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ABSTRACT

The complex interactions between soil moisture and precipitation are difficult to observe, and consequently

there is a lack of consensus as to the sign, strength, and location of these interactions. Inconsistency between soil

moisture–precipitation interaction studies can be attributed to a multitude of factors, including the difficulty of

demonstrating causal relationships, dataset differences, and precipitation autocorrelation. The purpose of this

study is to explore these potential confounding factors and determine which are most important for consider-

ation when assessing statistical coupling between soil moisture and precipitation. Soil moisture is assessed via

three remote sensing datasets: theAdvancedMicrowave Scanning Radiometer for EarthObserving System, the

Tropical Rainfall Measuring Mission Microwave Imager, and the Essential Climate Variable Soil Moisture.

Estimates of soil moisture are coupled with afternoon thunderstorm events identified by the Thunderstorm

Observation by Radar (ThOR) algorithm, and dry soil or wet soil preferences for convection initiation are

determined for over 16 000 thunderstorm events between 2005 and 2007. Differences in soil moisture datasets

were found to have the largest impact with regard to determining wet or dry soil preferences. Precipitation

autocorrelation is prevalent in the data; however, precipitation autocorrelation did not influence the results with

regard to dry or wet soil preferences. Consideration of the convective environment (i.e., weakly or synoptically

forced) did result in significant differences in wet/dry soil preference, but only for certain soil moisture datasets.

The results suggest that observation-driven soil moisture–precipitation interaction studies should both consider

the convective environment and implement multiple soil moisture datasets to assure robust results.

1. Introduction

Soilmoisture is an important componentofwater balance,

and it is a key parameter that influences land–atmosphere

interactions by modifying energy and water fluxes in

the boundary layer (Eltahir 1998; Legates et al. 2011).

Soil moisture plays an integrative role because it di-

rectly influences atmospheric, geomorphic, hydrologic,

and biologic processes (Legates et al. 2011).

Soil moisture is a key variable for land–atmosphere

interactions because it governs evapotranspiration and

the partitioning of the surface–atmosphere energy flux

(McPherson 2007; Alfieri et al. 2008). It is through mod-

ifications in evapotranspiration that soil moisture can

potentially affect precipitation and near-surface temper-

ature (Findell et al. 2011; Miralles et al. 2012; Hu et al.

2017). Soil moisture feedbacks that can influence pre-

cipitation on convective time scales (i.e., diurnal) can

generally be divided into wet soil and dry soil processes.

When soil moisture is abundant (i.e., wet soil), this can

increase evapotranspiration and latent heat exchange

with the atmosphere. These processes tend to lower the

lifting condensation level (LCL) and level of free con-

vection (LFC), and increase convective energy. The in-

crease in convective available potential energy (CAPE)

and the lower LCL and LFC tend to trigger deep con-

vection and can lead to rainfall (Pal and Eltahir 2001;

Santanello et al. 2011). On the other hand, dry soils in-

crease sensible heat and the Bowen ratio, elevating the

LCL and LFC.While these dry soil processes can inhibitCorresponding author: Trent W. Ford, twford@siu.edu
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deep convection if parcels are unable to reach the LCL,

strong sensible heating can help erode convective inhibition

and thereby lead to convection initiation and precipitation

(Taylor et al. 2011; Ford et al. 2015a). General circulation

models have shown a preference in most regions of the

world for positive (i.e., wet soil) soil moisture feedbacks to

precipitation (Koster et al. 2004; Taylor et al. 2012). In

contrast, observation-based studies on regional to global

scales have found evidence for both positive (wet soil)

and negative (dry soil) feedbacks (Findell and Eltahir

2003; Taylor et al. 2011; Ferguson and Wood 2011; Ford

et al. 2015a).

The lack of consensus on the sign and strength of soil

moisture–precipitation coupling is attributed to a mul-

titude of confounding factors, including the difficulty of

establishing causality when using observations (e.g.,

Tuttle and Salvucci 2017). Specifically, issues such as how

to account for atmospheric persistence/precipitation

persistence (Taylor et al. 2011) and how to account for

time-scale variability (Tuttle and Salvucci 2017) have

been shown to have a significant impact on the results

of statistically based studies of soil moisture–precipitation

feedbacks. These issues can potentially result in uncertainty

regarding the sign and strength of the soil moisture–

precipitation feedbacks. Precipitation persistence refers

to precipitation that is highly clustered on daily time

scales, but not due to a soil moisture feedback. Given this

situation, precipitation that occurs on a day following a

precipitation day may falsely indicate a positive soil

moisture feedback, when in reality both precipitation

events were caused by the same large-scale weather sys-

tem. Precipitation persistence can artificially inflate the

strength of a positive or negative (i.e., Wei et al. 2008)

soil moisture feedback. This issue is difficult to account

for when using observational data to quantify soil

moisture–precipitation feedbacks, and it requires using

more sophisticated statistical methods than Pearson

product-moment correlation (e.g., Taylor et al. 2012;

Guillod et al. 2015; Tuttle and Salvucci 2016). The

second issue that can confound observation-based ana-

lyses of soil moisture–precipitation feedbacks, as detailed

by Tuttle and Salvucci (2017), is time-scale variability.

That is, correlations between daily soil moisture and

precipitation, computed on seasonal-to-interannual time

scales, can be confounded by the close relationship be-

tween soil moisture and precipitation on these longer

time scales. For example, growing seasons that exhibit

wetter-than-normal soils will also experience abundant

precipitation, and these types of relationships can inflate

correlations between soil moisture and precipitation on

daily time scales. This issue can be more easily overcome

by time filtering, for example, removingmean seasonal or

annual cycles (Tuttle and Salvucci 2017).

In addition to these two issues raised by Tuttle and

Salvucci (2017), we have identified two additional fac-

tors that warrant consideration when using observations

to quantify soil moisture–precipitation coupling at daily

time scales: dataset dependency and convection initia-

tion versus precipitation. The first of these issues, data-

set dependency, refers to the degree to which soil

moisture feedback signals are dependent on the soil

moisture or precipitation dataset used. In this study, wewill

focus on soil moisture dataset dependency, because our

analysis does not rely on precipitation observations (see

below). Many studies infer soil moisture–precipitation

feedback from a single source of soil moisture in-

formation, whether in situ measurement, remote sensing

observation, or model simulation. Many studies have

evaluated the differences between these soil moisture

datasets (e.g., Albergel et al. 2012; Su et al. 2013; Tuttle

and Salvucci 2014; Dirmeyer et al. 2016), but there is a

dearth of studies examining the influence of dataset de-

pendency on the consistency of soil moisture–precipitation

feedback sign and strength. This is particularly important

for microwave remote sensing soil moisture datasets,

as their utility for land–atmosphere interaction in-

vestigation has grown exponentially in the last decade.

