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Abstract
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to admit descriptions as affine Gaudin models. This includes both the Yang–Baxter
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1 Introduction

Determining whether a given two-dimensional classical field theory is integrable is

somewhat of an art. It requires finding a connection d + L on the two-dimensional

space-time Σ , valued in some complex Lie algebra gC, such that:

(a) It depends meromorphically on an auxiliary Riemann surface C ,

(b) It is on-shell flat,

(c) The integrals of motion constructed from it are in involution.

In this article, we shall restrict attention to the case when C = CP1. We fix a global

holomorphic coordinate z on C ⊂ CP1, called the spectral parameter.

Given the difficulty of the above task, one can turn the tables around by seeking

instead to construct connections with all the above properties and, only a posteriori,

identify which classical integrable field theories they correspond to.

Very recently, two different approaches for constructing integrable field theories in

this way have been developed.

The first, proposed in [40] and further developed more recently in [11,31], is rooted

in the representation theory of untwisted affine Kac–Moody algebras, or more precisely

in the theory of Gaudin models associated with such algebras. The basic idea for

constructing connections d +L with all of the above desired properties is, roughly, to

choose a representation of a certain infinite-dimensional Lie algebra associated with

the datum of the Gaudin model and apply it to the corresponding canonical element

IA ⊗ I A, where {I A} is a basis of this Lie algebra and {IA} is a basis of its dual.

Specifically, under this representation, we obtain [40]

IA ⊗ I A �−→ ω(∂σ + Lσ )

whereLσ is the component of the 1-formL = Lσ dσ+Lτ dτ along the spatial direction

which we assume here to be a circle S1. By construction, it depends meromorphically

on the spectral parameter z. The prefactor ω is a meromorphic 1-form which in terms

of the spectral parameter z is given by

ω = ϕ(z)dz (1.1)

where ϕ is known as the twist function. The latter controls the form of the Poisson

bracket of Lσ with itself which guarantees property (c). Note that this approach is

intrinsically formulated within the Hamiltonian framework. In particular, the temporal

component Lτ of the on-shell flat connection d + L, which satisfies also (a) and (b)

above, is induced by evolution with the Hamiltonian.

The second approach, proposed recently in [7], is based on a four-dimensional

variant of Chern–Simons theory which was used in the earlier works [2–6,42] to

describe integrable lattice models. In fact, two types of integrable field theories were

considered in [7], associated with so-called order and disorder defects, respectively.

We shall restrict attention to the latter class here. The action of the four-dimensional

123



A unifying 2D action for integrable σ -models from 4D…

theory reads (note that we take the same overall factor as used in [41])

S[A] =
i

4π

∫

Σ×CP1
ω ∧ C S(A), (1.2)

where C S(A) is the Chern–Simons 3-form and ω is a meromorphic 1-form on CP1

with zeroes. The four-dimensional gC-valued 1-form A = Aσ dσ + Aτ dτ + Az̄dz̄ has

no dz-component since it drops out from the action and is therefore ignored. To relate

A to a connection on Σ , one can write

d + A = ĝ(d + L)ĝ−1

for some smooth GC-valued function ĝ on Σ ×CP1 and 1-form L = Lσ dσ +Lτ dτ .

The equations of motion derived from the action (1.2) ensure that L satisfies both

properties (a) and (b). Crucially, these are accompanied by boundary equations of

motion for the values of Aσ and Aτ at the poles of ω. What determines the integrable

field theory in this approach is then the choice of boundary conditions imposed on Aσ

and Aτ to ensure these boundary equations of motion hold.

It was shown recently in [41] that the two approaches outlined above are closely

related. In particular, the Poisson bracket of Lσ with itself derived from a canonical

analysis of the action (1.2) coincides with the nonultralocal Poisson algebra obtained

in the affine Gaudin model approach, where the 1-forms ω in both approaches are

identified. It follows that the connection d + L constructed using the Chern–Simons

approach of [7] also satisfies property (c), as required.

The purpose of this article is to show that many of the integrable σ -models which

had previously been described as realisations of affine Gaudin models can equally be

described using action (1.2). Specifically, we identify the boundary conditions on the

1-form A which give rise to: the principal chiral model with WZ-term (already covered

in [7]), the homogeneous Yang–Baxter deformation of the principal chiral model, the

Yang–Baxter σ -model with WZ-term, the λ-deformation of the principal chiral model

and the bi-Yang–Baxter σ -model.

More precisely, we will suppose that the 1-form ω has at most double poles and

consider three general classes of boundary conditions that can be imposed on the 1-

form A at the set z of poles of ω. These are determined by a choice of Lagrangian

subalgebra of either the semi-direct product g ⋉ gab, where g is a real form of gC and

gab is an abelian copy of g, the direct sum g ⊕ g or the complexification gC. They are,

respectively, imposed at a real double pole, at a pair of real simple poles or at a pair

of complex conjugate simple poles.

One of the main results of the present paper, Theorem 3.2, is that if we impose

any combination of the above three types of boundary conditions on A, then the four-

dimensional action (1.2) reduces to the two-dimensional action

S[{gx }x∈z] =
1

2

∑

x∈z

∫

Σ

〈resx ω ∧ L, g−1
x dgx 〉 −

1

2

∑

x∈z

(resx ω)IWZ[gx ], (1.3)
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where the two-dimensional field gx : Σ → G is defined as the restriction ĝ|Σ×{x} for

all x ∈ z and IWZ[gx ] denotes the corresponding Wess–Zumino term.

The meromorphic 1-form L can be expressed in terms of the set of fields {gx }x∈z

by solving the boundary conditions on A, so that the action is then a functional of

these fields only. By construction, the equations of motion for these fields obtained by

varying (1.3) are equivalent to the flatness of the connection d + L.

The two-dimensional action (1.3) unifies the actions of many integrable σ -models

which had previously been described in the affine Gaudin model approach.

We also give an interpretation of Poisson–Lie T -duality in this context as arising

in the case when the Lagrangian subalgebra of either g ⊕ g or gC belongs to a Manin

triple, i.e. there is a complementary Lagrangian subalgebra in g ⊕ g or gC.

Finally, we also consider a fourth kind of natural boundary condition on A imposed

at a pair of simple poles, and for which the two-dimensional action (1.3) also holds.

Imposing this boundary condition, we recover the action for the E-model also from

(1.3). We stress, however, that this particular example is on a different footing to all

of the others considered in this paper since the 1-form L in this case vanishes on-shell

and so trivially satisfies condition (b) above.

2 The four-dimensional action

Let GC be a complex semisimple Lie group with Lie algebra gC, on which we fix a

choice of nondegenerate invariant symmetric bilinear form 〈·, ·〉 : gC × gC → C.

Let CP1 := C ∪ {∞} denote the Riemann sphere. We shall fix a choice of global

holomorphic coordinate z on C ⊂ CP1.

2.1 Bulk and boundary equations of motion

Consider action (1.2) where ω is a meromorphic 1-form on CP1 and the Chern–Simons

3-form for the 1-form A = Aσ dσ + Aτ dτ + Az̄dz̄ is given by

C S(A) = 〈A, d A +
2

3
A ∧ A〉 =

〈
A, d A +

1

3
[A ∧ A]

〉
.

The second equality uses the fact that B ∧ B = 1
2
[B ∧ B] for any gC-valued 1-form

B. Note also that for any gC-valued 1-forms B, C and D we have

〈B, [C ∧ D]〉 = 〈C, [D ∧ B]〉 (2.1)

by the invariance and symmetry of the bilinear form 〈·, ·〉.

Varying action (1.2) with respect to the field A, we find

δS[A] =
i

2π

∫

Σ×CP1
ω ∧ 〈δA, F(A)〉 +

i

4π

∫

Σ×CP1
dω ∧ 〈A, δA〉,
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where F(A) := d A + A ∧ A. The last term comes from applying Stokes’s theorem,

and we have removed the boundary term using the fact that A vanishes at the boundary

of Σ × CP1. The variation of the action therefore vanishes provided that

ω ∧ F(A) = 0, (2.2a)

dω ∧ 〈A, δA〉 = 0. (2.2b)

Equation (2.2a) is the bulk equation of motion, while Eq. (2.2b) will be referred to as

the boundary equation of motion since dω is a distribution supported at the set z of

poles of ω (see the proof of Lemma 2.1).

More explicitly, the z̄-, τ - and σ -components of the bulk equation (2.2a) read

∂σ Aτ − ∂τ Aσ + [Aσ , Aτ ] = 0, (2.3a)

ω
(
∂z̄ Aσ − ∂σ Az̄ + [Az̄, Aσ ]

)
= 0, (2.3b)

ω
(
∂z̄ Aτ − ∂τ Az̄ + [Az̄, Aτ ]

)
= 0. (2.3c)

We have kept the factor of ω in the last two equations since ∂z̄ Aσ and ∂z̄ Aτ may be

distributions on CP1, with support at the zeroes of ω.

In order to rewrite the boundary equation of motion (2.2b) more explicitly, we begin

by introducing some notation. Let ξx be a local holomorphic coordinate around x ∈ z.

Explicitly ξx = z −x for x ∈ z\{∞} and ξ∞ = z−1 for the point at infinity. It will also

be convenient to introduce the shorthand notation f |x := f |Σ×{x} for the function on

Σ obtained by evaluating any function f on Σ × CP1 at x ∈ CP1.

Lemma 2.1 The boundary equation of motion (2.2b) can be rewritten as

∑

x∈z

∑

p≥0

(resx ξ
p
x ω)ǫi j

1

p!
∂

p
ξx

〈Ai , δA j 〉
∣∣
x

= 0, (2.4)

where there is an implicit sum over the repeated space-time indices i, j = τ, σ .

Proof The pole part of the 1-form ω at each x ∈ z can be expressed as

∑

p≥0

k
(x)
p

ξ
p+1
x

dξx (2.5)

in the local variable ξx at x , where k
(x)
p := resx ξ

p
x ω. Note that this also deals with the

point at infinity if ∞ ∈ z. Concretely, since ξ∞ = z−1 is the local variable at infinity,

this means that the pole part of ω there takes the form −
∑

p≥0 k
(∞)
p z p−1dz. We then

have

dω = 2π i
∑

x∈z

∑

p≥0

k
(x)
p

p!
(−1)p+1∂

p
ξx

δξx 0dξx ∧ d ξ̄x ,
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where δξy0 denotes the Dirac δ-distribution at y, with the property that

∫

CP1
dξy ∧ d ξ̄yδξy0 f = f |y

for any smooth function f : CP1 → C.

Integrating dω ∧ 〈A, δA〉 = ǫi j 〈Ai , δA j 〉dω ∧ dσ ∧ dτ over a small open neigh-

bourhood of z ⊂ CP1 using the above expression for dω gives the desired result.

⊓⊔

When the 1-form ω has at most double poles, which is the case we shall focus on

in the present paper, the boundary equation of motion (2.4) simply reads

∑

x∈z

(resx ω)ǫi j 〈Ai |x , δA j |x 〉 +
∑

x∈z

(resx ξxω)ǫi j∂ξx 〈Ai , δA j 〉
∣∣
x

= 0. (2.6)

Following the approach of [5,7], we will impose appropriate boundary conditions

on the 1-form A to ensure that the boundary equation of motion (2.6) is satisfied. Let

us note that for a given meromorphic 1-form ω, different boundary conditions can be

chosen, leading to different σ -models. We therefore postpone the detailed description

of the various boundary conditions we shall consider until Sect. 4, concentrating for

the time being on aspects which are common to all these choices.

2.2 Gauge transformations

The group consisting of smooth GC-valued functions u on Σ × CP1 acts on the

space of gC-valued connections d + A, considered in Sect. 2.1, by formal gauge

transformations

d + A �−→ d + Au := u(d + A)u−1 = d − duu−1 + u Au−1. (2.7)

Such transformations act on the curvature of A by conjugation, namely

F(Au) = uF(A)u−1. (2.8)

Thus, they are symmetries of the bulk equation of motion (2.2a). However, they are

in general not symmetries of the boundary equation of motion (2.2b). In the rest of

this article, we will use the term ‘gauge transformation’ to refer to the transformations

A �→ Au which preserve the boundary conditions imposed on the field A at the poles

z of ω, while keeping the denomination of ‘formal gauge transformation’ to describe

the most general ones. In particular, only gauge transformations leave action (1.2)

invariant and can thus be interpreted as local symmetries of the model.
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2.3 Lax connection

In order to connect A with the Lax connection of an integrable σ -model, one should

work in a formal gauge where the dz̄-component vanishes.

Indeed, if we denote by L the 1-form A in such a formal gauge, then L would only

have components along dσ and dτ ; it would be on-shell flat by the first bulk equation

of motion (2.3a), and its dependence on CP1 would be meromorphic by virtue of

the remaining two bulk equations of motion (2.3b) and (2.3c). These are exactly the

properties of a Lax connection of an integrable σ -model.

