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ABSTRACT

Ensemble sensitivity analysis (ESA) has been demonstrated for observation targeting of synoptic-scale and

mesoscale phenomena, but could have similar applications for storm-scale observations withmobile platforms.

This paper demonstrates storm-scale ESA using an idealized supercell simulated with a 101-member CM1

ensemble. Correlation coefficients are used as ameasure of sensitivity and are derived from single-variable and

multivariable linear regressions of pressure, temperature, humidity, and wind with forecast response variables

intended as proxies for the strength of supercells. This approach is suitable for targeting observing platforms

that simultaneously measure multiple base-state variables. Although the individual correlations are found to

be noisy and difficult to interpret, averaging across small areas of the domain and over the duration of the

simulation is found to simplify the analysis. However, it is difficult to identify physically meaningful results

from the sensitivity calculations, and evaluation of the results suggests that the overall skill would be low in

targeting observations at the storm scale solely based on these sensitivity calculations. The difficulty in ap-

plying ESA at the scale of an individual supercell is likely due to applying the linear model to an environment

with highly nonlinear dynamics, rapidly changing forecast metrics, and autocorrelation.

1. Introduction

Observation targeting is the deployment of limited or

mobile observing assets based on estimates of where

they will provide the greatest benefit to forecasts (e.g.,

Lorenz and Emanuel 1998; Buizza and Montani 1999;

Langland 1999; Morss et al. 2001; Szunyogh et al. 2002;

Aberson 2003; Weissmann et al. 2005; Ancell and

Hakim 2007; Wu et al. 2007; Torn and Hakim 2009;

Garcies and Homar 2010; Torn 2010; Irvine et al. 2011;

Chang et al. 2013; Xie et al. 2013; Zheng et al. 2013; Li

et al. 2014; Wile et al. 2015; Romine et al. 2016). En-

semble sensitivity analysis (ESA; Ancell and Hakim

2007; Torn and Hakim 2008) provides a means to esti-

mate the sensitivity of a dynamical model to perturba-

tions in the initial state. This has applications for

targeting observations where ESA predicts they have

the potential for the greatest impact on the model so-

lution (Ancell and Hakim 2007). Prior work with ESA

has focused primarily on synoptic- throughmeso-b-scale

phenomena in features such as midlatitude and tropical

cyclones (e.g., Ancell and Hakim 2007; Hill et al. 2016).

In the work presented here, ESA is applied to an ide-

alized supercell to identify regions in which the forecast

is most sensitive to perturbations of the initial state and

to demonstrate statistical techniques that could improve

upon prior applications of ESA.

Several techniques have been developed to assess the

impact of adding additional observations; these include

ESA (e.g., Ancell and Hakim 2007; Torn and Hakim

2008), adjoint sensitivity analysis or singular vector

methods (e.g., Hall et al. 1982; Hall and Cacuci 1983;

Hall 1986; Errico and Vukicevic 1992; Buizza and

Montani 1999; Wu et al. 2007), observing system simu-

lation experiments (OSSEs) that directly test the impact

of assimilating a single additional observation (e.g.,

Lorenz and Emanuel 1998; Morss et al. 2001; Xie et al.

2013), and data denial experiments. Prior work has

shown that ESA and adjoint sensitivity analysis are both

useful for targeted observations, but ESA is preferred

because of its relative simplicity (Ancell and Hakim

2007). The objective of this paper is to demonstrate

storm-scale ESA around a supercell thunderstorm, with

the later goal of using ESA to inform targeted obser-

vations withmobile platforms such as unmanned aircraft

systems (UASs). Because multiple instruments can be

attached to a single UAS, this study uses ESA to
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estimate the collective impact of measuring tempera-

ture, humidity, pressure, and wind, on selected forecast

response variables. The eventual goal is for additional

storm-scale ESA simulations to be used to inform where

to target observations to maximize the impact of UAS

resources to improve nowcasting of supercell thunder-

storms. Prior work (e.g., Bednarczyk and Ancell 2015;

Hill et al. 2016; Yokota et al. 2016) applied ESA to

thunderstorm forecasts generated by a convection-

allowing ensemble. Despite Hill et al. (2016) noting

that, although ensemble members frequently did not

exhibit a Gaussian distribution, thus violating a funda-

mental assumption of ESA, the results were still

useful. Thus, it is reasonable to assume that ESA could

plausibly be extended to the scale of individual

thunderstorms.

ESA assumes a linear relationship between pertur-

bations at a location in the model analysis and the sub-

sequent response, thus larger perturbations should be

associated with greater forecast responses. ESA is per-

formed through linear regression (e.g., Ancell and

Hakim 2007; Torn and Hakim 2008), in which the slope

of the regression line is a commonly used metric to es-

timate the impact of a given observation on the fore-

cast response. In ESA, an ensemble, usually consisting

of 50–100 members, is simulated to generate the ESA

inputs. The forecast response is a scalar quantity such as

the composite reflectivity associated with deep convec-

tion or the pressure at the center of a cyclone. The per-

turbations are relative to the mean state of a single

variable at each point within the domain. The perturba-

tions are the independent variable in a linear regression

against the forecast response, and the resulting slope for

each point in the domain is an estimate of the sensitivity

to observations at that point. This paper extends ESA to

estimate the combined sensitivity of a forecast response

variable to multiple perturbation variables, which is

useful for observing platforms that simultaneously mea-

sure several quantities (e.g., temperature, humidity,

pressure, and wind).

