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Abstract

There is a constant demand for acceleration of magnetic resonance (MR) imaging to

alleviate motion artifacts, and more generally, due to the time sensitive nature of cer-

tain imaging applications. One way to speed up MR imaging is to reduce the image

acquisition time by subsampling the data domain (k-space). There are several methods

available to reconstruct the MR image from undersampled k-space, e.g., those based on

the theory of Compressive Sensing. Standard methods employ random undersampling

of k-space; however, these methods provide only probabilistic guarantees on the quality

of reconstruction. We present a method to reconstruct MR images from deterministi-

cally undersampled k-space, and provide analytical guarantees on the quality of MR

image reconstruction. Our approach uses sampling constructions formed by determinis-

tic selection of rows of Fourier matrices; coupled with sparsity assumptions on the finite

differences of MR images, we formulate the reconstruction problem as a Total Varia-

tion (TV) minimization problem. We demonstrate the utility of our TV minimization

based approach for MR image reconstruction by reconstructing MR brain scan data,

and compare our reconstructions with those obtained via random sampling. Our results

suggest that accurate MR reconstructions are possible by deterministic undersampling

the k-space, and the quality of deterministic reconstructions are on par with those of

reconstructions from randomly acquired data.
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Chapter 1

Introduction

There has been a long steady interest in speeding up magnetic resonance (MR) imaging

to produce diagnostic quality images with shortened scan time. Compressive Sensing

(CS) [1–7] has been shown to speed up MR imaging by reducing image acquisition

time as CS based image acquisition uses fewer data points for image reconstruction.

In the most straight-forward implementations, compressive sensing in magnetic reso-

nance imaging (MRI) involves undersampling the so-called k-space data [8] [9], which

is accomplished by specialized acquisition pulse sequences. Traditionally, random sam-

pling is utilized, resulting in probabilistic guarantees on the reconstruction of MR im-

ages [10–12]. In this thesis, we propose a method for MR Image acquistion and recon-

struction that provides deterministic guarantees, using the deterministic undersampling

strategies developed in [13].

1.1 Problem Formulation

We let the matrix X ∈ Cn×n′ represent the n× n′ MRI image of interest, in the spatial

domain (here, n and n′ may be different). Observations will be modeled as samples of

the k-space representation of X.

At a high level, the k-space formalism in MRI arises from a fundamental analysis of

the nuclear magnetic resonance of hydrogen protons in the presence of external magnetic

fields, and can be thought of in one-to-one correspondence with the Fourier transform of

the image of interest. In the most commonly employed 2D MR imaging methods (often

1
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called 2DFT imaging [14]), one can model the data acquisition process as acquiring a

sequence of lines in k-space, one at a time. In practice, each acquisition entails radio

frequency (RF) “excitation” of the spins of the protons comprising the water content

in (a slice of) the material being imaged, in concert with specific calibrations of the

magnetic field gradients across the material, followed by a sampling action. Overall, the

encoding process is such that acquiring the k-space data in a given line in the so-called

readout direction is relatively fast, as it corresponds to the output of analog-to-digital

sampling of a RF waveform using two (or more) orthogonally placed receiver coils. In

this setting, the signals received on the two coils are viewed as real and imaginary parts

of complex-valued data. The process of selecting a new line to sample is slower, as it

requires reconfiguration of the gradients and (often) repeated RF excitation. Thus, the

overall acquisition time is roughly proportional to the number of lines acquired.

Notwithstanding the elegance of the underlying physics, for our purposes here, we

draw upon the model summarized above describe the nominal observed data Z ∈ Cm×n′

in a concise form. For this, we define F (n) to be the complex valued n × n Discrete

Fourier Transform (DFT) matrix, whose (j, k)-th entry is given by

{F (n)}j,k =
1√
n

exp

(
−2πi(j − 1)(k − 1)

n

)
(1.1)

where i is
√
−1 and j, k = 1, ...n. When the dimensions are clear from context, we

sometimes omit the superscript on F (n).

Now, given that the 2D Discrete Fourier Transform is separable, the 2D DFT of X

may be expressed as F2D (X) = F (n)XF (n′), and our overall observations Z ∈ Cm×n

take the form

Z = SF (n)XF (n′), (1.2)

where S is a matrix whose rows are selected from the n× n identity matrix and whose

purpose is to denote which lines of k-space are acquired. Our aim is to reconstruct

the MRI image X from Z (or noisy versions of it). In what follows, we will find it

convenient to consider an alternative representation for the nominal observed data,

formed by computing the inverse (1D) Fourier transform of each row of Z, which can be

accomplished post-multiplication of Y by the inverse DFT matrix expressed as (F (n′))H

where the superscript H denotes the Hermitian (complex conjugate transpose). With
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this, we may write the new (transformed) observations Y as

Y = Z(F (n′))H

= SF (n)XF (n′)(F (n′))H

= AX, (1.3)

where A = SF (n) = SF is a row-subsampled (1D) Fourier Transform matrix.

1.2 Background

Our approach to reconstruct X relies on Compressive Sensing (CS). The theory of

CS prescribes conditions under which sparse n-dimensional vectors x can be recovered

exactly form a relatively small number of measurements, expressed as an m-dimensional

vector y of the form y = Ax, when m < n [10,15,16]. Such a recovery is possible when

the signal x to be reconstructed is sparse or nearly sparse. The above reconstruction

also works if the signal is sparse in the a different transform domain. In that case a

sparsifying transformation operation can be applied to the signal x before applying CS

based reconstruction approaches. The measurement matrix A used for measuring the

signal x, must also satisfy certain properties for guaranteed reconstruction. An elegant

way to describe whether the matrix A will lead to accurate reconstruction is to establish

that the matrix A satisfies the Restricted Isometric Property (RIP) [12]. The RIP is

discussed in detail in Section A.1.

1.2.1 Sparsity

Sparsity in terms of an MR image means that there are few pixels with significant non

zero values. The value of other pixels is either zero or close to zero, i.e. most of the

information in the MR image is concentrated in few non zero pixels. MR images are

either sparse in their pixel representation or they show transform sparsity [5]. Transform

sparsity means that they are sparse in some known mathematical transform domain like

in spatial finite differences or in wavelet domain. In our reconstruction approach, we

focus on MR images that show sparsity in finite differences domain.

