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Introduction          
At the end of the Last Glacial Maximum (LGM) global sea levels began to rise 

pushing shorelines and river mouths inland. Along some coasts, waves had collected 

sediment in large shore-parallel sandbars. Once relative sea level (RSL) began increasing, 

these bars separated from the mainland as the low areas around the bars were flooded. 

Since the end of the LGM, sea level has continued to increase, and these former sandbars 

have responded by moving inland to keep up with the rising seas.  

In the last few thousand years, RSL rise rates have decreased and barrier islands 

have stabilized and are found along 10% of the world’s oceanic coastlines today (Stutz & 

Pilkey, 2011). Barrier islands protect areas from ocean waves to create interior lagoons 

and wetlands, important environments for many species, especially those avoiding the 

predators of the mainland (Burger & Lesser, 1978). Humans have utilized barrier islands 

for recreation and fishing as well as building on and behind the islands. 

24% of all barrier islands are found in the United States and important parts of 

United States history took place on these islands. Before English explorers arrived at the 

Outer Banks, North Carolina, there were Native American people using the land. The 

Algonquian people used the barrier islands for both farming and fishing. Unfortunately, 

like so many Native Americans, the Algonquians were not immune to the diseases that 

the English settlers brought with them and their numbers fell drastically (Downing, 

2013). When the first permanent settlements were established on the Outer Banks in the 
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late 17th century, an unexpected trouble arose: piracy. The isolation of the barrier islands 

did not just attract animals evading predators, the islands served as havens for those 

looking to avoid the law of the mainland. One particularly infamous pirate Edward 

Teach, or “Blackbeard” used the Outer Banks as his base of operation while he pillaged 

trading vessels.  Blackbeard was such a hinderance on the area that his death marked the 

end of the golden age of piracy and allowed for the continued settlement of the Outer 

Banks (Stick, 2015). 

The islands continued to be somewhat isolated for the next century. The fishing 

industry was viable for those who lived on the islands but the difficulty of transporting 

goods back to the mainland meant that most of the catch remained on the islands. This 

created a very self-sustained economy where goods produced by the islands were used on 

the islands. The island economies were so water-tight that the addition of just two visitors 

by the names Wilbur and Orville Wright massively disrupted one island’s economy 

(Wright, McFarland, Chanute, & Wright, 1953).  These brothers would forever change 

the Outer Banks after their first flight at Kitty Hawk; people began visiting the island to 

see the historic site (White, 2008). This increase is tourism lead to massive development 

on the islands, especially around Kitty Hawk. This development culminated in the 

completion of the “Wright Memorial Bridge” which finally connected the islands to the 

mainland increasing ease of access for would-be tourists (“Wright Memorial Bridge,” 

1932). Today more than 2 million people visit the Outer Banks each year (NPS, 2017). 

Unfortunately, rising seas and storms pose a threat to barrier islands. Losing barrier 
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islands would mean the loss of these historic places as well as damage to important 

natural environments. 

It is not just the Outer Banks that are in danger, all over the world climate change 

is intensifying the dangers barrier islands face. RSL rise can drown barrier islands, which 

are rarely more than a few meters above sea level. Along with RSL rise, the frequency of 

tropical storms is increasing (Emanuel, 2013) and wave power has been increasing in 

recent years (Losada, Reguero, Losada, & Méndez, 2019). These factors make it possible 

for water to overtop barrier islands. Once that happens overwash can occur where the 

overtopping water transports sediment from the ocean side of the island to the lagoon 

side. Overwash is believed to be the mechanism by which barrier islands can move 

upslope to avoid drowning (Leatherman, 1979; Lorenzo-Trueba & Ashton, 2010; Moore, 

List, Williams, & Stolper, 2010).   

Studying barrier island behavior in the field is challenging because of the long 

timescales on which the islands evolve. Field barriers are stable at current RSL rise rates, 

and storm events are unpredictable. Physical experiments are valuable because they allow 

us to study barrier island processes in a controlled environment and at an accelerated 

pace. 

Barrier islands are often found along the fringes of wave-dominated deltas. The 

deltas provide the necessary sand and the wave climate transports that sand. Some 

examples of deltas with barrier islands are the Danube, Po, and Selenga river deltas. We 

attempted to create experimental wave dominated deltas to form barrier islands in the lab.  
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Chapter 2 of this thesis outlines the methodology and results of these physical 

experiments. These experiments include 4 separate runs where delta slope and RSL rise 

rate were varied. We collected overhead images and topography from a laser scanner and 

these were analyzed to determine how barrier islands respond to RSL rise. Chapter 3 is a 

summary of the results as well as possible future work inspired by this project.  

  



 

5 

 

Complex retreat behavior in experimental barrier 

island response to base level rise 

 
Synopsis 

 

Barrier islands act as natural barriers between the ocean and the mainland. These 

islands create protected, low energy environments behind them that are important 

ecological and economic hubs. Barrier islands are naturally low-laying features and are 

susceptible to drowning from sea level rise. However, previous work suggests that barrier 

islands can retreat upslope to keep up with sea level rise and maintain their subaerial 

extent. To explore this idea, we performed physical experiments where barrier islands 

were subjected to a constant relative sea level rise (RSL) and constant wave environment. 

We tracked the islands through time with overhead images and periodic laser elevation 

scans. Time series of island location show that the islands did not retreat at constant rates 

through the transgression. Rather, overall long-term retreat occurred through a “stick-

slip” motion comprising stationary intervals alternating with backward steps. The source 

of this complex behavior is a cycling between two morphologies: one where an island has 

a developed ridge and another where no ridge is present. Sea level rise allows waves to 

overtop the island and erode the ridge that once kept the waves at bay. That sediment is 

deposited behind the island, moving the barrier landward. Waves continue to push 

sediment back towards the mainland until the island becomes too wide for waves to carry 

sediment all the way across the island. This begins a process of backfilling the overwash 

fan, eventually creating a new ridge. These simple experiments support previous 

2 



 

6 

 

theoretical suggestions that periodic overwash is a key part of a barrier island’s behavior 

during a transgression, and that this can lead to punctuated retreat even when RSL rise is 

steady. 

1 Introduction 

Barrier islands are low-lying, shore-parallel features found along 10% of the 

world’s oceanic coastlines (Stutz & Pilkey, 2011). These islands are critical parts of the 

coastal systems where they are present; they create interior lagoons and wetlands, 

sheltered from large wave, that are highly biologically productive; and they provide 

important nesting areas for many seabirds, separate from the mainland and mammal 

predators (Burger & Lesser, 1978). In addition to using them extensively for recreation 

and fishing, humans have built on and behind barrier islands because the islands offer 

protection from waves and large storm events. These low energy lagoons rely on the 

protection of the islands to maintain salinity and low wave energy. Barrier islands can 

form anywhere with sufficient sand and wave energy to transport it. Deltas often provide 

abundant sand so wave dominated deltas such as the Danube, Po, and Selenga river deltas 

form barrier islands along their shorelines. These locations are ideal for barrier island 

formation because the deltas supply the sand necessary for the islands and the waves 

collect that sand in piles along the shoreline.  

Barrier islands do not typically rise more than a few meters above mean sea level 

and thus seem susceptible to drowning from sea level rise and storm events. The loss of 
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barrier islands due to rising relative sea level (RSL) would be catastrophic on many 

coastlines, both from the natural-environment and human perspectives.  

Climate change is dangerous to barrier islands in a variety of ways; sea level rise 

has the possibility to drown barrier islands, the frequency of tropical storms is increasing 

(Emanuel, 2013), threatening to destroy barrier islands, and the overall power of waves 

has been increasing in recent times (Losada et al., 2019). As water levels rise and allow 

waves to overtop these islands, a process called overwash can occur in which sediment is 

transported from the shoreface of the island to the lagoon. This process moves the overall 

center of mass of the island landward and potentially allows the barrier to move upslope 

to prevent drowning.  

Studying barrier island behavior in the field is challenging because of the long 

timescales on which the islands evolve. At current rates of sea level rise, any tendency to 

drown is hard to distinguish from natural variability, and storm events are unpredictable 

in frequency and intensity. At the start of Holocene time, barrier islands in North 

America and Europe were migrating landward but as the rate of RSL rise decreased in the 

last few thousand years, the barrier islands slowed their retreat or even stabilized (Beets 

& Van Der Spek, 2000; Leatherman, 1983; Stapor et al., 1991). To provide additional 

insight, here we report results from physical experiments that allow us to study the 

equivalent of many years of sea level rise effects in a reasonable amount of time. The 

experimental barriers were supplied with sediment via a delta. 
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Previous studies of barrier island systems and their response to sea level rise have 

ranged from field observations to numerical modeling (Houser, 2012; Leatherman, 1979; 

Lorenzo-Trueba & Ashton, 2010; Moore et al., 2010; Swift, 1975). Many of these studies 

found that overwash is the mechanism by which barriers retreat inland. Some studies use 

barrier island deposits to understand past RSL rise rates, storm climates, or sediment 

budgets (Ciarletta, Shawler, Tenebruso, Hein, & Lorenzo‐Trueba, 2019; Donnelly & 

Woodruff, 2007; Sanders & Kumar, 1975; J. Shaw, You, Mohrig, & Kocurek, 2014). We 

were especially interested in investigating the finding of Lorenzo-Trueba and Ashton that 

barrier islands can retreat at a non-constant rate under a constant sea level rise rate. 

2 Methods 

2.1 Experimental Set-up 

We performed a series of four experiments in a delta basin at Saint Anthony Falls 

Laboratory at the University of Minnesota. The delta basin is an experimental tank used 

to create river deltas while precisely controlling base level, river water and sediment 

supply, and wave climate. The tank itself is a 5-meter by 5-meter watertight basin with a 

depth of 0.5 meters (Figure 1).  

We fed a mix of water and sediment into one corner of the basin at controlled 

rates to build a quarter-circle delta. The sediment was a commercial walnut-shell sand, 

whose reduced density allows for lower delta-plain slopes and easier transport by 

laboratory-scale waves than quartz sand. The sediment has a specific gravity of 1.35 and 

was unimodal in size with a mean diameter of 0.5mm. The water (base) level in the tank 



 

9 

 

was measured every 5 seconds to a precision of 0.1 mm and could be increased or 

decreased during the experiment with a remotely controlled weir. Deltas were built with a 

constant water and sediment supply which created a constant slope along the delta top. 

The deltas were grown initially without the influence of waves to allow the largest 

possible starting radius.  We introduced waves only after the delta was large enough to 

absorb a modest wave-induced transgression. 