The methods adopted herein are presented in section

2. Analysis of the results of single-variable and multi-

variable sensitivity analysis is presented in section 3. The

veracity of the multivariable sensitivity calculations are

evaluated in section 4. The implications of this work for

storm-scale ESA are discussed in section 5.

2. Background and methods

The approach to storm-scale ESA using idealized

simulations differs from prior applications of ESA to

larger-scale phenomena. Prior work in observation tar-

geting and ESA has used ensembles that were generated

as a result of data assimilation performed with an en-

semble Kalman filter (EnKF; Anderson 2001; Ancell

andHakim 2007; Torn andHakim 2008; Hill et al. 2016).

These approaches and associated assumptions are not

necessarily suitable for idealized storm-scale simula-

tions because no data assimilation is performed and the

average model errors are unknown. Related to ensem-

ble creation, ensuring ensemble spread requires a dif-

ferent tactic in an idealized model framework where

horizontal homogeneity minimizes variance and model

errors are unknown in the absence of observed storm

evolution. Finally, unlike a large-scale phenomenon

where member-to-member differences in the position of

the phenomenon (e.g., position of deep convection ini-

tiation) relative to meso-b-scale/synoptic-scale far-field

perturbations are small, storm-scale ESA focused on

near-storm perturbations is very sensitive to member-

to-member position differences. For example, grid point

(i, j) may be located in the storm inflow in one ensemble

member but in the precipitation core in another. This

would dilute sensitivity. Because the intent of this work

is to advance understanding toward a vision of targeted

surveillance where targeting guidance is based on storm

position and storm structure, sensitivity should be as-

sessed in a storm-relative frame of reference.

a. Model configuration

Simulations were conducted using revision 18 of

Cloud Model 1 (CM1; Bryan and Fritsch 2002) and ex-

ecuted on the high-performance computing resources of

the Holland Computing Center at the University of

Nebraska. The model domain had open lateral

boundaries, a free-slip lower boundary, a 1-km hori-

zontal grid spacing with a square 240-km domain, and

63 vertical levels stretched, with a 100-m vertical grid

spacing at low levels. The base state is horizontally ho-

mogeneous and is perturbed with a warm bubble at the

center of the domain to force the development of a

storm. The Morrison microphysics parameterization

was used, with hail as a hydrometeor class instead of

graupel.

The ESA was performed on a 101-member ensemble.

The control member was generated to have 2500 J kg21

of CAPEand a 0–6-kmbulkwind differential of 35ms21.

Spread was introduced by perturbing the base-state

sounding of each member with a standard deviation of

250 J kg21 of CAPE and 2.5m s21 in the 0–6-km bulk

wind differential (Fig. 1). These perturbations are

achieved by varying the state variables above 1 kmwhile

the ESA is performed using perturbations at 500m, so

the method of introducing perturbations should not di-

rectly bias the ESA results. Although the variance in the

base-state sounding is significantly less than that of
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Cintineo and Stensrud (2013), the variance was in-

tentionally small to ensure that all ensemble members

produced supercells within reasonably similar environ-

ments for the purpose of demonstrating storm-scale

ESA. Additional variance was introduced by adding

random noise (60.25K) to the potential temperature

fields throughout the domain, except near lateral

boundaries, and varying the horizontal size and magni-

tude of the warm bubble. The warm bubbles were in-

troduced at the center of the domain and 1.4 km above

the surface, with a vertical semiaxis of 1.4 km, horizontal

semiaxes of 10 km6 25% with each horizontal semiaxis

varying independently of the other, and a 4K 6 25%

potential temperature excess over the base state at the

center of the bubble, modulated by a cosine function.

The control member of the ensemble does not include

random gridpoint perturbations or any perturbations to

the size and magnitude of the warm bubble. Also, the

gridpoint perturbations must be small enough to avoid

initiating additional storms in the domain. However,

absent these perturbations, the variance in the ensemble

would be only a result of the perturbations to the initial

sounding, which would be undesirable for obtaining

meaningful ESA results and would likely provide less

variance in the ensemble. Therefore, a combination of

the aforementionedmethods for introducing variance to

the ensemble is likely to achieve the most useful results.

Perturbations and forecast responses were recorded

starting at 45min into the 2-h-long simulations to allow

time for a storm to form initially. From that point, per-

turbation and forecast response variables were recorded

every 5min until the end of the simulations. Both the

perturbations and forecast responses were recorded in a

storm-relative coordinate system to allow for variations

in storm motion and storm configuration among en-

semble members. The storms were tracked with an au-

tomated system that followed the maximum value of a

smoothed 2–5-km updraft helicity field. The perturba-

tion variables were temperature, specific humidity,

pressure, and the three wind components. The forecast

response variables were the maximum 2–5-km updraft

helicity, maximum lowest-model-level vertical vorticity,

maximum composite reflectivity, and maximum lowest-

model-level hail mixing ratio within the storm-relative

forecast response area (Fig. 2).

The storm-relative frame of reference is also used for

the perturbations. Because the focus here is on the sen-

sitivity within easily identifiable storm-relative regions,

the storm in each ensemble member is partitioned into

four regions at each time: the forward-flank downdraft

(FFD), forward-flank inflow (FFI), rear-flank downdraft

(RFD), and rear-flank inflow (RFI; Fig. 3). These regions

are defined according to mesocyclone location, storm

orientation, and the position of thunderstorm outflow.