The sparsity inherent in MR images makes them ideal for using CS techniques for

their reconstruction. This means that we do not need to sample all the data points in



4

k-space, therefore we can decrease the amount of data collected during the scan. This is

called undersampling the k-space. Undersampling decreases the data acquisition time

and therefore accelerates MR imaging by reducing the MR scan time. The acceleration

factor R is used to quantitatively define the amount of acceleration achieved. It is

defined as the ratio of the amount of k-space data required for fully sampled image to

the amount of data collected in accelerated acquisition. For example if every one out of

four rows in the k-space are samples then the acceleration factor is R = 4.

1.2.2 MR Image Acquisition and Undersampling

An MR scan acquires Fourier domain coefficients of the MR image using specially de-

signed RF pulse and gradient sequences. In our model, the matrix X is the MR image

in pixel representation and matrix Y contains the sampled Fourier coefficients.1 As al-

luded above, in our work we focus on the Cartesian MR image sampling, which acquires

the Fourier Coefficients of the MR image in a row by row fashion. In this approach, all

the columns of the a single row are acquired before moving on to the next row. The un-

dersampling scheme used to subselect the rows of the DFT Matrix F lies at the heart of

solving the MR image reconstruction using CS. The undersampling scheme determines

the pulse sequence used for sampling MR data, and therefore forms the basis of the

method used for MR image acquisition.

Undersampling the k-space often leads to violation of the Nyquist theorem [17].

If equispaced undersampling is performed, for instance if every 4th row is sampled,

then such a sampling technique leads to coherent aliasing artifacts. Such artifacts are

replicas of the original image and are hard to remove from the image. Pseudo-random

and random undersampling of the k-space produces incoherent aliasing artifacts. These

artifacts are noise like in nature, and can be denoised to produce the original image.

1.2.3 Non-Linear Reconstruction

According the original theory of CS, if there exists an orthonormal transform matrix Ψ

such that Ψx is sparse, and the matrix AΨH satisfies the Restricted Isometry Property,

1 Generally speaking, pulse sequences can be designed to acquire samples in form of Cartesian
sampling, radial sampling, spiral sampling, etc.; in these settings (when the sampling “grid” aligns with
the k-space grid), each data sample can be described as (FXF )j,k for some set of coordinates (j, k) in
k-space.



5

then x can be recovered from measurements y of the form y = Ax by solving the

optimization problem [11,12]

x̂i = arg min
z
‖Ψz‖1 subject to yi = Az,

= arg min
θ
‖θ‖1 subject to yi = AΨHθ, (1.4)

where ‖ · ‖1 denotes the `1 norm of the corresponding vector (the sum of its absolute

values). In our approach, we will use that each column of X has an (approximately)

sparse gradient; leveraging insights from [15] to convert each such problem into an `1

minimization problem.

1.3 Proposed Method

The three central components of using CS for MR Imaging are sparsity, undersampling,

and non-linear reconstruction. We have described image sparsity and non-linear recon-

struction above. Our work differs from previous works on CS for MRI on the basis of

the sampling technique used for undersampling the k-space, or in the selection of the

rows of the DFT matrix F to form the measurement matrix A. The use of randomly

subsampled DFT matrices is prevalent in the CS literature [11, 12]. However, the ran-

dom construction of Fourier sub-matrices provide only probabilistic guarantees on the

reconstruction of MR images. In our work, we employ a novel deterministic undersam-

pling [13] based CS approach that deterministically subsamples the rows of the DFT

matrix. As a result, we are able to provide deterministic analytical guarantees on the

reconstruction of MR images.

1.4 Roadmap

In Chapter 2, we develop the theorem and algorithm to perform MR image reconstruc-

tion based on TV minimization using deterministically undersampled k-space data. In

Chapter 3, we understand the construction of the measurement matrix A based on the

theory and results in Compressive Sensing. We then prove the theorem developed in

Section 2. In Chapter 4, we perform analysis on the proposed model to validate the

correctness of the model, analytically verify the theoretical results used for developing
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the model, understand and tune the model parameters, and extend the model for noisy

recovery. In Chapter 5, we describe the experimental setup and show the results of MR

image reconstruction using the proposed model. Finally, in Chapter 6, we develop the

conclusions and discussion for the study presented in this thesis.



Chapter 2

Method

We develop a Compressive Sensing based MR image acquisition and reconstruction

approach based on deterministic undersampling of k-space data, and develop a theorem

that establishes the reconstruction performance of our approach.

2.1 Sampling and Reconstruction Approach

Here and throughout, we assume that n > 2 is a prime integer. Next, for a fixed degree

d ≥ 2, we choose a polynomial f(p) = a1p + ... + adp
d with real integer coefficients

satisfying only that aj ∈ {0, 1, ..., n− 1} for j = 1, 2, ...d− 1, and ad ∈ {1, 2, ..., n− 1}.

Given m ∈ N, construct the multiset Tm (such that |T | = m, and T may contain

duplicate entries) according to

Tm = {f(p) mod n : p = 1, 2, ...,m} (2.1)

The elements of Tm prescribe which rows of the Fourier Transform matrix comprise the

sampling operator A; formally, if we index the elements of Tm by the underlying p, we

have

{A}p,k = {F}(Tm(p)+1),k, p = 1, . . . ,m, k = 1, . . . , n. (2.2)

For pragmatic reasons to be made clear shortly, we also prescribe including the “DC”

component of the Fourier transform in the acquired data; in the event that 0 /∈ Tm,

7
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this effectively entails one additional measurement, so that {A}m+1,k = {F}0,k for

k = 1, . . . , n.

Now, suppose that (noise-free) observations Y = AX are obtained using this A. The

(non-linear) reconstruction process we adopt operates under an assumption that each

column of the original image has an (approximately) sparse gradient. Formally, this can

be accomplished by introducing the total variation (semi)norm [18–20], which for 1D

vectors x = [x(1) x(2) . . . x(n)]T ∈ Cn is simply given by

‖x‖TV =
n−1∑
j=1

|x(j + 1)− x(j)|. (2.3)

With this, our overall recovery approach can be described as finding, for each column,

a reconstruction that matches the subsampled Fourier observations and has minimum

total variation.

Formally, let x1, . . . , xn denote the n columns of the image X. The measurements

Y can be decomposed column-wise, yielding a system of linear equations

yk = Axk k = 1, 2, . . . , n, (2.4)

per column. We prescribe reconstructing X column-wise by solving, for each k,

x̂k = arg min
z∈Cn

‖z‖TV subject to yk = Axk. (2.5)

As stated, this is a linear program, and can be easily solved using any of a number of

conventional approaches (here, we employ the MATLAB package CVX, a package for

specifying and solving convex programs [21]). Upon recovery of each column x̂k, we

form the overall image estimate X̂ as X̂ = [x̂1 . . . x̂n].

