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Abstract: The first law for the holographic entanglement entropy of spheres in a boundary CFT
(Conformal Field Theory) with a bulk Lovelock dual is extended to include variations of the bulk
Lovelock coupling constants. Such variations in the bulk correspond to perturbations within a family
of boundary CFTs. The new contribution to the first law is found to be the product of the variation δa
of the “A”-type trace anomaly coefficient for even dimensional CFTs, or more generally its extension
δa∗ to include odd dimensional boundaries, times the ratio S/a∗. Since a∗ is a measure of the number
of degrees of freedom N per unit volume of the boundary CFT, this new term has the form µδN,
where the chemical potential µ is given by the entanglement entropy per degree of freedom.

Keywords: holography; entanglement entropy; Lovelock gravity

1. Introduction

The AdS/CFT (Anti-de Sitter/Conformal Field Theory) correspondence [1] has been most
extensively studied for CFTs that have bulk Einstein duals. However, this does not include the
most general CFTs of interest. In four dimensions, for example, the trace anomaly for a general CFT is
given by

〈Ta
a〉 = c

16π2 CabcdCabcd − a
16π2 (RabcdRabcd − 4RabRab + R2) (1)

while the holographic calculation of the trace anomaly with Einstein gravity in the bulk [2] yields only
the special case a = c. Studies including higher curvature interactions in the bulk, which allow for
more general boundary CFTs, often focus on Lovelock gravity theories [3], which are better behaved
than generic higher curvature theories having, for example, field equations that depend only on the
Riemann tensor and not its derivatives (see, for example, the studies of causality constraints on the
bulk higher curvature duals of CFTs [4–13]).

Interest in CFTs with bulk Lovelock duals extends to holographic computations of entanglement
entropy [14–23]. For theories with bulk Einstein duals, Ryu and Takayanagi [24] proposed that the
entanglement entropy SE associated with the division of the boundary into complementary regions A
and B is given by the Bekenstein–Hawking entropy formula

SE =
AΣ

4G
(2)

where AΣ is the area of a bulk minimal surface Σ that is homologous to the boundary between A and
B. For CFTs with bulk Lovelock duals, it has been conjectured [15] that the entanglement entropy will
be similarly given by

SE = SL (3)
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where SL denotes the formula for horizon entropy in Lovelock gravity found by Jacobson and
Myers [25] evaluated for a surface Σ, homologous to the boundary between the regions A and B, that
minimizes SL. We will assume that this equality holds below and simply denote the entanglement
entropy by S in the following. Note that the Wald entropy formula [26,27] for Lovelock gravity differs
from the Jacobson–Myers formula by extrinsic curvature terms that vanish for the bifurcation surface of
a Killing horizon, but not necessarily for a bulk entangling surface. Note also that the area Equation (2)
in the Ryu–Takayanagi proposal is infinite, due to the divergence in the area element in the AdS metric.
Of course the entanglement entropy of the boundary region in the dual CFT is also infinite, and much
work has been done in demonstrating that the divergences match both for the leading (uninteresting)
terms and the (interesting, universal) logarithmic terms. The expressions are rendered finite by a
short-distance cutoff. We will omit subscripts such as “renormalized” since there will be sufficient
other subscripts.

Entanglement entropy is not a thermal phenomenon. However, it has been shown to obey a first
law with respect to variations in the quantum state of the CFT [28,29]. For a spherical entangling
surface on the boundary, this first law follows from the bulk gravitational first law associated with
the entangling surface Σ [30]. This works because the bulk surface Σ, in this case, turns out to be the
bifurcation surface of a Killing horizon. The proof of the first law for stationary black holes [31] then
applies in this non-black hole setting as well.

