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Summary

Proportional Integral Derivative (PID) controllers still represent the core con-

trolmethod for achieving output regulation of either linear or nonlinear systems

in the majority of industrial applications. However, conventional PID control

cannot guarantee specific state constraint requirements for the plant, when the

system introduces uncertainties. In this paper, a novel nonlinear PID control

that achieves output regulation and guarantees a desired state limitation below

a given value for a wide class of nonlinear systems with constant uncertainties

is proposed. Using nonlinear ultimate boundedness theory, it is shown that the

proposed state-limiting PID (sl-PID) control maintains a given bound for the

desired system states at all times, ie, even during transients, whereas an analytic

method for selecting the controller gains is also presented to ensure closed-loop

system stability and convergence at the desired equilibrium. Two nonlinear

engineering examples that include an electric motor and a dc/dc converter are

investigated using the conventional PID and the proposed sl-PID to validate the

superiority of the proposed controller in achieving the desired output regulation

with a given bounded state requirement.

KEYWORDS

nonlinear PID, stability, state constraints

1 INTRODUCTION

Since its first design in the early 1900s, Proportional Integral Derivative (PID) control has been dominating the engineer-
ing industry when it is desired to achieve both asymptotic regulation and disturbance rejection. The control problem of
linear plants using a PID controller is now well understood; however, its application to nonlinear systems to guaran-
tee the desired regulation and closed-loop system stability still remains a challenge, particularly because of the integral
dynamics.1-4 The existing methods leverage on the properties of the system, ie, minimum phase, to guarantee either
local or global stability; see the works of Mahmoud and Khalil,5 Huang and Khalil,6 and Khalil.7 Nazrulla and Khalil8

have proposed a robust nonlinear integral controller, based on high-gain observers, capable of stabilizing nonminimum
phase dynamics with a desired output regulation, whereas in the work of Ma and Khalil,9 the output feedback controller
tracks references generated from an external source without using an internal model. The authors bring attention to
the closed-loop performance deterioration when including an internal model in the controller structure. However, this
problem can be circumvented by using a high-gain feedback controller and observer.10,11
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2 KONSTANTOPOULOS AND BALDIVIESO-MONASTERIOS

While the aforementioned approaches offer global or semiglobal stability guarantees, they do not tackle the problem
of constraint satisfaction (input or state constraints), which arises from safety requirements and actuator limitations in a
real engineering system. Although the output regulation problemwith input constraint satisfaction has been well studied
and addressed via antiwindup methods12-16 or bounded integral control,17,18 a state constraint requirement often creates
the need for more advanced control methods that change the traditional PID control architecture. Safety of operation and
stability guarantees are essential in modern processes such as power networks, motor control applications, and chemical
processes. In the former, Tilli and Conficoni19 and Conficoni20 list some of the potential pitfalls of not considering the
power converter limits into the control strategy, ie, loss of stability, performance degradation, and operation outside the
desired ranges because of system malfunctions. The challenge of limiting a system state increases when the plant intro-
duces uncertainties in the model. For example, consider the one-dimensional system

.
x = −wx3+u, wherew is a constant

unknown uncertain parameter defined in the range w ∈ [wmin,wmax]. The objective is to regulate state x toward a desired
constant nonzero reference r while satisfying state constraint |x| ≤ xmax, ∀t ≥ 0. In general, the conventional PI con-
troller of the form u = kP(r − x) + �,

.
� = kI(r − x) can achieve the desired regulation but does not offer any guarantees

when it comes to the desired state limitation. It can easily be shown that the solution may exhibit overshoots violating
constraints. Therefore, an effective management of constraints may increase the operation ranges in both the transient
and the steady-state regimes.
The problem of maintaining a given bound for the system states when the system is subject to disturbances or uncer-

tainties, or when the state vector is (partially) unknown has inspired researchers since the late 1960s. In particular, when
uncertain parameters or disturbances belong to some known compact set, several state-bounding methods have been
developed to design simple time-varying sets (eg, ellipsoids and n-orthotopes) to guarantee that the state vector is con-
strainedwithin these sets.21-23Most of thesemethods are designed for linear systems, whereas their extension to nonlinear
systems is not trivial and still represents an active problem.24,25 In the majority of the cases, the methodologies proposed
rely on linearization around the state trajectory, which fails to produce reliable estimates when uncertainties are explic-
itly considered in the model.26 For nonlinear systems with discrete dynamics, a design methodology for determining the
controller parameters is presented in the work of Andonov et al,25 where a desired system performance, including state
limitation, is guaranteed. In a similar framework, techniques such as model predictive control (MPC),27 for an excellent
survey on its different properties, include the constraints into their formulation and aim to exploit the behavior of the sys-
tem around the constraints. These methods, however, present limitations in their implementation because they require
the solution of an optimization problem online. Jerez et al28 propose anMPC controller for linear systems that operates at
megahertz; however, this approach is aimed at linear system and quadratic performance objectives, which is at odds with
nonlinear formulations of the problem. Overall, for nonlinear systems with continuous-time dynamics, the output regu-
lation problem with guaranteed state limitation using the well-understood and widely applied PID control and without
modifying the control concept is still an open problem.
To address this issue, in this paper, a novel nonlinear state-limiting PID (sl-PID) controller is proposed for a wide class

of nonlinear systems with constant uncertainties to achieve output regulation with a desired state constraint satisfaction.
The proposed approach can be applied to multi-input multi-output systems, and using nonlinear ultimate boundedness
theory, it is analytically proven that a limitation on the desired system states can be guaranteed at all times, even during
transients. Furthermore, a detailed methodology for selecting the proportional, integral, and derivative gains is provided
to guarantee closed-loop system stability and convergence to the desired set point. Hence, the proposed sl-PID can replace
the conventional PID control in applications where a state limitation is required, whereas the framework for selecting the
controller gains presented in this paper can lead to a simple and effective design and implementation.
Overall, the novelties and contributions of this paper are summarized as follows:

1. The design of a novel nonlinear sl-PID controller for nonlinear systems with constant uncertainties capable of
guaranteeing a desired state limitation on a number of the plant states.

2. Detailed stability analysis and design framework for the sl-PID controller states, and comparison with the conven-
tional PID control scheme.

To better explain and validate the sl-PID control design procedure, we apply the proposed approach to two engineering
examples: a motor control regulation problem and a dc/dc power converter. We compare the performance of the proposed
algorithm to that of a conventional PID controller.
This paper is structured as follows. In Section 2, somekey theoretic concepts for nonlinear systemanalysis are presented.

In Section 3, the problem under investigation is stated and an analysis of the conventional PID controller is provided.
The main result of this paper is presented in Section 4, where the sl-PID controller is designed and analyzed. A detailed
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stability analysis and the design framework for selecting the controller gains are provided as well. The proposed controller
is applied to two different engineering applications in Section 5 and compared to the conventional approach to validate
its effectiveness in a practical implementation. Finally, concluding remarks are provided in Section 6.

Notation. A finite set of natural numbers is denoted by �n = {1, … ,n}; the set of integers is denoted by ℤ.

2 PRELIMINARIES

Consider the nonlinear system
.
x = � (t, x,u), (1)

where � ∶ [0,∞)×x×u → ℝ
n is piecewise continuous in t and locally Lipschitz in x and u, withx ⊂ ℝ

n andu ⊂ ℝ
m

being open domains containing their respective origin, and u(t) is a piecewise continuous bounded function.

Definition 1 (See the work of Khalil1). System (1) is said to be locally input-to-state stable if there exist � ∈ ,
� ∈ , and positive constants k1, k2 > 0 such that for any initial state x(t0) with ||x(t0)|| < k1 and any input u(t) with
supt≥t0 ||u(t)|| < k2, the solution x(t) exists and satisfies

||x(t)|| ≤ � (||x(t0)||, t − t0) + �

(
sup
t0≤�≤t

||u(�)||
)
, (2)

for all t ≥ t0 ≥ 0. It is said to be input-to-state stable if x = ℝ
n, u = ℝ

m, and inequality (2) is satisfied for any
initial x(t0) and for any bounded input u(t).

