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Abstract

Imposing the 1-Lipschitz constraint is a problem of key importance in the
training of Generative Adversarial Networks (GANs), which has been proved
to productively improve stability of GAN training. Although some interesting
alternative methods have been proposed to enforce the 1-Lipschitz property,
these existing approaches (e.g., weight clipping, gradient penalty (GP), and
spectral normalization (SN)) are only partially successful. In this paper, we
propose a novel method, which we refer to as spectral bounding (SB) to
strictly enforce the 1-Lipschitz constraint. Our method adopts very cost-
effective terms of both 1-norm and ∞-norm, and yet allows us to efficiently
approximate the upper bound of spectral norms. In this way, our method
provide important insights to the relationship between an alternative of
strictly satisfying the Lipschitz property and explainable training stability
improvements of GAN. Our proposed method thus significantly enhances the
stability of GAN training and the quality of generated images. Extensive
experiments are conducted, showing that the proposed method outperforms
GP and SN on both CIFAR-10 and ILSVRC2015 (ImagetNet) dataset in
terms of the standard inception score.
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1. Introduction

One recently emerging technique is the Generative Adversarial Network
(GAN) [1], which is widely recognized as one of the most seminal state-of-the-
art generative models based on a knowledge of a detailed data distribution.
The GAN simultaneously learns a discriminator and a generator by playing
a two-player minimax game until a Nash equilibrium is reached. Here the
generator can produce a model distribution which is as close to a given
real distribution as possible. Meanwhile, the discriminator is taught to
distinguish between model and real distributions as accurate as possible,
which in turn improves the generator over time in order to be able to “fool”
the discriminator. By so doing, at convergence the generative network is
capable of generating synthesized data whose distribution can perfectly match
the underlying distribution of real data. A family of GAN-based methods
has therefore met with considerable success in the kind of data given target
distribution.

Many of impressive GAN’s variants have these days been proposed for
improving the stability of GAN training and avoiding mode collapse, and these
alternatives can be roughly categorized into three different classes: a) specially-
designed network architectures which replace the multiple fully connected
layers in the original GAN [1] with different networks, i.e., deep convolution
network and recurrent neural network [2, 3, 4, 5, 6]; b) autoencoder-based
GANs which combine variational autoencoders (VAEs) [7] and GAN training
[8, 9, 10, 11]; c) alternative objective or distance measure based GANs
where the GAN is trained to satisfy different criteria or alternative distance
measures between distributions and examples, including Integral Probability
Metrics (IPMs) [12] based methods (e.g., Wasserstein GAN (WGAN) [13],
Improved Wasserstein GAN via gradient penalty (WGAN-GP) [14] and others
[15, 16, 17]), Energy-based Models [18, 19, 20], Least-Square GAN [21], f-
GAN [22], BEGAN [23], InfoGAN [24], LS-GAN [25]. Specifically, these
improved GANs and their variants have been successfully used in a wide
variety of visual tasks, such as image generation [26, 27, 28], and image-to-
image translation [29, 30, 31]. However, GAN-based methods are critically
dependent on the stability of the training procedure. As a result most fruitful
GAN models have to be trained in association with additional stabilization
methods [32, 33] (e.g., combining with a specially-designed multi-level network
structure [34, 35], or with conditional information [36], etc.).

To provide some visual illustrations, we have evaluated the performance
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(a) Data samples

(b) GAN (c) WGAN

(d) WGAN-GP (e) WGAN-GP-SN

(f) LGAN (g) FOGAN

Figure 1: Generated images by (b) GAN, (c) WGAN, (d) WGAN-GP, (e) WGAN-GP-SN,
(f) LGAN and (g) FOGAN on CIFAR-10.

