
RIF: Reactive Information Flow Labels∗

Elisavet Kozyri
Harvard University

ekozyri@seas.harvard.edu

Fred B. Schneider
Cornell University

fbs@cs.cornell.edu

December 10, 2019

Abstract

Restrictions that a reactive information flow (RIF) label imposes
on a value are determined by the sequence of operations used to de-
rive that value. This allows declassification, endorsement, and other
forms of reclassification to be supported in a uniform way. Piecewise
noninterference (PWNI) is introduced as a fitting security policy, be-
cause noninterference is not suitable. A type system is given for static
enforcement of PWNI in programs that associate checkable classes of
RIF labels with variables. Two checkable classes of RIF labels are
described: RIF automata are general-purpose and based on finite-
state automata; κ-labels concern confidentiality in programs that use
cryptographic operations.

1 Introduction

Data is usually accompanied by restrictions about uses. Information flow
control [50] has been employed to ensure those restrictions propagate from
inputs to the outputs of operations. In Denning’s initial work [21] and in
much that has followed—both for confidentiality and integrity—the set of

∗Supported in part by AFOSR grants F9550-16-0250, F9550-19-1-0264, and NSF grant
1642120. The views and conclusions contained herein are those of the authors and should
not be interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of these organizations or the U.S. Government.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by eCommons@Cornell

https://core.ac.uk/display/275573103?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

restrictions assigned to the output of an operation is the union of the restric-
tions associated with its inputs. But by ignoring the operator and the values
of inputs, that approach can be too conservative.

The most general formulation of flow-derived restrictions would assign
restrictions to the output of an operation op(x1, x2, . . . , xn) according to op-
erator op, its inputs x1, x2, . . . , xn, and the restrictions associated with those
inputs. That output might warrant fewer restrictions, additional restrictions,
or an incomparable set of restrictions than are associated with its inputs.

• With an operation that computes the winner of an election, the in-
puts are votes and the output is the majority. Each input is secret to
the principal casting that vote, whereas the output ought to be read-
able by any principal. So the output should be associated with fewer
restrictions than the inputs.

• A conference-management system matches papers to reviewers, where
that matching is generated by a non-deterministic computation. The
inputs—a list of reviewers and a list of submissions—can be read by the
entire program committee, but conflicts of interest dictate that only a
subset of the program committee learn which reviewers are assigned to
any given paper. So, as with other aggregation problems [31], outputs
are associated with more stringent restrictions than inputs.

Previous work on information flow control—declassification and erasure
policies [16], information flow locks [11, 10], typed declassification [24], ex-
pressions for declassification (for confidentiality) and endorsement (for in-
tegrity) [44, 46], and capability-based mechanisms for downgrading security
policies [35, 49, 56]—does not support arbitrary changes in restrictions linked
with specific operations. Other approaches (e.g., [30, 40, 47, 48, 53]) allow
such changes but only between two levels of labels (e.g., public and secret).

Reactive information flow (RIF) labels, which we introduce in §2, seek
to address these limitations by allowing stronger, weaker, or incomparable
restrictions to be associated with the output of an operation, as determined
by the operator and the restrictions on inputs. Piecewise noninterference
(PWNI) described in §4 then extends classical noninterference in a way that
handles changes to restrictions that RIF labels support. Using terminology
introduced by Sabelfeld and Sands [53], PWNI stipulates for programs that
associate RIF labels with variables, what information undergoes changes of
restrictions and where in the program code. A type system is given in §5

2

to support static enforcement of PWNI for certain classes of RIF labels.
Examples of those classes include RIF automata in §3 and κ-labels in §6. In
§7 we discuss how previous work relates to RIF labels and PWNI.

2 RIF Labels

Restrictions. Restrictions are assumed to be elements of a join semilattice
〈R, tR, vR〉.1 For confidentiality, an element of R might identify which
principals are allowed to read some value, either by enumerating that set
of principals or by giving the name (e.g., public, secret, etc.) for such a set;
for integrity, it might identify the set of principals allowed to write that
value. But other kinds of restrictions also could be specified using elements
in R—use-based privacy [9] is an example.

Relation r vR r′ is satisfied if compliance with restrictions r′ ∈ R im-
plies compliance with restrictions r ∈ R, so r′ is at least as strong as r or,
equivalently, r is at least as weak as r′. When elements of R denote sets of
principals, then for confidentiality we would define r tR r′ to be r ∩ r′ and
define r vR r′ to hold if and only if r ⊇ r′ holds—if r′ allows a principal
to read then so does r, but r might also allow other principals to read, too.
And, for integrity, we would define r tR r′ to be r ∪ r′ and define r vR r′ to
hold if and only if r ⊆ r′ holds.

Reclassifiers and RIF Labels. A reclassifier abstracts how an operation
changes the restrictions for an argument.2 To associate reclassifiers with
operations, we extend a language that defines ordinary expressions : variables
and terms op(E1, . . . , En), where op is an operator and each Ei is an ordinary
expression. For ordinary expressions E1, ..., En,

[op(E1, . . . , En)]f1,f2,...,fn (1)

defines a reclassifying expression. It specifies that reclassifier fi identifies how
the restrictions associated with the value of ordinary expression Ei should
be changed for constructing the restrictions associated with the value pro-
duced by op(E1, . . . , En). Notation [op(E1, . . . , En)]f is used as a shorthand

1A partial order would suffice for the theory of RIF labels developed in this section. A
join semilattice becomes useful for certain instantiations of RIF labels, as illustrated in §3
and §6.

2The term reclassify is taken from Denning’s thesis [21] where it is used to describe an
operation that changes the restrictions imposed on objects.

3

for [op(E1, . . . , En)]f,f,...,f , and we sometimes abbreviate [op(E1, . . . , En)]f1,f2,...,fn
by [op(E1, . . . , En)]̄f or simply [E]̄f if the elided specifics are irrelevant.

When reclassifying expressions are used to compute values, then sequences
of reclassifiers offer abstract descriptions for the series of operations that have
been applied to values as program execution proceeds. Such a sequence of
reclassifiers then provides a basis for determining the set of restrictions asso-
ciated with a computed value. For example, consider the following program.

w1 := [div(x1, x2)]f ; y2 := [mod(w1, w2)]f′ ; z3 := [add(y1, y2, y3)]f′′ (2)

Here, restrictions on the value stored in z3 are derived from:

• the restrictions on the value stored in x1 and in x2, changed according
to sequence f f′ f′′ because each of these values flows to w1 through f,
then w1 flows to y2 through f′, and finally y2 flows to z3 through f′′.

• the restrictions on the value stored in w2, changed according to sequence
f′f′′, and

• the restrictions on the values stored in y1 and y3, changed according to
f′′.

A RIF label λ specifies a set of restrictions for an associated value v
as well as for values derived by executing operations on v. Formally, a RIF
label maps sequences of reclassifiers to elements of underlying join semilattice
〈R, tR, vR〉 of restrictions. This mapping is specified for a set Λ of RIF
labels by giving a set F of reclassifiers along with two functions R and T.

Definition (R Function). R maps λ ∈ Λ to the restriction r ∈ R that λ

currently imposes:
R: Λ→ R (3)

Definition (T Function). T maps λ ∈ Λ and each reclassifier f ∈ F to a
RIF label that should be associated with the value produced by an operation f
abstracts:

T: Λ×F → Λ (4)

As an example, the restrictions associated with the value of a reclassifying
expression (1) will incorporate restrictionsR(T(λi, fi)) derived from RIF label
λi being associated with the value of expression Ei.

4

T is extended to a finite sequence3 F ∈ F∗ of reclassifiers in the usual
way, with empty sequence ε of reclassifiers considered an element of every set
F of reclassifiers (where it serves as an identity reclassifier).

T(λ, ε) , λ (5)

T(λ,F f) , T(T(λ,F), f) (6)

Classes of RIF Labels. A class of RIF labels can serve as the basis for a
join semilattice 〈Λ, tΛ, vΛ〉, where the cardinality of Λ can be infinite. The
join operator tΛ is used for combining RIF labels; the restrictiveness relation
vΛ specifies whether one RIF label is at least as restrictive as another. We
posit that Λ includes elements ⊥ and > such that for all λ ∈ Λ: ⊥ vΛ λ and
λ vΛ > hold.

Since, by definition, λ vΛ λ tΛ λ′ and λ′ vΛ λ tΛ λ′ hold in a join
semilattice, a combination of RIF labels is at least as restrictive as any of its
constituents. For the examples of RIF labels in this paper, tΛ and tR are
related in a way that ensures restrictions imposed by λtΛ λ′ are the same as
the combined restrictions imposed by individual RIF labels λ and λ′.4

R(λ tΛ λ′) = R(λ) tR R(λ′) (7)

The definition of restrictiveness relation vΛ depends on partial order vR
for set R of restrictions, R, and T:

λ vΛ λ′ , (∀F ∈ F∗: R(T(λ,F)) vR R(T(λ′,F))) (8)

This definition ensures that if λ vΛ λ′ holds, then

• current restrictions R(λ′) specified by λ′ are at least as strong as what
λ imposes because, by definition, ε ∈ F and thus ε ∈ F∗, R(T(λ, ε)) =
R(λ) and R(T(λ′, ε)) = R(λ′) hold, so (8) implies that R(λ) vR R(λ′),
and

• restrictions that λ′ imposes for any derived value are at least as strong
as what λ imposes—if v flows to w then there is a sequence F ∈ F∗
that v flows through, and (8) requires that R(T(λ,F)) vR R(T(λ′,F))
hold.

3As is conventional, F∗ denotes the set of finite sequences of elements in F .
4Reasonable examples of RIF labels do exist where (7) does not hold.

5

R(λ) ⊂ R(T(λ, f)) R(λ) ⊃ R(T(λ, f))
Confidentiality declassification classification

Integrity deprecation endorsement

Figure 1: Terminology for reclassifications

The quantification over all sequences F ∈ F∗ in (8) means that this definition
for λ vΛ λ′ is conservative, since it imposes conditions for sequences F of
reclassifiers that never arise in a program execution.

Definition (RIF Class). A class of RIF labels is formed as follows:

〈〈R, tR, vR〉, 〈Λ, tΛ, vΛ〉,F ,R, T 〉

The definition of a RIF class is silent about the existence of algorithms for
computing tΛ or for deciding vΛ. We say that a RIF class is checkable if
and only if:

(i) There exists an algorithm for computing λ tΛ λ′ for all λ, λ′ ∈ Λ.

(ii) There exists a sound (no false positives) if not complete (false negatives
possible) test for determining whether λ vΛ λ′ holds for all λ, λ′ ∈ Λ.

The type system we give in §5 is decidable if its RIF labels are from a
checkable class.

Reclassifications. A reclassifier f triggers a reclassification in a RIF label
λ, if T(λ, f) 6= λ holds. In the literature, reclassification is categorized based
on the restrictions that new and old labels impose—specifically, whether
R(T(λ, f)) is weaker than R(λ). Figure 1 defines specialized terminology
for this categorization, where R(λ) gives a set of principals that must be
trusted not to divulge the value (for confidentiality) or not to have corrupted
the value (for integrity). So, according to Figure 1, reclassifier f triggers a
declassification if the principals trusted not to divulge the value by the new
label (i.e., T(λ, f)) are a superset of those trusted by the old label (i.e., λ); if
they are a subset, then f triggers a classification. Also, reclassifier f triggers
an endorsement when the principals trusted not to have corrupted the value
by the new label (i.e., T(λ, f)) are a subset of those trusted by the old label
(i.e., λ); if they are a superset, then f triggers a deprecation.

6

The approach in this paper, however, involves a finer-grained categoriza-
tion of reclassifications. That categorization is based on how a new RIF label
T(λ, f) is related to the old RIF label λ: When T (λ, f) @Λ λ holds then we say
that f triggers a downgrade; when T (λ, f) 6vΛ λ holds then we say that f trig-
gers an upgrade. And the reclassifying expressions that appear in a program
in conjunction with the RIF labels that tag variables in these expressions,
specify what information is being reclassified and where in the program. In
particular, given a reclassifying expression [E]̄f at a particular program point,
if the RIF label of E is different from the RIF label of [E]̄f , then f̄ triggers
a reclassification: The what dimension of this reclassification is the current
value of E , and the where dimension is that particular program point (i.e.,
code locality is employed).

The RIF label for ordinary and reclassifying expressions are deduced as
usual from the RIF labels of the variables that appear in those expressions.
Starting from a fixed mapping Γ that associates a RIF label Γ(x) ∈ Λ with
each variable x, define:

Γ(op(E1, . . . , En)) , Γ(E1) tΛ . . . tΛ Γ(En) (9)

Γ([op(E1, . . . , En)]f1,...,fn) , T(Γ(E1), f1) tΛ . . . tΛ T(Γ(En), fn) (10)

Thus, the RIF label associated with a reclassifying expression combines RIF
labels obtained after the indicated transitions have been performed.

We give a concrete example of reclassification using program (2) and
assuming that the following restrictiveness relation holds:

Γ([mod(w1, w2)]f′) @Λ Γ(mod(w1, w2))

So reclassifier f′ triggers a downgrade. For the what dimension, the value
to be downgraded is the result of applying mod to the values stored in w1

and w2 at program point “y2 := [mod(w1, w2)]f′ ; z3 := [add(y1, y2, y3)]f′′”—as
opposed to the values stored in w1 and w2 at initialization. For the where
dimension: the value of mod(w1, w2) is downgraded at that program point—
not earlier. A formal characterization for the security policy satisfied by a
program that employs RIF labels and reclassifying expressions is given in §4.