Mesocyclone position is the location of the maximum

2–5-km updraft helicity, following the application of a

Gaussian-smoothing operation implemented as the

convolution of the 2–5-km updraft helicity on a 1-km

grid with a 7 3 7 smoothing kernel where s51 km.

Storm orientation is determined with the 0–6-km shear

vector. A line through the mesocyclone and perpendic-

ular to the 0–6-km shear vector is used to partition the

FIG. 1. Soundings used for the 101-member ensemble (control sounding illustrated with thick curves)

(a) thermodynamic profile and (b) wind profile. The darker green, red, and blue colors are the profile for the control

member, while the lighter shades are the individual profiles of the sounding for each ensemble member, in order to

show the ensemble spread.
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rear-flank and forward-flank regions. The split between

the right- and left-moving storms is estimated as 8 km

north of the mesocyclone and in the direction normal to

the 0–6-km shear vector (Fig. 3); no points north of this

line were included in the ESA calculations. Points are

considered to be in thunderstorm outflow if they have

u0 # 20.02K or if the reflectivity is at least 0 dBZ. Any

‘‘holes’’ in the outflow regions where the conditions are

not met, but that are entirely surrounded by outflow

points, are considered to be part of the outflow.

In addition to the four primary regions, analysis is also

focused on perturbations within subregions within a

transformed coordinate system defined by the gust

fronts and the partition between the forward- and rear-

flank regions (Fig. 3). Each subregion is a 2 km 3 2 km

box in the transformed system. The distance from the

gust front and the partition line is calculated for each

point in the domain, and the transformed coordinate

system uses the distance from the partition line as the x

coordinate and the distance from the gust front as the y

coordinate. The u, p, qy, u, y, and w variables are then

averaged within 2 km 3 2 km bins in the transformed

coordinate system. Analysis of these subregions

enables a more detailed examination of areas of sensi-

tivity that are washed out in the averaging within the

primary regions (e.g., rear-flank downdraft, forward-

flank inflow).

b. Ensemble sensitivity analysis

ESA is typically performed as a linear regression

between a single perturbation variable and forecast re-

sponse variable, with the sensitivity measured by the

slope (e.g., Ancell and Hakim 2007; Torn and Hakim

2008; Hill et al. 2016). In the context of an observing

platform such as a UAS that simultaneously measures

temperature, humidity, pressure, and wind, the value

of a targeted observation is the expected collective im-

pact of all the quantities measured by the observing

system. The approach to ESA used in prior work cal-

culates the sensitivity of each measured variable in-

dependently, but does not account for multicollinearity

between the perturbation variables. Hacker and Lei

(2015) noted that this also does not account for the

collective contributions to the variance from all of the

perturbation variables simultaneously. These issues are

addressed here by applying multiple linear regression in

which the regressionmodel is fitted through the ordinary

least squares method. The sensitivity of the forecast

response to the perturbation variables can be expressed

through the coefficient of determination r2, which is the

proportion of variance in the forecast response (de-

pendent variable) that is explained by the variance in the

perturbations (independent variables). The coefficient

of determination is closely related to the slope of the

ordinary least squares regression line, especially in the

case of a single independent and dependent variable.

The correlation coefficient r is the slope of the ordinary

least squares regression when the independent and

FIG. 3. The regions over which the correlations were averaged,

shown for the storm 45min into the simulation. Simulated

reflectivity is plotted in black, in units of 5 dBZ. Units are in km.

The southern dotted line is the orientation of the storm through the

mesocyclone. The northern dotted line is the partition between the

right- and left-moving storms. The dashed line is the partition be-

tween the forward and rear flanks of the storm. The green area is

the rear-flank inflow and the red area is the forward-flank inflow.

The blue area is the rear-flank downdraft and the yellow area is the

forward-flank downdraft.

FIG. 2. Perturbation and forecast response domains plotted over

reflectivity from the strong supercell control simulation. Simulated

reflectivity is plotted in black, in units of 5 dBZ. The perturbation

domain is the entire image and the forecast response domain is in

red. Units are in km.

1708 MONTHLY WEATHER REV IEW VOLUME 146



dependent variables are standardized such that s5 1 for

each variable. Even when performing ESA on a single

perturbation and forecast response variable, using r as a

metric of sensitivity may have desirable properties so

that interpreting the results is easier.

At any given forecast time, the variance of the fore-

cast response (dependent) variable is constant regard-

less of the location within the domain where the

perturbation (independent) variable is obtained. If the

forecast response is denoted asY and the perturbation is

denoted as x, the slope of the regression line is cov(Y, x)/

var(x). The slope of the regression line depends both on

the amount of the variance in the forecast response that

is explained by the perturbation variable and the actual

variance of the perturbation variable. Because the var-

iance of the perturbation variable can vary from one

location to another, the slope will be biased to be higher

in areas where the variance in the perturbations is small.

Using the correlation coefficient in place of the slope

does not alter the sensitivity metric except to remove

this bias. In the case of multiple linear regression, the

square root of r2, which is equivalent to jrj, is a similar

measure of sensitivity.