We created waves with a conventional paddle-type wave maker. The wave maker 

was in the basin corner across from the delta source and comprises a floating platform (to 

Figure 1: Schematic of the delta basin. Dimensions are 4.65m by 5.07m. Basin includes a corner flow diffuser 

where a water and sediment mixture are introduced as well as an ocean level sensor to keep track of the water 

level in the tank. The wave maker floats on the surface of the water near the opposite corner from the flow 

diffuser. 
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allow the platform to follow changing base level), and an arm that oscillates to create 

monochromatic waves in the tank. Wave amplitude and period are adjustable over a wide 

range. The main control on wave energy delivered to the shoreline was intermittency of 

operation of the wave-maker rather than wave amplitude. The walls of the tank were 

lined with fiber batting to damp reflections. 

2.2 Data Collection 

We took overhead photos of the deposit every 10 to 30 seconds depending on the 

stage of the experiment.  The camera used a wide-angle lens to capture the whole delta 

surface; as a result the lens distorted the images so we orthorectified the photos making 

each pixel in the image equal to one square millimeter of the deposit. One main use of the 

overhead photos was to allow us to separate the dry and wet parts of the surface. We 

added blue dye to the water which nicely contrasts with the brown walnut shells and 

makes it easier to find the interface between the land and water. 

We also measured topography scans with a programmable laser scanner. The 

scanner provides elevation maps with 1 mm horizontal resolution and sub-mm vertical 

resolution. Topography scans were taken much less frequently (one per hour of 

experiment time) than overhead photos because the experiment had to be paused to 

perform a scan. 

2.3 Experimental Runs 

We created four separate deltas, varying delta topset slope and base level rise rate. To 

control the topset slope, the sediment supply was changed to increase or decrease the 
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ratio of volumetric sediment to water discharges, Qs/Qw (Table 1). This meant that the 

slope was not explicitly controlled, rather it was a natural result of the river sediment  

concentration. Slope and sea level rise rate were chosen because they control the rate at  

which the islands move in response to base level rise. For example, for a given amount of 

sea level rise, an island moving up a shallow slope has to move farther laterally than an 

island moving up a steep slope, to avoid being drowned by the rising water. The rate at 

which the sea level rises determines how fast the island must retreat up the slope. 

2.4 Transgression 

The introduction of waves to the delta eroded the shoreface and deposited some of 

the sediment on the beach, creating a shore-parallel sandbar (Fig. 2). The low area 

between the delta and this bar became a lagoon as it filled with river water from the land 

and basin water from the overtopping waves. Areas near the river mouths could not build 

up a bar as the river eroded bars as soon as they began forming. Once the transgression 

began, the river mouths were pushed back, and could no longer erode the bars formed by 

the waves so that a more laterally complete barrier island was formed. This method of 

Run Name Qw (L/s) Qs (L/s) Qw/Qs Slope Sea Level Rise Rate (mm/hr) 

Shallow-Fast 0.1 0.001 100 0.008 5 

Shallow-Slow 0.1 0.001 100 0.009 2.5 

Steep-Fast 0.1 0.002 50 0.017 5 

Steep-Slow 0.05 0.001 50 0.014 2.5 

Table 1: Input parameters for the four runs along with the resulting delta top slope. 
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formation follows the theory of barrier island formation first proposed by Hoyt (1967). 

Hence one primary observation is that transgression tends to create more continuous 

barriers and wider lagoons than the same wave and river conditions would with constant 

RSL. The idea that delta morphology relies not just on relative river, wave, and tide 

power but also on whether it is regressing or transgressing has been suggested before 

(Boyd, Dalrymple, & Zaitlin, 1992).  As the RSL rose, the waves eventually overtopped 

the barrier islands, beginning overwash and moving the island up the delta slope.  

As mentioned above, we controlled total wave energy delivery to the coast by 

varying wave intermittency. We ran the wave maker in thirty second to one-minute 

intervals that totaled six minutes per hour, for an intermittency of 10%. Apart from 

allowing for more precise control of wave input, this allowed us to take overhead photos 

between wave intervals so that the water level at the shore was not affected by the waves. 

We used these photos to track the location of both the basinward shoreline and the 

landward shorelines of the barrier islands over the course of the transgression. To track 

these two points, we drew a transect from the river source out towards the open water at a 

specified angle; the two barrier-edge points were defined by the places where the two 

shorelines intersected this transect (Fig. 2).  

After a certain amount of sea level rise, the delta reaches its new equilibrium size, 

in which the product of the topset area and RSL rise rate balances the sediment input, and 

the rivers begin to erode the barrier islands. This ends the migration of the island. For 

each run we chose the transect angle to give us the longest continuous island migration, 
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or the section of island that is eroded by the rivers last. The points were manually picked 

from overhead images taken just after a wave interval. We calculated the distance from 

the river source to each of these two points. The difference between their distances gave 

us the width of the island and the midpoint of the two points was called the island middle 

and was used as the ‘true’ location of the island. To remove noise we passed the time 

series of these location points through a low-pass filter calibrated to eliminate signals 

with a period shorter than 30 min.  

An additional point of interest is the location of the delta shoreline as it retreats 

behind the barriers. To define these complex shorelines we use the Opening-Angle 

Method (OAM) from J. B. Shaw et al., (2008). The OAM uses a binary land-water image 

as its input. To retrieve the shoreline of only the delta and not the barrier islands, the 

islands were manually erased from the land-water images. The method takes the binary 

Figure 2: Overhead photo showing a typical experimental barrier and the method used to find the ocean and 

lagoon shorelines. Example transects for 20°, 45°, and 70° are plotted. The island middle is defined as the 

midpoint between the two shorelines. 
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image and defines a convex hull around the land points to divide the image into a delta 

portion and an open-water portion. For each point in the delta portion, OAM finds the 

number of swath angles that extend into the open-water. We used the threshold angle of 

45° for all images, which defines the shoreline as the set of land-water interface points 

(water points where the interface is not available) with more than 45° of view to open 

water. An example of the output from this method is shown in Figure 3.  The resulting 

Figure 3 Example of a shoreline defined by the Opening-Angle Method with a threshold value of 45°. 
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shoreline was used to find the area of the delta top and the delta radius was defined as the 

radius of a quarter-circle with an equivalent area.  

3 Results 

3.1 Barrier Retreat 

The experiments successfully created barrier islands and the islands moved upslope 

as the transgression progressed. Figure 4 shows the position of the island middle 

throughout the transgression of the four experiment runs. The non-dimensional distance 

(D*) from the delta source is defined as: 

𝐷∗ =
𝐷

�̅�
      (1) 

Where D is the measured distance from the delta source and �̅� is the average barrier 

island width for that experiment run. Non-dimensional time t* is defined as: 

𝑡∗ = 𝑡 ∗
�̇�

𝐴
      (2) 

Figure 4: Time series of island midpoint locations for each of the runs (solid), with a 30-min low-pass filter 

(dashed). 
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Where t is time, �̇� is the base level rise rate, and A is the open-water wave amplitude.  

The graphs show the same overall trend of ongoing transgression due to the rising 

RSL. The overall retreat rate decreases with time as the deltas approach their new 

equilibrium size under constant sea level rise rate. However, the transgression is clearly 

not steady, and includes intervals of transient regression or steps. Once an island moves 

upslope, it remains in place for a period of time or even moves back downslope before 

once again moving upslope. The overall variability in shoreline migration rate clearly 

changes between the runs. 

As the barrier island retreats, the delta shoreline retreats behind it. As mentioned 

previously, the barrier island begins as a ridge along the delta edge and becomes detached 

from the delta as the low area behind the island is flooded (Hoyt, 1967). Figure 5 is the 

plot of the two lagoon shorelines with time along with the simple retreat path. Simple 

retreat is the path a delta shoreline takes as it approaches its new equilibrium size. The 

path is found from solving the mass-balance equation: 

𝑑𝑅

𝑑𝑡
=

�̇�

𝑆
−

4𝑄𝑠

𝑆𝑅2𝜋
    (3) 

Where R is the delta radius, S is the delta-plain slope, �̇� is the base level rise rate, and 𝑄𝑠 

is the sediment supply. The �̇� term is the amount of transgression given an amount of 

RSL rise in the absence of deposition, and the second term is the progradation caused by 

vertical accretion of the sediment supply on a quarter circle delta-plain of a given radius. 

The difference between these two terms is the is the total change is shoreline location 
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caused by the balance between these two effects. The result is that when a delta radius is 

much larger than its equilibrium size, the amount of change in shoreline location is large; 

as transgression continues, the delta approaches its equilibrium size asymptotically. Note 

also that the mass balance in equation (3) assumes that all delivered sediment is retained 

behind the shoreline, i.e. no loss to the offshore region.  

The plots show that the two shorelines begin close together and separate 

throughout the run. The simple retreat path for the Steep-Slow case shows that the delta 

shoreline should prograde instead of transgressing, but the measured shoreline shows 

retreat. This could be explained by sediment washing through the system and not being 

deposited on the delta which would effectively reduce the sediment supply to the delta. 

We calculated island migration velocities as the first derivative of the low-pass 

filtered location time series. These velocities are plotted in Figure 6 along with the 

Figure 5: Time series of the two lagoon shores through time with the simple retreat path. Non-dimensional 

variables follow equations 1 and 2. 
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measured mean velocity, the simple retreat velocity from equation (3), and the geometric 

drowning velocity (the transgression velocity from equation (3) with no sediment 

supply). Non-dimensional velocities (V*) are defined as: 

𝑉∗ =
𝑉

�̇�
     (5) 

With V as the measured velocity and �̇� the base level rise rate.  

All the measured island retreat rates are closer to the simple retreat rate than the 

geometric drowning rate. Island width was non-constant as well over the course of the 

transgression (figure 7). Non-dimensional width (W*) is defined as: 

𝑊∗ =
𝑊𝑆

𝐴
     (6) 

Figure 6: Plots of the velocity of the islands through time. Velocities were found by taking the first derivative of the 

low pass filtered location time series. Also plotted are the simple retreat velocity, the geometric drowning velocity, 

and the mean velocity. 
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Where W is the measured barrier island width, S is the delta-plain slope, and A is the 

open-water wave amplitude.  