It is important to note that L is related to A only by a formal gauge transformation

(2.7), which need not preserve the boundary conditions imposed on A. In particular,

one cannot compute the value of the action (1.2) in this formal gauge. However,

recall from Sect. 2.2 that, crucially, formal gauge transformations preserve the bulk

equations (2.3): this is what allowed us to interpret L as a Lax connection in the

previous paragraph.

Let us be more explicit about the construction sketched above. Finding the formal

gauge mentioned in the previous paragraph means writing the 1-form A in the form

A = −dĝĝ−1 + ĝLĝ−1, (2.9)

for some smooth function ĝ : Σ × CP1 → GC, denoted by σ̂−1 in [7], and where

L := Lσ dσ + Lτ dτ has no dz̄-component, i.e. Lz̄ = 0.

Substituting (2.9) into the bulk equation of motion (2.3a) implies that L is on-shell

flat, while substituting it into (2.3b) and (2.3c) tells us that

ω ∧ ∂z̄L = 0. (2.10)

It follows from (2.10) that L is meromorphic with poles at the zeroes of ω, with the

order of each pole of L being at most equal to the multiplicity of the corresponding

zero of ω. In other words, ω ∧ L has the same poles as ω and of the same order.

It is important to note here that there is, in fact, a large freedom in choosing a

smooth GC-valued field ĝ with the property (2.9). Since this will be a crucial point

for us, we postpone its detailed discussion until Sect. 3.1.

We can be more explicit about the pole structure of L following [7], by making the

choice that the singularity at each zero of ω lies only in one component of L so that

ω∧C S(A) is regular. Let ζ denote the set of zeroes of the 1-form ω which we assume

to be simple. We will allow the meromorphic 1-form L to have the form

L =
∑

y∈ζ

V yξ−1
y dσy + Uσ dσ + Uτ dτ (2.11)

where ξy is the local coordinate at y and Uτ , Uσ , V y : Σ → gC are smooth functions

for each y ∈ ζ . Here, each σy for y ∈ ζ is a linear combination of σ and τ .

The situation considered in [7] corresponds to the case where σy = w = 1
2
(τ + iσ)

for some of the zeroes y ∈ ζ and σy = w̄ = 1
2
(τ − iσ) for the others. This is the
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natural choice to obtain Euclidian invariant theories (see Remark 2.1). Since we are

interested in Lorentz invariant theories rather than in Euclidean invariant ones, we

will instead always (with the exception of the discussion in Sect. 6) make the choice

σy = σ+ for some of the zeroes y ∈ z and σy = σ− for the other zeroes, where

σ± := 1
2
(τ ± σ) are the light-cone coordinates.

Remark 2.1 Form (2.11) is consistent with the derivation of integrable σ -model actions

from their descriptions as affine Gaudin models [11]. Indeed, the spatial and temporal

components of the Lax connection of an affine Gaudin model are given by very similar

expressions (see [11, (2.39) & (2.40)] and [31, Theorem 2.1] for details); namely, we

should have

L =

⎛
⎝∑

y∈ζ

V yξ−1
y + Uσ

⎞
⎠ dσ +

⎛
⎝∑

y∈ζ

ǫy V yξ−1
y + Uτ

⎞
⎠ dτ,

for some fixed ǫy ∈ C for all y ∈ ζ . This is equivalent to (2.11) with dσy = dσ +ǫydτ .

It was also shown in [11,31] that for the affine Gaudin model to describe a relativistic

integrable σ -model, we should take ǫy = ±1 for each y ∈ ζ . This analysis can be

generalised to show that the theory is Euclidean invariant if ǫy = ±i for each y ∈ ζ .

This was precisely the choice made in [7], i.e. σy = w, w̄. ⊳

2.4 Action

We will now express the action (1.2) in terms of ĝ and L.

Lemma 2.2 Under a formal gauge transformation as in (2.9), the Chern–Simons 3-

form transforms as

C S(A) = 〈L, dL〉 + d〈ĝ−1dĝ,L〉 −
1

3
〈ĝ−1dĝ, ĝ−1dĝ ∧ ĝ−1dĝ〉. (2.12)

Proof The behaviour of the Chern–Simons 3-form under formal gauge transforma-

tions,

C S(A) = C S(L) + d〈ĝ−1dĝ,L〉 −
1

3
〈ĝ−1dĝ, ĝ−1dĝ ∧ ĝ−1dĝ〉,

is well known. In the present context, since the 1-form L only has components along

dσ and dτ , we have C S(L) = 〈L, dL〉 from which we deduce (2.12). Since this is

an essential result on which the derivation of the two-dimensional action in Sect. 3.3

rests, we recall its proof in detail below for completeness.

Following [7], it is convenient to use the have

Â := − dĝĝ−1, A′ := ĝLĝ−1.

We have the identity (valid for any 1-form A decomposed as a sum A = Â + A′)
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C S(A) = 〈 Â + A′, d Â + d A′〉 +
1

3
〈 Â + A′, [ Â ∧ Â] + 2[A′ ∧ Â] + [A′ ∧ A′]〉

= C S( Â) + 2〈A′, F( Â)〉 − d〈 Â, A′〉 + 〈 Â, [A′ ∧ A′]〉 + C S(A′),

(2.13)

where in the second line we have made use of (2.1) to rearrange terms. This is to be

compared with [7, (8.8)], noting that [A′ ∧ A′] = 2A′ ∧ A′.

The second term on the right-hand side of (2.13) vanishes by virtue of the fact that

F( Â) = 0, since Â is formally pure gauge. On the other hand,

C S(A′) = 〈A′, d A′〉 =
〈
ĝLĝ−1,

[
dĝĝ−1 ∧ ĝLĝ−1

]〉
+ 〈L, dL〉

= −〈A′, [ Â ∧ A′]〉 + 〈L, dL〉 = −〈 Â, [A′ ∧ A′]〉 + 〈L, dL〉.where in the first equality we have used 〈A′, A′ ∧ A′〉 = 0, which follows using the

fact that A′ only has dσ - and dτ -components. The second and third equalities are by

definition of Â and A′, while the last equality follows from (2.1). Finally, we have

C S( Â) = 〈 Â, d Â〉 +
2

3
〈 Â, Â ∧ Â〉 = −

1

3
〈 Â, Â ∧ Â〉.

The second equality here uses the fact that F( Â) = 0 so that d Â = − Â ∧ Â. Putting

all of the above together, we obtain the desired identity (2.12). ⊓⊔

Lemma 2.3 For L of form (2.11), we have ω ∧ 〈L, dL〉 = 0.

Proof It follows from the explicit form (2.11) of the Lax connection that

ω ∧ 〈L, dL〉 = −2π i
∑

y∈ζ

ω ∧
〈
L, V yδξy0d ξ̄y ∧ dσy

〉
.

Consider each term in the sum over y ∈ ζ individually. Since this already contains

an explicit dσy , the corresponding term in L which is singular at y cannot contribute.

Thus, only the terms which are regular at y can contribute from L. On the other hand,

since y is a simple zero of ω, it follows that ω δξy0 = 0. Thus, each term in the above

sum over y ∈ ζ vanishes, as required. ⊓⊔

Substituting (2.12) into action (1.2) and using Lemma 2.3, we thus obtain

S[A] = −
i

12π

∫

Σ×CP1
ω ∧ 〈ĝ−1dĝ, ĝ−1dĝ ∧ ĝ−1dĝ〉

−
i

4π

∫

Σ×CP1
dω ∧ 〈ĝ−1dĝ,L〉, (2.14)

where in the second line we have used Stokes’s theorem and the fact that all fields are

assumed to vanish at the boundary of Σ × CP1 to get rid of the boundary term.
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2.5 Reality conditions

Action (1.2) is a functional of the complex valued 1-forms ω and A. Without imposing

conditions on ω and A, it is certainly not real.

However, we will want to use this four-dimensional theory to construct the actions

of two-dimensional integrable σ -models. In order to ensure that the latter are all real,

we will impose suitable reality conditions on the 1-forms ω and A so as to make the

four-dimensional action (1.2) real itself.

Let τ : gC → gC be an anti-linear involutive automorphism of the complex Lie

algebra gC. It provides gC with an action of the cyclic group Z2. Its fixed point subset

is a real Lie subalgebra g of gC, regarded itself as a real Lie algebra. The anti-linear

involution τ is compatible with the bilinear form on gC in the sense that

〈B, C〉 = 〈τ B, τC〉 (2.15)

for any B, C ∈ gC. We will also denote by τ its lift to an involutive automorphism

τ : GC → GC of the Lie group GC and denote by G its fixed point real subgroup.

Complex conjugation z �→ z̄ on C ⊂ CP1 defines an involution μt : CP1 → CP1,

which also provides CP1 with a Z2-action. We will require both the 1-forms ω and A

to be equivariant under this action of Z2 in the sense that

ω = μ∗
t ω, τ A = μ∗

t A. (2.16)

Concretely, in terms of the twist function ϕ, defined from ω in (1.1), the first condition

simply states that ϕ(z) = ϕ(z̄).

Lemma 2.4 The reality conditions (2.16) ensure that the action (1.2) is real.

Proof We have

S[A] = −
i

4π

∫

Σ×CP1
ω ∧ C S(τ A) = −

i

4π

∫

Σ×CP1
μ∗

t ω ∧ C S(μ∗
t A)

= −
i

4π

∫

Σ×CP1
μ∗

t (ω ∧ C S(A)) = −
i

4π

∫

Σ×μtCP1
ω ∧ C S(A) = S[A],

(2.17)

where in the first equality we used the fact that

C S(A) =
〈
A, d A +

1

3
[A ∧ A]

〉
=

〈
τ A, d(τ A) +

1

3
[τ A ∧ τ A]

〉
= C S(τ A).

In the middle step here, we have used both the identity (2.15) and the fact that τ is

an automorphism of gC. The second step in (2.17) is by the equivariance property

(2.16) of ω and A. The very last step in (2.17) uses the fact that μt has the effect of

conjugating the complex structure on CP1 and thus also of reversing its orientation.

Concretely, the integral over μtCP1 with measure dz̄ ∧dz is equal to the integral over

CP1 with measure dz ∧ dz̄. ⊓⊔
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Upon writing the 1-form A as in (2.9), to satisfy its equivariance property (2.16),

we will impose the equivariance property

τ ĝ = μ∗
t ĝ, τL = μ∗

t L. (2.18)

for the function ĝ : Σ × CP1 → GC and gC-valued 1-form L = Lσ dσ + Lτ dτ .

3 Integrable �-model actions

3.1 Freedom in the choice of ĝ

Notice that (2.9) is equivalent to saying that Az̄ is of the form

Az̄ = −∂z̄ ĝĝ−1. (3.1)

The smooth function ĝ : Σ × CP1 → GC in this expression is by no means unique.

On the one hand, we can multiply it on the right by an arbitrary smooth function

h : Σ → G since we have

Az̄ = −∂z̄(ĝh)(ĝh)−1, (3.2)

which is still of form (3.1). In order to preserve the equivariance of ĝ in (2.18), we

need h to take values in the real subgroup G ⊂ GC so that τh = h.

Note that such a transformation ĝ �→ ĝh does not modify Az̄ and is thus a redun-

dancy in definition (3.1) of ĝ in terms of Az̄ . Recall also that this definition was obtained

as the dz̄-component of (2.9) and that the corresponding dτ - and dσ -components serve

as a definition of the Lax connection L in terms of Aτ , Aσ and ĝ. One easily checks

that for fixed A, the redundancy ĝ �→ ĝh in the definition of ĝ corresponds to the

transformation

L �−→ h−1dh + h−1
Lh (3.3)

on L. This is a two-dimensional gauge transformation of the Lax connection L. It is

well known that such a freedom on L is always allowed in any integrable field theory,

as it preserves its on-shell flatness.

On the other hand, we can also perform a gauge transformation on the connection

A by a smooth function u : Σ × CP1 → GC since the dz̄-component of the gauge-

transformed connection

Au = −duu−1 + u Au−1 (3.4)

is still of the form (3.1), explicitly

Au
z̄ = −∂z̄(uĝ)(uĝ)−1. (3.5)

However, it is important to note that u cannot be completely arbitrary here. Indeed, the

gauge transformation by u must also preserve the boundary conditions imposed on A

(which is why, following the terminology of Sect. 2.2, we call it a gauge transformation

and not a formal gauge transformation). For Au to be real, we must also require that

u be equivariant under the action of Z2.
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Note that the transformation ĝ �→ uĝ is of a different nature than the transformation

ĝ �→ ĝh considered in the previous paragraph. Indeed, the latter corresponds to a

redundancy in the definition of ĝ in terms of A and does not alter A itself, while the

transformation ĝ �→ uĝ corresponds to a gauge transformation on A. Moreover, the

parameter h considered in (3.2) was a two-dimensional field on Σ , independent of z

and z̄, while the parameter u in (3.4) is a four-dimensional field on Σ ×CP1. Finally,

let us note that contrary to the transformation ĝ �→ ĝh, the gauge transformation

ĝ �→ uĝ does not modify the Lax connection L.

3.2 Archipelago conditions

The action (2.14) derived in the previous section holds for an arbitrary meromorphic

differential ω, in particular with poles of any order. It is, however, still four-dimensional

as the original action (1.2).