3 RIF Automata

Finite state automata provide the basis for a checkable class of RIF labels,
called RIF automata, that have broad practical utility. This class of RIF

7

labels is supported in the JRIF5 programming language [34]. We built JRIF
to gain practical experience with using RIF automata for specifying secu-
rity policies and to understand the compiler modifications needed when a
programming language that supports ordinary security label types is con-
verted to use RIF automata. The privacy automata used in the Avanance
language [9] for specifying use-based privacy are also instances of RIF au-
tomata.

Formalization of RIF Automata. A finite state automaton can serve
as a RIF label λα by: (i) having the set of reclassifiers be the automaton’s
input alphabet, and (ii) associating restrictions with each automaton state.
Restrictions imposed by λα are those associated with the automaton’s current
state. Reclassifiers change the automaton’s current state. Thus they cause a
(potentially) different set of restrictions to be imposed.

A set ΛRA comprising RIF automata is defined relative to some join semi-
lattice of restrictions 〈R, tR, vR〉. Each RIF automaton λα ∈ ΛRA is de-
scribed by a 5-tuple

λα , 〈Qα,F , δα, qα, ρα〉 (11)

where:

Qα is a finite set of automaton states

F is the finite set of reclassifiers

δα: Qα ×F → Qα is a (deterministic) next-state transition function6

qα ∈ Qα is the current state of the RIF automaton

ρα: Qα → R gives the restrictions associated with each automaton state

We require transition function δα to be total, so any sequence of reclas-
sifiers from F causes a sequence of transitions. And for F ∈ F∗ we write
λα(F) to denote the automaton that results when λα performs the transitions
indicated by a sequence F of reclassifiers. Automaton λα(F) thus replaces
current state qα of λα with δ∗α(qα,F); we define λα(F) formally by:

λα(F) , λα[qα 7→ δ∗α(qα,F)]

5JRIF is a variant of the Jif security-typed programming language, which extends Java
with support for information flow control.

6Closure δ∗α: Qα × F∗ → Qα is obtained from δα in the usual way: δ∗α(q, ε) , q and
δ∗α(q,Ff) , δα(δ∗α(q,F), f)

8

where for qi ∈ Qα : λα[qα 7→ qi] , 〈Qα,F , δα, qi, ρα〉

RRA and TRA are defined as expected.

RRA(λα) , ρα(qα) TRA(λα, f) , λα(f)

Instantiating definition (8) of vΛ using these definitions gets:

λα vRA λα′ , (∀F ∈ F∗: ρα(δ∗α(qα,F)) vR ρα′(δ
∗
α′(qα′ ,F))) (12)

A computable test for deciding λα vRA λα′ is now given. It is based
on constructing a restrictiveness product automaton λα ⊗ λα′ that is the
product of RIF automata λα and λα′ but with unreachable automaton states
eliminated.

λα ⊗ λα′ , 〈Qα⊗α′ , F , δα⊗α′ , 〈qα, qα′〉, ρα⊗α′〉
where Qα⊗α′ ⊆ Qα ×Qα′

δα⊗α′(〈q, q′〉, f) , 〈δα(q, f), δα′(q
′, f)〉

ρα⊗α′(〈q,q′〉) , 〈ρα(q), ρα′(q
′)〉

(∀q ∈ Qα⊗α′ : (∃Fq ∈ F∗ : δ∗α⊗α′(〈qα, qα′〉,Fq) = q)) (13)

Restrictiveness product automata are not RIF automata because the signa-
ture for ρα⊗α′ in λα ⊗ λα′ is

ρα⊗α′ : Qα⊗α′ → R×R,

whereas a RIF automaton would have to associate a single element of R
(rather than a pair of elements) with each automaton state.

Condition (13), which stipulates that all states in Qα⊗α′ are reachable, is
straightforward to check with a linear-time depth-first search of the state-
transition graph for δα⊗α′ . And condition (13) implies that for any predicate
P (〈q, q′〉) on states 〈q, q′〉 ∈ Qα⊗α′

(∀〈q, q′〉 ∈ Qα⊗α′ : P (〈q, q′〉)) = (∀F ∈ F∗: P (δ∗α⊗α′(〈qα, qα′〉, F))) (14)

holds. Therefore a decision procedure for λα vRA λα′ need only check a pred-
icate on the pair of restrictions associated with each state 〈q, q′〉 ∈ Qα⊗α′—
namely that r vR r′ holds if ρα⊗α′(〈q, q′〉) = 〈r, r′〉.

λα vRA λα′ = (∀〈q, q′〉 ∈ Qα⊗α′ : ρα(q) vR ρα′(q
′)) (15)

9

A

q1

Prins

q2

tally

¬tally ∗

Figure 2: RIF automaton λvoter(A) for secret ballots

To prove that (15) is equivalent to definition (12) of λα vRA λα′ , observe that

(∀〈q, q′〉 ∈ Qα⊗α′ : ρα(q) vR ρα′(q
′))

= due to (14), with P (〈q, q′〉) , ρα(q) vR ρα′(q
′)

(∀F ∈ F∗: ρα(δ∗α(qα,F)) vR ρα′(δ
∗
α′(qα′ ,F)))

The properties of tRA for RIF automata are satisfied by using a form of
product construction that does yield a RIF automaton.

λα tRA λα′ , 〈Qαtα′ , F , δαtα′ , 〈qα, qα′〉, ραtα′〉
where Qαtα′ = Qα ×Qα′

δαtα′(〈q, q′〉, f) , 〈δα(q, f), δα′(q
′, f)〉

ραtα′(〈q, q′〉) , ρα(q) tR ρα′(q
′)

Note that (7) relating tR and tRA is satisfied by this definition.
Finally, we prove in the Appendix A that 〈ΛRA,, vRA, tRA〉 is a join

semilattice.

Examples of RIF Automata. A security policy that we might associate
with the ballot that each participant A casts in an election is: (i) only A
may read the ballot’s value and (ii) anyone may read the majority value
derived from all of the ballots cast. We formalize this security policy as
a RIF automaton λvoter(A), where Prins is the set of principals eligible to
learn the election outcome, the join semilattice of underlying restrictions
is 〈2Prins , ∩, ⊇〉, and set F of reclassifiers includes tally, which will be
associated with calculating the election outcome.

10

Figure 2 gives a graphic depiction7 of λvoter(A); the formal definition is:

λvoter(A) , 〈{q1, q2},F , δvoter , q1, ρvoter(A)〉
where

δvoter(q, f) ,

{
q2 if q = q1 ∧ f = tally
q otherwise

ρvoter(A)(q) ,

{
{A} if q = q1

Prins if q = q2

Restriction ρvoter(A) defines which principals can read the value being labeled
by λvoter(A):

• the value is secret to A if λvoter(A) is in state q1, because ρvoter(A)(q1) =
{A}, and

• any value derived by using a tally operation becomes public because
the current state transitions to q2 and ρvoter(A)(q2) = Prins hold.

Thus, according to the terminology of Figure 1, tally causes declassification.
A programmer would use reclassifying expression [maj(vA, vB, . . . , vZ)]tally

to assert that computing the majority of votes in vA, vB, . . ., vZ implements
the intended effect of a tally operation. That derived value can be stored in
a variable whose RIF label imposes no restriction on readers. Assignment

winner := [maj(vA, vB, . . . , vZ)]tally (16)

has exactly that effect if the RIF automaton associated with each variable
vA is λvoter(A) in state q1, and the RIF automaton associated with variable
winner is at least as restrictive as

λvoter(A)(tally) tRA λvoter(B)(tally) tRA · · · tRA λvoter(Z)(tally)

which happens to be equivalent to λvoter(x)[q1 7→ q2] for any x ∈ {A, . . . , Z}.
7A conventional graphical representation for finite-state automata is used. Circles

denote states of the automaton. Arrows between states are labeled with lists of reclassifiers,
any of which can trigger the allowed transitions. We will write * to abbreviate the list
of all reclassifiers and ¬` to denote a list of all reclassifiers not contained in list `. The
label inside each state q indicates associated restrictions ρα(q), and the grey-filled state
indicates the current automaton state.

11

all

q1

limited

q2

ext

¬ext ∗

Figure 3: RIF automaton of document excerpting.

A second example sketches RIF automata that enforce integrity policies
for a document management system.8 Given is a set of original documents;
these are trusted by all principals for all purposes. Operation ext(D, parms)
derives a new document by excerpting from document D according to parms .
Because “creative” excerpting can be used to generate a document that has
different meaning from the original, cautious principals should hesitate to
use such derived documents for certain purposes. Using the terminology of
Figure 1, excerpting causes deprecation.

One RIF automaton λD for supporting such a policy might employ a
join semilattice of underlying restrictions 〈{all , limited}, tR, vR〉, where
limited vR all holds; these restrictions indicate whether a document is
trusted for all purposes or for limited purposes. λD would employ a set
FDocs of reclassifiers that includes ext, which will correspond to excerpting
operations. And λD would have two automaton states, where:

ρDocs(q) ,

{
all if q = q1

limited if q = q2

Figure 3 gives a graphic depiction for a RIF automaton λD associated with
an original document D; the formal definition of λD is:

λD , 〈{q1, q2},FDocs, δDocs, q1, ρDocs〉
where

δDocs(q, f) ,

{
q2 if q = q1 ∧ f = ext
q otherwise

RIF automaton λD[q1 7→ q2] would be associated with any document pro-
duced by excerpting from D.

8This example is inspired by TruDocs [54].

12

Some applications might require a more refined basis for deciding whether
a document should be trusted for a specific purpose. One obvious basis for
making such trust assessments is the set of principals participating in the
document’s derivation. A RIF automaton can specify such policies. There
would be an automaton state qS for each set S of principals corresponding
to a subset of Prins . And restrictions being associated with an automaton
state qS would depend on members of S. So the join semilattice of underlying
restrictions is 〈2Prins , ∪, ⊆〉. Transitions are facilitated by having a set FDoc

of reclassifiers contain an element extp for each principal p that invokes an
excerpting operation. Here is the formal definition of an automaton λD that
is associated with a document D that some principal W ∈ Prins has written:

λD , 〈QPrins ,FDoc, δDoc, q{W}, ρDoc〉
where

QPrins , {qS | S ∈ 2Prins}
δDoc(qS, excp) , qS∪{p}

ρDoc(qS) , S

4 A Security Policy for RIF Labels

Our security policy for programs that use RIF labels is obtained by ex-
tending termination-insensitive noninterference (TINI) [52]. TINI applies to
programs comprising deterministic commands, so execution of a command
C1 that is started in a memoryM1 and terminates in a memoryMN can be
described by giving a finite trace

〈C1, M1〉 → 〈C2, M2〉 → · · · → 〈•, MN〉 (17)

where each state 〈Ci, Mi〉 gives a command Ci and a memoryMi. We write
• in the final state of a trace to signify further execution is not possible, but
• is not considered a command. Thus the trace for a terminating command
C includes at least two states: one state having command C followed by one
having •.

Memories are represented by functions that map variables x appearing in
any command to values M(x). These functions are then extended as usual
for mapping ordinary expressions and reclassifying expressions.

M(op(E1, . . . , En)) , op(M(E1), . . . ,M(En))

13

M([E]f1,f2,...,fn) , M(E)

An operational semantics for command execution can be given by a par-
tial function Υ, where Υ(C,M) equals the finite trace corresponding to an
execution of C that terminates when started in memoryM, and Υ(C,M) is
undefined if that execution does not terminate.

4.1 Observations as a Threat Model

A mapping Γ, which associates variables with RIF labels, induces equivalence
classes of memories that agree on the values in variables allowed to flow to
λ ∈ Λ:

M =λM′ , dom(M) = dom(M′)

∧ (∀x ∈ dom(M): Γ(x) vΛ λ⇒M(x) =M′(x))

where dom(M) is the domain of a memory M.
Our threat model is intended for analyzing systems in which principals

are co-resident and able to detect changes (subject to restrictions defined by
RIF labels) being made to shared memory or other resources. We formalize
this threat model relative to λ by constructing an observation

Mi+1 	λMi , {〈x, Mi+1(x)〉 | Mi(x) 6=Mi+1(x) ∧ Γ(x) vΛ λ}
for each transition 〈Ci, Mi〉 → 〈Ci+1, Mi+1〉 that occurs. So observation
Mi+1 	λMi gives the new value for each variable that was (i) changed by
the transition and (ii) has a RIF label at most λ. It is easy to show:

M =λM′ ⇒ (M′ 	λM = ∅)
λ vΛ λ′ ⇒ (M′ 	λM) ⊆ (M′ 	λ′M)

For a RIF label λ, program execution described by a trace τ results in a
sequence9 τ|λ of non-empty observations that are derived from the successive
transitions in τ, and it induces an equivalence relation on traces

τ =λ τ
′ , τ|λ = τ′|λ.

Sequences τ|λ of observations are the basis for our threat model. Each
principal p is assigned a set R(p) of restrictions. The threat model stipulates
that a principal p sees changes to any variable x satisfyingR(Γ(x)) vR R(p).
Thus, principal p sees those sequences τ|λ of observations where R(λ) vR
R(p) holds.

