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1.  INTRODUCTION

The globally threatened green turtle Chelonia
mydas relies on shallow neritic foraging grounds for
up to multiple decades until reaching or nearing sex-
ual maturity (Bjorndal et al. 2000, Bolten 2003, Parker
et al. 2011). Here, within these developmental areas,
turtles will switch from their omnivorous oceanic for-
aging strategy to foraging largely on herbivorous

seagrass and algae (Bjorndal 1997, Heppell et al.
2002, Bolten 2003, Jones & Seminoff 2013). They are
believed to occupy relatively small and specific home
ranges, but range size can vary due to habitat com-
plexity (Mendonca 1983, Ogden et al. 1983, Brill et
al. 1995, Whiting & Miller 1998, Seminoff et al. 2003,
Makowski et al. 2006, Taquet et al. 2006, Hazel et al.
2009, Blumenthal et al. 2010, Lamont et al. 2015). For
example, the home range of immature green turtles

*Corresponding author: lucaspgriffin@gmail.com

Movements, connectivity, and space use of immature
green turtles within coastal habitats of the Culebra

Archipelago, Puerto Rico: implications for conservation

Lucas P. Griffin1,*, John T. Finn2, Carlos Diez3, Andy J. Danylchuk1

1Department of Environmental Conservation and Intercampus Marine Science Graduate Program, 
University of Massachusetts Amherst, 160 Holdsworth Way, Amherst, MA 01003, USA

2Department of Environmental Conservation, University of Massachusetts Amherst, 160 Holdsworth Way, Amherst, 
MA 01003, USA

3Programa de Especies Protegidas, DRNA-PR, San Juan, PR 00936, Puerto Rico

ABSTRACT: Juvenile green turtles occupy coastal marine habitats important for their ontogeny;
however, the details of their movement, connectivity, and space use in these developmental habi-
tats are still poorly understood. Given that these areas are often threatened by human distur-
bance, additional information on green turtle spatial ecology is needed to meet conservation end-
points for this endangered species. For this study, we used fixed passive acoustic telemetry to (1)
describe movement patterns and connectivity of immature green turtles within, outside, and
across 2 bays, Manglar and Tortuga bays, on Culebra and Culebrita islands, Puerto Rico; and (2)
determine spatio-temporal drivers of the presence and absence of turtles within Manglar Bay.
Network analysis used to quantify movement patterns showed that turtles in our study exhibited
differential space use with little to no connectivity across the 2 bays. In addition, turtles exhibited
high site fidelity, with larger turtles leaving on brief trips. We applied a presence−absence
Bayesian binomial model on a subset of 9 turtles at an hourly temporal scale and showed that tur-
tles within Manglar Bay occupied areas of lagoon and seagrass habitats at night and were rarely
using areas of macroalgae habitat. The parameter estimates from the model enabled us to predict
the space use of turtles across Manglar Bay, and the hourly probability distributions highlighted
predictive diel movement patterns across the bay. Considering the importance of juvenile and
subadult life stages for population viability, we recommend continued protection of these critical
juvenile turtle developmental habitats to ensure recruitment into the adult life stage.

KEY WORDS:  Acoustic telemetry · Bayesian statistics · Chelonia mydas · Connectivity · Integrated
nested Laplace approximation · INLA · Network analysis

OPENPEN
 ACCESSCCESS

Contribution to the Special ‘Biologging in conservation’

© The authors 2019. Open Access under Creative Commons by
Attribution Licence. Use, distribution and reproduction are un -
restricted. Authors and original publication must be credited. 

Publisher: Inter-Research · www.int-res.com



Endang Species Res 40: 75–90, 2019

(50.9−82.5 cm straight carapace length, SCL) was
>16 km2 in the Gulf of California, where food
resources are widely dispersed (Seminoff et al. 2002).
Conversely, Brill et al. (1995) noted an average home
range of <3 km2 for immature green turtles (<65 cm
carapace length) in Kaneohe Bay, Hawaii, where
both food resources and shelter were tightly clus-
tered together. Makowski et al. (2006) reported 3
km2 average home ranges for immature green turtles
(27.9−48.1 cm SCL) in Florida, with high-use areas
ranging between 0.18 and 1.17 km2. Further, the
sizes of immature turtles may affect their home range
sizes, with larger immature turtles using deeper open
waters and smaller immature turtles using shallow
protected bays (Seminoff et al. 2003, Koch et al. 2007,
Bresette et al. 2010). Overall, these studies suggest
that immature green turtles inhabit well-defined
habitats with high variability between home range
sizes due to ecological differences in food and shelter
resource availabilities and differences in body size
(Makowski et al. 2006, Lamont et al. 2015).

Considering their complex life history, anthro-
pogenic stressors may impact sea turtle populations
disproportionately across life stages (Hamann et al.
2010, Wallace et al. 2010). Sea turtles exhibit high
levels of hatchling mortality and late age at sexual
maturity; thus, high survival rates are critical for
larger juveniles and adults if populations are to per-
sist (Congdon & Dunham 1997). While natural sea
turtle mortality decreases with body size, there is an
elevated consequence for a population when larger
individuals are removed just prior to reaching matu-
rity (Heppell et al. 2002). Within a stable stage distri-
bution population (i.e. proportion of individuals
remained constant across both age class and time),
large immature sea turtles will account for the major-
ity of the population, making their survivorship criti-
cal for population growth or decline (Heppell 1998,
Heppell et al. 2000). Consequently, protecting devel-
opmental habitats and helping ensure recruitment of
immature turtles to sexual maturity is essential for
maintaining population viability.