In this work, both of the aforementioned methods

are used: 1) the sensitivity of the forecast response

to a single perturbation variable using the aforemen-

tioned correlation coefficient, henceforth referred to as

single-variable ensemble sensitivity; and 2) a multiple

regression that calculates the sensitivity to all of the

perturbation variables, henceforth referred to as multi-

variable ensemble sensitivity. The multivariable en-

semble sensitivity extends ESA to fit a linear model

between multiple perturbation variables and a single

forecast response variable, calculating the sensitivity of

the forecast response to the combination of all pertur-

bation variables. This linear model takes the form of

y5b3X1 e , (1)

such that X is a matrix where each row contains the

perturbations for the jth ensemble member and is a row

vectorXj of the form [1 u0 p0 qy0 u0 y0 w0]. In this model, y

is a column vector containing the forecast responses for

each ensemble member, b is a column vector fitting the

perturbations to the forecast responses, and e is a col-

umn vector of residuals. The model is fitted by mini-

mizing the residual sum of squares RSS5�n

j51ej for n

ensemble members. The coefficient of determination,

r2 5 (ESS/TSS)5 12 (RSS/TSS) uses the explained

sum of squares ESS5�n

j51(b3Xj 2 y)2 and the total

sum of squares TSS5�n

j51(yj 2 y)2 to compute the

amount of the variance in the data explained by the

linear model.

Even with random data where there is no sensitivity of

the forecast response to the perturbations, r2 and jrj will
almost certainly be greater than zero. The expected

value of jrj for random data, henceforth denoted as

jrjrand, is a baseline for how large jrj needs to be to in-

dicate actual sensitivity. Therefore, jrj2 jrjrand is used as

the preferred measure of sensitivity in this paper, such

that a value of zero indicates no sensitivity. The ex-

pected value of jrjrand was estimated empirically, using

the mean jrj from 100 000 regressions with randomly

ordered independent and dependent variables contain-

ing integers from 1 to 101. For one dependent variable

and six independent variables (representing perturba-

tions in temperature, humidity, pressure, and each

component of the three-dimensional wind), jrjrand is

approximately equal to 0.235. The maximum value of

sensitivity is approximately 0.765, which occurs when

r2 5 1.

Lead time is defined as the time between when the

perturbations and the forecast responses are recorded.

For example, perturbations taken 45min into the sim-

ulation for forecast responses an hour into a simulation

would correspond to a lead time of 15min. For a given

lead time, sensitivity can have a large variability de-

pending on when throughout the simulation the per-

turbations and forecast responses were recorded. To

identify areas of consistently large sensitivity, a time-

averaged forecast sensitivity is used, such that for a

given location (or area) and lead time, the sensitivity

throughout the simulation is averaged.

3. Ensemble sensitivity

This section presents results of ensemble sensitivity at

500m above ground level, where an unmanned aircraft

would sample the planetary boundary layer. Single-

variable and multivariable sensitivity are presented to-

gether to assess whether there is a clearer signal of

multivariable sensitivity arising from the combined

sensitivity of the forecast response to multiple pertur-

bation variables.

Sensitivity of composite reflectivity at a 20-min lead

time to potential temperature is generally positive, with

the exception of a corridor of negative sensitivity

extending southeast of the mesocyclone (Fig. 4a). The

pattern is generally inverted for water mixing ratio

(Fig. 4c), with the exception of the rear-flank downdraft

region, which also shows positive sensitivity. Addition-

ally, there is generally negative sensitivity to pressure

throughout the rear-flank region (Fig. 4e), that generally

decreases with longer lead times (Fig. 4f). There is a

positive sensitivity to the y-wind component across

much of the inflow region, with the exception of the far
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southwest area and along the forward-flank gust front

(Fig. 4i). Across all variables considered, the sensitivity

generally decreases with time and the correlations are

low. However, the spatial patterns in sensitivity remain

similar through lead times of exceeding 40min. The

multivariable sensitivity at a 20-min lead time (Fig. 5a)

shows several maxima including near the mesocyclone

and in the far south region of the forward-flank inflow.

FIG. 5. Multivariable sensitivity of composite reflectivity shown at

lead times of (a) 20min, (b) 40min, and (c) in a time series.

FIG. 4. Single-variable sensitivity of composite reflectivity at lead

times of 20 and 40min.
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However, the sensitivity is small relative to the maxi-

mum possible sensitivity (0.765) and decreases signifi-

cantly in time (Figs. 5b,c) becoming statistically

insignificant in all regions by a ;40-min lead time

(Fig. 5c).

The overall spatial pattern for hail mixing ratio sen-

sitivity at the lowest model level at a lead time of 20min

is similar to that of composite reflectivity in the potential

temperature and water vapor fields (Figs. 6a,c), though

with the signs of the correlation reversed (cf. Figs. 4a,c).

In many respects, the spatial patterns of the u- and

y-wind fields are similar to each other (Figs. 6g–j), with

an area of positive sensitivity in the southwest half of the

rear-flank inflow region and a band of negative or lower

sensitivity to the northeast. There is no discernable

pattern to sensitivity in the w-wind field at either a

20-min lead time (Fig. 6k) or 40-min lead time

(Fig. 6l). Unlike composite reflectivity, the sensitivity for

potential temperature and water vapor mixing ratio re-

verses sign in forward-flank inflow between lead times of

20 and 40min (Figs. 6a–d). For the multivariable sensi-

tivity (Fig. 7), the strongest sensitivity is in outflow air

near the base of the mesocyclone and within the rear-

flank inflow. Similar to composite reflectivity, both the

single and multivariable sensitivities decrease sub-

stantially over time (Figs. 6 and 7c). The reasons for

the patterns of sensitivity in composite reflectivity

(Figs. 4–5) and hail mixing ratio (Figs. 6–7) are not clear,

though the results suggest that there is weak sensitivity

to the structure and characteristics of the inflow region

of the storm.

