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Abstract: Joint networks hosted in successively younger rocks, developing as a result of forced
(trishear) folding of a rock mass above a deep-seated fault, can be used to infer the reactivation history
of that deep-seated fault. This study aims to use joint networks in Pennsylvanian, Permian and
Cretaceous rocks to document evidence of reactivation on basement faults during the Paleozoic and
Mesozoic of Nebraska and Kansas. The most prominent basement features in southeast Nebraska and
northeast Kansas are oriented NE-SW, likely related to the Midcontinent Rift System and Nemaha
Uplift, and oriented NW-SE, likely related to fabrics from the Central Plains Orogeny. These features
are well defined in the potential fields data. Joint patterns in the study area show an E-W oriented
trend, as well as clearly discernable NE-SW and subsidiary N-S and NW-SE trends. The E-W trend is
interpreted to be related to far-field stresses from Laramide and Ancestral Rocky Mountain orogenic
events, whilst the NE-SW trend is interpreted to be related to subtle reactivation on the Mid-continent
rift and related faults, observed in basement data. These movements produced stresses of sufficient
magnitude to produce joints in the post-rift rock units, but not sufficient to generate shear fractures.
Similarly, the ~N-S and NW-SE joint trends are taken as evidence of subtle reactivation on the
Nemaha Uplift and Central Plains Orogeny systems, generating joints by the formation of forced
folds. This contribution therefore provides a convincing case study of the value of coupled potential
fields and surface feature studies in discerning buried tectonic trends and subtle reactivation thereon.

Keywords: joints; potential fields; lineament analysis; fault reactivation; Midcontinent Rift System;
Nemaha Uplift

1. Introduction

In many landscapes, surface evidence of deformation can provide a tantalizing glimpse of the
structures beneath the surface. For example, [1] used the surface geometries and shapes of folds to infer
the presence of master blind thrust faults at depth. [2] used geomorphological domains in addition
to subsurface datasets to infer the geodynamic evolution of the Southern Apennines. Similarly, [3]
described the influence of the reactivation of basement faults on the structures of SE England.

These three diverse studies highlight the importance of surface observations and the tectonic
inheritance concept in subsurface geology. In this paper, we use the shape of the land surface,
as gleaned from satellite data and field-derived joint patterns, to understand the reactivation history of
basement-involved faults in SE Nebraska and NE Kansas.

The concept of tectonic inheritance—which states that the pre-existing structures and zones
of weakness in a system govern the development of subsequent structures—is frequently used to
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explain large-scale variations in the geometry of orogenic belts, or the locations of rift margins in
supercontinent cycles [4–7]. The effect of basement geometry on the development of an orogenic
arc has been demonstrated by [8] using analog models. Large-scale finite-element modeling also
demonstrates that a pre-existing structural system can exert significant control on subsequent
deformation styles [7]. Studies of specific structures (e.g., [9–13]) indicate that subsequent structures,
facies changes, and economic deposits may be affected by the motion of the pre-existing fault or faults.

Failed rifts and ancient suture zones can provide weak zones suitable for reactivation in successive
deformation events. The amount and type of reactivated movement occurring on any given fault is
primarily a function of the stress ratio on the fault, the coefficient of friction of the rock (that is, the slip
tendency), and the dip of the weak plane within the rock mass [14–16]. Additional influencing factors
are the strength of the fault itself, the obliquity between the fault orientations and imposed maximum
stress direction and the pressure and temperature of the deforming system [17–20]. Under imposed
compression, as is the case for the present study area, initially normal faults may be reactivated as
strike–slip or as reverse/thrust faults in subsequent deformation if the conditions are correct, that is,
the incident stress is within a suitable oblique angle relative to the original fault [14,21]. Major faults
reactivated in compression have a mix of effects, such as compartmentalizing the overlying thrust belt
structure, nucleating overlying folds, as well as affecting the basement geometry [22]. Faults may be
reactivated numerous times if the region is affected by multiple phases of deformation, assuming that
the above conditions are met in each phase. The effect of an imposed stress on a pre-existing weakness
in a specific area can be tested using analog models, where the initial conditions can be chosen and
scaled to represent a real-world scenario [23]. This methodology has been applied successfully to
regions including the Italian Alps and the Zagros Belt [24,25]. Numerical analyses such as the slip
tendency analysis of [16] and [26] are also invaluable in demonstrating that under the right combination
of stress ratio and fault strength, normal faults may reactivate as high-angle reverse faults.