Lemma 1 (See the work of Khalil1). Suppose that, in some neighborhood of (x,u) = (0, 0), function f (t, x,u) is

continuously differentiable and the Jacobian matrices ��

�x
and ��

�u
are bounded uniformly in t. If the unforced system

.
x = � (t, x, 0) (3)

has a uniformly asymptotically stable equilibrium point at the origin x = 0, then system (1) is locally input-to-state stable.

Consider the interconnected system

.
x1 = �1(t, x1, x2) (4a)

.
x2 = �2(t, x2), (4b)

where f1 and f2 satisfy similar conditions to f in (1).

Lemma 2 (See the work of Khalil1). If
.
x1 = �1(t, x1, x2), with x2 as input, is locally input-to-state stable and the origin

of
.
x2 = �2(t, x2) is uniformly asymptotically stable, the origin of the interconnected system (4) is uniformly asymptotically

stable.

Definition 2 (�-limit set29). The�-limit set of a subset ⊂ ℝ
n, denoted by�(), for an autonomous system

.
x = � (x)

contains all points x ∈ ℝ
n for which there exists a sequence of pairs {(xk, tk)}k∈ℕ with xk ∈  and tk → ∞ as k → ∞

such that

lim
k→∞

�(tk, xk) = x,

where � ∶ ℝ ×ℝ
n
→ ℝ

n is the system flow.

Lemma 3. If a solution x(t) = �(t, x0) of the autonomous system
.
x = � (x) is bounded and belongs to x for t ≥ 0,

then for any compact set ⊂ x, its positive�-limit set�() is a nonempty, compact, connected, invariant set. Moreover,

x(t) → �() as t → ∞.
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3 PROBLEM DEFINITION

Consider the nonlinear plant of the form

.
z = q(x, z,u,w), (5a)

.
xi = �i(xi,w) + gi(w)ui, (5b)

�i = hi(xi), (5c)

such that i ∈ �n with x = (x1, … , xn) ∈ ℝ
n, z = (z1, … , zn) ∈ ℝ

m, where (x, z) ∈ ℝ
n+m, u = (u1, … ,un) ∈ ℝ

n and
� = (�1, … , �n) ∈ ℝ

n are the state, input, and output vectors, respectively; similarly, w ∈ ℝ
l is a vector containing

unknown constant parameters. The functions fi(·, ·), gi(·), q(·, ·, ·, ·), and hi(·) are C
1 in (x, z,u) and continuous in w for

(x, z) ∈  ⊂ ℝ
n+m, u ∈ ℝ

n, andw ∈ w ⊂ ℝ
l, where andw are open connected sets. Note that although the dynamics

for the states xi are given in the control-affine form (5b), the dynamics for the state vector z can have the generic nonlinear
form (5a).
The main goal is to design a controller that regulates the output � ∈ ℝ

n to a constant reference r ∈ r ⊂ ℝ
n, where

r = (r1, … , rn) andr is an open connected set, while guaranteeing constraint satisfaction on the states xi, ∀i = 1, 2, … ,n,
such that for some xmax

i
> 0, the flow satisfies

||xi(t, x0,i)|| ≤ xmaxi , ∀t ≥ 0, (6)

when |x0,i| ≤ xmax
i

. We invoke a set of assumption to make our formulation consistent. The first of these is related to the
output behavior of the system.

Assumption 1 (State measurement). The output function hi ∶ ℝ
n
→ ℝ

n for each i ∈ �n is a local diffeomorphism
satisfying �hi

�xi
(xi) > 0 for any neighborhoodi(xi) ⊂ xi of xi, wherexi = Projix. In addition, state xi is available for

control design, ie, h−1(·) can be found in explicit form inxi .

The next assumptions are concerned with the nature of w ∈ ℝ
l, which represent model uncertainties.

Assumption 2. The function g ∶ ℝ
l
→ ℝ

n is positive, ie, gi(w) > 0 for i ∈ �n.

Remark 1. Assumption 1 states that state xi can be either measured or analytically calculated from the output yi to be
used in the control design. Assumption 2 is concerned with the controllability of system (5b) and states that the sign
of gi(w) does not change independently of the values of uncertain parameter w.

Assumption 3 (Bounded parameter uncertainty). Vector w ∈ ℝ
l lies in a known compact and convex set, ie, w ∈ �.

The system dynamics (5b)-(5c) satisfy the following.

Assumption 4. For each i = 1, … ,n, there exists a continuously differentiable function Vi(xi,w) ∶ i ×w → R, a
constant ci, two positive constants b1i, b2i, and two class functions �1i and �2i such that

�1i (|xi|) ≤ Vi(xi,w) ≤ �2i (|xi|) (7a)

�V

�xi
�i(xi,w) ≤ cix

2
i (7b)

b1ixi ≤
�V

�xi
gi(w) ≤ b2ixi. (7c)

Although the plant dynamics and above assumptions can seem restrictive, it should be mentioned that (i) several engi-
neering applications are described by (5b)-(5c), eg, power electronic converters12 and (ii) awide class of nonlinear systems
can be brought in the form of (5b)-(5c) using partial feedback linearization.

Remark 2. Considering linear dynamics fi(xi,w) = Ai(w)xi, then function Vi =
1

2
pix

2
i
, with pi > 0, guarantees all

conditions (7a)-(7c) because according to Assumptions 2 and 3, gi(w) is positive with a given upper and lower bound.
The unforced system (ui = 0) can be unstable because ci can take positive values, eg, Ai(w) > 0.
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We are interested in the effect that exogenous inputs and set points have on the equilibria of the open-loop dynamics.
We exploit the structure of these dynamics, mainly the fact that the system can be viewed as an interconnection between
.
x = � (x,w) + g(w)u and

.
z = q(z, x,w,u). We first characterize the steady state behavior of the upper system.

Proposition 1. Suppose Assumptions 1 to 3 hold. There exists a continuous function �i ∶ ℝ×ℝl
→ ℝ×ℝ for each i ∈ �n

such that (xss
i
,uss

i
) = �i(ri,w) defines the steady state for

.
xi = �i(xi,w) + gi(w)ui and yi = hi(xi).

Proof. The proof is obtained by construction. Following Assumption 1, the output functions hi(·) admit a differen-
tiable inverse h−1

i
(·) such that at steady state xi = h−1

i
(ri). On the other hand, Assumption 2 guarantees the existence

of gi(w)
−1 ≤ ∞, which is used to define the mapping ui = −gi(w)−1�i(h

−1
i
(ri),w). The resulting steady state map

(xss
i
,uss

i
) = �i(ri,w) = (h−1

i
(ri),−gi(w)−1�i(h

−1
i
(ri),w)) is continuous by construction.

When the value w ∈ � is fixed, then �i(·, ·) assigns to each set point a steady-state pair in an injective way; as a direct
consequence of this, it is possible to find an interval such that ri ∈ [rmin

i
, rmax
i

] for which |xss
i
| ≤ xmax

i
. For the proposed

setting, both (x,u) can be considered as inputs to system (5a). A direct consequence of Proposition 1 is that for any compact
set ×�, the steady-state pairs also lie in a compact set; from Assumption 3, the uncertain parameters lie in a compact
set �, and  can be chosen such that |xi| ≤ xmax

i
for all i ∈ �n. Both the uncertain parameters and the set points can

be realized via signal generators,30 which allow us to characterize the steady-state locus, from constant set points and
parameters to periodic ones, in terms of �-limit sets.29 Setting a compact set  ⊂ ℝ

m containing the trajectories of (5a),
Lemma 3 defines the steady-state behavior of the open-loop dynamics as �( × ×�).

