catenin and c-Myc was performed using an ABC complex kit (PK-6100, 

Vector Laboratories, Burlingame, CA). Harris's haematoxylin was used for counter 

staining. The staining intensity was quantified by calculating the integrated optical 

density (IOD) using the Image Pro-Plus 6.1 software program (Media Cybernetics) (221). 
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Chapter 3: 

The synergistic effect of aspirin and ginger extract 

against colon cancer 
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3.1 Summary 

Colon cancer is the third most diagnosed cancer type in the U.S. Aspirin has 

received a considerable attention due to its anti-cancer effects on colon cancer patients 

with PIK3CA mutations. Ginger extract (GE) has protective effect against aspirin-

induced hemorrhagic ulcer, and active components of GE possess anti-colon cancer 

effects. This led us to investigate on the effects and mechanisms of aspirin and GE 

combination. Co-treatment of aspirin and GE resulted in synergistic cytotoxicity in 

HCT116, DLD1 and HCT15 colon cancer cell lines. The combination treatment caused 

apoptosis by enhancing p53 and p21 protein expressions. 6-Shogaol was identified as an 

active component of GE showing inhibition of anchorage-independent growth and direct 

binding with Akt1/2. In colon cancer patient-derived xenograft (PDX) models, co-

treatment of aspirin 100 mg/kg plus GE 5 mg/kg significantly suppressed tumor growth. 

Of note, tumor-suppressive effects were similar between the combination group and 

aspirin 400 mg/kg group, but weight loss was shown only in aspirin-only group. The 

combination of aspirin and GE could be further exploited for therapeutic applications 

against colon cancer. 

 

 

3.2 Introduction 

Aspirin (acetylsalicylic acid) is one of the most frequently used drugs against 

multiple purposes including pain, fever and inflammatory conditions (222). In past 

decade, the effect of aspirin has been investigated in colon cancer which is the third most 
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common cancer type diagnosed in the United State (223-226). Several lines of studies on 

colon cancer showed that aspirin causes apoptosis and inhibits tumor growth (227-229). 

Especially, aspirin prescription showed a hazard ratio of 0.53 in mortality of colon cancer 

patients who did not use aspirin before the diagnosis (224). However, aspirin has adverse 

effects including hazard ratio of 2.07 in gastrointestinal bleeding even at low doses (230). 

Therefore the dosage reduction which aims the reduction of toxicity while maintaining 

the therapeutic efficacy is important for patients who use aspirin (231). Finding another 

small molecules or drug-like medications will benefit patients who take aspirin for colon 

cancer treatment. 

Phosphoinositide 3-kinase (PI3-K)/Akt/mammalian target of rapamycin (mTOR) 

pathway is a central component of colon cancer progression, and the proteins are 

overexpressed in colon cancer (232). Activated PI3-K/Akt/mTOR signaling results in 

down-regulation of p53, a tumor suppressor (233-234). In colon cancer patients with 

activating mutations on PIK3CA, regular aspirin usage after diagnosis was associated 

with improved colon cancer-specific survival and overall survival (hazard ratio: 0.18, and 

0.54), respectively (235). However, aspirin usage did not improve survival rates in 

PIK3CA-wild type patients (235). This result showed that aspirin exerts its effect against 

colon cancer in which PI3-K/Akt/mTOR pathway is activated. Small molecules that 

inhibit the signaling, such as 6-gingerol targeting Akt1/2 (236), might help aspirin in 

suppressing PIK3CA-mutant tumor growth. 

Ginger (Zingiber officinale Roscoe, Zingiberaceae) is one of the most widely used 

dietary ingredients worldwide in the forms of condiment, tea or extracts (237-238). 
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Ginger is reported to be effective not only for ulcerative colitis and inflammation, but for 

treatment against cancer (237). Ginger powder reduced aspirin-induced hemorrhagic 

ulcer in stomach of rats (239). Ginger extracts (GE) and its active constituents, 6-gingerol 

and 6-shogaol, showed inhibitory effects against colon cancer (240-242). 6-Gingerol 

inhibited the tumor growth of HCT116 colon cancer cell xenograft by directly binding 

with leukotriene A4 (241). 6-Shogaol suppressed HT-29 colon cancer cell growth by 

activating peroxisome proliferator-activated receptor γ (242). The anti-ulcer and anti-

cancer effects of ginger showed the possibility that ginger might reduce the toxicity of 

aspirin while maintaining the efficacy of aspirin. However, the combination of ginger 

extracts (GE) and aspirin and their molecular mechanism against colon cancer are still 

remained unclear. 

Herein, we tested the combination of GE and aspirin against colon cancer cells in 

vitro and in vivo. Treatment of GE or aspirin inhibits proliferation and anchorage-

independent growth of HCT116, DLD1 and HCT15 colon cancer cell lines. When treated 

in combination, GE and aspirin exerts synergistic effects against the colon cancer cell 

growth. Co-treatment of GE and aspirin significantly increases apoptosis and increased 

protein expression levels of p53 and p21. High-performance liquid chromatography 

(HPLC) analysis reveals that 6-gingerol, 6-shogaol, 8-gingerol and 10-gingerol are major 

components of GE. Among the four compounds, 6-shogaol shows the strongest inhibitory 

effects against colon cancer. GE and 6-shogaol directly binds to Akt1/2. Colon cancer 

patient-derived xenograft (PDX) results show that co-treatment of aspirin 100 mg/kg and 

GE 5 mg/kg has similar therapeutic effects compared to aspirin 400 mg/kg treatment.  
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3.3 Results 

3.3.1 Ginger extract and aspirin inhibit anchorage-independent growth 

and cell proliferation of HCT116, DLD1 and HCT15 colon cancer cell 

lines. 

Based on the selective effect of aspirin on PIK3CA-mutant colon cancer patients 

(235), we chose HCT116, DLD1 and HCT15 colon cancer cell lines in where PIK3CA 

mutations are present (243-244). Aspirin and GE were tested on anchorage-independent 

growth and cell proliferation to confirm their effects (245-246) and calculate IC50 values 

that are needed for combination analysis (231). IC50 of aspirin on inhibiting anchorage-

independent cell growth were 1.7, 1.9 and 2.2 mM in HCT116, DLD1 and HCT15 cell 

lines, respectively (Figure 3.1a). GE also inhibited anchorage-independent growth of the 

three colon cancer cells showing IC50 values of 2.3, 5.2 and 6.8 μg/ml, respectively 

(Figure 3.1b). In cell proliferation assay that cells are grown in anchorage-dependent 

condition, aspirin also inhibited the proliferation of HCT116, DLD1 and HCT15 cell 

lines (IC50: 2,4, 3.0 and 2.5 mM; Figure 3.1c). GE showed its inhibitory effects on cell 

proliferation showing higher IC50 values compared to the soft agar assay (IC50: 24, 38 

and 31 μg/ml; Figure 3.1d). These result showed that aspirin and GE can suppress colon 

cancer growth when treated individually. 
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Figure 3.1a The effect of aspirin on anchorage-independent growth of HCT116, HT29 

and DLD1 cell lines. The numbers of colonies were counted after 5-10 days. 
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Figure 3.1b The effect of ginger extract (GE) on anchorage-independent growth of 

HCT116, HT29 and DLD1 cell lines. The colonies were counted after 5-10 days. 
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Figure 3.1c The effect of aspirin on cell proliferation. Cells were treated with aspirin (0-5 

mM) and proliferation was determined at the indicated time points by MTS assay.  
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Figure 3.1d The effect of GE on cell proliferation. Cells were treated with GE (0-40 

µg/ml) and proliferation was determined at the indicated time points by MTS assay.  
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3.3.2 Ginger extract and aspirin show synergistic effects when co-

treated to colon cancer cells. 

We next focused on the combinational effects of aspirin and GE. Different doses 

of GE were co-treated with aspirin and their efficacy was tested in anchorage-

independent colon cancer cell growth. The percentage of the inhibition (Fraction affected: 

Fa) was then calculated to measure combination index (CI) which determines 

antagonism, additive effect and synergism between combinational treatments (231). 