In reference [32], we used the bulk methods of [30] to prove an extension of the entanglement first
law [28,29] for CFTs with a bulk Einstein dual, that gives the variation in entanglement entropy with
respect to variation in the number of CFT degrees of freedom. As in [30], our construction applies only
to spherical entangling surfaces on the boundary, but may well hold more generally. This result relies
on the earlier generalization of the bulk first law to include variations in the cosmological constant Λ
[33]. For static black holes, this latter result has the form

δM =
κδA
8πG

− VδΛ
8πG

(4)

where M is the ADM mass, A the horizon area, κ the surface gravity. The quantity V is the
“thermodynamic volume” of the black hole, which is conjugate to the cosmological constant Λ, which
can be regarded as a pressure. The additional term in the first law then has a VδP form. Including this
additional part of the black hole phase space has led to a rich phenomenology of phase transitions, see
[34] for a review of progress in this area. In the AdS/CFT correspondence, with Einstein gravity in the
bulk, the cosmological constant is a measure of the number of CFT degrees of freedom. For example,
for AdS5/CFT4 [1] the number of degrees of freedom per unit volume of the boundary N = 4 SU(N)

gauge theory scales as N2 and is related to the bulk cosmological constant by

N2 =
π

2G5

(
− 6

Λ

) 3
2

(5)

Similarly in AdS3/CFT2, the CFT central charge c is a measure of the number of degrees of
freedom and is given [35] in terms of the bulk cosmological constant by

c =
3

2G3
√
−Λ

(6)

Varying the bulk cosmological constant corresponds to varying the number of boundary degrees
of freedom, and this forms the basis for the extension of the first law of entanglement entropy in
[32]. The quantity conjugate to varying the number of boundary degrees of freedom has a natural
interpretation as a chemical potential.

The connection between the bulk gravitational first law and the first law for entanglement entropy,
for spherical entangling surfaces, also holds in Lovelock gravity [30]. An extension of the bulk first
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law for black holes to include variations in the Lovelock couplings was proved in [36]. In addition
to the thermodynamic volume, there are now thermodynamic potentials conjugate to each of the
higher curvature couplings. The purpose of this paper is to apply this extended bulk first law to
derive an extension of the first law for entanglement entropy in this theory, for the case of spherical
entangling surfaces. Variation in the bulk Lovelock coefficients corresponds to variation within a
family of boundary CFTs (it is important to note that such a family of CFTs is not a moduli space.
Variation between nearby CFTs in a family does not correspond to perturbing by a marginal operator,
which would leave the central charges unchanged. Rather one should have in mind the example
given above of the family of N = 4 SU(N) supersymmetric Yang–Mills theory. These form a discrete
1-parameter family of CFTs with different central charges. In the limit of large N, where the bulk dual
description is valid, the relevant normalized variation δN/N between neighboring theories becomes
small). We find that at fixed energy, the variation in CFT entanglement entropy with respect to the
bulk Lovelock coupling constants assembles into the simple form

δS = S
δa∗

a∗
(7)

where the quantity a∗ can alternatively be viewed as a function of the Lovelock couplings or in terms
of its significance in the corresponding boundary CFT. For even dimensional CFTs, a∗ is the suitably
normalized coefficient of the Euler density term in the trace anomaly, expressed in terms of the bulk
Lovelock couplings [37]. This expression can then be continued to odd dimensions as well. It has been
argued that a∗ is proportional to the density of degrees of freedom in the CFT [17,38], and so the effect
of including the variation of the Lovelock couplings is to give a work term in the first law accounting
for the change in the number of degrees of freedom, with chemical potential proportional to S/a∗,
which can be interpreted as the entanglement entropy per degree of freedom.

This paper is organized as follows. In Section 2 we present the first law in terms of the
entanglement entropy and anomaly coefficient. In Section 3 we give the derivation of the first law in
terms of the area and Lovelock coefficients, which is the basis for the results of Section 2. In Section 4
we offer some concluding remarks.