2.2 Guarantees

The approach above enjoys analytical performance guarantees in scenarios where the

discrete difference vector of each column of the original image is sparse (or approximately

so). We codify these results below.
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Theorem 1 Suppose that each column xk of the original image X has a sparse gradient,

so that for some s ≤ n− 1,

n−1∑
j=1

1{|xk(j+1)−xk(j)|} ≤ s (2.6)

for all k = 1, 2, . . . , n. Then, the reconstruction approach above yields an estimate X̂

that exactly equals X provided that the conditions

s ≤ C(d, ε2)m
ε1−ε2
2d−1 (2.7)

and

m ≥ n
1

d−ε1 (2.8)

hold simultaneously for some 0 < ε2 < ε1 < 1. Here, C(d, ε2) is a quantity that does not

depend on m or n.

It is interesting to note that “traditional” compressive sensing results based on ran-

dom constructions often don’t prescribe a lower bound on m (that is independent of the

sparsity level); here, that condition is an artifact of the number theoretic construction

used to establish the main result. Nevertheless, our experimental results suggest that

this condition is overly conservative.

To provide further insight into the implications of this result, consider a specific case

where d = 2 (where as alluded above, d is the degree of the polynomial that generates the

sampling locations), and where ε1 ≈ 1/5 and ε2 ≈ 0. Then, exact recovery is achieved

provided that the number of samples is at least m ≥ n5/9 while the sparsity of the

gradient per column satisfies s ≤ Cm1/10. Note the inherent trade-off between the lower

bound on m and the upper bound on s that arises through the “coupling” induced by ε1;

for d = 2, the practical limts for each condition (while not simultaneously achievable)

are m ≥
√
n and s ≤ C

√
m. The latter condition relating sparsity and number of

measurements is in line with existing coherence-based analyses in compressive sensing.

In line with the empirical observation above (regarding the conservative nature of the

condition relating m and n), we also comment that our empirical evaluations in the

next section suggest that the s ≤ C
√
m result is representative here.

We also note that the results of [13] provide a second result that would be applicable
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for our case here in settings where d > 2. Using that result (Theorem 2 of [13]) would

imply that exact recovery is achievable provided m ≥ n
1
d−1 and s ≤ Cm

1
9d2 log(d) for

another constant C.

2.3 Proof of Main Result

In this section we provide the outline of the proof of the main result above. At its

essence, our approach prescribes that we solve an optimization problem of the general

form

x̂ = arg min
z∈Cn

n−1∑
j=1

|z(j + 1)− z(j)| subject to SFx = SFz, (2.9)

where x ∈ Cn represents the “true” unknown vector. The first step is to rewrite this

optimization problem as a “canonical” `1 minimization problem, using the insights

elucidated in [15].

Namely, we define a new vector δ̌ ∈ Cn with δ̌(j) = z(j+1)−z(j) for j = 1, 2, . . . , n,

with the convention that z(n + 1) = z(1) (i.e., that we are implicitly considering the

periodic extension of z; this also implies that the elements of δ̌ sum to zero). Using basic

Fourier Transform concepts, we have that the j-th component of the Fourier transforms

of δ̌ and x are related via

(Fδ)j =

(
exp
−ij2π
n
− 1

)
(Fx)j = v(j) (Fx)j , (2.10)

where, again, i =
√
−1. If we let J denote the (multi)set of sample locations then the

condition SFx = SFz can be written equivalently as (Fx)j = (Fz)j for all j ∈ J . Thus,

it follows that in terms of δ̌, the constraints in the optimization may be expressed as

(F δ̌)j = v(j) (Fx)j for all j ∈ J .

Now, the original optimization only considers n−1 elements of δ̌; to that end, let us

define δ ∈ Cn−1 to be comprised of the first n− 1 elements of δ̌. By the analysis above,

then, the original optimization is effectively equivalent to solving first for δ̂ via

δ̂ = arg min
δ̌∈Cn

‖δ‖1 subject to (F δ̌)j = v(j) (Fx)j ∀j ∈ J, (2.11)

and then “post-processing” to incorporate the last degree of freedom (which corresponds

to the quantity δ(n + 1) − δ(n) = δ(1) − δ(n)). Indeed, a bit of introspection suggests
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that this “missing” data manifests in missing information in δ̂ about the DC shift of

the reconstructed x̂; this is because δ̌ is zero-mean by construction. Stated another

way, one would need to arbitrarily prescribe some value of x̂, after which knowledge

of δ̂ would allow imputation of the rest of the values. In reality, the ground truth x

values are not arbitrary. But, this last piece of information is precisely contained in the

DC component of x. By our construction, our measurement operator always contains

this latter piece of information (since we assume that the DC component of x is always

sampled, either by construction of the sampling polynomial, or explicitly, a posteriori,

by including the corresponding row of F in the A matrix). In the optimization to

obtain δ̂ these constraints are vacuously satisfied (because v(0) = 0). In the original

optimization, sampling the DC coordinate in the measurement operator (and including

the corresponding data in Y ) effectively adds another linear constraint that enforces the

requisite condition automatically.

Overall, the argument above is merely to illustrate that we can recast our 1D total

variation minimization problem as an `1 minimization problem with constraints that

take the form of samples of the Fourier transform of the unknown vector. This is

precisely the observation model we employ.

To the reconstruction guarantees, we utilize two key ideas related to canonical com-

pressive sensing problems, where the aim is to recover sparse x from measurements of

the form y = Ax. First, Theorem 6.9 in [22] establishes that as long as the 2s restricted

isometry constant of A satisfies δ2s < 1/3, x is the unique solution to

arg min
z∈Cn

‖z‖1 subject to Az = Ax. (2.12)

Thus, it remains to establish that our measurement operator satisfies this condition.

For that, we appeal to Theorem 1 of [13], which states precisely that deterministically

subsampled Fourier operators of the form prescribed here satisfy the RIP of order s with

restricted isometry constant δs ∈ (0, 1) provided that for any ε1 ∈ (0, 1) and ε2 ∈ (0, ε1)

m ≥ n
1

d−ε1 (2.13)

and

s ≤ δs C(d, ε2) m
ε1−ε2
2d−1 (2.14)

hold simultanously. Here, C(d, ε2) does not depend onm or n (the exact form is provided

in [13]). The result follows.