In order to reduce action (2.14) to a two-dimensional one, we will exploit the large

freedom in the choice of ĝ discussed in Sect. 3.1. Specifically, in the remainder of this

section, we will identify sufficient conditions on the function ĝ, which guarantee that

the action (2.14) can be explicitly reduced to an action on Σ . In Sect. 4, we will then

identify various boundary conditions for which such conditions on ĝ can be made to

hold by using the freedom discussed in Sect. 3.1.

We will say that a smooth equivariant function ĝ : Σ × CP1 → GC is of

archipelago type if it satisfies the following three archipelago conditions:

(i) ĝ = 1 outside Σ ×
⊔

x∈z
Ux for some disjoint open discs Ux around x ∈ z,

(ii) ĝx := ĝ|Σ×Ux only depends on σ , τ and the radial coordinate rx := |ξx |,

(iii) There is an open disc Vx ⊂ Ux for every x ∈ z such that gx := ĝ|Σ×Vx only

depends on σ and τ . By a slight abuse of notation, we also denote its further

restriction ĝ|Σ×{x} to the point x ∈ z as gx .

Lemma 3.1 One can always ensure that the smooth GC-valued function ĝ appearing

in (3.1) satisfies the archipelago condition (i).

Proof We will bring the function ĝ to a form which satisfies the archipelago condition

(i) by applying a suitable gauge transformation (3.4) for some smooth function u.

Given any disjoint open discs Ux around each x ∈ z, we can choose a smooth

function u : Σ × CP1 → GC such that u = ĝ−1 outside Σ ×
⊔

x∈z
Ux and u = 1

in some open neighbourhood of Σ × z. The latter condition is there to ensure that the

gauge transformation by u preserves the boundary conditions at z. By construction,

the new function uĝ appearing in (3.5) satisfies condition (i). ⊓⊔

By contrast, conditions (ii) and (iii) are not always satisfied. Whether or not ĝ can

be made to satisfy them depends on the type of boundary conditions that are imposed

on the Chern–Simons field A at the poles of ω in order to satisfy (2.4).
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3.3 Two-dimensional action withWZ-terms

Suppose that ĝ can be chosen to be of archipelago type. We will show that the four-

dimensional action (2.14) can then be further simplified to a two-dimensional action

with WZ-terms.

Consider, to begin with, the first term in action (2.14). It can be written as

−
i

12π

∫

Σ×CP1
ω ∧ 〈ĝ−1dĝ, ĝ−1dĝ ∧ ĝ−1dĝ〉

= −
i

12π

∑

x∈z

∫

Σ×Ux

ω ∧ 〈ĝ−1
x dĝx , ĝ−1

x dĝx ∧ ĝ−1
x dĝx 〉

using property (i) of the archipelago-type function ĝ, cf. Sect. 3.2, to localise the

integral over CP1 to the individual discs Ux around each x ∈ z.

In each disc Ux centred on x ∈ z\{∞}, we introduce local polar coordinates

z = x + rx eiθx and likewise z = r−1
∞ e−iθ∞ in U∞ if ∞ ∈ z. We note that only

the differential dθx in dz = eiθx (drx + irx dθx ) contributes in the above integral for

x ∈ z\{∞}. Indeed, since ĝx is assumed to be independent of θx in property (ii) of the

archipelago type function ĝ, it follows that the 3-form 〈ĝ−1
x dĝx , ĝ−1

x dĝx ∧ ĝ−1
x dĝx 〉

is proportional to drx ∧ dσ ∧ dτ . Therefore, when taking the wedge product with ω,

only the dθx component of ω can contribute. The same is true when x = ∞. We can

then rewrite the above integral as

1

12π

∑

x∈z\{∞}

∫

Σ×[0,Rx ]×[0,2π ]

rx eiθx ϕ
(
x + rx eiθx

)
dθx ∧ 〈ĝ−1

x dĝx , ĝ−1
x dĝx ∧ ĝ−1

x dĝx 〉

−
1

12π

∑

x∈z∩{∞}

∫

Σ×[0,Rx ]×[0,2π ]

r−1
x e−iθx ϕ

(
r−1

x e−iθx
)
dθx ∧ 〈ĝ−1

x dĝx , ĝ−1
x dĝx ∧ ĝ−1

x dĝx 〉,

where Rx is the radius of the disc Ux around x ∈ z. Performing the integrals over the

angular variables θx for each x ∈ z, we now deduce that when ĝ is of archipelago

type, the first term in action (2.14) reduces to

−
i

12π

∫

Σ×CP1
ω ∧ 〈ĝ−1dĝ, ĝ−1dĝ ∧ ĝ−1dĝ〉 = −

1

2

∑

x∈z

(resx ω)IWZ[gx ].

Here, we introduce the standard WZ-term

IWZ[gx ] := −
1

3

∫

Σ×[0,Rx ]

〈ĝ−1
x dĝx , ĝ−1

x dĝx ∧ ĝ−1
x dĝx 〉.

As usual, it depends only on the two-dimensional field gx : Σ → G up to an additive

constant which is irrelevant classically. Note that the overall minus sign in the above

definition is there to match with the conventions of [11]. Indeed, the boundary of the

volume Σ × [0, Rx ] being at the origin of the interval [0, Rx ] accounts for this extra

minus sign.
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Consider now the second term in action (2.14). It can be rewritten as

−
i

4π

∫

Σ×CP1
dω ∧ 〈ĝ−1dĝ,L〉 = −

i

4π

∑

x∈z

∫

Σ×Vx

dω ∧ 〈g−1
x dgx ,L〉 (3.6)

where we have used the fact that dω is a distribution with support z to localise the

integral over CP1 to the open discs Vx for each x ∈ z from property (iii) of the

archipelago-type function ĝ. By writing this distribution explicitly in terms of the

local coordinates ξx at each x ∈ z, as in the proof of Lemma 2.1, substituting this

expression into (3.6) we arrive at

−
i

4π

∫

Σ×CP1
dω ∧ 〈ĝ−1dĝ,L〉 = −

1

2

∑

x∈z

∑

p≥0

∫

Σ

k
(x)
p

p!

(
∂

p
ξx

〈g−1
x dgx ,L〉

)∣∣
x
,

where k
(x)
p = resx ξ

p
x ω for each p ∈ Z≥0 and x ∈ z.

Now since gx is independent of the local coordinate ξx on Vx by property (iii), it

follows that 〈g−1
x dgx ,L〉 is holomorphic in a neighbourhood of the pole x of ω by

virtue of (2.10) and we may thus rewrite each term in the above sum over x ∈ z as a

residue. Indeed, for any ψ holomorphic at x , we have

resx ω ∧ ψ = resx

⎛
⎝∑

p≥0

k
(x)
p

ξ
p+1
x

dξx ∧
∑

q≥0

1

q!
(∂

q
ξx

ψ)|xξ
q
x

⎞
⎠ =

∑

p≥0

k
(x)
p

p!
(∂

p
ξx

ψ)|x ,

where in the first equality we made use of the expression (2.5) for the pole part of ω

at x , as well as the Taylor expansion of ψ near x . Finally, we thus obtain

−
i

4π

∫

Σ×CP1
dω ∧ 〈ĝ−1dĝ,L〉 = −

1

2

∑

x∈z

∫

Σ

resx

(
ω ∧ 〈g−1

x dgx ,L〉
)

= −
1

2

∑

x∈z

∫

Σ

〈g−1
x dgx , resx ω ∧ L〉.

Notice that the sign has not changed in the last line since we have moved ω past

g−1
x dgx but at the same time we have also reversed the orientation of the domain of

integration by moving the operation resx , which is given by a contour integral over a

small circle around x , past g−1
x dgx also.

We have thus shown the following.

Theorem 3.2 If ĝ is of archipelago type, then action (2.14) reduces to the sum of a

two-dimensional term and a Wess–Zumino term for each point in z, namely

S[{gx }x∈z] =
1

2

∑

x∈z

∫

Σ

〈resx ω ∧ L, g−1
x dgx 〉 −

1

2

∑

x∈z

(resx ω)IWZ[gx ], (3.7)

where gx : Σ → G is the restriction of ĝ to Σ × {x} for each x ∈ z.
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Remark 3.1 The notation that we have used for the action in (3.7) suggests that it is

only a functional of {gx }x∈z , even though the right-hand side clearly also depends

on L. This is because, as we shall see in a case-by-case analysis of all the examples

discussed in Sect. 5, the 1-form L can always be expressed in terms of the set of fields

{gx }x∈z by solving the boundary condition imposed on A. ⊳

It follows from the equivariance properties (2.16) that the set z of poles of ω is

invariant under complex conjugation, so that x ∈ z implies x̄ ∈ z. And using also

(2.18), we find that

resx ω ∧ L = resx̄ ω ∧ L, resx ω = resx̄ ω. (3.8)

Moreover, from the equivariance property (2.18), it follows that for any x ∈ z we have

τ(gx ) = gx̄ and τ(ĝx ) = ĝx̄ . This, together with (3.8), implies that the action (3.7)

is real, as expected since it was obtained as a reduction of (1.2), which was real by

virtue of the equivariance properties (2.16) imposed on ω and A.

3.4 Two-dimensional gauge invariance

Recall from the discussion in Sect. 3.1 that there is a redundancy in definition (2.9) of

both the function ĝ and the 1-form L in terms of A, namely

ĝ �−→ ĝh, L �−→ h−1dh + h−1
Lh,

for an arbitrary smooth function h : Σ → G. We note that the above transformation

on ĝ will spoil the fact that ĝ is of archipelago type. However, by combining it with

the gauge transformation by u defined in the proof of Lemma 3.1, we are able to bring

ĝh back to being of archipelago type. Note that the gauge transformation by u leaves

invariant the 1-form L so that we obtain the combined transformation

ĝ �−→ uĝh, L �−→ h−1dh + h−1
Lh. (3.9)

As uĝh is of archipelago type, action (3.7) therefore holds after performing transfor-

mation (3.9) and in particular it makes sense to ask whether it is invariant under such

a transformation.

More precisely, in terms of the fields {gx }x∈z appearing in action (3.7), transfor-

mation (3.9) acts as

gx �−→ gx h (3.10)

for all x ∈ z. Here, we used the property that u|x = 1 from the proof of Lemma 3.1.

And as noted in Remark 3.1, in all the cases to be considered in Sect. 5 the 1-form

L will be completely fixed in terms of {gx }x∈z by solving the boundary condition

imposed on A. In this sense, transformation (3.3) on the 1-form L, i.e. the second

relation in (3.9), can be seen as a consequence of (3.10).

Proposition 3.3 The two-dimensional action (3.7) is invariant under the gauge trans-

formation (3.10) for an arbitrary smooth function h : Σ → G.
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We can fix this gauge invariance by imposing that gx = 1 for some x ∈ z.

Proof We compute S[{gx h}x∈z] by substituting transformations (3.10) and (3.3) into

(3.7). The first term in the action reads

1

2

∑

x∈z

∫

Σ

〈
resx

(
ω ∧ (h−1dh + h−1

Lh)
)
, (gx h)−1d(gx h)

〉

=
1

2

∑

x∈z

∫

Σ

〈
resx

(
ω ∧ (dhh−1 + L)

)
, g−1

x dgx

〉

+
1

2

∑

x∈z

∫

Σ

〈
resx

(
ω ∧ (h−1dh + h−1

Lh)
)
, h−1dh

〉
.

The second term on the right-hand side vanishes because ω ∧ (h−1dh + h−1
Lh) is

meromorphic on CP1 with poles in z, so that the sum of its residues vanishes.

On the other hand, by using the Polyakov–Wiegmann formula [33], we find

1

2

∑

x∈z

(resx ω)IWZ[gx h] =
1

2

∑

x∈z

(resx ω)IWZ[gx ] +
1

2

∑

x∈z

(resx ω)IWZ[h]

−
1

2

∑

x∈z

(resx ω)

∫

Σ

〈g−1
x dgx , dhh−1〉.

The second term on the right-hand side vanishes using the fact that
∑

x∈z
resx ω = 0.

It now follows from combining the above that S[{gx h}x∈z] = S[{gx }x∈z]. ⊓⊔

Remark 3.2 In the approach to integrable σ -models based on affine Gaudin models, the

gauge transformation (3.10) and its interplay with the integrable structure were studied

in detail in [31], expanding on the description of gauge symmetries in affine Gaudin

models given in [40]. In particular, it was shown in [31, Proposition 2.2] (see also

[40, (4.61)]) that the gauge transformation of the fundamental fields of the σ -model,

represented here by {gx }x∈z , acts as d + L �→ h−1(d + L)h on its Lax connection, in

agreement with the situation considered in the present paper. ⊳

4 Boundary conditions

As already mentioned in Sect. 2.1, we shall restrict attention in this paper to the case

when ω has at most double poles, in which case the boundary conditions imposed on

A should ensure that (2.6) holds. In the list of examples discussed in Sect. 5, we shall

consider two types of boundary conditions.