In Puerto Rico, the Culebra Archipelago provides
important developmental feeding habitats for imma-
ture green turtles (Collazo et al. 1992). Recognizing
the area’s importance, the US National Marine Fish-
eries Service designated Culebra as Resource Cate-
gory I critical habitat for the green turtle in 1998
(Federal Register; 63 FR 46693, September 2, 1998),
and federal management and conservation measures
are required within all coastal habitats within 3 nm
(5.6 km) from Culebra. Green turtles have been most
intensively studied in 2 bays around Culebra, on the

easternmost side of Culebra in Manglar Bay and the
on the small island of Culebrita (east of Culebra) in
Tortuga Bay (Collazo et al. 1992, Velez-Zuazo et al.
2010, Patrício et al. 2011, 2014, 2016, 2017). Although
these 2 bays are in close proximity, there are rela-
tively few records of green turtles moving between
the bays based on a mark-recapture study with sam-
pling occurring approximately twice during a given
year (Patrício et al. 2011). Immature green turtles
spend decades in these nearshore developmental
habitats. Because these habitats are increasingly
affected by anthropogenic disturbances, more infor-
mation is needed on turtle movements, connectivity,
and space use within them. Considering that the
habitat composition and structure in these 2 bays are
different, understanding turtle movement and con-
nectivity in relation to the bays may provide addi-
tional insights on immature green turtle ecology. The
purpose of this study was to (1) evaluate movement
patterns and connectivity of immature green turtles
within, outside, and across 2 bays, Manglar Bay on
Culebra Island and Tortuga Bay on Culebrita Island,
Puerto Rico; and (2) assess spatio-temporal drivers of
the presence and absence of turtles within Manglar
Bay.

2.  MATERIALS AND METHODS

2.1.  Turtle tagging study sites

The 2 study sites where turtles were tagged, Mang -
lar Bay, Culebra Island (Fig. 1), and Tortuga Bay,
Culebrita Island, are 30 km east from the main island
of Puerto Rico. Both sites are shallow, ranging from 1
to 15 m deep, but the 2 bays differ in structure and
habitat types (Fig. 1). Manglar Bay has deep lagoons
(5−15 m) surrounded by mangroves on the perimeter,
shallow seagrass and macroalgal flats (0.5−2 m)
intermixed, and a linear reef outside the bay. Tortuga
Bay has a more uniform depth across a deep basin
with a shallow sandy perimeter. The bay consists pri-
marily of colonized hard bottom, sand with scattered
seagrass, and coral (Diez et al. 2010). A 2 km wide
and 20 m deep channel, Culebrita Strait, separates
these 2 areas.

2.2.  Turtle capture and tagging

Turtles were captured following procedures used
by Diez et al. (2010) in collaboration with the sea tur-
tle surveys conducted annually by the Departamento
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de Recursos Naturales y Ambientales de Puerto Rico
and US Fish and Wildlife Service. Turtles were cap-
tured using a 200 × 5 m seine net (no. 18 nylon twine,
25 cm stretch mesh) deployed in shallow water areas
no deeper than 5 m. With the net deployed, a boat
carefully cruised the inner turtle foraging area of the
bay, producing a disturbance that caused turtles to
move towards the net. In smaller, shallower areas,
swimmers snorkeled inside the capture area and
chased turtles towards the net. A minimum of 6
swimmers snorkeled along the net, retrieving all
entangled turtles. Each turtle was brought aboard
the boat to measure mass and SCL (using Haglof 65
and 95 cm tree calipers) and have both front flippers
tagged with 2 external tags (Inconel and/or plastic
tag). Digital pictures of the carapace and plastron
were taken for each individual turtle and any abnor-
malities, such as fibropapillomatosis tumors, noted.

Turtles were tagged with coded ultrasonic trans-
mitters (Vemco V16-1L transmitters, 16 mm diame-
ter, 54 mm length; 8.1 g in water; 60−180 s ping inter-
val; 10 yr battery life) between March 2013 and
March 2014. Transmitters were attached to right side
caudal marginal scutes on the dorsal surface. To pre-
pare the location, coarse sand paper (400 grit) was
used to remove epibionts from the carapace surface;
the carapace was then wiped with isopropyl alcohol
(70%) and dried, and acrylic paint was applied. The
transmitter was attached to the carapace by drilling 2
holes (8 mm) into the marginal scutes and then

secured with a stainless steel wire cable (cable
strength 27 kg) and embedded into a base of West
Marine epoxy, with the marine epoxy applied on top
of the transmitter to cover and streamline it. Position-
ing was designed to minimize the risk of tag damage
or loss by collisions with coral and  to reduce hydro-
dynamic interference. Additionally, positioning en -
sured that the transmitter was submerged at all
times, even when turtles surfaced.

2.3.  Fixed passive receiver array

Movement patterns of tagged green turtles were
monitored using a fixed passive acoustic receiver
array (VR2W-69kHz receivers, Vemco) comprised of
59 receivers. Individual receivers were secured to
rebar (1 m) and anchored into a concrete block
(23 kg). Receivers were strategically placed within
bays, on the perimeter of bays, and around Culebra
Island to maximize the detections of animal move-
ments. The fixed passive receiver array was origi-
nally developed to monitor the movements of multi-
ple species (Finn et al. 2014, Brownscombe et al.
2019); thus, receivers were placed in a wide range of
habitats including shallow reef flats (<3 m), enclosed
embayments (<15 m), and open water reef systems
(<45 m) (Figs. 1 & 2). Depths for receivers ranged
from approximately 1 to 20 m. Receivers were de -
ployed as follows: 7 in Manglar Bay, 25 as a Vemco
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Fig. 1. Study sites around Culebra and Culebrita, Puerto Rico, including Manglar Bay, Tortuga Bay, and Culebrita Strait,
Puerto Rico. In addition, habitats of interest are displayed (https://products.coastalscience.noaa.gov/ collections/benthic/ 

e95usvi_pr/)
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positioning system (VPS) on the perimeter of Mang -
lar Bay, 2 in Tortuga Bay, 2 in the channel between
Manglar Bay and Tortuga Bay (Culebrita Strait), and
23 around Culebra Island’s perimeter (Fig. 2).

The VPS, a fine-scale positioning system that en-
ables the trilateration of detection data into positioning
estimates, was designed for a shallow water marine
fish (see Brownscombe et al. 2019) and did not gener-
ate ecologically relevant positioning data for green
turtles in this study. However, as we employed an-
chored sync tags within the VPS, originally deployed
to assist fine-scale positioning estimates of detections,
we were able to use the sync tag detections to gener-
ate multiple linear regressions (zero inflated binomial)
and thus understand detection probabilities across
distance. Although dependent on environmental
 conditions (e.g. wind, temperature, diel phase), our
regressions, based on optimal environmental condi-
tions, indicated our receivers roughly had a detection
radius of 80 m at 50% detection efficiency. Detection
probabilities were calculated for receivers (approxi-
mately 1−8 m depth) within the shallow VPS only and,
thus, were likely higher in deeper water.