4 Discussion 

4.1 Island Retreat Rates 

The location data for the islands moving over a delta top show clearly that the islands do 

not move at a constant velocity. The overall trend is a transgression, as expected. There 

are intervals where the island location moves opposite to this trend for short periods of 

time. This behavior can be explained by the way islands are tracked; the island location is 

the midpoint between the ocean shore and the lagoon shore. The barrier island has 

different slopes near these two points which means that for a single increment of sea level 

rise, the two shores can retreat different amounts. If the lagoon beach has a shallower 

slope than the ocean beach, the lagoon beach will shrink at a faster rate than the ocean 

Figure 7: Time series of island width for each run (solid) with a 30-min low pass filter (dashed). 
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side if they are both experiencing the same sea level rise. This causes the midpoint of the 

two shorelines to move oceanward (Fig. 8). Figure 9 shows this behavior in the location 

time series of the two shorelines, instead of their midpoint. These time series show that 

the landward shore is responsible for most of the basinward movement. Both time series 

show non-constant movement, but the variability is much more pronounced in the 

landward shoreline.   

Figure 8: Schematic showing how movement in the "wrong" direction is possible. a) A wide island after 

overwash has taken place and backfilling has formed a new ridge. b) After an amount of sea level rise the two 

shorelines moved different amounts, moving the island middle. 
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This movement in the  “wrong” direction is always followed by a step back in the 

expected direction, overall transgression. It is also typically associated with a widening of 

the island (Fig. 7). This means that the periods of highest transgression velocity of the 

island should correlate with a widening of the barrier. To test this idea, we attempted to 

use the island width to predict the velocity (VW) using a simple equation: 

 𝑉𝑊 =
𝑑𝑊

𝑑𝑡
(
𝑊

𝐴�̅�
)    (7) 

Where W is the 30-min lowpass filtered island width, t is time, �̅� is the average island 

width for that run, and A is the open-water wave amplitude. Fluctuations in the location 

of the landward shoreline affect both the width and island center velocity. We will try to 

predict the basinward shoreline velocity because it is not obviously affected by changes 

in width, as the landward shoreline and island middle are. The predictions are plotted 

against the measured values in Figure 10; the generally good correlation suggests a 

Figure 6: Time series of the basinward and landward shorelines along with a 30-min low pass filter. 
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significant relation between island width and migration rate, which we explore further in 

the next section.  

4.2 Variable Retreat Mechanism 

Having established a connection between island width and retreat rate, we next 

use the topography scans understand how island height changes might figure into retreat 

dynamics. Because the time resolution of the topography scans is much lower than the 

overhead photos, no scan was taken exactly when the measured width of the island was at 

its maximum or minimum. Fortunately, the variation in width is not just time dependent; 

it varies over space as well. In each scan there are parts of the islands that are narrower or 

wider than average. To compare the heights of the wide and narrow islands, 

representative parts of the island were chosen from the scans. These representative areas 

were chosen based on their similarity to the maximum and minimum widths measured 

along the transect for the time series.  

Figure 7: Time series of the basinward shoreline velocity and the prediction from the low pass filtered island. 

width time series. 
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These profiles show that variation in island width is related to variation in island height 

(Fig. 11).  

The narrow parts of the island have a tall ridge that is absent in the wider sections. 

The ridge of the island featured in Figure 11 is 5.5mm tall, 2mm taller than the open-

water wave height. Waves exchange energy between kinetic and potential as they 

propagate and according to the equipartition theorem, those two energies are equivalent. 

As a wave approaches the shoreline, it is slowed and some of its kinetic energy is 

Figure 11: Two cross sections across a thin and wide portion of the island. In cross section A the island width is 

low but the island height is large and in cross section B, the opposite is true, the width is large but the height is 

small. 
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transferred to potential energy, increasing the wave height. The limit of this is that the 

wave could reach twice its deep-water height if (unrealistically) it transferred all its 

kinetic energy without loss. While we could not measure the exact heights of breaking 

waves in these experiments, it is likely that the wave lost significant energy during 

shoaling, meaning that the breaking wave did not approach twice the height of the deep-

water wave. This is reflected in the fact that the island ridge is between the height of the 

deep-water wave and twice this value. 

Matching these profiles with the relationship between island width and velocity 

means that the islands move landward during a transition from having a ridge to not 

having a ridge. One explanation of that behavior is overwash. If waves overtop the island 

they can erode the ridge and then deposit that sediment behind the island. To check this 

idea, close-up photos and videos were taken of the islands while waves were breaking on 

them. These photos and videos reveal that overwash is the main driver of island retreat 

agreeing with previous field and numerical studies (Leatherman, 1979; Lorenzo-Trueba 

& Ashton, 2010; Moore et al., 2010). Locally, the islands go through a cycle of having a 

ridge, overwash eroding that ridge, and then the ridge forming again. 

These transitions are governed by a tendency for larger waves to erode sediment 

and smaller waves to deposit. The waves in the open water of the experiment are all the 

same size, but how they interact with the barrier island changes depending on what stage 

of the morphology cycle the island is in.  An island with a tall ridge can block much of a 

wave when it breaks but as the sea level rises, the ridge becomes relatively smaller and 
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more of the wave can overtop the island. The relative size of the wave with respect to the 

island keeps increasing as the RSL rises until the waves can overtop the island 

sufficiently to begin to erode the ridge. These relatively larger waves carry that eroded 

sediment to the back of the island, all the while losing energy to friction. As they lose 

energy and spread, the waves become smaller and can no longer carry the eroded 

sediment; the wave deposits sediment behind the island. This process removes the ridge 

and widens the island, which matches the transition seen in the island profiles.  

Figure 12 shows the process of a relatively small wave becoming larger as the sea level 

increases.  

Figure 12: a) Snapshot of the wave environment soon after a ridge is formed where the ridge and waves are on 

the same scale. The waves cannot push enough water over the top of the ridge to surpass the shear stress needed 

to erode sediment. b) The same ridge after some amount of sea level rise. Now the wave are larger compared to 

the island and able to push enough water over the top of the island to surpass the critical shear stress and erode 

sediment. 
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With sea level increasing steadily, each wave can push more water over the crest 

of the ridge than the last one. Eventually, one wave pushes enough water over the ridge 

that the critical shear stress is surpassed, and some sediment is picked up by the pulse of 

water and carried to the back of the island. As the next wave crashes against the ridge, it 

has an easier time sending water over the island because the previous wave shortened the 

ridge by eroding it. This creates a positive feedback loop where each subsequent wave 

has an easier time eroding the ridge than the previous wave.  

Eventually, the waves no longer cross the entire width of the island, allowing 

deposition and ridge growth to begin again. Figure 13 shows this process in action. An 

open channel that allows waves to travel through it eventually becomes so long that 

waves can no longer transport sediment effectively all the way through the channel. The 

wave drops its sediment at the end of the channel, blocking future pulses of water from 

continuing through. Each subsequent wave drops it sediment, eventually closing the 

once-open channel. From the experiments, the amount of time needed for this process is 

variable; some channels filled quickly after the initial “plug” was deposited, while other 

channels branched around the deposited sediment, opening new paths to the lagoon. 

Figure 13: Progression of an overwash channel to a ridge. All three photos are taken at the time of maximum 

swash of a wave. a) An open overwash channel that is approaching the maximum length that the waves can 

transport sediment across. b) The same overwash channel once sediment was deposited in the outlet, blocking 

future waves. c) The former overwash channel after the majority of it has been filled in.  
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This cycling was seen in all four experiments, but the details changed slightly 

between runs. We can look at the frequency spectrum of the location time series to better 

understand how the timing of the overwash cycle changes between experiments. We 

would expect the experiments with a slower sea level rise rate to have longer period 

cycles as the rising sea sets the timing for the waves to overtop the islands and move 

them.  

Figure 14 shows standard squared-FFT spectra of island location for the four 

experimental runs, with the significant peaks (p = 0.05) labeled with their period in t* 

units. We used surrogate data testing to find the significance of peaks in the spectra. 

Surrogate data testing is a Monte Carlo method where we create multiple artificial time 

series by randomly shuffling our input time series. We then find the mean and standard 

deviation of the spectra of the artificial time series to determine the confidence interval. 

Figure 14: Squared-FFT frequency spectra of the four location time series with the 95% confidence interval. 

Significant peaks are labeled with their corresponding periods. 
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To further illustrate the significance of the peaks in the observed data, Figure 15 shows 

the probability density functions (PDF) of both the observed spectra and the shuffled time 

series spectra. While both curves are right skewed, the observed PDFs show a second 

peak at higher values that is absent from the shuffled time series case.  

By looking at the location time series for reference, we estimate that the period of 

the process we are interested in is near 1 to 2 t* units. For the high sea level rise rate 

experiments, there are peaks at periods of 1.19 and 1.34 t* units and for the low sea level 

rise rates there are peaks at 0.82 and 0.83 t* units. Our method of using base level rise 

rate to non-dimensionalize time did not align the peaks of all the runs. Between the low 

Figure 15: Probability density functions of the observed spectra and the shuffled time series spectra. Both curves 

are right skewed, but the observed PDFs show a second peak at higher values. 
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base level rise rate and the high rise rate experiments, the rise rate was doubled and if the 

cycle period also doubled, the peaks would align in non-dimensional space.  

This did not occur and can be explained by looking at what specifically sea level 

rise rate controls. The overwash cycle can be divided into two halves; one where waves 

overtop the island to begin overwash and another where the overwash fan is back-filled 

once it becomes too long.  These two parts of the cycle are controlled by different 

mechanisms in these experiments; only the amount of time between ridge formation and 

overwash is dependent on the rate of sea level rise. Once an overwash fan is formed, the 

rate of sea level rise has little effect on how fast it is filled in. In our case, when we 

doubled the sea level rise rate, we approximately halved the time it takes for one only 

part of the cycle. 

5 Conclusions 

Using physical experiments, we studied barrier island behavior at high time resolution 

under controlled, steady RSL rise, focusing on time series of barrier-island location. The 

main findings are: 

1. Experimental barrier islands do not retreat at a constant rate under constant sea 

level rise and a constant wave environment. This autogenic stepping supports the 

idea of discontinuous retreat suggested by Lorenzo-Trueba and Ashton, (2010). 

2. The non-constant retreat rate is controlled by a cycling of morphologies between a 

ridged island and a non-ridged island. Overwash that erodes the ridge is the 
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mechanism for upslope retreat; then back filling of the overwash fan creates a 

new ridge and the cycle restarts.  

3. Increased sea level rise rates increase the frequency of retreat events (steps). 

Doubling the rise rate does not double the frequency of retreat events because the 

rise rate controls only the overwash frequency, not the rate of ridge growth.  
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Conclusion          
The physical experiments presented here shows how complex retreat behavior 

and can arise from simple environmental settings. The main findings of this thesis are: 

 

1. Experimental barrier islands do not retreat at a constant rate under constant sea 

level rise and a constant wave environment. This autogenic stepping supports the 

idea of discontinuous retreat suggested by Lorenzo-Trueba and Ashton, (2010). 