2. Extended First Law for Entanglement Entropy

We consider entanglement entropy in CFTs with bulk Lovelock gravity duals. The Lagrangian for
Lovelock gravity in D spacetime dimensions is given by

L =
1

16πG

kmax

∑
k=0

bkL(k) (8)

where kmax = [(D− 1)/2] and the bk are real-valued coupling constants. The symbol L(k) stands for
the contraction of k powers of the Riemann tensor given by

L(k) = 1
2k δ

a1b1...akbk
c1d1....ckdk

Ra1b1
c1d1 . . . Rakbk

ckdk (9)

Here the δ-symbol is the totally anti-symmetrized product normalized so that it takes nonzero
values ±1. The term L(0) gives the cosmological constant term in the Lagrangian, while L(1) gives
the Einstein-Hilbert term and L(2) the quadratic Gauss-Bonnet term. The upper bound in the sum
Equation (8) comes about because L(k) vanishes identically for D < 2k and turns out to make no
contribution to the equations of motion in D = 2k. We will fix b1 = 1 and note that b0 = −2Λ, where
Λ is the cosmological constant.
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Let ξ be a Killing field with a bifurcate Killing horizon, and let Σ be the intersection of the horizon
with a constant time slice. Then the entropy associated with Σ is a sum of contributions associated
with each curvature term in the Lovelock Lagrangian, given by [25]

S =
1

4G ∑ bk A(k) , A(k) = k
∫

Σ
daL(k−1)[γ] (10)

where γab is the induced metric on Σ. We have omitted the boundary term that appears in the definition
of S in reference [25] since this vanishes when Σ is generated by a Killing field. The k = 1 term is
just the area, while the k = 0 term vanishes, corresponding to the fact that the cosmological constant
term in the Lagrangian does not contribute to the entropy. The first law in Lovelock gravity including
variations of the Lovelock parameters [36] is given by

δE =
κ

2π
δS− 1

16πG

(
2VδΛ + ∑

k=2
Ψ(k)δbk

)
(11)

Here V is the thermodynamic volume, the parameter conjugate to Λ [33], the Ψ(k) are potentials
conjugate to the higher curvature couplings bk with k ≥ 2, and E is the ADM charge associated with
the Killing field. One may wonder about the motivation for varying the Lovelock couplings bk. There
are several reasons why this is useful to do. First, to derive Smarr relations from the first law, the
first law must include the variations of all the dimensionful parameters, as was done for Einstein
gravity with cosmological constant in [33] and for Lovelock gravity in [36]. Second, terms that appear
as constants in a lower dimensional theory may indeed be moduli associated with dynamical fields in
a higher dimensional theory, as was discussed in [39] for Λ, and similar remarks apply to the Lovelock
couplings. Third, as is well appreciated by condensed matter physicists, understanding the effect of
varying a parameter can help elucidate the meaning of other quantities, even if that parameter will not
be varied in an experiment, as is illustrated by the distinction between internal energy and enthalpy.
In fact, in the current work, we will see that varying the couplings is the right thing to do in order
to compute the chemical potential for a dual CFT, or equivalently, the change in the entanglement
entropy due to a variation in the “A”-type anomaly coefficient.

We will be working in an asymptotically AdS spacetime, such that the metric in the asymptotic
regime is given approximately in Poincare coordinates by

ds2 ≈ l2

z2

(
−dt2 + dz2 + dr2 + r2dΩ2

D−3

)
(12)

where l is the AdS curvature scale. Consider the Killing field used in [30]

ξ = −2πt
r0

(z∂z + r∂r) +
π

r0
(r2

0 − z2 − r2 − t2)∂t (13)

At time t = 0, the horizon of ξ is given by the surface Σ : z2 + r2 = r2
0. The surface Σ intersects the

AdS boundary at z = 0 in a (D− 3)-sphere r2 = r2
0 whose interior is, in turn, a (D− 2)-dimensional ball

B on the boundary. Because Σ is a bifurcation surface for the Killing vector ξ, the first law Equation (11)
governs perturbations about AdS. On the other hand, since Σ is a minimal surface one can apply
holographic conjecture [24] to relate the area of Σ to the entanglement entropy of the boundary sphere.
As emphasized in [30], the possibility of applying a first law type construction is special to the spherical
boundary, because of the bifurcate Killing horizon property. The argument proceeds as follows.
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First we review relevant features of the first law results for Einstein gravity [30] including the
extension to include variation in Λ [32]. In this case, the entropy S in the first law reduces to A/4G,
where A is the area of Σ and one finds that Vtherm is also proportional to A, given by