2.4.  Data processing and analyses

Detection data were exported from a VUE data-
base (Vemco) and analyzed in the R statistical envi-

ronment (R Development Core Team 2018). Data
were corrected for receiver clock drift, false detec-
tions created by simultaneous detection collisions,
and ricochet (multipath) detections or echoes created
by complex bathymetry (Kessel et al. 2015). The first
7 d of each transmitter detection log were removed to
avoid potential tagging effects. Each detection log
was examined with abacus plots, showing detections
at each station across time, to determine if the trans-
mitter fell off within the array, which would result in
many false detections for long periods of time. False
detections within a detection log were identified
when there were many consecutive detections on an
individual receiver or on multiple closely placed
receivers (if detection coverages overlapped). Detec-
tion logs were conservatively filtered accordingly to
account for this potential issue.

2.4.1.  Network analysis

Based in graph theory, network analysis is a valu-
able technique to examine acoustic telemetry move-
ment data and to explore underlying ecological pro-
cesses (Jacoby et al. 2012, Jacoby & Freeman 2016).
For each of the deployed transmitters and their re -
spective spatial network, we calculated detection
number, days at liberty (defined here as the period
between date of release and date of the last detec-
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Fig. 2. Manglar and Tortuga Bays of Culebra, Puerto Rico, with 59 receivers (red and blue dots) deployed around Culebra
Island. Twenty-five receivers (blue dots) were positioned as a Vemco positioning system (VPS) on the perimeter of Manglar Bay;
based on the general VPS location of the receivers, they were categorized as either VPS Lagoon (n = 17) or VPS Reef (n = 8)
receivers. The remaining 34 receivers around the islands are labeled with red dots. Corresponding receiver classified regions
(i.e. Honda, Dakity, Mosquito, Las Pelas, Manglar, San Ildefonso, Culebrita Strait, and Tortuga Bay) used for the bipartite

graphs are labeled
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tion, excluding the first 7 d), residency index, station
count, and number of paths. Data are reported as
mean ± SD throughout, unless stated otherwise. Res-
idency index was calculated by dividing the number
of days detected by days at liberty within the study
area (Reubens et al. 2013). As a VPS generates high
levels of simultaneous detections, due to its design to
trilaterate approximate true positions, we decided to
aggregate detections from the 25 VPS receivers
based on general location (i.e. either associated with
lagoon or reef type habitats) into either VPS Lagoon
(n = 17) or VPS Reef (n = 8) receivers. Specifically,
station number was the number of stations an indi-
vidual was detected on (i.e. receivers, including the
VPS as VPS Lagoon and VPS Reef receiver aggre-
gates), and a single path was defined as any unique
node to node (station to station) movement. In addi-
tion, we calculated 3 network attributes: network
density, average path length (APL), and mean
betweenness (Bimean). The package igraph (Csardi &
Nepusz 2006) was used to generate network metrics
and network graphs. Network density refers to the
degree of available routes in a network, ranging from
0 to 1; a higher density value indicates multiple routes
were used and available for a given individual (Lédée
2015, Lédée et al. 2015). APL is the average shortest
number of steps for all used paths between nodes (i.e.
stations); this measure indicates on average how eas-
ily individuals may move through the network
(Kurvers et al. 2014). Bi indicates a node’s importance
via its connection strength to other nodes, based on
the number of paths that pass through a specific node
(the focal station) when taking the shortest path
length from one node to another (Jacoby et al. 2012).
We used an ANCOVA to test if detection number,
days at liberty, residency index, station count, and
number of paths differed between size (SCL) and
capture location (Manglar Bay and Tortuga Bay). In
addition, we used linear models to test for an effect
between size and network density, APL, and Bimean

for Manglar Bay individuals only, as Tortuga Bay did
not have sufficiently extensive receiver coverage to
calculate meaningful values.

2.4.2.  Movements, connectivity, and space use
outside, within, and across bays

Network analysis was further used to examine
the movements, connectivity, and variation in space
use across the study area. To examine these attrib-
utes across the study area and beyond just Manglar
and Tortuga Bay, we used bipartite graphs (Dale &

Fortin 2010). Here, these graphs are comprised of 2
different types of nodes, individuals and locations.
Essentially, these bipartite graphs link individual
turtles to the regions they visited. An important dis-
tinction is that these graphs are not spatially
explicit but rather are a matrix that highlights the
relationships (i.e. visits) between the individuals
and locations. They are particularly useful when
attempting to examine the variation in space use
patterns across individuals or groups of individuals
(Urban & Keitt 2001, Fortuna et al. 2009, Jacoby et
al. 2012, Finn et al. 2014, Heupel et al. 2019). The
links between the individuals and locations, also
referred to as the edges, are weighted by the num-
ber of detections at the given region. We aggre-
gated the 26 stations (including the aggregated
VPS receivers, see Section 2.4.1) into 8 areas that
correspond to the area’s geography: Honda, Dakity,
Mosquito, Las Pelas, Manglar, San Ildefonso,
Culebrita Strait, and Tortuga Bay (Fig. 2). By aggre-
gating receivers into regions, we have also mini-
mized issues surrounding detection efficiency (i.e.
we have a high likelihood of detecting a passing
individual within a region). To better observe space
use patterns across the study area, the bipartite
graphs were then plotted using the Fruchterman-
Reingold force-directed layout algorithm (Fruchter-
man & Reingold 1991). This algorithm generates
attractive and repulsive forces among all the regions
or nodes which are proportional to the weight of
the edges connecting adjacent nodes (Tamassia
2013). Thus, if there was little or no attraction, then
nodes would arrange in an equidistant circle (Finn
et al. 2014). However, when strong attractions and
connections exist between nodes, the nodes and
their heavily weighted edges would be tightly con-
nected to one another and, thus, form possible net-
work communities. Ultimately, the Fruchterman-
Reingold force-directed layout algorithm helps to
visually decipher heterogeneous or homogeneous
space use by animals.