Based on IC50 values of ginger extract and aspirin mentioned above, CI of co-treatment 

groups were determined. CI result showed that ginger extract and aspirin are synergistic 

when treated together against anchorage-independent cell growth of cancer cells (Figure 

3.2a). Of particular note, the two treatments were more synergistic together at higher 

dosages resulting in CI of 0.1 to 0.3 which indicates very strong synergism. Formazan 

production assay also showed that 20 μg/ml of GE treatment can reduce IC50 value of 

aspirin from 2.28 to 0.66 mM (Figure 3.2b). We sought to find if the combination 

treatment triggers apoptosis, a programmed cell death. When treated individually, aspirin 

5 mM treatment increased apoptosis by 4% and GE 15 μg/ml increased apoptosis by 9% 

in HCT116 cell line (Figure 3.2c). The combination treatment of aspirin and GE showed 

26% increase of apoptosis. Protein expression of p53 and p21, tumor suppressors, were 

increased in aspirin and GE combination group (Figure 3.2d). This result supports the 

synergistic effect of aspirin and GE against colon cancer cell growth. 
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Figure 3.2a Aspirin and ginger extract (GE) combination shows strong synergistic effect. 

HCT116, DLD1, HCT15 cells were treated with different combinations of aspirin and GE 

for 5-10 days and then colonies were counted. The number of colonies was converted 

into affected fraction (Fa) among total cell population. Combination index (CI) was 

calculated according to Materials and Methods. CI values less than 0.85 indicate 

synergistic effect.  
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Figure 3.2b The effect of GE on IC50 values of aspirin. Aspirin and GE were co-treated 

to HCT116 cells for 72h at different concentrations, and IC50 values of aspirin at 

presence of GE were calculated. 
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Figure 3.2c The effects of aspirin and GE on apoptosis. Aspirin and/or GE were treated 

for 72h. Apoptosis was measured with flow cytometry. The asterisk (*) indicates a 

significant decrease compared with untreated control (p < 0.05). 

 

 

Figure 3.2d The effects of aspirin and GE on p53 and p21 expression levels. Aspirin 

and/or GE were treated for 72h and protein lysates were analyzed by western blots. 
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3.3.3 6-Shogaol, a major component of the GE, shows inhibitory effect 

against anchorage-independent growth of HCT116. 

To elucidate details of the anti-cancer effect of GE, we sought to find the major 

ingredients of the extract. High-performance liquid chromatography (HPLC) result 

showed that 6-gingerol, 6-shogaol, 8-gingerol and 10-gingerol are four major components 

of the GE (Figure 3.3a and b). 6-Gingerol was the most abundant small molecule among 

the components, followed by 6-shogaol, 8-gingerol and 10-gingerol (Table 3.1). Based on 

the HPLC result, GE was reconstituted with the relative concentrations of the four major 

ingredients and tested in anchorage-independent growth and cell proliferation of HCT116 

DLD1 (Figure 3.3c and d). Reconstituted ginger extract was similar to the original ginger 

extract. Among the four components, 6-shogaol had the strongest inhibitory effect against 

the cell growth of HCT116. Based on the previous finding that 6-shogaol possesses its 

anti-cancer effect by directly targeting Akt1/2 (236), we tested the ability of ginger 

extract and its major components to bind with Akt. Binding assay using sepharose 4B 

beads showed that GE and 6-shogaol directly bound to Akt1/2 (Figure 3.3e). 

Interestingly, 8-gingerol was able to bind with Akt, but 6-gingerol and 10-gingerol could 

not bind to the protein. Overall, the previous study and this result indicate that the anti-

cancer effect of GE is derived from one of its active component, 6-shogaol, and that PI3-

K/Akt pathway might be the signaling targeted by GE.  
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Figure 3.3a Chemical structures of four major ginger componets, 6-shogaol, 6-gingerol, 

8-gingerol, and 10-gingerol. 
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Figure 3.3b HPLC chromatograms of ginger extract. GE peaks were compared with 

those of 6-shogaol, 6-gingerol, 8-gingerol, and 10-gingerol (1 mM). 

 

 

 

Table 3.1 Contents of GE. The amounts of components (μg/mg GE extract) were 

presented. 
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Figure 3.3c The effects of GE ingredients on anchorage-independent growth of HCT116 

cells. Cells were treated with 6-shogaol, 6-, 8-, and/or 10 gingerol, or ginger extract and 

colonies were counted after 7 days. 

 

 

Figure 3.3d The effects of GE ingredients on HCT116 cell proliferation. Cells were 

treated with 6-shogaol, 6-, 8-, and/or 10 gingerol, or ginger extract and proliferation was 

determined at 72h by MTS assay.  
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Figure 3.3e Ginger extract, 6-shogaol and 8-gingerol interact with Akt. Whole-cell 

lysates from HCT116 cells (500 μg) were incubated with control or chemical-conjugated 

Sepharose 4B beads, and then proteins bound to the beads were analyzed by western 

blotting. 
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3.3.4 Inhibition of PI3-K pathway can mimic the combination effect of 

ginger extract and aspirin. 

Next, we sought to further confirm the combination effect of ginger extract and 

aspirin by mimicking the PI3-K/Akt pathway inhibition using LY294002, a PI3-K 

inhibitor. Co-treatment of LY294002 and aspirin also showed synergistic effects on 

inhibition of HCT116, DLD1 and HCT15 colon cancer cell growth (Figure 3.4). This 

result supports the synergistic effect of aspirin and GE, and suggests that GE can reduce 

aspirin dosage by inhibiting PI3-K/Akt pathway. 
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Figure 3.4 Aspirin and LY294002 combination shows synergistic effect. HCT116 cells 

were treated with aspirin (0-4 mM) and LY294002, a PI3K/Akt inhibitor, (0-40 µM) for 

72 h and then proliferation was determined by MTS assay. 
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3.3.5 Ginger extract reduces aspirin dosage in tumor growth inhibition 

of colon cancer patient-derived xenograft (PDX) models. 

Two different xenograft tumors from colon cancer patients (JG14 and JG17) were 

prepared subjected to aspirin and/or GE treatment. 400 mg/kg of aspirin treatment 

inhibited the PDX tumor volume (Figure 3.5a and b) and weight (Figure 3.5c and d). 20 

mg/kg of GE treatment also showed moderate inhibitory effect against the PDX tumor 

growth, but the effect was weaker than that of aspirin. When treated in combination, 100 

mg/kg of aspirin and ginger extract and 5 mg/kg of ginger extract exerted similar efficacy 

of 400 mg/kg of aspirin treatment on tumor volume and weight (Figure 3.5a-d). Of 

particular note, 400 mg/kg of aspirin decreased body weight of mice whereas the 

combination treatment did not show the adverse effect (Figure 3.5e and f). Adding 5 

mg/kg of ginger extract could save 300 mg/kg of aspirin treatment while retaining the 

efficacy against colon cancer PDX tumor growth. Overall, this in vivo result shows that 

ginger extract can reduce the dosage of aspirin in colon cancer therapy. 
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Figure 3.5a The effect of aspirin and GE against JG14 colon cancer PDX tumor volume. 

Aspirin and/or GE were dissolved in normal saline and administered p.o. 5 times/wk. 

Tumor size was measured three times a week. One-way ANOVA and Dunnett’s test after 

log-transformation; *P < 0.05, significant difference compared to the vehicle group. 

 

 

Figure 3.5b The effect of aspirin and GE against JG17 PDX tumor volume. 
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Figure 3.5c The effect of aspirin and GE against JG14 colon cancer PDX tumor weight. 

Aspirin and/or GE were dissolved in normal saline and administered p.o. 5 times/wk. 

Tumor weight was measured at the end of experiments, and representative tumor photos 

were taken.  

 

          

Figure 3.5d The effect of aspirin and GE against JG17 colon cancer PDX tumor weight. 
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Figure 3.5e The effect of aspirin and GE against body weight of mice bearing JG14 PDX 

tumor. Aspirin and/or GE were dissolved in normal saline and administered p.o. 5 

times/wk. 