Figure 8 shows the single-variable sensitivity of 2–5-km

updraft helicity, with the most notable features at a lead

time of 20min being positive sensitivity to the y wind

throughout the inflow region (Figs. 8i,j), positive sensi-

tivity to uwind in the rear-flank regions (Figs. 8g,h), and

negative sensitivity to u wind in the forward-flank re-

gions (Figs. 8g,h). Additionally, there is generally

positive sensitivity to potential temperature in the in-

flow region and negative sensitivity in the downdraft

regions (Figs. 8a,b). Physically, these signals may in-

dicate the sensitivity of the mesocyclone to conver-

gence. For the multivariable sensitivity, there is a large

area of strong sensitivity in the southwest corner of

the rear-flank inflow region and a second area of

sensitivity a few kilometers north of the forward-flank

gust front at a 20-min lead time (Fig. 9a). These spatial

patterns remain at a lead time of 40min (Fig. 9b). The

sensitivity of the mesocyclone to perturbations in the

forward flank near the gust front is physically reason-

able considering that the mesocyclone is likely im-

pacted by vorticity generation in this region. Overall,

sensitivity decreases with increasing lead time (Fig. 9c),

but, unlike composite reflectivity (Fig. 5c) and lowest-

model-level hail (Fig. 7c), overall sensitivity remains

significant through lead times approaching 60min,

though values remain well below the maximum possible

sensitivity.

The lowest-model-level vertical vorticity exhibits the

strongest sensitivity of all forecasts response variables.

Vertical vorticity exhibits particular sensitivity to wa-

ter vapor near the mesocyclone at a lead time of 20min

(Fig. 10c) and also the near-storm rear-flank inflow at a

lead time of 40min (Fig. 10d). In general, at a lead time

of 40min, the single-variable sensitivity shows very

similar structure to the composite reflectivity and hail

mixing ratio, though the overall sensitivity is stronger.

For multivariable sensitivity (Fig. 11), sensitivity is

relatively large (cf. other forecast response variables)

north of the gust front and near the mesocyclone at

both 20- and 40-min lead times (Figs. 11a,b), corre-

sponding with the strong sensitivity from water vapor

in that region. This signal in sensitivity remains

through a lead time of 60min (not shown). There is also

significant sensitivity near in the rear-flank inflow re-

gion, particularly at a lead time of 20min (Fig. 11a).

Overall, the sensitivity for the lowest-model-level

vertical vorticity remains significant through all lead

times of 60min (Fig. 11c).

Although the sensitivity calculations appear to show

some coherent patterns, particularly in the inflow re-

gion and near the base of the mesocyclone, the overall

strength of the sensitivity is generally low relative

to the maximum possible sensitivity (21 and 1 for

single-variable sensitivity, 0.765 for multivariable

sensitivity). The generally weak sensitivity suggests

that targeted observations based on the methods

presented in this paper should produce small forecast

improvements. The strongest and most coherent areas

of sensitivity were in the forward-flank inflow, far-field

rear-flank inflow, near the mesocyclone, and along the

forward-flank gust front. However, areas of strong

sensitivity are not necessarily due to physical pro-

cesses that actually affect the strength of the storm at a

later time and even large coherent reasons of sensi-

tivity may be due to autocorrelation. Therefore, vali-

dation of the ensemble sensitivity is required and will

be examined in section 4.

Autocorrelation may have a significant impact on

the results even in the far field. Recall that analysis

focuses on the sensitivity of forecast response vari-

ables to perturbations at 500m above ground level

where initial conditions across all ensemble members

are identical, beyond random gridpoint noise. Thus,

any perturbations in the inflow other than the ran-

dom gridpoint noise must be induced by the storm.
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However, just because the storm induces perturba-

tions in the inflow does not guarantee that these per-

turbations will be correlated to the future state of the

storm. That these high correlations are found in this

analysis can be attributed to one or both of the fol-

lowing explanations: 1) storm-induced perturbations

cause changes in storm strength and/or 2) autocorre-

lation; that is, the storm perturbs the inflow with a

FIG. 7. Multivariable sensitivity of lowest-model-level hail mix-

ing ratio shown at lead times of (a) 20min, (b) 40min, and (c) in

a time series.

FIG. 6. Single-variable sensitivity of lowest-model-level hail mixing

ratio at lead times of 20 and 40min.
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magnitude that scales directly with storm strength,

storm strength in the future is autocorrelated with

current storm strength, thus, the inflow and future

storm strength are correlated.

In an effort to evaluate the potential role of auto-

correlation on the results, ensemble sensitivity was also

calculated at negative lead times; that is, the same

formulas presented earlier are used but with the

FIG. 8. Single-variable sensitivity of 2–5-km updraft helicity at lead

times of 20 and 40min.

FIG. 9.Multivariable sensitivity of 2–5-km updraft helicity shown at

lead times of (a) 20min, (b) 40min, and (c) in a time series.
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forecast response at a time prior to the perturbations.

In many instances, the sensitivity is at least as strong at

negative lead times as at positive lead times. Figure 12

shows the single-variable sensitivity for composite re-

flectivity and lowest-level vertical vorticity at a lead

time of 220min. The spatial pattern of sensitivity of

lowest-level vertical vorticity to all six perturbation

variables are very similar, although the magnitudes of

FIG. 10. Single-variable sensitivity of lowest-model-level vertical

vorticity at lead times of 20 and 40min.