of existing GAN-based models on image generation. We experimented with a
pure GAN model without any associated stability approaches, and as can be
seen in Fig. 1(b), its training fails to converge, leading to low-quality generated
images consisting of many repeated patterns. A reasonable explanation for
this result is that the KL divergence and Jensen-Shannon divergence used in
original GAN cannot work well in measuring the difference between target
and model distribution and lack the adequate capacity to avoid vanishing
gradients and associated mode collapse in most cases, which has been clearly
demonstrated in the literature [13, 15]. In contrast, by incorporating a smooth
Wasserstein distance metric and objective, WGAN-based methods perform
better than original GAN in terms of quality and diversity of images (see Fig.
1). Nevertheless, the optimization of this objective instructs the discriminator
to satisfy the requirement of 1-Lipschitz constraint, which actually bounds
the gradient of the discriminator to fall in the range of [0, 1]. By using
weight clipping in WGAN [13], it is capable of grudgingly abiding by the 1-
Lipschitz rule. As widely demonstrated, this approach limits to a large extent
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the capability to preserve the discriminative features in the discriminator,
which leads to relatively inferior performance (see Fig. 1(c)). Its improved
variant, the so-called gradient penalty method (WGAN-GP) [14] imposes
an implicit 1-Lipschitz constraint and does not exert a precise bounding,
only producing a relatively higher cost for those gradients away from unity.
Spectral normalization (WGAN-GP-SN) [37] locks gradients of all matrices
(converted from the weights of convolutional layers) to unity. Recently, one
interesting attempt of meeting Lipschitz property by manipulating gradients
of discriminators as small as possible has been proposed. Specifically, Lipschitz
GAN (LGAN) [38] penalizes the maximum of gradients, which is different
from WGAN-GP, and First Order GAN (FOGAN) [39] computes a first order
information of gradients and is to obtain directly an update direction of
gradient decent, similarly encouraging gradients approach to zero. Note that
the 1-Lipschitz property, on the other hand, requires gradients to be smaller
or equal to unity. As a result of this compromise, these techniques [38, 39]
cannot clearly represent detailed texture information (see Figs. 1(d) ∼ (g)).

To address the above shortcomings and motivated by the idea, widely
demonstrated in the literature [13, 14, 37], of enforcing the 1-Lipschitz condi-
tion can significantly improve stability of GAN training, we develop a novel
weight rescaling or normalization method referred to as spectral bounding
(SB). This enables us to utilize spectral norms to meet the 1-Lipschitz re-
quirement of discriminators. Unfortunately, the calculation of spectral norms
is very expensive. We therefore skillfully design a fast and robust algorithm
to calculate the upper bound of the spectral norm. Our idea is to bound the
spectral norm of the reshaped weight matrix with the product of 1-norm and
∞-norm, which is easily calculated, only requiring O(n2) computations. By
using this approach, we can bound the spectral norm of the discriminator
to fall in the interval of [0, 1]. As a consequence, the training procedure
condition is constrained to be definitely 1-Lipschitz. We can thereby enhance
the stability of the two-player minimax game during GAN training and thus
gain an overall improvement in the image generation task when the training
process is attempted by balancing the generator and discriminator. In this
process, the generator is able to generate samples in an attempt to max-
imally confuse the discriminator, whereas the discriminator maximizes its
classification accuracy until a Nash equilibrium is reached.

In summary, the goal of this study is to explore an ideal explainable GAN-
related model which can improve the training stability during reaching the
Nash equilibrium from the perspective of imposing the 1-Lipschitz constraint.
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The main novelties and contributions can be summarized as follows:

• The proposed spectral bounding method is an original addition to the
methodology for WGAN-based models, which strictly meets the re-
quirement of optimizing the Wasserstein-distance metric or measure,
namely 1-Lipschitz constraint. Our method differs from other interest-
ing alternatives (e.g., weight clipping, gradient penalty, and spectral
normalization, see Table 1 for more details on their differences and
comparisons) and proposes a more precise calculation of spectral norms
to encourage gradients of discriminative networks to fall in the range of
[0, 1].

• We design a cost-effective method for quickly calculating the upper
bound of spectral norms, taken the form of the product of 1-norm and
∞-norm. This effectively reduces the computational cost in comparison
with a power iteration applied in SN method (which we shall discuss in
later sections 4.2.2).

• Extensive experimental results on CIFAR-10 and ImageNet dataset
demonstrate that our approach can maintain more successfully the
balance between generators and discriminators encountered prior to a
Nash equilibrium having been reached. In so doing we can obtain a
robust GAN model which accurately captures features of the statistical
distribution for data samples used in training.

The remainder of this paper is organized as follows. Section 2 provides
an overview of the related literature. Some preliminary material, including a
discussion of matrix norms, and explanations of the effectiveness of spectral
bounding versus alternative regularization techniques are introduced in Sec-
tion 3. We present experimental details and results for image generation in
Section 4. Finally, Section 5 concludes the paper.