Chapter 3

Analysis

The analysis in the following sections is performed on the basis of the so-called coherence

of the measurement matrix, and its relationship to the Restricted Isometry Property.

3.1 Coherence and RIP

The coherence µ of a m× n matrix A having unit normed columns is defined as:

µ = max
0≤i 6=j≤n−1

|aHi aj |, (3.1)

where a∗ denotes the column vector of A, with ||a∗||2 = 1 and i, j = 0, 1, 2, ...., n−1. aH

represents the conjugate transpose of the column vector a. The coherence of a matrix

is lower bounded by Welch bound [23], given by

µ ≥
√

n−m
m(n− 1)

. (3.2)

Coherence is a measure of orthogonality between the columns of the matrix A.

Therefore, a smaller coherence is a measure of desirable for the measurement matrix

for Compressive Sensing. The coherence is related to the Restricted Isometry Property

constant δs by,

δs ≤ (s− 1)µ, (3.3)

where s is the sparsity.

12
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3.2 Analytically validating theoretical relation between δs

and m

For the construction of the deterministic measurement matrix A = m−1/2FT as ex-

plained in the Section 2.1, the matrix m−1/2FT satisfies RIP with parameter δs ∈ (0, 1)

and order s, whenever

s ≤ δs · C(d, ε2) ·m
(ε1−ε2)
2(d−1) , (3.4)

where the sparsity s is dependent on the input vector to be reconstructed, C(d, ε2) is

a constant that does not depend on m or n and the ε1 and ε2 are constants such that

0 < ε1 < ε2 < 1. The power of m in Eq. 3.4 is a constant not dependent on m or

n, hence let (ε1−ε2)
sd−1 be a constant C1. Then in log scale, the above equation can be

represented as

log(s) ≤ log(C) + log(δs) + C1 log(m). (3.5)

By upper bounding Eq. 3.5 by replacing ′ ≤′ by ′ =′ for analysis, the above equation

can be simplified to

log(δs) = a log(m) + b, (3.6)

where a = −C1 and b = log(s) − log(C). It can seen from Eq. 3.6 that δs and m

are linearly related to each other in the log scale, with slope a = −C1 and intercept

b = log(s)− log(C). A change in the value of sparsity s, leads to a change in intercept

of Eq. 3.6.

3.2.1 Analytic Validation

To evaluate the above relation in Eqn. 3.4 analytically – more precisely, to assess the

value of the quantity (ε1 − ε2)/2d−1 – we construct m × n dimensional deterministic

measurement matrices of the form A = m−1/2FT for each value of m in the range

n
1

d−ε1 ≤ m ≤ n and a fixed n (and a small, nominal choice of ε1). Then we find the

coherence of the measurement matrices corresponding to each value of m and plot the

coherence value for each m. To calculate the coherence of a measurement matrix A,

we form a Gram matrix G = m−1(FT )HFT , then the coherence of the matrix is the
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maximum absolute value of the off-diagonal elements in the upper or lower triangular

matrix of the Gram matrix G.

Figure 3.1: Plot of coherence log(µ) vs log(m) for degree d = 3 and n = 257

Fig. 3.1 and 3.2 show the variation of coherence log(µ) with log(m) for degree

d = 3 and n = 257 and 512 respectively. As can be inferred from the plots, the

dependence of log(µ) and log(m) is indeed close to linear. Over useful ranges of m, the

relationship between log(δs) and log(m) observed from Fig. 3.1 and 3.2 exhibits a slope

of approximately −1/2, aligning with the ideal values of the theoretical relationship

expressed in Equation 3.6 (for ε1 ≈ 1 and ε2 ≈ 0).
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Figure 3.2: Plot of coherence log(µ) vs log(m) for degree d = 3 and n = 521

3.3 Best Parameters for the polynomial

As discussed in the methods section, the row indices to be sub-sampled in the k-space

are the elements of the multiset T such that |T | = m. The entries of the multiset are

generated as

Tm = {f(p) mod n : p = 1, 2, ...,m}, (3.7)

where n is prime and f(p) = a1p + ... + adp
d is a degree d polynomial with integer

coefficients, and whose highest order coefficient is relatively prime to n. In this section,

we aim to analytically find the parameters a1, . . . , ad for a fixed degree d which give the

best coherence (as a proxy for the smallest RIP constant).

Each new set of coefficients corresponds to a new polynomial f(p). A change in
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polynomial f(p) leads to a change in the entries of the multiset T , which determines

the rows of the DFT matrix that comprise the measurement matrix A. Our aim is to

find the best (in a sense to be explained below) measurement matrix A for a fixed d by

choice of the polynomial parameters.

3.3.1 Coherence

We evaluate the best set of parameters for degrees d = 2 and d = 3 for three primes:

n = 67, 127 and 257. For degree d = 2, there are two polynomial coefficients a1 and a2.

Hence, there are a total of n(n−1) possible combinations for the set of parameters a1 and

a2. Each of these combinations generate a new measurement matrix A for each value

of m. We calculated the coherence for all possible measurement matrices as described

in section 3.2. The figures below depict the results in whole.
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Figure 3.3: Coherence Plot of all possible measurement matrices A for n = 67, d = 2

across m.
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Figure 3.4: Coherence Plot of all possible measurement matrices A for n = 127, d = 2

across m.
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Figure 3.5: Coherence Plot of all possible measurement matrices A for n = 257, d = 2

across m.

3.3.2 Least Mutual Coherence

For the plots in Fig. 3.3, 3.4 and 3.5, our next aim is to find the coherence curve

with least Mutual Coherence across as many values of m as possible, for each plot. We

achieve this by computing the average mutual coherence curve, then finding a curve

whose coherence is below the average most frequently (i.e., for the most values of m).

The plots below show the average coherence curve and the least mutual coherence curve

corresponding to the plots in Fig. 3.3, 3.4 and 3.5. Please note that we only show

one of the least mutual coherence curve in the figures. There can be multiple least

mutual coherence curves if the coherence of a set of curves is same and equal to the
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least coherence. The coefficients a1 and a2 corresponding to the least mutual coherence

curve are the best parameters for constructing the polynomial f(p) used to create the

set |T | and the measurement matrix A = m−1/2FT .