 

 

Figure 3.5f The effect of aspirin and GE against body weight of mice bearing JG17 PDX 

tumor. 
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3.4 Discussion 

This study aimed to find a supplement that helps aspirin in suppressing colon 

cancer growth and elucidate their combination effects. Herein, we found that GE showed 

inhibitory effects on colon cancer cell growth, and clearly demonstrated that aspirin and 

GE has synergistic effect when treated together. The molecular mechanism of GE was 

investigated and revealed its active component, 6-shogaol, inhibited PI3-K/Akt pathway. 

The synergistic effect was further confirmed by aspirin-LY294002 combination that also 

showed synergism against colon cancer growth. The cooperative relationship of aspirin 

and GE was tested in colon cancer PDX models. Aspirin 100 mg/kg plus GE 5 mg/kg 

treatment was similarly effective as aspirin 400 mg/kg treatment. Notably, the aspirin 

dosage reduction by GE helped preventing weight loss that was shown at the high-dose of 

aspirin treatment. This work highlighted that GE, a food-derived supplement, can aid the 

anti-cancer effect of aspirin by inhibiting PI3-K pathway. 

PI3-K pathway is one of main streams in where driver mutations are frequently 

found. Loss-of-function mutations in Phosphatase and Tensin Homolog (PTEN) (247) 

and gain-of-function mutations on PI3-K (248-249), Akt (250), and mTOR (251) 

facilitate carcinogenesis and tumor growth. Aspirin was selectively effective on PI3-K-

activated tumor growth in mice (246) and colon cancer patients (235). Inhibition of 

mTORC1 signaling by aspirin also supports the underlying mechanisms of the clinical 

data (252-253). The synergistic effect of aspirin and GE inhibiting PI3-K pathway 

corresponds to Loewe additivity model that assumes two inhibitors act through a similar 

mechanism (254-255). When combination index was calculated following the model, 
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aspirin and GE showed synergism in suppressing colon cancer cell growth. The strong 

synergism at higher concentrations of aspirin and GE (Figure 3.2a) also support the 

model that targeting different levels of a single pathway can lead to synergistic effect and 

increase of clinical efficacy (255). 

Precision medicine is becoming a new standard for cancer therapy. Prescribing 

the best drug for individuals increased efficacy and lowered adverse effects compared to 

so-called "one-size-fits-all" strategy (9). The selective effect of aspirin in colon cancer 

patients with PIK3CA-mutations but not ones without the mutations (235) reveals that 

aspirin will be widely used for patients with PIK3CA-mutated colon cancer. Our work 

suggests that adding GE to aspirin treatment might be helpful on reducing the dose of 

aspirin. PDX data showed that low dose of aspirin and GE combination is as potent as 

high dose of aspirin, and that the combination helps avoiding adverse effects such as 

weight loss (Figure 3.5). This result highlights that ginger extract might be helpful to 

patients who take aspirin as a therapeutic measure for PI3-K-activated colon cancer. 

 

 

3.5 Materials and Methods 

3.5.1 Cell culture, antibodies and reagents 

HCT116 cells were cultured in McCoy's 5a Medium/10% FBS with antibiotics. 

DLD1 and HCT15 cells were cultured in RPMI-1640/10% FBS with antibiotics. All cell 

lines were purchased from American Type Culture Collection (ATCC, Manassas, VA) 

and cytogenetically tested and authenticated before the cells were frozen. Each vial of 
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frozen cells was thawed and maintained for a maximum of 8 weeks. Anti-p53 (DO-1), 

anti-p21 and anti-β-actin were purchased from Santa Cruz (Dallas, TX). Anti-Akt 

antibody is from Cell Signaling (Danvers, MA). Ginger extract (256) was obtained from 

Sabinsa Corporation (Piscataway, NJ). 6-Shogaol (purity > 96%) was synthesized as 

described earlier (236) and were analyzed and authenticated by high-performance liquid 

chromatography (HPLC). 6-, 8- and 10-Gingerol (purity > 95%) were purchased from 

Dalton Chemical Laboratories (Toronto, Canada).  

 

3.5.2 Anchorage-independent cell growth assay 

Cells (8×103 per well) were suspended in basal medium eagle (BME) containing 

10% FBS and 0.3% agar and plated on solidified BME containing 10% FBS and 0.5% 

agar. After incubation for 4-10 days, the colonies were counted under a microscope using 

the Image-Pro Plus Software (v.6.1) program (Media Cybernetics, Rockville, MD).  

 

3.5.3 Cell proliferation assay 

Cells (3×103 per well) were seeded in 96-well plates and then cell proliferation 

was determined using the CellTiter 96 AQueous Non-Radioactive Cell Proliferation 

Assay kit (Promega, Madison, WI) according to the manufacturer’s instructions. This kit 

is composed of tetrazolium compound (3-(4,5--dimethylthiazol-2-yl)-5-(3-

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt; MTS) and an 

electron-coupling reagent (phenazine methosulfate; PMS). MTS is converted into a 

formazan by dehydrogenase found in metabolically active cells, and the quantity of 
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formazan product is directly proportional to the number of living cells. 

 

3.5.4 Synergy assessment 

 Combination index (CI) was used to quantify synergism or antagonism for two 

drugs (231, 257), CI = (D)1/(Dx)1 + (D)2/(Dx)2 where CI < 1, =1, and > 1 indicate 

synergism, independence, 

and antagonism, respectively. In the denominators, (Dx)1 represents D1 “alone” that 

inhibits a system x%, and (Dx)2 is for D2 “alone” that inhibits a system x%. In the 

numerators, (D)1 and (D)2 “in combination” also inhibit x%. CI was calculated for every 

dose of two drug pairs. Fraction affected (Fa) is the fractional inhibition of a phenotype 

by a compound treatment(s). 

Fa of a group was calculated as Fa = percent inhibition of cell viability/100. Fraction 

affected-combination index plot was drawn with every group treated with more than one 

compound. 

 

3.5.5 Apoptosis assay 

Cells (1×105 per well) were seeded in 6-cm dishes and then apoptosis was 

analyzed by a FACSCalibur flow cytometer (BD Biosciences, San Jose, CA) using the 

Annexin V-FITC apoptosis detection kit (MBL International Corp., Woburn, MA). 
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3.5.6 HPLC analysis of ginger extract 

Ginger extract was dissolved in DMSO and then injected into a high performance 

liquid chromatography system equipped with a reverse-phase column (Luna® 5 µm C18 

100 Å, LC Column 250 x 4.6 mm, Phenomenex, Torrance, CA). Ginger components 

were eluted at a flow rate of 1 ml/min using 65% acetonitrile in water (solvent A) and 

93% methanol in water (solvent B) stepped gradient programs. Gradient elution was 

performed as follows: 50% B to 100% B in 5 min/100% B for 7 min/ 100% B to 50 % B 

in 2 min/ 50% B equilibration for 10 min. 6-Shogaol, 6-, 8-, and 10-gingerol were 

identified by their retention times and quantified by comparison with standards, and their 

levels were expressed as concentration values in µg/mg of ginger extract.  

 

3.5.7 Binding assay 

All of ginger components-conjugated Sepharose 4B beads were prepared as 

described previously (Cancer Res. 2010 Dec 1;70(23):9755-64). A whole cell lysate from 

HCT116 cells (500 mg) was incubated with resveratrol-conjugated or control beads at 

4°C overnight in NP-40 lysis buffer [50 mM Tris-HCl (pH 8.0), 150 mM NaCl, 1 mM 

EDTA, 0.5% NP-40 and protease inhibitor]. After washing 5 times with NP-40 lysis 

buffer, the proteins bound to the beads were analyzed by Western blotting.  

 

3.5.8 Western blotting 

Cells were harvested and disrupted with NP-40 lysis buffer. The supernatant 

fraction was harvested after centrifugation at 13,000 rpm for 10 min. Protein 
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concentration was determined by Bio-Rad protein assay reagent (Richmond, CA). Whole 

cell lysates were subjected to SDS-PAGE and transferred to a polyvinylidene difluoride 

membrane (Millipore, Billerica, MA). After blocking with 5% non-fat dry milk in 1 x 

TBS containing 0.05% Tween 20 (TBS-T), the membrane was incubated with a specific 

primary antibody, and then protein bands were visualized with the ECL system and 

LAS4000 Biomolecular Imager (GE Healthcare, UK) after hybridization with a 

horseradish peroxidase-conjugated secondary antibody.   