This study aims to demonstrate that basement structures have been reactivated and have
generated secondary joints in a thick sequence of cover rocks. The study area chosen is the southeastern
section of Nebraska and the adjacent northwestern region of Kansas (Figure 1). This area was
chosen because there are undisputed faults within the basement, namely the southern extent of
the Mid-continent Rift System and the northern extent of the Nemaha uplift, as well as the availability
of potential fields, and remote sensing data. These faults are known to have been reactivated in the
Pennsylvanian and Permian (e.g., [27] and references therein). Through a comparison of lineaments
derived from potential fields processing and analysis, remotely sensed lineaments and surface joint
patterns, we demonstrate that reactivation of basement faults is able to explain the distribution
of surface lineaments (that is, probable faults and joints) in the study area. Previous studies have
documented joint patterns across parts of the present study area (e.g., [28,29]) and noted the relationship
of the surface lineaments to presumed basement features (e.g., [30–32]). Although providing valuable
data, these previous studies cover only a small portion of the present focus area, and lack the
understanding of modern rock mechanics in explaining their findings (e.g., [28,33]). This study
serves to emphasize the influence of basement feature reactivation on surface geomorphology in
the framework of modern rock mechanics, and conversely, the importance of surface features in
deciphering the history of a region.
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composed of quartzite with granite intrusions (e.g., [36,37]. The study area is dissected by two major 

structures, the NE-SW trending, 1.1 Ga Mid-Continent Rift System and the NNE-SSW trending 300 Ma 

Nemaha Uplift, as can be seen on contour maps of the top-Precambrian unconformity (e.g., [36,38]) 

and Figure 2. The Mid-Continent Rift System is considered an aulacogen, and has a counterpart failed 
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the earlier Central Plains Orogen [35]. In the southern part of the study area, within eastern Kansas, 
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magnetic data [43]. More detailed maps correlate specific trends to accretion of numerous terranes 

during the Central Plains Orogeny [44,45]. 

Figure 1. Simplified geologic map of southeastern Nebraska and northeastern Kansas, based on the
GDNA [34]. The study area is shown as a black box, and locations of field sites are shown as black
stars. The area shown in Figures 4 and 6 is shown as a small black rectangle around site NF 3. The inset
shows the location of the studied region within the conterminous US.

2. Geologic Setting

The earliest crust in southeast Nebraska and northern Kansas is considered to date from the
Central Plains Orogeny (Figure 2) around 1.9–1.7 Ga [35]. In the area of interest, the upper crust is
composed of quartzite with granite intrusions (e.g., [36,37]. The study area is dissected by two major
structures, the NE-SW trending, 1.1 Ga Mid-Continent Rift System and the NNE-SSW trending 300 Ma
Nemaha Uplift, as can be seen on contour maps of the top-Precambrian unconformity (e.g., [36,38])
and Figure 2. The Mid-Continent Rift System is considered an aulacogen, and has a counterpart failed
rift arm to the east. The Nebraska segment of the Mid-Continent Rift System parallels fabrics within
the earlier Central Plains Orogen [35]. In the southern part of the study area, within eastern Kansas,
the Mid-Continent Rift System is cut by a series of NW-SE trending dextral strike-slip faults, on which
there have been historical earthquakes [39,40]. These faults appear to form an accommodation zone
between the Nebraskan and Kansan segments of the Mid-Continent Rift System (Figure 2) and may
be related to the boundary of the Central Plains Province or the suture between this province and
the Penokean province which is located to the southeast of the Mid-Continent Rift System [35,41,42].
The structures are also aligned along the same trend as the Missouri Gravity Low which underlies the
accommodation zone as well as additional NW-SE trending lineaments interpreted from gravity and
magnetic data [43]. More detailed maps correlate specific trends to accretion of numerous terranes
during the Central Plains Orogeny [44,45].
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Figure 2. Existing map of basement faults in the study area and beyond, after [27]. Key features
mentioned in the text are marked: MRS—Midcontinent Rift System, shaded in light gray, NU—Nemaha
Uplift, shaded in dark gray. Central Plains Orogen crust is shaded light green and Penokean Orogen
crust is shaded light yellow, after [46]. Ticks mark the downthrown side of the faults, where known.

The effects of local tectonics during the Infracambrian and the Paleozoic are observed
from stratigraphic relationships, thickness changes, and multiple unconformities within the
Cambrian-Permian succession, particularly in the present study area (Figure 3; [27,37,41,47]).
The Cambrian-Devonian succession is chiefly composed of dolomite, with some clastic units; these
clastic materials may indicate periods of land exposure and influx of eroded material to an area
otherwise covered by a shallow sea [36,48]. After exposure, extensive Mississippian carbonate rocks
were deposited in a shallow sea, across large swathes of the midcontinent [49]. The boundary between
the Mississippian and the Pennsylvanian rocks is marked by a regional unconformity, showing
widespread uplift of the region in the late Mississippian and early Pennsylvanian (Figure 4; e.g., [48]).
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Figure 4. W-E cross-section of the Nemaha Uplift and Midcontinent Rift System on the NE-KS state
line, after [27]. Part (a) shows the present day configuration of the Nemaha uplift and part (b) the
inferred configuration at the end of the Laramide orogeny.
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Inversion via compression of Mid-Continent Rift System structures is documented from calcite
strain analysis in the Lake Superior Region, ranging in age from Grenvillian-age transpressive
strain to Permian age contraction [50]. Reference [51] also documents Grenville-age inversion on
the Mid-Continent Rift System, and cross-sections after [52] and [36] show significant deformation
in the Cambrian-Mississippian section, overlain by a base Pennsylvanian unconformity. A major
tectonic event, making the proto-Nemaha Uplift emergent, is documented in the Ordovician [37,53,54].
The Kansas segment of the Mid-Continent Rift System may have been reactivated in the latter part of
the Paleozoic, forming the Abilene, Voshell, Barneston, and Nemaha anticlines along the eastern edge
of the Mid-Continent Rift System [35,55]. Rift segments are also considered to be reactivated in the
formation of the Union fault and related faults of the study area [27,41]. Many workers (e.g., [39,56])
consider the Nemaha Uplift to be a reactivated fault that originated as part of the Mid-Continent Rift
System, affected by the segmented nature of the rift and the difference in rift orientation between
Nebraska and Kansas [41]. The Nemaha Uplift is imaged by a COCORP line as a 40 km wide uplift,
bounded to the east by the near-vertical Humboldt Fault (Figure 4; [57–59]). The Humboldt fault is
thought to be a multiply reactivated structure originally related to the Mid-Continent Rift System,
and sparse modern earthquake focal mechanisms show a transpressive sense of motion [59,60].