Figure 3.6: The average and least mutual coherence plot for n = 67, d = 2 across

parameter m. The title lists the parameters a1 and a2 for the least mutual coherence

curve.
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Figure 3.7: The average and least mutual coherence plot for n = 127, d = 2 across

parameter m. The title lists the parameters a1 and a2 for the least mutual coherence

curve.
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Figure 3.8: The average and least mutual coherence plot for n = 257, d = 2 across

parameter m. The title lists the parameters a1 and a2 for the least mutual coherence

curve.

3.3.3 Best Parameters

The values of the parameters a1 and a2 corresponding to the least mutual coherence

curve are the set of best parameters, as these parameters generate the measurement

matrix with the least coherence according to the criteria described above. In the table

below, we list one of the possible sets of Best Parameter for degree d = 2 and d = 3

based on the least mutual coherence analysis discussed above. Note that the d = 3,

n = 257 case was not computed due to its prohibitive computation time.
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Table 3.1: Best Parameters

Prime n Polynomial Degree d = 2

(a1 and a2)

Polynomial Degree d = 3

(a1, a2 and a3)

67 0, 1 1, 0, 15

127 1, 126 1, 1, 124

257 1, 128 –

For using the CS reconstruction algorithm described in the methods section, the

parameters listed in the Table 3.1 can be used to construct the multiset Tm for under-

sampling the k-space and generating the measurement matrix A.

3.4 Selection of degree d of the polynomial

In this section we compare the two degree values d = 2 and d = 3 for constructing the

polynomial f(p) to find the entries of the set Tm. For a fixed n, we find the value of

d which results in least coherence in the resulting measurement matrix A = m−1/2FT .

We compare the least mutual coherence plot generated in Section 3.3.2 for d = 2 and

d = 3. The degree corresponding to the plot with less coherence across m is the preferred

degree.
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Figure 3.9: Least mutual coherence plot for n = 67 and degree d = 2 and 3 in log scale

across m.
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Figure 3.10: Least mutual coherence plot for n = 127 and degree d = 2 and 3 in log

scale across m.
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Figure 3.11: Least mutual coherence plot for n = 127 and degree d = 2 and 3 in log

scale across m.

As can be observed from Fig. 3.9 and 3.11, the least mutual coherence plot for

degree d = 2 is consistently lower than the least mutual coherence plot for degree d = 3

over a large range of the under-sampling parameter m. This behaviour is consistent

over both the values of signal length n, i.e. n = 67 and n = 127. Therefore, we

observe (analytically) that degree d = 2 of the polynomial f(p) is better suited for CS

reconstruction than degree d = 3 due to its lower coherence across m.
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3.5 Comparison with Random Constructions

The reconstruction algorithm described in this study differs from the other reconstruc-

tions methods because of the deterministic selection of the rows of k-space, as opposed to

the prevalent random selection of rows in the CS literature. In this section, we compare

the random and deterministic constructions of the measurement matrix A = m−1/2FT

derived from under-sampling the rows of the n×n Fourier Matrix F . We show that the

deterministic constructions perform similar to the random constructions, if not better.

Our study of the comparison between the two constructions is based on the coherence

µ of the random and deterministic constructions.

3.5.1 Average of Mutual Coherence

We compare the mean or average mutual coherence of the random and deterministic

constructions for the signal length n = 67 and the polynomial degree d = 2. There are

total 67 × (67 − 1) = 4422 possible polynomials f(p) to create the multiset Tm. As a

result, there are (as many as) 67 × (67 − 1) possible deterministically selected m × n
measurement matrices A = m−1/2FT . The average mutual coherence for deterministic

constructions is calculated by taking the average of the coherence µ plots of all pos-

sible measurement matrices A across the under-sampling parameter m. The average

mutual coherence plot for random construction is obtained by taking the average of

the coherence plots corresponding to 67 × (67 − 1) random constructions of m × n di-

mensional measurement matrix constructed by randomly under-sampling rows of the

Fourier Matrix F.
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Figure 3.12: Average Mutual Coherence Plot for Random and Deterministic construc-

tions of the measurement matrix A for d = 2 and n = 67 across m.

Fig. 3.12 plots the average mutual coherence of the random and deterministic con-

structions for a sample set of size 67 × (67 − 1). It can be seen from the plot that the

average mutual coherence of deterministic constructions is similar to the average mu-

tual coherence of random constructions for the first half of the range m. For the second

half of the range m, the average coherence of random constructions is less than that

of deterministic constructions and the gap between the two increases as m increases.

However, it should be noted that the gap is not of drastic magnitude as the two average

plots are similar and close to each other. The increase in gap towards the end of the

range m is perhaps not overly informative, as in CS recovery, it is unlikely to choose a

value of m that is close to signal length n. For many practical cases, the value of m will



29

lie in the first half of the range of m, where the average coherence plots for random and

deterministic constructions are similar and almost overlap. Therefore, according to the

analysis based on average mutual coherence, both random and deterministic construc-

tions show similar coherence µ for the (arguably) most usable part of the range of m

values.

3.5.2 Standard Deviation (SD) and Mean ± SD of mutual coherence

Figure 3.13: Standard Deviation of Mutual Coherence Plot for Random and Determin-

istic constructions of the measurement matrix A for d = 2 and n = 67 across m.

Fig. 3.13 shows the standard deviation (SD) of the mutual coherence of the random

and deterministic constructions for a sample set of size 67 × (67 − 1) for degree d = 2
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and the signal length n = 67. The coherence plot and the measurement matrices

are constructed as described in the Section 3.5.1 above. It can be seen from the plot

that Standard Deviation of the mutual coherence of deterministic constructions is little

higher than that of random constructions. However, they are close to each other, show

a similar patterns and are of comparable magnitudes.

Figure 3.14: Mean ± Standard Deviation (SD) Plot for Random and Deterministic

constructions of the measurement matrix A for d = 2 and n = 67 across m.

Fig. 3.14 shows the mean ± SD curve for the mutual coherence of the random

and deterministic constructions for a sample set of size 67 × (67 − 1) for degree d = 2

and the signal length n = 67. It can be seen from the plot that Mean ± SD curve of

mutual coherence of deterministic constructions is more spread out than the Mean ±
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SD curve of mutual coherence of random constructions. This shows that the mutual

coherence of random constructions vary more tightly than the mutual coherence of

deterministic constructions. However, both the plots are similar and comparable to

each other, without much difference in the magnitude of difference between the two.