2.4.3.  Community network structuring

Potential network communities were identified
across the 8 receiver regions using 6 community
detection algorithms. These algorithms cluster nodes
(i.e. individuals and locations) into modules (groups
of individuals and locations, i.e. potential communi-
ties) and are useful to examine the core space use
and the connectivity of different groups of individu-
als across the study area (Finn et al. 2014, Jacoby &
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Freeman 2016). The clustering of nodes within mod-
ules is based on the strength of the connections to
one another. When groups of nodes have tight con-
nections to one another (e.g. high number of visits
between each other), they are referred to as commu-
nities. The applied algorithms to cluster nodes into
modules and thus identify potential communities
were Leading-Eigenvector (Newman 2006), Walk-
Trap (Pons & Latapy 2006), Fast-Greedy (Newman &
Girvan 2004), Spin-Glass (Reichardt & Bornholdt
2006), Label-Propagation (Raghavan et al. 2007), and
Multilevel (Blondel et al. 2008). Subsequently, modu-
larity scores, used to assess the quality of potential
network communities, were calculated for each com-
munity detection algorithm (Newman & Girvan
2004). These scores are the fraction of edges within
selected modules (i.e. community) minus the fraction
that would occur if the edges were randomly distrib-
uted across nodes (Finn et al. 2014). Thus, modularity
scores range from 0 to 1, and the higher the modular-
ity score for a community detection algorithm, the
higher the quality of module divisions.

Each potential network community detected by an
algorithm was assessed for significance by calculat-
ing the in-degree (ki

in) (number of links to nodes of
the same module) and the out-degree (ki

out) (number
of links to nodes outside its module) for each node
within the given module. We used a Wilcoxon rank-
sum test to see if nodes, within a given module, were
more linked to one another than with other individ-
ual modules or the entire network (Song & Singh
2013). If a module is non-significant, ki

in and ki
out are

about the same. If a module is significant, and it has
significantly more nodes linked within it than to
nodes in other modules (high ki

in), it is labeled as a
statistically significant community. If a module is sig-
nificant and the nodes link more with nodes in other
modules (high ki

out), then it is labeled as an anti-com-
munity. Moving nodes from an anti-community mod-
ule to another community would reduce modularity
for the entire graph (Finn et al. 2014). Anti-communi-
ties are often corridors with many connections to
other modules.

2.5.  Spatio-temporal drivers within Manglar Bay

2.5.1.  Data structuring

To examine turtle presence−absence distributions
in Manglar Bay, we first created 8 new receiver
aggregates or regions that specifically corresponded
to the physical attributes of Manglar Bay and to

nearby areas where turtles were regularly detected.
Turtle presence or absence was binned by hour for
each region. By aggregating receivers into regions
and binning by hour, it is more likely we are captur-
ing true presences and absences in Manglar Bay
despite not formally incorporating detection effi-
ciency. In addition, acoustic telemetry is a presence-
only type of data, with the term absence referring to
the lack of detection since it is impossible to defini-
tively determine if a tagged animal is truly absent in
this system. Here, binning the data provided the best
estimation of true absences.

2.5.2.  Model covariates

Eight covariates were identified as potential pre-
dictors of green turtle presence and absence in
Manglar Bay. These variables included 4 habitat
variables (reef, lagoon, macroalgae, and seagrass),
diel cycles (levels specified as day vs. night), tide
states (levels specified as low, incoming, high, outgo-
ing), tide height (m), and tide daily range (m). All
continuous variables were standardized to have a
mean of 0 and an SD of 1.

Using habitat data collected from NOAA (https://
products.coastalscience.noaa.gov/collections/benthic/
e95usvi_pr/), we generated relative habitat kernel
density estimates (KDEs) (Sheather & Jones 1991)
around Culebra Island for each type of habitat: reef,
lagoon, macroalgae, and seagrass. Other habitats
(e.g. linear reef, forereef, unconsolidated bottom, and
sand) were assessed but were eliminated due to high
collinearity and variance inflation factor scores (i.e.
these habitat types were highly correlated with one
or more of the other habitat types) (Zuur et al. 2009).
KDE bandwidth sizes were generated for each
unique habitat in the study area (ranging from 100 to
1500 m), and bandwidths incorporate both density
and proximity of the focal habitat in the area. Using
the habitat KDE bandwidth combinations, we
derived all possible KDE point values for the derived
8 Manglar Bay regions and assessed the best band-
width for each habitat using a series of random forest
models (randomForest package, Liaw & Wiener
2002) with turtle presences binned at the hourly level
as the response variable.

Diel cycle was included at 2 levels, day vs. night,
with periods of day and night assigned using
the maptools package (Bivand & Lewin-Koh 2013). 
Tide states, height, and daily range were de rived
from NOAA (https://tidesandcurrents.noaa. gov/
noaatidepredictions.html).
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2.5.3.  Statistical models and validation

We modeled the hourly presence and absence of 9
turtles within each region of Manglar Bay across 60 d
between December 2013 and February 2014, as a
function of 8 covariates and with 4 dependency struc-
tures (i.e. spatial and temporal) in a binomial regres-
sion with a trial size of 9. Only turtles with <50%
absences at the hour level were used. The response
variable, hourly presence, for each region ranged
from 0 to 9. Selected habitat predictor variables for
the full model, informed via random forest models,
included reef at 500 m bandwidth, lagoon at 300 m
bandwidth, macroalgae at 100 m bandwidth, and
seagrass at 200 m bandwidth. Fixed covariates were
reef (continuous), lagoon (continuous), macroalgae
(continuous), seagrass (continuous), diel period (cate-
gorical with 2 levels), tide states (categorical with 4
levels), tide height (continuous), and tide daily range
(continuous). The interaction terms were diel period
(categorical with 2 levels) × seagrass, diel period ×
macroalgae, diel period × tide height, and tide height
× tide daily range. Habitat covariates were selected
based on the habitats available to turtles within
Manglar Bay. Diel period was a covariate of interest
to determine if space use changed across day and
night periods. Covariates involving tidal cycles
(states, height, and range) were examined since they
may affect the availability of habitats or may provide
a mechanism of transport for foraging green turtles
(Brooks et al. 2009).