9A formal definition of τ|λ is thus given by the following, where ⇁ is used to delimit

14

4.2 Piecewise Noninterference

In the absence of reclassifications, an illicit λ-flow is witnessed when exe-
cuting a command in states having different values of a variable with RIF
label λ′ satisfying λ′ 6vΛ λ results in differences in updates to any variable
with RIF label λ or less restrictive. TINI prohibits illicit λ-flows for any join
semilattice. To formalize an extension to TINI for accommodating reclassifi-
cation under our threat model, we require some notation. For τ a non-empty
finite trace or subtrace,

〈C1, M1〉 → 〈C2, M2〉 → · · · → 〈CN , MN〉

and indices i and j satisfying 1 ≤ i ≤ j ≤ N , define

τ[i..] , 〈Ci, Mi〉 → · · · → 〈CN , MN〉
τ[i..j] , 〈Ci, Mi〉 → · · · → 〈Cj, Mj〉

τ[i] , 〈Ci, Mi〉

τ[i].C , Ci
τ[i].M , Mi

|τ| , N

In addition, we write τ.C as an abbreviation for τ[1].C and write τ.M for
τ[1].M. It is convenient to define τ[i..], τ[i..j], τ[i], τ[i].C, and τ[i].M as
equivalent to ε when 1 ≤ i ≤ j ≤ N does not hold.

We start by formalizing prohibition of illicit λ-flows for commands Ĉ that
do not contain reclassifying expressions. By definition, an illicit λ-flow is not
present if executing Ĉ in memories M and M′ satisfying M =λ M′ does
not result in different updates to a variable that has a RIF label λ or less
restrictive.

(∀λ,M,M′, τ, τ′: τ = Υ(Ĉ,M) ∧ τ′ = Υ(Ĉ,M′) ⇒ NI (λ, τ, τ′)) (18)

where
NI (λ, τ, τ′) , τ.M =λ τ

′.M ⇒ τ =λ τ
′.

observations in the resulting sequence.

τ|λ ,

ε if τ = ε or τ = 〈C, M〉

ε if τ = 〈C, M〉 → 〈C′, M′〉 ∧ M′ 	λM = ∅

M′ 	λM if τ = 〈C, M〉 → 〈C′, M′〉 ∧ M′ 	λM 6= ∅

(〈C′, M′〉 → τ′)|λ if τ = 〈C, M〉 → 〈C′, M′〉 → τ′ ∧ M′ 	λM = ∅

M′ 	λM ⇁ (〈C′, M′〉 → τ′)|λ
if τ = 〈C, M〉 → 〈C′, M′〉 → τ′ ∧ M′ 	λM 6= ∅

15

When NI (λ, τ, τ′) is false then τ and τ′ exhibit the illicit λ-flow.

Reclassification. Each transition 〈Ci, Mi〉 → 〈Ci+1, Mi+1〉 in a trace in-
volves evaluating some (possibly empty) set of expressions. The operational
semantics of commands determines what those expressions are and how their
values are computed. We posit that the operational semantics for each com-
mand Ci also includes a function ∆(Ci) that gives the set of reclassifying
expressions that command Ci evaluates as part of its first transition.

For example, with a simple imperative programming language and ordi-
nary expressions E and E ′ we might expect to have

∆(x := E) = ∅ (19)

∆(x := [E]̄f) = {[E]̄f} (20)

∆(if [E]̄f then x := [E ′]̄f) = {[E]̄f} (21)

if we are assuming that assignments are executed as a single transition and
that an if statement involves a first transition to evaluate its Boolean guard
followed by other transitions for the then (or else) parts.

Handling Downgrades.
A reclassifying expression [E]̄f is considered to perform a λ-downgrade if

Γ([E]̄f) vΛ λ and Γ(E) 6vΛ λ hold. The set of expressions that satisfy the
definition of a λ-downgrade and are evaluated by Ci to make its transition is
given by:

{E | [E]̄f ∈ ∆(Ci) ∧ Γ([E]̄f) vΛ λ ∧ Γ(E) 6vΛ λ}

To define our security policy for such programs Ĉ independent of specific
programming constructs, we posit that the language semantics includes a
function10 ∆−

Ĉ
(λ, Ci) that satisfies:

∆−
Ĉ
(λ, Ci) ⊆ {E | [E]̄f ∈ ∆(Ci) ∧ Γ([E]̄f) vΛ λ ∧ Γ(E) 6vΛ λ} (22)

If E ∈ ∆−
Ĉ
(λ, Ci) holds, then Ci is the reference point11 for the corresponding

λ-downgrade [E]̄f . The reference point signifies where in program Ĉ this λ-
downgrade is performed and what information is being λ-downgraded—the
evaluation of E at that program point Ci.

10The Ĉ subscript in ∆−
Ĉ
(λ, Ci) enables this function to depend on an enclosing program

Ĉ and/or the position of Ci within Ĉ. For example, the language semantics might omit E
from ∆−

Ĉ
(λ, x := [E]̄f) if that assignment appears in the scope of an if having a Boolean

guard E ′, where Γ(E ′) 6vΛ Γ(x) holds.
11See [41] for a thorough study of reference points for declassification.

16

Notice that, by definition, assigning the value of an expression in ∆−
Ĉ
(λ, Ci)

to a variable having RIF label λ does not constitute an illicit λ-flow. So
∆−
Ĉ
(λ, Ci) characterizes illicit λ-flows that have been eliminated by fiat. Trade-

offs associated with selecting the content of ∆−
Ĉ
(λ, Ci) are discussed at the end

of this section.
A generalization of (18) suffices to accommodate λ-downgrades that occur

in the first transition of a trace that results from executing command Ĉ.
NI (λ, τ, τ′) was defined above in terms of updates to any variable x satisfying
Γ(x) vΛ λ. But differences in updates to x that arise when expressions in

∆−
Ĉ
(λ, Ĉ) have different values are, by definition, not considered illicit λ-flows.

Therefore, initial memory pairsM andM′ that cause expressions in ∆−
Ĉ
(λ, Ĉ)

to have different values should be ignored in checking for indistinguishable
observations [51]:

(∀λ,M,M′, τ, τ′: τ = Υ(Ĉ,M) ∧ τ′ = Υ(Ĉ,M′) ⇒ dNI (λ, τ, τ′)) (23)

where

dNI (λ, τ, τ′) , (∀E ∈ ∆−
Ĉ
(λ, τ.C): τ.M(E) = τ′.M(E)) ⇒ NI (λ, τ, τ′)

By construction in (23), τ.C = Ĉ and τ′.C = Ĉ hold. Therefore τ.C = τ′.C
and

∆−
Ĉ
(λ, τ.C) = ∆−

Ĉ
(λ, τ′.C) (24)

hold too. Thus, ignoring downgraded expressions in the first transition of
trace τ (i.e., elements of ∆−

Ĉ
(λ, τ.C)), dNI (λ, τ, τ′) is also ignoring downgraded

expressions in the first transition of trace τ′ (i.e., elements of ∆−
Ĉ
(λ, τ′.C)).

To handle traces that perform λ-downgrades after the first transition in
Ĉ, we partition traces into consecutive subtraces starting with transitions
that are λ-downgrades. These subtraces are called λ-pieces. To formalize,

we introduce operators
→λ
τ and

λ→
τ . Subtrace

→λ
τ is the initial λ-piece of trace

τ and subtrace
λ→
τ is the rest. Thus,

→λ
τ and

λ→
τ satisfy the following two

properties, for traces and subtraces τ satisfying 2 ≤ |τ|.

– Trace τ splits at a λ-downgrade into
→λ
τ and

λ→
τ :

(
→λ
τ = τ ∧ λ→

τ = ε)

∨ (∃1<i< |τ|: →λ
τ = τ[1..i] ∧ λ→

τ = τ[i..] ∧ ∆−
Ĉ
(λ, τ[i].C) 6= ∅)

(25)

17

– There is no λ-downgrade after the first transition within λ-piece
→λ
τ :

(∀1 < i < |→λ
τ |: ∆−

Ĉ
(λ,
→λ

τ [i].C) = ∅) (26)

Here is a schematic representation of
→λ
τ and

λ→
τ :

τ = ︸ ︷︷ ︸
→λ
τ

〈Ĉ, M〉 ∗→

λ→
τ︷ ︸︸ ︷

〈Ci, Mi〉
∗→ 〈Cn, Mn〉 where ∆−

Ĉ
(λ, Ci) 6= ∅

Notice that by repeatedly isolating the first λ-piece of the remainder, a trace
τ is partitioned into consecutive λ-pieces.

Two λ-pieces
→λ
τ and

→λ

τ′ are witnesses of an illicit λ-flow if executing the
same command in memoriesM andM′ that satisfyM =λM′ and agree on
values of expressions that have already been λ-downgraded, leads to having
(i) different commands in their last states, and/or (ii) different updates to a
variable x where Γ(x) vΛ λ holds. This is because (i) implies that the next
λ-downgrades that are reached by these two λ-pieces are not found at the
same program point. So, the reference point of these λ-downgrades is being
compromised since it depends on information that is not allowed to flow to
λ. When (ii) occurs, updates to x have been compromised because they are
influenced by information that is not allowed to flow to λ. In sum, (i) and
(ii) expose compromises of what is allowed to flow to λ and where in the
program.

In this paper, we avoid these compromises to (i) and (ii) by rejecting

certain pairs of λ-pieces
→λ
τ and

→λ

τ′ :

(
→λ
τ . C =

→λ

τ′. C ∧ →λ
τ .M =λ

→λ

τ′ .M)

∧ (∀E ∈ ∆−
Ĉ
(λ, τ.C): τ.M(E) = τ′.M(E))

⇒ (τ[|→λ
τ |].C = τ[|

→λ

τ′ |].C ∧ →λ
τ =λ

→λ

τ′)

(27)

By iterating through successive corresponding λ-pieces in two traces τ

and τ′, the following formula uses the approach embodied by (27) to identify
λ-pieces that evidence an illicit λ-flow and thus provides the formal guarantee
associated with downgrades.

18

Definition (dpNI).

dpNI (λ, τ, τ′) , (τ 6= ε ∧ τ′ 6= ε ∧ →λ
τ .C =

→λ

τ′ .C ∧ →λ
τ .M =λ

→λ

τ′ .M)

∧ (∀E ∈ ∆−
Ĉ
(λ, τ.C): τ.M(E) = τ′.M(E)))

⇒ (τ[|→λ
τ |].C = τ[|

→λ

τ′ |].C ∧ →λ
τ =λ

→λ

τ′

∧ dpNI (λ,
λ→
τ ,

λ→
τ′))

(28)

Notice, if traces τ and τ′ each are a single λ-piece (i.e., τ =
→λ
τ and τ′ =

→λ

τ′

for all λ) then dpNI (λ, τ, τ′) is equivalent to (27), since dpNI (λ,
λ→
τ ,

λ→
τ′) in

the consequent of (28) would be dpNI (λ, ε, ε), which trivially holds.
A characterization similar to (23) now handles downgrades that appear

anywhere in traces that result from executing a command C.

(∀λ,M,M′, τ, τ′: τ = Υ(C,M) ∧ τ′ = Υ(C,M′) ⇒ dpNI (λ, τ, τ′)) (29)

Downgrade Examples. Some example programs illustrate nuances of (29).
These programs use RIF labels ΛLH , {L,H} with L @Λ H and reclassifiers
F , {↓, ↑} satisfying T(H, ↓) , L and T(L, ↑) , H. Assume that Γ(low) =
Γ(low ′) = L and Γ(high) = Γ(high ′) = H.

The first example program assigns in C3 a value with RIF label H to a
variable with RIF label L without use of a reclassifying expression and, thus,
would seem to exhibit an illicit L-flow.

C1: low := [op(high)]↓;

C2: low ′ := [op(high ′)]↓;

C3: low := op(high)

(30)

Traces for program (30) comprise two L-pieces.12 One L-piece starts with
command C1, and the other L-piece starts with command C2 (and includes
C3), due to the following.

∆−(30)(L, C1) = {op(high)} ∆−(30)(L, C2) = {op(high ′)} ∆−(30)(L, C3)=∅.

12Each trace is also a single H-piece. For that case, dpNI (H, τ, τ′) holds because τ.M =H

τ′.M is equivalent to τ.M = τ′.M. The same applies to example programs (31) and (32)
to come.

19

Checking, we find (29) is satisfied despite our earlier premonition about C3.
A close look shows why the flow to low in assignment C3 actually ought to be
allowed, as characterization (29) does: C3 is assigning an L-downgraded value,
since the value of op(high) in the right hand side of C3 was an L-downgraded
value in C1 and has not been changed since.

Program (30) highlights a difference in how downgrades are treated by
PWNI as compared with proposals using memory-reset (e.g., [12]). Under
PWNI, a downgraded value remains so for the remainder of the trace; with
memory-reset, a downgraded value remains so only until the next reclassi-
fication operation. So, program (30) would be considered to exhibit a leak
according to the memory-reset approach. Gradual release [3], which does not
rely on memory-reset, deems program (30) secure, like PWNI does.

A second example program changes in C2 the value in high after the L-
downgrade in C1.

C1: low := [op(high)]↓ ;

C2: high := high ′;
C3: low := op(high)

(31)

Traces for (31) comprise a single L-piece that starts with command C1 be-
cause:

∆−(31)(L, C1) = {op(high)} ∆−(31)(L, C2) = ∅ ∆−(31)(L, C3) = ∅

Program (31) does not satisfy (29), because traces τ and τ′ exist that generate
observations that are not (but should be) indistinguishable. This is because
there exist memories M and M′ satisfying M =L M′ and M(high ′) 6=
M′(high ′). When alternative executions of C1 are started in these two mem-
ories, C3 generates different updates to low . And having (29) not satisfied for
this program is what we should desire—the value in high when C3 executes is
not the value that was L-downgraded, so in program (31) a value with RIF
label H that has not been L-downgraded is being used to update a variable
with RIF label L.