The second issue that needs to be considered is the use

of precipitation observations to infer soil moisture–

precipitation coupling on convective time scales. Al-

though precipitation is an important end product of

soil moisture feedback, the mechanisms connecting

soil moisture to atmospheric processes that lead to

precipitation often occur upwind of where the pre-

cipitation actually falls. Therefore, evaluating the

statistical relationship between soil moisture and pre-

cipitation using the soil moisture immediately un-

derlying the point of precipitation may result in a

spatial mismatch because the soil moisture conditions

that actually feed back to the atmosphere may not be

collocated with the point at which the precipitation

occurred.

The purpose of this study is to examine how these

confounding factors influence the sign and strength of

soil moisture–precipitation coupling in the U.S. Great

Plains. Here we define the Great Plains as the area

between 308 and 508N latitude and between 1058 and
908W longitude. Our primary objective is not to de-

termine whether this region is dominated by a positive

(wet soil) or negative (dry soil) feedback, but to

document how these confounding factors influence

land–atmosphere coupling studies. Our findings shall

help inform observationally based studies of land–

atmosphere interactions, especially those that rely on

satellite-derived soil moisture, by identifying best

practices.
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2. Data

a. Soil moisture

We use microwave-based soil moisture retrievals from

three different sources: the Advanced Microwave Scan-

ning Radiometer for Earth Observing System (AMSR-E),

the Tropical Rainfall Measuring Mission (TRMM) Mi-

crowave Imager (TMI), and the Essential Climate Vari-

able Soil Moisture (ECV-SM) dataset (Table 1). Herein,

these products will be identified as AMSR-E, TMI, and

ECV. AMSR-E was developed by the joint venture of

the U.S. National Aeronautics and Space Administration

(NASA) and the Japan Aerospace Exploration Agency

(JAXA), to fly on the Aqua platform, and was opera-

tional from 2002 until 2011. Soil moisture is estimated

with AMSR-E based on inversion of the radiative trans-

fer models that link Earth surface parameters with the

observed AMSR-E brightness temperature (Njoku et al.

2003). Volumetric water content estimates as part of the

Land ParameterRetrievalModel (LPRM)-basedLevel-3

surface soil moisture dataset (Owe et al. 2008) were used

in this study. AMSR-E soil moisture has been used in nu-

merous land–atmosphere interaction studies (Ferguson and

Wood 2011; Taylor et al. 2011, 2012; Guillod et al. 2015)

because of its global coverage and relatively long period of

record. The descending AMSR-E retrievals were used in

this study to capturemorning soil moisture conditions prior

to afternoon convection.

TMI is a dual-polarized passive radiometer that was

launched in 1997 on the TRMM platform (Kummerow

et al. 1998; Bindlish et al. 2003).Volumetricwater content

is estimated from the TMI land surface temperature ob-

servations using the Land Parameter Retrieval Model,

and soil moisture is reported twice daily as part of the

TMI product (Owe et al. 2008; Gao et al. 2006). The

LPRM-based Level-3 nighttime surface soil moisture

dataset was used in this study, as its retrieval time (vari-

able, but 0130 LST on average) was closest to (but not

coincidingwith) the 1200–2000LST afternoon convective

time period. Although TMI has a finer spatial resolution

thanAMSR-E (Table 1), its spatial extent does not cover

our entire study area; TMI soil moisture is not avail-

able north of 408N latitude. Therefore, analysis of TMI

soil moisture in this study is conserved to the study re-

gion south of 408N latitude. Soil moisture from the TMI

dataset has been previously used for land–atmosphere

interaction investigations (Frye and Mote 2010), but,

despite its longer time record and finer spatial resolution,

it is less popular than AMSR-E for these types of studies.

The ECV dataset is a merged active and passive mi-

crowave remote sensing–based soil moisture dataset that

is produced under the European SpaceAgency’s Climate

Change Initiative (Liu et al. 2012; Dorigo et al. 2015).

ECV integrates soil moisture retrievals from SMMR,

SSM/I, TMI, AMSR-E, Active Microwave Instrument

(AMI), and ASCAT sensors, resulting in a global soil

moisture product with a climatologically sufficient record

length (from 1979 to present). It is important to note here

that the ECV soil moisture dataset contains informa-

tion from both AMSR-E and TMI; the former informed

ECV estimates from 2002 to 2011, the latter from 1998 to

2002 (Dorigo et al. 2017). Previous land–atmosphere in-

teraction studies have found great utility in the ECV soil

moisture dataset (Guillod et al. 2014; Hirschi et al. 2014;

Zhou et al. 2016). ECV is a daily product, but because it

blends multiple datasets, we could not confirm all soil

moisture sources informing the ECV product were ob-

served prior to the afternoon thunderstorm events on

the same day. Therefore, we use the ECV soil moisture

from the previous day to account for this issue.

Prior to their use in this study, we validated each re-

mote sensing soil moisture product against in situ ob-

servations from 83 stations in the Oklahoma Mesonet.

These high-quality observations (see Scott et al. 2013)

were used to determine if any of the three satellite da-

tasets exhibited a consistent wet or dry soil bias, which

would likely perpetuate to our soil moisture coupling

results. Daily soil moisture values, expressed as stan-

dardized anomalies of volumetric water content from

each dataset, were compared to observations from the

Oklahoma Mesonet station that fell within the corre-

sponding satellite grid cell; validation statistics were

computed using daily data betweenMay and September

over a dataset-varying time period (AMSR-E, 2003–10;

TMI, 2003–14; ECV, 2003–14). Anomaly biases for all

three datasets are quite small, positive (wet bias) for

AMSR-E and negative (dry bias) for TMI and ECV.

However, mean absolute errors are much larger, ex-

ceeding half a standard deviation beyond the mean,

suggesting that the bias is not systematic. Indeed,

TABLE 1. Microwave remote sensing soil moisture datasets.

