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What Don’t RNN Language Models Learn
About Filler-Gap Dependencies?

Rui P. Chaves
Linguistics Department

University at Buffalo – SUNY
rchaves@buffalo.edu

Abstract

In a series of experiments Wilcox et al.
(2018, 2019b) provide evidence suggesting
that general-purpose state-of-the-art LSTM
RNN language models have not only learned
English filler-gap dependencies, but also some
of their associated ‘island’ constraints (Ross,
1967)). In the present paper, I cast doubt on
such claims, and argue that upon closer inspec-
tion filler-gap dependencies are learned only
very imperfectly, including their associated is-
land constraints. I conjecture that the LSTM
RNN models in question have more likely
learned some surface statistical regularities in
the dataset rather than higher-level abstract
generalizations about the linguistic mecha-
nisms underlying filler-gap constructions.

1 Introduction

Recurrent Neural Networks (RNNs) are a class of
abstract neural network where the connections be-
tween nodes consist of a directed graph along a
temporal sequence. This architecture allows node
outputs at current time step to depend on the cur-
rent input as well as on the previous output state.
Thus, the network can exhibit temporal dynamic
behavior, since the internal state of the system is a
kind of memory that can be used to process sub-
sequent input. Such models are therefore well-
suited for natural language tasks, among others.
RNNs with a Long Short-Term Memory (LSTM)
architecture have a far more elaborate and selec-
tive form of memory. A common LSTM node is
composed of a cell, an input gate, an output gate
and a forget gate. Such gates enable RNN nodes
to remember values over arbitrary time intervals
and the three gates regulate the flow of informa-
tion into and out of the nodes.

LSTM RNNs are therefore better suited than
plain RNNs to model long-distance dependencies
of the kind found in natural languages (Linzen

et al., 2016; Gulordava et al., 2018; Bernardy and
Lappin, 2017). This includes filler-gap dependen-
cies like (1), where the wh-phrase what is inter-
preted as the object of do, even though the two
words are separated by four clausal boundaries as
indicated by square brackets.

(1) Whati do you think [the students will say
[they believe [the TA claimed [he was trying
to do i]]]]?

I refer to the ‘extracted’ phrase as the filler and
to the canonical position where it would otherwise
be realized as the gap, signaled via an underscore.
The filler-gap dependency is the semantic and syn-
tactic linkage that must be established between the
filler and its in situ canonical location in order for
such utterances to be interpretable.

1.1 Learning Filler-Gap dependencies
Recently, Chowdhury and Zamparelli (2018) pro-
vide some evidence that LSTM RNNs can store
information about the filler phrase, and detect that
the probability of the sentence-final NP in exam-
ples like (2) is low because of the presence of a
filler-gap dependency.

(2) Whoi should Mia discuss i / *this candidate.

Wilcox et al. (2018) improve on this work,
and propose a Surprisal-based (Hale, 2001; Levy,
2008) differences-within-differences design to
measure the ability of the RNN to learn filler-gap
dependencies, using a factorial design as in (3).

(3) a. I know that the lion devoured a gazelle at
sunrise.
[NO WH-LICENSOR, NO GAP]

b.*I know what the lion devoured a gazelle
at sunrise.
[WH-LICENSOR, NO GAP]
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c.*I know that the lion devoured at sunrise.
[NO WH-LICENSOR, GAP]

d. I know whati the lion devoured i at sun-
rise.
[WH-LICENSOR, GAP]

Wilcox et al. define S(w) as the surprisal of a
given word w, estimated in terms of the log in-
verse probability of w according to the RNN’s hid-
den state softmax activation h before consuming
w, given all previous words in the sentence:

(4) S(w) = �log2 p(w|h)

If the model has learned to represent filler-gap
dependencies, then the surprisal of the proposi-
tion at in (3a) should be a small number, since
the probability of at in this context is high, and
the surprisal of ‘at’ in (3b) should be a large num-
ber, since the probability of ‘at’ in this context is
low. Consequently, their difference S(3b)�S(3a)
should yield a large positive number. Similarly,
S(3d)� S(3c) should yield a large negative num-
ber, and the full licensing interaction (S(3b) �
S(3a)) � (S(3d) � S(3c)) should be a large pos-
itive number. This licensing interaction represents
how well the network learns both parts of the li-
censing relationship: a positive wh-licensing inter-
action means the model represents a filler-gap de-
pendency between the wh-word and the gap site;
a licensing interaction indistinguishable from zero
indicates no such dependency. Wilcox et al. find
that typical models show about 4 bits of licensing
interaction in simple examples like (3).