The first is imposed at a double pole x ∈ z of ω and ensures that the corresponding

term in the sum of (2.6) vanishes by itself, i.e.

(resx ω)ǫi j 〈Ai |x , δA j |x 〉 + (resx ξxω)ǫi j∂ξx 〈Ai , δA j 〉
∣∣
x

= 0. (4.1a)
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For the discussion of reality conditions, we will assume for simplicity that x lies on

the real axis. We discuss the simplest possible boundary condition in Sect. 4.1 and

then come back to more general boundary conditions that can be imposed in Sect. 4.5.

The second is imposed at a pair of simple poles x+, x− ∈ z of ω and ensures that

the corresponding terms in the sum of (2.6) cancel each other out, i.e.

(resx+ ω)ǫi j 〈Ai |x+ , δA j |x+〉 + (resx− ω)ǫi j 〈Ai |x− , δA j |x−〉 = 0. (4.1b)

There are two possibilities allowed by the reality conditions, corresponding to the case

when x+ and x− are both real and when they form a complex conjugate pair. These

separate cases are discussed in Sects. 4.2 and 4.3, respectively.

In Sect. 4.4, we describe Poisson–Lie T -duality in the present context, as relating

different choices of boundary conditions that can be imposed at a pair of simple poles.

4.1 Boundary conditions at a real double pole

Let x ∈ z be a real double pole of ω. One way the boundary equation of motion (4.1a)

can be satisfied is by demanding that [5,7]

Ai |x = 0, (4.2)

for i = τ, σ , noting that we then also have δAi |x = 0.

Proposition 4.1 Suppose that A satisfies the boundary condition (4.2), and we are

given a field ĝ satisfying (3.1) for which the archipelago condition (i) holds.

Then, the value of ĝ on the island Ux can be modified, without changing its value at

x and its value outside Ux , so as to also satisfy both of the remaining two archipelago

conditions (ii) and (iii).

Proof This will be achieved by applying a suitable gauge transformation (3.4) for

some smooth function u : Σ ×CP1 → GC, equal to 1 on the complement of Σ ×Ux

so as not to modify the value of ĝ there. Note, however, that in order for Au to still

satisfy the boundary condition (4.2), it is necessary to require that (−∂i uu−1)|x = 0

for i = τ, σ . That is, u is an allowed gauge transformation parameter provided

∂i (u|x ) = 0, (4.3)

for i = τ, σ . Also, for Au to still satisfy the reality condition (2.16), we should require

that u be equivariant in the sense that τu = μ∗
t u. We are thus seeking a smooth Z2-

equivariant GC-valued function u equal to 1 outside Σ ×Ux and satisfying (4.3), such

that uĝ satisfies the archipelago conditions (ii) and (iii) on the island Ux .

Consider the smooth equivariant function g̃ : Σ × CP1 → GC defined as follows.

Let g̃ := ĝ on the complement of Σ × Ux . Choose two open discs Dr
x ⊂ Ds

x ⊂ Ux of

radii s > r > 0 centred on x . Let g̃ in Dr
x be constant equal to ĝ|x , and extend it to

a smooth function on Ux such that g̃ := 1 on the complement Ux\Ds
x and g̃ depends

only on the radial coordinate |ξx | around x . More precisely, writing ĝ|x = exp y for
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some y : Σ → g, we let g̃ := exp( f (|ξx |)y) where f : [0, Rx ] → R is a smooth

function equal to 1 on [0, r ] and equal to 0 on [s, Rx ].

By construction, g̃ satisfies both of the archipelago conditions (ii) and (iii) on the

island Ux . It therefore remains to show that u = g̃ĝ−1 : Σ × CP1 → GC satisfies

(4.3) and is also Z2-equivariant. The latter condition is evident from the equivariance

of g̃ and ĝ. On the other hand, ∂i (u|x ) = ∂i

(
g̃|x ĝ|−1

x

)
= 0 where in the second equality

we used the fact that g̃ = ĝ|x in Dr
x and hence g̃|x = ĝ|x . ⊓⊔

4.2 Boundary conditions at pairs of real simple poles

Let x± ∈ z be simple poles of ω with x± ∈ R, so that in particular resx± ω ∈ R.

Also, by the equivariance property (2.16) of A it follows that the components Ai |x± ,

for i = τ, σ , are valued in the real Lie subalgebra g.

The boundary equation of motion (4.1b) can then be rewritten as

ǫi j 〈〈(Ai |x+ , Ai |x−), δ(A j |x+ , A j |x−)〉〉d;x± = 0, (4.4)

where 〈〈·, ·〉〉d;x± : d×d → R denotes the nondegenerate symmetric invariant bilinear

form on the Lie algebra direct sum d := g ⊕ g, defined by

〈〈(x, y), (x′, y′)〉〉d;x± := (resx+ ω)〈x, x′〉 + (resx− ω)〈y, y′〉

for any x, y, x′, y′ ∈ g. In the special case when resx+ ω = − resx− ω, this reduces to

the usual bilinear form 〈x, x′〉 − 〈y, y′〉 on d up to an overall factor of resx+ ω.

One way of ensuring that (4.4) holds is as follows. Let (d, k) be a Manin pair, i.e.

fix a Lagrangian subalgebra k of d. We recall that Lagrangian here means ‘maximal

isotropic’. We can demand that, for i = τ, σ ,

(Ai |x+ , Ai |x−) ∈ k, (4.5)

noting that we will then also have δ(Ai |x+ , Ai |x−) ∈ k. This then ensures (4.4) holds

by virtue of the isotropy of k. The reason for using a Manin pair (d, k) rather than just

an isotropic subspace k of d will be explained shortly.

Let K denote the subgroup of D = G × G with Lie algebra k ⊂ d.

Proposition 4.2 Suppose that A satisfies the boundary condition (4.5), and we are

given a field ĝ satisfying (3.1) for which the archipelago condition (i) holds.

Then, the value of ĝ on the islands Ux± can be modified, without changing its value

outside, so as to also satisfy the remaining archipelago conditions (ii) and (iii).

Furthermore, the value (gx+, gx−) : Σ → D of the archipelago-type function ĝ at

the pair of points x± can be adjusted using (gx+, gx−) �→ a(gx+, gx−) for any smooth

function a : Σ → K .

Proof We will find a gauge transformation (3.4) for some suitable equivariant u :

Σ × CP1 → GC equal to 1 outside Σ × (Ux+ ⊔ Ux−) such that uĝ also satisfies the

archipelago conditions (ii) and (iii) on Ux± .
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Evaluating (3.4) at the pair of points x±, we see that, for i = τ, σ ,

(Au
i |x+ , Au

i |x−) = −
(
(∂i uu−1)|x+ , (∂i uu−1)|x−

)

+ (u|x+ , u|x−)(Ai |x+ , Ai |x−)(u|x+ , u|x−)−1.

The gauge transformation is allowed provided that this still takes values in k, so that

Au still satisfies the boundary condition (4.5). For this, it is sufficient to ensure that

both terms on the right-hand side above take values in k. Therefore, we will demand

that our gauge transformation parameter u should be such that

(u|x+ , u|x−) ∈ K . (4.6)

Note that this then also implies
(
(∂i uu−1)|x+ , (∂i uu−1)|x−

)
∈ k for i = τ, σ . This is

where we had to use the fact that k is a subalgebra, and not just a subspace, of d in

order to define the corresponding Lie group K .

Proceeding as in the proof of Proposition 4.1, we consider the smooth equivariant

function g̃ : Σ × CP1 → GC defined as follows. Let g̃ := ĝ on the complement of

Σ × (Ux+ ⊔ Ux−). Define g̃ locally in small open discs Dr
x±

⊂ Ux± around the points

x± as (g̃|Dr
x+

, g̃|Dr
x−

) := a(ĝ|x+ , ĝ|x−) for any smooth a : Σ → K of our choice.

Note here that ĝ|x± ∈ G by the equivariance of ĝ since x± ∈ R. We can then extend

the definition of g̃ to Σ × (Ux+ ⊔ Ux−) as we did in Sect. 4.1 so that g̃x± = g̃|Σ×Ux±

depends only on σ , τ and the radial coordinate |ξx± | around x±. In other words, g̃

satisfies the archipelago conditions (ii) and (iii) on Ux± .

It remains to show that u = g̃ĝ−1, i.e. the gauge transformation parameter from ĝ

to g̃, is equivariant and satisfies (4.6). The equivariance is clear from that of g̃ and ĝ.

Now note that from the relation g̃ = uĝ, it follows that

(g̃|x+ , g̃|x−) = (u|x+ , u|x−)(ĝ|x+ , ĝ|x−). (4.7)

But since (g̃|x+ , g̃|x−) = a(ĝ|x+ , ĝ|x−), we deduce that (u|x+ , u|x−) = a ∈ K , which

is the required condition (4.6). ⊓⊔

4.3 Boundary conditions at complex conjugate simple poles

Let x± ∈ z be simple poles of ω with x− = x+, so that resx− ω = resx+ ω. By the

equivariance property (2.16) of A, it also follows that τ(Ai |x+) = Ai |x− for i = τ, σ .

The boundary equation of motion (4.1b) can then be rewritten as

ǫi j 〈〈Ai |x+ , δA j |x+〉〉gC;x±
= 0. (4.8)

Here, 〈〈·, ·〉〉gC;x±
: gC × gC → R is the nondegenerate symmetric invariant bilinear

form on the complexification gC, regarded as a real Lie algebra, defined by

〈〈x, x′〉〉gC;x±
:= 2ℜ

(
(resx+ ω)〈x, x′〉

)
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for any x, x′ ∈ gC, where we denote by ℜz and ℑz the real and imaginary parts of a

complex number z, respectively. When resx+ ω = − resx− ω so that resx+ ω ∈ iR this

reduces, up to an overall factor, to the standard bilinear form ℑ〈x, x′〉 on gC.

The discussion below is completely analogous to that of Sect. 4.2, just working with

the complexification gC rather than the real double d. We will thus be much briefer in

the arguments presented and only highlight the differences with Sect. 4.2.

In particular, we can satisfy (4.8) by choosing a Manin pair (gC, k), this time for

the complexification rather than the real double, and demanding that

Ai |x+ ∈ k, (4.9)

for i = τ, σ , noting that this implies δAi |x+ ∈ k.

Let K denote the Lie subgroup of GC with Lie algebra k ⊂ gC.

Proposition 4.3 Suppose that A satisfies the boundary condition (4.9), and we are

given a field ĝ satisfying (3.1) for which the archipelago condition (i) holds.

Then, the value of ĝ on the islands Ux± can be modified, without changing its value

outside, so as to also satisfy the remaining archipelago conditions (ii) and (iii).

Furthermore, the value gx+ : Σ → GC of the archipelago-type function ĝ at the

point x+ can be adjusted using gx+ �→ agx+ for any smooth function a : Σ → K .

Proof Evaluating (3.4) at x+ yields Au |x+ = −(duu−1)|x+ + u|x+ A|x+u|−1
x+

. So a

parameter u such that

u|x+ ∈ K (4.10)

defines an allowed gauge transformation.

We proceed as in the proof of Proposition 4.2 to construct a smooth equivariant

g̃ : Σ × CP1 → GC, which is equal to ĝ on the complement of Σ × (Ux+ ⊔ Ux−)

and which satisfies both of the archipelago conditions (ii) and (iii) on the islands

Ux± . Referring to the notation introduced in Sect. 4.2, in the present case we let

g̃|Dr
x+

:= aĝ|x+ for some smooth a : Σ → K of our choice. The rest of the definition

of ĝ over Ux+ is as in Sect. 4.2, and then we also let g̃|Ux−
:= τ(g̃|Ux+

).

The fact that u = ĝg̃−1 is equivariant and satisfies (4.10) is established as in

Sect. 4.2 with minor changes. Specifically, we have

g̃|x+ = u|x+ ĝ|x+ . (4.11)

But since g̃|x+ = aĝ|x+ , we deduce that u|x+ = a ∈ K , which is condition (4.10), as

required. ⊓⊔

4.4 Manin triples and Poisson–Lie T-duality

In all examples where ω has simple poles, we shall be interested in the special case

where the Manin pair (d, k) (resp. (gC, k)) can be extended to a Manin triple (d, k, p)

(resp. (gC, k, p)). That is, p is another Lagrangian subalgebra of d (resp. gC) which

is complementary to k, i.e. we have a direct sum d = k ∔ p (resp. gC = k ∔ p). We

denote by ∔ the direct sum as vector spaces.

123



A unifying 2D action for integrable σ -models from 4D…

An important class of Manin triples is given by a choice of solution R ∈ End g of

the modified classical Yang–Baxter equation

[Rx, Ry] − R
(
[Rx, y] + [x, Ry]

)
= −c2[x, y] (4.12)

for every x, y ∈ g, where either c = 1 or c = i. We shall be particularly interested

in solutions which are skew-symmetric with respect to the bilinear form 〈·, ·〉 on g,

namely such that

〈Rx, y〉 = −〈x, Ry〉

for any x, y ∈ g.