V =
2πl2

D− 1
A (14)

Note that in these and subsequent formulas A denotes the regularized area, obtained by cutting
off the area integral at some small value z = ε, since the area receives an infinite contribution from the
region near the AdS boundary. This divergence of the area A as ε→ 0 corresponds to the divergence
of the entanglement entropy in the boundary CFT as a cutoff is removed. The surface gravity for the
Killing vector ξ is found to be κ = 2π, and the first law Equation (11) with the higher curvature terms
set to zero then reduces to

δE =
δA
4G
− (D− 2)

A
4G

δl
l

(15)

where the ADM charge E arises as the contribution from the AdS boundary to the Gauss’ law relation.
In reference [30] this was identified as

Eξ = 2π
∫

B
dD−2x

r2
0 − r2

2r0
Tboundary

tt (t = 0,~x) (16)

where Tboundary
µν is the boundary stress tensor. In Equation (15) the cosmological constant Λ has been

rewritten in terms of the AdS curvature scale by means of

Λ = − (D− 1)(D− 2)
2l2 (17)

For AdS5 the dual CFT is given by N = 4 SU(N) Super-Yang–Mills theory [1], where the AdS
curvature scale is related to the number of colors N according to l8 ∼ N2. The first law Equation (15)
can then be written in terms of variations in N as

δE = δS− (D− 2)
S

N2 δ(N2) (18)

The number of degrees of freedom of the CFT is proportional to N2, and
therefore Equation (18) determines the chemical potential for changing the number of
degrees of freedom of the boundary CFT to be

µ = −(D− 2)
S

N2 (19)

Hence, including δΛ in the first law has allowed us to identify the chemical potential µchem, which
is seen to be proportional to the entanglement entropy per degree of freedom. We note that other work
has also included a temperature associated with the variation of E with respect to S [40,41].

We find that a similar result holds for boundary CFTs that are dual to Lovelock gravity in the bulk.
The derivation of this result will be given in Section 3 below. Here we will focus on the results. A key
feature of the calculation given below is that with the constant curvature form of the Riemann tensor
for AdS, each of the terms in first law Equation (11) works out to be proportional to the corresponding
term in the Einstein case. Consequently, a sum over the Lovelock coupling constants bk factors out
of the entire equation, giving a simple result in terms of the horizon area. The extended first law
including variations in the Lovelock couplings will then take a simple form if we rescale the variation
of the energy according to

δẼ =
(D− 1)(D− 2)

s(1)
δE (20)
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where the quantity s(1) is given by the sum over the Lovelock couplings

s(1) = −l2(D− 1)! ∑
k=0

(−1)k

l2k
k bk

(D− 2k− 1)!
(21)

Written in terms of rescaled quantity δẼ, the extended first law in Lovelock gravity for
perturbations about the minimal surface Σ that intersects the AdS boundary in a sphere is then
given by

δẼ =
δA
4G
− (D− 2)

A
4G

δl
l

(22)

where the AdS curvature scale l is now related to the Lovelock couplings by

∑
k=0

(−1)k

l2k
bk

(D− 2k− 1)!
= 0 (23)

Note that this result has the same form as the first law Equation (15) with Einstein gravity in the
bulk.

In Einstein gravity, the first law written in terms of the horizon area Equation (15) translates
directly into a statement Equation (18) about the entropy and its variation. However, in Lovelock
gravity such a restatement requires additional steps. The different horizon integrals contributing the
entropy Equation (10) for the surface Σ all work out to be proportional to its area, with the A(k) given
by

A(k) =
A

4G
k ek , ek =

(
−1
l2

)k−1 (D− 2)!
(D− 2k)!