We also have examined dpNI with respect to downgrades for the examples
used by Askarov and Sabelfeld [4] when discussing localized delimited release.
Both dpNI and localized delimited release yield the same judgments for these
examples, although in general the two policies are incomparable.

A final program illustrates the role of conjunct τ[|→λ
τ |].C = τ[|

→λ

τ′ |].C in

20

the consequent of dpNI (λ, τ, τ′).

C1: if high ′ > 0 then C2: high := 3

C3: low := [high + 2]↓

else C4: high := 4

C5: low := [high mod 2]↓

(32)

Consider traces τ = Υ(C1,M) and τ′ = Υ(C1,M′), where the following hold:
M =L M′, M(high ′ > 0) = true, and M′(high ′ > 0) = false. Trace τ

comprises a first L-piece that starts with C1 (and includes C2), followed by
a second L-piece that starts with C3; trace τ′ has a first L-piece that starts
with C1 (and includes C4), followed by a second L-piece that starts with C5:

τ = ︸ ︷︷ ︸
L-piece

〈C1, M〉 → 〈C2, M2〉 →
L-piece︷ ︸︸ ︷

〈C3, M3〉 → 〈•, Mt〉

τ′ = ︸ ︷︷ ︸
L-piece

〈C1, M′〉 → 〈C4, M4〉 →
L-piece︷ ︸︸ ︷

〈C5, M5〉 → 〈•, Mt′〉

Program (32) does not satisfy (29) because both τ[|→λ
τ |].C = C3 and

τ[|
→λ

τ′ |].C = C5 hold, so conjunct τ[|→λ
τ |].C = τ[|

→λ

τ′ |].C in the consequent of
dpNI (L, τ, τ′) does not hold. And having (29) not satisfied is what we should
desire, because the choice of C3 or C5 leaks information about the value of
high ′ to low .

Instead of command equality (i.e., τ[|→λ
τ |].C = τ[|

→λ

τ′ |].C), we could
have extended the bisimulation used in [4] to handle downgrades of arbi-
trary expressions during execution. However, with this bisimulation, we
would risk accepting insecure programs. This is because this bisimulation
does not seem to set intermediate reference points for the downgrades. For
example, consider program (32), which is insecure. A bisimulation that sup-
ports downgrades with reference points on intermediate states would accept
the program as secure. The case to consider concerns the execution steps
〈C3, M3〉 → 〈•, Mt〉 and 〈C5, M5〉 → 〈•, Mt′〉, where M3 =L M5. Adapting
the bisimulation definition in [4] to support downgrades with reference points
on intermediate states, these two execution steps constitute a bisimulation if

21

(i) M3([high + 2]↓) =M5([high + 2]↓) if and only if M3([high mod 2]↓) =
M5([high mod 2]↓), and

(ii) ifM3([high + 2]↓)=M5([high + 2]↓), thenMt =L Mt′ and states 〈•, Mt〉,
〈•, Mt′〉 are bisimilar.

Condition (i) holds because, for any such reachable memories M3 and M5,
both equalities are false. Because these equalities are false, condition (ii) is
vacuously true. So these execution steps are (vacuously) bisimulations, and
thus this insecure program is accepted as secure. Another form of bisimula-
tion might fare better, but we have not found one.

Handling Upgrades. A reclassifying expression [E]̄f is considered to per-
form a λ-upgrade if Γ(E) vΛ λ and Γ([E]̄f) 6vΛ λ hold. Characterization (29)
does not detect illicit λ-flows caused by λ-upgrades. Consider, for example,
a program comprising assignment

low := [low ′]↑ (33)

that uses RIF labels from ΛLH. Assuming Γ(low) = L and Γ(low ′) = L
hold, this program satisfies (29). Yet the program exhibits an illicit L-flow:
differences in the initial value of an L-upgraded expression ([low ′]↑) with RIF
label H result in differences in updates to a variable (low) with RIF label L
where Γ([low ′]↑) 6vΛ Γ(low) holds.

In checking for evidence of illicit λ-flows, (29) compares traces τ and τ′

that differ in initial values of variables whose RIF labels λ′ satisfy λ′ 6vΛ λ.
That set of comparisons covers some expressions whose RIF labels λ′ satisfy
λ′ 6vΛ λ but it does not cover all expressions—it ignores expressions that
involve λ-upgrades.

A programming language that supports RIF labels will provide syntax
that allows programmers to specify λ-upgrades by using reclassifying expres-
sions. To be independent of language constructs, we posit that the language
semantics includes a function ∆+

Ĉ
(λ, Ci) that satisfies:

∆+

Ĉ
(λ, Ci) ⊇ {E | [E]̄f ∈ ∆(Ci) ∧ Γ([E]̄f) 6vΛ λ ∧ Γ(E) vΛ λ} (34)

So ∆+

Ĉ
(λ, Ci) contains all expressions that satisfy the definition of a λ-upgrade

and are evaluated by Ci (within Ĉ) to make its transition.
Since (29) correctly identifies illicit λ-flows from variables x for which

Γ(x) 6vΛ λ holds, we transform λ-upgraded expressions to such variables as a

22

way to identify illicit λ-flows for λ-upgraded expressions. Define translation
T(λ, Ĉ) to be the command that results from, in every subcommand Ci of Ĉ,
substituting an expression next(hE) for every expression [E]̄f ∈ ∆(Ci) where
E ∈ ∆+

Ĉ
(λ, Ci) and Γ(next(hE)) = Γ([E]̄f) hold.13 Here, hE is a fresh variable

that stores a list of values that E could assume, and successive evaluations of
next(hE) return successive elements of that list. If a program Ĉ exhibits an

illicit λ-flow from a λ-upgraded expression E then, by construction, T(λ, Ĉ)
exhibits an illicit λ-flow from next(hE). Moreover, because T(λ, Ĉ) contains
no λ-upgraded expressions, it exhibits no illicit λ-flows from upgraded λ-
expressions per se. That means we can use (29) to check for illicit λ-flows in

Ĉ by checking T(λ, Ĉ) for illicit λ-flows. A formal definition of T(λ, Ĉ) can be
found in the Appendix B.

The resulting characterization of piecewise noninterference (PWNI) for

a program Ĉ employs dpNI (λ, τ, τ′)—defined in (28)—by extending (29) to
handle λ-flows from λ-upgraded expressions.

Definition (Piecewise Noninterference).

PWNI (Ĉ) ,
(∀λ,M,M′, τ, τ′: τ = Υ(T(λ, Ĉ),M) ∧ τ′ = Υ(T(λ, Ĉ),M′)

⇒ dpNI (λ, τ, τ′))

(35)

The election example and the conference-management example of §1 both
satisfy this definition when coded in a straightforward manner.

Upgrade Examples. PWNI (Ĉ) as defined in (35) considers executions of a
translation in which L-upgraded expressions E are replaced by different fresh
variables hE . So, equivalent expressions within an execution and in different
executions of the original program may take different values in executions of
the translation. Here is an illustration, where RIF labels are from ΛLH.

C1: if [low = low]↑ then C2: low := 1 else C3: low := 2 (36)

PWNI (C1) creates translated program T(λ, C1),

C1: if next(hlow=low) then C2: low := 1 else C3: low := 2 (37)

where Γ(next(hlow=low)) = H holds. Boolean guard [low = low]↑ in (36) is
always true, so execution of (36) produces no traces in which C3 executes. In

13See (36) and (37) below for an example of the translation.

23

translated program (37), Boolean guard next(hlow=low) takes values true and
false, so there are traces of (37) where C3 executes as well as traces where
C2 executes. Thus, PWNI (C1) is not satisfied for (37) due to the illicit L-
flow from upgraded expression [low = low]↑ to low , even though in program
(36) upgraded expression [low = low]↑ never actually flows to low . One way
to circumvent this conservatism is to restrict the set of values that a fresh
variable can take. In particular, that set can be limited to containing values
that the upgrading expression can take during program execution.

Assessing PWNI . Whether a program satisfies PWNI (Ĉ) depends, in
part, on flexibility that (22) allows in the definition of ∆−

Ĉ
(λ, Ci) and that

(34) allows in the definition of ∆+

Ĉ
(λ, Ci).

• ∆−
Ĉ
(λ, Ci) is constrained only by (22), so ∆−

Ĉ
(λ, Ci) may omit expressions

that cause λ-downgrades. With fewer expressions in ∆−
Ĉ
(λ, Ci):

– There are more pairs of memories from which execution results in

a pair of λ-pieces whose subtraces
→λ
τ and

→λ

τ′ must satisfy (27).

So the omissions may cause PWNI (Ĉ) to reject programs that do
not actually exhibit illicit λ-flows.

– Fewer λ-pieces need to be checked by evaluating dpNI (λ, τ, τ′). So

the omissions may cause PWNI (Ĉ) to accept more programs that
do not exhibit illicit λ-flows.

• ∆+

Ĉ
(λ, Ci) is constrained only by (34), so ∆+

Ĉ
(λ, Ci) may include expres-

sions that do not cause λ-upgrades. The additional expressions E are
replaced in each Ci by expressions involving list hE . That means there
could be more pairs of memories (i.e., those that differ in hE) from

which execution results in a pair of λ-pieces whose subtraces
→λ
τ and

→λ

τ′ must satisfy (27). So the additions may cause PWNI (Ĉ) to reject
programs that do not exhibit illicit λ-flows.

Absent a widely accepted semantic definition for information flow in the
presence of reclassifications—and none has yet appeared in the literature—
examples must suffice as a starting point for any discussion of whether defi-
nitions being given for ∆−

Ĉ
(λ, Ci) and ∆+

Ĉ
(λ, Ci) are sensible.

The larger question is whether PWNI constitutes a reasonable approach
to defining secure programs when reclassifications are possible, independent

24

of the specific choices for ∆−
Ĉ
(λ, Ci) and ∆+

Ĉ
(λ, Ci). Here, besides considering

various examples, the declassification principles described in Sabelfeld and
Sand [53] offer criteria for evaluation. The principles are:

• Conservativity : In programs that do not involve reclassification, satis-
fying PWNI implies satisfying noninterference. Thus, PWNI satisfies
conservativity.

• Non-occlusion: PWNI satisfies non-occlusion because declassifications
do not allow other secret values to be leaked. The syntactic equal-
ity on commands at the end of λ-pieces, which some might find too
conservative, is here seen as ensuring PWNI satisfies non-occlusion.

• Semantic Consistency : PWNI does not satisfy semantic consistency.
Transformation of a declassification-free program in a way that pre-
serves semantics might not preserve PWNI. However, we know of no
policy that satisfies semantic consistency and also (i) specifies a where
dimension for downgrades, (ii) has the capability to allow downgrades
of expressions in the midst of the computation (rather than restrict-
ing downgrades to initial values), (iii) does not employ memory-reset
(which was already shown problematic for program (30) above), and
(iv) satisfies Conservativity and Non-occulusion. An interesting open
research problem is to determine whether (i)–(iv) necessarily implies
that semantic consistency cannot be satisfied.

• Monotonicity of Release: PWNI does not satisfy monotonicity of re-
lease, because adding declassification annotations might render a secure
program insecure. The example used in [4], which shows that localized
delimited release does not satisfy monotonicity of release, applies to
PWNI as well.

5 Static Enforcement of PWNI

Type-checking allows static enforcement of PWNI (Ĉ) when Ĉ is written in
a programming language having a type system based on some checkable
class of RIF labels. A simple imperative language provides a vehicle for
demonstration.

25

E ::= ν | x | op(E1, . . . , En)
C ::= skip

| x := [E]̄f
| if [E]̄f then Ct else Ce
| while [E]̄f do Ct
| C1; C2

Figure 4: Syntax of simple imperative language

Language and Semantics. Figure 4 gives a syntax of a simple program-
ming language for defining commands. There, ν ranges over constants, x
ranges over program variables, E , E1, E2, . . . range over ordinary expressions,
and Ct, Ce, C1, C2, . . . range over commands. Note, allowing only reclassify-
ing expressions (rather than ordinary expressions) in the language syntax for
commands is not a limitation—due to (5), identity reclassifier ε is handled
by every RIF label and reclassifying expression [E]ε has the same value and
RIF label as ordinary expression E .

Figure 5 gives an operational semantics for the programming language of
Figure 4. We write M[x 7→ν] there to denote a mapping that is identical to
M exceptM(x) = ν. The rules in Figure 5 define partial function Υ(C,M).

The final part of the semantics for this programming language is defini-
tions for ∆(Ci), ∆−

Ĉ
(λ, Ci), and ∆+

Ĉ
(λ, Ci). These are given in Figure 6 through

Figure 8. In defining ∆−
Ĉ
(λ, Ci), we write lhs(Ci) to denote the set of target

variables in assignments appearing in a command Ci.

• ∆−
Ĉ
(λ, Ci) excludes λ-downgrades that cannot influence the value being

assigned to a variable x where Γ(x) vΛ λ holds. No illicit λ-flow is
possible without such an assignment.

• ∆+

Ĉ
(λ, Ci) for if and while is the smallest set that satisfies (34). To

exclude λ-upgrade guards because an assignment does not appear in
the body of an if or while (as done in the definition of ∆+

Ĉ
(λ, Ci)) would

invalidate (34) by decreasing the size of ∆+

Ĉ
(λ, Ci).