2. Related Work

2.1. Generative Adversarial Networks

Since Goodfellow et al. [1] proposed GANs in 2014, a collection of GAN-
based methods have been developed with the specific aim of improving
the stability for GAN training. Essentially, GANs attempt to simulate the
distribution of a real sample set without supervision. We denote the generator
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Table 1: Comparison of realizing 1-Lipschitz property (‖f‖Lip = ‖f(x)−f(y)‖2

‖x−y‖2

≤ 1) by

different methods.

Method Implementation Result

WGAN [13] Clips weights W into a range of [-0.01, 0.01] ‖f‖Lip ≪ 1
WGAN-GP [14] Adds a gradient penalty λ · E[‖∇f‖2 − 1]2 ‖f‖Lip ≈ 1
LGAN [38] Adds a max gradient penalty λ ·max‖∇f‖2 ‖f‖Lip → 0
SNGAN [37] Normalizes weights Wsn = W/σ(W) ‖f‖Lip = 1
FOGAN [39] Penalizes a first order information of ‖∇f‖2 ‖f‖Lip → 0

Ours Rescales weights W̃ = W/
√
‖W‖1‖W‖∞ ‖f‖Lip ≤ 1

as G(α), where α is the model parameter set. The distributions of generated
and real samples are denoted as Pα and Pr respectively. A discriminator
D(β) is employed to determine the differences between the two distributions,
Pα and Pr. This two-player game can be represented by a minimax objective
function as follows,

min
G(α)

max
D(β)

D(Pα − Pr).

Here D is a distance measure for the distributions Pα and Pr. In practice, it
has been found that the way in which distance measurement is computed is
essential for successful GAN training. Specifically, instead of using the KL-
divergence or Jensen-Shannon divergence employed in the original formulation,
a smooth Wasserstein distance metric and objective are used, and then the
WGAN [13] can stabilize the training process. In other words, it avoids
vanishing gradients and mode collapse encountered in the pure GAN. The
WGAN also makes the process of balancing the generator and discriminator
much easier. As a result it is possible to train the discriminator until optimality
is reached, and then gradually improve the generator. Moreover, it provides
an advantageous indicator of quality (based on the Wasserstein distance) for
the training progress:

W (Pα,Pr) = inf
γ∼(Pα,Pr)

∫
‖x− y‖dγ

= inf
γ∼(Pα,Pr)

E(x,y)∼γ[‖x− y‖]
(1)

where γ is the union of the distributions Pα and Pr. In Eq. (1), it uses the
minimum value of the integral value for γ as the distance between the two
distributions. Because it is highly intractable for the infimum in Eq. (1), it
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can be transformed into a more tractable equation:

W (Pα,Pr) = sup
‖f‖Lip≤1

Ex∼Pr
[f(x)]− Ey∼Pα

[f(y)]. (2)

In Eq. (2), f plays the role as the discriminator and is required to satisfy
1-Lipschitz property.

Algorithm 1 Spectral Normalization [37]

Require:

Parameter W = {Wl ∈ R
nl×ml}l=1,2,...,L;

Random vector ũl ∈ R
dl for l = 1, · · · , L sampled from isotropic distribu-

tion.
Ensure:

Rescaled Ŵ = {Ŵl ∈ R
nl×ml}l=1,2,...,L.

1: for l = 1; l ≤ L; l ++ do

2: Apply power iteration method to a unnormalized parameter matrix
Wl:

ṽl ← (Wl)T ũl/‖(Wl)T ũl‖2
ũl ←Wlṽl/‖Wlṽl‖2

3: Calculate W̄l
sn with the spectral norm:

W̄l
sn(W

l) = Wl/σ(Wl),
where σ(Wl) = ũT

l W
lṽl.