Using this design, Wilcox et al. (2019b) found
that LSTM RNNs can maintain filler-gap depen-
dencies across up to four clausal boundaries, not
unlike the ones in (1). Two models were used
for these experiments: (i) the model in Gulordava
et al. (2018) – henceforth the Gulordava model –
which was trained on 90 million tokens of English
Wikipedia, and has two hidden layers of 650 units
each; and (ii) Jozefowicz et al. (2016) – hence-
forth the Google model – which was trained on
the One Billion Word Benchmark (Chelba et al.,
2013), has two hidden layers with 8196 units each,
and employs a character-level convolutional neu-
ral network.

But more recently Da Costa and Chaves (2020)
shows that the Gulordava and Google LSTM mod-
els have learned filler-gap dependencies only very
imperfectly. In particular, the models completely
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Figure 1: Surprisal at the gap-agreeing verb in ‘which’
interrogatives across embedding levels (LSTM RNNs)

failed to learn that filler-gap constructions also im-
pose agreement dependencies like those in (5). In
such constructions, the singular/plural number in-
formation of the extracted phrase must match that
of the verb from which the extraction takes place.

(5) a. They wondered which lawyer I think you
said was/*were upset.

b. They wondered which lawyers I think you
said *was/were upset.

Following the same factorial approach and code
of Wilcox et al. (2018), Da Costa and Chaves
(2020) extracted the softmax activation of the
verbs were/was in 20 items like those illustrated
in (6), up to four levels of clausal embedding.

(6) a. Someone wondered which lawyer(s) I
think was/were ...
[Nsg/pl , LEVEL1, Vsg/pl]

b. Someone wondered which lawyer(s) I
think you said was/were ...
[Nsg/pl , LEVEL2, Vsg/pl]

c. Someone wondered which lawyer(s) I
think you said you thought was/were ...
[Nsg/pl , LEVEL3, Vsg/pl]

d. Someone wondered which lawyer(s) who
people believe I think you said you
thought was/were ...
[Nsg/pl , LEVEL4, Vsg/pl]

The results in Figure 1 show that both the Gu-
lordava and the Google models failed. Had the
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LSTM RNNs succeeded at this task, the condi-
tions where the noun and verb agree (i.e. Npl-Vpl

and Nsg-Vsg) would be lower in surprisal than
the conditions where the agreement is mismatched
(i.e. Npl-Vsg and Nsg-Vpl). Note also that in the
Google model surprisal increased with the level of
embedding, so that the correct verb form is more
unexpected in level 4 than the incorrect verb forms
in levels 1 and 2. Da Costa and Chaves (2020)
tested other types of construction and the results
are equally bad, suggesting that the Gulordava and
Google models have not learned the morphosyntax
of filler-gap dependencies, even though they were
trained on datasets larger than what a child learner
is exposed to; according to Atkinson et al. (2018),
children begin to exhibit adult-like active forma-
tion of filler-gap dependencies by age 6.

1.2 Learning Island Constraints
Wilcox et al. (2018, 2019b) in addition claim
that the Gulordava and Google models have
learned certain constraints on filler-gap dependen-
cies known as Islands (Ross, 1967). In partic-
ular, Wilcox et al. claim that the models learn
that the subordinate clauses introduced by whether
have reduced acceptability as in (7a), that relative
clauses and adverbial adjuncts are difficult to ex-
tract from as in (7b,c), and that conjuncts and the
left branches of NP are not possible to extract, as
in (7d,e). All reported examples below are from
Wilcox et. al experiments. Square brackets indi-
cate the island-establishing environments.