3.1 Conventional PID control

Based on the previous conditions, the desired regulation scenario can be achieved using a conventional PID controller of
the form

ui = kPi (ri − hi(xi)) + �i − kDi
�hi
�xi

.
xi (8a)

.
�i = kIi (ri − hi(xi)) , (8b)

where kPi, kIi > 0, kDi ≥ 0, and at the desired equilibrium point, there is �e
i
= uie. The closed-loop system takes the form

.
z = q(x, z,u(x),w). (9a)

(
1 + gi(w)kDi

�hi
�xi

)
.
xi = �i(xi,w) + gi(w)kPi (ri − hi(xi)) + gi(w)�i, (9b)

.
�i = kIi (ri − hi(xi)) , (9c)

where i ∈ �n. For system (9b)-(9c), stability of the equilibrium point (xe, �e), where � = (�1… , �n), can be analyzed by
investigating the Jacobian matrices around the equilibrium point

Ai =

⎡⎢⎢⎢⎢⎣

��i
�xi

||||xe
i

−kPigi(w)
�hi
�xi

||||xe
i

1+gi(w)kDi
�hi
�xi

||||xe
i

gi(w)

1+gi(w)kDi
�hi
�xi

||||xe
i

−kIi
�hi
�xi

|||xe
i

0

⎤⎥⎥⎥⎥⎦
,

which can be proven to be Hurwitz for a suitable selection of the proportional gain kPi, ie,

kPi > max

⎧
⎪⎨⎪⎩
0,

1

min
w∈�

{gi(w)}
�hi
�xi

|||xe
i

��i

�xi

||||xe
i

⎫
⎪⎬⎪⎭
, (10)
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and for any kIi > 0 and kDi ≥ 0. Now, by setting v = ve + ṽ, where v = (x, �), ve = (xe, �e), ṽ = (x̃, �̃), and z = ze + z̃, then
(9b)-(9a) can be rewritten in the generic form

.
z̃ = q̃(ṽ, z̃,w), (11)

where the desired equilibrium has been shifted to the origin.

Assumption 5. The dynamics (11) are locally input-to-state stable when ṽ is considered as the input.

Based on the above assumption, when asymptotic stability at the equilibrium point ve of (9b)-(9c) is guaranteed by the
controller gains kpi, then according to Lemma 2, the equilibrium point (xe, �e, ze) of the closed-loop system (9b)-(9a) is
asymptotically stable.
Although the desired equilibrium point can be proven to be asymptotically stable using a conventional PID controller, it

is not guaranteed that |xi| ≤ xmax
i

, ∀t ≥ 0. This state constraint is crucial in several practical examples, such as power elec-
tronic converters and electromechanical systems,12,19 where the current, voltage, or speed is required to remain bounded
below a given value at all times to avoid damaging devices. To overcome this problem, a nonlinear sl-PID controller is
proposed in the sequel.

4 MAIN RESULT

In this section, we state themain contribution of this paper: the sl-PID. Themotivation behind this approach is to guaran-
tee constraint satisfaction for a PID schemewithout the need of saturation units or antiwindup schemes. The formulation
follows a similar pattern to that of the classic PID controller in terms of design and analysis. The resulting nonlinear
controller attains both desired properties of constraint satisfaction and closed-loop stability.

4.1 Proposed sl-PID control design

Consider the open-loop dynamics (5) subject to Assumptions 1 to 4; the control objective, as in the case of conventional
PID, is to steer a number of states, x ∈ ℝ

n, to predefined constant set points r ∈ ℝ
n, which correspond to equilibrium

triplets (xe, ze,ue) such that |xe
i
| ≤ xmax

i
, and ze ∈ �( × ×�). Assumption 1 guarantees the availability of the state for

feedback purposes; hence, the proposed novel nonlinear sl-PID controller is

ui(xi) = −kPixi +Mi sin �i − kDi
�hi
�xi

.
xi (12a)

Mi
.
�i = kIi (ri − hi(xi)) cos �i, (12b)

whereMi, kPi, kIi > 0, kDi ≥ 0. By substituting the proposed controller (12a)-(12b) into the plant dynamics (5b)-(5c), the
closed-loop system becomes

.
z = q̃(x, �, z,w), (13a)(

1 + gi(w)kDi
�hi
�xi

)
.
xi = �i(xi,w) − gi(w)kPixi + gi(w)Mi sin �i, (13b)

Mi
.
�i = kIi (ri − hi(xi)) cos �i, (13c)

where i ∈ �n. This resulting closed-loop dynamics, indeed, satisfies the desired state-limiting property under a suitable
choice of controller gains kPi > 0, kIi > 0, and kDi > 0. The following proposition gives guidelines for choosing KPi andMi

to achieve the desired objective.

Proposition 2. Suppose Assumptions 1 to 4 hold. The trajectories of the closed-loop system (13) satisfy |xi(t)| ≤ xmax
i

for

all t ≥ 0, if initially |xi(0)| ≤ xmax
i

and the sl-PID control parameters Mi and kPi satisfy the inequality

Mi ≤ �−1
2i

(
�1i
(
xmaxi

)) k̄Pib1i − ci
b2i

, (14)

where
ci
b1i

< k̄Pi ≤ kPi − �i for any arbitrarily small �i > 0.
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Proof. Consider a continuously differentiable function Vi(xi,w) for system (13b) satisfying conditions (7a)-(7c) of
Assumption 4. Then,

.
V i =

(
1 + gi(w)kDi

�hi
�xi

)−1 [
�V

�xi
�i(xi,w) −

�V

�xi
g(w)kPixi +

�V

�xi
g(w)Mi sin �i

]

≤

(
1 + gi(w)kDi

�hi
�xi

)−1 [
−(kPib1i − ci)x

2
i + b2ixiMi sin �i

]

≤

(
1 + gi(w)kDi

�hi
�xi

)−1 [
−(kPib1i − ci)|xi|2 + b2iMi |xi|] . (15)

Because ci
b1i

< k̄Pi ≤ kPi − �i, then (15) can be rewritten as

.
V i ≤

(
1 + gi(w)kDi

�hi
�xi

)−1 [
−(k̄Pib1i − ci + �i)|xi|2 + b2iMi|xi|]

≤ −�i

(
1 + gi(w)kDi

�hi
�xi

)−1

|xi|2 < 0, ∀|xi| ≥ b2iMi

k̄Pib1i − ci
,

which, according to Theorem 4.18 of Khalil,1 proves that the solution xi(t) is uniformly ultimately bounded. In par-
ticular, considering a positive constant � > 0 such that � ⊂ x satisfying

b2iMi

k̄Pib1i−ci
< �−1

2i
(�1i(�)), there exists � ∈ 

such that for every initial state xi(0) with |xi(0)| ≤ �−1
2i
(�1i(�)), there is T ≥ 0 such that

|xi(t)| ≤
{

�i(|xi(0)|, t), 0 ≤ t < T

�−1
1i

(
�2i

(
b2iMi

k̄Pib1i−ci

))
, t ≥ T.

(16)

Note that if the initial state xi(0) satisfies

|xi(0)| ≤ �−1
1i

(
�2i

(
b2iMi

k̄Pib1i − ci

))
,

then the solution x(t) will remain in this range for all future time, ie,

|xi(t)| ≤ �−1
1i

(
�2i

(
b2iMi

k̄Pib1i − ci

))
, ∀t ≥ 0.

Hence, ifMi and kPi satisfy (14), then
|xi(t)| ≤ xmaxi , ∀t ≥ 0,

which verifies the state-limiting property of the proposed controller.

Consider the typical zero initial condition of the integral state �i, ie, �i(0) = 0; then, the controller state remains,
following the equilibria of (13c), within interval �i(t) ∈ [−

�

2
,
�

2
], ∀t ≥ 0. Whenever �(t) → ± �

2
, then

.
�i → 0, which means

that �i will converge to the upper or lower limit (±
�

2
) independently of the term ri − hi(xi).