4: Update Wl with SGD on mini-batch dataset DM with a learning rate
α:

Ŵl ←Wl − α∇Wll(W̄l
sn(W

l),DM)
5: end for

To enforce the 1-Lipschitz constraint, several insightful approaches have
been adopted (see Table 1). The first of these is weight clipping used in
WGAN [13], whereby the weights of the discriminative network are clipped
to fall within a pre-specified interval after updating during training. This
method is acknowledged as a “simple” and expedient way to realize a Lipschitz
constraint, which in some cases lacks the capacity to cope with vanishing
gradient and mode collapse [14]. To solve this problem, an additional gradient
penalty term is added to the objective function of the discriminator, and this
leads to an improved version of WGAN referred to as WGAN-GP [14]. In
contrast to weight clipping, WGAN-GP directly requires the gradients to be
close to unity by introducing an extra loss term. The resulting WGAN-GP
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model encourages the discriminator to be 1-Lipschitz along the path between
the generated samples and real samples. However WGAN-GP is an implicit
constraint which cannot offer a sufficiently precise bounding in the parameter
space. In contrast, LGAN directly penalize the Lipschitz constant which is
equivalent to the maximum scale of ‖∇f‖2 [40], making the resulting LGAN
model manipulate the gradients of discriminators approach to zero. Such
an explicit idea of penalizing the Lipschitz constant in practice is usually
comparable with gradient penalty used in WGAN-GP. Interestingly, FOGAN
has proposed a new critic based on first order information of Wasserstein
divergence to replace implicit or explicit penalties employed in WGAN-GP or
LGAN, which is capable of fulfilling the requirements for unbiased steepest
descent updates when updating weights of discriminators. However, we can
notice that the penalty of first order information based on ‖∇f‖2 likewise
encourages the norms of gradients of the discriminator close to zero. Together
these techniques [38, 39] can to some extent improve the GAN training, but
they do not strictly satisfy the 1-Lipschitz property.

SNGAN [37] has thus been proposed as a better way to realize the 1-
Lipschitz property for the discriminator. In SNGAN, spectral normalization
is employed to stabilize GAN training. To do this SNGAN performs spectral
normalization on the weights of the discriminator. The 1-Lipschitz property
is imposed by rescaling the parameter value with the max singular value of
a reshaped parameter matrix. To do this SNGAN normalizes the spectral
norm of the reshaped parameter matrix W obtained from the weight tensor
of the discriminator so as to satisfy the condition σ(Wsn) = 1:

Wsn = W/σ(W) (3)

where σ(W) is the largest singular value of W, and equivalently, the spectral
norm of W.

To estimate the largest singular value σ(W), a power iteration method
detailed in Algorithm 1 was employed in SNGAN. However, SNGAN also
suffers some shortcomings in terms of its theoretical underpinning, namely a)
SN uses a power iteration method to obtain the max singular value of the
reshaped parameter matrix which is computationally expensive, b) if there is
a multiplicity in the dominant singular values, the power iteration method
may fail, and c) SNGAN locks the spectral norm values of all matrices to
1. Unfortunately, this does not satisfy the theoretical requirements of the
WGAN [13].
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In summary, WGAN, WGAN-GP, and SNGAN propose interesting solu-
tions for stabilizing GAN training, but they still fail to strictly realize the
1-Lipschitz property. Table 1 briefly concludes the ways of enforcing the
1-Lipschitz rule by different alternatives and their corresponding function in
the spectral norms of discriminative function f . Neither of the aforementioned
methods can therefore be considered as ideal or insightful enough solutions
to the optimization of the Wasserstein-distance measurement.

3. Methodology

In this section, we introduce the preliminary concepts and theory of matrix
norms, which are a conceptual stepping stone on the path to the theoretical
inference of our SB method. Specifically, the goal of SB method is to effectively
calculate the product of 1-norm and ∞-norm as the upper bound of spectral
norms to realize 1-Lipschitz regulation, which practically requires gradients
be smaller or equal to unity. Given a n×m matrix, A ∈ R

n×m, we have

‖A‖2 = max
‖x‖2=1

‖Ax‖

‖A‖1 = max
1≤j≤m

n∑

i=1

|aij|

‖A‖∞ = max
1≤i≤n

m∑

j=1

|aij|.

(4)

Here, x is a specified vector, ‖x‖2 = 1, and aij is the element with row index
i and column index j of the matrix A. Obviously, ‖AT‖1 = ‖A‖∞.

The following theorem and its corollary give the relationship between
‖A‖2, ‖A‖1, and ‖A‖∞.

Theorem 1.

If A ∈ R
n×m, then there exists a unit spectral norm n-vector, z, such that

ATAz = µ2z, where µ = ‖A‖2.

Corollary 1.

If A ∈ R
n×m, then ‖A‖2 ≤

√
‖A‖1‖A‖∞.

Proof 1.