 

3.5.9 Patient-derived Xenograft (PDX) 

Fresh tumor fragments were collected from colon cancer patients and transferred 

in RPMI 1640 medium with antibiotics at 4°C. The tumor tissues were trimmed into 3–5 

mm sizes within 2 hr after surgical resection, and implanted to 6 to 8 week-old female 

SCID mice subcutaneously (Vital River Laboratories Co., Ltd., Beijing, China). Once 

mass formation reached 1,500 mm3, mice of the first generation of PDX (named P1) were 

sacrificed and the tumors were segmented and expanded for 3 more generations (P2 and 

P3). When P4 tumors reached an average volume of 50 mm3, mice were divided into 

different groups (n = 10/group) and treated with vehicle or aspirin 400 mg/kg or GE 20 

mg/kg or aspirin 100 mg/kg+GE 5 mg/kg, respectively, 5 times a week by oral gavage. 

Aspirin and GE were dissolved in 0.9% saline. Mice were sacrificed at the end of the 

experiment and tumors extracted. Tumor volume was calculated using the following 

formula: tumor volume (mm3) = (length × width ×height × 0.5). All studies were 

reviewed and approved by the Ethics Committee of Zhengzhou University. Patients 
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whose tumors were used in these studies were completely informed and provided 

consent. 

 

3.5.10 Statistical analysis  

All quantitative results are expressed as mean values ± S.D. Statistically 

significant differences were obtained by one-way ANOVA. ANOVA with Dunnett’s test 

was used for multiple comparisons within experiments. A p-value of < 0.05 was 

considered to be statistically significant. 
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Chapter 4: 

Multiple phytochemicals at low doses 

accumulatively inhibit one key protein in cancer 
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4.1 Summary 

Fruits and vegetables are good sources of phytochemicals that possess health-

promoting effects such as reducing the risk of cancer. Although the anti-cancer effects of 

phytochemicals are heavily investigated, there exists a limitation that a single 

phytochemical is not correlated with reducing risks of cancer. This is partly due to the 

low concentration of each phytochemical in our body. To tackle this issue, we 

hypothesized that many phytochemicals with similar chemical structure may have a same 

target protein and the natural compounds, although at low doses, can inhibit the activity 

of the protein to where the anti-cancerr effects are focused. From chemical similarity 

analysis of four known ERK inhibitors, we found six new ERK2 inhibitors with similar 

chemical structures. The ten phytochemicals were able to accumulatively inhibit ERK2 

activity in vitro. ERK inhibitor mixture that each phytochemical exists at a low 

concentration suppressed H-ras-induced cell transformation of fibroblast, and inhibited 

anchorage-independent growth of cancer cells in where ERK2 is essential and highly 

expressed. This work will impact the cancer community by showing that many natural 

compounds can work together targeting ERK2, an important target in cancer.  

 

 

4.2 Introduction 

Fruits and vegetables are good sources of phytochemicals and believed to possess 

health-promoting effects such as reducing the risk of cancer (258-259). For example, a 

cohort study showed that high cruciferous vegetable consumption may reduce the risk of 
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bladder cancer (258). People are encouraged to intake more fruits and vegetables under 

so-called “five-a-day” campaign (260) and epidemiological data showed that a diet with 

higher fruit, vegetable and fiber than five-a-day diet may reduce adverse effects among 

breast cancer survivors (261). When it comes to molecular mechanisms, however, there 

exists a limitation that the health-promoting effect cannot be explained by a single 

phytochemical. Although many basic researches reveal anti-cancer effects of 

phytochemicals, especially elucidating target proteins of the small molecules (262). the 

physiological concentration of one phytochemical is often too low to expect any effect. 

An alternative model that uses low doses of phytochemicals naturally abundant might be 

helpful to better understand anti-cancer effects of phytochemicals. 

Extracellular signal–regulated kinase 2 (ERK2) is a protein kinase receiving 

signals under Ras/Raf/ Mitogen-activated protein kinase kinase (MEK) pathway, and 

involved in carcinogenesis and cancer cell proliferation (263).  ATP binding site of ERK 

is a concave protein surface ideal for direct interaction by small molecules (264). 

Recently natural small molecules that can suppress ERK activity were reported such as 

catechol (265), (+)-2-(1-hydroxy-4-oxocyclohexyl) ethyl caffeate (HOEC) (266), caffeic 

acid (267) and norathyriol (268). Catechol suppresses growth of lung cancer patient-

derived xenograft (PDX) tumors by directly targeting ERK (265). HOEC, caffeic acid 

and norathyriol suppress solar UV-induced skin carcinogenesis in SKH-1 hairless mice 

by direct ERK inhibition (266-268). Therefore, targeting ERK with phytochemicals 

might be an effective strategy for preventing and treating cancer. 
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Herein, we tested our hypothesis that phytochemicals at low doses can 

accumulatively inhibit one protein. Chemical similarity analysis of four ERK2 inhibitors 

leads to determination of the crystal structure of ERK2 bound with 5,6-

dihydroxychromone (5,7-DHC). Fisetin, quercetin, luteolin, 7,3’,4’-THIF and cyanidin 

were also identified as direct ERK2 inhibitors after in vitro. Using the ten natural ERK2 

inhibitors in mixture (Ei-mix), we prove that natural compounds at low doses can 

accumulatively inhibit ERK2. Ei-mix suppresses H-ras-induced cell transformation in 

NIH3T3 cells, and inhibits anchorage-independent growth of K562 and SK-MEL-28 cells 

in where ERK2 is essential and highly expressed. Signaling pathway is also analyzed to 

show that phosphorylation of ERK2 substrates were decreased by Ei-mix treatment. 

 

 

4.3 Results 

4.3.1 Chemical similarity analysis of known ERK2 inhibitors leads to 

determination of the crystal structure of ERK2 in complex with 5,7-

dihydroxychromone. 

Accumulative evidence shows that natural phytochemicals interfere oncogenic 

signaling pathways by directly targeting proteins (262, 269). ERK2 (extracellular signal-

regulated kinase 2), for example, is one of key proteins in carcinogenesis and directly 

inhibited by naturally-occurring small molecules such as catechol (PDB ID: 4ZXT) 

(265), HOEC (266), caffeic acid (PDB ID: 4N0S) (267) and norathyriol (PDB ID: 3SA0) 

(268) (Figure 4.1a). We hypothesized that there will be more natural ERK2 inhibitors 
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with similar chemical structures. Chemical clustering of the four phytochemicals showed 

that catechol, HOEC and caffeic acid formed one cluster, and norathyriol composed the 

other cluster (Figure 4.1b). We next sought to find phytochemicals which are similar to 

norathyriol from SuperNatural Ⅱ, a database with more than 325,000 natural compounds 

(270). By applying Tanimoto index, a popular method to quantify the similarity of two 

molecules, and threshold value of 0.9 (271-273), 14 compounds were found to be similar 

to norathyriol (Figure 4.1c). Twelve compounds were xanthone including norathyriol 

itself (1,3,6,7-tetrahydroxyxanthone), and the other two were chromone. After excluding 

xanthones that might be less innovative, 5,7-dihydroxychromone (5,7-DHC) was tested 

on co-crystallization with ERK2. We were able to resolve a crystal structure of ERK2 

bound with 5,7-DHC in the ATP binding site at 1.4 Å resolution (Figure 4.1d). 

Superimposition of current structure with norathyriol-bound ERK2 (PDB ID: 3SA0) 

structure showed that 5,7-DHC and norathyriol occupy the same position in the ATP 

binding site (See Figure 4.1e).  

 

 

Figure 4.1a Chemical structures of previously reported ERK2 inhibitors. 



 

 98 

 

Figure 4.1b Small molecule clustering of the four ERK inhibitors. The hierarchical 

clustering was carried out using Canvas in from Schrödinger Suite 2016. Distance matrix 

was used to generate the dendrogram. 