2. The non-constant retreat rate is controlled by a cycling of morphologies between a 

ridged island and a non-ridged island. Overwash that erodes the ridge is the 

mechanism for upslope retreat; then back filling of the overwash fan creates a 

new ridge and the cycle restarts.  

3. Increased sea level rise rates increase the frequency of retreat events (steps). 

Doubling the rise rate does not double the frequency of retreat events because the 

rise rate controls only the overwash frequency, not the rate of ridge growth.  

 

Simple experiments can reveal a lot about a system. Overwash is a key aspect to 

an island’s lifecycle; if an island is not able to retreat upslope it will likely drown to RSL 

rise. The addition of tides and storm events like we see in the field would make these 

results more analogous to islands in the field, but the simplicity of these experiments 

shows that this behavior is an intrinsic aspect to barrier island systems.  

 

3 
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Future Work 

While this work successfully produced barrier islands and recorded their 

behavior, much is still unknown about these systems. Throughout these runs, overwash 

was one of the dominant behaviors that islands exhibited. Understanding the process of 

overwash in more detail will help us apply this work more accurately in the field. For 

example, what controls the width of an overwash fan? There were times in these 

experiments where entire islands transitioned to overwash and other times where just a 

small part would erode into an overwash fan. When islands in the field are hit by storm 

events will the entire island experience overwash or just a small section?  

Predicting where overwash fans will form in the future would help with barrier 

island restoration and protecting human infrastructure. It may be possible to better predict 

where these fans will be created by treating them as compensational; where new 

overwash fans avoid areas with previous fans. This idea is expanded on in the 

appendices. 

Looking to the field, there is a new variable that could have massive impacts on 

the behavior of islands: tides. Previous work done by Lentsch, Finotello, and Paola, 

(2018) found that subjecting an experimental delta to tides increases channel stability by 

flushing out sediments accumulating in channels. The inclusion of tides could change the 

overwash cycle completely as tides could keep overwash channels open for longer by 

removing the “plug” of sediment that stops waves from moving completely through the 

channel. We discovered that the rate of sea level rise is responsible for the frequency of 
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one half of the overwash cycle, overwash initiation and ridge erosion. It is possible that 

tides are partly responsible for the frequency of ridge formation where stronger tides 

inhibit ridge formation and increase the period of the cycle.  
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Appendix A        
 

Compensational Overwash Fans 

A simple observation from these experiments is that entire islands were able to 

retreat inland to keep up with sea level rise. What is interesting is that a relatively small 

feature, an overwash fan, can lead to transport of the entire length of an island up the 

Figure 8: a) Section of island with a ridge along the majority of it. The circled section in the lower left has been 

submerged while the upper right part of the island is missing these submerged features. This suggests that the 

circled portion of the island underwent overwash more recently than the upper part. b) the same portion of 

island after 30 seconds of waves. The lower left portion is largely unchanged but the upper right section has 

transitioned from ridge-bearing to overwash. c) An elevation map of the island seen in “a.” The colorbar is 

modified to focus on only the ridge height along the island. The circled portion has a higher ridge than the upper 

right section of the island. 
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delta slope. The overwash fans can do this because they are compensational; new 

overwash fans tend to avoid the locations of recent previous fans. Figure 15 gives an 

example of overwash favoring areas not occupied by recent prior overwash events. 

For example, an overhead photo (Figure 15) taken just after a topography scan, 

shows an island with a ridge along most of it. In the bottom left part of the island there 

are visible submerged overwash fans; those fans are missing elsewhere in the island. 

Matching up the topography scan with the overhead photo shows that the area with the 

submerged fans has a higher ridge. An image from just after the next set of waves reveals 

that the area with no submerged overwash fans and a lower ridge transitioned to an 

overwash fan. This process eventually allows entire islands to retreat more or less 

coherently.  

Time Series Data 

 Below are four tables, each containing the data used to create the time series plots 

(Figs. 4, 5, 6, 7, 9).  
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Run: Shallow Fast 

Time 

Landward 
Shoreline 
Distance 

Basinward 
Shoreline 
Distance 

Island 
Middle 
Distance 

Island 
Width 

Island 
Middle 
Velocity Delta Radius 

(HH:MM:SS) (mm) (mm) (mm) (mm) (mm/min) (mm) 

0:00:00 1328.02 1350.63 1339.32 22.60 NaN 1332.19 

0:03:20 1308.60 1415.25 1361.93 106.65 4.89 1337.43 

0:06:40 1282.81 1399.02 1340.91 116.21 3.23 1351.01 

0:10:00 1208.31 1394.24 1301.28 185.93 2.21 1326.33 

0:13:20 1205.13 1415.25 1310.19 210.13 1.84 1328.84 

0:16:40 1203.54 1397.43 1300.48 193.89 1.68 1352.08 

0:20:00 1213.09 1381.51 1297.30 168.42 1.22 1327.89 

0:23:20 1221.37 1394.24 1307.80 172.88 0.26 1346.96 

0:26:40 1209.91 1402.52 1306.21 192.61 -1.00 1311.68 

0:30:00 1203.54 1402.52 1303.03 198.98 -2.08 1309.59 

0:33:20 1236.01 1400.93 1318.47 164.92 -2.58 1325.00 

0:36:40 1257.02 1407.30 1332.16 150.27 -2.39 1315.78 

0:40:00 NaN NaN NaN NaN NaN 1461.21 

0:43:20 1263.39 1399.02 1331.20 135.63 NaN 1281.55 

0:46:40 1279.63 1397.43 1338.53 117.80 -0.43 1267.25 

0:50:00 NaN NaN NaN NaN NaN 1396.17 

0:53:20 NaN NaN NaN NaN NaN 1356.76 

0:56:40 NaN NaN NaN NaN NaN 1371.11 

1:00:00 1295.87 1383.10 1339.48 87.23 NaN 1226.69 

1:03:20 1297.46 1394.24 1345.85 96.78 -0.51 1173.17 

1:06:40 1299.05 1389.47 1344.26 90.42 -0.47 1125.32 

1:10:00 1295.55 1391.06 1343.30 95.51 -0.30 1102.61 

1:13:20 1305.42 1387.87 1346.65 82.46 -0.01 1138.38 

1:16:40 1292.36 1386.28 1339.32 93.92 0.35 1141.10 

1:20:00 1305.42 1386.28 1345.85 80.87 0.68 1166.10 

1:23:20 1303.82 1386.28 1345.05 82.46 0.90 1247.37 

1:26:40 1286.00 1381.51 1333.75 95.51 0.95 1066.82 

1:30:00 1271.35 1386.28 1328.82 114.93 0.85 1213.20 

1:33:20 1268.17 1381.51 1324.84 113.34 0.67 1167.06 

1:36:40 1276.44 1383.10 1329.77 106.65 0.48 1189.03 

1:40:00 1300.64 1389.47 1345.05 88.83 0.22 1138.38 

1:43:20 1272.94 1374.82 1323.88 101.88 -0.17 1193.55 

1:46:40 1260.21 1374.82 1317.51 114.61 -0.74 1156.93 
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1:50:00 1303.82 1386.28 1345.05 82.46 -1.39 1197.72 

1:53:20 1302.23 1386.28 1344.26 84.05 -1.81 1207.87 

1:56:40 1299.05 1392.65 1345.85 93.60 -1.71 1198.64 

2:00:00 NaN NaN NaN NaN NaN 1147.89 

2:03:20 1276.98 1425.38 1351.18 148.40 NaN 1184.32 

2:06:40 1268.84 1418.22 1343.53 149.38 1.42 1213.29 

2:10:00 1267.54 1418.22 1342.88 150.68 1.95 1202.63 

2:13:20 1261.68 1410.09 1335.89 148.40 1.65 1203.69 

2:16:40 1259.41 1400.32 1329.86 140.92 0.87 1143.57 

2:20:00 1257.13 1392.19 1324.66 135.06 0.33 1224.41 

2:23:20 1254.52 1389.91 1322.22 135.38 0.66 1176.27 

2:26:40 1255.83 1387.31 1321.57 131.48 1.86 1124.18 

2:30:00 1250.94 1379.17 1315.06 128.22 3.11 1158.77 

2:33:20 1232.07 1376.89 1304.48 144.82 3.20 1190.05 

2:36:40 1247.36 1368.43 1307.90 121.06 1.35 1191.28 

2:40:00 1195.29 1370.71 1283.00 175.41 -2.12 1161.23 

2:43:20 1227.19 1368.43 1297.81 141.24 -5.74 1222.60 

2:46:40 1381.45 1443.28 1412.36 61.83 -7.57 1116.92 

2:50:00 1223.93 1367.13 1295.53 143.19 -6.34 1252.25 

2:53:20 1366.15 1439.70 1402.93 73.55 -2.30 1219.46 

2:56:40 1320.91 1440.68 1380.80 119.76 2.80 1157.39 

3:00:00 1298.46 1431.24 1364.85 132.78 6.72 1095.11 

3:03:20 1224.91 1344.67 1284.79 119.76 7.96 1130.35 

3:06:40 1221.33 1346.95 1284.14 125.62 6.59 1154.05 

3:10:00 1224.91 1343.37 1284.14 118.46 4.02 1125.12 

3:13:20 1228.49 1335.23 1281.86 106.75 2.06 1116.48 

3:16:40 1230.77 1331.65 1281.21 100.89 1.69 1071.03 

3:20:00 1224.91 1320.91 1272.91 96.01 2.62 1106.81 

3:23:20 1138.34 1330.35 1234.35 192.01 3.68 1076.75 

3:26:40 1131.18 1322.22 1226.70 191.04 3.70 1053.48 

3:30:00 1127.60 1323.52 1225.56 195.92 2.35 1105.28 

3:33:20 1137.37 1316.36 1226.86 178.99 0.19 1092.74 

3:36:40 1171.54 1312.78 1242.16 141.24 -1.86 1021.27 

3:40:00 1187.16 1309.20 1248.18 122.04 -3.10 970.82 

3:43:20 1211.89 1300.74 1256.31 88.85 -3.42 1092.66 

3:46:40 1204.73 1356.71 1280.72 151.98 -3.09 981.48 

3:50:00 1208.31 1297.16 1252.73 88.85 -2.31 1027.96 

3:53:20 1235.65 1292.60 1264.13 56.95 -1.02 1118.26 

3:56:40 1177.39 1354.11 1265.75 176.72 0.89 1145.47 



 

42 

 