(24)

Substituting this in Equation (10) we find that the entropy associated with the minimal surface Σ
is given by

S =

(
∑
k

kekbk

)
A

4G
(25)

The entropy can be rewritten in terms of the “A”-type anomaly coefficient a∗. In the
four-dimensional CFT N = 4 SU(N) Super-Yang–Mills dual to Einstein gravity without higher
curvature terms the central charges a and c are equal. However with higher derivative terms in the
gravitational Lagrangians this is no longer the case. Both holographic and direct CFT calculations
of the entanglement entropy have found that the several anomaly coefficients of the CFT can be
distinguished by studying entangling boundaries with different geometries [14,15,42,43]. For example,
in Lovelock gravity it was found that the entanglement entropy of a cylinder is proportional to the “c”
coefficient, while that of a sphere is proportional to a∗, where

a∗ =
lD−2

4G

(
∑
k

kekbk

)
(26)

The “star” indicates that the coefficient has been extended to include CFTs of odd dimensions.
Our normalization differs from that in [15] by the factor 4π(D−1)/2/[Γ(D−1

2 )]. Hence the entropy
[14,15] can be written as

S =
a∗A
lD−2 (27)

and its variation is given by

δS =
a∗A
lD−2

(
δa∗

a∗
− (D− 2)

δl
l

)
+

a∗

lD−2 δA (28)
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The prefactor of the first term above is just the entropy, and the last term can be rewritten in terms
of the entropy and the change in energy using the first law Equation (22). One of the terms in the first
law cancels the δl term, and so all the variations of the Lovelock couplings combine to form δa∗, giving
the result

δS = S
δa∗

a∗
+

4a∗G
lD−2 δẼ (29)

The anomaly coefficient a∗ has the interpretation of the number of degrees of freedom per cell
in the regulated field theory [43,44] and so the last term is proportional to the change in the number
of degrees of freedom in the CFT, as was the case for Einstein-Λ gravity (compare to Equation (18)).
Hence the variation of S with respect to a∗ at fixed energy, for a spherical boundary, can be thought of
as a generalized chemical potential with value

µ =
∂S
∂a∗

∣∣∣∣
E
=

S
a∗

(30)

for a CFT dual to a Lovelock theory. The chemical potential µ is simply the entanglement entropy per
degree of freedom.

Again, we note that the area A of the surface that extends to the boundary of AdS is infinite, and
so the entropy in the first law refers to the renormalized quantity. For a given linearized perturbation
one or both of the resulting quantities δS and δE must also be renormalized. On the other hand, the
logarithmic changes δS/S and δa∗/a∗, as well as the ration δE/S can be finite. It would be interesting
to also be able to probe the effect of varying the “B”-type contributions to the trace anomaly, which
derive from the Weyl, Cotton and Bach tensors rather than the Euler densities. Reference [15] computes
the logarithmically divergent contributions to the entanglement entropy for several different types
of entangling surfaces, illustrating that all the A and B-type coefficients will contribute in general.
However, the bulk first law type construction used here is based on the bulk entangling surface being a
Killing horizon, and therefore it is not possible to extend the present results to capture the effect of the
“B”-type anomalies. One can speculate that more general surfaces might be assembled as composites of
basic surfaces, each defined via symmetries, but so far we have not been successful in accomplishing
this.

Explicit Formula and an Example in D = 5

The relation Equation (29) which gives δS at fixed energy in terms of δa∗ is a nice and compact
expression. However, it is also useful to have the equivalent expression in terms of the variations of
the Lovelock coefficients and the AdS radius. This is given by

δS|E =
A

4G

kmax

∑
k=0

(
−1
l2

)k−1 k(D− 2)!
(D− 2k)!

[
δbk + (D− 2k)bk

δl
l

]
(31)

As an illustration and a check of our work, in this section we start
with the entropy in terms of the Lovelock couplings and translate to the
conformal field theory coefficients a and c, calculated by other techniques.
In D = 5 the only nonzero coupling constants are b0, b1 ≡ 1, and b2, and Equation (31) reduces to

δS|E = −3A
4G

[
4δb2

l2 +

(
4b2

l2 − 1
)

δl
l

]
(32)

From reference [14], the coupling constants b0 and b2 are related to the 4D CFT trace anomaly
coefficients a and c according to

b0b2 =
3(a− 5c)(a− c)

2(a− 3c)2 (33)
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while from Equation (23) the AdS radius l is determined by the equation

l2b0 − 12 +
24
l2 b2 = 0

These can be combined to obtain expressions for the couplings in terms of a, c and l

b2 =
l2(a− c)
4(a− 3c)

and b0 =
6(a− 5c)
l2(a− 3c)

. (34)

Additionally the AdS radius is given [14] in terms of the anomaly coefficients and Newton’s
constant by l3 = G(3c− a)/90π.