 

 

Figure 4.1c Chemical similarity analysis of norathyriol. Tanimoto similarity coefficients 

of natural compounds compared to norathyriol were calculated from SuperNatural Ⅱ 

database. Tanimoto threshold 0.9 was used to determine similar chemicals. 
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Figure 4.1d The crystal structure (1.4 Å resolution) of ERK2 bound with 5,7-DHC 

(blue). 5,7-DHC bound to the ATP binding site of ERK2. 

 

 

Figure 4.1e Superimposition of current structure with norathyriol-bound ERK2 (PDB ID: 

3SA0) structure. Norathyriol is depicted in yellow.
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4.3.2 Identification of compounds with inhibitory effects on ERK2 

kinase activity. 

We next focused on the identification of ERK2 inhibitors based on chemical 

similarity with catechol and 5,7-DHC. There were 2,720 natural compounds that have 

catechol moiety, and 3,978 compounds with 5,7-DHC moiety (Figure 4.2a). To increase 

the possibility of identifying ERK2 inhibitors, compounds with catechol moiety and 5,7-

DHC (or chromone) moiety were selected and subjected to ERK2 in vitro kinase assay. 

Fisetin, quercetin, luteolin, 7,3’,4’-trihydroxyisoflavone (7,3’,4’-THIF) and cyanidin 

inhibited ERK2 kinase activity in vitro (Figure 4.2b and c). However, procyanidin B2, a 

dimer form of cyanidin, was not able to reduce ERK2 activity (Figure 4.2c). We 

postulated that the compound is too bulky to fit into the ATP binding site of ERK2.  

  



 

 101 

 

 

Figure 4.2a Substructure search results from SuperNatural Ⅱ database. 2,720 natural 

compounds with catechol substructure were found. There were 3,978 compounds with 

5,7-DHC substructure. To enhance the chance to find ERK2 inhibitor, compounds with 

catechol substructure and 5,7-DHC (or chromone) substructure were selected for in vitro 

ERK2 kinase screening. Fisetin, quercetin, luteolin, 7,3’,4’-THIF, cyaniding and 

procyanidin B2 were chosen. 
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Figure 4.2b Validation assay of predicted ERK2 compounds. Elk1 fusion protein was 

used in an in vitro kinase assay with active ERK2. Results were visualized by applying p-

Elk1 antibody and western blots. Coomassie brilliant blue staining served as a loading 

control.  

 

   

Figure 4.2c Validation assay of predicted ERK2 compounds (continued). 
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4.3.3 Fisetin, quercetin, luteolin, 7,3’,4’-THIF and cyanidin directly 

bind to ERK2 and inhibit its kinase activity in a dose-dependent 

manner. 

To further confirm the in vitro kinase screening, the activity of fisetin, quercetin, 

luteolin, 7,3’,4’-THIF and cyanidin were examined at different doses. The five 

compounds were able to reduce ERK2 kinas activity in a dose-dependent manner (Figure 

4.3a-e). Of note, the phytochemicals showed similar IC50 values (fisetin: 7.0, quercetin: 

8.8, luteolin: 8.6, 7,3’,4’-THIF: 12.9, cyanidin: 9.3 μM) supporting similar property 

principle which refers that structurally similar molecules tend to have similar properties 

(274). Binding assay using sepharose 4B beads showed that the five compounds directly 

bound to ERK2 (Figure 3f). Throughout chemical similarity analysis of four ERK2 

inhibitors previously reported (catechol, HOEC, caffeic acid and norathyriol), six new 

phytochemicals (5,7-DHC, fisetin, quercetin, luteolin, 7,3’,4’-THIF and cyanidin) were 

newly identified as ERK2 inhibitors.  
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Figure 4.3a-e Newly identified natural compounds inhibit ERK2 kinase activity in vitro. 

RSK2 fusion protein was used in an in vitro kinase assay with active ERK2. 5-20 μM of 

Fisetin (a), quercetin (b), luteolin (c), 7,3’,4’-THIF (d) and cyanidin (e) were tested. 
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Figure 4.3f The newly identified compounds bind to ERK2 ex vivo. A whole cell lysate 

was incubated with 100 μl of phytochemical-conjugated Sepharose 4B and sepharose 4B 

(negative control) beads in 500 ml of reaction buffer. Pulled down proteins were detected 

by Western blotting. Caffeic acid and catechol served as positive controls. 
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4.3.4 Natural ERK2 inhibitors at low doses accumulatively inhibit 

ERK2 kinase activity and H-ras-induced cell transformation. 

The ten phytochemicals that directly inhibit ERK2 activity were mixed to 

constitute ERK2 inhibitor mixture (Ei-mix) to better mimic the condition that people 

consume different fruits and vegetables daily. In vitro kinase assay showed that 20 μM of 

EI-mix (10 compounds, 2 μM each) inhibited the phosphorylation of RSK2, a substrate 

of ERK2 (Figure 4.4a). When each compound was removed one by one, the inhibitory 

effect was diminished. This result proved the hypothesis that phytochemicals at low 

doses can accumulatively inhibit one protein. Next we sought to test the effect Ei-mix on 

cell transformation induced by H-ras, an upstream of ERK2. As previously reported 

(275), constitutively-activated H-ras (G12V) induced foci formation (Figure 4.4b). Ei-

mix was able to suppress H-ras-induced cell transformation of NIH3T3 cells in a dose-

dependent manner (Figure 4.4c). This result highlights the possibility that phytochemicals 

in nature, although at low doses, can exert their anti-cancer effects if the small molecules 

with similar structures focus their effect on one key protein. 
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Figure 4.4a Natural ERK2 inhibitors at low doses accumulatively inhibit ERK2 kinase 

activity. RSK2 fusion protein was used in an in vitro kinase assay with active ERK2. Ten 

phytochemicals were at 2 μM each, to make 20 μM concentrations as Ei-mix. Each 

compound was replaced with DMSO one by one. Results were visualized by 

autoradiography. Coomassie brilliant blue staining served as a loading control. 

CAY10561 is a positive control. 
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Figure 4.4b H-ras-induced foci formation assay. Foci formation assay was carried out 

following a protocol described in Materials and Methods. Foci were stained with 0.5% 

crystal violet after 2 wk-long incubation. 

 

 

Figure 4.4c The effect of Ei-mix on H-ras-induced foci formation. Foci formation assay 

was carried out following a protocol described in Materials and Methods. Foci were 

stained with 0.5% crystal violet after 2 wk-long incubation. Media with different 

concentration of Ei-mix was prepared by serial dilution from 20 μM. Media was changed 

every other day.  



 

 109 

4.3.5 Ei-mix inhibits the phosphorylation of ERK2 substrates and 

colony formation of K562 and SK-MEL-28 cell lines in where ERK2 is 

highly expressed and critical for growth. 

Because ERK2 is an important cell signaling mediator for proliferation of cancer 

cells (276-277), cell lines with high expression level of ERK2 serve as a useful platform 

to test the efficacy of Ei-mix. Analysis of mRNA expression and copy number of ERK2 

in 1,036 cancer cell lines (278) showed that K562 and SK-MEL-28 might have high-

ERK2 levels whereas H1650 and SH SY5Y might have low-ERK2 levels (Figure 4.5a). 

Western blot analysis confirmed that the former cell lines express higher ERK2 protein 

levels compared to the latter ones (Figure 4.5b). K562 and SK-MEL-28 cell lines 

proliferated rapidly compared to H1650 and SH SY5Y cell lines in anchorage-

independent conditions (Figure 4.5c). Knock-down of ERK2 inhibited anchorage-

independent growth of K562 and SK-MEL-28 cells (Figure 4.5d). Treatment of Ei-mix 

suppressed anchorage-independent growth of K562 and SK-MEL-28 cell lines (Figure 

4.5e). Subsequent western blot analysis showed that the phosphorylation levels of RSK2 

and c-Myc were reduced by Ei-mix treatment in a dose-dependent manner (Figure 4.5f). 

Collectively, our results show that phytochemicals that have similar structure compared 

to known ERK2 inhibitors also possess inhibitory effects against ERK2 kinase activity. 