(7) a.* I know what Alex said [whether your
friend devoured at the party].
(Wh-Island)

b.*I know (that/what/who) the family bought
the painting [that depicted last year].
(Complex NP Constraint Island)

c.*I know what the patron got mad [after
the librarian placed on the wrong shelf].
(Adjunct Constraint Island)

d.*I know what the man bought [the painting
and ] at the antique shop.
(Conjunct Constraint island)

e.*I know what color you bought [ car] last
week.
(Left Branch Constraint island)

However, Wilcox et.’s claims are too strong.
First, most of these island constraints are more

complex than Wilcox et. al’s discussion suggest,
and before it cannot be claimed that a model learns
island constraints before all the associated condi-
tions are shown to have been learned as well. For
example, the Conjunct Constraint is but a piece
of a larger set of constraints that are specific to
coordination, known as the Coordinate Structure
Constraint (CSC). The CSC consists of the Con-
junct Constraint, the Element Constraint, the ATB
Exception, and the Asymmetric Exception; see
Kehler (2002, Ch.5) for a detailed overview and an
account of most of these constraints that is based
on pragmatic discourse relations.

The Complex NP Constraint (CNPC) is simi-
larly complex. First, it is not restricted to relative
clauses: nouns that semantically introduce propo-
sitional complements like in the claim that Robin
stole a book also induce such extraction limita-
tions (e.g. *Whati did you reject the claim [that
Robin stole i]?’). Second, it is also known that
the CNPC vanishes in presentational relatives (i.e.
in relatives that express assertions rather than pres-
supposed content), as we discuss below.

Moreover, some of the island constraints that
Wilcox et al. probed are know to be weakened
when the island phrase is untensed, and vanish al-
together if there is a secondary (i.e. ‘parasitic’) gap
outside the adjunct (Engdahl, 1983); see Phillips
(2006) for experimental evidence. In sum, there is
a complex array of facts that still need to be tested.

Finally, the Left Branch Constraint (LBC) items
that Wilcox et al. used, like (7e), have a critical
confound. The sentences are not licit even without
the extraction (i.e. *what color car). And since the
sentences are ill-formed, with or without extrac-
tion, it remains unclear whether the RNNs have or
not learned the LBC.

But even conceding that the results are over-
all on the right track, there is one final problem.
Both the Gulordava and Google models failed to
learn that extraction from subject phrases (phrasal
or clausal) is hampered, as illustrated in (8).

(8) a.*I know who [the painting by ] fetched a
high price at auction.
(Subject Constraint Island)

b.*I know who [for the seniors to defeat ]
will be trivial.
(Sentential Subject Constraint Island)

The difficulty in learning clausal Subject Island ef-
fects is unexpected because such islands are much
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stronger than Wh-islands. Not only the oddness
induced by a Wh-island constraint violation is less
pronounced than that of clausal Subject islands,
but also because counterexamples to the former
are much easier to find. Compare (7) with the ac-
ceptable counterpart in (9).

(9) Which shoes are you wondering [whether
you should buy ]?

See Abrusán (2014, Ch.4) for strong evidence that
Wh-islands and their exceptions are contingent on
subtle semantic-pragmatic factors, not syntax. In-
deed, there is growing evidence that many island
constraints are at least in part due to non-syntactic
factors, including pragmatics and processing bi-
ases; see Chaves and Putnam (2020) for a de-
tailed overview. For example, counterexamples
have been noted in the literature to all of the is-
land constraints probed by Wilcox et al., with the
exception of the Conjunct Constraint and the Left
Branch Constraint islands; see Hofmeister and Sag
(2010) and references cited. This includes Sub-
ject Islands involving VP subjects, as in the at-
tested data in (10). See Huddleston et al. (2002,
1093,1094), Santorini (2007), and Chaves (2013)
for more attestations.

(10) a. In his bedroom, which [to describe as
small] would be a gross understatement,
he has an audio studio setup.
[pipl.com/directory/name/Frohwein/Kym]

b. They amounted to near twenty thousand
pounds, which [to pay ] would have ru-
ined me. (Benjamin Franklin, William
Temple Franklin and William Duane.
1834. Memoirs of Benjamin Franklin, vol
1. p.58)
[archive.org/details/membenfrank01frankrich]

c. The (...) brand has just released their S/S
2009 collection, which [to describe as
noticeable] would be a sore understate-
ment.
[missomnimedia.com/2009/page/2/?s=art+radar&

x=0&y=0]

d. Because this does purport to be a food
blog, I will move from the tv topic to the
food court itself, which [to describe as
impressive] would be an understatement.
[phillyfoodanddrink.blogspot.com/2008/06/foodies-

food-court.html]

All of these counterexamples involve restrictive
relative clauses, suggesting that the Subject Con-
dition is sensitive to pragmatics (Abeillé et al.,
2018; Chaves and Dery, 2019).