Hence the variations of the Gauss-Bonnet coupling b2 and the AdS radius l can be expressed in
terms of the variations of the anomaly coefficients by

δb2

l2 =
(a− c)

2(a− 3c)
δl
l
+

aδc− cδa
2(a− 3c)2 ,

δl
l
=

3δc− δa
3(3c− a)

Plugging these into the expression Equation (32) for the variation of the entanglement entropy
gives

δS|E = − A
2G

δa
(a− 3c)

(35)

Note that the terms proportional to δc have cancelled. The unperturbed entropy S is determined
by Equation (25) to be

S =
A

4G

(
1− 12b2

l2

)
(36)

= − A
2G

a
(a− 3c)

(37)

Hence the variation of the entanglement entropy is found to be δS|E = S
δa
a

, which is in agreement
with the general result Equation (29) above, since in this case a∗ = a.

3. Details of the Derivation

In this section we give the details of the derivation of the extended first law Equation (22) including
variations in the Lovelock couplings for the change in the area of the minimal surface Σ that intersects
the AdS boundary in a sphere. The extended first law is valid for small perturbations around AdS, as
well as in the far field of an AdS black hole. The derivation makes use of the Hamiltonian perturbation
theory formalism. Here only give needed details for the derivation at hand, while a more complete
treatment can be found in [36].

In the Hamiltonian framework, we start by decomposing the metric as

gab = −nanb + sab , nana = −1 , nasa
b = 0 (38)

In the asymptotically AdS region the timelike normal is simply na = −(l/z)∇at. The Killing field
used in the first law construction, given explicitly in Equation (13), is decomposed as

ξa = Fna + βa (39)

We will take the background metric to be AdS, and denote the perturbation to the spatial
metric as hab,

sab = sAdS
ab + hab (40)
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There is also a perturbation to the gravitational momentum, but it doesn’t enter into this
calculation.

The extended first law was derived previously for Lovelock black holes [36], with the result given
above in Equation (11). That general result was applied in [45] to spherically symmetric Lovelock black
holes and used to derive properties relating the mass, entropy, and temperature. In the spherically
symmetric case additional progress can be made due to the additional symmetry assumption about the
spacetime. In this current work, one can likewise make additional progress since the bulk horizon Σ lies
in the asymptotic AdS region, and so the background Riemann tensor has the special constant curvature
form. We next show that the individual Lovelock integrals in the sums all reduce to multiplies of a
basic integral, times the appropriate bk, times a numerical coefficient which is the result of careful
calculation. In the end, the relative coefficients from the several coefficients give the simple form in
Equation (29).

For the geometry of interest here, it is convenient to backtrack to a more “primitive” version of the
first law. This amounts to the following integral identity, which holds for solutions about a background
solution to the Lovelock equations of motion∫

∂V
dac ∑

k
(bkB(k)c + δbkβ(k)cdnd) = 0. (41)

Here the boundary vectors B(k)a, which depend on the metric perturbation, are given by

B(k)a =
k

2k−1 δ
aba1b1...ak−1bk−1
cdc1d1....ck−1dk−1

Ra1b1
c1d1 . . . Rak−1bk−1

ck−1dk−1
(

F∇chd
b − hd

b∇
cF
)

(42)

and the Killing–Lovelock potentials β(k)ab [46] corresponding to the Killing vector ξa are solutions to

−1
2
∇bβ(k)ba = G(k)a

b ξb

Here G(k)a
b is the kth order Lovelock tensor,

G(k)a
b = − 1

2k+1 δ
aa1b1...akbk
bc1d1....ckdk

Ra1b1
c1d1 . . . Rakbk

ckdk . (43)