4:00:00 1219.05 1345.97 1282.51 126.92 3.28 1133.52 

4:03:20 1226.21 1357.69 1291.95 131.48 5.52 1050.83 

4:06:40 1095.71 1268.84 1182.28 173.14 6.76 1056.32 

4:10:00 1101.57 1262.99 1182.28 161.42 6.44 1002.35 

4:13:20 1113.61 1257.13 1185.37 143.52 4.63 998.09 

4:16:40 1130.21 1249.97 1190.09 119.76 2.03 986.87 

4:20:00 1125.32 1249.97 1187.65 124.64 -0.45 1011.61 

4:23:20 1128.90 1246.39 1187.65 117.48 -2.11 991.57 

4:26:40 1150.38 1245.09 1197.73 94.70 -2.70 1012.02 

4:30:00 1163.40 1246.39 1204.89 82.99 -2.32 996.50 

4:33:20 1152.66 1236.95 1194.81 84.29 -1.17 1021.78 

4:36:40 1165.68 1232.07 1198.87 66.39 0.49 1038.68 

4:40:00 1162.10 1237.93 1200.01 75.83 2.24 992.25 

4:43:20 1171.54 1233.37 1202.45 61.83 3.49 1056.93 

4:46:40 1108.73 1234.35 1171.54 125.62 3.65 1053.13 

4:50:00 1117.19 1291.30 1204.24 174.11 2.50 1004.80 

4:53:20 1038.76 1207.34 1123.05 168.58 0.49 979.81 

4:56:40 1057.63 1203.76 1130.69 146.12 -1.35 1079.29 

5:00:00 1120.77 1278.28 1199.52 157.51 -1.95 981.60 

5:03:20 1144.20 1276.98 1210.59 132.78 -0.81 986.03 

5:06:40 1123.05 1272.42 1197.73 149.38 1.63 943.75 

5:10:00 1049.50 1191.71 1120.60 142.22 4.29 1059.65 

5:13:20 1064.79 1177.39 1121.09 112.60 6.03 915.39 

5:16:40 1064.79 1164.38 1114.58 99.59 6.32 938.67 

5:20:00 1063.81 1172.84 1118.33 109.02 5.34 929.60 

5:23:20 1030.62 1166.98 1098.80 136.36 3.74 978.11 

5:26:40 987.66 1171.54 1079.60 183.88 2.18 940.64 

5:30:00 988.96 1154.94 1071.95 165.98 1.03 923.96 

5:33:20 988.96 1143.22 1066.09 154.26 0.37 911.43 

5:36:40 1006.86 1137.37 1072.11 130.50 0.11 917.77 

5:40:00 1009.14 1151.36 1080.25 142.22 0.13 885.05 

5:43:20 1010.44 1138.34 1074.39 127.90 0.24 822.89 

5:46:40 1012.72 1130.21 1071.46 117.48 0.17 914.35 

5:50:00 1006.86 1128.90 1067.88 122.04 -0.37 1044.51 

5:53:20 1051.77 1201.15 1126.46 149.38 -1.36 912.29 

5:56:40 980.83 1127.60 1054.21 146.77 -2.36 895.79 

6:00:00 985.38 1124.02 1054.70 138.64 -2.62 954.43 

6:03:20 1035.18 1206.03 1120.60 170.86 -1.56 926.78 

6:06:40 1038.76 1191.71 1115.23 152.96 0.76 1005.96 
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6:10:00 1064.79 1183.58 1124.18 118.79 3.50 862.96 

6:13:20 967.81 1102.87 1035.34 135.06 5.39 860.01 

6:16:40 964.23 1099.29 1031.76 135.06 5.49 784.80 

6:20:00 959.35 1105.15 1032.25 145.80 3.73 839.79 

6:23:20 998.40 1100.59 1049.50 102.19 0.97 875.90 

6:26:40 998.40 1107.42 1052.91 109.02 -1.52 853.30 

6:30:00 1004.26 1099.29 1051.77 95.03 -2.73 818.39 

6:33:20 997.42 1097.01 1047.22 99.59 -2.42 882.85 

6:36:40 1015.00 1093.43 1054.21 78.43 -1.14 926.35 

6:40:00 1024.44 1092.13 1058.28 67.69 0.23 910.36 

6:43:20 1032.90 1087.57 1060.24 54.67 0.99 982.22 

6:46:40 1027.04 1079.11 1053.08 52.07 0.94 914.73 

6:50:00 1047.22 1073.25 1060.24 26.04 0.40 876.72 

6:53:20 NaN NaN NaN NaN NaN 828.50 

6:56:40 966.51 1131.18 1048.84 164.67 NaN 880.28 

7:00:00 NaN NaN NaN NaN NaN 824.88 

7:03:20 959.35 1107.42 1033.39 148.08 NaN 893.63 

7:06:40 958.05 1120.77 1039.41 162.72 3.51 858.21 

7:10:00 973.67 1106.45 1040.06 132.78 4.49 823.84 

7:13:20 946.33 1022.16 984.24 75.83 4.81 822.56 

7:16:40 947.63 1015.00 981.32 67.37 4.57 855.77 

7:20:00 937.87 994.82 966.34 56.95 4.10 889.06 

7:23:20 926.15 981.80 953.98 55.65 3.69 768.92 

7:26:40 923.87 975.95 949.91 52.07 3.34 778.13 

7:30:00 914.44 983.11 948.77 68.67 2.68 769.11 

7:33:20 909.55 974.64 942.10 65.09 1.23 750.55 

7:36:40 911.83 973.67 942.75 61.83 -1.13 702.68 

7:40:00 907.28 964.23 935.75 56.95 -3.90 710.96 

7:43:20 896.54 958.05 927.29 61.51 -6.02 847.31 

7:46:40 1028.02 1066.09 1047.05 38.08 -6.41 893.48 

7:50:00 980.83 1043.64 1012.23 62.81 -4.61 942.26 

7:53:20 971.06 1037.78 1004.42 66.72 -1.16 843.60 

7:56:40 959.35 1029.32 994.33 69.97 2.61 663.07 

8:00:00 NaN NaN NaN NaN NaN 630.94 

8:03:20 NaN NaN NaN NaN NaN 664.99 

8:06:40 NaN NaN NaN NaN NaN 678.50 

8:10:00 NaN NaN NaN NaN NaN 661.20 

8:13:20 NaN NaN NaN NaN NaN 665.20 

8:16:40 NaN NaN NaN NaN NaN 689.23 
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8:20:00 NaN NaN NaN NaN NaN 725.24 

8:23:20 NaN NaN NaN NaN NaN 734.68 

8:26:40 NaN NaN NaN NaN NaN 716.19 

8:30:00 806.39 903.70 855.04 97.31 NaN 778.22 

8:33:20 786.21 884.82 835.52 98.61 2.85 846.93 

8:36:40 782.63 884.82 833.73 102.19 1.40 798.64 

8:40:00 781.66 878.64 830.15 96.98 0.68 731.96 

8:43:20 NaN NaN NaN NaN NaN 750.82 

8:46:40 799.23 869.20 834.21 69.97 NaN 692.18 

8:50:00 801.83 863.34 832.59 61.51 0.54 709.86 

8:53:20 NaN NaN NaN NaN NaN 715.65 

8:56:40 NaN NaN NaN NaN NaN 696.61 

 

  

Table 2: Time series data for the shallow slope, fast RSL rise experiment. 
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Run: Shallow Low 

Time 

Landward 
Shoreline 
Distance 

Basinward 
Shoreline 
Distance 

Island 
Middle 
Distance 

Island 
Width 

Island 
Middle 
Velocity Delta Radius 

(HH:MM:SS) (mm) (mm) (mm) (mm) (mm/min) (mm) 

0:00:00 NaN NaN NaN NaN NaN 2049.53 

0:05:00 NaN NaN NaN NaN NaN 1959.35 

0:10:00 NaN NaN NaN NaN NaN 2062.92 

0:15:00 NaN NaN NaN NaN NaN 2046.13 

0:20:00 NaN NaN NaN NaN NaN 2075.58 

0:25:00 NaN NaN NaN NaN NaN 2067.82 

0:30:00 NaN NaN NaN NaN NaN 2057.63 

0:35:00 NaN NaN NaN NaN NaN 2053.63 

0:40:00 NaN NaN NaN NaN NaN 2061.05 

0:45:00 NaN NaN NaN NaN NaN 2019.27 

0:50:00 NaN NaN NaN NaN NaN 2019.77 

0:55:00 NaN NaN NaN NaN NaN 1993.03 

1:00:00 NaN NaN NaN NaN NaN 1989.07 

1:05:00 NaN NaN NaN NaN NaN 1995.06 

1:10:00 NaN NaN NaN NaN NaN 1993.66 

1:15:00 NaN NaN NaN NaN NaN 2009.83 

1:20:00 NaN NaN NaN NaN NaN 2017.90 

1:25:00 NaN NaN NaN NaN NaN 2029.37 

1:30:00 NaN NaN NaN NaN NaN 1946.18 

1:35:00 NaN NaN NaN NaN NaN 2047.33 

1:40:00 NaN NaN NaN NaN NaN 1911.71 

1:45:00 NaN NaN NaN NaN NaN 1903.91 

1:50:00 NaN NaN NaN NaN NaN 1847.70 

1:55:00 NaN NaN NaN NaN NaN 1819.32 

2:00:00 NaN NaN NaN NaN NaN 1814.77 

2:05:00 NaN NaN NaN NaN NaN 1829.93 

2:10:00 NaN NaN NaN NaN NaN 1860.15 

2:15:00 NaN NaN NaN NaN NaN 1834.03 

2:20:00 NaN NaN NaN NaN NaN 1880.39 

2:25:00 NaN NaN NaN NaN NaN 2011.48 

2:30:00 NaN NaN NaN NaN NaN 1937.84 

2:35:00 NaN NaN NaN NaN NaN 1951.17 

2:40:00 NaN NaN NaN NaN NaN 1927.59 
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2:45:00 NaN NaN NaN NaN NaN 1962.53 