The point here is a cautionary one: many is-
land constraints are not absolute, and come with
a complex array of patterns, many of which are
still poorly understood. It cannot be claimed that
a given language model has learned an island con-
straint before showing that both the negative and
the positive cases (if any exist) have been correctly
learned as well.

Note also that the Gulordava and the Google
models did not perform in the same way at learn-
ing these island constraints: whereas the Google
model failed to learn CNPC islands when the word
‘that’ appears instead of ‘who/what’, the Gulor-
dava model failed to learn Wh-Islands. The perfor-
mance of the Google was not significantly better
that Gulordava’s even though the former was orig-
inally trained with ten times more data than the
latter, contained ten times as many hidden units,
and used character CNN embeddings. This again
suggests that something fundamental about filler-
gap dependencies is being missed.

The question then becomes: are these mod-
els actually learning filler-gap dependencies or are
they simply learning surface-based contingencies
that have little to do with the underlying syntactic
and semantic mechanisms that cause island phe-
nomena? As Jo and Bengio (2017) demonstrate,
neural networks tend to learn surface statistical
regularities in the dataset rather than higher-level
abstract concepts; for adversarial research show-
ing this to be the case in the language domain
see Jia and Liang (2017) and Iyyer et al. (2018),
for instance. Indeed, Marvin and Linzen (2018)
found that LSTM RNNs fail to learn reflexive pro-
noun agreement and negative polarity licensing,
and Wilcox et al. (2019a) showed that such mod-
els learn center-embedding dependencies only im-
perfectly. In the remainder of this paper the same
models, code and licensing interaction approach
of Wilcox et al. (2018) is used to provide evidence
suggesting that these LSTM RNNs merely capture
partial and superficial morphosyntactic properties
of filler-gap dependency constraints. The present
results are consistent with those of Wilcox et al.
(2019a), in which these models are not fully able
to suppress expectations for gaps inside at least
some island environments and recover them later.
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2 Extraction from Relative Clauses

Wilcox et al. (2018) found that evidence suggest-
ing that both the Google and the Gulordava models
have learned the CNPC. However, the CNPC is not
without principled exceptions. It is well-known
that CNPC effects systematically vanish in exis-
tential relative clauses (Erteschik-Shir and Lappin,
1979; McCawley, 1981; Chung and McCloskey,
1983) as in (11). See Kush et al. (2013) for exper-
imental evidence that existential relatives are not
island inducing syntactic environments.

(11) a. This is the kind of weather that there are
[many people who like ].
(Erteschik-Shir and Lappin, 1979)

b. There were several old rock songs that she
and I were [the only two who knew ].
(Chung and McCloskey, 1983)

c. John is the sort of guy that I don’t know
[a lot of people who think well of ].
(Culicover, 1999, 230)

d. Which diamond ring did you say there
was [nobody in the world who could buy

]? (Pollard and Sag, 1994, 206)

Such relatives are special in that they express as-
sertions rather than presupposed content, and the
extraction is thus arguably acceptable because the
referent that is questioned is part of the content
that is asserted and at-issue (Goldberg, 2013). It
should be relatively easy for the models to use the
there be sequence as a cue that these constructions
are different from other relatives. If Google and
Gulordova’s RNN models have learned the CNPC
rather than superficial contingencies then the ex-
istence of a second gap inside an existential rela-
tive should not cause a large spike in surprisal and
the licensing interaction should be small, or ide-
ally, close to zero. For this purpose 18 experimen-
tal items were taken from Kush et al. (2013) and
adapted to the present task, using the methodology
as Wilcox et al. A sample is in (12).1

(12) a. It was known that there were many math-
ematicians who worked on the project for
years.
[NO WH-LICENSOR, NO GAP]

1Only verbs that strongly require complements were em-
ployed, and that-relatives were avoided given that the models
have difficulty with them according to Wilcox et al. (2018).
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Figure 2: Licensing Interaction in Existential Relatives

b.*This was the problem which there were
many mathematicians who worked on the
project for years.
[WH-LICENSOR, NO GAP]

c.*It was known that there were many math-
ematicians who worked on for years.
[NO WH-LICENSOR, GAP]

d. This was the problem which there were
many mathematicians who worked on

for years.
1 [WH-LICENSOR, GAP]