A Bayesian analysis framework with integrated
nested Laplace approximation (INLA) methodology
(Rue et al. 2009) and binomial distribution was
adopted to fit the data. INLA, which is able to handle
large datasets, obtains the distribution of each
parameter in a model while allowing for the incorpo-
ration of spatial and temporal dependency structures
(i.e. autocorrelation) (Blangiardo & Cameletti 2015,
Zuur et al. 2017). Autocorrelation, inherent to track-
ing data, presents a difficult and confounding caveat
of estimating space use of tagged animals (Johnson
et al. 2013, Fleming et al. 2015, Winton et al. 2018).
When autocorrelation is ignored, the assumption that
observations are independent is violated and has the
potential to produce biased parameter estimates
(Zuur et al. 2017). INLA now enables researchers to
include dependency structures to deal with autocor-
relation while reducing computational times (Bakka
et al. 2018). For example, because it outperforms
more conventional methods that lack formal incorpo-
ration of autocorrelation structures, INLA was used
by Winton et al. (2018) to estimate the distribution

and relative density of loggerhead sea turtles along
the North Atlantic coast.

Here, to fit the model, INLA was applied using the
R-INLA package (Rue et al. 2009). To incorporate a
spatial dependency structure (i.e. account for auto-
correlation) into the model as a random effect, we uti-
lized a mesh and the stochastic partial differential
equation (SPDE) approach (see Lindgren et al. 2011,
Zuur et al. 2017). Essentially, the mesh, comprised of
non-overlapping triangles (i.e. lines and vertices),
provides a means to effectively approximate the spa-
tial field across our study site, which helps to reduce
issues with autocorrelation (see Zuur et al. 2017).
This spatial random effect was assumed to have a
zero mean prior Gaussian distribution with a Matérn
covariance structure (Muñoz et al. 2013). Since
approximation of the SPDE approach improves with
finer meshes (i.e. more vertices) but increases com-
putation, we generated multiple mesh sizes and ulti-
mately selected a mesh with 2155 vertices (Fig. 3).
Finally, we used 3 dependency structures as random
walk smoothers to help account for temporal autocor-
relation issues, including tide height, hour of the day,
and study day.

Random walk smoothers change in shape depend-
ing on the penalized complexity (PC) prior selection
(Zuur et al. 2017). We ran the full candidate model
with 27 possible PC prior combinations to examine
the effect and to select the best combination of
informed PC priors for these trends. The best combi-
nation of PC priors was determined via the widely
applicable information criterion (WAIC) (Watanabe
2010). A lower WAIC value indicates an improved
model by assessing the quality of fit vs. model com-
plexity (Watanabe 2010).

We performed backward stepwise model selection
to choose the best combination of variables from the
full candidate model, again using WAIC and the
selected random walk informative PC priors. A pos-
terior distribution was obtained for each included
parameter, enabling probability statements about
each focal parameter. Unlike frequentist analyses
where CIs and means are produced, the 0.025 and
0.975 quantiles of each posterior distribution (the
credible interval) indicate the unknown parameter is
95% likely to fall within that range of values.

The final model was examined for homogeneity by
plotting the residuals against fitted values and for po-
tential patterns in residuals by plotting residuals vs.
each covariate in the model and each covariate not in
the model. We plotted residuals vs. spatial and temporal
dependency structures (i.e. variograms and autocor-
relation function plots) to assess existing issues with
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autocorrelation. To evaluate model performance and
predictive accuracy, we generated a confusion matrix
(i.e. a classification table that compares actual and pre -
dicted presences and absences to one another), calcu-
lated a dispersion statistic, compared the predicted
and observed values using the full dataset, and, in ad-
dition, simulated from the posterior distributions of
the regression parameters a thousand times to further
assess under- or overdispersion (see Zuur et al. 2017).

2.5.4.  Spatio-temporal predictions

Using the final model, we predicted the spatio-
temporal distribution of turtles within and around
Manglar Bay by hourly level. We derived 2155 habi-
tat point estimates from our original mesh’s vertices
(2155 vertices) and from each habitat KDE; this mesh
was originally generated via the SPDE approach.
These point estimates were used to help predict tur-
tle distribution across Manglar Bay at each hour. Fur-
ther, we made spatially explicit delineations for each
station region, used the mean tide height and tidal
range and median study day (296), and used the clas-
sification of day or night depending on the hour
within the predictive model.

3.  RESULTS

Movement data were examined from 21 turtles cap-
tured from Manglar Bay via 26 transmitters; 5 turtles
were re-captured and re-tagged with acoustic trans-

mitters due to tag loss (March 2013, n = 8; December
2013, n = 14; March 2014, n = 4). From Tortuga Bay, 10
turtles were captured and tagged, and no re-tagging
occurred (December 2013, n = 8; March 2014, n = 2)
(Table S1 in Supplement 1 at www.int-res.com/
articles/ suppl/n040p075_supp/). While some indivi -
duals were detected outside their respective bays, no
individual captured in Manglar Bay was ever detected
within Tortuga Bay and vice versa for turtles captured
from Tortuga Bay. Individual turtle size at tagging (n =
36) ranged from 38 to 70 cm (SCL; 50.61 ± 7.84 cm),
with no significant difference in size between the lo-
cations (Manglar Bay, 51.42 ± 8.14 cm, n = 26; Tortuga
Bay, 48.5 ± 6.93 cm, n = 10). After removing the first
7 d in each detection log (due to the anticipated tag-
ging effects), days at liberty per transmitter ranged
from 25 to 600 d (167.08 ± 148.57 d), with a mean resi-
dency index of 0.80 ± 0.26. There was no significant
effect of size and capture location on detection num-
ber, days detected, days at liberty, or residency index
and no effect of size on network metrics (network
density, APL, and Bimean) for turtles tagged in Manglar
Bay. However, there was a significant effect of size
(F1,33 = 7.53, p = 0.01) and capture location (F1,33 =
62.73, p < 0.001) on station count, with larger turtles
and turtles from Manglar Bay having higher station
counts (Table S2 in Supplement 1). There was no ef-
fect of size on number of paths, but there was a signifi-
cant effect of capture location on number of paths
(F1,33 = 31.26, p < 0.001), with the greater number of
paths exhibited by Manglar Bay turtles compared
with Tortuga Bay turtles, potentially an artifact of the
number of receivers and thus detection coverage.
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Fig. 3. Left panel: Manglar Bay area with 8 receiver aggregates or regions specified (R1–R8). Right panel: generated mesh,
comprised of non-overlapping triangles, used to approximate the spatial random field. Finer meshes leading to better approxima-
tions but longer computational times help to reduce issues associated with autocorrelation. Our mesh contained 2155 vertices
which were used to account for spatial dependency within the presence−absence binomial model of 9 turtles within Manglar 