The predominant bedrock in the study area is of Pennsylvanian and Permian age. The Pennsylvanian
strata are represented by the mixed clastic and shallow-water carbonate facies of the Desmoinesian,
Missourian, and Virgilian series (Figure 3; [61]). The Missourian Series unconformably overlies the
Desmoinesian Series, with the upper parts of the Desmoinesian Series truncated in the study area [38].
The Missourian Series is conformably overlain by the Virgilian Series. The Virgilian Series of the
Upper Pennsylvanian (Figure 3) is the oldest material that crops out in the study area (Figure 1; [62]).
The Virgilian series is characterized by 11 of the short, intense highstand interglacials [61] that make
up the Middle and Upper Pennsylvanian. Each of these cyclothems consists of a black-gray shale
unit, overlain by a marine limestone consisting of regressive then shoaling upwards facies, overlain
by paleosol [61]. Despite the regular presence of shale members in the cyclothems, the net shale is
sufficiently low that the shale layers did not act as detachment units during Ancestral Rocky Mountain
shortening [36,38]. Both the Wolfcampian and Leonardian Series of the Lower Permian crop out in
the study area (Figure 1). The base of the Wolfcampian series is represented by a large amount of
argillaceous shale [38]. The Wolfcampian series continues the cyclothem succession from the Upper
Pennsylvanian [63] and indicates that the Midcontinent Sea [61] still covered the area. The Leonardian
Series unconformably overlies the Wolfcampian Series and truncates members of the Wolfcampian
series to the northwest [38]. The Leonardian Series is made up from dominantly clastic units, including
thin anhydrite layers [36,38,64]. This study measures sites from the carbonate units of the Wolfcampian
cyclothems, and does not measure the clastic series.

Thickness changes in the Pennsylvanian and Permian sediments around the Nemaha Uplift
(Figure 4; e.g., [27]) indicate tectonic activity (reactivation as reverse faults) during this period,
probably as a result of the Ancestral Rocky Mountain orogeny [59,65,66]. This orogeny is a result
of the combined stresses on the intraplate region from the contemporaneous Antler orogeny to
the west, transpression to the southwest, and the Ouachita-Marathon orogeny (i.e., the docking of
Gondwana) to the southeast [67]. In support of the reactivation on the Nemaha Uplift during the
Pennsylvanian-Permian, [68] and [69] documented a series of earthquake proxy locations, including
intraformational faulting and contorted bedding in the Pennsylvanian and Permian section.

No Triassic or Jurassic age rocks were recorded in the study area (Figures 1 and 4). Following
exposure during the Triassic and Jurassic, and the generation of an angular unconformity [38],
the region formed part of the shoreline of the Cretaceous Western Interior Seaway during the Late
Cretaceous. This period is marked by the deposition of the Dakota Group [36,38]. The Dakota Group
includes alternating reddish, clay-rich paleosols and clean, cross-bedded sandstone units, some of
which were measured at sites NF 1, NF 2, and KF 1. Overlying the Dakota group is the Graneros Shale
and the Greenhorn Formation, representing periods of incursion of the Seaway and deposition of
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shales, followed by the thinly-bedded carbonate and shale layers of the Greenhorn Formation [38].
The Greenhorn Formation is measured at location KF 2 and is the youngest Formation measured in
this study.

After the Ancestral Rocky Mountain orogeny-related reactivation pulses, the Nemaha Uplift may
have been uplifted for a final time during the Laramide orogeny, based on the deformed nature of the
base-Cretaceous unconformity over the Nemaha Uplift [27]. The Laramide stress field (WSW-ENE, [70])
is favorably oriented for transpressional or compressional movement with respect to many basement
structures in the midcontinent [71,72].

Despite the fact that the region has been considered tectonically quiescent since the end of the
Eocene [73] historic earthquakes have occurred in the study area, notably related to the southern
boundary of the MRS and the eastern boundary of the Nemaha Uplift [72], indicating that stress
directions are still favorable for fault reactivation. A catalog of earthquake epicenters in the region
shows clusters of events along the Humboldt Fault and other basement faults within the study area [74].