2:50:00 NaN NaN NaN NaN NaN 1906.37 

2:55:00 NaN NaN NaN NaN NaN 1849.94 

3:00:00 NaN NaN NaN NaN NaN 1861.03 

3:05:00 NaN NaN NaN NaN NaN 1854.45 

3:10:00 NaN NaN NaN NaN NaN 1900.07 

3:15:00 NaN NaN NaN NaN NaN 1850.42 

3:20:00 NaN NaN NaN NaN NaN 1876.08 

3:25:00 NaN NaN NaN NaN NaN 1882.82 

3:30:00 NaN NaN NaN NaN NaN 1872.82 

3:35:00 NaN NaN NaN NaN NaN 1770.89 

3:40:00 2170.05 2226.36 2198.21 56.30 NaN 1758.12 

3:45:00 2187.63 2214.64 2201.13 27.01 0.51 1731.01 

3:50:00 2172.98 2209.76 2191.37 36.78 2.55 1746.20 

3:55:00 2113.75 2208.78 2161.27 95.03 3.93 1753.42 

4:00:00 2098.13 2196.09 2147.11 97.96 3.78 1733.01 

4:05:00 2077.63 2193.49 2135.56 115.86 2.42 1723.82 

4:10:00 2088.37 2179.82 2134.09 91.45 0.97 1722.09 

4:15:00 2075.68 2180.79 2128.24 105.12 0.30 1762.53 

4:20:00 2065.26 2184.70 2124.98 119.44 0.21 1738.70 

4:25:00 2074.70 2189.58 2132.14 114.88 -0.08 1799.10 

4:30:00 2073.72 2184.70 2129.21 110.98 -0.87 1804.20 

4:35:00 2104.97 2183.72 2144.34 78.76 -1.53 1705.60 

4:40:00 2115.71 2178.84 2147.27 63.14 -1.19 1709.84 

4:45:00 2101.06 2173.96 2137.51 72.90 0.20 1664.29 

4:50:00 2120.59 2173.96 2147.27 53.37 1.64 1731.70 

4:55:00 2078.60 2167.13 2122.87 88.52 1.97 1623.46 

5:00:00 2085.44 2156.39 2120.91 70.95 1.04 1577.46 

5:05:00 2093.25 2158.34 2125.79 65.09 -0.15 1596.65 

5:10:00 2090.32 2154.43 2122.38 64.11 -0.39 1599.65 

5:15:00 2095.20 2154.43 2124.82 59.23 0.61 1613.21 

5:20:00 2072.75 2146.62 2109.68 73.88 1.99 1560.51 

5:25:00 2062.33 2138.81 2100.57 76.48 2.63 1634.55 

5:30:00 2039.88 2131.33 2085.60 91.45 2.12 1648.53 

5:35:00 2035.97 2134.91 2085.44 98.93 1.01 1624.61 

5:40:00 2035.00 2129.37 2082.18 94.38 0.17 1537.66 

5:45:00 2034.02 2130.35 2082.18 96.33 -0.01 1627.26 

5:50:00 2035.00 2127.42 2081.21 92.43 0.22 1549.75 

5:55:00 2035.97 2121.56 2078.77 85.59 0.32 1612.71 
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6:00:00 2044.76 2114.73 2079.74 69.97 0.05 1572.91 

6:05:00 2053.55 2112.78 2083.16 59.23 -0.41 1610.66 

6:10:00 2064.29 2105.94 2085.11 41.66 -0.69 1571.30 

6:15:00 2062.33 2106.92 2084.63 44.59 -0.53 1609.97 

6:20:00 2077.63 2098.13 2087.88 20.50 0.06 1579.07 

6:25:00 2075.68 2095.20 2085.44 19.53 0.91 1598.77 

6:30:00 NaN NaN NaN NaN NaN 1585.08 

6:35:00 2029.14 2092.27 2060.71 63.14 NaN 1667.43 

6:40:00 2012.54 2081.53 2047.04 68.99 2.69 1623.68 

6:45:00 1996.27 2077.63 2036.95 81.36 2.27 1648.57 

6:50:00 1990.41 2072.75 2031.58 82.34 1.31 1577.63 

6:55:00 1988.46 2072.10 2030.28 83.64 0.31 1541.62 

7:00:00 1985.53 2067.21 2026.37 81.69 -0.18 1616.50 

7:05:00 1987.48 2068.19 2027.84 80.71 -0.08 1601.96 

7:10:00 1993.34 2070.14 2031.74 76.80 0.12 1552.73 

7:15:00 2002.13 2065.26 2033.69 63.14 -0.18 1523.31 

7:20:00 1995.29 2070.14 2032.72 74.85 -0.89 1544.57 

7:25:00 2013.52 2058.43 2035.97 44.91 -1.15 1547.68 

7:30:00 2024.26 2058.43 2041.34 34.17 -0.13 1516.35 

7:35:00 2026.21 2052.57 2039.39 26.36 1.88 1550.23 

7:40:00 1973.81 2042.81 2008.31 68.99 3.49 1469.59 

7:45:00 1958.19 2036.95 1997.57 78.76 3.37 1514.71 

7:50:00 1947.78 2030.11 1988.95 82.34 1.65 1544.51 

7:55:00 1959.17 2028.16 1993.66 68.99 -0.17 1511.77 

8:00:00 1960.14 2012.54 1986.34 52.40 -0.53 1505.86 

8:05:00 1962.10 2017.42 1989.76 55.33 0.68 1506.01 

8:10:00 1971.86 2009.94 1990.90 38.08 2.13 1488.10 

8:15:00 1908.72 1999.20 1953.96 90.47 2.43 1493.93 

8:20:00 1902.87 2007.01 1954.94 104.14 1.36 1492.95 

8:25:00 1932.16 2008.96 1970.56 76.80 -0.10 1482.48 

8:30:00 1923.37 2010.91 1967.14 87.54 -0.93 1476.79 

8:35:00 1920.44 2003.10 1961.77 82.66 -0.83 1406.77 

8:40:00 1928.25 2012.54 1970.40 84.29 -0.20 1510.92 

8:45:00 1941.92 1989.43 1965.68 47.51 0.54 1477.08 

8:50:00 1948.75 1982.60 1965.68 33.85 1.23 1440.70 

8:55:00 NaN NaN NaN NaN NaN 1460.06 

9:00:00 1902.87 1978.69 1940.78 75.83 NaN 1482.05 

9:05:00 1895.06 1978.69 1936.87 83.64 1.15 1445.47 

9:10:00 1897.01 1976.74 1936.87 79.73 0.20 1452.34 



 

48 

 

9:15:00 1915.56 1970.88 1943.22 55.33 -0.52 1501.74 

9:20:00 1921.42 1962.10 1941.76 40.68 -0.72 1461.53 

9:25:00 1927.27 1964.05 1945.66 36.78 -0.55 1501.29 

9:30:00 1932.16 1962.10 1947.13 29.94 -0.37 1457.56 

9:35:00 1933.13 1964.05 1948.59 30.92 -0.26 1510.97 

9:40:00 1937.04 1966.00 1951.52 28.96 -0.07 1462.85 

9:45:00 1932.16 1961.12 1946.64 28.96 0.18 1479.34 

9:50:00 1938.99 1960.14 1949.57 21.15 0.24 1531.66 

9:55:00 1938.01 1955.26 1946.64 17.25 0.04 1541.75 

10:00:00 1931.18 1958.19 1944.69 27.01 0.09 1501.17 

10:05:00 1928.25 1951.36 1939.80 23.11 1.01 1510.37 

10:10:00 1929.23 1948.75 1938.99 19.53 2.60 1546.10 

10:15:00 1855.35 1941.92 1898.63 86.57 3.63 1558.71 

10:20:00 1863.16 1937.04 1900.10 73.88 2.89 1473.27 

10:25:00 1858.28 1936.06 1897.17 77.78 0.61 1475.50 

10:30:00 1873.90 1920.44 1897.17 46.54 -1.42 1474.34 

10:35:00 1890.17 1917.51 1903.84 27.34 -1.45 1473.46 

10:40:00 1896.03 1917.51 1906.77 21.48 0.48 1546.67 

10:45:00 1870.00 1924.34 1897.17 54.35 2.51 1517.99 

10:50:00 1845.59 1908.72 1877.16 63.14 2.76 1506.40 

10:55:00 1830.94 1907.75 1869.35 76.80 1.21 1505.55 

11:00:00 1832.90 1904.82 1868.86 71.92 -0.39 1505.79 

11:05:00 1863.16 1910.68 1886.92 47.51 -0.40 1559.40 

11:10:00 1844.61 1901.89 1873.25 57.28 1.08 1528.24 

11:15:00 1809.79 1891.15 1850.47 81.36 2.43 1516.03 

11:20:00 1811.74 1879.76 1845.75 68.02 2.23 1513.95 

11:25:00 1814.67 1885.62 1850.14 70.95 0.66 1485.62 

11:30:00 NaN NaN NaN NaN NaN 1499.50 

11:35:00 1819.55 1885.62 1852.58 66.06 NaN 1528.35 

11:40:00 1823.46 1884.64 1854.05 61.18 -0.47 1552.68 

11:45:00 1833.87 1882.69 1858.28 48.82 0.60 1536.45 

11:50:00 1822.48 1871.95 1847.21 49.47 1.22 1518.82 

11:55:00 1815.65 1872.92 1844.29 57.28 1.32 1534.86 

12:00:00 1791.24 1876.83 1834.03 85.59 1.17 1555.56 

12:05:00 1794.17 1870.00 1832.08 75.83 0.86 1526.44 

12:10:00 1785.38 1871.95 1828.66 86.57 0.34 1505.42 

12:15:00 1789.29 1877.81 1833.55 88.52 -0.24 1502.54 

12:20:00 1794.17 1872.92 1833.55 78.76 -0.43 1487.03 

12:25:00 1795.14 1869.02 1832.08 73.88 0.00 1507.50 
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12:30:00 1795.14 1862.19 1828.66 67.04 0.66 1516.22 