And this provides a physiologically-relevant model of phytochemicals against cancer 

(Figure 4.6). Naturally-occurring small molecules with similar structures can 

accumulatively inhibit ERK2 (Table 4.1). 
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Figure 4.5a ERK2 expression analysis from cancer cell line encyclopedia (CCLE). 

mRNA expression and copy number of ERK2 in 1,036 cancer cell lines were downloaded 

from CCLE database. 

 

 

Figure 4.5b Validation of ERK2 expression levels in four cell lines. Four different cell 

lysates were subjected to western blots with ERK2 antibody. β-actin served as a loading 

control. 
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Figure 4.5c ERK2-high cell lines proliferate faster in the anchorage-independent growth 

condition. Same number of cells from the four different cell lines was suspended in 0.3% 

agar-containing media. Numbers of colonies were calculated after 7 days of incubation. 

 

   

Figure 4.5d The effect of knock-down of ERK2 in K562 and SK-MEL-28 cell lines. 

Two different shRNA sequences targeting ERK2 were used to knock-down. 
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Figure 4.5e The effect of Ei-mix against anchorage-independent growth of K562 and 

SK-MEL-28 cell lines. Ei-mix 40 μM solution (4 μM of ten phytochemicals) was 

prepared and underwent serial dilution. Colony number was counted after 5 day-

incubation. One-way ANOVA *P < 0.05, **P < 0.01, ***P < 0.001 significant difference 

compared to the control group. 

 

  

Figure 4.5f The effect of Ei-mix against ERK2 signaling pathway. Ei-mix was treated to 

K562 and SK-MEL-28 cell lines at different concentrations for 15 min. 
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Figure 4.6 Simple depiction of a proposed mechanism of food-derived phytochemicals. 

A conventional anti-cancer mechanism using single phytochemical (left) was compared 

with the proposed mechanism where multiple phytochemicals with similar structure focus 

their effects on one protein (right). 

 

 

Table 4.1 Food sources of the naturally-occurring ERK inhibitors that constitute Ei-mix. 
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4.4 Discussion 

This work aimed to find a physiologically-relevant model that explains anti-

cancer effects of phytochemicals. Herein, we found that chemical similarity analysis of 

known ERK2 inhibitors led to determination of the crystal structure of ERK2 in complex 

with 5,7-DHC. Fisetin, quercetin, luteolin, 7,3’,4’-THIF and cyanidin were also identified 

as direct ERK2 inhibitors in vitro. Using 10 phytochemicals in mixture (Ei-mix), we 

proved that natural compounds at low doses can accumulatively inhibit ERK2. Ei-mix 

suppressed H-ras-induced cell transformation in NIH3T3 cells, and inhibited anchorage-

independent growth of K562 and SK-MEL-28 cells in where ERK2 is essential and 

highly expressed. Notably, western blots showed that phosphorylation of ERK2 

substrates were decreased by Ei-mix treatment. 

Fruits and vegetables are good sources of phytochemicals with health-promoting 

effects such as reducing cancer risks (258-259). Many basic researches revealing anti-

cancer effects of phytochemicals, especially ones elucidating target proteins of the small 

molecules, enhanced our understanding on molecular mechanisms (262). However, a 

limitation is that the health-promoting effect cannot be explained by a single 

phytochemical. In many cases, the physiological concentration of one phytochemical is 

too low to expect any effect, and this is a huge gap between basic research of 

phytochemicals and cohort studies. To tackle this issue, we hypothesized that similar 

phytochemicals may have a same target protein and the small molecules, although at low 

concentrations, can inhibit the target to where the effect is focused. Under in vitro 

condition, 10 different phytochemicals were able to accumulatively suppress ERK2 
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activity (Figure 4.4a). The Ei-mix worked as an ERK inhibitor by reducing 

phosphorylation of ERK2 substrates in cancer cells (Figure 4.5f). This new model 

(depicted in Figure 4.6) opens up possibilities that even phytochemicals with moderate or 

relatively weak activities can be used when combined with other molecules which have 

same target protein.  

Precision medicine refers to matching the right treatments with the individuals 

(4). Setting up prevention and treatment strategies often involves inhibition of genes and 

proteins that promote disease (4, 9). This new model using phytochemicals can be 

beneficial to who needs to inhibit Ras/Raf/MEK (mitogen-activated protein kinase 

kinase) pathway because ERK is their downstream protein. By increasing the 

consumption of food sources of Ei-mix (Table 4.1), one could boost up the concentration 

and thus degree of ERK inhibition. Although this new model still needs further 

evaluations, it will impact the cancer community by showing that many natural 

compounds can work together targeting ERK2, an important target in cancer. 

 

 

4.5 Experimental Procedures 

4.5.1 Cell culture, antibodies and reagents 

All cell lines were purchased from American Type Culture Collection (ATCC, 

Manassas, VA) and cytogenetically tested and authenticated before the cells were frozen. 

Cells are cultured in 10% FBS and antibiotic-containing RPMI (K562 and H1650), MEM 

(SK-MEL-28), MEM/F-12 (SH SY5Y). NIH3T3 was cultured in DMDM containing 10% 



 

 116 

CS and antibiotics. Each vial of frozen cells was thawed and maintained for a maximum 

of 8 weeks (NIH3T3: 4 weeks). All antibodies were commercially available, including 

RSK2 and β-actin from Santa Cruz (Dallas, TX), pElk1 (S383), ERK2, pRSK 

(T359/S363), c-Myc, pERK1/2 (T202/Y204) and ERK1/2 from Cell Signaling 

Technology (Beverly, MA), p-c-Myc (S62) from Abcam (Cambridge, UK). Catechol, 

caffeic acid, fisetin, quercetin, luteolin and procyanidin B2 were purchased from Sigma-

Aldrich (St. Louis, MO). 5,7-DHC and cyanidin were purchased from ApexBio 

(Houston, TX). 7,3’,4’-THIF and CAY10561 were purchased from Cayman (Ann Arbor, 

MI). HOEC (266) and norathyriol (268) were synthesized as described earlier and were 

analyzed and authenticated by HPLC.  

 

4.5.2 ERK2/5,7-dihydroxychromone structure determination 

His-tagged recombinant human ERK2 was purified as described previously (ref). 

The crystals were produced by co-crystallization. Protein at 7.5 mg/ml was mixed with 

5,7-DHC 100mM stock solution in DMSO to achieve 1.5 mM of 5,7-DHC concentration 

and 1:9 protein/compound molar ratio. One or two microliters of protein:compound 

mixture were mixed with equal volume of precipitant comprised of 1.4M-1.5M 

ammonium sulfate, 2% PEG550, 0.1M HEPES, pH 7.5. The crystals grew slowly and 

were packed and tested after 1 month. The cryoprotectant solution comprised of 1.8M 

ammonium sulfate, 2% PEG550, 0.1M HEPES, pH 7.5 and 20% xylitol. 
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4.5.3 In vitro kinase assay 

The kinase assay was performed according to the instructions provided by 

Millipore. Briefly, ERK2 active kinase (100 ng) was incubated with compounds for 30 

min at 30°C. Then each reaction mixture was mixed with a relevantly respective 

substrate, isotope-unlabeled ATP and/or 10 μCi [γ-32P] ATP with each compound in 10 

μL of reaction buffer containing 20 mM HEPES (pH 7.4), 10 mM MgCl2, 10 mM MnCl2, 

and 1 mM dithiothreitol (DTT). After incubation at 30°C for 30 min, the reaction was 

stopped by adding 4 μL protein loading buffer and the mixture was separated by SDS-

PAGE. The 32P-labeled substrate was visualized by autoradiography. For the isotope-

unlabeled ATP kinase assay, p-Elk1 antibodies were visualized by Western blotting. 

 

4.5.4 Anchorage-independent cell growth assay 

Cells (8×103 per well) were suspended in basal medium eagle (BME) containing 

10% FBS and 0.3% agar and plated on solidified BME containing 10% FBS and 0.5% 

agar. After incubation for 5-10 days, the colonies were counted under a microscope using 

the Image-Pro Plus Software (v.6.1) program (Media Cybernetics, Rockville, MD).  