This also implies an inherent antiwindup property of the proposed sl-PID because the integration slows down near
the two limits of �i without the need for adding any antiwindup mechanisms, which often result in changes of the orig-
inal controller dynamics, as in the conventional antiwindup PID control design. Similarly, if initially �i(0) is selected in
the range [− �

2
+ k�,+ �

2
+ k�], for all k ∈ ℤ, then it will remain within this range thereafter. This allows us to charac-

terize the region of attraction (see Figure 1 and Section 4.2) for the composite dynamics (x, �) as i,k = {(x, �) ∈ ℝ
2 ∶

|xi| ≤ xmax
i

, �i ∈ [−
�

2
+ k�, �

2
+ k�]} for any k ∈ ℤ determined by the initial conditions of the integrator. An additional

consequence of using the proposed control law is that the sets i,k are positively invariant for the closed-loop dynamics,
formalized in the following proposition.

Proposition 3. The set i,k = [−xmax
i

, xmax
i

] × [−
�

2
+ k�, �

2
+ k�] is positively invariant for the closed-loop dynamics

(13b) and (13c) when �i(0) ∈ [−
�

2
+ k�, �

2
+ k�] for any k ∈ ℤ.
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FIGURE 1 Region of attraction for the

closed-loop dynamics (13b) and (13c). Each

region corresponds to an initial condition

for the integrator, ie, �i(0) = 0 implies that

the corresponding region of attraction, i,0,

is positively invariant [Colour figure can be

viewed at wileyonlinelibrary.com]

It has been proven in Proposition 2 that the proposed sl-PID (12a)-(12b) guarantees a symmetric constraint |xi(t)| ≤ xmax
i

for the closed-loop system (13). In the case where a nonsymmetric constraint is required, eg, xmin
i

≤ xi ≤ xmax
i

, the
following Remark is provided.

Remark 3. Consider system (5a)-(5c) with the desired state constraint xmin
i

≤ xi ≤ xmax
i

, ∀i = 1, 2, … ,n, where

Assumptions 1 to 3 hold and Assumption 4 is true with respect to x̄i = xi − xm
i
, with xm

i
=

xmin
i

+xmax
i

2
, ie, there exists

Vi(x̄i,w) that satisfies (7a)-(7c)with respect to x̄i. Then, the problem can be transformed into a problemwith symmetric

state constraints of the form |x̄i(t)| ≤ Δxm
i
, where Δxm

i
=

xmin
i

−xmax
i

2
. Hence, the sl-PID can take the form

ui(x̄i) = −kPix̄i +Mi sin �i − kDi
�hi
�x̄i

.
x̄i (17)

with �i dynamics (12b) and guarantee the desired state limitation, following the same analysis provided in
Proposition 2.

4.2 Stability analysis

Although the desired xi state limitation is guaranteed, the stability of the desired equilibrium point (xe
i
, �e

i
) with xe ∈ x,

still needs to be investigated. Following Proposition 1, the map (xe,ue) = �(r,w) for a constant w ∈ � defines injectively
a steady-state pair, which allows us to characterize the equilibrium points.

Proposition 4. Suppose that Assumptions 1 to 3 hold, and
��i

�xi
(xi,w) − kPigi(w) ≤ 0 for all i ∈ �n and |xi| ≤ xmax

i
. The

equilibriumpoints (xe
i
, �e

i
) for the closed-loop system (13b) and (13c) for all i ∈ �n satisfy (x

e
i
, �e

i
) ∈ (−xmax

i
, xmax

i
)×
(
−

�

2
,
�

2

)

when ri ∈ (−h−1
i
(xmax
i

), h−1
i
(xmax
i

)) and (xe
i
, �e

i
) =
(
±xmax

i
,±

�

2
+ k�

)
when |ri| ≥ h−1

i
(xmax
i

).

Proof. The steady-state locus for (13b) and (13c) for constant set points is given by the solutions of the system of
nonlinear equations

0 = �i(xi,w) − gi(w)kPixi + gi(w)Mi sin �i,

0 = (ri − hi(xi)) cos �i,

which can be translated into the set

sin �ei = (Migi(w))
−1
(
kPigi(w)x

e
i − �i

(
xei ,w

))
∩
(
�ei = ±

�

2
+ k� ∪ xei = h−1i (ri)

)
, (18)

http://wileyonlinelibrary.com
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for k ∈ ℤ. As a result, the steady-state locus can be characterized completely by two types of behavior: when �e
i
=

± �

2
+k�, the state satisfies �i(xei ,w)−kPigi(w)x

e
i
+Migi(w) = 0, and on the other hand,when xe

i
= h−1

i
(ri), the equilibrium

for the integrator state can be obtained as

�ei = arcsin

(
kPigi(w)h

−1
i
(ri) − �i

(
h−1
i
(ri),w

)
Migi(w)

)
.

This implies that the following inequality holds:

−Migi(w) ≤ kPigi(w)h
−1
i (ri) − �i

(
h−1i (ri),w

)
≤ Migi(w),

which in turn allows us to define two functions

F1,i(ri,w) = �i
(
h−1i (ri),w

)
− kPigi(w)h

−1
i (ri) +Migi(w) ≥ 0

F2,i(ri,w) = �i
(
h−1i (ri),w

)
− kPigi(w)h

−1
i (ri) −Migi(w) ≤ 0

that, under the hypothesis ��i

�xi
(xi,w) − kPigi(w) ≤ 0, are both nonincreasing functions of the reference points. For

the first case, the value of ri for which F1,i(ri,w) = 0 is paired with �e
i
=

�

2
; in addition, because F1,i(·, ·) is non-

increasing, this value corresponds to rmax
i

. A similar argument follows for F2,i(·, ·) and (−rmax
i

,−
�

2
). In the case that

ri ∈ (−hi(x
max
i

), hi(x
max
i

)), then, the equilibrium point satisfies xe
i
∈ (−xmax

i
, xmax

i
) and �e

i
∈ (−

�

2
,
�

2
).

A direct consequence of the previous result is the existence of equilibrium points inside the region of attraction i,k:

Corollary 1. The set i,k for all i ∈ �n and any k ∈ ℤ contains three equilibrium points: (xe
i
, �e

i
), (xmax

i
,
�

2
+ k�), and

(−xmax
i

,−
�

2
+ k�).

For the desired equilibrium point xe
i
∈ (−xmax

i
, xmax

i
), �e

i
∈
(
−

�

2
,
�

2

)
, ∀i ∈ �n, the Jacobianmatrix of system (13b)-(13c) is

Ai =

⎡
⎢⎢⎢⎢⎢⎣

��i
�xi

||||xe
i

−kPigi(w)

1+gi(w)kDi
�hi
�xi

||||xe
i

gi(w)Mi cos �
e
i

1+gi(w)kDi
�hi
�xi

||||xe
i

−
kIi
Mi

cos �e
i

�hi
�xi

|||xe
i

0

⎤
⎥⎥⎥⎥⎥⎦

.

Thus, the equilibrium point (xe, �e) will be asymptotically stable when

kPi > max

{
0,

��i

�xi

||||xe
i

1
min
w∈�

{gi(w)}

}
(19)

and for any kIi > 0 and kDi ≥ 0. Hence, by selecting kPi according to (19), thenMi can be chosen to satisfy (14). For the
remaining dynamics, similarly to the analysis of the conventional PID controller, (13a) can be rewritten in the generic
form

.
z̃ = q̃(ṽ, z̃,w), (20)

with the desired equilibrium being shifted at the origin z̃ = 0. As in Section 3.1, if Assumption 5 holds for system (20),
according to Lemma 2, the equilibrium point (xe, �e, ze) of the closed-loop system (13b)-(13a) is asymptotically stable.
The asymptotic stability of the desired equilibrium point (xe, �e) has been proven in a neighborhood of the equilib-

rium point, as in the case of the conventional PID control when system (5a)-(5c) is nonlinear. However, in the proposed
approach, a detailed methodology for selecting the sl-PID controller gains can be applied to prove that the asymptotic
stability holds in the entire constrained range xi ∈ [−xmax

i
, xmax

i
], as explained in the following theorem.