FIG. 11. Multivariable sensitivity of lowest-model-level vertical

vorticity shown at lead times of (a) 20min, (b) 40min, and (c) in

a time series.
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the sensitivity are larger at 220min than at 20min (cf.

Figs. 10 and 12). This differs for composite reflectivity,

in which only the spatial patterns for potential tem-

perature and humidity are similar at 220min and

20min (cf. Figs. 4 and 12). The similarity in spatial

patterns of sensitivity between positive and negative

lead times, particularly for lowest-model-level vertical

vorticity, suggests that autocorrelation may be con-

tributing to the sensitivity seen at positive lead times.

As noted above, an autocorrelation signal alone does

not necessarily devalue the possible impact of targeted

observation of these regions on forecast response, but it

raises questions about the degree to which ESA is a

reliable measure of the magnitude this possible impact.

Further complicating interpretation of the sensitivity

is the correlation between the perturbation variables

(Fig. 13), which has implications on targeting observa-

tions. Although there are many overlapping areas of

stronger sensitivity to single perturbation variables,

these structures are generally not present in the multi-

variable calculations, which account for the covariances

between the perturbation variables. For example, in the

inflow region, warmer temperatures are correlated with

less moisture (Fig. 13a) and, through much of the

downdraft regions, warmer temperatures are associated

with increasing humidity, likely related to evaporation

in the downdraft (Fig. 13a). When assimilating these

observations, updating potential temperature should

also update moisture, which is strongly correlated, and

therefore there is less value to the water vapor obser-

vation in improving the storm forecast. Likewise,

warmer conditions are associated with increasing values

of y wind in the downdraft region (Fig. 13j), probably

indicating that warmer conditions mean a weaker

northerly wind in the downdraft. There are other strong

relationships such as a negative relationship between

pressure and y wind through the entirety of the inflow

region (Fig. 13f), a strongly positive relationship be-

tween pressure and uwind throughout the forward-flank

inflow region, and correlations between w wind and

other perturbation variables along the gust front

(Figs. 13i,k–n). Also of note is that the pattern of y-wind

sensitivity in the inflow region that appears in many of

the single-variable ESA calculations is very similar to

the covariance between y wind and both potential tem-

perature (Fig. 13j) and water vapor mixing ratio

(Fig. 13h). The presence of strong covariances between

perturbation variables complicates the interpretation of

the sensitivity calculations, and because the multivari-

able sensitivity accounts for the covariances, there may

be value in using themultivariable sensitivity despite the

noisy characteristics of the sensitivity.

4. ESA validation

In an effort to assess whether the subtle sensitivity

signals are deterministic or merely statistical artifacts

(i.e., whether or not sensitivity is associated with physi-

cal processes that affect storm strength), two validation

methods are implemented. The first is statistics based

FIG. 12. Single-variable sensitivity of composite reflectivity and

lowest-model-vertical vorticity at a lead time of 220min.

JUNE 2018 L IMPERT AND HOUSTON 1715



while the second involves perturbed initial condition

experiments that are somewhat similar to those per-

formed by Wile et al. (2015).

The first approach involves withholding a single en-

semble member, chosen at random, from the multivar-

iable sensitivity calculations. The result is a linear model

based on the 100 remaining ensemble members that

relates the perturbations at a particular grid point to the

forecast response, using the same methods discussed in

section 2. The linear model is then used to predict the

forecast response based on the actual perturbations of

the withheld ensemble member. The predicted forecast

FIG. 13. Correlations between all of the perturbation variables.
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response is compared against the actual response, and it

is hypothesized that if the ESA is valid, larger sensitivity

in jrj and jrj 2 jrjrand should be associated with smaller

differences between the predicted and actual forecast

response. For each 2 km 3 2km bin with at least four

times contributing to the time-averaged sensitivity, the

aforementioned approach was employed three times

with different ensemble members chosen at random to

compare predicted and actual sensitivity.

For Fig. 14, jrj is binned into increments of 0.01, and

within each bin, the distribution of the difference in

predicted and actual response is shown. For composite

reflectivity, there is no clear decrease in the difference

between the predicted and actual forecast response with

stronger correlations. This suggests that the areas of

sensitivity for composite reflectivity are statistical noise

rather than signal. Likewise, there is no clear improve-

ment for lowest-model-level hail mixing ratio. For the

2–5-km updraft helicity, the errors do decrease with

stronger sensitivity. There is a similar but weaker trend

for the lowest-model-level vertical vorticity. This sug-

gests that the sensitivity for composite reflectivity and

lowest-model-level mixing ratio does not reflect physical

processes affecting storm strength while the sensitivity

for lowest-model-level vertical vorticity and 2–5-km

updraft helicity is more likely to be associated with

perturbations that do impact the storm at future times.

These results offer some support for the validity of

ESA for updraft helicity and low-level vertical vorticity.

However, the validity of individual regions can be tested

by perturbing the initial conditions, or in this case, in-

troducing perturbations during the simulation, to dem-

onstrate that the perturbations do result in a change in

forecast response. Although the approach of Wile et al.

(2015) guided the formulation of this approach, there is

not an obvious statistical technique to provide a single

metric relating the correlation between six perturbation

variables at one grid point and six perturbation variables

at another grid point. However, the general approach of

perturbing regions rather than grid points is employed

by identifying a location of relatively strong sensitivity

with respect to the surrounding area and delineating the

boundaries of the region based on aminimum threshold.