Bay. Red dots represent the 8 receiver aggregates or regions

https://www.int-res.com/articles/suppl/n040p075_supp/
https://www.int-res.com/articles/suppl/n040p075_supp/
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3.1.  Movements, connectivity, and space use
outside, within, and across bays

Using the Fruchterman-Reingold force-directed
layout algorithm, based on attractive and repulsive
forces among the nodes, the bipartite graph shows
heterogeneous space use across turtles captured in
Manglar Bay (n = 21) and turtles captured in Tortuga
Bay (n = 10) (Fig. 4). Turtles remained near their cap-
ture origin, with only a few Manglar Bay individuals
detected west of the bay in Mosquito, Dakity, and
Honda Bay and in the east to San Ildefonso and
Culebrita Strait. While turtles were never detected
across capture location bays, 6 turtles captured from
Manglar Bay and 2 turtles captured from Tortuga
Bay were detected in Culebrita Strait, but no individ-
ual here had more than 100 detections. Moreover,
turtles tagged from Tortuga Bay were never detected
on any receiver farther away than Culebrita Strait.

3.2.  Community network structuring

Network communities or modules were found
within the bipartite graph by 6 different community
detection algorithms. These algorithms clustered
nodes (i.e. individuals and locations) into modules
(groups of individuals and locations) that represent

potential network communities. Four of the 6 algo-
rithms (Fast-Greedy, Spin-Glass, Label-Propagation,
and Multilevel) produced identical modules with the
highest modularity score (0.197, Table 1). The 4 algo-
rithms partitioned the bipartite graph into 3 modules
(Fig. 5b); 1 of the 3 modules was found to be a signif-
icant community (p < 0.001) which partitioned all 10
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Fig. 4. Bipartite graph of turtle region network in Culebra, Puerto Rico,
with Fruchterman-Reingold force-directed layout algorithm. The net-
work displays the links (edges) between the turtles (green nodes) and
regions visited (blue nodes). The width of edges is proportional to the
number of detections at each region per individual, and the diameter
of each node is proportional to the node’s degree (i.e. number of links
to or from the node). The Fruchterman-Reingold force-directed layout
algorithm balances attractive and repulsive forces among nodes which
are proportional to the weight of edges connecting adjacent nodes (i.e.
similar space use by individuals would be clustered together). Individ-
uals are clustered closely together in their respective bays. Manglar
Bay individuals are labeled with M (Manglar) nodes, and Tortuga Bay 

individuals are labeled with C (Culebrita Island) nodes

Community Modularity No. of No. of 
detection algorithm modules significant 

detected modules

Leading-Eigenvector 0.186 5 1
Fast-Greedy 0.197 3 1
Spin-Glass 0.197 3 1
Label-Propagation 0.197 3 1
Walk-Trap 0.173 5 1
Multilevel 0.197 3 1

Table 1. Results from the 6 community detection algorithms
applied to the bipartite graph (31 green turtles with 8
regions consisting of 48 of the 59 receivers). These algo-
rithms cluster the nodes (i.e. individuals and locations) into
modules. Modularity, ranging from 0 to 1, indicates the abil-
ity of the community detection algorithms to partition the
bipartite graph. Modularity is the fraction of edges within
selected modules minus the fraction that would occur if
edges were randomly distributed across nodes. The higher
the modularity score, the better the algorithm performed at
clustering. Significant modules (p > 0.05) under the
Wilcoxon rank-sum test indicate there are significantly more
connections within a module than outside of it and thus are 

termed a community
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Tortuga Bay captured turtles with the Tortuga Bay
node. The other 2 modules consisted of 6 Manglar
Bay captured turtles partitioned with Las Pelas, Dak-
ity, and Honda nodes (p = 0.926) and 15 turtles parti-
tioned with Manglar, Mosquito, and San Ildefonso
nodes (p = 0.062). The 2 other algorithms (Leading-
Eigenvector and Walk-Trap) performed worse, with
modularity scores of 0.186 and 0.173, respectively.
Both found 5 similar modules (Fig. 5a,c) to each other
within the bipartite graph, and both had 1 significant
module, the Tortuga Bay community. There was a
slight difference in placement of some Manglar Bay
individuals across the modules, and both algorithms
created 2 modules that only consisted of 1 node or 1
turtle. No anti-communities, i.e. significantly more
connections outside the module than within it (Finn
et al. 2014), were found by any detection algorithm.

3.3.  Spatio-temporal drivers within Manglar Bay

Using the model with the best fit based on the
lowest WAIC value, the final model consisted of 6
fixed covariates (lagoon [continuous], macroalgae
[continuous], seagrass [continuous], diel period [cate-
gorical with 2 levels], tide height [continuous], tide
daily range [continuous]) and 2 interaction terms (diel
period [categorical with 2 levels] × seagrass and diel
period × tide height). Green turtle presence and ab-
sence were largely explained by lagoon, macroalgae,
the interaction between seagrass and diel period, and
the random spatial and temporal effects (Table 2).