Ideally, the no-gap condition interaction S(12b)�
S(12a) should be a positive number, and the gap
condition interaction S(12d) � S(12c) a negative
number. As the graphs in Figure 2 indicate, this is
what was found for the Gulordava model, but not
for Google’s. In the latter, the no-gap condition is
indistinguishable from zero (t = -0.75, p = 0.46)
suggesting that the latter model overlooks the sub-
ject gap. That said, the full wh-licensing interac-
tion values are clearly positive, and in the order
of about 1.5 bits. This is much lower than the 4
bits found by Wilcox et al. (2018), but nonethe-
less suggests that at least some aspects of the filler-
gap dependency are detected by the models. Many
other attempts were made to arrive at stronger re-
sults, with different materials, but the results in-
variably had similar outcomes, with the ‘no-gap’
bars either being indistinguishable from zero or
negative. I now move on to islands which are not
as strongly correlated with surface cues.
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3 Extraction from Adjunct Clauses

Wilcox et al. (2018) probed the strongest type of
adjunct island (tensed adjuncts), traditionally re-
garded as exceptionless since Huang (1982). But
recent work has revealed that exceptions do exist;
see Kluender (1998, 267), Truswell (2011, 175,
ft.1), Levine and Hukari (2006, 287), and Gold-
berg (2006, 144). For example, Sprouse et al.
(2016) found no evidence of an island effect in ex-
amples like (13), in terms of sentence acceptability
rating, but found strong evidence of island effects
in other adjunct island examples.

(13) I called the client [who]i the secretary wor-
ries [if the lawyer insults i].
(Sprouse et al., 2016)

Similarly, Müller (2017) experimentally shows
that Swedish conditional adjuncts seem to yield
much weaker island effects than causal adjuncts,
and Kohrt et al. (2018) found experimental evi-
dence that (non-clausal) English adjunct islands
are contingent on semantic factors. In more recent
work, Chaves and Putnam (2020) provide experi-
mental evidence suggesting that Mueller’s results
likely extend to English as well. Chaves and Put-
nam (2020) report a sentence acceptability exper-
iment with 24 items falling into three conditions,
illustrated in (14).

(14) a. Whoi did Sue blush [when she saw i]?
[TEMPORAL ADJUNCT]

b. Whati did Tom get mad [because Phil for-
got to say i]? [CAUSAL ADJUNCT]

c. Whati does Evan get grumpy [if he is told
to do i]? [CONDITIONAL ADJUNCT]

I what follows I briefly describe this experiment
in more detail, with the aim of repurposing the

items for a counterpart experiment using the Gu-
lordava and Google models. Each item was in-
terspersed and pseudo-randomized with 36 filler
phrases, half of which are ungrammatical, as illus-
trated in (15). The grammatical distractors were
immediately followed by Yes/No comprehension
questions, and the mean comprehension question
accuracy was 86%.

(15) a.*Who does the union identify as having
most recently fired from ?

b. What did the editor recommend should be
revised ?

Chaves and Putnam analyzed data from 38 English
native speakers, who were asked to rate the accept-
ability of each experimental item on a 5-point Lik-
ert scale. There was a wide range of acceptability
scores, from fairly high in the acceptability scale
to very low, as seen in Figure 3. The (aggregate)
ratings for the grammatical (G) and the ungram-
matical (U) distractors are included, for compar-
ison. Conditional adjuncts were clustered at the
high end of the ratings, temporal adjuncts in the
middle, and causal adjuncts at the bottom.

I now describe how the stimuli from this ex-
periment was repurposed to the same task that
Wilcox et al. (2018) employed. The top 5 human-
rate rated items (High Acceptability condition) re-
ceived a mean acceptability of 3.30 (SD = 0.2),
and the bottom human-rated 5 rated items (Low
Acceptability condition) received a mean accept-
ability of 1.95 (SD = 0.13). These 10 items were
selected and adapted to the 3 ⇥ 2 ⇥ 2 factorial li-
censing interaction methodology of Wilcox et al.
(2018). The counterparts of the item in (14c) are
shown in (16) and (17) for illustration. In a nut-
shell, all items were embedded under ‘I know’ and
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Figure 4: Effect of extraction site on wh-licensing interaction for adjunct islands, across high/low acceptability

all proper names were replaced with pronouns. In
the Object condition there is no adjunct clause.