This leads us to conclude that based on the Standard Deviation (SD) and mean ±
SD of the mutual coherence based analysis, deterministic constructions are similar to

random constructions.
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Experiments and Results

We tested our method on a brain scan MR image, and compared our results to with

those from random constructions of the measurement matrix. In this chapter, we de-

scribe the experiment data and results. We demonstrate our reconstruction results by

showing reconstructed images using deterministic and random constructions and com-

pare them to the original ground truth image acquired by fully sampling the k-space.

We also present the results for various acceleration factors, i.e., for different percentages

of amount of k-space information used to perform the reconstruction.

4.1 Data

The MR scan data was collected using parallel imaging (with 8 coils). The data is

present in the form of 160 ∗ 220 ∗ 8 image matrix. The coil sensitivity data is present in

form of 160 ∗ 220 ∗ 8 sensitivity map matrix. To simulate the ground truth image used

for the single-coil experiments, we employed a sum of squares reconstruction method

to obtain a single MR image from the data; this is our nominal “ground truth” image.

Figure 4.1 shows the pixel representation of this image.

32
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Figure 4.1: The ground truth MR brain scan acquired via parallel imaging, and by

fully sampling the k-space. The image is constructed by sum of squares reconstruction

method using data acquired from eight parallel coil MR scan.

4.2 Experiments

To evaluate the validity of the reconstruction using deterministic constructions of the

measurement matrix, we compare deterministic reconstruction to the reconstruction

obtained by random constructions. The fully sampled k-space data of the acquired

brain scan is of dimensions 160 × 220 × 8, i.e. 160 rows, 220 columns, and 8 coils.

The data matrix is padded with zeros, such that the number of rows is equal to the

closest prime number (163), resulting in 163 × 220 × 8 dimensional data matrix. We
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undersample and stack the k-space data corresponding to all the coils, and obtain a

(8×m)×220 dimensional 2D matrix. We then apply the algorithm discussed in Section

2.1 on the resulting 2D data matrix. The degree d used for construction of polynomial

f(p) is set to 2 in our experiments. We demonstrate the result for different levels of

undersampling, i.e. for sampling 5%, 10%, 15%, 20% and 25% of the number of rows in

the k-space. In the results shown, we demonstrate the change in quality of reconstruction

with change in the extent of undersampling (parameter m). We display the result in

terms of acceleration factor R to visualize the results independent of the data size. It is

defined in Section 1.2.1 as the amount of k-space data required for fully sampled image

to the amount of data collected in accelerated acquisition.
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Figure 4.2: Reconstruction based on deterministic undersampling, using 5% samples

and acceleration factor R = 20.

Figure 4.3: Reconstruction based on random undersampling, using 5% samples and

acceleration factor R = 20.
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Figure 4.4: Reconstruction based on deterministic undersampling, using 10% samples

and acceleration factor R = 10.

Figure 4.5: Reconstruction based on random undersampling, using 10% samples and

acceleration factor R = 10.
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Figure 4.6: Reconstruction based on deterministic undersampling, using 15% samples

and acceleration factor R = 6.

Figure 4.7: Reconstruction based on random undersampling, using 15% samples and

acceleration factor R = 6.
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Figure 4.8: Reconstruction based on deterministic undersampling, using 20% samples

and acceleration factor R = 5.

Figure 4.9: Reconstruction based on random undersampling, using 20% samples and

acceleration factor R = 5.
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Figure 4.10: Reconstruction based on deterministic undersampling, using 25% samples

and acceleration factor R = 4.

Figure 4.11: Reconstruction based on random undersampling, using 25% samples and

acceleration factor R = 4.
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4.2.1 Experiment Results

We demonstrate in the results that deterministic constructions of the measurement ma-

trix provide diagnostic quality reconstructions of MR images, comparable to those pro-

vided by random constructions for a wide range of acceleration factors R = 20, 10, 6, 5,

and 4. Since diagnostic quality of the image is relative, therefore it is left for the prac-

titioner to observe the results for various acceleration factors and select the appropriate

acceleration factor for the application. The acceleration factor can be application spe-

cific based on the amount and nature of details required for a particular application.

Table 4.1 shows the mean squared error between the normalized reconstructed and

ground truth MR image for both deterministic and random constructions.

Table 4.1: Mean Squared Error between the normalized re-

constructed and ground truth MR image.

Percent Samples (%) Deterministic Undersampling Random Undersampling

5 0.0054 0.0053

10 0.0046 0.0045

15 0.0045 0.0045

20 0.0045 0.0045

25 0.0045 0.0045



Chapter 5

Discussion and Conclusion

In this study, we develop a provable, deterministic, accelerated MR imaging technique.

Our approach exploits the sparsity inherent in the discrete gradients of MR images for

regularization, and a key distinguishing feature of our approach is that we use determin-

istic measurement matrices for undersampling the k-space instead of popular random

constructions of the measurement matrix. We verified the effectiveness of our methods

by reconstructing MR image of a brain scan for multiple acceleration factors, and further

show that reconstruction obtained by our method based on deterministic construction

is similar in quality to that obtained by using random construction. We show that it

is possible to obtain deterministic guarantees on MR image reconstruction as opposed

to the probabilistic guarantees from random matrices with a trade-off in scaling with

the number of k-space rows sampled, m. Reconstruction guarantees for deterministic

constructions of the measurement operators are less favorable than those for random

constructions; in particular, in the settings of interest to us here, the allowable sparsity

level of the gradient in each column of the image to be recovered needs to be O(
√
m) as

compared to random constructions which can succeed when the sparsity is O( m
log4(n)

).

We analytically validate that our method closely follows and satisfies the existing

theoretical results and bounds present in the theory of deterministic measurement ma-

trices. We discuss the selection and tuning of the model parameters namely coefficients

and degree of the polynomial used for constructing the deterministic measurement ma-

trix using analysis based on mutual coherence and provide a best set of parameters to

use when implementing the method off the shelf. We analytically show the similarity of

41
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our method to the methods using random constructions by using average and standard

deviation of the mutual coherence as a metric for comparison.

Our approach is based on iterative column by column reconstruction of the MR

image i.e. we essentially reconstruct one dimensional signal. For future work, it will be

interesting to see if we can develop the approach for directly using 2-D reconstruction.