Juvenile green turtles were most likely to be present
in areas with higher lagoon habitat values (lagoon,
posterior mean = 1.22; 95% CI = [0.13, 2.31]) and in
areas with higher seagrass habitat values at night
(diel [night]: seagrass, posterior mean = 0.29; 95% CI =
[0.14, 0.45]). Turtles were less likely to be present in
areas with higher macroalgae habitat values (macro-
algae, posterior mean = −0.56; 95% CI = [−1.0, −0.10]).
The predicted and observed values (presences and
absences) across hour at each station region show
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Fig. 5. Bipartite graphs with identified turtle community struc-
turing (i.e. modules) via the 6 community detection algo-
rithms. Algorithms clustered nodes (i.e. individuals and
locations) into modules (groups of individuals and locations).
Modules along with their nodes are labeled with different
colors. Individual turtle nodes were also labeled by the loca-
tion they were captured in (M: Manglar; C: Culebrita). Fast-
Greedy, Spin-Glass, Label-Propagation, and Multilevel had
identical modules generated. (a) Leading-Eigenvector; (b)
Fast-Greedy, Spin-Glass, Label-Propagation, and Multilevel;

and (c) Walk-Trap algorithms 
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heterogeneous space use across time (Fig. 6). While
space use was variable across individual turtles (Fig.
S1 in Supplement 1), turtles largely followed a gen-
eral spatiotemporal pattern within Manglar Bay. Tur-
tles were most likely to be detected in the back por-
tion of Manglar Bay (Region 1, R1 in Fig. 3) across all
hours, with the highest probabilities between 07:00
and 17:00 h. In addition, in the back portion of
Manglar Bay, turtles were most likely to be detected
in the western portion of Manglar Bay (Regions 5 and
6, Fig. 3) at night, between 19:00 and 06:00 h. Turtles
were more likely to be detected in the eastern portion
of Manglar Bay (Regions 2, 3, and 4, Fig. 3) during
daylight (between 08:00 and 17:00 h). Turtles were

rarely detected in the furthest western
region (Region 8, Fig. 3); however, if
they were detected here, it occurred
most often during daytime hours.

The final model correctly categorized
88% of the presences as determined
by the confusion matrix (i.e. a classifi-
cation table that compares actual and
predicted presences and absences to
one another), and the dispersion statis-
tic derived via sum of squared Pearson
residuals was 0.82, slightly underdis-
persed. Simulating from the posterior
distributions of the regression parame-
ters a thousand times, we observed an
overestimation of zeros and an overes-
timation of nines (Fig. S2 in Supple-
ment 1). The simulation in combination
with the dispersion statistic highlighted
the potential misinterpretation of the
variance structure. While computation-

ally intense and difficult to implement, this model
may have benefitted by using a zero inflated binomial
distribution (due to many absences) rather than a bi-
nomial distribution. While some autocorrelation still
existed, it was largely corrected for with the SPDE ap-
proach and the hourly station temporal dependency
structure (Figs. S3 & S4 in Supplement 1).

Predicted probability distribution maps of green
turtles were generated for each hour across
Manglar Bay, with tide height and tidal range
being held constant at their means and using the
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Fig. 6. Observed vs. fitted values (presences and absences)
broken down by region (labeled R1−R8) at the hour level for
the Bayesian presence−absence binomial model of 9 turtles
within Manglar Bay across 60 d. Dots show the observed
number of turtles (0−9) for each hour, and black line with
gray credible interval shows the expected value for the 

number of turtles from the best model

Predictor Mean SD Q0.025 Q0.975

Intercept −3.91 1.02 −5.91 −1.91

lagoon 1.22 0.56 0.13 2.31
macroalgae −0.56 0.24 −1.0 −0.10
seagrass 0.41 0.29 −0.16 0.96
diel (night) −0.29 0.09 −0.47 −0.12
tide height −0.17 0.36 −0.87 0.53
tide range 0.05 0.07 −0.08 0.19
diel (night):seagrass 0.29 0.08 0.14 0.45
diel (night):tide height −0.05 0.03 −0.10 0.00

Table 2. Results from final Bayesian presence and absence
binomial model of 9 green turtles within Manglar Bay across
60 d. Six covariates along with 2 interaction terms were
included in the model. In addition, the model was fit with a
spatial dependency structure to account for spatial autocor-
relation (via the stochastic partial differential equation) and
3 random walk smoothers to account for temporal autocorre-
lation (tide height, hour of the day, and study day) Q0.025 and
Q0.975 represent the 95% credible intervals of the parameter

estimates
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median study day (296) (Fig. 7, and see the anima-
tion in Supplement 2 at www.int-res.com/articles/
suppl/ n040p075_supp/). The spatial maps were con-
sistent with the model predictions, as higher and
lower presences followed patterns similar to the
predicted and observed values (presences and
absences) across each hour and each station region
(Fig. 6). Based on habitat features, turtle presence
was estimated to be low in unobserved areas such
as the reef but high in unobserved areas where
seagrass and lagoon habitats existed. Further, diel
period appears to be linked with spatial predictions;
specifically, turtle probability distributions were
condensed within the central and western portion
of Manglar Bay at night and more dispersed
towards the eastern portion of Manglar Bay during
the day. Our model indicated turtles had the high-
est probabilities of detection in the back portion of
Manglar Bay, also known as Region 1. Further,
these probabilities in Region 1 were the highest
between 07:00 and 17:00 h. However, our predictive
probability distribution maps (which account for
habitat within the entire bay) showed the highest
presences to be in the central part of the lagoon, in
areas that were considered unobservable with our
receivers.

4.  DISCUSSION

The main aims of this study were to examine move-
ment patterns and connectivity of immature turtles
within, outside, and across Manglar Bay on Culebra
Island and Tortuga Bay on Culebrita Island, Puerto
Rico, as well as to determine the spatio-temporal
drivers of presence and absence within Manglar Bay.
As suggested by Patrício et al. (2011), juvenile green
turtles around Culebra exhibit high site fidelity to
specific bays, with larger turtles leaving on brief
trips. Further, the size distribution of tagged turtles in
this study was similar to that reported by Patrício et
al. (2014) and thus likely was representative of indi-
viduals that were not tagged. There was little overlap
of space use outside respective bays for turtles cap-
tured in either Manglar or Tortuga Bay; further, no
turtle was ever detected entering the opposing bay.