Typing Rules. Figure 9 gives rules to associate a type with each expres-
sion. The rules for ordinary expressions are standard. Expr-T instantiates (9);
AnnExpr-T is based on (10).

26

Skip:
〈skip, M〉 → 〈•, M〉

Asgn:
M([E]̄f) = ν

〈x := [E]̄f , M〉 → 〈•, M[x 7→ ν]〉

Brch1:
M([E]̄f) = true

〈if [E]̄f then Ct else Ce, M〉 → 〈Ct, M〉

Brch2:
M([E]̄f) = false

〈if [E]̄f then Ct else Ce, M〉 → 〈Ce, M〉

Loop1:
M([E]̄f) = true

〈while [E]̄f do Ct, M〉 → 〈Ct; while [E]̄f do Ct, M〉

Loop2:
M([E]̄f) = false

〈while [E]̄f do Ct, M〉 → 〈•, M〉

Seq1:
〈C1, M〉 → 〈•, M1〉
〈C1; C2, M〉 → 〈C2, M1〉

Seq2:
〈C1, M〉 → 〈C, M1〉 C 6= •
〈C1; C2, M〉 → 〈C; C2, M1〉

Figure 5: Operational Semantics

∆(skip) , ∅
∆(x := [E]̄f) , {[E]̄f}
∆(if [E]̄f then Ct else Ce) , {[E]̄f}
∆(while [E]̄f do Cw) , {[E]̄f}
∆(C1; C2) , ∆(C1)

Figure 6: Definition of ∆(Ci)

27

∆−
Ĉ
(λ, skip) , ∅

∆−
Ĉ
(λ, x := [E]̄f) ,

{
{E} if Γ(E) 6vΛ λ ∧ Γ([E]̄f) vΛ λ ∧ Γ(x) vΛ λ

∅ otherwise

∆−
Ĉ
(λ, if [E]̄f then Ct else Ce) ,

{E} if Γ(E) 6vΛ λ ∧ Γ([E]̄f) vΛ λ

∧ (∃x ∈ lhs(Ct) ∪ lhs(Ce): Γ(x) vΛ λ)
∅ otherwise

∆−
Ĉ
(λ,while [E]̄f do Cw) ,

{E} if Γ(E) 6vΛ λ ∧ Γ([E]̄f) vΛ λ

∧ (∃x ∈ lhs(Cw): Γ(x) vΛ λ)
∅ otherwise

∆−
Ĉ
(λ, C1; C2) , ∆−

Ĉ
(λ, C1)

Figure 7: Definition of ∆−
Ĉ
(λ, C)

∆+

Ĉ
(λ, skip) , ∅

∆+

Ĉ
(λ, x := [E]̄f) ,

{
{E} if Γ(E) vΛ λ ∧ Γ([E]̄f) 6vΛ λ

∅ otherwise

∆+

Ĉ
(λ, if [E]̄f then Ct else Ce) ,

{
{E} if Γ(E) vΛ λ ∧ Γ([E]̄f) 6vΛ λ

∅ otherwise

∆+

Ĉ
(λ,while [E]̄f do Cw) ,

{
{E} if Γ(E) vΛ λ ∧ Γ([E]̄f) 6vΛ λ

∅ otherwise

∆+

Ĉ
(λ, C1; C2) , ∆+

Ĉ
(λ, C1)

Figure 8: Definition of ∆+

Ĉ
(λ, C)

28

Val-T:
Γ ` ν:⊥

Var-T:
Γ(x) = λ

Γ ` x:λ

Expr-T:
Γ ` E1:λ1 . . . Γ ` En:λn

Γ ` op(E1, . . . , En) : λ1 tΛ · · · tΛ λn

AnnExpr-T:
Γ ` E1:λ1 . . . Γ ` En:λn

Γ ` [op(E1, . . . , En)]f1,...,fn : T (λ1, f1) tΛ · · · tΛ T (λn, fn)

Figure 9: Typing rules for expressions

Skip-T:
Γ, λκ ` skip

Asgn-T:
Γ ` [E]̄f :λg Γ ` x:λx λκ tΛ λg vΛ λx

Γ, λκ ` x := [E]̄f

Brch-T:
Γ ` [E]̄f :λg Γ, λκ tΛ λg ` Ct Γ, λκ tΛ λg ` Ce

Γ, λκ ` if [E]̄f then Ct else Ce

Loop-T:
Γ ` [E]̄f :λg Γ, λκ tΛ λg ` Ct

Γ, λκ ` while [E]̄f do Ct
Seq-T:

Γ, λκ ` C1 Γ, λκ ` C2

Γ, λκ ` C1; C2

Figure 10: Typing rules for commands

Figure 10 shows the familiar rules to deduce whether a command is type-
correct. Judgment Γ, λκ ` C signifies that a command C is type correct.
Parameter λκ in these rules is called pc-label. It is used in checking for
implicit flows. A pc-label λκ associates a type with the conjunction of the
guards for all of the enclosing conditional commands; λκ is combined with
the type of the right hand side of an assignment statement.

The following theorem states that if a program is type correct, then this
program satisfies PWNI.

Theorem 1. If Γ, λκ ` C, then PWNI (C) holds.

Proof. See [33, Appendix A.1]

It was not a coincidence that we could enforce our expressive RIF labels

29

by adapting a type system like the one used in Volpano et al. [59]. The type
system in [59] can enforce any set of labels that form a join semi-lattice, and
RIF labels form a join semi-lattice. In general, any enforcement mechanism
that enforces noninterference for traditional label lattices, should be easily
extendable to enforce piecewise noninterference for RIF labels, since piecewise
noninterference is the conjunction of noninterference for successive λ-pieces
of execution.

6 κ-Labels: Illustrating Leverage from Type-

Checking RIF Labels

Although RIF automata are a checkable class of RIF labels, they are not
expressive enough to specify allowed flows of information in the presence
of cryptographic operations. In this section we give another example of a
checkable class of RIF labels: κ-labels. Programs written in terms of a
type system based on κ-labels can be checked by a compiler in order to get
assurance that a value v flows to v′ only if principals authorized to read v′ are
(i) authorized to read v or (ii) unable to reverse some cryptographic operation
used in generating v′ from v. So the type system allows us to conclude that
encryptions and decryptions are successfully keeping secrets. Our modelling
of cryptographic operations follows the symbolic formulation of Dolev and
Yao [22].14

The starting point for defining allowed flows based on κ-labels is mapping
KN to sets of principals from variables and from cryprographic keys.

• KN (x) is the set of principals allowed to know the initial value of
variable x.

• KN (k) is the set of principals allowed to know the value of crypto-
graphic key k, which is considered a constant.

Reclassifiers for κ-labels are associated with cryptographic operations,
and rewrite rules for sequences of reclassifiers characterize when crypto-
graphic operations are inverses. Different cryptosystems and cryptographic
operations give rise to different reclassifiers along with different sets of rewrite
rules.

14Notice that we do not consider a Dovel-Yao attacker. Our threat model is the one
defined in subsection 4.1.

30

κ-Atoms. A κ-atom κi for a value vi to which v has flowed is a pair 〈Fi,βi〉,
where Fi ∈ F∗κ gives the sequence of cryptographic operations involved in
deriving vi from v, and βi is a set of principals authorized to read v. Let
Aκ denote the set of κ-atoms. Reclassifier θ(a1, . . . , an) ∈ Fκ is associated
with a cryptographic operation θ whose invocation has a1, ..., an in its list
of arguments, which may be cryptographic keys or other expressions.

A rewrite rule will have form

θ(a) θ′(a′)� ε

where θ(a) and θ′(a′) are reclassifiers. This rewrite rule defines θ′(a′) to
be the complement of θ(a) and allows appearances of ”θ(a) θ′(a′)” to be
deleted in a sequence of reclassifiers. Notation θ(a)c will be used to denote
the complement of reclassifier θ(a). Reclassifiers are not required to have
complements, but if complements θ(a)c and (θ(a)c)

c
both do exist then we

require that (θ(a)c)
c

= θ(a) holds.
To illustrate, we formulate κ-atoms for a symmetric-key cryptosystem

having two cryptographic operations—encryption and decryption. Enc(p, k)
produces a ciphertext from plaintext p and key k. Its reclassifiers are de-
fined by regarding appearances of Enc(p, k) to be instances of reclassifying
expression

[Enc(p, k)]θ1Enc(k), θ2Enc(p)

which posits flows occur from p (associated with reclassifier θ1
Enc(k)) and from

k (associated with reclassifier θ2
Enc(p)) to the value that Enc(p, k) produces.

Dec(c, k) recovers the plaintext iff ciphertext c was previously encrypted
using k. It has reclassifiers for the flows from c and from k to the value that
Dec(c,K) produces:

[Dec(c, k)]θ1Dec(k), θ2Dec(c)

And we assume Enc and Dec satisfy the expected properties.

Dec(Enc(v, k), k) = v holds for all values v and keys k. (38)

Dec(c, k) is the only way to recover p from c = Enc(p, k). (39)

Key k cannot be recovered from ciphertexts created using k. (40)

Property (38) stipulates that the effects of Enc(·, k) on plaintext can be
reversed by using Dec(·, k); it is that basis for rewrite rule

∀k: θ1
Enc(k) θ1

Dec(k)� ε. (41)

31

Property (39) further implies that θ1
Dec(k) is the only complement of θ1

Enc(k).
Thus, (39) stipulates an absence of certain rewrite rules. Finally, (40) pro-
hibits rewrite rules that would define complements for reclassifiers associated
with flows from k: θ2

Enc(·) and θ2
Dec(·). This prohibition corresponds to for-

bidding cryptographic functions where a key used as input to that function
can be recovered from the output. It also rules out cryptographic systems
that admit plaintext attacks.15

Reduced sequence (|F |) denotes the sequence obtained by repeatedly ap-
plying some given rewrite rules to sequence F of reclassifiers, until no longer
possible. By definition, no reclassifier is followed by its complement in a
reduced sequence. If the full set of rewrite rules defines at most one com-
plement for each reclassifier then (i) reduced sequence (|F |) is unique and
(ii) the order in which rewrite rules are applied does not matter, so (|F |) is
associative; see [33, Appendix A.3] for proofs.

All reclassifiers in rewrite rule (41) have a single argument k; it is a key.
We define set X (θ(k)) of principals that can recover a value produced by a
cryptographic operation associated with a reclassifier θ(k) as follows.

X (θ(k)) ,

{
∅ if complement θ(k)c does not exist
KN (k′) if θ(k)c = θ′(k′)

Set complement X (f) thus contains those principals that cannot recover a
value produced by the cryptographic operation identified by f.

If a value v′ is derived from v by performing a sequence of cryptographic
operations described with sequence F of reclassifiers then v can be recovered
from v′ only by those principals able to perform inverses of all operations
mentioned in (|F |). So the set X (F) of principals that cannot recover a value
produced using a sequence F of cryptographic operations are those principals

15A plaintext attack uses plaintext p and corresponding ciphertext c to recover the
encryption key k satisfying c = Enc(p, k). The attack can be viewed as having a crypto-
graphic function [PA(p, c)]θ1

PA(c),θ2
PA(p) that satisfies:

PA(p, c) = k if c = Enc(p, k)

This semantics for PA(p, c) would lead to rewrite rules—precluded by (40) stipulating that
plaintext attacks are infeasible—for the flows from k in Enc(p, k):

θ2
Enc(p) θ

2
PA(p)� ε

32

that cannot invert at least one of the operations in F . We characterize that
set formally as follows, writing f ∈ (|F |) to indicate that f ranges over the
reclassifiers appearing in reduced sequence (|F |).

X (F) ,
⋃

f∈(|F |)

X (f)

κ-atoms concern confidentiality for principals in a set Prins . Subsets are
more restrictive, so we use 〈2Prins, ∩, ⊇〉 as the join semilattice 〈R, tR, vR〉
of underlying restrictions. RA(〈F ,β〉) is defined to be the set of principals
to which the value associated with 〈F ,β〉 may flow—the set of principals in
β along with principals X (F) that cannot recover an input to the sequence
F of cryptographic operations:

RA(〈F ,β〉) , β ∪ X (F)

And TA(〈F ,β〉, f) specifies the flows allowed by 〈F ,β〉 when its associated
value is transformed by some cryptographic operation being identified with
reclassifier f.

TA(〈F ,β〉, f) , 〈F f,β〉

For example, an initial value v that can flow to principals in βv would be
associated with κ-atom 〈ε,βv〉. And κ-atom TA(〈F ,β〉, f) associated with a
transformed value potentially changes the set of principals where that trans-
formed value might flow.16

The definition of restrictiveness relation vA on κ-atoms is obtained by
substituting RA and TA for R and T in vΛ definition (8). Notice that for all
F ∈ F∗κ

〈F ,β〉 = 〈(|F |),β〉

and, therefore, an implementation of κ-atoms need only store reduced se-
quences.

A computable test to decide vA for κ-atoms can be obtained by extend-
ing complement sequences from Dolev-Yao [22], as follows. For any finite
sequence F of reclassifiers, define maximal complement sequence F c to be

16The new set of principals is a superset when (|F f|) extends (|F |) and X (f) 6⊆ X (F) holds.
It is a subset when (|F f|) is a proper prefix of (|F |), X (f) 6⊆ X (F f) and X (fc) 6⊆ X (F f) hold.
(If (|F f|) is a proper prefix of (|F |) then f is the complement of the final reclassifier in (|F |),
so (|F f|) contains neither the final reclassifier in (|F |) nor the f being added.)