Figure 3 indicates that there is no thick ductile unit in the study area, as although there is
approximately 50% shale in the Pennsylvanian and Permian units, none of these layers are more
than a few tens of meters thick (for a more detailed stratigraphy, refer to [36,38]. Despite the units
labeled as “interbedded x and shale”, the shale horizons have not acted as major decollement surfaces.
The only documented fault activity is intraformational faulting [28,68] and the present authors do not
describe large-scale detachment-style behavior. Thus, it is reasonable to assume (a) that the Paleozoic
sedimentary succession is behaving as a coherent unit (a rigid beam) and (b) that reactivation on
deep-seated faults could have influenced the deformation of the entire rigid beam.

3. Methods

The first phase of this study was carried out using a combination of remote sensing and field
data collection. The remote dataset used was a series of Landsat Thematic Mapper images, obtained
from NASA and processed under the MrSID algorithm developed and patented by LizardTech [75].
This algorithm combines Band 7 (mid-infrared light) as red, Band 4 (near-infrared light) as green,
and Band 2 (visible green light) as blue and applies proprietary compression and encoding technology.
This produces a false color image in which bare rock surfaces are colored in shades of pink and
brown (clastic units are darker than carbonate units) and vegetation appears in shades of green. Water
typically appears dark blue-black (Figure 5). These images have a ground resolution of 28.5 m. Given
that the study area is heavily vegetated, anomalies in the drainage network and variations in the
vegetation patterns were used to interpret surface lineaments. Care was taken to avoid man-made
irrigation systems (locally referred to as “waterways” by soil conservation personnel) and vegetation
changes related to crop patterns; typically distinguishable from natural variation by scale and geometry.
Man-made irrigation systems are generally smoothly curving, continuous with, or at right angles to, the
pattern of terraces in the field, and confined to individual fields or sections. Vegetation changes related
to crop patterns are typically oriented N-S or E-W in the study area and are typically perfectly straight
lines. In contrast, natural drainage systems display patterns of tributaries, run for long distances
and are related in some fashion to the underlying geology. Unexpected drainage geometries, such as
straight segments with no evidence of man-made alteration, or sharp bends in a system were marked
and used to guide the interpretation of lineaments.

Joint data was collected at thirteen field sites, seven in SE Nebraska and six in NE Kansas, forming
two transects across the study area. Transect 1 is made up from sites NF 1-NF 7 and is oriented E-W.
Transect 2 is made up from sites KF 1-KF 6 and is oriented NE-SW. These data were collected in part
because of limited outcrop availability and in part to have transects running broadly perpendicular
to the anticipated trends of the main basement features. Bedding orientation data as well as joint
strike and dip was measured at each location. Outcrops were frequently road cuts, thus some bias is
introduced into the data by the orientation of the road cut—for example, on an E-W oriented road cut,
any joints oriented E-W will be under-represented. This cannot be avoided, but was carefully noted
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for use in analysis. At each site, 25 joint orientations were measured, moving in a scanline fashion
across the outcrop. We concentrated on measurement of systematic joints, and mode of fracturing
was noted for each measurement. We also looked for evidence of joint fill, abutting relationships,
or cross-cutting relationships. Care was taken to avoid radial joints caused by dynamiting the outcrop
in the road-construction process.
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Figure 5. MrSID image, illustrating the general color balance in the area, the difference between
waterways and real rivers and the difference between crop-induced vegetation patterns and the
“natural” vegetation changes. The star marks the location of site NF 3.

To gain a sense on the orientation of basement structures, we mapped lineaments using spatial
analysis of gravity and magnetic grids [76,77]. The magnetic anomaly grid was extracted from the
North American Magnetic Anomaly Map database, comprising a compilation from numerous vintage
airborne surveys that were leveled to a consistent elevation of 305 m above the terrain. In our study
area, the flight line spacing varied from 0.5–8 km [76]. The total magnetic intensity data were reduced
to magnetic pole in order to remove the skewness of magnetic signals due to nonverticality of the
ambient field (inclination of 69.65◦, a declination of 9.46◦).



Geosciences 2018, 8, 215 9 of 24

The gravity anomaly grid from [77] was used for the study. This dataset compiles the numerous
land gravity measurements by the US Geological Survey, corrected for the rocks above sea level with
an assumed density of 2.67 g/cc (Bouguer gravity anomaly). In order to remove the long-wavelength
crustal signal from the gravity data, we generated the regional trend via upward continuation of
the observed gravity grid to a 100 km elevation. By removing this regional trend from the observed
Bouguer gravity, we obtained the map of the residual Bouguer gravity anomalies, which represent the
gravitational signal due to lateral density distribution in the subsurface rocks.