The method in this study is developed for reconstruction of 2-D MR images. As future

work, it would be interesting to extend the method and ideas discussed in this thesis to

3-D MRI.
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Appendix A

Compressive Sensing - Theory

The system of equations of the form, y = Ax, where x ∈ Cn is a n dimensional vector, A

is a m× n dimensional matrix such that m<<n and y ∈ Cm is a m dimensional vector

is a underdetermined system. Due to the ill-posed nature of this problem, this system

does not have a unique solution. It can have infinite solutions, if any. The theory of CS

shows that if the signal x is sparse with sparsity s, then it is possible to uniquely recover

x from the above underdetermined system, such that m is much smaller than n and

ideally comparable to s. The results also hold when the signal is not exactly s-sparse,

i.e. if the signal x has few large coefficients and many small coefficients [10,15,16].

The parameter m represents the minimum number of measurements required to

uniquely recover the signal x of sparsity s. There are two aspects to accomplish such

a reconstruction. First, is constructing the measurement matrix A, which allows such

a recovery to be possible for m << n. Second is the reconstruction algorithm used

to reconstruct x. In the next section our aim is to understand the properties and the

construction of the measurement matrix A. Matrix A has to satisfy certain properties to

ensure that the information in the signal x is not lost during its dimensionality reduction

to signal y, after the operation y = Ax.

A.1 Restricted Isometry Property

The main idea of CS is to take a lot fewer measurements m as compared to the signal

dimension n, and recover the signal x exactly, provided the signal is sparse with some

46



47

sparsity s. If we knew the location of the s non zero-entries of the sparse signal x, then we

would just need s entries to measure and recover the signal exactly. However, in real life

we do not know the location of the s non-zero entries, therefore we need a measurement

matrix A to uniquely recover x from limited measurements of the form y = Ax. It is

easy to see that the m-dimensional vector y is a linear combination of s-columns of the

matrix A corresponding to the s non zero indices in the n-dimensional vector x. In order

to find a unique solution x, it is necessary that the above selected s-columns of matrix

A are linearly independent. Therefore, any combination of s-columns of the matrix

A must be linearly independent to uniquely solve for x. Further, it is also necessary

to ensure that the above combination leads to a well-conditioned system. To sum up,

given a s-sparse signal x, our aim is to construct a m × n dimensional measurement

matrix A with smallest possible m (m ≥ s), such that, in any subset of s-columns, the

columns are linearly independent and form a well conditioned system. A property that

satisfies the above criterion and succinctly determines whether a measurement matrix

A can be used to recovery of a s-sparse signal x, is the Restricted Isometry Property

(RIP) [12] [24].

Definition 1 (Restricted Isometry Property) The matrix A satisfies the Restricted Isom-

etry Property of order s with parameter δs ∈ [0, 1) if

(1− δs)||x||22 ≤ ||Ax||22 ≤ (1 + δs)||x||22 (A.1)

holds simultaneously for all sparse vectors s having no more than s non-zero entries.

The constant δs is called the Restricted Isometry constant for sparsity s.

If the matrix A satisfies RIP then the sub-matrices formed by the selection of subsets

of s-columns are all full rank. Then the s-columns are linearly independent and since

the sub-matrix is full rank, it is possible for the system to have a unique solution. The

above idea can also be interpreted from the definition of RIP, ref 2.5, since ||Ax||22 ≥
(1 − δs)||x||22 and δs < 1, ||Ax||22 can never be equal to 0 provided the vector x 6= 0.

Therefore, the null space is φ and the sub-matrix of s-columns has full rank. The

rank here corresponds to full column rank since the dimension of the columns for the

sub-matrix is s, and the dimension for the rows is m, where m ≥ s.
A measurement matrix A satisfying the RIP will approximately preserve the length

of all signals x, conditional on the value of sparsity s. Since ||Ax||2 ≈ ||x||2, any subset
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of s-columns of A are nearly orthogonal. RIP is stronger condition that just ensuring

that the subset of s-columns are linearly independent, because it also ensures that

the subsets of s-columns are well-conditioned. The well-conditioned property can be

interpreted from the definition of RIP. The largest and smallest singular values of the

matrix A are given by

σmax = max

√
||Ax||22
||x||22

(A.2)

σmin = min

√
||Ax||22
||x||22

(A.3)

The condition number κ is,

κ =
σmax
σmin

(A.4)

From Equation A.1,

1− δs ≤
||Ax||22
||x||22

≤ 1 + δs (A.5)

Therefore, combining Equations A.2, A.3, A.4 and A.5

κ ≤ 1 + δs
1− δs

(A.6)

For a system to be well-conditioned, the value of the condition number of the system

should be close to 1. Since, δs ∈ [0, 1), the above system is well-condition depending

on the value of δs. Smaller values of δs are preferred over larger values on δs in the

range [0, 1) for the resulting measurement matrix to be well-conditioned. The matrix A

behaves like a near isometry, its singular values lie in the range (
√

1− δs,
√

1 + δs).

A.2 Non-Linear Reconstruction

We have established that RIP is the sufficient and necessary condition for the measure-

ment matrix A, such that a s-sparse signal x can be uniquely recovered from measure-

ments of the form y = Ax, such that m << n. In this section, we describe non-linear

reconstruction approaches for reconstruction of x. [25]
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A.2.1 Minimum l2 norm reconstruction

A classical approach to solve for x, would be to find a least square solution by solving,

x̂ = argmin
z
||z||2 subject to y = Az (A.7)

where ||z||2 =
∑n

i=1 |zi|2. The solution to the above problem is a vector with the

smallest l2 norm or energy. More importantly, the above optimization problem has

a elegant close form solution x̂ = AT (AAT )−1y. However, solving the least squares

problem selects a solution that has the minimum energy among all the solutions that

satisfy the measurements. This kind of solution distributes the energy throughout the

signal to minimize energy. As a result, the solution obtained are not sparse solutions,

but low energy solutions with many non-zero entries. Since the sparsity requirement is

not satisfied by finding a least squares solution, we look for other form of solutions.

A.2.2 Minimum l0 norm reconstruction

As discussed before, in order to recover x, we want to find the sparsest solution to the

problem y = Az, i.e. look for a solution with the fewest number of non-zero entries.

Therefore, we solve the combinatorial problem,

x̂ = argmin
z
||z||0 subject to y = Az (A.8)

l0 norm is a quasi-norm such that ||z||0 counts the number of non-zero entries in the

vector z. Therefore, for a s-sparse vector z, ||z||0 will be equal to s. Solution to A.8 can

recover x exactly using only m ≥ s+ 1 measurements. However, the above problem to

find x̂ is a NP-hard combinatorial problem since it involves checking for all
(
n
s

)
possible

locations of non zero entries in x.