Theorem 1. Suppose that Assumptions 1 to 4 hold. The desired equilibrium point (xe, �e) of the closed-loop system

(13b)-(13c) with xe
i
∈ (−xmax

i
, xmax

i
), �e

i
∈
(
−

�

2
,
�

2

)
, ∀i ∈ �n, is asymptotically stable and every solution (xi(t), �i(t)) with
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initial conditions xi(0) ∈ (−xmax
i

, xmax
i

), �i(0) ∈
(
−

�

2
,
�

2

)
, ∀i = �n converges to (x

e
i
, �e

i
) as t → ∞when kPi, kIi, and kDi ≥ 0

satisfy

kPi > max

{
0, max|xi|≤xmaxi

{
��i

�xi

}
1

min
w∈�

gi(w)

}
, (21)

kIi <

[
min|xi|≤xmaxi

,w∈�

{(
kPigi(w) −

��i

�xi

)
� + gi(w)kDi

|||||
�2hi

�x2
i

(�i(xi,w) − gi(w)kPixi)
|||||

}]
Mi

max|xi|≤xmaxi

{|ri − hi(xi)| �2}
, (22)

where � = 1 + gi(w)kDi
�hi
�xi
.

Proof. Because (21) is satisfied for all |xi| < xmax
i

, then (19) holds true, and as a result, the desired equilibrium point

(xe, �e) of the closed-loop system with xe
i
∈ (−xmax

i
, xmax

i
), �e

i
∈
(
−

�

2
,
�

2

)
is asymptotically stable. The extension of this

result to the entire bounded range follows from an analysis of the closed-loop dynamics (13b)-(13c), which describe
a second-order system for each i ∈ �n of the form

.
xi = �̃i(xi, �i) (23)

.
�i = g̃i(xi, �i, ri). (24)

First, we ensure that no limit cycles exist within the constraint set (xi, �i) ∈ i,k; this assertion follows from the

Bendixon theorem31 such that the divergence of the vector field does not vanish nor change sign, ie, ��̃i

�xi
+

�g̃i
��i

≠ 0 for

all (xi, �i) ∈ i,k. Computing the derivatives yields the expression

(
��i

�xi
− kPigi(w)

)(
1 + gi(w)kDi

�hi
�xi

)
− gi(w)kDi

�2hi
�x2

i

(�i(xi,w) − gi(w)kPixi)

(
1 + gi(w)kDi

�hi
�xi

)2 −
kIi
Mi

(ri − hi(xi)) sin �i ≠ 0.

Therefore, no limit cycles will exist in the bounded range if

(
��i

�xi
− kPigi(w)

)
� − gi(w)kDi

�2hi
�x2

i

(�i(xi,w) − gi(w)kPixi)

�2
+
kIi
Mi

max|xi|≤xmaxi

|ri − hi(xi)| < 0, ∀t ≥ 0. (25)

From (21) and (22), the above expression does not change sign nor vanish. This condition implies from Lemma 3
that any bounded trajectory (xi(t), �i(t)) within i,k will converge to the omega limit set �(i,k) of (24), which cannot
include a limit cycle.
However, except from the desired equilibriumpoint (xe, �e), which is asymptotically stable, according to Corollary 1,

there exist two more equilibrium points in the bounded range, ie, (xe
i
, �e

i
) =

(
xmax
i

,
�

2

)
and (xe

i
, �e

i
) =

(
−xmax

i
,−

�

2

)
.

The proof that these two equilibrium points are unstable follows by contradiction. In particular, consider that for

any (xi0, �i0) with xi0 ∈ (−xmax
i

, xmax
i

) and �i0 ∈
(
−

�

2
,
�

2

)
, there is (xi(t), �i(t)) →

(
xmax
i

,
�

2

)
as t → ∞. However, for

a point in i,0 arbitrarily close to the equilibrium point (xe
i
, �e

i
) =

(
xmax
i

,
�

2

)
, because Assumption 1 holds in i,0,

then h(xi) < h(xe
i
) and xi < xe

i
hold. As a result,

.
�i < 0, which implies that �i will decrease and diverge from

�e
i
=

�

2
, ie, consequently, the solution (xi(t), �i(t)) will diverge from

(
xmax
i

,
�

2

)
taking into account (13b) and Corol-

lary 1, leading to a contradiction. Hence, the equilibrium point
(
xmax
i

,
�

2

)
is unstable. A similar procedure holds for

(xe
i
, �e

i
) =
(
−xmax

i
,−

�

2

)
. As a result, the desired equilibrium point (xe

i
, �e

i
) with xe

i
∈ (−xmax

i
, xmax

i
) and �e

i
∈
(
−

�

2
,
�

2

)

represents the only positive limit point in the omega limit set �(i,0); thus, every solution (xi(t), �i(t)) starting in the
range (xi(0), �i(0)) ∈ i,0, ∀i ∈ �n, converges to (xe

i
, �e

i
) as t → ∞ when kPi, kIi, and kDi ≥ 0 satisfy (21)-(22), thus

completing the proof.
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Although the condition of the integral gain selection, ie, condition (22), might seem complicated to verify, it should be
noted that it can be significantly simplified for the case of the sl-PI controller, as given in the following remark.

Remark 4. For the design of a sl-PI controller, the derivative gain is zero, ie, kDi = 0, and hence, condition (22) is
simplified to the expression:

kIi < min|xi|≤xmaxi
,w∈�

{
kPigi(w) −

��i

�xi

}
Mi

max|xi|≤xmaxi

{|ri − hi(xi)|} . (26)

Remark 5. From the closed-loop dynamics, the set point ri acts as a bifurcation parameter in the sense that its value
changes the dynamic properties of the system. For any |h−1

i
(ri)| < xmax

i
, following Corollary 1, there are three dis-

tinct equilibrium points: two unstable at the boundary of i,k and one stable in the interior of i,k. As the set point
approaches hi(xmaxi

), the stable set point also approaches the boundary of i,k; eventually, when |ri| ≥ hi(x
max
i

), there
are only two equilibrium points.

To summarize the design procedure of the proposed sl-PID controller, the following steps can be followed.

1. Check that the system under investigation is in form of (5a)-(5c) or whether it can be brought into this form using
partial feedback linearization.

2. Check that Assumptions 1 to 5 hold.
3. Select kPi to satisfy (21) and kDi ≥ 0.
4. SelectMi according to (14).
5. Select kIi satisfying (22).
6. Design the sl-PID controller according to (12a)-(12b).

Although, in this paper, the state constraint |xi| ≤ xmax
i

is the main requirement for the closed-loop system equipped
with the proposed sl-PID, it is worth mentioning the proposed design in the PI control format, ie, sl-PI controller, can
additionally guarantee an input constraint of the form |ui| ≤ umax

i
, umax

i
> 0 when required. This is explained in the

following remark.

Remark 6. The proposed sl-PI control (12a)-(12b) with kDi = 0 guarantees a desired input constraint |ui| ≤ umax
i

in
addition to the state constraint |xi| ≤ xmax

i
whenMi is selected as

Mi ≤ min

{
umaxi − kPix

max
i , �−1

2i

(
�1i
(
xmaxi

)) k̄Pib1i − ci
b2i

}
(27)

when kPi < umax
i

∕xmax
i

.

The above remark and the additional conditions forMi and kPi can be easily obtained by taking into account the control
structure (12a), the desired input and state constraints, andMi > 0. It should be noted that even though the sl-PI controller
can be designed based onRemark 6 to guarantee both state and input constraints, the selection of the controller parameters
may lead to a slow response in a real application because the upper limits forMi and kPi have been obtained to guarantee
the desired input constraint for the worst-case scenario, ie, when |xi| ≤ xmax

i
and | sin(�i)| ≤ 1.