If z 6= 0, then ATAz = µ2z with µ = ‖A‖2. As a result, we have

µ2‖z‖1 = ‖ATAz‖1 ≤ ‖AT‖1‖A‖1‖z‖1 = ‖A‖∞‖A‖1‖z‖1.
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Our method is based on the well-known WGAN [13]. In this work, we
propose a spectral bounding method which is completely orthogonal to the
two state of the art GAN training stabilization methods discussed above,
i.e., gradient penalty [14] and spectral normalization [37]. Our method can
constrain the spectral norm of the reshaped weight matrix to fall in an
assigned bounded range of [0, a], where a is the assigned upper bound. In the
following analysis we only consider the most widely encountered situation,
namely a = 1.

Here we detail the SB method with 1-norm and ∞-norm. We begin by
formulating the discriminator:

f(x) = σ(WL...σ(W2σ(W1x+ b1) + b2) + bL), (5)

where σ is a nonlinear element-wise function which in practice can be either
a sigmoid function or a positive threshold (step) function. Additionally, W
is the weight matrix for every layer whose shape is (input channel × k ×
k, output channel), where k is the kernel size. b is the bias term and x is an
input image. In the WGAN, f is expected to be constrained with 1-Lipschitz
continuity. For simplicity1, we can omit σ and b:

f(x) = (WL...(W2(W1x))) = (WL...W2W1)x. (6)

In practice, the spectral norm is usually used to realize the 1-Lipschitz
property, whose mathematical definition for function f is:

For arbitrary x and y in the domain, f should be satisfied with,

‖f(x)− f(y)‖2
‖x− y‖2

≤ 1. (7)

and then we have,

‖f(x)− f(y)‖2
‖x− y‖2

=
‖(WL...W2W1)x− (WL...W2W1)y‖2

‖x− y‖2
=
‖(WL...W2W1)(x− y)‖2

‖x− y‖2
. (8)

1Actually, f is a feedforward neural network made up of affine transformations and
nonlinear pointwise functions (e.g., sigmoid, tanh, ReLU and leaky ReLU), which completely
satisfy the 1-Lipschitz property, and the bias term in general does not contribute to the
gradient of discriminators while back-propagation.

10



With the basic inequality of norms,

‖(WL...W2W1)(x− y)‖2
‖x− y‖2

≤ ‖(WL...W2W1)‖2
‖x− y‖2
‖x− y‖2

,

‖(WL...W2W1)(x− y)‖2
‖x− y‖2

≤ ‖(WL...W2W1)‖2.

Furthermore with Eq. 8,

‖WL...W2W1‖2 ≤ ‖WL‖2...‖W2‖2‖W1‖2,
‖f(x)− f(y)‖2
‖x− y‖2

≤ ‖WL‖2...‖W2‖2‖W1‖2 ≤ 1.

Algorithm 2 Spectral Bounding

Require:

Parameter W = {Wl ∈ R
nl×ml}l=1,2,...,L.

Ensure:

Rescaled W̃ = {W̃l ∈ R
nl×ml}l=1,2,...,L

1: for l = 1; l ≤ L; l ++ do

2: µl = max(abs(W)l1µ) and νl = max(1ν
Tabs(Wl)),

where µl, νl ∈ R, 1µ ∈ R
nl×1,1ν

T ∈ R
ml×1

3: if
√
µl ∗ νl > 1 then

4: W̃l = Wl/
√
µl ∗ νl

5: else

6: W̃l = Wl

7: end if

8: end for

So if we can bound ‖Wl‖2 then we can also indirectly bound ‖f‖2. How-
ever, the computation of the spectral norm is very expensive, and this moti-
vates us to investigate an efficient solution. Having developed the corollary 1,
we can bound the spectral norm of the reshaped weight matrix with the
1-norm and ∞-norm. This offers the advantage that the 1-norm and ∞-norm
are both easily calculated, requiring only O(n2) computations. In practice,
we only need to rescale the matrix with the product of 1-norm and ∞-norm
to bound the spectral norm value. For instance, for an unregularized and
non-reshaped weight matrix Wl ∈ R

dout×din×h×w, we begin by regarding the
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Figure 2: The framework for image generation based on our method.

matrix as a 2-D matrix of size dout × (dinhw), represented as Wl ∈ R
nl×ml ,

and then calculate the 1-norm and ∞-norm of itself. If the resulting upper
bound of the spectral norm of Wl, i.e.,