A.2.3 Minimum l1 norm reconstruction

If we replace the l0 norm with l1 norm then the above non-tractable combinatorial

problem converts to a tractable convex optimization problem.

If the matrix A satisfies the RIP property with δ2s < 1 then the solution of the

l0 optimization problem in unique. More remarkably, it has been shown that for real
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signals x, if δ2s <
√

2− 1 then the solution of the l1 problem is the same as that of the

l0 problem [10,15,16,26–28].

Lemma 1 If A is a measurement matrix satisfying RIP of order 2s with parameter δ2s,

such that δ2s <
√

2−1 and let y = Ax be the measurement vector of any s-sparse vector

x ∈ Rn, then the estimate

x̂ = argmin
z
||z||1subject to y = Az (A.9)

is unique and equal to x.

Minimizing the l1 norm is a reconstruction approach that is used for Compressive

Sensing applications because it generates sparse solutions. It should be noted that

the above results hold for specific class of measurement matrices that satisfy the RIP

property with constraints on the RIP parameter δs. In the next section, we look at

some of the ways to construct RIP matrices for applications in CS.

A.3 Constructing RIP Matrices

In this section, we study some random and deterministic matrix constructions matrices

that satisfy the RIP property. Testing whether a matrix satisfies the RIP property is

a NP-hard problem, since the RIP property has to be exhaustively verified for all
(
n
s

)
possible combinations of the non-zero entries in the vector x of length n.

The aim of these constructions is to find m × n dimensional (s, δs) RIP matrices,

such that the number of measurements m are as small as possible compared to the

signal length n and the sparsity s. Another approach to this is to try to the increase

the sparsity s as much as possible for a given number of measurements m and signal

length n. We aim to maximize the value of sparsity s for a given m and n, since a

large value of s means that we can recover more non-zero entries for a given number of

measurements m.
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A.3.1 Random Constructions

Certain random constructions of matrices have been shown to satisfy the RIP property

with high probability. [10,12,16] For instance, matrices with random matrices of dimen-

sions m × n whose entries are independent and identically distributed (iid) realization

of certain zero mean random variables have been shown to satisfy RIP of order s, and

parameter δs with high probability for an integer s satisfying

s ≤ c(δs) ·
m

log n
(A.10)

where c(δs) is a constant that depends on δs but not on m or n. Therefore, in

the cases where the condition A.10 is satisfied the results of Lemma 1 hold with high

probability.

Random matrices constructed from a n×n Discrete Fourier Transform (DFT) Matrix

satisfy the RIP property with high probability as well. F is a DFT matrix whose (i, j)th

entry is given by

{F}j,k =
1

n
exp

(
2πijk

n

)
(A.11)

where i =
√
−1 and j, k = 0,1,..., n-1.

Let T be a set of size m (|T | = m), such that the entries of the set T are selected

uniformly without replacement from the set 0, 1, ...n− 1. The m × n submatrix FT is

constructed by only selecting the rows of the DFT matrix F , that are indexed by the

elements in the set T . Then the results in [15] show that the scaled sub-matrix m1/2

satisfies RIP with high probability when

s ≤ c′(δs) ·
m

log4 n
(A.12)

where c′(δs) is a constant that does not depend on m and n.

A.3.2 Deterministic Constructions

Constructing deterministic RIP matrices is based on Gersgorin circle theorem. Lemma

2 has been shown [13, 24, 29] to create (s, (s − 1)µ)- RIP deterministic matrices with

sparsity
√
m, where µ is the coherence discussed in Section 3.1. The highest level of
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sparsity possible from deterministic constructions is bounded by the Welch bound in

Equation 3.2. [23]

Lemma 2 (Gersgorin) [30]The eigenvalues of a n×n complex matrix M, all lie in the

union of n disks dj = dj(cj , rj), j = 1,2,....,n, centered at cj = Mj,j and with radius

rj =

p∑
i=1i 6=j

|Mj,i|. (A.13)

The work in [13], shows the construction of structured sub-matrices satisfying RIP

deterministically by combining the result in Lemma 2 and the Weyl bound of exponential

sums [29]. These deterministic matrices are constructed by specific selection of rows of

the Fourier Matrix F .

Let n ≥ 2 be a prime integer and let f(p) be a polynomial of degree d ≥ 2 of the

form, f(p) = a1p+ ...+adp
d, with real coefficients aj ∈ 0, 1, ..., n− 1. For any ε1, choose

m to be an integer satisfying

n
1

d−ε1 ≤ m ≤ n (A.14)

Let T = f(p) mod n : p = 1, 2, ...m, (|T | = m and T may contain duplicate entries).

The matrix FT is constructed by specifically selecting only those rows of the DFT matrix

F which are present in the multiset T . Then for any δs ∈ (0, 1) and εs ∈ (0, ε1), the

matrix m−1/2FT satisfies RIP with parameter δs and order s [13, 23,29,30], whenever,

s ≤ δs · C(d, ε2) ·m
(ε1−ε2)
2(d−1) (A.15)

where C(d, ε2) is a constant that does not depend on m or p.

In our work, we show that the deterministically subsampled matrices described above

can be used to perform MR image reconstruction.

A.3.3 Comparing Random and Deterministic Constructions

The deterministic construction of the measurement matrix differs from the random con-

struction in terms of the scaling behaviour with respect to the parameter m and the non

zero-entries allowed in the signal. As can be gathered from equations A.12 and A.15,

for random constructions the maximum number of non-zero entries allowed for recon-

struction of a signal is of the order of O( m
log4n

), while in deterministic constructions the
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number of non-zero entries s allowed are of the order of O(
√
m) at most. The sparsity

scales as O( m
log4n

) in random constructions, while it scales as O(
√
m) in deterministic

constructions. Further, the minimum value of m that can be used for reconstruction is

more relaxed or smaller in the case of random construction. For random constructions,

the minimum allowed value of m is some power of log n, while in deterministic construc-

tions the minimum allowed m is some fractional power of n. The requirements on m

are more strict in case of deterministic construction. However, the RIP property can

be deterministically satisfied with deterministic constructions, whereas it can only be

satisfied with high probability in random constructions. There is no way to verify which

realization of the random construction will fail or satisfy RIP. Deterministic selection

of Fourier Matrices avoid this issue, as even though the bounds on m are weaker, the

reconstruction is deterministically guaranteed in every case.
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