5 ENGINEERING EXAMPLES

5.1 Motor feeding a constant power load

5.1.1 System and controller design
Consider first the case of a motor feeding a constant power load (CPL), ie, the load torque is represented as TL =

PL
�
,

where PL > 0 is the power of the load, which is constant, and � is the speed of the motor. Example of these loads includes
machine tools and center winders in the industry. Hence, the motor dynamics are given in the form

J
d�

dt
= −�� + T −

PL
�
, (28)
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where J is the motor inertia, � is the motor damping, and T is the electrical torque applied to the motor, representing
the control input of the system. It is assumed that the motor parameters and the load are not accurately known but can
vary around their nominal values, ie, they satisfy J ∈ [Jn − ΔJ, Jn + ΔJ] > 0, � ∈ [�n − Δ�, �n + Δ�] > 0, and PL ∈

[PLn−ΔPL,PLn+ΔPL] > 0 (Assumption 3). The main task is to regulate the speed of the motor to a desired reference �ref,
while guaranteeing that during the transient response, the speed never violates an upper limit, ie, |�| ≤ �max, ∀t ≥ 0.
Note that because a CPL is connected at the motor, the motor speed should take strictly positive values, ie, consider that
� ≥ �min > 0. The plant is in the form of (5b) with y = �. Hence, g(w) =

1

J
> 0 and h(�) = �, ie, �h

��
= 1 > 0,

which confirm that both Assumptions 1 and 2 hold. For system (28), consider the continuous and differentiable function
V =

1

2
J�2, which satisfies (7a). In addition,

�V

��
� = −��2 − PL ≤ −(�n − Δ�)�2

�V

��
g = �,

which verifies that (7b) and (7c) are also satisfied with c = −�n + Δ� and b1 = b2 = 1, yielding that Assumption 4
holds as well. As a result, both the conventional PID and the sl-PID can be applied to regulate the motor speed. For the
conventional PID, the proportional gain kP can be selected according to (10), whereas the integral and derivative gains
can take any positive values kI and kD. For the sl-PID design, the proportional gain should be selected according to (21) as

kP >
PLn + ΔPL

�2
min

− �n + Δ�.

Consequently, parameterM when chosen according to (14) satisfies

Mi ≤ �max(kP + �n − Δ� − �),

for an arbitrarily small � > 0 such that kP + �n − Δ� − � > 0. The proportional and derivative gains can take any positive
value kP and nonnegative value kD, respectively, whereas the integral gain can be selected according to condition (22),
taking into account that h(�) = �, ie, �h

��
= 1, �2h

��2
= 0:

kI < min
�min≤�≤�

max

w∈�

[
1
J

(
kP + � −

PLn
�2

)]
M

max
�min≤�≤�

max

w∈�

{
|�ref − �|

(
1 + kD

J

)} .

Based on the given ranges of the uncertain parameters and the proven limit of the state � below �max, which together
with |�ref| ≤ �max yields max{|�ref − �|} = 2�max, then, the range of kI becomes

kI <

(
kp + �n − Δ� −

PLn+ΔPL
�2
min

)
(kP + �n − Δ� − �)

2(Jn + ΔJ + kD)
.

Note that because the nominal power of the load PLn is known and the motor speed � is measured, an additional term
PLn
�
can be introduced in the control input torque T together with the proposed sl-PID to reduce system nonlinearity. In

this case, kP should satisfy kP >
ΔPL

�2
min

− �n+Δ� and parametersM and kI can be defined accordingly. However, this special

case is not applied in the simulation that follows in order to keep consistency with the generic case of the system and the
control design procedure presented in the theory.

5.1.2 Simulation results
To validate the proposed sl-PID control performance and compare it with the conventional PID control, the motor sys-
tem with parameters given in Table 1 is simulated. The main goal is to regulate motor speed � to the desired value �ref

without violating the upper limit �max = 200[rad s−1], whereas at the steady state, the motor speed always stays above
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Parameters Values Parameters Values

J 0.22 kg·m2 Jn 0.2 kg·m2

ΔJ 0.1 kg·m2
� 0.0012 ·m/s rad−1

�n 0.001 ·m/s rad−1 Δ� 0.0005 N·m/s rad−1

PL, PLn 1 kW ΔP 0.2 kW

TABLE 1 Motor parameters

(A) (B)

FIGURE 2 Simulation results of a motor feeding a constant power load using the conventional PID and the proposed sl-PID control. A,

Motor speed; B, Input torque [Colour figure can be viewed at wileyonlinelibrary.com]

�min = 30[rad s−1]. It is underlined that according to Table 1, the system parameters can vary up to 50% from the nominal
values to investigate a scenario with extreme level of uncertainties. The conventional PID controller is tested with two
different values of kP = 1 and kP = 2, whereas the integral and derivative gains take the values kI = 10 and kD = 0.01,
respectively. For the proposed sl-PID, the controller gains can be computed according to the analysis presented in the
previous subsection leading to kP = 8, kI = 85, and kD = 0.01.
Initially, the desired speed is set to�ref = 100[rad s−1] and at the time instant t = 5[s], it changes to 190[rad s−1]. As it can

be observed from the response in Figure 2A, both the conventional PID and the proposed sl-PID can achieve the desired
regulation as expected from the theoretical analysis. However, during the transient, the conventional PID control forces
the motor speed to exceed the upper limit �max, whereas the proposed sl-PID maintains the desired state limitation at all
times. Note, however, that for larger values of the proportional gain kP, the conventional PID may possibly maintain the
speed to values lower than �max. Nevertheless, the conventional PID gains are designed based on the linearized model,
ie, the desired state limitation cannot be guaranteed for a generic nonlinear system with uncertainties, whereas the state
limitation for the proposed sl-PID has been proven using ultimate boundedness theory for the generic nonlinear model.
In addition, as it can be seen from the response of the input torque in Figure 2B, larger values of the proportional gain kP
will lead to unrealistically large values of the torque (eg, higher than 160[Nm]), whereas the proposed sl-PID results in a
much smoother input response.

5.2 A dc/dc boost power converter

5.2.1 System and controller design
Consider the dynamic equations of the dc/dc boost converter connected to a resistive load R, given as in Konstantopoulos
and Zhong32:

L
di

dt
= −ri − (1 − u)v + Vin (29a)

C
dv

dt
= (1 − u)i −

v

R
, (29b)

http://wileyonlinelibrary.com
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whereVin > 0 is the dc input voltage,L is the converter inductancewith a series resistance r,C is the converter capacitance,
x̄ = (i, v) is the state vector, and u is the control input describing the duty-ratio input of the converter. The dc/dc converter
can achieve a higher dc voltage v at its output compared to the input voltageVin. Themain task is to regulate the converter
power P = Vini to a constant reference P

ref, while maintaining a desired constraint |i| ≤ imax, where imax > 0 represents
the maximum allowed current of the converter to avoid damage of the device. It is assumed that L, C, r, and R are not
accurately known, ie, L ∈ [Ln − ΔL,Ln + ΔL] > 0, C ∈ [Cn − ΔC,Cn + ΔC] > 0, r ∈ [rn − Δr, rn + Δr] ≥ 0, and
R ∈ [Rn − ΔR,Rn + ΔR] > 0, where Ln, Cn, rn, and Rn are the corresponding nominal quantities, which are considered
known together with the maximum deviations of the parameters (Assumption 3). By defining the control input u as

u = 1 −
Vin − ū

v
(30)

when v ≥ Vin > 0, which is a physical property of DC/DC boost converters, and replacing it in (29a)-(29b), the converter
dynamics take the form

di

dt
= −

r

L
i +

1
L
ū (31a)

dv

dt
=
Vin − ū

Cv
i −

v

CR
(31b)

� = Vini, (31c)

which is in the form of (5b)-(5c) considering the control input ū. Note that g(w) = 1

L
> 0 and h(i) = Vini, ie,

�h

�i
= Vin > 0,

which confirm that both Assumptions 1 and 2 hold. Because (31a) is linear and time invariant, then by considering the
quadratic function V =

1

2
Li2, which satisfies (7a),

�V

�i
� = −ri2

�V

�i
g = i,

hence, (7b) and (7c) are also satisfied with c = −rn + Δr and b1 = b2 = 1, yielding that Assumption 4 holds as well. As a
result, both the conventional PID controller and the proposed nonlinear sl-PID controller can be implemented to regulate
x̄ to the desired unique equilibrium x̄e = (ie, ve), where ie = iref ∈ [−imax, imax] and ve =

√
Riref(Vin − riref).