Specifically, in the real case where c = 1, we define

gR := {((R − 1)x, (R + 1)x) | x ∈ g}, gδ := {(x, x) | x ∈ g}.

It is clear that gδ is a Lie subalgebra of d, and it follows from (4.12) that gR also is.

Suppose that d is equipped with its standard bilinear form, namely

〈〈(x, y), (x′, y′)〉〉d := 〈x, x′〉 − 〈y, y′〉

for any x, y, x′, y′ ∈ g. This corresponds, up to an overall factor, to the bilinear form

considered in Sect. 4.2 when resx− ω = − resx+ ω. In this case, gδ is clearly isotropic

and so is gR by the skew-symmetry of R. It follows that (d, gR, gδ) is a Manin triple.

In the complex case, we take c = i and define

gR := {(R − i)x | x ∈ g},

with g ⊂ gC denoting the real subalgebra of gC regarded itself as a real Lie algebra. It

follows again from (4.12) that gR is a Lie subalgebra of gC. Suppose, moreover, that

gC is equipped with its standard bilinear form, namely

〈〈x, x′〉〉gC = ℑ〈x, x′〉

for any x, x′ ∈ gC, which corresponds to the bilinear form considered in Sect. 4.3 with

resx− ω = − resx+ ω. In this case, we have that g is certainly isotropic and gR also is

by the skew-symmetry of R. Therefore, (gC, gR, g) is a Manin triple.

Consider the Lie subgroup Gδ := {(x, x) | x ∈ G} ⊂ D with the Lie algebra gδ .

Also let G R denote the Lie subgroup of D with Lie algebra gR . We will assume that the

decomposition d = gR ∔gδ lifts to the Lie group level, i.e. that D = G RGδ , or at least

that G RGδ forms a dense subset of D. It then follows that a natural parametrisation

of the quotient G R\D in the case c = 1 is given by elements of Gδ .

Likewise, in the case c = i, we let G R ⊂ GC denote the Lie subgroup with Lie

algebra gR ⊂ gC. Again, we will assume that the decomposition gC = gR ∔g similarly

lifts to the Lie group level, i.e. that GC = G RG, or at least that G RG forms a dense

subset of GC. A natural parametrisation of the quotient G R\GC is then given by
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elements of G. An example is provided by the Iwasawa decomposition GC = AN G,

where G is the compact real form of GC and G R = AN .

Since a Manin triple (d, k, p) (resp. (gC, k, p)) gives rise to two Manin pairs, namely

(d, k) or (d, p) (resp. (gC, k) or (gC, p)), we can apply the construction of Sect. 4.2

(resp., Sect. 4.3) at a pair of simple poles x± of ω using either of these Manin pairs. We

expect the corresponding models obtained as in Sect. 3.3 to be Poisson–Lie T -dual

[21,22].

The main example of Poisson–Lie T -duality is provided by Manin triples of the

form d = gR∔gδ or gC = gR∔g. This includes the Poisson–Lie T -duality between the

Yang–Baxter σ -model, discussed in Sect. 5.3, and the λ-deformation of the principal

chiral model, discussed in Sect. 5.4. See, for instance, [15,27,38,39].

The Yang–Baxter σ -model with WZ-term, discussed in Sect. 5.6, was also shown

in [14] to be Poisson–Lie T -dual to itself for a different choice of parameters. In this

case as well, the duality is underpinned by certain choice of Manin triple so that it can

also be described in the present formalism.

Let us finally note that another way of ensuring the vanishing of the terms in the

boundary equation of motion (2.6) corresponding to a pair of simple poles x± of ω, is

to ask that the terms associated with x+ and with x− separately vanish. In other words,

instead of (4.1b) one could impose the weaker condition

ǫi j 〈Ai |x± , δA j |x±〉 = 0. (4.13)

This situation was discussed in detail in [5, §9.1]. In particular, it was argued that (4.13)

can be satisfied by fixing a Manin triple (g, l+, l−), i.e. making a choice of Lagrangian

subalgebras l± ⊂ g with g = l+ ∔ l−, and requiring that Ai |x± be l±-valued. In the

present language, working with such Manin triples on g, as opposed to ones on gC or

d, corresponds to considering skew-symmetric solutions R ∈ End g of the modified

classical Yang–Baxter equation (4.12) for which R2 = 1. The two subalgebras l± then

correspond to the two eigenspaces ker(R ∓ 1) of R.

4.5 Generalised boundary conditions at a real double pole

In light of the discussion of boundary conditions at pairs of simple poles in Sects. 4.2

and 4.3, we will now consider more general boundary conditions that can be imposed

at double poles. The algebraic setting of this section is similar to the one used in [29]

in the context of E-models.

Let x ∈ z be a double pole of ω along the real axis, as in Sect. 4.1. One can rewrite

the boundary equation of motion (4.1a) in the following way. We consider the semi-

direct product t := g ⋉ gab where gab is an abelian copy of g on which g acts by the

adjoint action. That is, t is isomorphic to the direct sum g⊕g as a vector space with Lie

bracket given by [(x, y), (x′, y′)]t = ([x, x′], [x, y′] − [x′, y]) for any x, y, x′, y′ ∈ g.

By the equivariance property of A in (2.16), since x ∈ R we have Ai |x ∈ g. Also

τ
(
(∂ξx Ai )|x

)
=

(
τ(∂ξx Ai )

)∣∣
x

=
(
∂ξ̄x

(τ Ai )
)∣∣

x
=

(
μ∗

t (∂ξx Ai )
)∣∣

x
= (∂ξx Ai )|x ,
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where the second step is by the anti-linearity of τ , the third by the equivariance of A

and the last step follows because μtx = x . Hence, (∂ξx Ai )|x ∈ g. We can therefore

regard (Ai |x , (∂ξx Ai )|x ) as valued in t, which allows us to rewrite (4.1a) as

ǫi j 〈〈(Ai |x , (∂ξx Ai )|x ), δ(A j |x , (∂ξx A j )|x )〉〉t;x = 0, (4.14)

where 〈〈·, ·〉〉t;x : t × t → R is the bilinear form on t defined by

〈〈(x, y), (x′, y′)〉〉t;x := (resx ω)〈x, x′〉 + (resx ξxω)
(
〈x, y′〉 + 〈x′, y〉

)
,

for every x, y, x′, y′ ∈ g. One checks that this bilinear form is nondegenerate (using

the fact that resx ξxω �= 0 since x is a double pole of ω), symmetric and invariant.

Reformulation (4.14) of the general condition (4.1a) leads to a natural way of

imposing boundary conditions at the real double pole x , mimicking the discussion of

Sects. 4.2 and 4.3 for pairs of simple poles. Specifically, if we have a Manin pair (t, k),

i.e. a Lagrangian subalgebra k of t, then we can satisfy (4.14) by requiring that

(Ai |x , (∂ξx Ai )|x ) ∈ k (4.15)

for i = τ, σ , noting that this then also implies δ(Ai |x , (∂ξx Ai )|x ) ∈ k. For technical

reasons to be discussed below, to do with making ĝ of archipelago type, we need to

assume that the subalgebra g⋉ {0} ⊂ t is complementary to our choice of Lagrangian

subalgebra k ⊂ t. That is, we assume that we have a direct sum decomposition

t = (g ⋉ {0}) ∔ k. (4.16)

Before proceeding, we note that the simple boundary condition (4.2) considered in

Sect. 4.1 is a special case of (4.15). Indeed, an obvious choice of Lagrangian subalgebra

of t satisfying condition (4.16) is the abelian subalgebra {0}⋉gab. Imposing condition

(4.15) in the case k = {0} ⋉ gab is equivalent to requiring (4.2).

Proposition 4.4 Suppose that A satisfies the boundary condition (4.15), and we are

given a field ĝ satisfying (3.1) for which the archipelago condition (i) holds.

Then, the value of ĝ on the island Ux can be modified, without changing its value

outside, so as to also satisfy the remaining archipelago conditions (ii) and (iii).

Proof In order for Au to satisfy the second condition in (2.16), we should require that

the function u : Σ × CP1 → GC be equivariant, i.e. τu = μ∗
t u. Evaluating the latter

condition at the real pole x implies that u|x ∈ G since μtx = x . Also, we have

τ
(
(∂ξx u)|x u|−1

x

)
=

(
τ(∂ξx u)

)∣∣
x
(τu)|−1

x =
(
∂ξ̄x

(τu)
)∣∣

x
(τu)|−1

x

=
(
μ∗

t (∂ξx u)
)∣∣

x
(μ∗

t u)|−1
x = (∂ξx u)|x u|−1

x ,

where in the second equality we use the anti-linearity of τ and in the third equality

the equivariance of u. Therefore, (∂ξx u)|x u|−1
x ∈ g. We thus obtain a function
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U :=
(
u|x , (∂ξx u)|x u|−1

x

)
: Σ −→ T

valued in the Lie group T := G ⋉ gab with Lie algebra t = g ⋉ gab.

Next, we determine conditions on u for Au to still satisfy the boundary condition

(4.15). Evaluating (3.4) at x , we obtain

Au
i |x = −∂i (u|x )u|−1

x + u|x Ai |x u|−1
x . (4.17a)

On the other hand, differentiating (3.4) first with respect to the local holomorphic

coordinate ξx before evaluating at x , we find

(∂ξx Au
i )|x = −∂i

(
(∂ξx u)|x u|−1

x

)
+

[
∂i (u|x )u|−1

x , (∂ξx u)|x u|−1
x

]

+
[
(∂ξx u)|x u|−1

x , u|x Ai |x u|−1
x

]
+ u|x (∂ξx Ai )|x u|−1

x . (4.17b)

Combining (4.17a) and (4.17b), we thus find

(
Au

i |x , (∂ξx Au
i )|x

)
= −∂iUU−1 + U

(
Ai |x , (∂ξx Ai )|x

)
U−1, (4.18)

where the first term on the right-hand side denotes the components of the Darboux

derivative of U : Σ → T , while the second term denotes the adjoint action of U ∈ T

on
(

Ai |x , (∂ξx Ai )|x
)

∈ t. These are given explicitly by (see, for instance, [29])

∂i (h, v)(h, v)−1 =
(
∂i hh−1, ∂iv −

[
∂i hh−1, v

])
,

(k,w)(x, y)(k,w)−1 = (kxk−1, kyk−1 + [w, x]),

for any smooth functions h : Σ → G, v : Σ → g and any elements k ∈ G,

w, x, y ∈ g.

It now follows from (4.18) that an allowed gauge transformation, in the present

case, should have parameter u such that

U =
(
u|x , (∂ξx u)|x u|−1

x

)
∈ K , (4.19)

where K is the Lie subgroup of T with Lie algebra k ⊂ t. We will assume that

decomposition (4.16) lifts to a factorisation at the group level, namely that

T = K (G ⋉ {0}). (4.20)

Having determined the set of allowed gauge transformations, we should find the

one which brings the smooth function ĝ to the desired archipelago form in Ux .

We proceed exactly as in the proofs of Propositions 4.2 and 4.3, by considering

a smooth equivariant g̃ : Σ × CP1 → GC defined as follows. Let g̃ := ĝ on the

complement of Σ × Ux . We then define g̃ as being constant in a small open disc

Dr
x ⊂ Ux around x by letting (g̃|Dr

x
, 0) ∈ G ⋉ {0} be the representative of the class in

K\T of (ĝ|x , (∂ξx ĝ)|x ĝ|−1
x ) ∈ T . Note that here we have made use of property (4.20).

The reason we had to choose a representative in G ⋉ {0} is that we want g̃ to be of
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archipelago type on the island Ux , which by definition means g̃|Dr
x

is constant along

CP1 so that necessarily (∂ξx g̃g̃−1)|Dr
x

= 0. Finally, we can also extend the definition

of g̃ to Σ × Ux as we did in Sect. 4.1 so that g̃x = g̃|Σ×Ux depends only on σ , τ and

the radial coordinate |ξx | around x . Therefore, by construction g̃ satisfies both of the

archipelago conditions (ii) and (iii) on Ux .

Now consider the gauge transformation parameter u = g̃ĝ−1. Its equivariance is

clear from that of g̃ and ĝ. And from the relation g̃ = uĝ, we obtain

g̃|x = u|x ĝ|x , 0 = (∂ξx u)|x u|−1
x + u|x (∂ξx ĝ)|x ĝ|−1

x u|−1
x .

The second equality is obtained by computing ∂ξx g̃g̃−1 in terms of u and ĝ and then

evaluating at x , noting that since g̃ is constant along CP1 in a neighbourhood of x ,

we have (∂ξx g̃g̃−1)|x = 0. By definition of the product in T = G ⋉ gab, the above

two equations are equivalent to

(g̃|x , 0) =
(
u|x , (∂ξx u)|x u|−1

x

)(
ĝ|x , (∂ξx ĝ)|x ĝ|−1

x

)
.