33

the sequence of reclassifiers that minimizes the length of (|F F c|). F c can be
computed by taking the complement of each element in F , starting at the
end.

F c ,

ε if F = ε
fcF 1

c if F = F 1f and fc exists
ε otherwise

A test for vA is then given by:

〈F 1,β1〉 vA 〈F 2,β2〉 = RA(〈F 1F 1
c, β1〉) ⊇ RA(〈F 2F 1

c, β2〉) (42)

Soundness and completeness proofs for this test are given in [33, Appendix
A.3].

κ-Labels. A κ-label K is a finite set of κ-atoms. If we adopt the following
definitions for RL(K), and TL(K, f),

RL(K) , tR κ ∈ K: RA(κ) (43)

TL(K, f) , {TA(κ, f) | κ ∈ K} (44)

then κ-labels form a join semilattice 〈2Aκ , tL, vL〉 where tL is defined by

K tL K′ , K ∪ K′ (45)

and restrictiveness relation vL is defined by substituting RL and TL into vΛ

definition (8). The RIF class is then characterized by:

〈〈R, tR, vR〉, 〈2Aκ , tL, vL〉,Fκ,RL, TL〉 (46)

Examples of κ-labels. To illustrate, we typecheck a simple command that
invokes operations of the symmetric cryptosystem formalized above. Suppose
x is allowed to flow to some subset Px of set Prins of all principals, principals
in Px are authorized to know key k, y is allowed to flow to some subset Py
of Prins , and principals in Py are authorized to know key k′:

KN (x) = Px KN (k) = Px KN (y) = Py KN (k′) = Py

Here is a command that combines the symmetric-key cryptographic opera-
tions discussed above.

w := [Enc(x, k)]θ1Enc(k), θ2Enc(x) ;

y := [Dec(w, k′)]θ1Dec(k
′), θ2Dec(w)

(47)

34

A first assignment encrypts x using key k and then a second assignment
attempts to decrypt that ciphertext using a key k′.

Given the assumptions above about x and k, we posit the following type
declarations for the variables named in the first assignment of (47). Notice,
the type for w corresponds to a value that has been encrypted under key k.

Γ(x) , {〈ε, Px〉} Γ(k) , {〈ε, Px〉} Γ(w) , {〈θ1
Enc(k), Px〉} (48)

Using these types and typing rule AnnExpr-T in Figure 9, we obtain a type for
the RHS of the first assignment of (47).

TL(Γ(x), θ1
Enc(k)) tL TL(Γ(k), θ2

Enc(x))

So, according to typing rule Asgn-T in Figure 10, that assignment is type
correct provided the following holds.

(TL(Γ(x), θ1
Enc(k)) tL TL(Γ(k), θ2

Enc(x))) vL Γ(w) (49)

Substituting according to type declarations (48), obligation (49) for type
correctness simplifies as follows:

{〈θ1
Enc(k), Px〉} ∪ {〈θ2

Enc(x), Px〉} vL {〈θ1
Enc(k), Px〉}

= {〈θ1
Enc(k), Px〉, 〈θ2

Enc(x), Px〉} vL {〈θ1
Enc(k), Px〉}

= (∀F : RL({〈θ1
Enc(k)F , Px〉, 〈θ2

Enc(x)F , Px〉}) vR RL({〈θ1
Enc(k)F , Px〉}))

= (∀F : RA(〈θ1
Enc(k)F , Px〉) tR RA(〈θ2

Enc(x)F , Px〉) vR RA(〈θ1
Enc(k)F , Px〉))

= (∀F : (Px ∪ X (θ1
Enc(k)F)) ∩ (Px ∪ X (θ2

Enc(x)F) ⊇ Px ∪ X (θ1
Enc(k)F))

= (∀F : (Px ∪ X (θ1
Enc(k)F)) ∩ (Px ∪ Prins) ⊇ Px ∪ X (θ1

Enc(k)F))

= (∀F : (Px ∪ X (θ1
Enc(k)F) ⊇ Px ∪ X (θ1

Enc(k)F))

The final formula is trivially equivalent to true.
Analogous reasoning establishes that the second assignment is type cor-

rect provided the following holds.

(TL(Γ(w), θ1
Dec(k

′)) tL TL(Γ(k′), θ2
Dec(w))) vL Γ(y) (50)

The validity of (50) depends on whether k = k′ holds and on the choice of
Py and Pk′ in the following proposed types for Γ(y) and Γ(k′):

Γ(y) , {〈ε, Py〉} Γ(k′) , {〈ε, Pk′〉}

35

• Case k = k′: From Γ(k′) = Γ(k), we conclude from Γ(k) and Γ(k′) that
Pk′ = Px holds. Expanding (50) gets

(∀F : (Px ∪ X (θ1
Enc(k) θ1

Dec(k)F)) ∩ (Px ∪ X (θ2
Dec(w)F)) ⊇ (Py ∪ X (F)))

= due to (40), X (θ2
Dec(w)F) = Prins

(∀F : Px ∪ X (θ1
Enc(k) θ1

Dec(k)F) ⊇ (Py ∪ X (F)))

= since X (θ1
Enc(k) θ1

Dec(k)F) simplifies to X (F)

(∀F : Px ∪ X (F) ⊇ (Py ∪ X (F)))

This final formula is valid provided Px ⊇ Py holds. So we have es-
tablished that if k = k′ holds then the assignment is type correct pro-
vided Px ⊇ Py holds. This conclusion should not be surprising, since if
Px 6⊇ Py holds then once w has been decrypted, the value of x (which
would now be stored in y) could flow to principals not in Px (because
they are in Py − Px).

• Case k 6= k′: Expanding (50) yields::

(∀F : (Px ∪X (θ1
Enc(k) θ1

Dec(k
′)F))∩ (Pk′ ∪X (θ2

Dec(w)F)) ⊇ (Py ∪X (F)))

This formula is valid for all values of Px and Py since, by definition of
X (·),

X (θ1
Enc(k) θ1

Dec(k
′)F) = Prins and X (θ2

Dec(w)F) = Prins

because complements θ1
Dec(k

′)
c

and θ2
Dec(w)

c
do not exist. Thus, we

conclude the assignment is type correct when k 6= k′, for any choices
of Py and Pk′ . Again, this outcome should not be surprising. With no
way to recover x from the value stored in y by the second assignment
(since we have assumed that cryptographic operation Dec(w, k′) has no
inverse), the second assignment cannot cause a flow violation.

Type-correctness guarantee for κ-labels. The connection between type
correctness and flows proved for this example command is an instance of a
more-general guarantee about type correctness. To formalize this guarantee,
note that any value a principal p could read must be tagged with a κ-label
KL satisfying KL vL Kp, where

Kp , {〈F ,β〉 ∈ Aκ | p ∈ RA(〈F ,β〉)}.

36

We consider a κ-label K to be p-low iff K vL Kp holds and to be p-high
iff K 6vL Kp holds. Thus the type-correctness guarantee provided by (any)
κ-labels can be formulated as limiting what p can learn from values that flow
from p-high to p-low—in particular, type correctness ensures that p cannot
recover a p-high value from p-low values.

To show why this guarantee persists when using the κ-labels we defined
above for the symmetric-key cryptosystem, consider a command C that is
type correct. Theorem 1 implies PWNI (C) will hold and, therefore, if a
value flows from p-high to p-low, then it does so through some operation
that performs a Kp-downgrade. Since cryptographic operations Enc(·, ·) and
Dec(·, ·) are the sole reclassifying expressions for our κ-labels, we conclude
that all Kp-downgrades are caused by these operations. Without loss of
generality, let such an operation be described by

[θ(E , k)]θ1(k), θ2(E) (51)

which has a flow from E (associated with reclassifier θ1(k)) and a flow from
k (associated with reclassifier θ2(E)) to the value that θ(E , k) produces.

By definition, for (51) to exhibit a Kp-downgrade then

Γ([θ(E , k)]θ1(k), θ2(E)) vL Kp ∧ Γ(θ(E , k)) 6vL Kp

must hold. From the first conjunct we get:

p ∈ RL(Γ([θ(E , k)]θ1(k), θ2(E))) (52)

To validate the type-correctness guarantee, it suffices to prove that p cannot
recover either E or k from θ(E , k) or, equivalently that the following hold.

p ∈ X (θ1(k)) p ∈ X (θ2(E))

• Establishing p ∈ X (θ1(k)).

p ∈ RL(Γ([θ(E , k)]θ1(k), θ2(E))

= AnnExpr-T

p ∈ RL(TL(Γ(E), θ1(k)) tL TL(Γ(k), θ2(E)))

= definition of RL where tR is ∩
p ∈ RL(TL(Γ(E), θ1(k))) ∩ RL(TL(Γ(k), θ2(E)))

37

= (θ2(E))
c

not defined so RL(TL(Γ(k), θ2(E))) = Prins

p ∈ RL(TL(Γ(E), θ1(k)))

= let Γ(E) = {〈F 1,β1〉, . . . , 〈F n,βn〉}
p ∈ (RA(〈F 1θ

1(k), β1〉) tR · · · tR RA(〈F nθ1(k), βn〉))

= definition of RA; tR is ∩
p ∈ ((β1 ∪ X (F 1θ

1(k))) ∩ · · · ∩ (βn ∪ X (F nθ
1(k)))

= Γ(θ(E , k)) 6vL Kp ⇒ p 6∈ ((β1 ∪ X (F 1)) ∩ · · · ∩ (βn ∪ X (F n)))

p ∈ X (θ1(k))

• Establishing p ∈ X (θ2(E)). According to (40), θ2(E) has no comple-
ment. Thus, by definition, X (θ2(E)) = Prins .

7 Related Work

RIF labels specify restrictions that depend on the history of applied opera-
tions. And a static type system can ensure that programs using RIF labels
will satisfy PWNI, which extends noninterference [27] to accommodate re-
classification. Our work thus extends an approach initiated by Volpano et
al. [59]—a type system based on Denning’s lattice model [21, 19, 20] that
enforces noninterference.

We are not the first to explore types that depend on a history of applied
operations. Strom and Yemini [57] propose types that incorporate typestate
to summarize the history of operations previously applied to an object and
to govern the set of operations that may next be invoked. But Hartson and
Hsiao [29] seem to be the first to use history in access control. Contemporary
uses of history for defining authorization include stack inspection [61] and
history-based access control [1].

Reclassification: Specification and Enforcement

State Based Reclassification. A good deal of prior work ties reclassification
to changes in state predicates. Chong et al. [16] is closest to RIF labels.
There, information flow policies for confidentiality are defined in terms of
state predicates that specify when a value may be reclassified. A static
type system enforces these declassification and erasure policies. And when a

38

reclassification occurs in the approach of Chong et al. [16], the value and all
derived values are reclassified—in contrast, with RIF labels, reclassifications
apply only to the single value.

With ClickRelease, Micinski et al. [43] extend the approach in Chong et
al. [16] by allowing a more-expressive language for the formulas that specify
when values may be declassified. In particular, ClickRelease uses temporal
logic formulas over events, in contrast to the state predicates used by Chong
et al. [16]

Paralocks [13] formulates a security policy as Σ⇒ α, where Σ is a set of
state predicates and α is a principal. A value associated with such a policy
is allowed to flow to α only if all predicates in Σ are true. Changes to state
predicates in Σ alter the allowed flows. Paralocks policies are enforced using
a static type system.

A policy in Thoth [24] and its successor system SHAI [23] specifies confi-
dentiality and integrity restrictions for data containers called conduits. The
policies comprise two layers. The access control layer specifies which princi-
pals may read and update the associated conduit and under what conditions.
The declassification layer specifies conditions under which policies for data
derived from the associated conduit can change. The conditions employed
by a Thoth policy are predicates on conduits’ state, which include both data
and metadata (including a type) of conduits. Thoth uses dynamic analysis
for enforcement, SHAI uses static analysis too.

Jeeves [6] employs faceted values [5] to specify declassification between
two levels of confidentiality (i.e., public and secret). A faceted value is a
pair comprising a real and a dummy value, guarded by a state predicate.
If that state predicate (which itself can be a faceted value) holds, then the
real, possibly secret, value is allowed to flow to low outputs. Otherwise, the
dummy value flows to low outputs.

All of this prior work thus ties reclassification to changes in state predi-
cates. In contrast, RIF labels tie reclassification to expression evaluation. A
comparison of RIF labels with reclassification based on state predicates thus
depends first on what state predicates are available and second on whether
those state predicates could be incorporated into RIF transition function T.
Operation Based Reclassification. Explicit expressions for declassification (for
confidentiality) and endorsement (for integrity) have been proposed [44, 46].
However, the approach can be unsatisfying because output restrictions are
not connected to input restrictions or to the operation that transforms inputs

39

to outputs. For example, [44, 46] allow an arbitrary label to be assigned to
the result of evaluating any expression—type-casting has the same flavor.

RIF labels tie reclassification to expression evaluation, but it is not the
first work to connect restrictions on outputs to an operation. With FJifP [30],
a principal declares trusted methods to declassify input values.17 A FJifP
trusted method always performs the same declassification of an input whereas,
depending on the RIF label associated with an input value, a specific re-
classifier in a reclassifying expression could trigger different changes to the
restrictions. So reclassifying expressions (in conjunction with RIF labels) are
more expressive than trusted methods.