We apply the identity Equation (41) with the Killing vector Equation (13) to the boundary
composed of the spherical ball B of radius r0 at spatial infinity plus the bulk minimal surface Σ,
which is the bifurcate Killing horizon of ξ. Since the background is AdS and the Riemann tensor has
the simple constant curvature form, it turns out that the various lengthy expressions indexed by k
differ only in the multiplicative pre-factors. Explicitly, using Rab

cd = −(1/l2)δab
cd , one finds the Lovelock

tensors Equation (43) are given by

G(k)a
b = −1

2

(
−1
l2

)k (D− 1)!
(D− 2k− 1)!

δa
b .

and that the Killing–Lovelock potentials can be written in terms of the k = 0 Killing potential as

β(k)ab =

(
−1
l2

)k (D− 1)!
(D− 2k− 1)!

β(0)ab (44)
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Further, the Killing potential β(0)ab can be obtained simply by combining the Ricci identity
∇a∇bξb = −Rb

aξa for the Killing vector along with the Ricci tensor Rab = −((D − 1)/l2)gab of the
AdS background which gives

β(0)ab =
l2

D− 1
∇aξb.

For the Killing vector Equation (13), this gives

β(k) =
1
2

β(k)ab∂a ∧ ∂b (45)

=

(
−1
l2

)k πz(D− 2)!
r0(D− 2k− 1)!

{
(r2

0 + z2 − t2 − r2)∂t ∧ ∂z + 2txk∂z ∧ ∂k + 2zxk∂t ∧ ∂k

}
(46)

Similarly, the boundary terms B(k)a corresponding to each order k can be expressed in terms of
the boundary term corresponding to the Einstein-Hilbert term (i.e., k = 1) as

B(k)a = k
(
−1
l2

)k−1 (D− 3)!
(D− 2k− 1)!

B(1)a (47)

B(1)a = F(Dah− Dbhab)− hDaF + habDbF (48)

The weighted sum of boundary vectors can be expressed more compactly as

∑
k

bkB(k)a =
s(1)

(D− 1)(D− 2)
B(1)a (49)

where the sum s(1) was defined in Equation (21).

3.1. Boundary at Infinity

We are now ready to evaluate the integral Equation (41) on the boundary at spatial infinity. We
will find that at infinity the terms arising due to variations in the coupling constants bk are separately
divergent but sum to zero, leaving only the ADM energy corresponding to the Killing field ξa. This
cancellation works essentially in the same way as in the calculations in [32,36]. First, we analyze
the boundary vector B(1)a in Equation (48), which depends on hab. The metric perturbation can be
divided into a contribution with l held fixed, and a contribution from a change in l. The second
portion is simply hab = (2δl/l)sab. The normal component F of the Killing field on the boundary is
F = (πl/r0z)(r2

0 − r2).

dazB(1)z =

(
l2

z2 rdrdΩ
) [

B(1)z∣∣
δl=0 +

2(D− 2)πδl
r0l2 (r2

0 − r2)

]
We now integrate the sum of boundary vectors in Equation (49) on the boundary at infinity using

the above expression. The integral of the term corresponding to the perturbation with the AdS length l
held fixed gives the variation in the ADM charge associated with the Killing field ξa [45], and hence
we obtain ∫

B
dac ∑

k
bkB(k)c = −16πGδEξ + δl

2πs(1)
(D− 1)

K
z2 (50)

where

K =
1
r0

∫
B

rdrdΩ
z2 (r2

0 − r2) = ΩD−3
r3

0
4

(51)
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The last term in Equation (50) diverges as z→ 0, which is to be expected from the way l enters the
metric. However, this will be cancelled by the contribution from the Lovelock-Killing potentials, which
we evaluate next. The relevant contribution is from the components β(k)tz, which from Equation (45)
gives

∑
k=0

δbkβ(k)ztnt =

(
∑
k=0

(
−1
l2

)k (D− 2)!δbk
(D− 2k− 1)!