(16) a. I know that they usually are told to do the
homework in the morning.
[OBJECT, NO WH-LICENSOR, NO-GAP]

b.*I know what they usually are told to do
the homework in the morning.
[OBJECT, WH-LICENSOR, NO-GAP]

c.*I know that they usually are told to do in
the morning.
[OBJECT, NO WH-LICENSOR, GAP]

d. I know what they usually are told to do
in the morning.

[OBJECT, WH-LICENSOR, GAP]

In the Adjunct back condition there is an adjunct
clause at the end of the sentence, as in (17). Fol-
lowing Wilcox et al. (2018), there was a third
condition where the adverbial clause is fronted,
and appears immediately after the complementizer
that rather than at the end of the utterance.

(17) a. I know that the kids get grumpy if they
are told to do the homework in the morn-
ing.
[ADJUNCT BACK, NO WH-LICENSOR, NO-GAP]

b.*I know what the kids get grumpy if they
are told to do the homework in the morn-
ing.
[ADJUNCT BACK, WH-LICENSOR, NO-GAP]

c.*I know that the kids get grumpy if they are
told to do in the morning.
[ADJUNCT BACK, NO WH-LICENSOR, GAP]

d. I know what the kids get grumpy if they
are told to do in the morning.
[ADJUNCT BACK, WH-LICENSOR, GAP]

If the Gulordava and Google models have learned
the subtleties of the tensed Adjunct Constraint
then the filler-gap dependencies in the High Ac-
ceptability condition items should have a signif-
icantly lower surprisal than the Low Acceptabil-
ity condition items. In order to access this, the
surprisal of the word after the critical region was
measured. Focusing on the object items first, inter-
actions of the type S(16b)�S(16a) should ideally
result in a positive number, however, for both High
acceptability or Low acceptability items. This was
the case in the Google model, but not for the Gu-
lordava model, as Figure 4 shows; perhaps the lat-
ter model discovered that a gap after the preposi-
tion in (16b) is not necessarily out of the question.
S(16d)�S(16c) yielded the expected highly neg-
ative values, as illustrated by the long teal bars.

Moving on to the Adjunct back items, the inter-
actions of the type S(17b)�S(17a) should ideally
result in a positive number as usual, contrary to
fact, and S(17d)� S(17c) should ideally result in
a negative number in the High acceptability condi-
tion and cancel out in the Low acceptability condi-
tions. Neither result occurred because the interac-
tion values were centered around zero. The full li-
censing interaction (S(17b)�S(17a))�(S(17d)�
S(17c)) is shown in Figure 5. None of the Ad-
junct front/back High/Low conditions is statisti-
cally distinguishable from zero, although signifi-
cance is approached (t = 2.73, p = 0.052) in the
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Figure 5: Full licensing interaction for Adjunct Islands

case of Adjunct front High for Gulordava.
In sum, all extractions from clausal adjuncts

are ultimately deemed islands environments by the
models, contrary to the human judgments.

4 Extraction from Negative Phrases

Negative Islands are perhaps the clearest type of
island in which semantic and pragmatic factors
play a key role. Consider the examples in (18).

(18) a.*Which country weren’t you born in ?

b.*How many kids don’t you have ?

c.*How fast didn’t John drive ?

The question in (18a) presupposes that the ad-
dressee was born in all countries but one, which
is contrary to world knowledge, and therefore in-
felicitous (Kuno and Takami, 1997). Hence, the
oddness vanishes if the verb is not a one-time pred-
icate, as in (19).

(19) Which country haven’t you visited yet?

The oddness of the degree questions in (18b,c)
is due to an analogous reason; see Abrusán (2011)
for detailed discussion. It is again clear that the
oddness is caused by semantic factors, since the
introduction of existential modals makes the island
effect vanish (Fox and Hackl, 2006):

(20) a. How many kids can’t you have ?
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Figure 6: Wh-licensing in negative phrases

b. How fast is John required not to drive ?