To further highlight the subsurface structures, we applied tilt derivative filters [78] to both the
reduced to pole magnetic map and the residual Bouguer gravity grid. This procedure highlights the
zones of the subtle changes in the potential fields in both vertical and horizontal directions. In gravity,
an additional 5-km wide low-pass filter was necessary in order to remove some original gridding
artifacts. The resultant filtered gravity and magnetic fields (Figure 6a,b) show multiple lineaments
associated with subsurface structures. The joint interpretation of the lineaments in both potential fields
resulted in a map of potential faults in the basement rock.
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4. Results: Surface Lineament/Joint Data

8255 surface lineaments were mapped in the study area using Landsat images as described above,
and the orientation of each lineament was calculated as a bearing. Only a subset of the main area
is shown for ease of viewing (Figure 7). Lineaments visible in Figure 6 are predominantly oriented
NE-SW. In all subsequent discussion, the prominent strike directions of the joints are reported as a
3-figure bearing, implicitly measured clockwise from N. When all lineaments from the study area
are displayed on a rose diagram (Figure 8), three prominent orientations can be noted (arrowed in
Figure 8)—striking 005, 055, and 085. About 8% of the data follows the 055 orientation, forming the
most significant orientation in the study area. Secondary peaks at 115 and 145 can also be noted in
Figure 8 (not arrowed) although these orientations are only just above the apparent background or
uniform distribution.
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Figures 9–12 illustrate the data collected at each field site, after minor rotations were made to the
dataset due to bedding dip. Figure 9 shows pole figures from the E-W oriented transect, NF 1-NF 7
and Figure 10 show rose diagrams for the same data. Site NF 1 is in the Dakota Formation, at a highly
weathered outcrop including numerous iron concretions south of Fairbury, NE. The sandstone at this
outcrop is friable, but has jointed cleanly with a joint spacing of about 1 m. There are three main
joint orientations, 057, 088, and 110, shown clearly by the clusters on the pole figure. No abutting
relationships were discernable at this outcrop and bedding is subhorizontal. Site NF2 is a blocky,
systematically jointed outcrop of the Dakota Sandstone, south of NF 1. Bedding is again subhorizontal.
There are two prominent clusters on the pole figure, one of which can be separated into three
orientations. These four orientations are 016, 040, 053, and 125. No abutting relationships were
discernable at this outcrop. NF 3 is a subhorizontal outcrop of the Permian Wolfcampian series at a
waterfall on private land. A thin, jointed limestone layer overlies a reddish shale unit. The pole figure
appears to be a combination of both of the previous two, with joint orientations prominently at 002, 031,
047, 090, and 122. No abutting relationships were discernable at this outcrop. NF 4 is a thinly bedded,
highly jointed, subhorizontally bedded outcrop with chert nodules, along Plum Road between Liberty,
NE and Wymore, NE. The units come from the Permian Wolfcampian Series (Figure 1). Prominent joint
orientations in this outcrop are at 029, 072, and 117. No abutting relationships were discernable at this
outcrop. Site NF 5 is in the Virgilian Series of the Upper Pennsylvanian (Figures 1 and 3). The outcrop
is a road cut along Highway 4, west of Table Rock, NE. A 1.5 ft thick, horizontal layer of fossiliferous
limestone is present, overlying thinly bedded limestone and shale. Bedding planes contain fossil
hash, including spiriferids, other brachiopods, fenestrate bryozoan fragments, and crinoid ossicles.
Prominent joint orientations are 004, 026, 049, 068, 096, and 115. No abutting relationships were
discernable at this outcrop. Site NF 6 is in the Virgilian Series of the Upper Pennsylvanian (Figures 1
and 3). The outcrop consists of a ridge of black shale overlain by a blocky recrystallized, subhorizontal
limestone containing crinoid fragments, thereby placing the outcrop close to the highstand of one of the
Upper Pennsylvanian cyclothems. The outcrop is a quarry face within a succession of limestone and
shale that is 18 ft thick and forms part of a fault scarp (Andy Keller, Martin Marietta Plant Manager, pers.
comm.). No abutting relationships were discernable at this outcrop. The prominent joint orientations
are 034, 090, 105, 135, and 173. Lastly, site NF 7 is located close to a substation west of Humboldt, NE.
The outcrop is a 1-ft thick, subhorizontal layer of carbonate mudstone which is systematically jointed
into blocks. The outcrop is considered to overly the Humboldt Fault (R.M. Joeckel, pers. comm.).
Prominent joint orientations are 019, 062, 073, and 173. No abutting relationships were discernable at
this outcrop.
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Figures 11 and 12 show pole figures and rose diagrams for field sites located along the NW-SE
oriented transect in Kansas (KF 1-KF 6 respectively). Site KF 1 is an E-W oriented road cut exposing
about 3 m of the Dakota Group and bedding is subhorizontal. In this location, the Dakota Formation is
manifest as a deep orange, cross-bedded sandstone, with evidence of reprecipitated or concentrated
iron in bedding planes and cross-bedding. Prominent joint sets are oriented 003, 022, 060, 084, 117,
and 139. No abutting relationships were discernable at this outcrop. Site KF 2 is an outcrop of
the Greenhorn Formation near Cuba, KS; a thinly bedded limestone and shale road cut containing
inoceramids and oriented E-W and dipping 2◦ to the N. At this location, prominent joint orientations
are 008, 037, 111, 136, and 165. No abutting relationships were discernable at this outcrop. Site KF 3 is
an outcrop of cherty, thickly-bedded, subhorizontal limestone within the Wolfcampian Series of the
Permian. The road cut is oriented N-S and is systematically jointed. Prominent joint orientations at this
outcrop are 359, 029, 068, 090, 110, and 137. No abutting relationships were discernable at this outcrop.
Site KF 4 is also within the Permian Wolfcampian Series, and is a thinly-bedded, subhorizontal, cherty
limestone. The site is located close to the Fancy Creek State Park area of Tuttle Creek Lake. Prominent
joint orientations are 357, 029, 049, 072, 106, and 148. This is the only outcrop that shows the 148
orientation. No abutting relationships were discernable at this outcrop. Site KF 5 is within the Permian
Wolfcampian Series and is a weathered, subhorizontally-bedded outcrop close to the Tuttle Creek
Spillway and the Spillway Fault System. Prominent joint orientations here are 003, 021, 060, 072, 137,
and 162. No abutting relationships were discernable at this outcrop. Lastly, site KF 6 is located south
of Manhattan, KS, near the Konza Prairie Kansas Valley lookout point. The road cut is oriented N-S
and is made up of interbedded, subhorizontal, limestone, and shale from the Permian Wolfcampian
Series. Prominent joint orientations are 359, 020, 045, 078, 100, and 161. No abutting relationships were
discernable at this outcrop.