Product Version Frequency

Spatial

resolution Spatial extent

Temporal

extent

AMSR-E LPRM_AMSRE_SOILM3.002 10.65GHz (X band) 0.258 Global 2003–10

TMI LPRM_TMI_NT_SOILM3.001 10.65GHz (X band) 0.258 408N–408S, 1808–1808 1998–2015

ECV SM v03.2 COMBINED Varied 0.258 Global 1979–present

AUGUST 2018 FORD ET AL . 1239



correlations between the satellite–in situ soil moisture

anomaly difference (i.e., residuals) and the actual in situ

soil moisture anomaly are strongly negative for all three

satellite products (Table 2). This indicates that all three

products exhibit wet biases when the in situ anomaly is

negative (i.e., dry) and dry biases when the in situ anomaly

is positive (i.e., wet). This nonsystematic bias does tend to

affect the ability of the satellite products to distinguish

between wet and dry conditions, as compared with the

in situ anomalies. Table 2 shows the wet and dry hit rates,

which denote the number of concurrent satellite–in situ

wet anomalies and dry anomalies, respectively, expressed

as a percent of all in situ wet and dry anomalies. The wet

hit rates are notably smaller than the dry hit rates, dem-

onstrating that all three satellite datasets struggle to

identify wetter than normal conditions. Despite the dif-

ference between wet and dry soil hit rates, the non-

systematic biases of all three products suggest that they

will not consistently over- or underestimate soil moisture

conditions and therefore can be compared with regard to

the incidence and prevalence of wet and dry soil pre-

cipitation coupling.

b. Convection initiation events

Most investigations of soil moisture–precipitation

feedback use changes in the probability, intensity, or

total accumulation of convective (i.e., nonstratiform)

precipitation as the atmospheric response to collocated

soil moisture measurements. However, the dynamic and

thermodynamicmechanisms coupling the terrestrial and

atmospheric segments of the feedback process occur

prior to the initiation of precipitation, and therefore

the location of precipitation initiation or maximum pre-

cipitation accumulation are not necessarily the same as the

location of convection initiation. Given this shortcoming,

we argue that evaluating soil moisture underlying the lo-

cation of convection initiation is more appropriate and

provides a more robust physical connection with and in-

sights to the associated physical processes. To identify

convection initiation across theUnited StatesGreat Plains,

we use the Thunderstorm Observation by Radar (ThOR;

Houston et al. 2015) algorithm. ThOR fuses multisensor

datasets, including Level-II radar from the network

of Weather Surveillance Radar-1988 Doppler (WSR-

88D) sites, lightning data from the National Lightning

Detection Network, and storm motion estimates from

the North American Regional Reanalysis. This multi-

source provides a more robust characterization of thun-

derstorms, defined as deep moist convection producing

thunder (i.e., Houston et al. 2015), than single-source

approaches. ThOR is capable of cataloging nearly every

thunderstorm event that occurs over regional-scale to

continental-scale domains. Nonconvective precipitation

is not included in this analysis as ThOR filters out strat-

iform precipitation prior to thunderstorm identification

(Houston et al. 2015). Additionally, ThORwill not detect

shallow convection, to the extent that shallow convection

fails to produce column-maximum radar reflectivity ex-

ceeding 30dBZ over an area greater than 50km2 and

cloud-to-ground lightning. To focus analysis on the first

initiation within an area, Lock and Houston (2014)

used a 100-km threshold distance such that initiation

points identified within 100km of an established storm

were considered connected to the ongoing convection

and were not considered as an independent storm. This

constraint was applied to the initiation points identified

for this study.

Houston et al. (2015) verified ThOR against 166

manually analyzed deep convection tracks. The proba-

bility of ThOR detection compared to manual tracks

was 0.889 and the false alarm rate was 0.108, suggesting

robust performance for thunderstorm track detection

(Houston et al. 2015). Beyond tracking errors, it is an-

ticipated that the primary source of error in ThOR is its

reliance on cloud-to-ground lightning and not on total

lightning, as existing total lightning observations are too

limited to serve as a basis for a robust continental United

States (CONUS)-scale climatology. It is estimated that the

exclusion of in-cloud lightning results in an approximately

25% underestimation of thunderstorm counts (Houston

et al. 2015). Given the difficulty of manual thunderstorm

identification and classification methods (e.g., Ford et al.

2015b), the propensity of the ThOR algorithm for large-

scale implementation combined with the method’s low

error justifies its use here. ThOR provides a useful

means of assessing soil moisture–precipitation feedback

in the U.S. Great Plains without having to assume that

precipitation is collocated with convection initiation.

TABLE 2. Soil moisture satellite remote sensing product validation

using Oklahoma Mesonet (5 cm) in situ observations. Validation sta-

tistics are computed for both volumetric water content and standard-

ized anomalies of volumetric water content. The residual correlation

for the anomaly validation refers to the correlation coefficient between

the satellite–in situ difference and the in situ observation. Correlations

are calculated using all valid daily satellite–in situ soil moisture pairs.

Wet and dry hit rates refer to the rate of concurrent wet or dry

anomalies in the satellite and in situ soil moisture datasets, expressed

as a percent of all wet or dry in situ anomalies.

Product AMSR-E TMI ECV

Bias 0.011 20.048 20.026

Mean absolute error 0.734 0.791 0.750

R2 0.266 0.222 0.294

Residual correlation 20.785 20.722 20.765

Wet hit rate (%) 51.4 46.7 51.6

Dry hit rate (%) 88.0 86.8 88.3
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Unfortunately, the ThOR algorithm is computationally

intensive. Therefore, this study is based on thunder-

storms during 2005, 2006, and 2007 that have been

identified using ThOR. Because we focus our analysis on

thunderstorm initiation and not precipitation initiation

or total precipitation, we cannot estimate the percent of

Great Plains warm season precipitation accounted for in

this study. However, the 42 469 thunderstorm initiation

points identified by ThOR betweenMay and September

in 2005–07 represents the vast majority of thunder-

storms that initiated in the study region over this time

period. Therefore, we can conclude with confidence that

the 16083 afternoon thunderstorm events analyzed in

this study represent a large fraction of all warm season

thunderstorms initiating in theGreat Plains between 2005

and 2007.Whenwe subset these afternoon thunderstorms

by convective environment, events that initiated in a

weakly forced environment represented between 12%

and 15% of all 42 469 thunderstorms, depending on the

method used for environment classification.