√
‖Wl‖1‖Wl‖∞, is greater than unity,

we rescale Wl by dividing each element of itself by the corresponding upper
bounding, which can enforce the spectral norm to a range of [0, 1]. At each
iteration during training, the proposed SB method is employed with the set of
convolutional weights, obtained before updating the weights of the discrimina-
tor. More details can be found in Algorithm 2. Note that the computation is
cheap enough in comparison to the calculation of the power iteration step in
spectral normalization [37]. Specifically, for one rescaling operation, SNGAN
requires at least triple matrix-vector multiplications. In comparison, our
method only performs one matrix-vector multiplication for each rescaling
operation, which is highly cheaper than SNGAN in computational complexity.
More details on computational complexity can be found in Subsection 4.2.2.
Additionally, the power iteration used in SNGAN may fail when encountering
with multiple roots, and our method definitely sidesteps this bottleneck.

4. Experiments

In this section we detail the experimental configurations and evaluation
results. To evaluate the efficiency of our proposed SB method, we conducted
a group of unsupervised experiments for generating images on CIFAR-10
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2 and ILSVRC2015 (ImageNet) 3 dataset. We combine WGAN-GP with
spectral bounding which we referred to as WGAN-GP-SB and compare its
performance against two state-of-the-art methods, namely WGAN-GP [14]
and WGAN-GP-SN [37]. This section is organized as follows: we will first
present the experimental settings and network architectures, and then report
the empirical results and analysis from the perspective of norms’ distribution,
computational complexity and standard inception score.

4.1. Settings

4.1.1. Database

Following the baselines, we first carried on experiments on the CIFAR-10
dataset to assess the effectiveness of our proposed method. CIFAR 10 consists
of 60K 32x32 color images belonging to 10 classes, with 6K images per class. Of
all images, we selected 50k ones for training. To make sense of maintaining the
efficacy of our method on a large dataset, we also experimented with ImageNet
dataset in which the training set includes 1000 classes and approximate 1300
downsampled images of a 32x32 pixel size per class. Therefore, about 1.3
million images are chosen for the training set when trained on ImageNet.

4.1.2. Network Architecture

The framework of our proposed method for image generation is illustrated
in Fig. 2. We commence by projecting a 128-dimension Gaussian noise,
z ∼ N(0, I), into a small spatial convolutional representation processed by a
dense network, which in general can be used as the start of the convolution
stack. Next, a series of three deconvolution layers, preserving high-level
features, synthesize an image of 32x32x3 size. In the discriminator, we use
four convolutional layers and a fully connected layer to obtain a probability
map from the set of target samples. More details can be found in Table 2. For
each of the GAN models studied, we actually employed the standard DCGAN
network architecture, which was also applied in [14] and [37], for both the
generator and discriminator. Considering the limitation of computing capabil-
ity of GPU employed in our experiments, the DCGAN network architecture
used in our experiments was a toy version in which the channel dimension
of both the generator and discriminator is 8 (that of the DCGAN network

2 http://www.cs.toronto.edu/~kriz/cifar.html
3 http://image-net.org/small/download.php
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Table 2: Details of standard DCGAN architectures of generator and discriminator for
image generation on CIFAR-10 and ImageNet dataset. The ci(i = 1, 2, 3) marked convs
are regularized with corresponding methods

(a) Standard Generator

Input: z ∈ R
128 ∼ N(0, I).

Output: RGB image x ∈ R
32×32×3.

Dense 4× 4× 32 Reshape BN ReLU
Deconv 5× 5× 16 Stride=2 BN ReLU
Deconv 5× 5× 8 Stride=2 BN ReLU
Deconv 5× 5× 3 Stride=2 tanh

(b) Standard Discriminator

Input: RGB image x ∈ R
32×32×3.

Output: 1 probability.