Because of its physical properties, the boost converter output voltage is always higher than the input voltage, ie, v ≥

Vin > 0. For any proportional gain kP > 0, the equilibrium point ie = iref of (31a) will be asymptotically stable because
conditions (10) and (19) will be satisfied for both the conventional and the proposed sl-PID controller. For the proposed
controller, from (14), parameterM should satisfy

M ≤ imax(kP + rn − Δr − �), (32)

for an arbitrarily small � > 0 such that kP + rn − Δr − � > 0. Finally, from (22), the integral gain kI should satisfy

kI < min
w∈�

{
kP + r

L

}
M

Vin max|i|≤imax |iref − i| . (33)

Because the proposed controller guarantees the state constraint |i| ≤ imax according to the analysis in Subsection 4.1 and
|iref| < imax, then max |iref − i| = 2imax. As a result, taking into account the choice of M from (32) and the range of the
uncertain parameters L ∈ [Ln − ΔL,Ln + ΔL] > 0 and r ∈ [rn − Δr, rn + Δr] ≥ 0, inequality (33) becomes

kI <
(kP + rn − Δr)(kP + rn − Δr − �)

2(Ln + ΔL)Vin
. (34)
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FIGURE 3 Vector field of the current

dynamics in closed loop with the proposed

state-limiting proportional integral

derivative controller. The vector field shows

the positive invariance of set 1,k;

furthermore, the trajectories emanating

from points in the vicinity of (−imax,− �

2
)

and (imax, �
2
) diverge from these points and

converge to the single stable equilibrium

point [Colour figure can be viewed at

wileyonlinelibrary.com]

By setting i = ie + ĩ, v = ve + ṽ, and � = �e + �̃, then (31b) can be expressed as

dṽ

dt
=
Vin + kP(ie + ĩ) −M sin(�e + �̃)

C(ve + ṽ)
(ie + ĩ) −

ve + ṽ

CR

= q̃(x̃, ṽ,w). (35)

Considering a set Dṽ for ṽ, where ṽ > −ve in Dṽ, then both
�q̃

�ṽ
and �q̃

�x̃
are bounded in Dṽ where x̃ = (ĩ, �̃). In addition, the

unforced system, ie, for x̃ = 0, has the form

dṽ

dt
=

Vinie
C(ve + ṽ)

−
ve + ṽ

CR
. (36)

The Jacobian of system (36) results in

Av = −
Vinie

Cv2e
−

1
CR

= −
1
CR

(
Vin

Vin − riref
+ 1

)
< 0,

and therefore, the origin of (36) is asymptotically stable. Then, according to Lemma 1, system (35) is locally input-to-state
stable. As a result, the desired equilibrium point (ie, �e, ve) of system (31a)- (31b) with both the conventional PID and the
proposed sl-PID controller will be asymptotically stable. In Figure 3, we illustrate the behavior of the system dynamics
under the proposed control law.We can see that the vector field and any trajectory starting inside1,0 remain within. This

illustrates the nature of the equilibria (see Corollary 1); for those on the boundary of 1,0, ie,
(
−imax,− �

2

)
and

(
imax, �

2

)
,

the closed-loop system is unstable and any trajectory starting arbitrarily closed to them diverges, whereas point (ie, �e) is
stable.

5.2.2 Simulation results
To demonstrate the performance of the proposed nonlinear sl-PID controller in comparison with the conventional PID
control, the dc/dc converter system of (29a)-(29b) was simulated using the parameters shown in Table 2. For the conven-
tional PID controller, the integral gain is selected as kI = 200, whereas two different values are tested for the proportional
gain kP = 0.4 and 0.6, with kD = 0. For the proposed nonlinear sl-PID controller gains, the design procedurementioned in
the previous subsection is followed, providing the selection kP = 25, kI = 2083 and kD = 0. The desired scenario is for the
converter to regulate initially the power P to a desired value Pref = 20[W], whereas at time instant t = 0.1[s], the reference
power changes to Pref = 38[W]. It is required that the converter current i remains limited below imax = 4[A] at all times.
As it is illustrated in Figure 4A, both the proposed and the conventional PID controllers (with both proportional gains)

http://wileyonlinelibrary.com
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TABLE 2 Converter parameters Parameters Values Parameters Values

L 12 mH Ln 10 mH

ΔL 5 mH r 8 mH

rn 10 mΩ Δr 10 mΩ

C 120 �F Cn 100 �F

ΔC 50 �F R,Rn 10 MΩ

Vin 10 V ΔR 5 MΩ

(A) (B)

(C) (D)

FIGURE 4 Simulation results of a dc/dc power converter using the conventional PID and the proposed sl-PID control. A, Converter

current; B, Load voltage; C, Load power; D, Duty-ratio input u [Colour figure can be viewed at wileyonlinelibrary.com]

manage to regulate the converter power to any desired value. The converter voltage reaches the expected steady-state
value ve =

√
Riref(Vin − riref), as demonstrated in Figure 4C.

However, when the conventional PID controller is applied, the desired state constraint |i| ≤ imax is not guaranteed at
all times because during the transient response, current i violates the desired maximum value (Figure 4B). On the other
hand, as expected from the theoretical analysis, the proposed nonlinear sl-PID controller leads the converter current to
the desired regulation without violating the maximum bound. It should be highlighted that for a different choice of the
proportional and integral gains, it is possible that the conventional PID controller can maintain the current below the
maximum value for the given regulation scenario. However, there is no analytic method for calculating the gains and
guaranteeing that |i| ≤ imax, ∀t ≥ 0, for different values of iref or different load cases, opposed to the proposed approach,
which guarantees the desired state constraint at all times. Furthermore, from the duty-ratio input performance shown in
Figure 4D, it is clear that for a larger value of kP for the conventional PID controller, the input value will exceed the value
of 1, which represents the physical limit of the converter. As a result, the proposed nonlinear PI controller offers a superior

http://wileyonlinelibrary.com
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performance during transients and guarantees the desired state limitation for the generic nonlinear model, whereas the
proposed analysis offers a rigorous methodology for the selection of the proportional and integral gains.

6 CONCLUSIONS

A novel nonlinear sl-PID controller was proposed in this paper to guarantee accurate output regulation and state con-
straint satisfaction for a wide class of nonlinear systems with constant uncertainties. Asymptotic stability of the desired
equilibrium point and a given upper bound for the desired system states were analytically proven. A design procedure
for the controller gains was also presented. The superiority of the proposed sl-PID controller compared with the conven-
tional approachwas demonstrated in two practical examples consisting of amotor with a constant power load and a dc/dc
power electronic converter.

ACKNOWLEDGEMENT

This research was supported by the Engineering and Physical Sciences Research Council (EPSRC), under grant
EP/S0001107/1.

ORCID

George C. Konstantopoulos https://orcid.org/0000-0003-3339-6921

Pablo R. Baldivieso-Monasterios https://orcid.org/0000-0003-1518-1177

REFERENCES

1. Khalil HK. Nonlinear Systems. 2nd ed. Upper Saddle River, NJ: Prentice Hall; 1996.

2. Ortega R, Romero JG. Robust integral control of port-Hamiltonian systems: the case of non-passive outputs with unmatched disturbances.

Syst Control Lett. 2012;61(1):11-17.

3. Isidori A, Byrnes CI. Output regulation of nonlinear systems. IEEE Trans Autom Control. 1990;35(2):131-140.

4. Isidori A. A remark on the problem of semiglobal nonlinear output regulation. IEEE Trans Autom Control. 1997;42(12):1734-1738.