Yet since (g̃|x , 0) was defined as the representative in G ⋉ {0} of the class in K\T of

(ĝ|x , (∂ξx ĝ)|x ĝ|−1
x ) ∈ T , condition (4.19) follows. ⊓⊔

An important class of Lie subalgebras k ⊂ t with property (4.16) is provided by

solutions R ∈ End g of the classical Yang–Baxter equation, i.e. (4.12) with c = 0,

which reads

[Rx, Ry] − R
(
[Rx, y] + [x, Ry]

)
= 0 (4.21)

for every x, y ∈ g. Specifically, given such a solution, we define the Lie subalgebra

gR := {(−Rx, x) | x ∈ g}

of t. The fact that it is a subalgebra is a direct consequence of (4.21). Indeed, for any

x, y ∈ g, we have

[
(−Rx, x), (−Ry, y)

]
t
=

(
[−Rx,−Ry], [−Rx, y] − [−Ry, x]

)
= (−Rz, z) ∈ gR

where z = −[Rx, y] − [x, Ry] ∈ g.

In the case when resx ω = 0, which we shall focus on in Sect. 5.2, it is clear that

the Lie subalgebra g ⋉ {0} ⊂ t is isotropic with respect to 〈〈·, ·〉〉t;x . If, moreover, the

solution R ∈ End g of (4.21) is skew-symmetric in the sense that

〈Rx, y〉 = −〈x, Ry〉

for any x, y ∈ g, then the subalgebra gR ⊂ t is also isotropic. In this case, we therefore

have a Manin triple (t, gR, g ⋉ {0}).

Let G R denote the Lie subgroup of T with Lie algebra gR . We will assume, as in

(4.20), that the vector space direct sum decomposition t = (g ⋉ {0}) ∔ gR lifts to the

Lie group level, namely that T = G R(G ⋉ {0}), or at least that G R(G ⋉ {0}) forms a

dense subset of T , cf. Sect. 4.4.
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5 Examples

In this section, we rederive the actions of many known integrable σ -models from the

four-dimensional Chern–Simons action (1.2). Specifically, our starting point in each

case is the 1-form ω given by

ω = ϕ(z)dz

where ϕ(z) is the twist function of the integrable σ -model that we want to consider,

which has at most double poles. We then impose natural boundary conditions on the

1-form A at the poles of ω, of the various types discussed in Sect. 4. In each case, we

then compute the corresponding action (3.7) and show that it coincides with the known

action of the given integrable σ -model. In all cases, we also find that the meromorphic

1-form L coincides with the Lax connection of the integrable σ -model.

In every example, ω will have a pair of simple zeroes, say at y± ∈ ζ . Since all the

σ -models that we want to reconstruct are relativistic, by Remark 2.1 we will thus take

σy± = σ± in the notation of (2.11). The reason for not taking σy± both equal to σ+

or both equal to σ− is that the resulting 1-form L would be quite degenerate, with

one of its light-cone components being independent of the spectral parameter. In the

absence of a Lax connection, there is no guarantee that the resulting σ -model would

be integrable. We will come back in Sect. 6 to considering such a case.

5.1 Principal chiral model withWZ-term

Although the action for this model was already derived from (1.2) in [7], we give the

derivation of this case in detail as it illustrates the general procedure for constructing

the action of an integrable σ -model from the two-dimensional action (3.7) in the

simplest possible setting.

Consider the 1-form (see, for instance, [40, §5.1.3)] and [32] in the case k = 0)

ω = K
1 − z2

(z − k)2
dz,

where K and k are real parameters. It has a pair of double poles at k ∈ R and ∞. Note

that, under the change of variable z �→ z +k, this can also be brought to the equivalent

form

ω = −K
(z − z+)(z − z−)

z2
dz

with z± := − k ± 1. This is the 1-form used in [7] to describe the principal chiral

model with WZ-term.

As discussed in Sect. 4.1, we can satisfy the boundary equations of motion (2.6)

by requiring that

Ai |k = 0, Ai |∞ = 0, (5.1)

for i = τ, σ . It follows from Lemma 3.1 and Proposition 4.1 that ĝ can be chosen of

archipelago type and, moreover, such that

gk = g, g∞ = 1

123



A unifying 2D action for integrable σ -models from 4D…

for some g : Σ → G. The latter condition is used to fixed the gauge invariance of

Proposition 3.3. Evaluating (2.9) at k and ∞, we then find

A|k = −dgg−1 + Adg L|k, A|∞ = L|∞. (5.2)

Now the 1-form ω has simple zeroes at ±1, i.e. ζ = {1,−1}. On the other hand,

we also know from combining the second equations in (5.1) and (5.2) that L vanishes

at infinity. Thus, Uσ = Uτ = 0 in the general expression (2.11) for the meromorphic

dependence of L on CP1. As discussed at the start of this section, in the general

notation of (2.11) we choose σ±1 = σ±, so that the Lax connection in the present

case takes the form

L =
V 1

z − 1
dσ+ +

V −1

z + 1
dσ−,

for some V ±1 : Σ → g. Their expressions in terms of the G-valued field g can now

be determined uniquely by solving −∂i gg−1 + Adg Li |k = 0 for i = τ, σ , which

follows from combining the first two equations in (5.1) and (5.2). We find

V ±1 = (k ∓ 1) j±,

where j± := g−1∂±g.

We now have all the ingredients to compute action (3.7) in the case at hand. Note

that the terms in this action corresponding to the pole ∞ ∈ z do not contribute since

we chose to set g∞ = 1. To compute the first term, we thus only need the residue

resk ω ∧ L = −K
(
(k − 1) j+dσ+ + (k + 1) j−dσ−

)
,

while for the WZ-term we note that resk ω = −2K k. From these expressions and the

fact that dσ+ ∧ dσ− = 1
2

dσ ∧ dτ , we finally obtain

S[g] =
K

2

∫
〈 j+, j−〉dσ ∧ dτ + K k IWZ[g],

which we recognise as the action of the principal chiral model in the presence of a

WZ-term.

5.2 Homogeneous Yang–Baxter�-model

We will follow the conventions of [11, §4.2.1].

The procedure for constructing a homogeneous Yang–Baxter deformation [18] of

a given integrable σ -model does not modify the underlying twist function [39]. For

this reason, we start from the same 1-form as in Sect. 5.1. However, to simplify the

discussion, we set k = 0 and take

ω = K
1 − z2

z2
dz
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where K is a real parameter. The discussion of the more general case with k �= 0 could

be done by proceeding along the same lines as in Sect. 5.6.

Now although the 1-form ω is the same as in Sect. 5.1, here we will impose a

different boundary condition at its double pole 0 compared to that in (5.1). More

precisely, we will replace it with a boundary condition that is associated with a choice

of Lagrangian subalgebra of t = g ⋉ gab, as discussed in Sect. 4.5.

The bilinear form on t in the present case reads

〈〈(x, y), (x′, y′)〉〉t;0 = K
(
〈x, y′〉 + 〈x′, y〉

)
.

Let us fix any skew-symmetric solution of the classical Yang–Baxter equation (4.21).

As recalled at the end of Sect. 4.5, it follows that gR = {(−Rx, x) | x ∈ g} is a

Lagrangian Lie subalgebra of t.

We may use this Lagrangian subalgebra gR ⊂ t to satisfy the boundary equations

of motion (2.6) by requiring that (see Sect. 4.5)

(
Ai |0, (∂z Ai )|0

)
∈ gR, Ai |∞ = 0, (5.3)

for i = τ, σ . Recall here that ξ0 = z is the local coordinate at 0. By virtue of Lemma 3.1

and Proposition 4.4, we can choose ĝ to be of archipelago type and, moreover, such

that

g0 = g, g∞ = 1

for some g : Σ → G. The latter condition fixes the gauge invariance of Proposition 3.3.

Evaluating (2.9) at 0 and ∞, we then find

A|0 = −dgg−1 + Adg L|0, A|∞ = L|∞, (5.4a)

but also, taking the derivative with respect to z before evaluating at 0 and using the

fact that (∂z ĝ)|0 = 0 by virtue of the archipelago condition (iii), we obtain

(∂z A)|0 = Adg(∂zL)|0. (5.4b)

Since L is meromorphic with poles in the set ζ = {1,−1} of zeroes of ω and since

it vanishes at infinity by the last two equations in (5.3) and (5.4a), it follows from the

general expression (2.11) that we can write

L =
V 1

z − 1
dσ+ +

V −1

z + 1
dσ−.

Now the first condition in (5.3) implies that Ai |0 = −R(∂z Ai )|0. By combining this

with (5.4) and the above explicit form of L, we obtain

V ±1 = ∓
1

1 ± Rg

j±,

where Rg := Adg−1 ◦R ◦ Adg .
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Finally, noting that res0 ω ∧ L = −K (V 1dσ+ + V −1dσ−) and res0 ω = 0, we

find that action (3.7) reduces to

S[g] =
K

2

∫

Σ

〈
j+,

1

1 − Rg

j−

〉
dσ ∧ dτ.

This is the action of the homogeneous Yang–Baxter deformation of the principal chiral

model, as first constructed in [18] in the case of the semi-symmetric space σ -model.

5.3 Yang–Baxter�-model

The twist function in this case was first computed in [12]. We will follow the conven-

tions of [11, § 4.2.2]. In particular, we take

ω =
K

1 − c2η2

1 − z2

z2 − c2η2
dz,

with K , η real parameters and c = 1 or c = i.

We fix a skew-symmetric solution R ∈ End g of the modified classical Yang–

Baxter equation (4.12). As rescη ω = − res−cη ω, it follows from Sect. 4.4 that gR

is a Lagrangian subalgebra of d when c = 1 (resp. gC when c = i). The boundary

equations of motion (2.6) can then be satisfied by requiring that

(Ai |η, Ai |−η) ∈ gR, Ai |∞ = 0, (5.5a)

for i = τ, σ , in the case c = 1, or

Ai |iη ∈ gR, Ai |∞ = 0, (5.5b)

for i = τ, σ , in the case c = i. It follows from Lemma 3.1 and Propositions 4.1, 4.2

and 4.3 that we can choose ĝ to be of archipelago type.

Moreover, by the discussion in Sect. 4.4 and Proposition 3.3, we are able to choose

our archipelago-type field ĝ such that

g±cη = g, g∞ = 1

for some g : Σ → G. More precisely, by the last part of Proposition 4.2 (resp.

Proposition 4.3), the value of ĝ at the pair of points ±η when c = 1 (resp. at the

point iη when c = i) defines a field on Σ valued in G R\D (resp. in G R\GC). We can

parametrise this quotient by the diagonal subgroup Gδ (resp. the real subgroup G),

which allows us to choose ĝ such that (ĝ|η, ĝ|−η) = (g, g) (resp. ĝ|iη = g). In the

case c = i, we then use the fact that ĝ is equivariant to obtain also g−iη = τ(giη) = g.

With this choice, evaluating (2.9) at the poles of ω, we then obtain

A|±cη = −dgg−1 + Adg L|±cη, A|∞ = L|∞. (5.6)
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Now ω has simple zeroes at ±1 so ζ = {1,−1}. Moreover, combining the last

two equations in (5.5) and (5.6), we find that L should vanish at infinity. By the same

reasoning as in Sect. 5.1, this allows us to write the Lax matrix in the form

L =
V 1

z − 1
dσ+ +

V −1

z + 1
dσ−

for some g-valued fields V ±1 to be determined.

It follows from the first condition in (5.5) that (R + c)Ai |cη = (R − c)Ai |−cη. By

combining this with the first equation in (5.6) and the above explicit rational form of

L, we therefore deduce that

− (R + c)dgg−1 + (R + c) Adg

(
1

cη − 1
V 1dσ+ +

1

cη + 1
V −1dσ−

)
,

= −(R − c)dgg−1 − (R − c) Adg

(
1

cη + 1
V 1dσ+ +

1

cη − 1
V −1dσ−

)
.

By equating the dσ±-components on both sides, we obtain two equations for the two

unknowns V ±1 which can be solved to give

V ±1 = ±
c2η2 − 1

1 ± ηRg

j±

where Rg = Adg−1 ◦R ◦ Adg as before and j± = g−1∂±g.

Since g∞ = 1, there is no WZ-term in action (3.7) corresponding to the double

pole at ∞. On the other hand, as res±cη ω = ±K/2cη and gcη = g−cη, it follows that

the WZ-terms associated with the simple poles ±cη cancel out.

To compute the first term in action (3.7), we need the residue

res±cη ω ∧ L = (res±cη ω)L|±cη = ±
K

2cη

(
cη + 1

1 ± ηRg

j±dσ± −
cη − 1

1 ∓ ηRg

j∓dσ∓

)
.

Putting everything together, we find that action (3.7) becomes

S[g] =
K

2

∫

Σ

〈
j+,

1

1 − ηRg

j−

〉
dσ ∧ dτ

which coincides with the Yang–Baxter σ -model action [24,25].

5.4 �-Deformation of the principal chiral model

The twist function in this case was first computed in [16]. We shall follow here the

conventions of [11, §4.4]. In particular, we take
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ω =
K

1 − α2

1 − z2

z2 − α2
dz, λ =

1 + α

1 − α
,

with K , α real parameters.