Conv(c3) 5× 5× 8 Stride=2 ReLU
Conv(c2) 5× 5× 16 Stride=2 ReLU
Conv(c1) 5× 5× 32 Stride=2 ReLU
Reshape Dense 512→ 1

architecture is 64). We also experimented with the original WGAN-GP loss
function for all models studied, defined as follows:

min
G

max
D

Ey∼Py
[D(y)]− Ex∼Px

[D(G(x))]

+ λEx̂∼px̂ [(‖∇x̂D(x̂)‖2 − 1)2], (9)

where λ is a regularization parameter, λ > 0. x̂ is linear recombined sample
formed from the real-world sample y and the generated sample x̃. x̂ :=
ǫy + (1 − ǫ)x̃, ǫ ∼ U [0, 1], x̃ := G(x), x ∼ Px. The quantity ∇x̂D(x̂) is the
gradient of D for x̂. The regularization term, Ex̂∼px̂ [(‖∇x̂D(x̂)‖2 − 1)2], is
used to stabilize the gradient of D close to unity.

4.1.3. Implementation details

To ensure that the superiority of the proposed method is not deter-
mined by our specific settings, we experimented with the same optimizer
and hyper-parameter settings for all models on CIFAR-10 and ImageNet
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dataset. Specifically, we employed the Adam update method as our optimizer
in which β1 = 0.5, β2 = 0.9. Here β1 is the exponential decay rate for the
1st moment estimates, and β2 is the exponential decay rate for the 2nd mo-
ment estimates. We set the learning rate and batch size as 2e − 4 and 64,
respectively. The critical number for the discriminator was set as 5 and the
number of training iterations was set as 100K. There is only one difference of
setting hyper-parameter λ between baselines and our model. The λ for the all
gradient penalty is 10 when trained by WGAN-GP [14], WGAN-GP-SN [37],
LGAN [38] and FOGAN [39]. For our proposed spectral bounding method
WGAN-GP-SB, the λ was set to 1 to avoid contradiction between the GP
and SB methods, and we relaxed the upper bound to 2 for more freedom
and flexibility in the spectral bounding phase. This is primarily because that
GP penalizes the gradient term away from unity and a relatively greater λ
may severely constrain the gradient in a small enough neighborhood of unity,
while our SB method encourages the gradient in a pre-specified range of [0, a].
We finally implemented baselines with open source code 4.

4.2. Results

4.2.1. Distribution of Norms

To show the effectiveness of the proposed spectral bounding method, we
first visualize the distributions of the spectral norms during the training
procedure on CIFAR-10 dataset. The ci (i = 1, 2, 3) are convolution layers
which are explained in Table 2. For each convolution layer studied, we record
the value of its norms in three phases:

• Phase1 (p1): before both spectral bounding and SGD updates.

• Phase2 (p2): after spectral bounding but before SGD updates.

• Phase3 (p3): after both spectral bounding and SGD updates.

We recorded the change of different norms at an interval of 1K iterations. In
Fig. 3, it worth mentioning that the norm values of WGAN-GP were greater
than 1 and the norm of WGAN-GP-SN was virtually clamped at 1. Both
LGAN and FOGAN force the norms of gradients approach to zero theoretically,
but the results indicate that they do not meet the Lipschitz property in all
convolutional layers. In contrast, the spectral norm of our SB method was

4 https://github.com/igul222/improved_wgan_training.git
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Table 3: Average inception scores for 5 trials on CIFAR-10 and ImageNet dataset.

Methods
CIFAR-10 ImageNet

Mean Std Mean Std
GAN [1] 2.7719 0.2051 2.6021 0.1865

WGAN [13] 3.2928 0.2411 2.8655 0.2215
WGAN-GP [14] 3.7446 0.0500 3.6958 0.2142

WGAN-GP-SN [37] 3.8834 0.1383 3.7752 0.2174
LGAN [38] 3.7822 0.1334 3.7569 0.1568
FOGAN [39] 3.9271 0.2266 3.8122 0.2855
Our method 4.0029 0.1663 3.8734 0.2307

results and theoretical aspects. Fig. 4 shows the average quantitative compu-
tational time per update by different methods. Note that WGAN-GP and
its variant LGAN slightly faster than other methods. However, our spectral
bounding also performs in a relatively economical manner in comparison with
spectral normalization. The evidence underpinning this observation consists
of two categories of reasons. According to Algorithm 2, our SB method only
requires n(m− 1)+ (n− 1)m addition operations to obtain µ and ν. For spec-
tral normalization as shown in Algorithm 1, 2nm+ 2n+ 2m multiplications,
2nm divisions and 2nm− 2 additions are required to obtain u and v (about
three times computational complexity of our method). Moreover, additional
computations were required for computing σ(W), the largest singular value
of a convolution weight matrix, with power iteration employed in the spectral
normalization. On the other hand, the computation of FOGAN requires
expensive computational resources to carry out the first order derivative of
gradients of discriminators. Therefore, the proposed SB method is far less
computationally expensive than both SN and FOGAN.