 

4.5.5 Foci formation assay 

Transformation of NIH3T3 cells was performing following standard protocols. 

Cells were transiently transfected with different concentrations of pcDNA3-H-RasG12V 

and pcDNA3-mock (as compensation to achieve equal amounts of DNA) plasmids and 

incubated overnight. Then the cells were cultured in 5% CS-DMEM with or without Ei-
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mix for 2 wk. The media were changed every other day. Foci were fixed and stained with 

0.5% crystal violet (220). 

 

4.5.6 Binding assay 

Compound-conjugated Sepharose 4B beads were prepared as described 

previously (265-266). A whole cell lysate was incubated with resveratrol-conjugated or 

control beads at 4°C overnight in NP-40 lysis buffer [50 mM Tris-HCl (pH 8.0), 150 mM 

NaCl, 1 mM EDTA, 0.5% NP-40 and protease inhibitor]. After washing 5 times with NP-

40 lysis buffer, the proteins bound to the beads were analyzed by Western blotting.  

 

4.5.7 Western blotting 

Cells were harvested and disrupted with NP-40 lysis buffer. The supernatant 

fraction was harvested after centrifugation at 13,000 rpm for 10 min. Protein 

concentration was determined by Bio-Rad protein assay reagent (Richmond, CA). Whole 

cell lysates were subjected to SDS-PAGE and transferred to a polyvinylidene difluoride 

membrane (Millipore, Billerica, MA). After blocking with 5% non-fat dry milk in 1 x 

TBS containing 0.05% Tween 20 (TBS-T), the membrane was incubated with a specific 

primary antibody, and then protein bands were visualized with the ECL system and 

LAS4000 Biomolecular Imager (GE Healthcare, UK) after hybridization with a 

horseradish peroxidase-conjugated secondary antibody.   
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4.5.8 Statistical analysis  

All quantitative results are expressed as mean values ± S.D. Statistically 

significant differences were obtained by one-way ANOVA. A p-value of < 0.05 was 

considered to be statistically significant. 
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Chapter 5: 

Recapitulation 
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 In Chapter 1, the work flow of precision oncology was categorized into two 

segments, precision diagnosis and precision therapy. We provided milestones and 

important aspects characterizing each segment. By reviewing targeted therapies clinically 

approved against breast cancer, lung cancer and melanoma, we revealed the current status 

and exposed possible challenges in precision oncology. Two of the most effective state-

of-the-art tools for the success of precision oncology were described.  

Throughout the next three chapters (Chapters 2, 3 and 4), we presented three 

examples of utilizing drugs and/or natural compounds for precision oncology: new drug 

candidate, drug-natural compound combination, and multiple compounds mixed at low 

doses. Newly synthesized small molecules can be developed as a direct inhibitor of 

important proteins (Chapter 2). Extracts from plants and their active compounds can 

reinforce the therapeutic effects of drugs (Chapter 3). Natural compounds from various 

food source can be mixed to suppress carcinogenesis (Chapter 4). 

Colorectal cancer is associated with aberrant activation of the Wnt pathway. β-

Catenin plays essential roles in the Wnt pathway by interacting with T-cell factor 4 

(TCF4) to transcribe oncogenes. We synthesized a small molecule, referred to as HI-B1, 

and evaluated signaling changes and biological consequences induced by the compound 

(Chapter 2). HI-B1 inhibited β-catenin/TCF4 luciferase activity and preferentially caused 

apoptosis of cancer cells which the survival is dependent on β-catenin. The formation of 

the β-catenin/TCF4 complex was disrupted by HI-B1 due to the direct interaction of HI-

B1 with β-catenin. Colon cancer patient-derived xenograft (PDX) studies showed that a 

tumor with higher levels of β-catenin expression was more sensitive to HI-B1 treatment 
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compared to a tumor with lower expression levels of β-catenin. The different sensitivities 

of PDX tumors to HI-B1 were dependent on the β-catenin expression level and 

potentially could be further exploited for biomarker development and therapeutic 

applications against colon cancer. 

Aspirin has received a considerable attention due to its anti-cancer effects on 

colon cancer patients with PIK3CA mutations. Ginger extract (GE) has protective effect 

against aspirin-induced hemorrhagic ulcer, and active components of GE possess anti-

colon cancer effects. This led us to investigate on the effects and mechanisms of aspirin 

and GE combination (Chapter 3). Co-treatment of aspirin and GE resulted in synergistic 

cytotoxicity in HCT116, DLD1 and HCT15 colon cancer cell lines. The combination 

treatment caused apoptosis by enhancing p53 and p21 protein expressions. 6-Shogaol was 

identified as an active component of GE showing inhibition of anchorage-independent 

growth and direct binding with Akt1/2. In colon cancer patient-derived xenograft (PDX) 

models, co-treatment of aspirin 100 mg/kg plus GE 5 mg/kg significantly suppressed 

tumor growth. Of note, tumor-suppressive effects were similar between the combination 

group and aspirin 400 mg/kg group, but weight loss was shown only in aspirin-only 

group. The combination of aspirin and GE could be further exploited for therapeutic 

applications against colon cancer. 

Fruits and vegetables are good sources of phytochemicals that possess health-

promoting effects such as reducing the risk of cancer. Although the anti-cancer effects of 

phytochemicals are heavily investigated, there exists a limitation that a single 

phytochemical is not correlated with reducing risks of cancer. This is partly due to the 
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low concentration of each phytochemical in our body. To tackle this issue, we 

hypothesized that many phytochemicals with similar chemical structure may have a same 

target protein and the natural compounds, although at low doses, can inhibit the activity 

of the protein to where the anti-cancerr effects are focused (Chapter 4). From chemical 

similarity analysis of four known ERK inhibitors, we found six new ERK2 inhibitors 

with similar chemical structures. The ten phytochemicals were able to accumulatively 

inhibit ERK2 activity in vitro. ERK inhibitor mixture that each phytochemical exists at a 

low concentration suppressed H-ras-induced cell transformation of fibroblast, and 

inhibited anchorage-independent growth of cancer cells in where ERK2 is essential and 

highly expressed. This work will impact the cancer community by showing that many 

natural compounds can work together targeting ERK2, an important target in cancer.  
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Appendix 

Precision medicine: the foundation of future cancer therapeutics 

(This commentary is published in npj Precision Oncology, (2017) 1:12; 

doi:10.1038/s41698-017-0016-z) 

 

Based on early evidence of fossilized bone tumors that were found in ancient 

Egyptian mummies, cancer is an ancient disease (279). The term “carcinoma” to refer to 

cancer was first used around 400 BC by Hippocrates (280). The understanding of cancer 

mechanisms began when John Bennett and Rudolf Virchow observed the abnormal 

accumulation of white blood cells in patients in 1845, which was one of the first cancers 

detected by microscopy (281). In contrast to the long history of the disease, diagnosis and 

treatment of cancer at a cellular or molecular level is a relatively new strategy. Although 

the field of oncology has developed and expanded dramatically, a single drug has not yet 

been discovered that can cure all patients, even those with similar cancer types. We now 

know that cancer is an extremely heterogeneous disease, which explains differences not 

only between cancer cells from different patients, but also differences between cancer 

cells within a single patient (282). Clearly, more effective strategies are critically needed 

to defeat the long-standing enemy known as cancer. 

The concept and practice of precision medicine is a methodical and systematic 

movement aimed at defeating diseases such as cancer (4). Cancer is a major focus of the 

precision medicine initiative and developments in precise and effective treatments could 

benefit many other chronic diseases. Precision oncology or precision medicine of cancer 
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focuses on matching the most accurate and effective treatment to each individual cancer 

patient based on the genetic profile of the cancer and the individual. Because every single 

cancer patient exhibits a different genetic profile and the profile can change over time, 

more patients will benefit if therapeutic options can be tailored to that individual, thus 

avoiding the idea that “one-size-fits-all” in terms of cancer treatment. 