Since resα ω = − res−α ω, it follows from Sect. 4.4 that gδ is a Lagrangian subal-

gebra of d. We can therefore satisfy the boundary condition (2.6) by requiring that

(Ai |α, Ai |−α) ∈ gδ, Ai |∞ = 0

for i = τ, σ . In other words, we have Ai |α = Ai |−α and Ai |∞ = 0. It follows from

Lemma 3.1 and Propositions 4.1 and 4.2 that we can choose ĝ to be of archipelago

type. Now as in the corresponding discussion of Sect. 5.3, it follows from the last part

of Proposition 4.2 that (ĝ|α, ĝ|−α) defines a field on Σ valued in Gδ\D. A natural

parametrisation of this quotient consists of elements of the form (h, 1) for h ∈ G. We

can thus choose our archipelago-type field ĝ such that

gα = g, g−α = 1, g∞ = 1

for some g : Σ → G. The condition on g∞ is imposed by virtue of Proposition 3.3.

Evaluating (2.9) at the poles of ω, we thus obtain

A|α = −dgg−1 + Adg L|α, A|−α = L|−α, A|∞ = L|∞. (5.7)

Using the last equation and the boundary condition at infinity, we get L|∞ = 0.

Since L is meromorphic with simple poles in the set ζ = {1,−1} of zeroes of ω, we

deduce its dependence on z to be of the form, cf. Sects. 5.1, 5.2 and 5.3,

L =
α + 1

z − 1
U+dσ+ +

α + 1

z + 1
U−dσ−

for some g-valued pair of fields U± = (α + 1)−1V ±1 on Σ . The normalising factor

of α + 1 is introduced for convenience. In particular, evaluating L at ±α, we find

L|α = −λU+dσ+ + U−dσ−, L|−α = −U+dσ+ + λU−dσ−. (5.8)

It then follows from the boundary conditions at ±α and the first two equations in (5.7)

that

−dgg−1 − λ Adg U+dσ+ + Adg U−dσ− = −U+dσ+ + λU−dσ−

Equating the coefficients of dσ± on both sides, solving for U± and substituting back

into (5.8), we find

L|α = −
λ Adg

1 − λ Adg

j+dσ+ +
Adg

Adg −λ
j−dσ−.
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We did not specify L|−α since it will not be needed as g−α = 1. It now follows that

resα ω ∧ L = (resα ω)L|α = 2k
λ Adg

1 − λ Adg

j+dσ+ − 2k
Adg

Adg −λ
j−dσ−

using the fact that resα ω = −2k where k = −K/4α.

Inserting all of the above into action (3.7), we find it simplifies to

S[g] =
k

2

∫

Σ

〈g−1∂+g, g−1∂−g〉dσ ∧ dτ + k IWZ[g]

+ k

∫

Σ

〈
1

λ−1 − Adg

∂+gg−1, g−1∂−g

〉
dσ ∧ dτ.

It coincides with the action of the λ-deformation of the principal chiral model [37],

written using the conventions of [11, §4.4].

5.5 Bi-Yang–Baxter�-model

We follow the conventions used in [9]. In particular, we take

ω =
16K z

ζ 2(z − z+)(z − z−)(z − z̃+)(z − z̃−)
dz, (5.9)

where K ∈ R. The four poles z± and z̃± as well as ζ ∈ R are related to the two real

deformation parameters η and η̃ of the model by

z± =
−2ρ ± iη

ζ
, z̃± = −

2 + 2ρ ± iη̃

ζ
, ρ = −

1

2

(
1 −

η2 − η̃2

4

)
,

ζ 2 =

(
1 +

(η + η̃)2

4

) (
1 +

(η − η̃)2

4

)
.

Choose two skew-symmetric solutions R, R̃ ∈ End g of the modified Yang–Baxter

equation (4.12) with c = i. Because resz− ω = − resz+ ω and resz̃−
ω = − resz̃+

ω,

it follows from Sect. 4.4 that gR and g
R̃

are both Lagrangian subalgebras of gC. To

satisfy the boundary equations of motion (2.6), we impose that

Ai |z+ ∈ gR, Ai |z̃+
∈ g

R̃
, (5.10)

for i = τ, σ . By Lemma 3.1 and Proposition 4.3, we can choose ĝ to be of archipelago

type. And by the discussion in Sect. 4.4, see also the corresponding discussion in

Sect. 5.3, we can take ĝ such that

gz± = g, gz̃±
= g̃ (5.11)
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for some g, g̃ : Σ → G. Evaluating (2.9) at the poles of ω, we obtain

A|z± = −dgg−1 + Adg L|z± , A|z̃±
= −dg̃g̃−1 + Adg̃ L|z̃±

. (5.12)

The 1-form ω has a simple zero at the origin and at infinity, that is ζ = {0,∞}. In

the present case, the general form (2.11) of the Lax connection therefore reads

L =

(
B+ +

ζ

2
z J+

)
dσ+ +

(
B− +

ζ

2
z−1 J−

)
dσ− (5.13)

for some g-valued fields B± := Uτ ± Uσ , J+ := 2ζ−1V ∞ and J− := 2ζ−1V 0 to be

determined.

The dσ±-components of the two equations

(R + i)Ai |z+ = (R − i)Ai |z− , (R̃ + i)Ai |z̃+
= (R̃ − i)Ai |z̃−

,

which follow from (5.10), give us four equations on the four unknowns B± and J±.

Explicitly, we have

j± = B± ±
η

2
Rg J± − ρ J±, j̃± = B± ∓

η̃

2
R̃g̃ J± − (ρ + 1)J±, (5.14)

where we have introduced j± := g−1∂±g and j̃± := g̃−1∂±g̃. Taking the difference of

these two equations yields

J± =
1

1 ± η
2

Rg ± η̃
2

R̃g̃

( j± − j̃±).

The first equation in (5.14) then also yields B± = j± ∓ η
2

Rg J± + ρ J±. In particular,

the Lax connection (5.13) thus coincides with [30, (3.4.9)] or, up to a conventional

sign, with [9, (2.18)].

We have resz± ω = ∓ 2iK
η

and resz̃±
ω = ∓ 2iK

η̃
. It then follows from (5.11) that the

four WZ-terms in action (3.7) cancel in pairs. We also have

resz+ ω ∧ L + resz− ω ∧ L = 2K (J+dσ+ − J−dσ−),

resz̃+
ω ∧ L + resz̃−

ω ∧ L = −2K (J+dσ+ − J−dσ−)

so that action (3.7) takes the final form

S[g, g̃] = K

∫

Σ

〈 j+ − j̃+, J−〉dσ ∧ dτ.

This is the action of the bi-Yang–Baxter σ -model as written in [9, (2.2)].

Note that, contrary to the examples discussed in all the previous sections, as well

as in Sect. 5.6, we have not fixed the gauge invariance of Proposition 3.3 by fixing the
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value of ĝ at any of the poles of ω. It follows that the above action still has the gauge

invariance of Proposition 3.3 which here takes the form

(g, g̃) �−→ (gh, g̃h)

for any smooth h : Σ → G. Fixing this gauge invariance by setting g̃ = 1, we obtain

the original action of the bi-Yang–Baxter σ -model [25,26].

5.6 Yang–Baxter�-model withWZ-term

Consider the 1-form [13]

ω =
K (1 − z2)

(z − k)2 − c2A2
dz,

with free parameters K , k,A ∈ R. We shall consider in parallel the cases when c = 1

and c = i. Note that in the limit k → 0 we recover the 1-form of the Yang–Baxter

σ -model with A = η, discussed in Sect. 5.3, up to an overall factor.

Besides the double pole at ∞, the 1-form ω has two simple poles at z± = k ± cA

which are both real for c = 1 and complex conjugate for c = i. However, in order to

apply the construction of Sect. 4.2 (resp. Sect. 4.3) to the pair of simple poles z±, we

require a Lagrangian subalgebra of d (resp. gC). But since the residues

resz± ω = ±K
1 − z2

±

2cA

are such that resz− ω �= − resz+ ω, the bilinear form 〈〈·, ·〉〉d;z± on d (resp. 〈〈·, ·〉〉gC;z±

on gC) is not the standard one, by contrast with the situations of Sects. 5.3, 5.4 and 5.5.

Our analysis, at least in the case c = i, is closely related to that of [28] where the

double gC is also equipped with the more general bilinear form 〈〈·, ·〉〉gC;z±
.

A consequence of the bilinear form on d (resp. gC) not being the standard one is

that the diagonal subalgebra gδ ⊂ d (resp. the real subalgebra g ⊂ gC) is no longer

isotropic. Moreover, given any skew-symmetric solution R ∈ End g of the modified

classical Yang–Baxter equation (4.12), the corresponding subalgebra gR of d (resp. of

gC) will in general not be isotropic either.

To construct a Lagrangian subalgebra of d (resp. of gC), we proceed as follows. Let

R ∈ End g be a skew-symmetric solution of (4.12) such that

R3 = c2 R. (5.15)

This implies that R is diagonalisable with g = g+ ∔ g0 ∔ g− its eigenspace decom-

position where g± := ker(R ∓ c) and g0 := ker R are subalgebras of g, and moreover

that [g0, g±] ⊂ g± and g0 is abelian (see, for instance, [30, Proposition C.2.2]). In

particular, we can thus write R = c(π+ − π−) where π± and π0 are the projections

onto the subalgebras g± and g0 relative to the eigenspace decomposition of R.
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It is useful to note that π0 = −c2 R2 + 1 which is symmetric with respect to the

bilinear form 〈·, ·〉 on g. Relation (5.15) then implies that π0 R = Rπ0 = 0. Let

R̃ := R + θπ0 ∈ End g (5.16)

for some real parameter θ ∈ R to be fixed shortly.

Since π0 ∈ End g is symmetric, it follows that R̃ is not skew-symmetric. However,

one checks that it still satisfies the modified classical Yang–Baxter equation (4.12),

for the same value of c (see, for instance, [30, Theorem C.2.1]). So g
R̃

defined as in

Sect. 4.4 is a subalgebra of d complementary to the diagonal subalgebra gδ if c = 1

or a subalgebra of gC complementary to the real subalgebra g if c = i.

Moreover, we find that g
R̃

is isotropic, and so in fact Lagrangian, with respect to

the bilinear form 〈〈·, ·〉〉d;z± on d (resp. 〈〈·, ·〉〉gC;z±
on gC) provided that

(θ − c)2(resz+ ω) + (θ + c)2(resz− ω) = 0.

Of the two solutions for θ ∈ R, the one which is regular in the limit k → 0 reads

θ =
−c2kη2

(1 − c2η2)A
,

where the real parameter η is related to the parameters A and k as (see [13,19,20] in

the case c = i)

A = η

√
1 −

k2

1 − c2η2
.

It therefore follows that g
R̃

, with R̃ ∈ End g defined in (5.16) and for θ ∈ R as

above, is a Lagrangian subalgebra of d (resp. of gC). In other words, we have a Manin

pair (d, g
R̃
) (resp. (gC, g

R̃
)), which we can use in the construction of Sect. 4.2 (resp.

Sect. 4.3).

Concretely, we will realise the boundary equations of motion (2.6) by demanding

that

(Ai |z+ , Ai |z−) ∈ g
R̃
, Ai |∞ = 0, (5.17a)

for i = τ, σ , in the case c = 1, or

Ai |z+ ∈ g
R̃
, Ai |∞ = 0, (5.17b)

for i = τ, σ , in the case c = i. By virtue of Lemma 3.1 and Propositions 4.1, 4.2

and 4.3 we can choose ĝ to be of archipelago type. Moreover, by the discussion in

Sect. 4.4 and Proposition 3.3, we can take ĝ to be such that

gz± = g, g∞ = 1 (5.18)

for some g : Σ → G. We refer to the corresponding discussion in Sect. 5.3 for details.

In the case c = i, we used here the equivariance of ĝ to show that gz− = τ(gz+) = g.
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Evaluating (2.9) at the poles of ω, we obtain

A|z± = −dgg−1 + Adg L|z± , A|∞ = L|∞. (5.19)

Combining the last two equations of (5.17) and (5.19), we deduce that L vanishes at

∞. And since ζ = {1,−1}, we can write the general form (2.11) as

L =
V 1

z − 1
dσ+ +

V −1

z + 1
dσ−,

for some V ±1 : Σ → g to be determined. Now it follows from the first condition in

(5.17) that (R̃ + c)Ai |z+ = (R̃ − c)Ai |z− . We therefore obtain the two equations

(R̃g + c)

(
− j± +

V ±1

z+ ∓ 1

)
= (R̃g − c)

(
− j± +

V ±1

z− ∓ 1

)
,

for the two unknowns V ±1, or in other words

(
c(z+ + z− ∓ 2)

(z+ ∓ 1)(z− ∓ 1)
+

z− − z+

(z+ ∓ 1)(z− ∓ 1)
R̃g

)
V ±1 = 2cj±.

The operator on the left-hand side can be inverted by making use of the relations

π0 R = Rπ0 = 0, π2
0 = π0 and R2 = c2(1 − π0). We find

V ±1 = ∓(1 ∓ k − c2η2 ∓ ARg + η2 R2
g) j±.