For experiments on vertical vorticity, a minimum sen-

sitivity threshold of 0.18 is used; for updraft helicity, the

threshold is 0.09. Perturbations are introduced for all six

of the perturbation variables, with the relative magni-

tude for each variable determined by b [(1)] at the lo-

cation of maximum sensitivity within the region that is

delineated. The standard deviation s of each perturba-

tion variable is also calculated at that location. For each

perturbation variable i, ki 5 si/bi is calculated as a

scaling factor for the perturbations, and the largest jkij,

denoted as k, is chosen as the scaling factor. Thus, the

perturbation vector at the point of maximum sensitivity

is defined by b/k. At each other point within the region,

the perturbation vector is scaled by the ratio of the

sensitivity at that point to themaximum sensitivity in the

region. Because the level of perturbations is at 500m,

which occurs directly between two vertical levels, the

perturbations are applied at the two surrounding verti-

cal levels. The sensitivity is interpolated for the model

points with u and y winds. Because the model levels for

w winds include 500m, to ensure that the same number

of points is perturbed, the perturbations are also in-

troduced at 400m. The resulting set of perturbations is a

three-dimensional matrix, denoted as Ppert. A Gaussian

smoothing kernel is applied toPpert, the result of which is

henceforth referred to as Psmooth 5 gauss(Ppert), in order

to avoid introducing discontinuities. The kernel has a

horizontal width of 11 points and a vertical width of 21

points, with a s of 1 in all dimensions. The final set of

perturbations is the maximum value of the twomatrices,

P5max(Ppert, Psmooth). The ensemble control member,

which should be close to the ensemble mean, is also used

as a control simulation for these experiments. For each

set of initial conditions, a pair of perturbed initial con-

ditions are created, one by adding P to the initial con-

ditions (which should yield an increase in the forecast

response variable), and one by subtracting P from the

initial conditions (which should yield a decrease in the

forecast response variable).

Three sets of experiments are performed: two using

vertical vorticity as the forecast response variable, and

one with updraft helicity as the forecast response, using

the sensitivity at lead times of 20min. The two regions

for vertical vorticity (Fig. 15a) are located near the

mesocyclone (denoted ‘‘region 1’’) and on the southwest

edge of the rear-flank inflow region (denoted ‘‘region

2’’). For updraft helicity, an area of sensitivity east of the

mesocyclone is used (Fig. 15b). Initial conditions are

selected at 5-min intervals from 45min into the simula-

tion until 100min, resulting in 12 pairs of initial condi-

tions for region selected to be perturbed. All of the

simulations are integrated forward 20min to determine

the impact of the perturbations on the forecast response.

These results are analyzed by subtracting the per-

turbed simulation forecast response from the control

simulation forecast response and will be referred to as

response difference. For each set of perturbations

(negative or positive), the value of the response differ-

ence in many of the simulations is clustered around zero

with significant variability (Table 1). This is unsurprising

because of the significant variability from one time to

the next in the ensemble sensitivity prior to applying the

domain averaging. However, when the region east of the
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mesocyclone is perturbed (region 1), the sign of

the perturbation generally matches the sign of the mean

vertical vorticity response difference, beyond a lead

time of 5min (Table 1). Moreover, the separation be-

tween the mean response difference for positive per-

turbations and the mean response difference for

negative perturbations is largest at the longest lead time

considered. The consistency between the sign of the

perturbations and the sign of the response difference is

generally not seen for vertical vorticity and perturba-

tions imposed in region 2. Furthermore, the magnitudes

of the mean response difference are much smaller than

for region 1. The response difference for updraft helicity

shows a consistent relationship between the sign of the

perturbation and the sign of the mean response differ-

ence for lead times less than 15 (Table 1). Moreover, the

largest mean response difference for positive perturba-

tions is seen at the longest lead time considered.

The opposite signs of the response difference and the

perturbations for region 1 and a lead time of 5min

(Table 1) would seem to be inconsistent with the finding

that the highest average sensitivity in the rear-flank

downdraft is found at shorter lead times not longer lead

times (Fig. 11c). However, the pattern reflected in the

perturbed initial condition experiments suggests that the

sensitivity at shorter lead times may actually be due to

autocorrelation.

Relating the actual and predicted forecast response to

the correlation suggests that when considering all points

in the domain, much of the sensitivity for the composite

reflectivity forecast response variable is actually a sta-

tistical artifact. These results do indicate, however, that

for the other forecast response variables, there may ac-

tually be some real signal in the sensitivity for those

variables. The results from the perturbed initial condi-

tion experiments suggest that the sensitivity around the

mesocyclone for low-level vertical vorticity and along

the forward-flank gust front for updraft helicity may be

associated with physical processes that affect storm

strength. It is less clear whether there is an actual signal

in the area of high sensitivity in the rear-flank inflow

region for low-level vertical vorticity.

FIG. 14. The difference between predicted and actual forecast response depending on sensitivity across all

(5–60min) lead times for the forecast response variables. The blue scatterplot is the 25th percentile of the difference

at that correlation level, the green scatterplot is themean difference at that correlation level, and the red scatterplot

is the 75th percentile at that correlation level.
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5. Conclusions

This paper presented the results of ensemble-based

sensitivity analysis applied at the scale of an individual

supercell, as opposed to previous work at the mesoscale

and synoptic scale. The impetus for conducting this re-

search was to inform the use of unmanned aircraft ob-

servations for targeted observations of the planetary

boundary layer near supercell thunderstorms, to im-

prove prediction at lead times out to one hour. Because

unmanned aircraft are capable of observing multiple

variables simultaneously, this study investigated using

the multiple regression to compute a single metric of

sensitivity encompassing all of the observed variables.