4.2.3. Inception Scores

We now report some quantitative results for all models and employ incep-

tion score as a measure of assessing the quality of the generated images by
these alternatives. The inception score was introduced by Salimans et al [2]
and is defined as follows:

I({Xn}Nn=1) := exp(E[DKL[p(y|x)]||p(y)]). (10)

where p(y) ≈ 1
N

∑N

n=1 p(y|xn) and p(y|x) is a trained convolutional neural
network. The higher the inception score, the better the performance of GAN
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Figure 4: Average computational time for 100k updates.

training on image generation.
We present the generated images obtained using different method on

CIFAR-10 and ImageNet dataset in Fig. 5 and Fig. 6, respectively. It should
be pointed out that the DCGAN network architecture employed in all models
is a toy version with the 8-dimension channel, and therefore may be somewhat
difficult to result in a higher level of visual quality. Fig. 7 shows the learning
process of standard inception scores with iterations on the two benchmark
dataset above produced by different models. It is obvious in Fig. 7 (a) that
the learning curve of other methods plateaued around 50Kth iteration, while
our method kept increasing even afterward. The similar observation can
also be found in Fig. 7 (b). This result may be explained by the fact that
we employed λ = 1 for gradient penalty in our proposed method rather
than λ = 10 used in other baselines, and such a smaller penalty indicates
that the performance of our model is inferior to that of other models in
the beginning of the training phase. The main purpose of this setting is to
avoid contradiction between the GP and our SB method and fairly access the
performance of our method. However, the optimal performance of our method
in the rest of training demonstrates the effectiveness of our proposed spectral
bounding, strictly satisfying the Lipschitz property. Table 3 represents the
average inception scores for 5 trials on the two benchmark dataset in which
our proposed spectral bounding method WGAN-GP-SB performs better
than other models in both CIFAR-10 and ImageNet datasets. In addition,
our method is comparable to the alternatives when gauged by the standard
deviation indicating the robustness of a model studied. Taken together these
quantitative and qualitative results verify the effectiveness of our spectral
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(a) Our method

(b) GAN (c) WGAN

(d) WGAN-GP (e) WGAN-GP-SN

(f) LGAN (g) FOGAN

Figure 5: Generated images by different methods on CIFAR-10.

bounding method.

5. Conclusions
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(a) Our method

(b) GAN (c) WGAN

(d) WGAN-GP (e) WGAN-GP-SN

(f) LGAN (g) FOGAN

Figure 6: Generated images by different methods on ImageNet.

In this paper, we first have provided the theoretical explanations between
several insightful attempts of enforcing 1-Lipschitz continuity used in the
literature and the stability degree of GAN’s trainings. Inspired by the idea
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Figure 7: Learning curves for unsupervised image generation in terms of inception score
for WGAN-GP, WGAN-GP-SN, LGAN, FOGAN and WGAN-GP-SB on CIFAR-10 and
ImageNet.

of understanding the stability improvements of deep neural networks opti-
mization with the Lipschitz constraint, we then proposed a spectral bounding
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method which can stably constrain GAN training and strictly meet the 1-
Lipschitz property. To efficiently calculate the upper bound of the spectral
norm, we have presented an effective method by bounding the spectral norm
of the reshaped convolutional weight tensor by combining information con-
veyed by the 1-norm and ∞-norm. This reduces the computational cost and
effectively improve the stability of GAN training. Experimental results clearly
demonstrate the superiority of our proposed method for generating images
and verify the consistency between mathematical reasoning and practical
performance. Specifically, the results of training time demonstrate that the
proposed method requires less computation than spectral normalization. In
addition, our method performs better than several state-of-the-art methods
when measured in terms of the quality of synthesized images as gauged by
the inception score and together with the subjective visual content. Taken
together, the study has gone some way towards enhancing the understanding
of Lipschitz constraint and offered some significant insights into the realization
of this constraint, and the superiority of which has also been evaluated theo-
retically and experimentally. Further research should be done to experiment
with our method on more large-scale and complex datasets.
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