12:35:00 1801.98 1856.33 1829.15 54.35 0.79 1538.28 

12:40:00 1800.03 1850.47 1825.25 50.44 0.11 1569.43 

12:45:00 1801.98 1851.45 1826.71 49.47 -0.70 1519.21 

12:50:00 1812.72 1854.37 1833.55 41.66 -0.65 1543.02 

12:55:00 1808.81 1857.30 1833.06 48.49 0.47 1532.88 

13:00:00 1784.40 1845.59 1815.00 61.18 1.66 1500.82 

13:05:00 1785.38 1849.49 1817.44 64.11 1.64 1495.36 

13:10:00 1795.14 1836.80 1815.97 41.66 0.28 1489.95 

13:15:00 1795.14 1833.87 1814.51 38.73 -1.10 1496.04 

13:20:00 1800.03 1835.82 1817.93 35.80 -0.97 1519.84 

13:25:00 1798.07 1837.78 1817.93 39.70 0.76 1523.21 

13:30:00 1801.00 1837.78 1819.39 36.78 2.58 1540.79 

13:35:00 1740.80 1827.04 1783.92 86.24 2.84 1514.83 

13:40:00 1727.13 1825.41 1776.27 98.28 1.42 1527.11 

13:45:00 1743.72 1839.73 1791.73 96.01 -0.28 1459.91 

13:50:00 1764.23 1824.43 1794.33 60.21 -0.92 1449.12 

13:55:00 1758.37 1826.39 1792.38 68.02 -0.58 1414.80 

14:00:00 1764.23 1819.55 1791.89 55.33 -0.36 1522.08 

14:05:00 NaN NaN NaN NaN NaN 1516.17 

14:10:00 1791.24 1823.46 1807.35 32.22 NaN 1559.16 

14:15:00 1795.14 1826.39 1810.77 31.24 -0.87 1540.14 

14:20:00 1796.12 1818.58 1807.35 22.46 0.94 1552.09 

14:25:00 1781.48 1816.62 1799.05 35.15 2.69 1458.10 

14:30:00 1736.89 1799.05 1767.97 62.16 2.95 1511.56 

14:35:00 1725.17 1809.79 1767.48 84.62 1.59 1545.17 

14:40:00 1754.46 1813.69 1784.08 59.23 -0.21 1568.78 

14:45:00 1730.06 1817.60 1773.83 87.54 -1.25 1480.66 

14:50:00 1742.75 1816.62 1779.69 73.88 -1.36 1530.75 

14:55:00 1763.25 1814.67 1788.96 51.42 -1.14 1509.33 

15:00:00 1785.38 1814.67 1800.03 29.29 -0.95 1502.74 

15:05:00 1781.48 1811.74 1796.61 30.27 -0.58 1500.09 

15:10:00 1787.33 1801.98 1794.66 14.64 0.17 1505.05 

15:15:00 1785.38 1801.00 1793.19 15.62 0.85 1509.56 

15:20:00 1780.50 1799.05 1789.77 18.55 0.77 1452.49 

15:25:00 1779.52 1799.05 1789.29 19.53 -0.09 1491.50 

15:30:00 1778.55 1803.93 1791.24 25.38 -0.80 1401.19 

15:35:00 1784.40 1805.88 1795.14 21.48 -0.40 1489.76 

15:40:00 1781.48 1802.95 1792.22 21.48 1.01 1536.05 
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15:45:00 1770.74 1790.26 1780.50 19.53 2.21 1374.67 

15:50:00 1741.77 1787.33 1764.55 45.56 2.14 1377.29 

15:55:00 1736.89 1786.36 1761.62 49.47 1.00 1422.34 

16:00:00 1738.84 1799.05 1768.95 60.21 0.05 1356.79 

16:05:00 NaN NaN NaN NaN NaN 1354.52 

16:10:00 NaN NaN NaN NaN NaN 1522.16 

16:15:00 NaN NaN NaN NaN NaN 1521.64 

16:20:00 NaN NaN NaN NaN NaN 1528.68 

16:25:00 1678.64 1770.74 1724.69 92.10 NaN 1530.32 

16:30:00 1679.61 1765.85 1722.73 86.24 0.15 1559.11 

16:35:00 1690.35 1767.81 1729.08 77.46 -0.12 1555.40 

16:40:00 1670.82 1773.66 1722.24 102.84 -0.05 1493.46 

16:45:00 1685.47 1774.64 1730.06 89.17 -0.27 1427.87 

16:50:00 1693.28 1769.76 1731.52 76.48 -0.78 1365.11 

16:55:00 1704.67 1761.30 1732.98 56.63 -0.97 1343.39 

17:00:00 1706.62 1765.85 1736.24 59.23 -0.41 1305.84 

17:05:00 1718.34 1764.88 1741.61 46.54 0.49 1375.78 

17:10:00 1710.53 1751.53 1731.03 41.01 0.89 1373.22 

17:15:00 1696.21 1747.63 1721.92 51.42 0.47 1412.18 

17:20:00 1703.04 1763.25 1733.15 60.21 -0.19 1469.42 

17:25:00 1708.58 1755.44 1732.01 46.86 -0.28 1485.63 

17:30:00 1711.51 1747.63 1729.57 36.12 0.27 1471.58 

17:35:00 1708.58 1747.63 1728.10 39.05 0.72 1461.75 

17:40:00 1691.33 1745.68 1718.50 54.35 0.42 1477.64 

17:45:00 1708.58 1750.56 1729.57 41.98 -0.29 1491.11 

17:50:00 1711.51 1742.75 1727.13 31.24 -0.41 1488.55 

17:55:00 1708.58 1738.84 1723.71 30.27 0.48 1486.04 

18:00:00 1709.55 1730.06 1719.80 20.50 1.65 1497.70 

18:05:00 1673.75 1735.91 1704.83 62.16 1.91 1479.33 

18:10:00 1670.82 1735.91 1703.37 65.09 0.93 1469.00 

18:15:00 1668.87 1739.82 1704.35 70.95 -0.37 1488.17 

18:20:00 1676.68 1738.84 1707.76 62.16 -0.80 1453.66 

18:25:00 1682.54 1741.77 1712.16 59.23 -0.23 1460.51 

18:30:00 1682.54 1732.98 1707.76 50.44 0.40 1438.89 

18:35:00 1680.59 1727.13 1703.86 46.54 0.20 1415.68 

18:40:00 1691.33 1731.03 1711.18 39.70 -0.59 1437.15 

18:45:00 NaN NaN NaN NaN NaN 1403.42 

18:50:00 1700.11 1732.98 1716.55 32.87 NaN 1470.19 

18:55:00 1704.67 1724.20 1714.43 19.53 0.81 1463.28 
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19:00:00 1693.28 1712.48 1702.88 19.20 1.24 1408.78 

19:05:00 1668.87 1732.01 1700.44 63.14 0.58 1459.79 

19:10:00 1675.71 1738.84 1707.27 63.14 -0.51 1450.46 

19:15:00 1686.45 1738.84 1712.64 52.40 -0.98 1409.82 

19:20:00 1688.40 1736.89 1712.64 48.49 -0.54 1427.45 

19:25:00 1684.49 1732.01 1708.25 47.51 0.20 1505.58 

19:30:00 1692.30 1728.10 1710.20 35.80 0.46 1488.99 

19:35:00 1701.09 1720.29 1710.69 19.20 0.10 1396.04 

19:40:00 NaN NaN NaN NaN NaN 1452.33 

19:45:00 1687.42 1735.91 1711.67 48.49 NaN 1371.38 

19:50:00 1688.40 1731.03 1709.72 42.63 0.32 1316.40 

19:55:00 1686.45 1727.13 1706.79 40.68 1.26 1345.48 

20:00:00 1661.06 1722.24 1691.65 61.18 1.96 1414.13 

20:05:00 1648.37 1724.20 1686.28 75.83 2.02 1439.49 

20:10:00 1647.39 1710.53 1678.96 63.14 1.29 1431.82 

20:15:00 1647.39 1707.60 1677.50 60.21 0.13 1434.41 

20:20:00 1660.09 1702.07 1681.08 41.98 -0.76 1401.22 

20:25:00 1664.97 1699.14 1682.05 34.17 -0.64 1440.40 

20:30:00 1656.18 1703.69 1679.94 47.51 0.56 1460.39 

20:35:00 1660.09 1705.65 1682.87 45.56 2.09 1451.19 

 

  

Table 3: Time series data for the shallow slope, slow RSL rise experiment. 
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Run: Steep Fast 

Time 

Landward 
Shoreline 
Distance 

Basinward 
Shoreline 
Distance 

Island 
Middle 
Distance 

Island 
Width 

Island 
Middle 
Velocity Delta Radius 

(HH:MM:SS) (mm) (mm) (mm) (mm) (mm/min) (mm) 

0:00:00 1795.58 1845.38 1820.48 49.79 NaN 1877.10 

0:02:00 1795.25 1779.10 1787.17 16.15 7.30 1887.42 

0:04:00 1751.51 1834.27 1792.89 82.76 6.52 1767.99 

0:06:00 1754.87 1835.95 1795.41 81.08 5.49 1715.23 

0:08:00 1758.24 1837.64 1797.94 79.40 4.34 1713.36 

0:10:00 1762.95 1837.64 1800.29 74.69 3.21 1716.86 

0:12:00 1743.77 1844.37 1794.07 100.60 2.23 1592.67 

0:14:00 1737.04 1831.58 1784.31 94.54 1.48 1740.86 

0:16:00 1746.80 1837.64 1792.22 90.84 0.99 1742.14 

0:18:00 1745.12 1821.15 1783.13 76.04 0.77 1644.95 

0:20:00 1701.72 1829.23 1765.47 127.51 0.76 1700.36 

0:22:00 1701.72 1819.81 1760.76 118.09 0.87 1735.73 

0:24:00 1698.01 1811.39 1754.70 113.38 1.02 1711.64 

0:26:00 1703.06 1818.12 1760.59 115.06 1.12 1734.16 

0:28:00 1704.74 1813.08 1758.91 108.33 1.13 1758.72 

0:30:00 1717.53 1827.88 1772.70 110.35 1.02 1644.48 

0:32:00 1712.82 1822.83 1767.83 110.02 0.79 1649.94 

0:34:00 1712.82 1826.20 1769.51 113.38 0.49 1696.95 

0:36:00 1703.06 1819.47 1761.27 116.41 0.16 1724.85 

0:38:00 1698.01 1814.76 1756.39 116.74 -0.14 1711.40 

0:40:00 1720.89 1811.39 1766.14 90.50 -0.36 1460.11 

0:42:00 1707.77 1811.39 1759.58 103.62 -0.48 1679.39 

0:44:00 1714.16 1806.68 1760.42 92.52 -0.50 1638.21 

0:46:00 1710.80 1803.66 1757.23 92.86 -0.43 1714.57 

0:48:00 1722.57 1796.93 1759.75 74.35 -0.31 1687.65 

0:50:00 1734.01 1824.52 1779.26 90.50 -0.18 1567.04 

0:52:00 1734.01 1806.68 1770.35 72.67 -0.10 1601.32 

0:54:00 1738.72 1798.61 1768.67 59.89 -0.08 1612.44 

0:56:00 1724.26 1810.05 1767.15 85.79 -0.14 1697.10 

0:58:00 1717.53 1805.34 1761.43 87.81 -0.26 1707.74 

1:00:00 1714.84 1816.78 1765.81 101.94 -0.41 1601.46 

1:02:00 1717.86 1813.08 1765.47 95.21 -0.54 1659.55 

1:04:00 NaN NaN NaN NaN NaN 1703.90 
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1:06:00 NaN NaN NaN NaN NaN 1677.61 