3. Methods

a. Soil moisture

Daily soil water content estimates from each of the three

remote sensing datasets were converted to anomalies by

subtracting the climatological (i.e., multiyear) mean of a

15-day moving window centered on that calendar day and

dividing by the multiyear standard deviation in that same

moving window. Although thunderstorm events are only

available from 2005 to 2007, theAMSR-E, TMI, and ECV

soil moisture anomalies were computed using daily soil

moisture estimates over the time periods 2003–10, 1998–

2014, and 1998–2014, respectively. This was done to ensure

that the anomalies were calculated using a sufficiently long

time series to produce stable values. The 15-day moving

window was used to characterize relative soil wetness with

respect to the soil moisture seasonal cycle that is exhibited

in the Great Plains (e.g., Illston et al. 2008; Khong et al.

2015). This approach puts the soil moisture values into an

appropriate context (with respect to the normal soil

moisture values at that location and time of year). Per-

centiles of soil water content are frequently used to char-

acterize the relative wetness of the soil (Taylor et al. 2011;

Ford et al. 2016); however, using percentiles requires a

sufficiently long data record and sufficient measurement

precision such that each observation represents a unique

percentile of the overall distribution. AMSR-E and TMI

both report soil moisture estimates as a percentage of

volumetric water content at 1% increments. This means

if volumetric water content naturally varies between 10%

and 40% (i.e., between 0.10 and 0.40cm3cm23), there

will only be 31 unique observations spread among

100 percentile values. This issue is demonstrated by

showing the cumulative and probability distribution

functions of the soil water content from an AMSR-E

grid cell in northeastern Oklahoma (Fig. 1). The dis-

tributions are composed of daily soil moisture from the

15-daymoving window surrounding the calendar day of

2 August (2003–10). The empirical cumulative distribu-

tion function (Fig. 1a) shows that the volumetric water

content value of 0.26 cm3 cm23 represents a range from

the 42nd to the 70th percentile of the distribution.

Clearly, we are unable to properly separate wetter-than-

normal from drier-than-normal soil moisture conditions

when ‘‘normal’’—presumably the distribution median—

represents the same moisture conditions as the 45th and

65th percentiles. Additionally, since soil moisture distri-

butions are often non-Gaussian (Fig. 1b), this precludes

estimating percentiles using the mean and standard de-

viation. Therefore, standardizing daily soil moisture by

simply using the mean and standard deviation, as is done

in this study, provides a better representation of relatively

dry or wet soils.

b. Convection initiation event classification

For our purposes, we focus only on afternoon thun-

derstorms in the Great Plains that occur during the

warm season, May–September. We included all of the

thunderstorm events that were identified by ThOR if

the time of initiation occurred between 1200 and 2000

LST and no other thunderstorm events initiated within

50 km of that event between 0600 and 1200 LST. This

resulted in a total of 16 083 thunderstorm events across

our study region (Fig. 2). Although we only have data

from three warm seasons, the number of thunderstorm

events provides a sufficiently large sample size for our

analysis. Many of the ThOR-identified thunderstorm

events were due to large-scale, synoptic forcing such as a

passing cold front, dryline, or midlevel trough. Although

land surface conditions may have some influence on

these events, the dominant influence is the synoptic

forcing. Therefore, we implement a number of methods

to identify which events are weakly forced (i.e., the

events that are of interest in this study) and which events

are synoptically forced. This classification will be used to

identify the events where soil moisture feedbacks may

play a role in triggering convection initiation. Addi-

tionally, separating weakly forced events from syn-

optically forced events is useful for accounting for

precipitation autocorrelation (i.e., precipitation persis-

tence). Precipitation autocorrelation is caused by large-

scale weather systems, such as a passing mesoscale

convective complex or an extratropical cyclone migrat-

ing along a stationary front, that cause precipitation to

occur on two or more consecutive days. Therefore, by

AUGUST 2018 FORD ET AL . 1241



separating these types of events from convective trig-

gering in weakly forced environments, we can isolate and

remove precipitation persistence and maintain any daily

precipitation autocorrelation that is due to soil moisture

feedbacks.

An extensive literature search was undertaken to

identify the best methods for determining the forcing

environment of individual storm events, in an a posteriori

investigation. However, there are a dearth of methods for

classifying weakly forced and synoptically forced envi-

ronments over large regions (i.e., thousands of kilome-

ters) on climatological time scales. In this study, theGreat

Plains region is divided into twelve 58 3 58 areas (Table 3)
in which all (raining and nonraining) days between 1May

2005 and 30 September 2007 are classified as either

weakly forced or synoptically forced. Any event occur-

ring on a weakly forced day, for example, is classified

similarly. Convective environments within each of the

12 areas are first classified through manual inspection of

the daily (0600 LST) weather map produced by the

National Oceanic and Atmospheric Administration’s

Weather PredictionCenter (WPC) (http://www.wpc.ncep.

noaa.gov/dailywxmap/). These maps are produced once

daily and include the surface weather map and 500-hPa

contours. Most importantly, the maps denote synoptic-

scale features such as surface fronts and boundaries and

midlevel troughs. Daily classification of the synoptic en-

vironment of each of the 12 subregions within the Great

Plains was completed via visual inspection of the daily

weather maps.

This procedure, herein referred to as manual classifi-

cation, is adopted frommultiple studies that consider an

environment to be synoptically forced if a region is

within close proximity to frontal boundaries, drylines,

midlevel troughs, and closed surface lows and highs

(Brown and Arnold 1998; Evans and Doswell 2001;

Rose et al. 2008; French and Parker 2012). For our study,

the distance between the edge of an area and the closest

point on the edge of any of these synoptic features had to

be no more than 200km in order for that area’s envi-

ronment to be considered synoptically forced. We used

the edge of these features instead of, for example, the

center of a midlevel trough, as this made the visual ref-

erence easier. Brown and Arnold (1998) and Dixon and

Mote (2003) implemented a similar, manual identifica-

tion procedure only with a 500-kmboundary for synoptic-

scale features. Our decision to implement a tighter,

200-km boundary was made because 1) our boundary is

implemented around an entire region instead of one city

or one state and 2) using a 500-km boundary resulted in

many days classified as ‘‘synoptically forced’’ as the syn-

optic feature was too far to affect the region within the

FIG. 1. (left) Cumulative distribution function and (right) probability distribution function of daily soil moisture

within a 15-day moving window centered over the calendar day 2 Aug, including days from 2005, 2006, and 2007.