Table 1 summarizes the pronounced joint orientations at each outcrop, with the ETM (enhanced
thematic mapper; i.e., remote sensing) dataset included for comparison. The “representative” row in
the table records the average orientation based on the numbers in the column above, and should not
be confused with true Fisher statistics as the dataset is not sufficiently large to permit the calculation
of a Fisher mean. The bolded numbers represent joint sets appearing in both the field and remote
datasets. The 001, 059, 090, and 110 orientations are found in both the ETM dataset and in five or
more of the field sites. The 148 orientation is only found in one field site, but is prominent in the
ETM dataset. Closer inspection of the table reveals that there is a subtle spatial trend appearing in
the dataset, namely that orientations 137 and 163 only appear in the southern part of the study area
(southern part of transect NF and the KF transect). However, neither of these trends are apparent in
the ETM dataset.

Table 1. Summary of joint orientations for all field sites, organized by transect. The enhanced thematic
mapper (ETM) (remote sensing) data is given for comparison.

Location Prominent Joint Orientations Based on Rose Diagram Bins

NF 1 057 088 110
NF 2 016 040 053 125
NF 3 002 031 047 090 122
NF 4 029 072 117
NF 5 004 026 049 068 096 115
NF 6 353 034 090 105 135
NF 7 353 019 062 073
KF 1 003 022 060 084 117 139
KF 2 008 037 111 136 165
KF 3 359 029 068 090 110 137
KF 4 357 029 049 072 106 148
KF 5 003 021 060 072 137 162
KF 6 359 020 045 078 100 161

Representative 001 020 031 046 059 072 090 110 124 137 148 163
ETM 005 055 085 115 145
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Considering the data by age of host formation is also instructive. Figure 13 shows rose diagrams
and pole figures for the Cretaceous, Permian, and Pennsylvanian units, respectively, and Table 2 shows
a summary of major joint orientations. Note that the number of joints in each plot is significantly
different as there are more outcrops in the Permian units than in either Cretaceous or Pennsylvanian.
Considering the dataset by age shows that the 001 orientation appears in all datasets, as does the
090. Some important orientations, e.g., the 031 and 072 orientations only appear in the older units.
Similarly, some orientations, such as the 124 and 163 orientations, are only prominent in the Permian
and younger units. Finally, in this presentation of the data, orientations such as the 020, 046, and 059
only appear in the youngest (that is, the Cretaceous age) units.
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Figure 13. Contoured poles to planes and rose diagrams for the joint data grouped by age of host
formation instead of separated by location. The perimeter is 50% of the total data.

Table 2. Summary of main joint orientations in field sites organized by age of host formation. The
“representative” and ETM data are given for comparison.

Age of Host Fm Prominent Joint Orientations Based on Rose Diagram Bins

All Penn 003 028 069 091 113 135
All Perm 003 029 074 098 118 159

All K 004 015 040 050 089 110 122 161
Representative (Table 1) 001 020 031 046 059 072 090 110 124 137 148 163

ETM 005 055 085 115 145

Interestingly, separating the data by age of host Formation has the effect of separating the data by
mechanical stratigraphy, since the Cretaceous age units are quartz rich sandstones and thinly bedded
marly limestones, whereas the Pennsylvanian and Permian units that were measured are the blocky
limestone units from the cyclothems described in the Geologic Setting section above. The limestone
layers within the cyclothems are thinner than the blocky Dakota units in the Cretaceous, and the
relationship between systematic fracturing and bed thickness is well documented (e.g., [79]) potentially
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leading to the strong NE-SW trend in the Cretaceous units that is not observed in the Permian or
Pennsylvanian rocks.