5. MahmoudNA,Khalil HK.Asymptotic regulation ofminimumphase nonlinear systems using output feedback. IEEETransAutomControl.

1996;41(10):1402-1412.

6. Huang X, Khalil HK, Song Y. Regulation of non-minimum-phase nonlinear systems using slow integrators and high-gain feedback. IEEE

Trans Autom Control. 2019;64(2):640-653. https://doi.org/10.1109/TAC.2018.2839532

7. Khalil HK. Universal integral controllers for minimum-phase nonlinear systems. IEEE Trans Autom Control. 2000;45(3):490-494.

8. Nazrulla S, Khalil HK. Robust stabilization of non-minimum phase nonlinear systems using extended high-gain observers. IEEE Trans

Autom Control. 2011;56(4):802-813. https://doi.org/10.1109/TAC.2010.2069612

9. Ma K, Khalil HK. On the transient response of a nonlinear output regulator. IEEE Trans Autom Control. 2010;55(6):1455-1460. https://

doi.org/10.1109/TAC.2010.2044265

10. Huang X, Khalil HK, Song Y. Regulation of non-minimum-phase nonlinear systems using slow integrators. Paper presented at: 2018

Annual American Control Conference (ACC); 2018; Milwaukee, WI.

11. Marino R, Tomei P. Output regulation for unknown stable linear systems. IEEE Trans Autom Control. 2015;60(8):2213-2218. https://doi.

org/10.1109/TAC.2014.2368234

12. Tilli A, Conficoni C. Control of shunt active filters with actuation and current limits. IEEE Trans Control Syst Technol. 2015;24(2):644-653.

https://doi.org/10.1109/TCST.2015.2450112

13. Zaccarian L, Teel AR. Nonlinear scheduled anti-windup design for linear systems. IEEE Trans Autom Control. 2004;49(11):2055-2061.

14. Iplikci S. A comparative study on a novel model-based PID tuning and control mechanism for nonlinear systems. Int J Robust Nonlinear

Control. 2009. https://doi.org/10.1002/rnc.1524

15. Romanchuk BG. Some comments on anti-windup synthesis using LMIs. Int J Robust Nonlinear Control. 1999;9(10):717-734.

https://doi.org/10.1002/(SICI)1099-1239(199908)9:10<717::AID-RNC430>3.0.CO;2-F

16. Visioli A. Practical PID control. Int J Robust Nonlinear Control. 2009;19(9):1076-1078. https://doi.org/10.1002/rnc.1369

17. Konstantopoulos GC, Zhong Q-C, Ren B, Krstic M. Bounded integral control of input-to-state practically stable nonlinear systems to

guarantee closed-loop stability. IEEE Trans Autom Control. 2016;61(12):4196-4202.

18. Konstantopoulos GC. Enhanced bounded integral control of input-to-state stable nonlinear systems. IFAC-PapersOnLine.

2017;50(1):8151-8156. https://doi.org/10.1016/j.ifacol.2017.08.1257

19. Tilli A, Conficoni C. Anti-windup scheme for current control of Shunt Active Filters. Paper presented at: 2012 American Control

Conference (ACC); 2012; Montreal, Canada.

https://orcid.org/0000-0003-3339-6921
https://orcid.org/0000-0003-3339-6921
https://orcid.org/0000-0003-1518-1177
https://orcid.org/0000-0003-1518-1177
https://doi.org/10.1109/TAC.2018.2839532
https://doi.org/10.1109/TAC.2010.2069612
https://doi.org/10.1109/TAC.2010.2044265
https://doi.org/10.1109/TAC.2010.2044265
https://doi.org/10.1109/TAC.2014.2368234
https://doi.org/10.1109/TAC.2014.2368234
https://doi.org/10.1109/TCST.2015.2450112
https://doi.org/10.1002/rnc.1524
https://doi.org/10.1002/(SICI)1099-1239(199908)9:10%3C717::AID-RNC430%3E3.0.CO;2-F
https://doi.org/10.1002/rnc.1369
https://doi.org/10.1016/j.ifacol.2017.08.1257


18 KONSTANTOPOULOS AND BALDIVIESO-MONASTERIOS

20. Conficoni C.Nonlinear Constrained and SaturatedControl of Power Electronics andElectromechanical Systems [PhD thesis]. Bologna, Italy:

University of Bologna; 2013.

21. Schweppe F. Recursive state estimation: unknown but bounded errors and system inputs. IEEE Trans Autom Control. 1968;13(1):22-28.

https://doi.org/10.1109/TAC.1968.1098790

22. Jaulin L, Kieffer M, Didrit O, Walter É. Applied Interval Analysis. London, UK: Springer-Verlag London; 2001.

23. Aubin J-P, Frankowska H. Set-Valued Analysis. Boston, UK: Birkhäuser; 2009.

24. Kang W, Krener A. Nonlinear observer design: a backstepping approach. In: Proceedings of the 13th IEEE International Symposium on

the Mathematical Theory of Networks and Systems; 1998; Padova, Italy.

25. Andonov P, Savchenko A, Rumschinski P, Streif S, Findeisen R. Controller verification and parametrization subject to quantitative and

qualitative requirements. IFAC-PapersOnLine. 2015;48(8):1174-1179. https://doi.org/10.1016/j.ifacol.2015.09.127

26. Martínez-Guerra R, Cruz-Ancona CD. Algorithms of Estimation for Nonlinear Systems. Cham, Switzerland: Springer International

Publishing; 2017. Understanding Complex Systems.

27. Mayne DQ, Rawlings JB, Rao CV, Scokaert POM. Constrained model predictive control: stability and optimality. Automatica.

2000;36(6):789-814. https://doi.org/10.1016/S0005-1098(99)00214-9

28. Jerez JL, Goulart PJ, Richter S, Constantinides GA, Kerrigan EC, Morari M. Embedded online optimization for model predictive control

at megahertz rates. IEEE Trans Autom Control. 2014;59(12):3238-3251. https://doi.org/10.1109/TAC.2014.2351991

29. Isidori A, Byrnes CI. Steady-state behaviors in nonlinear systems with an application to robust disturbance rejection. Annu Rev Control.

2008;32(1):1-16. https://doi.org/10.1016/j.arcontrol.2008.01.001

30. Byrnes CI, Gilliam DS, Isidori A, Ramsey J. On the steady-state behavior of forced nonlinear systems. In: Kang W, Borges C, Xiao M, eds.

New Trends in Nonlinear Dynamics and Control and their Applications. Berlin, Germany: Springer; 2004:119-143.

31. Slotine J-JE, Li W. Applied Nonlinear Control. Englewood Cliffs, NJ: Prentice Hall; 1991.

32. Konstantopoulos GC, Zhong Q-C. Current-limiting DC/DC power converters. IEEE Trans Control Syst Technol. 2019;27(2):855-863.

How to cite this article: Konstantopoulos GC, Baldivieso-Monasterios PR. State-limiting PID controller
for a class of nonlinear systems with constant uncertainties. Int J Robust Nonlinear Control. 2019;1–18.
https://doi.org/10.1002/rnc.4853

https://doi.org/10.1109/TAC.1968.1098790
https://doi.org/10.1016/j.ifacol.2015.09.127
https://doi.org/10.1016/S0005-1098(99)00214-9
https://doi.org/10.1109/TAC.2014.2351991
https://doi.org/10.1016/j.arcontrol.2008.01.001
https://doi.org/10.1002/rnc.4853

	State-limiting PID controller for a class of nonlinear systems with constant uncertainties
	Abstract
	INTRODUCTION
	PRELIMINARIES
	PROBLEM DEFINITION
	Conventional PID control

	MAIN RESULT
	Proposed sl-PID control design
	Stability analysis

	ENGINEERING EXAMPLES
	Motor feeding a constant power load
	System and controller design
	Simulation results

	A dc/dc boost power converter
	System and controller design
	Simulation results


	CONCLUSIONS
	References