)
πl
r0

(r2
0 − r2)

The sum inside the parenthesis on the right hand side involving δbk’s can be expressed in terms
of δl by taking the variation of Equation (23),

∑
k=0

(
−1
l2

)k (D− 1)!δbk
(D− 2k− 1)!

= −s(1)
2δl
l3 . (52)

Finally, integrating over the boundary at infinity, we get

∫
B

dac ∑
k=0

δbkβ(k)cdnd = −δl
2πs(1)

(D− 1)r0

K
z2 (53)

which precisely cancels the diverging contribution in Equation (50).

3.2. Boundary in the Interior

Let us now evaluate the integral in Equation (41) on the bulk minimal surface Σ in the
interior. Since Σ is a bifurcate Killing horizon, the integral of the boundary vector B(1)a

over this surface is −2κδA, where A is the area of the minimal surface and κ = 2π for
the Killing vector ξa. Using Equation (49), we then have

∫
Σ

dac ∑
k

bkB(k)c = −
4πs(1)δA

(D− 1)(D− 2)
(54)

There remains the integral of the Killing-potential terms on Σ. Since the Killing potentials of
different orders differ only in the multiplicative factors as displayed in Equation (44), each of the
integrals is proportional to the thermodynamic volume defined by

Vther = −
∫

Σ
dacβ(0)cbnb

which, noting that the unit outward normal to Σ is m = −l(zdz +~x · d~x)/(zr0), has the value

Vther =
2πl2

D− 1
A (55)

Using Equation (45), we then obtain the sum of all contributions of the Killing potentials on the
bulk minimal surface in terms of the area∫

Σ
dac ∑

k
δbkβ(k)cdnd =

4πs(1)A
D− 1

δl
l

(56)

In the last line we have expressed the sum involving the δbk in terms of δl using Equation (52).
Adding the contributions on the boundary Σ, Equations (54) and (56), gives

∫
Σ

dac ∑
k

(
bkB(k)c + δbkβ(k)cdnd

)
= −

4πs(1)
(D− 1)(D− 2)

[
δA− (D− 2)A

δl
l

]
(57)
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Combining the results from the previous subsections we have the following extension of the first
law for an entangling surface that intersects the AdS boundary in a sphere,

δEξ =
s(1)

4G(D− 1)(D− 2)

[
δA− (D− 2)A

δl
l

]
which completes the derivation for Equation (22) which forms the input in Section 2 leading to our
main result Equation (29).

4. Conclusions

To summarize, by making use of standard Hamiltonian perturbation theory methods we have
derived an extended form of the first law for entanglement entropy, for spherical entangling surfaces,
in CFTs with a bulk Lovelock dual. This extension gives the variation of the holographic entanglement
entropy as the bulk Lovelock coupling constants are varied, corresponding to variation within a
family of boundary CFTs. We have shown that variations of the bulk Lovelock couplings impact
the entanglement entropy through their contributions to the variation of the “A”-type trace anomaly
coefficient a of the boundary CFT, or its generalization a∗ for odd dimensional boundaries. At constant
energy, we find that the logarithmic change in S is equal to the logarithmic change in a∗. Given that a∗

is a measure of the number of degrees of freedom of the CFT, we can regard the quantity S/a∗ as a
chemical potential for increasing the number of degrees of freedom within a family of boundary CFTs.

One natural question is whether the variation in holographic entanglement entropy with respect
to variations in the bulk Lovelock couplings is linked to the variation in the trace anomaly coefficients
flow for more generally shaped regions. The restriction to spherical boundary regions arises because
the construction is based on the background AdS isometry Equation (13), but progress could be made
by studying small deformations of spheres. A second, more speculative question is whether there might
be connection between a bulk second law associated with entangling surfaces and renormalization
group flow between UV and IR CFTs. A great deal of work has been done on the issue of a higher
dimensional version of the c-theorem [37,43,44,47–55]. References [43,44] showed that with an energy
condition, (a∗)UV ≥ (a∗)IR, and so based on Equation (7) one can speculate that an entropy increase
property is connected to the anomaly flow. In this context, interesting work on entropy increase has
appeared in [55–57].
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