Data are from an AMSR-E pixel over northeastern Oklahoma.
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24-h time period. Additionally, we experimented with

300- and 250-kmboundaries, with no significant change in

results. Daily weather maps were imported into ArcGIS

and overlaid with subregion boundaries to determine if

large-scale features affected each region during that day.

The primary limitation of the daily weather maps are

their temporal resolution, as they are most representative

of surface andmiddle atmosphere conditions at 0600 LST

in the Great Plains. This is less than ideal when charac-

terizing the convective environment in which afternoon

thunderstorms occur. To test the robustness of the maps

for characterizing the afternoon convective environment,

we randomly sampled 6 days per month over our study

period (90 days total) and repeated the manual classifi-

cation using 0000 UTC (1800 LST) surface weather maps

produced by the WPC (http://www.wpc.ncep.noaa.gov/

archives/web_pages/sfc/sfc_archive.php). Comparison of

classification of each of the 90 days as either ‘‘synoptically

forced’’ or ‘‘weakly forced’’ was undertaken for each region

and is represented as a weak hit rate and a synoptic hit rate.

These hit rates are computed as the number of matching

weakly forced or synoptically forced classifications from

both data sources, expressed as a percent of the total daily

weather map weakly forced or synoptically forced classifi-

cations. Therefore, a weak hit rate of 80%means that 80%

of all weakly forced classifications using the morning daily

weather map were also weakly forced classifications in the

evening surface weather map. Weak hit rates ranged from

78.5% in the Minnesota subregion to 100% in the West

Kansas,West Nebraska, andWest Dakota regions, with an

overall study area average of 87.0%. Synoptic hit rateswere

slightly higher, ranging from 80% in the East Dakota

subregion to 100% in theWest Texas, West Nebraska, and

East Kansas regions, and with an overall average of 90.5%.

It should benotedhere that theWPC surfaceweathermaps

do not include the location of midlevel atmospheric fea-

tures such as midlevel troughs. This omission most likely

results in an overestimation of weakly forced conditions in

the WPC surface weather maps, as compared to the daily

weather maps used in the manual classification. However,

this limitation does not preclude a fair comparison between

theWPC surfaceweathermaps and the dailyweathermaps

FIG. 2. Afternoon (1200–2000 LST) thunderstorm events identified using ThOR between 2005 and 2007.
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with regard to the robustness of the manual classification

method.Despite the lackof information regardingmidlevel

atmospheric features in the WPC surface weather maps,

the strong correspondence between the two products sug-

gests that the manual classification—based on daily 0600

LST weather maps—is robust. Therefore, we expect the

manual method sufficiently characterizes the afternoon

convective environment, and, despite user error and sub-

jectivity, the method is considered the ‘‘truth’’ to which the

other, automated methods are compared. The results pre-

sented in this study are based on the manual classification

method for discerning weakly and synoptically forced

thunderstorm events.

Since our study only covers 3 years, it was feasible to

employ manual classification; however, it would not be

feasible to implement this approach globally or over

longer time periods. Therefore, we also classified weakly

and synoptically forced environments using three auto-

mated methods. The first automated method is adopted

from Brown and Arnold (1998) and, more recently,

Dixon and Mote (2003), and identifies weakly forced

environments as those in which the area-averaged

500-hPa wind speed is less than 7.7m s21 and the area-

averaged surface wind speed is less than 5.5m s21. This

method is herein known as theGeorgiamethod, as it was

implemented by Dixon and Mote (2003) for classifying

convective environments that they related to the urban

heat island effect in Atlanta, Georgia. The second au-

tomatedmethod is adopted fromCarleton et al. (2008a,b)

and identifies weakly forced environments as those

exhibiting a spatial (area) range of 500-hPa wind speeds

less than 12ms21. This method is herein referred to as

the Illinois method, as it was developed by Carleton

et al. (2008a) for characterizing the convective envi-

ronment in and around Lincoln, Illinois. The third au-

tomated method is from Brimelow et al. (2011). It

identifies weakly forced environments as those in which

the area-averaged daily 500-hPa omega, a measure of

vertical motion in the atmosphere, is less than or equal

to21 mbar s21. This method is herein referred to as the

Canadian method, as it was used by Brimelow et al.

(2011) to investigate land–atmosphere interactions

in the Canadian Prairies. Hourly surface wind speed,

500-hPa wind speed, and omega data were taken from

the Modern-Era Retrospective Analysis for Research

and Applications, version 2 (MERRA-2; Bosilovich

et al. 2015). MERRA-2 is produced by the NASA

Global Modeling and Assimilation Office using the

GEOS-5.12.4 modeling system. The hourly wind and

omega datasets are available at a 0.58 3 0.6258 spatial
resolution from 1980 to the present. The MERRA-2

system assimilates observations from atmospheric

in situ and remote sensing sources. Each day between

May and September 2005–07 for each individual 58 3 58
region was identified as either weakly or synoptically

forced using each of the four classification methods

(1 manual 1 3 automated).

c. Soil moisture–precipitation coupling

Soil moisture anomalies collocated with convection

initiation events were composited and evaluated to de-

termine whether there were statistically significant

preferences for wet or dry soil coupling. Our evaluation

uses two approaches. First, we compared the distribu-

tion of soil moisture anomalies at the location of con-

vection initiation with equally sized distributions of soil

moisture anomalies from randomly selected locations in

the study region. For example, if soil moisture anomalies

associated with 8000 thunderstorm events are compos-

ited, then 8000 locations randomly chosen from the en-

tire study area were composited. This random sampling

process was repeated 1000 times using a bootstrapping

resampling procedure (with replacement). This produces a

large sample that can be used to evaluate whether the soil

TABLE 3. Regions of the Great Plains for which thunderstorm events were classified.