5. Results: Basement Lineaments from Potential Fields Data

In the study area, 47 lineaments were mapped through a joint analysis of the filtered magnetic and
gravity maps (Figure 14). Many of the lineaments correlate well with previously mapped basement
faults (Figure 2). The interpreted lineaments show a strong NE-SW trend that mirrors the orientation of
the MRS. This trend can clearly be seen when the plotted on a rose diagram (Figure 15). The majority of
the lineaments (36%) are oriented at 025 and 045. In addition to the MCR parallel orientations, a strong
NW-SE trend at 125 is also apparent with a smaller spike in the 145 direction.
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Figure 14. Lineaments picked from potential fields data. The potential fields in parts (a,b) data are
reproduced from Figure 5a,b for ease of comparison. Part (c) shows the interpreted lineaments in the
wider study area. The black rectangle shows the area where satellite image analysis was carried out,
and is the same area as the black rectangle in Figure 1.
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Potential fields—gravity and magnetics—change in response to the variations of the physical
properties—densities and magnetic susceptibilities—of the rocks in the subsurface. The tilt derivative
filter applied to both gravity and magnetics tends to highlight the regions where these fields
experience the most changes. If these regions show linear patterns, they are referred as lineaments.
A basement-related subsurface fault correlates to the abrupt changes in the rocks’ physical properties
across the fault plane—sediments with lower densities and magnetic susceptibilities on one side of the
fault are juxtaposed against denser and more magnetic (igneous) basement rocks on the other side.
Such a structure causes the effects in both potential fields that would result in a lineament mapped
at the same location in both filtered maps. In our analysis, the fact that the lineaments are observed
simultaneously in both gravity and magnetic fields increases our confidence that they are related to
basement-involved subsurface faults. For example, the well mapped Humboldt fault corresponds to a
lineament in our interpretation. In addition, some of the interpreted lineaments are aligned with the
recorded earthquake locations both within and outside of our study area, confirming their relevance to
subsurface faults. Overall, we believe that the lineaments observed simultaneously in both potential
fields represent the basement-involved faults that are masked by the overlying sediments and cannot
be easily observed at the surface.

6. Comparison and Interpretation of Surface and Basement Datasets

The basement lineaments in Figure 15 show the most tightly clustered orientations, when
compared to Figure 8, Figure 10, Figure 12, and Figure 13 (all other rose diagrams). The two prominent
basement trends at 045 and 125–135 neatly mirror the Mid Continent Rift System and Central Plains
Orogeny system faults respectively (Figure 2). The Central Plains Orogeny trend is not as strongly
observed in the study area as is the MRS trend. Table 3 shows that all basement orientations appear
in the surface dataset, and the overall NE-SW orientation appears in all three datasets, at either ~045
or ~055. Figure 16 shows the “grouped” centers of the lineaments mapped from the ETM dataset
(processed using the internal ArcGIS spatial statistics toolbox), plotted with respect to the basement
faults. The correspondence between basement faults and clusters is not perfect, but several of the
clusters can be found in regions where basement lineaments cross one another (e.g., clusters 8, 12,
13, 18, 24, and 29) and an additional set can be found sub-parallel to some of the mapped basement



Geosciences 2018, 8, 215 17 of 24

faults (clusters 7, 10, 28, and 50). Figure 17 shows the orientations of the measured joint sets in
their geographic reference frame, with respect to the orientations of the interpreted basement faults.
Joints hosted in Cretaceous rocks (locations NF 1, NF 2, KF 1, and KF 2) show a pronounced NE-SW
orientation, as well as a less well-defined NW-SE orientation—both of which orientations are either
parallel to or perpendicular to the underlying basement fault. Joints hosted in Permian rocks (NF 3,
NF 4, NF 7, and KF 3–KF 6) typically show more complex joint orientation patterns, and the nearby
basement fault orientations are generally not pronounced. The only exception to this statement is NF 7,
above the Humboldt Fault, which trends approximately N-S. Joints hosted in Pennsylvanian rocks
(NF 5 and NF 6) also show a good deal of scatter, and the presence of a N-S orientation that is not
marked in Permian rocks.

Table 3. Summary of key joint orientations from each dataset. The “representative” orientations from
surface joints, orientations from ETM analysis and orientations from potential fields analysis are shown.
The number given is the center of each peak from the respective rose diagrams.

Dataset Prominent Joint Orientations (Peaks on Rose Diagrams)

Potential Fields 025 045 125 135
Representative (Table 1) 001 020 031 046 059 072 090 110 124 137 148 163