1:08:00 1727.28 1811.39 1769.34 84.11 NaN 1708.23 

1:10:00 1738.72 1819.47 1779.10 80.75 -0.09 1540.57 

1:12:00 1740.41 1818.12 1779.26 77.72 0.32 1596.33 

1:14:00 1738.72 1811.39 1775.06 72.67 0.78 1606.15 

1:16:00 1738.39 1808.37 1773.38 69.98 1.23 1611.12 

1:18:00 1734.01 1811.73 1772.87 77.72 1.61 1641.70 

1:20:00 1669.42 1809.71 1739.56 140.30 1.87 1534.39 

1:22:00 1693.30 1803.66 1748.48 110.35 1.96 1510.25 

1:24:00 1698.01 1802.31 1750.16 104.30 1.86 1547.86 

1:26:00 1703.06 1800.29 1751.68 97.23 1.59 1567.41 

1:28:00 1672.11 1803.32 1737.71 131.21 1.17 1538.66 

1:30:00 1701.72 1810.05 1755.88 108.33 0.64 1424.47 

1:32:00 1704.74 1798.61 1751.68 93.87 0.07 1354.95 

1:34:00 1701.72 1795.25 1748.48 93.53 -0.50 1312.08 

1:36:00 1703.06 1800.29 1751.68 97.23 -1.01 1414.73 

1:38:00 1712.82 1785.83 1749.32 73.01 -1.45 1556.67 

1:40:00 NaN NaN NaN NaN NaN 1613.11 

1:42:00 NaN NaN NaN NaN NaN 1675.07 

1:44:00 NaN NaN NaN NaN NaN 1656.83 

1:46:00 NaN NaN NaN NaN NaN 1673.89 

1:48:00 NaN NaN NaN NaN NaN 1684.78 

1:50:00 1734.01 1821.15 1777.58 87.14 NaN 1594.38 

1:52:00 1730.31 1822.83 1776.57 92.52 -2.46 1602.80 

1:54:00 1742.09 1819.81 1780.95 77.72 -2.52 1622.73 

1:56:00 1749.83 1849.41 1799.62 99.59 -2.58 1501.01 

1:58:00 NaN NaN NaN NaN NaN 1623.94 

2:00:00 NaN NaN NaN NaN NaN 1646.75 

2:02:00 NaN NaN NaN NaN NaN 1635.85 

2:04:00 NaN NaN NaN NaN NaN 1518.67 

2:06:00 NaN NaN NaN NaN NaN 1602.75 

2:08:00 NaN NaN NaN NaN NaN 1611.33 

2:10:00 1780.78 1874.65 1827.71 93.87 NaN 1525.46 

2:12:00 1777.41 1878.01 1827.71 100.60 -1.29 1537.91 

2:14:00 1777.41 1869.94 1823.67 92.52 -0.75 1521.99 

2:16:00 1784.14 1874.65 1829.39 90.50 -0.15 1499.56 

2:18:00 NaN NaN NaN NaN NaN 1520.84 

2:20:00 1788.85 1874.65 1831.75 85.79 NaN 1409.55 

2:22:00 1785.83 1866.57 1826.20 80.75 1.59 1487.99 
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2:24:00 1784.14 1868.59 1826.37 84.45 2.01 1427.87 

2:26:00 1782.46 1866.57 1824.52 84.11 2.31 1545.48 

2:28:00 1783.81 1863.21 1823.51 79.40 2.47 1529.53 

2:30:00 1741.75 1852.10 1796.93 110.35 2.49 1542.14 

2:32:00 1739.06 1850.42 1794.74 111.36 2.37 1561.15 

2:34:00 1735.36 1852.10 1793.73 116.74 2.15 1530.35 

2:36:00 1738.72 1844.03 1791.38 105.31 1.86 1601.82 

2:38:00 1737.04 1839.32 1788.18 102.28 1.53 1559.54 

2:40:00 1740.07 1840.66 1790.37 100.60 1.22 1514.51 

2:42:00 1731.99 1842.35 1787.17 110.35 0.94 1451.61 

2:44:00 1733.68 1840.66 1787.17 106.99 0.71 1524.41 

2:46:00 1735.36 1845.71 1790.54 110.35 0.55 1552.70 

2:48:00 1734.01 1844.03 1789.02 110.02 0.45 1582.55 

2:50:00 1712.82 1837.64 1775.23 124.82 0.39 1508.42 

2:52:00 1706.09 1835.95 1771.02 129.87 0.37 1507.18 

2:54:00 1712.82 1837.64 1775.23 124.82 0.35 1505.80 

 

  

Table 4: Time series data for the steep slope, fast RSL rise experiment. 
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Run: Steep Slow 

Time 

Landward 
Shoreline 
Distance 

Basinward 
Shoreline 
Distance 

Island 
Middle 
Distance 

Island 
Width 

Island 
Middle 
Velocity Delta Radius 

(HH:MM:SS) (mm) (mm) (mm) (mm) (mm/min) (mm) 

0:00:00 1341.94 1396.39 1369.17 54.45 NaN 1265.75 

0:05:00 1334.48 1389.68 1362.08 55.20 0.21 1268.71 

0:10:00 1332.99 1391.17 1362.08 58.18 0.74 1279.19 

0:15:00 1331.50 1381.48 1356.49 49.98 1.11 1244.88 

0:20:00 1328.51 1376.25 1352.38 47.74 1.12 1253.88 

0:25:00 1324.04 1374.76 1349.40 50.72 0.76 1246.74 

0:30:00 1325.53 1365.06 1345.30 39.53 0.26 1221.86 

0:35:00 1324.78 1370.29 1347.54 45.50 -0.08 1199.06 

0:40:00 1325.53 1363.57 1344.55 38.04 -0.07 1178.32 

0:45:00 1321.80 1371.03 1346.42 49.23 0.32 1195.93 

0:50:00 1324.04 1365.81 1344.92 41.77 0.90 1184.55 

0:55:00 1317.32 1351.64 1334.48 34.31 1.45 1196.61 

1:00:00 1294.20 1339.70 1316.95 45.50 1.74 1193.92 

1:05:00 1279.28 1359.10 1319.19 79.82 1.62 1125.26 

1:10:00 1276.30 1355.37 1315.83 79.07 1.07 1195.99 

1:15:00 1268.84 1353.88 1311.36 85.04 0.19 1147.65 

1:20:00 1282.27 1335.23 1308.75 52.96 -0.68 1143.41 

1:25:00 1286.00 1358.35 1322.17 72.36 -1.14 1090.08 

1:30:00 1298.68 1350.89 1324.78 52.22 -0.93 1138.02 

1:35:00 1300.17 1352.38 1326.28 52.22 -0.23 1091.37 

1:40:00 1294.20 1349.40 1321.80 55.20 0.42 1114.96 

1:45:00 1297.93 1348.65 1323.29 50.72 0.52 1094.46 

1:50:00 1293.45 1351.64 1322.55 58.18 0.03 1101.07 

1:55:00 1294.20 1346.42 1320.31 52.22 -0.49 1099.49 

2:00:00 1298.68 1349.40 1324.04 50.72 -0.28 1086.90 

2:05:00 1291.96 1344.18 1318.07 52.22 0.88 1074.77 

2:10:00 1294.20 1341.19 1317.70 46.99 2.35 1066.63 

2:15:00 1241.99 1341.19 1291.59 99.21 3.03 1071.06 

2:20:00 1215.88 1330.01 1272.94 114.13 2.17 1059.74 

2:25:00 1233.78 1338.21 1286.00 104.43 0.12 1032.28 

2:30:00 1250.94 1338.21 1294.57 87.27 -1.92 1094.60 

2:35:00 1271.82 1337.47 1304.64 65.64 -2.71 1048.65 

2:40:00 1286.00 1339.70 1312.85 53.71 -1.95 1063.04 
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2:45:00 1294.20 1337.47 1315.83 43.26 -0.41 1064.33 

2:50:00 1288.23 1339.70 1313.97 51.47 0.71 1209.72 

2:55:00 1286.00 1339.70 1312.85 53.71 0.79 1170.86 

3:00:00 1276.30 1335.97 1306.14 59.67 0.15 1135.08 

3:05:00 1282.27 1337.47 1309.87 55.20 -0.40 1159.99 

3:10:00 1291.96 1333.74 1312.85 41.77 -0.33 1135.24 

3:15:00 1291.96 1335.23 1313.60 43.26 0.19 1112.79 

3:20:00 1283.01 1327.02 1305.02 44.01 0.61 1110.32 

3:25:00 1286.00 1333.74 1309.87 47.74 0.57 1064.17 

3:30:00 1283.01 1324.78 1303.90 41.77 0.28 1064.12 

3:35:00 1279.28 1321.80 1300.54 42.52 0.18 1064.23 

3:40:00 1286.74 1314.34 1300.54 27.60 0.41 1099.66 

3:45:00 1290.47 1312.10 1301.29 21.63 0.60 1127.50 

3:50:00 1274.81 1321.05 1297.93 46.25 0.31 1143.36 

3:55:00 1277.04 1321.05 1299.05 44.01 -0.41 1047.43 

4:00:00 1279.28 1318.07 1298.68 38.79 -0.89 1035.59 

4:05:00 1284.50 1320.31 1302.41 35.80 -0.37 1056.04 

4:10:00 1288.23 1323.29 1305.76 35.06 1.19 1071.21 

4:15:00 1268.84 1307.63 1288.23 38.79 2.92 1041.42 

4:20:00 1218.12 1302.41 1260.26 84.29 3.54 1102.12 

4:25:00 1200.21 1306.14 1253.17 105.92 2.42 1120.51 

4:30:00 1200.21 1301.66 1250.94 101.45 0.11 968.43 

4:35:00 1233.78 1302.41 1268.09 68.63 -2.04 1032.21 

4:40:00 1258.40 1311.36 1284.88 52.96 -2.82 1087.89 

4:45:00 1261.38 1305.39 1283.38 44.01 -2.05 1034.46 

4:50:00 1265.11 1308.37 1286.74 43.26 -0.53 1083.95 

4:55:00 1265.86 1309.12 1287.49 43.26 0.60 1040.41 

5:00:00 1269.58 1312.85 1291.22 43.26 0.73 1013.50 

5:05:00 1268.09 1300.17 1284.13 32.08 0.12 993.02 

5:10:00 1272.57 1299.42 1286.00 26.85 -0.50 1095.31 

5:15:00 1271.08 1300.17 1285.62 29.09 -0.57 1086.38 

5:20:00 1274.81 1306.14 1290.47 31.33 -0.06 1092.99 

5:25:00 1274.81 1303.15 1288.98 28.35 0.56 1028.25 

5:30:00 1256.90 1306.88 1281.89 49.98 0.80 1086.43 

5:35:00 1261.38 1307.63 1284.50 46.25 0.48 1067.44 

5:40:00 1258.40 1294.20 1276.30 35.80 -0.15 1082.66 

5:45:00 1258.40 1302.41 1280.40 44.01 -0.62 1090.78 
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Table 5: Time series data for the steep slope, slow RSL rise experiment. 

 