By contrast with the situation of Sect. 5.3, the WZ-terms associated with the poles

z± in action (3.7) do not cancel since resz+ ω + resz− ω = −2K k, which is nonzero.

On the other hand, we have

resz+ ω ∧ L + resz− ω ∧ L = −K (V 1dσ+ + V −1dσ−),

so that action (3.7) evaluates to

S[g] =
K

2

∫

Σ

〈
j−,

(
1 − c2η2 − ARg + η2 R2

g

)
j+

〉
dσ ∧ dτ + K k IWZ[g].

This coincides, in the case when c = i, with the action of the Yang–Baxter σ -model

with WZ-term as given in [13, (2.7)].

6 E-models

We will take the 1-form ω to be given by

ω = K
1 − z2

(z − z+)(z − z−)
dz
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where, for simplicity, we restrict attention to the case z± ∈ R. The reasoning below

can be easily adapted to the case of complex conjugate simple poles.

Even though the starting point ω is of the same form as in Sects. 5.3, 5.4 and 5.6, and

each of the integrable σ -models considered in those sections is known to be examples

of E-models, see [27,28], respectively, we will proceed very differently to construct

the underlying E-models themselves.

To begin with, we will impose a very different boundary condition on the 1-form A,

at the poles z± of ω, to those considered in Sects. 5.3, 5.4 and 5.6. In fact, our choice

of boundary condition is very closely related to that considered in [34] for deriving

the E-model from three-dimensional Chern–Simons theory.

Moreover, the choice of coordinates σ±1 that we will make for the pair of zeroes ±1

of ω in the general expression (2.11) for L will be different from that used throughout

Sect. 5. Indeed, the choice will result in the dσ -component of the 1-form L being

trivial.

6.1 Boundary condition

Evaluating A at the pair of points z± yields a d-valued 1-form A := (A|z+ , A|z−) on

Σ , whose components we denote

Ai := (Ai |z+ , Ai |z−) : Σ −→ d

for i = τ, σ . In terms of these, we can express the boundary equations of motion (2.6)

as

〈〈Aσ , δAτ 〉〉d;z± − 〈〈Aτ , δAσ 〉〉d;z± = 0, (6.1)

where 〈〈·, ·〉〉d;z± : d × d → R is defined in Sect. 4.2.

Let E : d → d be a linear map such that E2 = id which is symmetric with respect

to the bilinear form 〈〈·, ·〉〉d;z± on d. We shall impose the boundary conditions at the

poles z± and ∞ of ω to be

Aτ = E(Aσ ), Ai |∞ = 0, (6.2)

for i = τ, σ . The first boundary condition provides a simple way of satisfying the

boundary equation of motion (6.1), merely as a consequence of the symmetry of the

linear map E.

Under a gauge transformation with parameter u : Σ×CP1 → GC, the components

Ai for i = τ, σ of the d-valued 1-form A become

Au
i := (Au

i |z+ , Au
i |z−) = −∂iuu

−1 + uAiu
−1,

where u := (u|z+ , u|z−) : Σ → D. If we require that u = 1 ∈ D, then the components

Au
i for i = τ, σ of the gauge-transformed connection Au are trivially seen to satisfy

the boundary condition (6.2). Therefore, any gauge transformation with parameter

u : Σ×CP1 → GC such that u|z± = 1 is allowed. Using such a gauge transformation,

one can then ensure that ĝ : Σ × CP1 → GC satisfying (3.1) is of archipelago type,
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by the same arguments as in Sects. 3.2 and 4.1. Without loss of generality, we can also

choose the radii of the discs Uz± around the points z± to be equal, namely Rz+ = Rz− .

We shall denote this common radius by R.

As usual, we use Proposition 3.3 to set g∞ = 1. Then, Li |∞ = Ai |∞ = 0, where

the last step uses the second boundary condition in (6.2). We take L of the form

L =

(
V 1

z − 1
+

V −1

z + 1

)
dτ (6.3)

where we have chosen σ1 = σ−1 = τ in the notation of the general form (2.11).

6.2 Action

Since L is regular at the simple poles z± ∈ z of ω, we have

resz± ω ∧ L = (resz± ω)L|z± .

Let Jτ := (Lτ |z+ ,Lτ |z−) : Σ → d and

ℓ := (gz+, gz−) : Σ −→ D.

We also let ℓ̂ := (ĝz+ , ĝz−) : Σ × [0, R] → D. Action (3.7) can be rewritten in the

present case as

S[ℓ] = −
1

2

∫

Σ

〈〈dℓℓ−1, Adℓ Jτ dτ 〉〉d;z± −
1

6

∫

Σ×[0,R]

〈〈d ℓ̂ℓ̂−1, d ℓ̂ℓ̂−1 ∧ d ℓ̂ℓ̂−1〉〉d;z± .

Evaluating (2.9) at the pair of points z± yields

Aτ = −∂τ ℓℓ
−1 + ℓJτ ℓ

−1, Aσ = −∂σ ℓℓ−1.

By combining this with the first boundary condition in (6.2), it follows that

Adℓ Jτ = ∂τ ℓℓ
−1 − E(∂σ ℓℓ−1). (6.4)

Finally, substituting this into the above action yields

S[ℓ] = −
1

2

∫

Σ

〈〈∂σ ℓℓ−1, ∂τ ℓℓ
−1〉〉d;z±dσ ∧ dτ +

1

2

∫

Σ

〈〈∂σ ℓℓ−1, E(∂σ ℓℓ−1)〉〉d;z±dσ ∧ dτ

−
1

6

∫

Σ×[0,R]

〈〈d ℓ̂ℓ̂−1, d ℓ̂ℓ̂−1 ∧ d ℓ̂ℓ̂−1〉〉d;z± .

This is the action of the E-model [22,23] in the case of the real double d = g ⊕ g.

Note that since we have set Lσ = 0, it follows from the equations of motion (2.3a)

expressed in terms of L that we have ∂σ Jτ = 0. If Σ = R
2 and we assume that Jτ

vanishes at spatial infinity, then it follows that Jτ = 0. By virtue of (6.4), this implies
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the on-shell relation ∂τ ℓℓ
−1 = E(∂σ ℓℓ−1), which we also recognise as the equation

of motion of the E-model.

7 Conclusion

7.1 Integrable coupled �-models

A general procedure for coupling together an arbitrary number of integrable σ -models

in a way that preserves integrability was proposed in [11]. In particular, the action for

an integrable σ -model coupling together N copies of the principal chiral model with

WZ-term, as given in [10], was constructed by first devising its Hamiltonian as that

of an affine Gaudin model and then performing its inverse Legendre transform.

This same action was recently rederived in [7] starting from the four-dimensional

action (1.2). In fact, it follows from the results of the present paper that the action

for this integrable σ -model can also be obtained directly from the two-dimensional

action (1.3) by substituting for ϕ and L the twist function and the Lax connection,

respectively, of the affine Gaudin model constructed in [11] or in [31] for the version

with gauge invariance.

7.2 �-Deformations and ‘doubled’Chern–Simons

An appealing feature of the two-dimensional action (1.3) is its ‘universality’.

The λ-deformation, considered in Sect. 5.4, is a particular example of an integrable

σ -model that describes a certain integrable deformation. This was constructed for

the principal chiral model in [37], for the symmetric and semi-symmetric space σ -

models in [16,17] and more recently for the pure-spinor superstring on the Ad S5 × S5

background in [1].

It was, in fact, already known that the actions of λ-deformations can be written in

the ‘universal’ form (1.3), see [36, (3.98)]. Explicitly, in the case of the λ-deformation

of the principal chiral model, it follows from Sect. 5.4 that the action reads

Sλ[g] = k

∫

Σ

〈g−1dg,L|α〉 + k IWZ[g].

Interestingly, this action was obtained in [35,36] by starting from that of a ‘double’

Chern–Simons theory, whose Lagrangian is given by a difference C S(A+)−C S(A−)

of two Chern–Simons 3-forms for g-valued 1-forms A± on D × R where D is a disc.

It would be interesting to derive this ‘double’ Chern–Simons theory starting from

the four-dimensional theory of [7]. More generally, one may wonder whether such an

intermediate three-dimensional Chern–Simons theory also exists more generally for

other integrable σ -models whose action takes the universal form (1.3).

Finally, in connection with the derivation of E-models presented in Sect. 6, it would

also be interesting to understand the relationship between the approach of [7], which

we have been using, and the formalism of [34] in which E-models can equally be

obtained but by starting instead from three-dimensional Chern–Simons theory.
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7.3 Yang–Baxter-type deformations

In Sects. 5.3, 5.5 and 5.6, we imposed boundary conditions at each pair of simple

poles x± of ω by applying the general procedure outlined in Sect. 4.2 or 4.3 with a

choice of Lagrangian subalgebra k of the form gR for some solution R ∈ End g of

the modified classical Yang–Baxter equation. This characterises the class of Yang–

Baxter-type deformations of integrable σ -models, obtained by splitting a double pole

x in ω into two simple poles x± as in [11,12,39]. Within this class, there is a WZ-term

associated with the pair of poles x± if and only if resx+ ω + resx− ω �= 0.

Just as Sect. 5.6 generalises Sect. 5.3 by introducing a WZ-term, one could also

consider a similar generalisation of the construction of Sect. 5.5 by starting from a

more general 1-form ω with two arbitrary pairs of simple poles z± and z̃± (respecting

the reality conditions) but with resz+ ω + resz− ω �= 0 and resz̃+
ω + resz̃−

ω �= 0.

It is natural to conjecture that this would result in the bi-Yang–Baxter σ -model with

WZ-term introduced in [8]. We leave the verification of this conjecture for future work.

In fact, the 1-form ω considered in [7, (14.2)] is precisely of the general type

described above (up to a Möbius transformation). The boundary conditions imposed

on A at each pair of simple poles z± and z̃± of ω in [7, §14] are associated with a

choice of Manin triple (g̃, l+, l−) for the Lie algebra g̃ = g ⊕ h̃, where h̃ denotes an

auxiliary copy of the Cartan subalgebra of g (considering g̃ instead of g allows for a

more direct construction of a Manin triple).

As recalled at the end of Sect. 4.4, such boundary conditions correspond in the

present language to choosing an R-matrix satisfying R2 = 1. In light of the above

discussion, this suggests that the trigonometric deformation of the principal chiral

model constructed in [7, §14] coincides with a certain bi-Yang–Baxter σ -model with

WZ-term on the Lie group G̃ corresponding to g̃. We note, however, that its description

in [7] uses a different parametrisation of the degrees of freedom than the one that we

used in Sect. 5.5 to describe the bi-Yang–Baxter σ -model. It would be interesting to

make this relation more explicit.

7.4 Boundary conditions versus representations

The nonabelian T -dual of the principal chiral model was described in [11] as an affine

Gaudin model. Indeed, a particular realisation of the relevant affine Gaudin model,

with ω as in Sect. 5.2, was shown to reproduce the Hamiltonian, phase space and

action of this σ -model.

We have not considered this particular model here, part of the reason being that

we do not expect the two-dimensional action (1.3) to hold in this case. Indeed, since

res0 ω = 0, a natural choice of Lagrangian subalgebra k ⊂ t is given by k = g ⋉ {0}.

The quotient K\T in this case is naturally parameterised by elements of the abelian

subgroup {0} ⋉ gab ⊂ T . In other words, the field of the resulting integrable σ -model

would be g-valued, so it is natural to conjecture that this corresponds to the nonabelian

T -dual of the principal chiral model. However, the Lagrangian subalgebra k does not

satisfy condition (4.16) which was necessary to bring ĝ to the archipelago form in

the proof of Proposition 4.4. More precisely, the choice of representative in {0} ⋉ gab
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for the quotient (G ⋉ {0})\T is not compatible with the archipelago condition (iii).

This is why action (1.3) does not hold. It would be interesting to see how the present

construction can be generalised to this case.

More generally, it would be very interesting to understand the precise connection

between the choice of boundary condition on A in the setting of [7] and the choice of

realisation of a suitable infinite-dimensional Lie algebra in the setting of [40]. Recall,

for instance, that affine Toda field theories were shown to admit an affine Gaudin

model realisation in [40]. It would be important to clarify what boundary conditions,

if any, can be imposed on A in order to derive the action of affine Toda field theories

from the four-dimensional action (1.2).

With this in mind, it would also be very interesting to see whether the approach of

[7] can be used to furnish new classes of models, for instance by identifying new types

of suitable boundary conditions to be imposed on A. It would then also be interesting

to understand what the corresponding infinite-dimensional Lie algebra representation

is in the affine Gaudin model language.

7.5 Quantising integrable �-models

Perhaps most importantly, the results of the present paper bring further evidence in

support of the connection established in [41] between the two formalisms of [7,40].

And while at present they have mainly been used to describe classical integrable σ -

models, one important interest in these new general frameworks lies in their potential

in addressing the long-standing open problem of quantising integrable σ -models from

first principles. We expect that exploiting the close connection between these two

formalisms will be vital in making progress on this important question.
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