In order to evaluate whether RNNs are sensi-
tive to such effects 14 items were constructed in a
2⇥2⇥2 design, as illustrated in (21). The verb is
negated in items in the negative (NEG) condition.

(21) a. I wonder if the owner of the truck has
(not) driven at this speed during the race.
[NO WH-LICENSOR, POS/NEG, NO GAP]

b.*I wonder how fast the owner of the truck
has (not) driven at this speed during the
race. [WH-LICENSOR, POS/NEG, NO GAP]

c.*I wonder if the owner of the truck has
(not) driven at during the race. [NO

WH-LICENSOR, POS/NEG, GAP]

d. I wonder how fast the owner of the truck
has (*not) driven at during the race.
[WH-LICENSOR, POS/NEG, GAP]

The results are shown in Figure 6. The inter-
action S(21b) � S(21a) should have resulted in
a moderate-to-large positive numbers, regardless
of the presence of negation. In other words, the
red bars should be positive and not overlap with
zero. This was not true of either model, espe-
cially for Gulordava. Conversely, S(21d)�S(21c)
should have yielded a moderate-to-large negative
number in the pos(itive) condition but obtain a sig-
nificantly higher value in the neg(ative) condition
(ideally, close to zero). However, there was no sta-
tistically significant difference between the inter-
action values across the two island conditions (pos
and neg) for the Google model (t = 0.3, p = 0.73)
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nor for the Gulordava model (t = 1.11, p = 0.27).
The full interactions are shown in Figure 7. Had
Negative Islands been learned, the teal bars would
be centered around zero, like those in in Figure 5.

5 Discussion

The claim that sate-of-the-art LSTM RNNs mod-
els have learned filler-gap dependencies and is-
lands is premature on both linguistic and exper-
imental grounds. First, the linguistic constraints
in question are far more complex than what ex-
tant studies consider. Second, there is evidence
that these models only learn partial contingen-
cies about filler-gap dependencies, which suggests
that the actual linguistic mechanism that underlies
such long-distance phenomena is not accessible to
the model.

The problem is arguably not due to a lack of
data. The training datasets for Gulordava and
Google are unrealistically large when compared to
the amount of linguistic input the average child is
exposed to (Atkinson et al., 2018). Similarly, the
problem is not likely to be due to lack of expres-
sivity, since this kind of model is Turing-complete;
see Siegelmann and Sontag (1995) and Siegel-
mann (1999, 29–58) for proofs and examples, as
well as Hornik et al. (1989) and Lu et al. (2017)
for detailed discussion about Cybenko’s universal
approximation theorem.

The present findings suggest that model size and
training regimen yield diminishing returns, and
that there is a more fundamental factor prevent-
ing such systems to learn filler-gap dependencies.
The problem likely stems from the fact that filler-

gap dependencies are not merely surface string
patterns: they involve rich morphological, syntac-
tic and semantic dependencies which crucially in-
teract with pragmatics and world knowledge, thus
far absent from training. Most crucially, many is-
land phenomena seems to be sensitive to semantic
and pragmatic constraints, including the Subject
Constraint (Chaves and Dery, 2019; Abeillé et al.,
2018), the Adjunct Constraint (Truswell, 2011;
Müller, 2017; Kohrt et al., 2018; Goldberg, 2013),
the Complex NP Constraint (Erteschik-Shir and
Lappin, 1979; Goldberg, 2013), the Coordinate
Structure Constraint (Kehler, 2002, Ch.5), Wh-
Islands Abrusán (2014, Ch.4), Negative Islands
(Abrusán, 2011), among others. See Chaves and
Putnam (2020) for extensive discussion of these
and other island effects.

In sum, it not clear how current neural models
can learn island constraints from stringsets alone,
precisely because of the subtle semantic and prag-
matic properies that underpin the phenomena in
question. The present findings are consistent with
the fact that Marvin and Linzen (2018) found that
LSTM RNNs fail to learn other complex phenom-
ena such as reflexive pronoun agreement, negative
polarity licensing, and center-embedding depen-
dencies (Wilcox et al., 2019a).

All experimental items and statistical anal-
ysis scripts are made available online at
https://github.com/RuiPChaves/LSTM-RNN-
unbounded-dependency-experiments. The code to
run the models is the same as Wilcox et al. (2018).
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