Prior work applying ESA has used the slope of the

linear regression line between a single perturbation

variable and a single forecast response variable as a

metric of sensitivity. For targeted observations where

multiple variables are observed simultaneously, there

are two advantages from using the multiple regression.

First, the multiple regression provides a single metric

that quantifies the sensitivity of the forecast response to

all of the observed variables, which is easier to interpret

than performing a separate linear regression for each

observed variable. Second, the multiple regression ac-

counts for covariances between perturbation variables,

which is useful in estimating the true impact of assimi-

lating those variables. Results presented from this work

show that covariances between perturbation variables

might explain some of the simulated single-variable

sensitivities.

One of the primary challenges in storm-scale ESA is

identifying which areas of sensitivity in the storm envi-

ronment actually correspond to physical processes that

affect the strength of the storm at a later time. Supercell

thunderstorms are capable of inducing substantial

modifications to their environment (e.g., Brooks et al.

1994; Potvin et al. 2010; Nowotarski and Markowski

2016) and these modifications can induce feedbacks that

affect the strength of the storm. The results presented

here suggest that the storm-induced environmental

perturbations are sensitive to the strength of the storm at

an earlier time, and some of those perturbations may

impact the strength of the storm at a later time. The

FIG. 15. Perturbations introduced to test the impact on lowest-

model-level vertical vorticity and updraft helicity. Sensitivity is

shaded, simulated reflectivity is plotted in solid white lines in in-

crements of 10 dBZ, the mesocyclone is the green circle, the par-

tition between the rear- and forward-flank regions is the dashed

green line, and the solid green line is the gust front. The region

perturbed is outlined by a dashed white line, though small per-

turbations may extend beyond this region because of the Gaussian

smoothing.

TABLE 1. The mean and standard deviation of the difference between the perturbed and unperturbed simulations. Italicized text denotes

where the sign of the mean is opposite to that of the perturbation.

5min 10min 15min 20min

Lowest-model-level vertical vorticity (region 1) (31025 s21)

Positive 228.14 6 108.84 53.87 6 132.59 11.92 6 390.21 139.97 6 582.25

Negative 26.72 6 104.08 278.13 6 131.35 273.22 6 365.86 2219.58 6 514.78

Lowest-model-level vertical vorticity (region 2) (31025 s21)

Positive 0.009 6 0.058 0.045 6 0.266 21.494 6 3.637 25.101 6 11.825

Negative 20.020 6 0.039 0.098 6 0.263 22.289 6 5.067 23.026 6 8.753

2–5-km updraft helicity (m2 s22)

Positive 0.075 6 0.913 0.746 6 2.836 20.627 6 3.781 3.588 6 6.505

Negative 20.132 6 1.093 20.807 6 2.608 0.383 6 4.048 0.574 6 3.142
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difficulty in interpreting these results is determining

which areas of apparent sensitivity in the environment

contribute to the strength of the storm at a later time and

which do not.

To assess whether the sensitivity corresponds to a

physically meaningful relationship, three regions of

sensitivity were selected for perturbed initial condition

experiments. In these experiments, pairs of perturba-

tions were introduced based on the coefficients of the

linear regression model, with one member of the pair

predicted to increase the forecast response variable and

the other member predicted to result in a decrease.

Additionally, an experiment was performed in which

one ensemble member was withheld from sensitivity

calculations, a linear model was computed for the

remaining ensemble members, and the linear model was

tested using the perturbations and forecast response

from the withheld ensemble member. Results suggest

that targeting observations based on these sensitivity

calculations could impact forecast accuracy. However,

because of the high levels of spread in the results, it is

likely that instances in which targeted observations yield

forecast improvement will coexist with numerous in-

stances in which such observations result in little to no

improvement.

There is a bevy of prior work either identifying

physical processes associated with regulating supercell

strength and demonstrating sensitivity to low-level

perturbations (e.g., Dahl et al. 2014; Markowski and

Richardson 2014; Naylor and Gilmore 2014; Weiss

et al. 2015; Orf et al. 2017), some of which even used

theCM1 model also used in this study. This suggests

that supercell strength should be sensitive to low-level

perturbations and that the model is certainly capable of

reproducing many of the processes that would modu-

late supercell strength. The results of the sensitivity

calculations in this paper cannot be explained as an

actual lack of sensitivity of supercell strength to low-

level perturbations, nor a failure of theCM1 model to

simulate these processes. Therefore, it is logical that

the low values of sensitivity and highly uncertain in-

ferred impact of targeted storm-scale observations are

due to the limitations of the methods for calculating

ensemble sensitivity. The results from experiments

presented in this article, along with numerous others

conducted by the authors but excluded for brevity, lead

to the conclusion that making incremental improve-

ments to the methodology employed in this paper will

not produce significantly improved signals in the sen-

sitivity. Instead, it is posited that applying a linear

model similar to ensemble sensitivity analysis on the

scale of a supercell thunderstorm is inherently lim-

ited because of the importance of highly nonlinear

dynamics and error growth coupled with rapid changes

in forecast metrics. These results should not be gener-

alized to a conclusion that the problem of targeting

observations on the scale of a supercell thunderstorm is

an intractable one, but rather that linear models such as

ensemble sensitivity analysis are suboptimal when used

in isolation and that future work should explore supe-

rior approaches to informing targeted observations of

supercells.
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