Our model incorporating habitat kernel densities
indicated that turtles were more likely to be present
in areas of lagoon habitat and seagrass at night and
less likely to be in macroalgae habitat. We used
parameter estimates from the model to predict
space use of 9 turtles across Manglar Bay; our
hourly probability distributions proved to be accu-
rate and demonstrated turtles moving in predictive
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Fig. 7. Using the final Bayesian presence−absence binomial model parameter estimates, the spatio-temporal probability dis-
tribution of turtles within and around Manglar Bay at the hour level (0:00, 06:00, 12:00, and 18:00 h shown) was produced, with
0 (dark blue) indicating 0% probability of turtle presence and 1 (red) indicating 100% probability of turtle presence. We
derived 2155 habitat point estimates from our original mesh (2155 vertices); from each habitat kernel density estimate, these
point estimates were used to predict turtle distribution across Manglar Bay. Spatially explicit delineations for each station
region were used, and predictions were set to the mean tide height and tidal range and the median study day (296). Each hour 

was also classified for each hourly predictive model as either day or night

https://www.int-res.com/articles/suppl/n040p075_supp/
https://www.int-res.com/articles/suppl/n040p075_supp/
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patterns across the bay. Here, acoustic telemetry in
combination with novel analytical methods provides
unique insights on their movement patterns such as
space use and connectivity and their spatio-tempo-
ral drivers. These methods included network analy-
sis, community detection algorithms, and presence−
absence Bayesian modeling while accounting for
autocorrelation.

Within an ideal free distribution framework (Fret -
well & Lucas 1969), individual animals should arrange
themselves across space, based on food supply, in a
way that no individual has a greater advantage than
another; thus, input matching is achieved via bottom-
up processes (Milinski & Parker 1991). However,
through top-down processes, predation risk often
heavily alters spatial distributions and ultimately
impacts lifetime reproductive success based on the
trade-off between energetic input and predation risk
(Lima & Dill 1990, Moody et al. 1996). We suspect
top-down processes related to predation risk occur
within Culebra considering immature green turtles
had differential space use, as indicated by network
analysis, and never moved between Mang lar Bay
and Tortuga Bay, the 2 highest turtle density bays on
Culebra that are only separated by 2 km. While anec-
dotal evidence suggests limited predator burdens
(e.g. tiger sharks) around Culebra, predation risk and
its non-lethal effects (trait-mediated or risk effects)
are likely a major selective force in the evolution of
behaviors which still drive spatial distributions of
immature turtles around Culebra.

Furthermore, while genetic sampling suggested
the recruitment origins for juvenile green turtles
were similar across the 2 bays in Culebra (Patrício et
al. 2017), somatic growth was significantly greater in
Manglar Bay than in Tortuga Bay, with minimum
ages at maturity of 14 and 22 yr, respectively (Patrício
et al. 2014). Since no differential recruitment (Patrí-
cio et al. 2017) or movement across bays exists, habi-
tat quality and availability (Bjorndal et al. 2000) in
combination with predation risk (innate or learned)
are likely driving these different rates of somatic
growth. Manglar Bay is comprised of macroalgae
and the seagrass Thalassia testudinum, the primary
diet of green turtles in the Greater Caribbean (Bjorn-
dal 1980), while Tortuga Bay is predominantly cov-
ered by seagrasses Syringodium filiforme and Halod-
ule wrightii. Residency was high (0.80) for turtles
regardless of size or location, supporting previous
findings (Mendonca 1983, Brill et al. 1995, Makowski
et al. 2006, Colman et al. 2015) that immature green
turtles inhabit smaller but well-defined areas when
ecological resources (i.e. food and shelter) are tightly

clustered. The compressed bipartite graphs and com-
munity plots show turtles in Culebra use well-
defined areas. However, there was an effect of turtle
size and capture location on station count; movement
data showed larger individuals were more likely to
exit the bay for brief trips, which is consistent across
other study areas (Seminoff et al. 2003, Koch et al.
2007, Bresette et al. 2010). Potentially, as suggested
by our data, predation risk and exploratory behaviors
decrease and increase with size, respectively.

4.1.  Spatio-temporal drivers within Manglar Bay

Our results suggest turtles favored lagoon habitat
followed by seagrass habitat at night. Overall, turtles
were much less likely to be present in macroalgae
habitat. Based on the predicted hourly probability
distribution maps, turtle presence shifted from the
central and western portions of Manglar Bay at night
towards the eastern portion during the day. We antic-
ipated turtles would be detected exiting and entering
Manglar Bay for shelter and potentially safer habitats
during the night via the large channel in Region 4;
however, we saw the 9 selected turtles largely re -
mained within the lagoon during the night. Although
reef structure exists around Culebra and generally
serves as resting habitat for turtles to reduce preda-
tion risk (Ogden et al. 1983, Makowski et al. 2006,
Taquet et al. 2006, Hazel et al. 2009), some turtles
within Culebra may find shelter in the protected
lagoon as they would in an exposed patch reef sys-
tem. In agreement with our findings, Blumenthal et
al. (2010) also reported some green turtles remaining
within lagoon habitats at night. Further, turtles may
be selecting seagrass at night for foraging opportuni-
ties if light conditions are suitable (Taquet et al.
2006).

4.2.  Conclusions

Seagrass communities, the main diet of green sea
turtles, are considered threatened globally (Waycott
et al. 2009) and are highly vulnerable to human dis-
turbances including urban and agriculture runoff,
coastal development, and dredging (Grech et al.
2012). Since Culebra Island, Puerto Rico, is classified
as Resource Category I critical habitat for the green
turtle (63 FR 46693, September 2, 1998) and largely
protected through the Culebra National Wildlife
Reserve, its coastal habitats are still relatively undis-
turbed, providing an excellent window into natural
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processes. While habitats within Culebra are still
largely intact, multiple embayments are becoming
increasingly threatened by sewage wastewater con-
tamination and/or coastal development (e.g. man-
grove clearing, high sediment loads). Further, plans
for dredging for marinas are being proposed in these
sensitive seagrass habitats. Considering turtles in
Culebra exhibit high fidelity within the bays, it is
imperative to protect these distinct habitats that
serve as both shelter and foraging areas. This is espe-
cially pertinent since the survival of immature turtles
in Culebra could positively affect Caribbean-wide
nesting populations, specifically those of Costa Rica,
Mexico, east-central Florida, and Suriname (Patrício
et al. 2017). The protection of these essential juvenile
turtle developmental habitats ensures continued
recruitment into recovering green turtle populations.
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