Rocha et al. [47] propose policy graphs to specify declassification of in-
formation from secret to public (as compared to RIF labels, which handle
arbitrary reclassification); similar techniques to those presented in [47] are
later employed by Hammer et al. [28] and Johnson et al. [32]. In a policy
graph, nodes represent variables and edges represent operation identifiers
(similar to our reclassifiers). The tail node of an edge is an input of the
corresponding operation, and the head node of that edge is an output of that
operation. Some of the nodes in a policy graph are defined final. Values
in variables of non-final nodes are considered secret, whereas values in vari-
ables that correspond to final nodes are declassified and considered public.
Data and control-flow analysis is used to check whether some given program
satisfies a specific policy graph. Subsequently, Rocha et al. [48] introduce a
specification language for defining policies that might also depend on how
many times a function is applied to a given value. This specification lan-
guage seems more expressive than Rocha et al. [47], although the properties
being enforced have not been formally characterized. We believe restrictions
defined using any of these policy graphs could be described using a set of
RIF automata.

Li and Zdancewic [39] suggest that downgrades between two security lev-
els be specified as lambda terms. Apply one of these lambda terms to a value
and the result, by definition, is given a downgraded label. (A type system is
given to enforce these policies.) This approach to characterizing downgrades
is attractive because it is independent from the program code. Enforcement,
however, involves a conservative approach to deciding equivalence of func-
tions because that problem is undecidable in general. Also, the approach is

17Trusted methods are similar to trusted subjects, first introduced by Bell and La-
Padula [8] to handle declassification.

40

not well suited for handling reclassifications based on how a value has been
derived, whereas RIF labels do handle that.

Extending Noninterference for Reclassification

Declassification violates classical noninterference [27], which has prompted
researchers to develop alternatives. One example is conditional noninterfer-
ence [27, 26]. It proscribes secret information flows to public information,
unless a given predicate is satisfied by (i) the sequence of operations involved
in this flow and (ii) the principals invoking those operations. For declassifi-
cation, conditional noninterference is more expressive than PWNI, because
PWNI ignores identities of the principals that invoke operations. PWNI,
however, handles reclassification in full generality (i.e., arbitrary lattices of
labels and declassification as well as classification), in contrast to conditional
noninterference. which only deals with declassification in a 2-level lattice.

Gradual release (GR) [3] dictates that declassification of expressions, en-
crypted exceptions, and released cryptographic keys are the only execution
points where an attacker’s knowledge about initial secret values may increase.
Other work (delimited release [51] and relaxed noninterference [39]) specifies
what expressions of secret values in the initial state could be declassified, with
no restriction about where in the program such expressions are declassified.

PWNI supports declassifications of arbitrary expressions on any secret
within the program. For this reason, the program below, which is arguably
secure, is accepted by PWNI, but rejected by delimited release [51] (and its
extensions, such as localized delimited release [4]):

h := avg(h1, h2, h3); l := declassify(h) (53)

Delimited release (and its extensions) rejects the above program for the same
reason it rejects the following program:

h′ := h; l := declassify(h′) (54)

And the reason is to prevent laundering attacks—the declassification of h′

inadvertently causing the declassification of h.
PWNI and RIF labels prevent laundering attacks by construction. If a

variable is allowed to be declassified (e.g., h′ in (54)), then this variable will
be tagged with a RIF label that specifies declassification; if a variable is not
allowed to be declassified (e.g., h in (54)), then then this variable will be

41

tagged with a RIF label that does not specify declassification. So, in (54),
the RIF label of h′ will not be as restrictive as the RIF label of h, and thus,
PWNI will be violated by assignment h′ := h and the entire program will
be rightfully rejected. On the other hand, PWNI rightfully accepts program
(53), when all variables h1, h2, h3, h are tagged with a RIF label that specifies
such a declassification.

The flexibility that PWNI offers to be able to handle declassifications of
any secret expression in the program (and ultimately accept (53)) is a useful
advantage. This is because usually the value that we desire to be ultimately
declassified is the result of consecutive computations (i.e., an arbitrary ex-
pression in the program)—not the result of one clean expression on initial
secrets. Those cases can be handled by PWNI, but not by delimited release
(and its extensions).

The cost of the flexibility that PWNI offers comes from formally spec-
ifying what is being declassified and where in the program (similar targets
to localized delimited release). Specifying what is being declassified in terms
of initial secrets is in general undecidable when declassifying an arbitrary
expression in the program. Consequently we choose to specify what is being
declassified with respect to secrets that exist at the program point (i.e., com-
mand) where declassification is triggered. So, we set the reference point of
the declassification to be the program point where this declassification is trig-
gered. One way to select a program point as a reference point is to demand
λ-pieces end and start at that same program point (just as the beginning of
a program is regarded as a reference point for noninterference, demanding all
executions to start from there). For this reason PWNI requires exact code
equality at the ends of λ-pieces. And with exact code equality, the where di-
mension of the declassification is identified, too, because the program point
at which an expression is declassified becomes explicit.

With conditional gradual release [7], as with our approach, any expression
in a program may be declassified. However, conditional gradual release allows
declassifications to depend on secret guards, causing a declassification to
disclose more information than might have been intended. (PWNI does not
suffer from this defect, because of the way λ-pieces are defined.)

Non-disclosure policy [42] is a variation of noninterference for handling
local declassification constructs. These declassification constructs augment
allowed flows during execution of some code M , restoring the previously al-
lowed flows once execution leaves M . To satisfy the non-disclosure policy,
noninterference must hold for flow relations that are allowed at every execu-

42

tion step. This policy, then, embodies a different design choice from PWNI
about the scope of a declassification—with PWNI the declassification per-
sists to the end of the execution, whereas with the non-disclosure policy it
ends when the declassification construct has completed. The same design
choice is adopted in [12] for handling flow-locks [11].

Other alternatives to noninterference associate declassification with spe-
cial commands, such as match queries18 [60], one-way functions [58], or var-
ious other cryptographic operations. With computational noninterference
(CNI) [36], disclosure of secret values is permitted only when those values
are encrypted; CNI is enforced by type systems introduced in Laud et al. [38]
for passive and Fournet et al. [25] for active adversaries. Smith et al. [55]
propose a variant of noninterference that handles both encryption and de-
cryption, and it is enforced using a type system.

κ-labels demonstrate how RIF labels can handle cryptographic operations
by treating these operations as special and translating them into reclassifying
expressions. The literature on type checking of cryptographic operations has
explored two general approaches [17]: computational and symbolic. κ-labels
embrace the symbolic approach, using an analysis approach derived from
Dolev-Yao [22]. Cryptographically masked flows [2] also employs a symbolic
analysis, and it too is enforced by type systems. Laud [37] shows that type
correctness according to [2], together with some additional conditions, imply
CNI, thereby establishing a connection between cryptographically masked
flows (which is based on symbolic analysis) and CNI (which is based on
computational analysis). Cortier et al. [17] generalizes this connection by
showing that programs secure according to a symbolic analysis are also secure
according to a computational analysis.

Semantic properties have been proposed to handle erasure, too. Del
Tedesco et al. [18] use knowledge semantics to express a hierarchy of era-
sure policies. These erasure policies are categorized based on (i) whether
they specify erasure of all or part of the information, and (ii) whether era-
sure depends on program state (either high or low). Erasure is a form of
classification, and thus, can be specified by RIF labels. However, with the
RIF labels in this paper, erasure only affects a value being derived and cannot
be formulated to depend on program state.

Noninterference and its variations (including PWNI) characterize allowed

18A match query checks whether two objects are equal. For example, a match query is
use to check whether a certain string is the password of a given user.

43

flows of information; they do not handle required flows. Chong [15] gives a
semantic definition for required information release policies and presents a
static type system to enforce these policies. A required information release
policy specifies what information should be released and how this informa-
tion can be learned by the authorized observers. The semantics is based on
algorithmic knowledge.

Views of the Reclassification Landscape

The survey by Sabelfeld et al. [53] introduces a four-dimension categoriza-
tion for declassification policies (though the categorization seems applicable
reclassification, too): what information is declassified, who declassifies infor-
mation, where in the system information is declassified, and when informa-
tion can be declassified. RIF labels and our reclassifying expressions specify
what, where, and when, but not who. The what is the value produced by
the expression; where is the position of the reclassifying expression in the
program text; when is determined by the program’s control flow.

Nothing prevents the semantics of our reclassifiers from incorporating
information about who is evaluating a given reclassifying expression. The
decentralized label model (DLM) [45, 44] is an obvious starting point for such
an extension. According to DLM, a value may be declassified only if the
declassification command is executed on behalf of the value’s owner or on
behalf of a principal that acts-for that owner. To adopt this approach, we
would add an additional input argument to T—the identity of the principal
undertaking the reclassification. The semantics of T would then be extended
so that a reclassifier triggers a transition only for certain principals.

Broberg et al. [14] offers an orthogonal view for information flow policies
and declassification. It is based on a three-level hierarchy of control. Level 0
control is a set of possible flow relations between information sources (e.g.,
input variables) and sinks (e.g., output channels). A flow relation indicates
that information from the source is allowed to flow to the sink. Level 1
controls select which flow relations are allowed. Level 2 controls constitute a
meta policy for controlling the way in which the current flow relations (Level
1 controls) may be changed. RIF label function T incorporates aspects of
Level 1 and Level 2 controls.

44

Acknowledgments

We appreciate the comments we received on early discussions of this work
from Eleanor Birrell, Michael Clarkson, Josée Desharnais, Michael George,
José Meseguer, Brad Martin, Andrew Myers, David Naumann, Karn Seth,
Geoffrey Smith, and Nadia Tawbi. Steve Chong and Deepak Garg, in addi-
tion, provided detailed and very helpful feedback on an earlier draft of this
paper.

A 〈ΛRA,, vRA, tRA〉 is a join semilattice

To prove that 〈ΛRA,, vRA, tRA〉 is a join semilattice requires showing (i)
λα vRA λα tRA λα′ , (ii) λα′ vRA λα tRA λα′ , and (iii) that λα tRA λα′ is the
least upper bound.

To prove (i), it suffices to use decision procedure (15) for vRA, and prove:

(∀〈q, 〈q, q′′〉〉 ∈ Qα⊗(αtα′): ρα(q) vR ραtα′(〈q, q′′〉)), (55)

because reachability condition (13) for λα ⊗ (λα tRA λαtα′) implies that if

〈q, 〈q′, q′′〉〉 ∈ Qα⊗(αtα′)

holds then q = q′. Completing the proof of (55) is just a matter of expanding
the definition of ραtα′(〈q, q′′〉).

The proof of (ii) is similar.
The proof of (iii) involves showing that λα tRA λα′ is the least RIF label

satisfying

λα vRA λα tRA λα′

λα′ vRA λα tRA λα′

Our proof by contradiction derives false from the assumption that a RIF
label λα′′ satisfying λα vRA λα′′ , λα′ vRA λα′′ , and λα′′ @RA λαtRA λα′ exists.

From λα vRA λα′′ we have RRA(TRA(λα,F)) vR RRA(TRA(λα′′ ,F)) for
any F ; from λα′ vRA λα′′ we have RRA(TRA(λα′ ,F)) vR RRA(TRA(λα′′ ,F))
for any F . Since 〈R, tR, vR〉 defines a lattice, we conclude

RRA(TRA(λα,F)) tR RRA(TRA(λα′ ,F)) vR RRA(TRA(λα′′ ,F)). (56)

From assumption λα′′ @RA λα tRA λα′ we conclude (i) λα′′ vRA λα tRA λα′

and (ii) λα′′ 6= λα tRA λα′ . But (56) conjoined with (i) contradicts (ii).

45

B Definition of T(λ, C)

T(λ, C) is defined based on a deterministic generator G of fresh variables,
which store lists of values. Specifically, G.init sets G to its initial state, and
G.fresh([E]̄f) returns the next fresh variable hE . Each variable hE stores a
list of values with the same type as E , and it is tagged with a RIF label that
satisfies Γ(hE) = Γ([E]̄f).

T(λ, C) substitutes each upgrading expression [E]̄f in C with expression
next(hE). So, we extend the evaluation and the RIF labels for expressions
E to accommodate this new expression next(hE). In particular, we define
successive M(next(hE)) evaluations to return successive elements of the list
stored in hE . And define Γ(next(hE)) to be Γ(hE).

We now give the formal definition for T(λ, C), which employs auxiliary
procedures T and S.

T(λ, C) , T (λ, C, G.init)

T (λ, x := [E]̄f , G) , x := S(λ, [E]̄f , G)

T (λ, if [E]̄f then Ct else Ce, G) , if S(λ, [E]̄f , G) then T (λ, Ct, G)

else T (λ, Ce, G)

T (λ,while [E]̄f do Cw, G) , while S(λ, [E]̄f , G) do T (λ, Cw, G)

T (λ, C1; C2, G) , T (λ, C1, G);T (λ, C2, G)

S(λ, [E]̄f , G) ,

[next(G.fresh([E]̄f))]ε , if Γ(E) v λ

∧ Γ([E]̄f) 6v λ

[E]̄f , otherwise

There is a reason why upgrading expressions are substituted by variables
that store lists of values instead of variables that store ordinary (scalar) val-
ues: upgrading expressions in while commands. When a while command
involves an upgrading expression, then this expression might yield as many
upgraded values as the the number of iterations of that command. All these
values should be protected against leaking to certain principals. So, we sub-
stitute them with arbitrarily chosen values (which are elements of these lists)
and ensure that they do not influence observations of these principals.