Results of one randomized clinical trial and a small number of feasibility and/or 

tumor response studies (25, 283-286) focusing on the concept of precision medicine have 

had limited success(287). Naturally, opponents of precision medicine have criticized the 

strategy based on the results of the small number of clinical studies (160, 163). However, 

concluding that precision medicine will not work is premature because the precision 

medicine approach has not yet been fully tested in a sufficient number of trials. In 

addition, the suggestion has been made that having inadequate access to specific 

therapeutic agents and an insufficient number of tumor samples may have contributed to 

the limited success (163). Because cancer is a highly heterogeneous disease both between 

patients and within the same patient, the ability to cope with changes in the clinical trial 

setting is extremely challenging. Many creative and bold ideas of precision medicine 

have not yet made the transition from the lab bench to the clinic and need to be more 

fully evaluated in small clinical studies. For example, the microbiota is now recognized 

as a key player in health (288). The microbiota influences endocrinology and disease 

status and alters drug response and resistance, and this could hold true for cancer and the 

efficiency of cancer treatments. Sequencing the human microbiome and modulating the 
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host-microbiota interactions in individual patients may be one approach to improve 

therapeutic outcomes (288-289). 

Questions that must be addressed include whether precision oncology is just a 

theory or whether it realistically assures a better future and if truly promising, how can 

the application of precision oncology be improved and effectively implemented into the 

clinic? Several lines of evidence strongly support the idea that precision oncology could 

likely benefit more patients compared to traditional chemotherapies. First, some patients’ 

lives have already been substantially improved by target-based therapies compared to 

conventional cytotoxic therapies. One of the most notable examples is the discovery of 

the Bcr-Abl gene fusion in chronic myeloid leukemia (CML). Uncovering this genetic 

driver of CML lead to the development of a selective inhibitor of BCR-ABL, imatinib, 

which exhibited broader treatment coverage because, unlike other gene mutations, the 

Bcr-Abl gene fusion occurs in almost all CML patients. This compound improved the 

overall survival rates of CML patients to 90% over 5 years and 88% over 8 years (290). 

Another example includes the effectiveness of drugs like trastuzumab, lapatinib, 

pertuzumab or ado-trastuzumab emtansine against human epidermal growth factor 

receptor 2 (HER2)-positive breast cancer. Compared to chemotherapy alone, the addition 

of trastuzumab to chemotherapy significantly slowed the disease progression (i.e., 

median, 4.6 vs. 7.4 months), increased the objective response rate (i.e., 32 vs. 50%), 

prolonged survival time (i.e., median, 20.3 vs. 25.1 months) and reduced the risk of death 

by 20% (57). Lapatinib plus chemotherapy (i.e., capecitabine) achieved a longer median 

time to disease progression compared to chemotherapy alone (i.e., 8.4 vs. 4.4 months) 
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(291). A combination of pertuzumab, trastuzumab, and chemotherapy (i.e., docetaxel) 

further improved the median overall survival time to 56.5 months compared with a 

combination of only trastuzumab and chemotherapy (i.e., 40.8 months) (58). Treatment 

with ado-trastuzumab emtansine, a conjugate of a HER2 monoclonal antibody and a 

cytoxic drug, significantly improved the length of progression-free survival and overall 

survival with lower adverse effects when compared with lapatinib and chemotherapy 

(i.e., capecitabine) (59). These two excamples demonstrate how the identification of key 

mutations like the Bcr-Abl fusion or HER2 can clearly benefit a larger number of select 

cancer patients. 

Second, many strategies are now available to identify important molecular targets 

for therapeutic intervention. Synthetic lethality is one unique strategy directed toward 

identifying cancer vulnerabilities (292). This strategy is based on the discovery that cell 

death is caused by a combination of deficiencies in the expression of two or more genes, 

whereas deficiency in only one of these genes can increase viability (292-293). In 2005, 

the BRCA and poly ADP ribose polymerase (PARP) genes were found to have a synthetic 

lethal relationship (294-295). In 2014, the FDA (Food and Drug Administration) 

authorized accelerated approval of olaparib, a PARP inhibitor, to treat BRCA-mutant 

ovarian cancer patients (296-299). Progression free survival of BRCA-mutant ovarian 

cancer patients was significantly prolonged by olaparib compared to the placebo 

treatment (i.e., median, 11.2 vs. 4.3 months) (299). Likewise, several candidate proteins 

were identified to treat cancers that over-express Myc, a transcription factor for which 

small-molecule inhibitors are currently unavailable (300-304). Within just a 5-year 
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timespan, researchers found that Myc-amplified tumors were sensitive to CDK1, aurora 

kinase B, and BRD4 inhibition (300-301). Although many of these inhibitors have yet to 

translate into clinical successes, Phase I trials of three BRD4 inhibitors are ongoing (CPI-

0610 and TEN-010) or have just finished (OTX015) (305-306). These findings suggest 

that changes in gene A in cancer does not necessarily mean that gene A is the best target 

but instead, targeting its synthetic lethal partner might be a more effective strategy. 

Third, clinical trial design is constantly evolving to overtake tumor heterogeneity 

from patient to patient. The Molecular Analysis for Therapy Choice (NCI-MATCH) is a 

clinical trial selecting treatments based on genetic features of patients, not traditional 

tumor histology (165). The cancer patients will be assigned to 1 of 25 different treatment 

arms based on their genetic mutation profile. The overall response rate will be the 

endpoint to measure success. However, no control arms will be included, which could 

dramatically affect the interpretation of the final results. Even though a number of 

questions have been raised, the investigators are very optimistic that the results will 

further the efforts to implement precision oncology treatments. The Molecular Profiling-

based Assignment of Cancer Therapy (NCI-MPACT) is another innovative clinical trial 

to test the hypothesis that targeting an oncogenic driver mutation is more efficacious than 

not targeting it. NCI-MPACT will recruit advanced cancer patients who have been 

unresponsive to standard therapeutic options and possess mutations in one of three 

genetic pathways that include DNA repair, PI3-K/mTOR (phosphoinositide-3 

kinase/mammalian target of rapamycin) and Ras/Raf/MEK (mitogen-activated protein 

kinase kinase). Patients without a driver mutation will not be eligible for further treatment 
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(307). Although this trial is similar to the NCI-MATCH in that patients will undergo 

tumor biopsies when enrolled, patients in the NCI-MPACT study will be assigned to one 

of two arms:  treatment with drug(s) designed to target the mutation or treatment with 

drug(s) not prospectively identified to target the mutation. By evaluating gene targets 

across the histologic subtypes with NCI-MATCH and addressing the importance of 

driver mutations with NCI-MPACT trials, the efficacy of diagnosis and therapies could 

be significantly enhanced. 

Finally, the influence of new technologies such as the CRISPR/Cas system and 

cryo-electron microscopy (cryo-EM) will broaden and sharpen our ability to identify 

novel therapeutic targets for precision oncology. CRISPR/Cas technology  enables 

controlled exchange, insertion and deletion of DNA sequences unlike spontaneous 

mutation and can easily generate animal models that mimic mutations status of patients 

(308). Recently, a gene therapy trial to treat myeloma, melanoma and sarcoma with 

CRISPR/Cas has been approved by the National Institute of Health (NIH) and is awaiting 

approval from the FDA (309). In addition to CRISPR/Cas, cryo-EM is a promising tool 

for precision oncology. Cryo-EM is a type of transmission EM in which samples are 

examined at cryogenic temperatures (310). Because the samples (e.g., proteins and 

viruses) are frozen in their native states, researchers can study biological events 

accurately at the subatomic or atomic level. For an instance, a 2.3 Å resolution cryo-EM 

structure of p97 showed a large corkscrew-like hexameric form, revealed its interactions 

with an allosteric inhibitor and displayed conformational changes induced by adenosine 

tri-phosphate (ATP) (311). Visualization of intact proteins and anti-cancer drugs at 



 

 171 

subatomic or atomic levels will assist researchers in understanding the consequences of 

genetic alterations on drug response and resistance. 

In spite of some early setbacks, precision oncology still has a great deal of 

promise and should not be abandoned hastily. The challenge of tumor heterogeneity 

should not discourage or intimidate efforts to overcome cancer but should push the field 

forward. As practice makes perfect, precision mends patients. 
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