Region Abbreviation Spatial extent (lat, lon)

Afternoon thunderstorm

events (2005–07)

West Texas WTX 308–358N, 1058–1008W 2254

West Kansas WKS 358–408N, 1058–1008W 1715

West Nebraska WNE 408–458N, 1058–1008W 1367

West Dakotas WDK 458–508N, 1058–1008W 670

Red River basin RRB 308–358N, 1008–958W 1672

East Kansas EKS 358–408N, 1008–958W 1225

East Nebraska ENE 408–458N, 1008–958W 982

East Dakotas EDK 458–508N, 1008–958W 680

Louisiana LOU 308–358N, 958–908W 2401

Missouri MIS 358–408N, 958–908W 1604

Iowa IOW 408–458N, 958–908W 1039

Minnesota MIN 458–508N, 958–908W 474
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moisture conditions associated with convection initiation

were significantly different from what could be expected

due to random chance. This procedure is similar to

that employed by Ford et al. (2015a), only here the

sample size is orders of magnitude larger. Second, we

directly compared the distributions of soil moisture

conditions associated with the thunderstorm events,

grouped by 1) soil moisture dataset, 2) convective

environment (weakly or synoptically forced), and 3)

the method by which the convective environment is

classified. Direct comparison between these various

groups was done using a series of two-way analysis of

variance (ANOVA) with multiple comparison tests to

determine where significant differences exist. The

primary purpose of the ANOVA is to determine the

extent and significance of differences in soil moisture

data and synoptic environment on apparent wet soil or

dry soil preferences for soil moisture–precipitation

coupling in the Great Plains.

4. Results

a. Convective environment classification

Not surprisingly, the number of afternoon thunder-

storm events are not equally distributed among the 12

Great Plains areas (see Table 3 for area abbreviations).

The southern quarter of our study region—WTX, RRB,

and LOU regions—has much higher frequencies of

thunderstorm events. This can be mostly attributed to

the abundant supply of convective available potential

energy, particularly in the RRB and LOU regions, and

the proximity of these areas to the Gulf of Mexico

(Lock and Houston 2015). Based on manual identifi-

cation, these three areas exhibited the highest fre-

quencies of weakly forced days (Fig. 3a), and this

pattern is consistent between all five months of the

warm season (Fig. 3b). It is important to note that the

frequencies and percentages shown in Fig. 3 are for all

days classified, not just days with thunderstorm events.

The manual classification procedure is considered the

benchmark against which the automated methods can

be compared. When comparing 1-to-1 the percent of

overall days between May and September 2005–07

that are classified as weakly forced, we see similar

performance (as verified by the manual method) from

the Georgia and Illinois methods (Fig. 4). In general,

these methods capture the frequency of weakly forced

days in the southern and southeastern regions, but

they do not do as well in the northern and northwest-

ern regions. Specifically, both methods underesti-

mate the frequency of weakly forced days in Nebraska,

the Dakotas, Minnesota, and Iowa. This is possibly

attributable to the fact that these methods—and

their synoptic-scale wind speed thresholds—were de-

veloped for areas farther south and east than these

regions. The Canadian method, in contrast, over-

estimates the number of weakly forced days relative to

the manual classification method. In fact, it classifies

over 80% of days in all of the regions as weakly forced.

Therefore, the Canadian method appears to suffer

from the opposite problem as the Georgia and Illinois

methods. Since it was designed for a region with less

CAPE and fewer thunderstorm events, it significantly

overestimates in all regions.

Of course, it should be noted that none of these

methods were developed for a continental-scale analy-

sis. Therefore, it is not unexpected that they do not

perform as well in regions that differ from where they

were developed. However, evenwhen applied outside of

the geographic areas in which they were developed, the

Georgia and Illinois methods do correspond well with

the manual classification results. This is true for all days

in the study period as well as for just days and loca-

tions in which afternoon thunderstorm events occurred

(Fig. 4). The Illinois method (red circles) and Georgia

method (blue circles) are within 10% and 30% of the

manual classification method (yellow squares) with re-

spect to the proportion of ThOR events classified as

weakly forced. Additionally, the 16 083 ThOR events

are plotted in dual convective triggering potential low-

level humidity index (CTP-HI; Findell and Eltahir

2003) space, often used to identify atmospheric condi-

tions primed for land surface–induced convective

activity (Fig. 4). Specifically, negative CTP values

indicate atmospheric conditions not conducive to

surface-influenced or surface-triggered convection. The

red points in these plots show all afternoon ThOR

events, and the blue only show the weakly forced events.

The CTP range is reduced for weakly forced events

compared with all events, with fewer negative CTP

values. This indicates that the boundary layer atmo-

sphere is primed for convection over dry or wet soils and

lends confidence that the manual, Georgia, and Illinois

methods are properly filtering thunderstorm events that

have the potential to be triggered by soil moisture–

induced processes.

b. Precipitation persistence

Precipitation/atmospheric persistence refers to con-

secutive measurements that are not independent of one

another. That is, the consecutive events are attributed to

the same meteorological system. These incidents can

result in elevated lag-1 daily precipitation autocorrela-

tion and possibly inflated inferences of positive soil

moisture feedbacks (Wei et al. 2008). Previous studies

have attempted to account for precipitation persistence
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in a general way (Taylor et al. 2012; Guillod et al. 2014;

Ford et al. 2015b) and, in a few cases, using a method-

ology explicitly designed to control for this effect

(Salvucci et al. 2002; Tuttle and Salvucci 2016). The

more sophisticated methods have effectively isolated a

statistical feedback signal; however, this signal may also

not represent the true soil moisture feedback if the fil-

tering process they employed removed part of the soil

moisture feedback signal. For example, the lag-1 daily

precipitation autocorrelation at any particular point in

the Great Plains (Fig. 5) is influenced by precipitation

persistence due to large-scale synoptic weather systems

that induce precipitation on consecutive days, but it is

also potentially influenced by positive or negative soil

moisture feedback. The May–September lag-1 pre-

cipitation autocorrelation (Fig. 5) is computed from

daily data that are part of the Parameter-Elevation

Regressions on Independent Slopes Model (PRISM)

using Wilks (1999) method, such that

r5 p
11
2 p

01
,

where r is the lag-1 autocorrelation coefficient, p11 is the

transition probability of precipitation on day n given

precipitation on day n 2 1, and p01 is the transition

FIG. 3. (a) Total number of weakly forced days in each region based on the manual clas-

sification method. (b) Percent of warm season days in each calendar month that are classi-

fied as weakly forced days, based on the manual classification. All days between May and

September 2005–07 are classified.
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probability of precipitation on day n given no pre-

cipitation on day n 2 1.