46

Notice that T(λ, C) is deterministic, by construction. This means that for
the same command C, the translated command T(λ, C) is always the same.

So, comparing traces τ = Υ(T(λ, Ĉ),M) and τ′ = Υ(T(λ, Ĉ),M′) in PWNI
definition (35) is meaningful, because these traces correspond to the exact
same translated command.

References

[1] M. Abadi and C. Fournet. Access control based on execution history. In
Proceedings of the 10th Annual Network and Distributed System Security
Symposium, pages 107–121, 2003.

[2] A. Askarov, D. Hedin, and A. Sabelfeld. Cryptographically-masked
flows. Theor. Comput. Sci., 402(2-3):82–101, July 2008.

[3] A. Askarov and A. Sabelfeld. Gradual release: Unifying declassifica-
tion, encryption and key release policies. In Proceedings of the IEEE
Symposium on Security and Privacy, pages 207–221, 2007.

[4] A. Askarov and A. Sabelfeld. Localized delimited release: Combining the
what and where dimensions of information release. In Proceedings of the
2007 Workshop on Programming Languages and Analysis for Security,
PLAS ’07, pages 53–60, New York, NY, USA, 2007. ACM.

[5] T. H. Austin and C. Flanagan. Multiple facets for dynamic informa-
tion flow. In Proceedings of the 39th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’12, pages
165–178, New York, NY, USA, 2012. ACM.

[6] T. H. Austin, J. Yang, C. Flanagan, and A. Solar-Lezama. Faceted
execution of policy-agnostic programs. In Proceedings of the 8th ACM
SIGPLAN Workshop on Programming Languages and Analysis for Se-
curity, PLAS ’13, pages 15–26, New York, NY, USA, 2013. ACM.

[7] A. Banerjee, D. Naumann, and S. Rosenberg. Expressive declassification
policies and modular static enforcement. In Proceedings of the IEEE
Symposium on Security and Privacy, pages 339–353, 2008.

47

[8] D. Bell and L. La Padula. Secure computer systems: Unified exposi-
tion and MULTICS interpretation. Technical Report ESD-TR-75306,
Bedford, MA, 1976.

[9] E. Birrell and F. B. Schneider. A reactive approach to use-based privacy.
Technical Report 54843, Cornell University, Computing and Information
Science, November 2017.

[10] N. Broberg, B. Delft, and D. Sands. Paragon for practical programming
with information-flow control. In Proceedings of the 11th Asian Sym-
posium on Programming Languages and Systems, volume 8301, pages
217–232, New York, NY, USA, 2013. Springer-Verlag New York, Inc.

[11] N. Broberg and D. Sands. Flow locks: Towards a core calculus for dy-
namic flow policies. In Proceedings of the 15th European Conference on
Programming Languages and Systems, ESOP’06, pages 180–196, Berlin,
Heidelberg, 2006. Springer-Verlag.

[12] N. Broberg and D. Sands. Flow locks: Towards a core calculus for dy-
namic flow policies. Technical report, Chalmers University of Technology
and Göteborgs University, May 2006.

[13] N. Broberg and D. Sands. Paralocks: Role-based information flow con-
trol and beyond. In Proceedings of the 37th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL
’10, pages 431–444, New York, NY, USA, 2010. ACM.

[14] N. Broberg, B. van Delft, and D. Sands. The anatomy and facets of
dynamic policies. In Proceedings of the 28th IEEE Computer Security
Foundations Symposium, pages 122–136, July 2015.

[15] S. Chong. Required information release. In Proceedings of the 23rd IEEE
Computer Security Foundations Symposium, pages 215–227, Piscataway,
NJ, USA, July 2010. IEEE Press.

[16] S. Chong and A. C. Myers. End-to-end enforcement of erasure and
declassification. In Proceedings of the 21st IEEE Computer Security
Foundations Symposium, pages 98–111, June 2008.

48

[17] V. Cortier, S. Kremer, and B. Warinschi. A survey of symbolic methods
in computational analysis of cryptographic systems. J. Autom. Reason.,
46(3-4):225–259, Apr. 2011.

[18] F. Del Tedesco, S. Hunt, and D. Sands. A semantic hierarchy for erasure
policies. In Proceedings of the 7th International Conference on Infor-
mation Systems Security, ICISS’11, pages 352–369, Berlin, Heidelberg,
2011. Springer-Verlag.

[19] D. E. Denning. A lattice model of secure information flow. Commun.
ACM, 19(5):236–243, May 1976.

[20] D. E. Denning and P. J. Denning. Certification of programs for secure
information flow. Commun. ACM, 20(7):504–513, July 1977.

[21] D. E. R. Denning. Secure information flow in computer systems. PhD
thesis, Purdue University, West Lafayette, IN, USA, 1975.

[22] D. Dolev and A. C. Yao. On the security of public key protocols. Infor-
mation Theory, IEEE Transactions on, 29(2):198–208, Mar 1983.

[23] E. Elnikety, D. Garg, and P. Druschel. SHAI: Enforcing Data-Specific
Policies with Near-Zero Runtime Overhead. Technical report, Max
Planck Institute for Software Systems, Saarland Informatics Campus,
Germany, January 2018.

[24] E. Elnikety, A. Mehta, A. Vahldiek-Oberwagner, D. Garg, and P. Dr-
uschel. Thoth: Comprehensive policy compliance in data retrieval sys-
tems. In Proceedings of the 25th USENIX Conference on Security Sym-
posium, SEC’16, pages 637–654. USENIX Association, 2016.

[25] C. Fournet and T. Rezk. Cryptographically sound implementations
for typed information-flow security. In Proceedings of the 35th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’08, pages 323–335, New York, NY, USA, 2008. ACM.

[26] J. A. Goguen and J. Mesegue. Unwinding and inference control. In
Proceedings of the IEEE Symposium on Security and Privacy, pages 75–
87, 1984.

49

[27] J. A. Goguen and J. Meseguer. Security policies and security models.
In Proceedings of the IEEE Symposium on Security and Privacy, pages
11–20, 1982.

[28] C. Hammer and G. Snelting. Flow-sensitive, context-sensitive, and
object-sensitive information flow control based on program dependence
graphs. International Journal of Information Security, 8(6):399–422,
2009.

[29] H. R. Hartson and D. K. Hsiao. Full protection specifications in the
semantic model for database protection languages. In Proceedings of the
1976 Annual Conference, ACM ’76, pages 90–95, New York, NY, USA,
1976. ACM.

[30] B. Hicks, D. King, P. McDaniel, and M. Hicks. Trusted declassification:
High-level policy for a security-typed language. In Proceedings of the
Workshop on Programming Languages and Analysis for Security, PLAS
’06, pages 65–74, New York, NY, USA, 2006. ACM.

[31] T. H. Hinke. Inference aggregation detection in database management
systems. In Proceedings. 1988 IEEE Symposium on Security and Pri-
vacy, pages 96–106, April 1988.

[32] A. Johnson, L. Waye, S. Moore, and S. Chong. Exploring and enforcing
security guarantees via program dependence graphs. In Proceedings of
the 36th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’15, pages 291–302, New York, NY, USA,
2015. ACM.

[33] E. Kozyri. Enhancing Expressiveness of Information Flow Labels:
Reclassification and Permissiveness. PhD thesis, Cornell Univer-
sity, Ithaca, New York, USA, 2018. https://search.proquest.com/

docview/2167492985?accountid=10267.

[34] E. Kozyri, O. Arden, A. C. Myers, and F. B. Schneider. JRIF: Reactive
Information Flow Control for Java. Technical report, Cornell Univarsity,
February 2016.

[35] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek, E. Kohler,
and R. Morris. Information flow control for standard OS abstractions. In

50

Proceedings of the 21st ACM SIGOPS Symposium on Operating Systems
Principles, SOSP ’07, pages 321–334, New York, NY, USA, 2007. ACM.

[36] P. Laud. Semantics and program analysis of computationally secure
information flow. In Proceedings of the 10th European Symposium on
Programming Languages and Systems, ESOP ’01, pages 77–91, London,
UK, 2001. Springer-Verlag.

[37] P. Laud. On the computational soundness of cryptographically masked
flows. In Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL ’08, pages 337–
348, New York, NY, USA, 2008. ACM.

[38] P. Laud and V. Vene. A type system for computationally secure in-
formation flow. In Proceedings of the 15th International Conference on
Fundamentals of Computation Theory, FCT’05, pages 365–377, Berlin,
Heidelberg, 2005. Springer-Verlag.

[39] P. Li and S. Zdancewic. Downgrading policies and relaxed noninterfer-
ence. In Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’05, pages 158–170,
New York, NY, USA, 2005. ACM.

[40] P. Li and S. Zdancewic. Practical information-flow control in web-based
information systems. In Proceedings of the 18th IEEE Workshop on
Computer Security Foundations, CSFW ’05, pages 2–15, Washington,
DC, USA, 2005. IEEE Computer Society.

[41] A. Lux and H. Mantel. Declassification with explicit reference points. In
M. Backes and P. Ning, editors, Computer Security – ESORICS 2009,
pages 69–85, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[42] A. A. Matos and G. Boudol. On declassification and the non-disclosure
policy. In Proceedings of the 18th IEEE Computer Security Foundations
Workshop (CSFW’05), pages 226–240, June 2005.

[43] K. Micinski, J. Fetter-Degges, J. Jeon, J. S. Foster, and M. R. Clarkson.
Checking interaction-based declassification policies for Android using
symbolic execution. In Proceedings of the European Symposium on Re-
search in Computer Security, ESORICS 2015, pages 520–538, Cham,
2015. Springer International Publishing.

51

[44] A. C. Myers. Jflow: Practical mostly-static information flow control. In
Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL ’99, pages 228–241, New York,
NY, USA, 1999. ACM.

[45] A. C. Myers and B. Liskov. A decentralized model for information
flow control. In Proceedings of the 16th ACM Symposium on Operating
Systems Principles, SOSP ’97, pages 129–142, New York, NY, USA,
1997. ACM.

[46] A. C. Myers, L. Zheng, S. Zdancewic, S. Chong, and N. Nystrom. Jif 3.0:
Java information flow. Software release. http://www.cs.cornell.edu/jif,
July 2006.

[47] B. Rocha, S. Bandhakavi, J. den Hartog, W. Winsborough, and S. Etalle.
Towards static flow-based declassification for legacy and untrusted pro-
grams. In Proceedings of the IEEE Symposium on Security and Privacy,
pages 93–108, 2010.

[48] B. Rocha, M. Conti, S. Etalle, and B. Crispo. Hybrid static-runtime in-
formation flow and declassification enforcement. Information Forensics
and Security, IEEE Transactions on, 8(8):1294–1305, 2013.

[49] I. Roy, D. E. Porter, M. D. Bond, K. S. McKinley, and E. Witchel.
Laminar: Practical fine-grained decentralized information flow control.
In Proceedings of the 30th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI ’09, pages 63–74, New
York, NY, USA, 2009. ACM.

[50] A. Sabelfeld and A. Myers. Language-based information-flow security.
Selected Areas in Communications, IEEE Journal on, 21(1):5–19, 2003.

[51] A. Sabelfeld and A. C. Myers. A model for delimited information re-
lease. In Proceedings of the International Symposium on Software Secu-
rity (ISSS’03), volume 3233 of LNCS, pages 174–191. Springer-Verlag,
2004.

[52] A. Sabelfeld and D. Sands. A per model of secure information flow in
sequential programs. In Proceedings of the 8th European Symposium on
Programming Languages and Systems, ESOP ’99, pages 40–58, Berlin,
Heidelberg, 1999. Springer-Verlag.

52

[53] A. Sabelfeld and D. Sands. Declassification: Dimensions and principles.
J. Comput. Secur., 17(5):517–548, Oct. 2009.

[54] F. B. Schneider, K. Walsh, and E. G. Sirer. Nexus Authorization Logic
(NAL): Design rationale and applications. ACM Trans. Inf. Syst. Secur.,
14(1):8:1–8:28, June 2011.

[55] G. Smith and R. Alṕızar. Secure information flow with random as-
signment and encryption. In Proceedings of the 4th ACM Workshop on
Formal Methods in Security, FMSE ’06, pages 33–44, New York, NY,
USA, 2006. ACM.

[56] D. Stefan, A. Russo, J. C. Mitchell, and D. Mazières. Flexible dynamic
information flow control in Haskell. In Proceedings of the 4th ACM
Symposium on Haskell, Haskell ’11, pages 95–106, New York, NY, USA,
2011. ACM.

[57] R. E. Strom and S. Yemini. Typestate: A programming language
concept for enhancing software reliability. IEEE Trans. Softw. Eng.,
12(1):157–171, Jan. 1986.

[58] D. Volpano. Secure introduction of one-way functions. In Proceedings of
the 13th IEEE Computer Security Foundations Workshop, pages 246–
254, 2000.

[59] D. Volpano, C. Irvine, and G. Smith. A sound type system for secure
flow analysis. J. Comput. Secur., 4(2-3):167–187, Jan. 1996.

[60] D. Volpano and G. Smith. Verifying secrets and relative secrecy. In
Proceedings of the 27th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL ’00, pages 268–276, New York,
NY, USA, 2000. ACM.

[61] D. S. Wallach, J. A. Roskind, and E. W. Felten. Flexible, extensi-
ble Java security using digital signatures. DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, 38:59–74, Dec. 1996.

53