ETM 005 055 085 115 145
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Our model for the development of the joint patterns relies on forced folding, defined by [80] as
folding in which the final orientation and morphology of the fold are determined by a forcing member
below. Opening mode joints in forced folds form dominantly parallel to the strike of the forcing
fault [81–83]. Shear joints may also form in this orientation, and as a conjugate set where the bisector is
perpendicular to the fault strike [81–83] but since our observations are concerned with tensile joints,
we do not treat the shear fracture situation in this discussion. One example of a forced folding scenario
is the trishear fault-propagation folding process as initially defined by [84]. This model describes the
activation (or reactivation) of a blind fault in a basement layer that is mechanically different from the
cover, by the generation of a zone of deformation above the blind thrust that eventually develops
into the forelimb. Reference [85] showed that in some Laramide uplifts, tensile fracturing in the zone
directly above the fault is inhibited, but the trishear zone can become very highly jointed (e.g., [86]).
Reference [87] showed numerically that both fault-strike-normal and fault-strike-perpendicular tensile
joints can develop during trishear as well as the conjugate shear orientations noted above. Fold-related
joint orientations that cannot be explained by buckling in regions where basement faulting is common
are typically thought to be related to flexure above basement lineaments (e.g., [88,89]).
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Thus, the principal joint and surface lineament sets shown in Table 3 are considered to result
from flexure above the basement faults shown in Figure 14c. The clusters shown in Figure 16 may be
considered as the damage or trishear zone resulting from flexure above the basement faults, in this case
reactivated and not cutting the cover rocks. This correspondence of lineament and joint orientations
is best explained by repeated reactivation on the basement faults, as detailed in the “Geological
Setting” section, throughout the Pennsylvanian, Permian (both ARM-related) and post-mid Cretaceous.
The decrease in complexity in joint orientations, between joints hosted in Pennyslvanian, Permian
and Cretaceous units, may reflect these repeated periods of reactivation; the Pennsylvanian joint set is
more dispersed because the rocks have undergone more episodes of uplift and flexure than either the
Permian or Cretaceous units. A post-mid Cretaceous phase of reactivation is less well documented than
the other ARM-related reactivation, and could be due to far-field stresses from the Laramide Orogeny.

7. Discussion

As noted above, the basement lineaments (Figures 14 and 15) mirror the trends of Precambrian
age faults related to the Mid Continent Rift System and the Central Plains Orogeny. Overall,
the correspondence of surface lineaments and joints to basement data indicates reactivation of
basement structures in an important influencing factor in the development of the surface features in
Nebraska and Kansas. Our results enhance the work of [28–33] by extending the dataset of joints and
satellite-derived lineaments, and documenting the relationships with basement features over a wider
area. We have further shown that the strong presence of the MRS-related basement orientation in
the Cretaceous age datasets (Figures 12 and 14) provides strong evidence for reactivation of the MRS
trends post-mid Cretaceous.

The surface and ETM datasets are much more dispersed than the basement dataset. We first
need to consider that the depth to the basement is approx. 2000 m in the study area, leading to
attenuation of the gravity and magnetic signature of buried structures. As a result, only dominant
subsurface features will be represented in the basement analysis, compared to a much wider range
of features represented at the surface. One possibility for the dispersion of joints is that flexure and
uplift of the thick, competent succession of Phanerozoic sediments is distributing deformation across a
wider area, perhaps by outer-arc extension of the competent succession above a vertically uplifting
basement feature. Secondly, joints are known to develop in unroofing situations, although these are
typically small-scale and more randomly oriented [90–92]. Lineament analysis on this scale and at
this resolution is unlikely to pick up many unroofing structures, but some of the noise in the field
datasets (Figures 9–13) may be attributed to this. An additional factor that must be considered in
the evaluation of Figure 13 is that sandstone layers typically joint in a much blockier, systematic
fashion than the underlying limestones (e.g., [93]). Limestone containing numerous fossil fragments
appears to contain joints with more dispersion around the key orientations than a sandstone layer of a
similar thickness, subjected to the same stresses (see e.g., [94,95]). This could contribute to some of the
dispersion in the fossil-rich datasets, but multiple episodes of uplift and flexure is still favored as the
primary explanation.

The misfit between surface joint data and ETM datasets has also been documented by other
authors (e.g., [96,97]). These authors demonstrate that joint networks generated by remote and field
measurement are statistically different from one another, i.e., the mean resultant direction and standard
deviation for each dataset is significantly different. [96] showed that the mean resultant joint direction
in an air-photo dataset from Kuh-e-Asmari, Iran, is not easily observable on the ground. A similar
problem was noted in work on the Bighorn Mountains [97] where the dominant joint directions are
similar in remote and field datasets, but not identical. The dataset presented in this study suffers from
a similar mismatch between joint and ETM data, likely because of the smoothing in the remote dataset
over a series of structures and over two markedly different lithologies, and the challenge of working
with 30 m resolution data. Nonetheless, we have documented joints relating to reactivation of the MRS
in all three datasets.
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8. Conclusions

We have documented lineaments and joints across a series of different spatial scales in southeast
Nebraska and northeast Kansas. The prominent basement orientations are NE-SW and NW-SE,
which orientations are mirrored in the ETM and joint datasets. Distributed strain throughout the
Phanerozoic rigid beam that is uplifted over the basement features adds dispersion and secondary
orientations to both the ETM and joint dataset. The prominence of the NE-SW orientation in Cretaceous
age rocks indicates a reactivation of MRS structures after the mid-Cretaceous, likely a result of
far field stresses from the Laramide Orogeny. Lastly, this combined potential fields and surface
morphology study (that is, stream patterns and fracture networks) shows the intense importance
of subtle surface data in demonstrating activity on deep-seated basement faults in the absence of
large-scale structure development.
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