By classifying each thunderstorm event as either

synoptically forced or weakly forced, we can account for

the inherent precipitation persistence in the lag-1 auto-

correlations. We classify each ThOR event based on 1)

whether it was synoptically or weakly forced, 2) whether

or not rain occurred in a 5 3 5 (PRISM) grid cell area

surrounding the initiation point the day before, and 3)

whether any precipitation the day before was synopti-

cally or weakly forced. The result of this classification

is a set of six possible outcomes for any thunderstorm

event that occurs on day n and the preceding day n 2 1:

synoptic to synoptic, weak to synoptic, synoptic to weak,

weak to weak, none to synoptic, and none to weak.

For clarification, the synoptic-to-synoptic outcome in-

dicates that synoptically forced precipitation origi-

nated both on day n and on day n 2 1, whereas the

synoptic-to-weak outcome indicated that synoptically

forced precipitation originated on day n 2 1, but the

thunderstorm event on day n was weakly forced. Of

these six outcomes, only the synoptic-to-synoptic and

weak-to-synoptic classes contribute to precipitation

persistence, and these outcomes together make up less

than 50% of thunderstorm events in all regions (Fig. 6).

In fact, fewer than 40% of thunderstorm events in the

Red River basin region contributed to precipitation

persistence, despite this region exhibiting the strongest

overall lag-1 precipitation autocorrelation (Fig. 5). The

synoptic-to-weak, weak-to-weak, and none-to-weak out-

comes can potentially indicate a soil moisture feedback

and only comprise a small fraction of all thunderstorm

events (Fig. 6). The none-to-synoptic outcome is a con-

founding factor that is not accounted forwhen considering

precipitation persistence. These events are triggered by a

synoptic-scale forcing, and therefore land surface condi-

tions have minimal influence. However, if the forcing

classification (weak versus strong) is not used, these events

that make up the majority of two-thirds of the re-

gions’ thunderstorms (Fig. 6) will be inadvertently in-

cluded in the soil moisture–precipitation feedback

assessment. This means that in most of the regions as-

sessed, the importance—in terms of the proportion of all

thunderstorm events—of accounting for the convective

forcing outweighed that of precipitation persistence;

however, both are confounding factors that soil moisture–

precipitation feedback studies should recognize and

account for using appropriate methods.

c. Wet and dry soil preferences

To determine whether there are preferences for thun-

derstorms to initiate over relatively wet or relatively dry

FIG. 4. (top) The percentage of ThOR afternoon thunderstorm events classified as weakly forced by each of the four classification

methods. (bottom)All ThOR afternoon thunderstorm events plotted in dual CTP-HI space, computed fromMERRA-2. Red points show

all events; blue points show weakly forced events.
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soils (delineated by a soil moisture anomaly of 0), we

composited soil moisture anomalies from all three re-

mote sensing products collocated with the 16 083 ThOR

events. We then randomly sampled the same number of

soil moisture anomalies in both space (all regions) and in

time (all study days, May–September 2005–07) and

composited soil moisture from each of the three prod-

ucts underlying these randomly selected points. Ad-

ditionally, we randomly sampled the same number of

soil moisture anomalies in space only, across all re-

gions but on the same days as ThOR thunderstorm

events. The resampling was repeated 1000 times

using a bootstrapping resampling method with re-

placement. This resulted in 1000 distributions of 16 083

resampled, time–space soil moisture anomalies and

1000 distributions of 16 083 resampled, space-only soil

moisture anomalies, from which a distribution could

be constructed and compared with the distribution of

soil moisture anomalies underlying ThOR events.

This comparison is facilitated by plotting each of the

1000 bootstrapped composites as well as the thun-

derstorm event soil moisture in mean standard de-

viation space (Fig. 7). The blue points in Fig. 7

represent the mean and standard deviation of the

soil moisture anomaly distributions randomly sam-

pled in space and time, while the red points represent

the mean and standard deviation of the soil moisture

anomaly distributions randomly sampled in space only.

Statistically significant differences are determined

using a difference of means test with a confidence

threshold of 95%.

Our results show that when AMSR-E is used to

characterize soil moisture conditions, the 16 083 after-

noon thunderstorm events tend to occur over drier soils

(Fig. 7). ECV and TMI, on the other hand, show a sta-

tistically significant preference for convection initiation

to occur over wet soils (Fig. 7), although the absolute

differences in means are less than those for AMSR-E.

When we only examine the weakly forced thun-

derstorm events (based on the manual classification

method), the results show the same general patterns

and preferences as those based on all thunderstorm

events. AMSR-E has a dry soil preference and ECV

and TMI have wet soil preferences (Fig. 7), all of

which are statistically significant. Substituting the

Georgia and Illinois classification methods for the

manual method of identifying weakly and synoptically

forced events does not result in a statistically signifi-

cant change in the dry/wet soil preferences (results

not shown).

Our results demonstrate that apparent preferences for

convection initiation in the Great Plains occur over

relatively wet or dry soils, and the statistical significance

of these preferences is sensitive to the soil moisture

dataset, the convective forcing, and the method by

which the convective forcing is classified. The distinct

and interactive effects of these confounding factors are

examined more thoroughly through a series of two-way

ANOVA tests with an interaction effect included. The

ANOVA examines differences in soil moisture anomalies

grouped by dataset and by convective forcing (weak or

synoptic). Statistically significant (95% confidence level)

differences exist between soil moisture anomalies group-

ed by dataset, but not by convective forcing (Table 4);

however, the interaction term is significant. This occurs

because differences in soil moisture anomalies between

weakly forced events and all events are statistically sig-

nificant for AMSR-E, but not for ECV or TMI (Fig. 8),

meaning that discriminating between weakly forced

and synoptically forced events significantly affects the

overall dry/wet soil preference, but only depending on

the dataset.

FIG. 5. Lag-1 daily precipitation autocorrelation calculated ac-

cording to Wilks (1999). Daily precipitation is between May and

September 2005–07 using the PRISM dataset.
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A secondANOVA is used to examine differences in soil

moisture preferences grouped both by dataset and by the

convective forcing classification method (i.e., manual,

Georgia, and Illinois). In this case, days being compared

are classified as ‘‘weakly forced’’ by one of the clas-

sification methods. Statistically significant differences

exist both between soil moisture based on the dataset

and classification method (Table 4). Additionally, the

interaction term is significant, again a result of there

being a significant soil moisture anomaly difference be-

tween manually classified events and those classified based

on the Illinois method, but only for AMSR-E (Fig. 8).

Practically, all three classification methods show significant

AMSR-E dry soil preferences for weakly forced afternoon

convection initiation.

5. Discussion and conclusions

The recommendations provided by Tuttle and Salvucci

(2017) with respect to how to undertake a statistical

analysis of soil moisture–precipitation feedbacks, in-

cluding those related to soil moisture time-scale var-

iability and precipitation persistence, are important to

consider. The seasonality of soil moisture in many

global transition regions is well documented (e.g.,

Illston et al. 2008) and must be accounted for to

properly characterize relative soil wetness. Addi-

tionally, our results show that the precision with which

soil moisture estimates are reported dictates the

methods that can be applied to standardize or remove

the seasonal cycle of soil moisture datasets. Although

converting volumetric water content to percentiles

both standardizes and deseasonalizes soil moisture

data, this method is not recommended when mea-

surement precision is limited. For example, AMSR-E

and TMI datasets are reported in 1% volumetric

water content increments and therefore cannot be

properly converted to percentiles.

Precipitation/atmospheric persistence is often identi-

fied as a serious confounding issue when analyzing soil

moisture–precipitation feedbacks using observations

(Taylor et al. 2011; Guillod et al. 2015; Tuttle and

Salvucci 2016; Hsu et al. 2017) because it can inflate or

deflate potential soil moisture feedback signals (Wei

et al. 2008; Tuttle and Salvucci 2017). We find that the

lag-1 autocorrelation of daily precipitation is only par-

tially attributable to precipitation persistence, defined

here as a situation in which a synoptically forced after-

noon thunderstorm event follows an event (weakly or

synoptically forced) in the same location occurring the

day prior. In fact, these situations account for less than

50% of all afternoon thunderstorm events identified

over the 2005–07 study period in all regions of the Great

Plains. Far more common were synoptically forced

thunderstorm events that were preceded by days with-

out precipitation. Despite not contributing to pre-

cipitation persistence, these events equally confound

statistical analysis of soil moisture–precipitation

FIG. 6. Percentage of all convection initiation events that are associated with the fol-

lowing categories: 1) ‘‘persistence’’ events are those that are synoptically forced and that

occur on the day after a weakly or synoptically forced event, 2) ‘‘potential feedback’’ events

are those that are weakly forced irrespective of what occurred the day before, and 3)

‘‘synoptic’’ events are those that are synoptically forced and follow a day in which no

precipitation occurred.
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feedback as convection is not primarily attributed to

land surface conditions. Our methodology that com-

bines ThOR-identified afternoon thunderstorm events

with a classification of the overall convective environ-

ment not only accounts for precipitation persistence, it

also effectively isolates the events where the land sur-

face can potentially play a role in triggering convection.

An added advantage of using ThOR is the ability

to identify the location of convection initiation. This

eliminates the reliance on precipitation datasets and

provides a more accurate means of associating soil

moisture conditions with the location where convection

occurred.

It is interesting to note that removing the effects of

precipitation persistence and synoptic-scale forcing did

not result in a change in the sign of the preference for

deep convection to initiate over dry or wet soils. How-

ever, the use of three X-bandmicrowave remote sensing

soil moisture datasets did expose significant interdataset

differences in both the strength and sign of dry/wet soil

preferences. Composites of AMSR-E soil moisture

underlying afternoon thunderstorm events exhibit a

statistically significant dry soil preference, while the

same composites of ECV and TMI soil moisture

exhibit significant wet soil preferences. This is the case

despite the fact that AMSR-E is the primary passive

microwave imager informing the ECV dataset during

the 2005–07 time period studied (Dorigo et al. 2015).

In addition to differences in soil moisture dataset

and convective forcing, we tested three automated

methods for classifying weakly forced events. Although

TABLE 4. Two-way ANOVA tables with interactions to as-

sess whether there are significant differences in soil moisture

anomalies. The top part of the table shows results testing dif-

ferences in all ThOR event–soil moisture anomalies grouped by

dataset and convective forcing. The bottom part of the table

shows results testing differences in weakly forced ThOR event–

soil moisture anomalies grouped by dataset and convective en-

vironment classification method.

Source F stat p value

All events

Dataset 297.84 0.00

Forcing 0.10 0.75

Dataset-forcing interaction 23.80 0.00

Weakly forced events

Dataset 861.35 0.00

Classification method 6.96 0.00

Interactions 4.29 0.00

FIG. 7. Panels show the mean and standard deviation of soil moisture anomalies underlying afternoon thun-

derstorm events (black point), those from distributions of randomly selected points in space (red points),

and those from distributions of randomly selected points in space and time (blue). Soil moisture anomalies are

from (top) AMSR-E, (middle) ECV, and (bottom) TMI for (left) just weakly forced events and (right) all

afternoon events
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differences existed between these automatedmethods and

ourmanual classification, these differences did not result in

significant changes in the sign of dry/wet soil preferences.

Our results concur with those of Tuttle and Salvucci

(2017), andwe conclude that observational analyses of soil

moisture–precipitation feedbacksmust be completed with

care. However, we find that accounting for precipitation

persistence, although necessary and important, did not

influence our results with regard to dry/wet soil prefer-

ences. In addition, the different remote sensing datasets

had a larger impact on the analysis than precipitation

persistence. It is unclear whether the results of our sensi-

tivity analysis are universal, or whether the results would

differ in other parts of the world due to spatial variations

in the accuracy of the satellite retrievals and variations in

the importance of precipitation persistence. In addition, it

is important to note here that the objective of this study

was not to determine whether there is a preference for

convection initiation to occur preferentially over wet or

dry soils in the U.S. Great Plains, but instead to demon-

strate how dependent these apparent preferences are to

certain confounding factors and the datasets and methods

that are used. Based on the results presented here, we

recommend that future studies of soil moisture–

precipitation feedbacks should 1) consider and account

for the convective environment (weakly or synoptically

forced) and 2) use multiple soil moisture and/or pre-

cipitation datasets to determine whether the whether

the soil moisture feedback is robust.
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