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Background and Justification 

 Extirpation of species from their native ranges can occur as a result of broad scale 

processes such as habitat loss, land use practices, and shifts in biotic community composition. 

However, quantitatively linking broad scale factors to population decline can be difficult, 

especially for rare or cryptic species (Hamilton et al. 2015). Thereby, choosing appropriate 

mitigation or restoration actions can be challenging when agency resources are limited and 

understanding of dynamic ecological processes is imperfect. Often managers must make 

decisions based on personal expertise with limited empirical data. While this method is 

sometimes effective, it is hard to replicate. Furthermore, when such efforts fail, the reason for 

failure may be unclear, as factors that impact the outcome of management action may be 

unknown or ignored (i.e., the process is not transparent). Additionally, the perceived 

favorability of management outcomes may vary based on stakeholder perceptions of cost and 

value. Thus, there is a need for quantitative tools which are able to transparently incorporate 

empirical data, expert knowledge, and stakeholder values to provide a replicable framework for 

adaptable, structured decision making (Nyberg et al. 2006; Conroy & Peterson 2013). One 

approach is through Bayesian decision networks (BDNs), which incorporate multiple sources of 

information and provide a flexible framework for addressing questions where empirical data 

are limited and structural uncertainty is high (Conroy & Peterson 2013). In such situations, 

BDNs are an appropriate tool for aiding professionals in choosing the most appropriate 

management action for a specific scenario. The product of a BDN is a flexible decision-making 

framework that can help managers adaptively manage for variable systems over time.  
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 The management of freshwater mussel populations is a useful application for structured 

decision making tools such as BDNs. Freshwater mussels are highly imperiled (e.g., Williams et 

al. 1993), yet play an important role in lotic systems through sediment stabilization, nutrient 

mobilization, and bioaccumulation of potentially harmful substances (Vaughn et al. 2007). 

However, knowledge gaps pertaining to ecological role and life history still exist for freshwater 

mussels (Haag 2012), and long term, standardized monitoring of these species is rare. 

Additionally, most species can live for decades or more and are largely immobile, making them 

highly susceptible to fragmentation and eventual extirpation in response to disturbance, as well 

as changes in land use or biotic community composition (Hastie et al. 2001; Galbraith et al. 

2010). In regions where they persist, mussels are increasingly the focus of restoration efforts to 

improve water quality and biotic integrity of streams, despite high amounts of uncertainty 

associated with such efforts. As re-introduction of mussel species becomes more common, 

optimal management approaches must be determined, though targeted research of success 

rates is rare. Thus, Bayesian methods are particularly useful for combining prior system-specific 

information with expert knowledge to create a balanced and quantitative approach to 

managing freshwater mussel populations.  

Recent collaborative efforts undertaken by Chicago Wilderness and the Illinois Natural 

History Survey have sought to predict the optimal method for restoration of two freshwater 

mussel species, Ellipse (Venustaconcha ellipsiformis) and Spike (Eurynia dilatata), within the 

Chicago Wilderness Area. The Chicago Wilderness Area encompasses 1,400 km2 and includes 

the Chicago, Des Plaines, Kankakee, Kishwaukee, and Fox River watersheds. Both Ellipse and 

Spike were historically widespread within this region, but have suffered substantial range and 
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abundance reductions in recent years. Ellipse are currently a species of greatest conservation 

need in Illinois, and Spike are listed as threatened (Douglass & Stodola 2014; Illinois Endangered 

Species Protection Board 2015). Yet, recruiting populations of both species still persist within 

the region (INHS Mollusk Collection, unpublished data), which indicates the potential for 

recovery. Proposed locations for re-introduction were the South Branch Kishwaukee and West 

Branch DuPage rivers, as both species are presently absent in these rivers. The South Branch 

Kishwaukee River is located in DeKalb County, surrounded primarily by agricultural and 

suburban land use, and contains many areas of relatively well-preserved habitat with a variety 

of mussel species. The West Branch DuPage River crosses through Cook and DuPage counties, 

and local land use is primarily suburban or urban. A large portion of the river was contaminated 

by radioactive inputs during the 1930s-1970s and subsequently identified as a Superfund site 

(United States Environmental Protection Agency 2005). The West Branch DuPage River has 

undergone substantial restoration through the Superfund program, and has recently been the 

site of reintroduction for common mussel species (DeMartini 2017). Both target rivers 

historically supported Spike and Ellipse (Douglass & Stodola 2014) and have either intact 

habitat or undergone habitat restoration, making them good candidates for future mussel 

restoration. 

Several options exist for facilitating restoration of mussel species to target rivers, such 

as translocation of adult mussels, introduction of juvenile mussels, release of inoculated host 

fishes, or taking no action (e.g., relying on natural recolonization). Previous introductions in the 

West Branch DuPage have focused on propagating and releasing juvenile mussels (DeMartini 

2017), though relocation of adult mussels from source populations remains a viable option. 
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Releasing host fish that have been artificially inoculated with mussel glochidia has dual benefits 

of releasing larval mussels and boosting host fish populations. On a larger scale, removal of 

upstream dams is a possible management option which would seek to restore connectivity of a 

target area to other parts of the watershed and enable recolonization from natural sources. 

Finally, upon evaluating specific proposed sites for restoration, managers may seek to take no 

action at this time if the likelihood of a successful outcome is deemed low.  

We highlight the use of Bayesian Decision Networks to formalize the decision process 

and suggest a management strategy for restoring Ellipse and Spike to target areas.  A BDN is 

particularly useful in complicated situations like this, because it allows for the combination of 

prior knowledge of mussel distributions and habitat relationships in Illinois with expected value 

of management outcomes.  To build the Bayesian Decision Network, we used long term mussel 

presence data paired with a suite of environmental and biotic variables to elucidate important 

factors for each focal species and structure preliminary models (Chiavacci et al. 2018). We then 

built multiple versions for each species using three levels of information 1) data subset (target 

streams, non-target streams, or both; Figure 9), 2) expert opinion values (median, minimum, or 

maximum), and 3) precision of mussel data (long term presence, 2018 presence or 2018 

density). All model versions were compared using sensitivity analyses to determine sources of 

potential model performance bias and decide whether a need for quantitative mussel density 

sampling in future model iterations was needed.  

All models built in this project were created using Netica by Norsys Software Corp., a 

program specifically designed to create Bayesian networks. Netica is available for download for 

$285 for an individual application, or for $600 for commercial applications (as of 2019).The 
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following walk-through serves as a step-by-step tutorial of how to build BDNs using Netica, 

while also detailing the methods and results of the Ellipse and Spike models created for this 

project. For each step, we outline a “General Description”, which is a broad description for 

managers to consider for their own projects, and “Applied Project Result” is a detailed 

explanation of the process completed for this project. These steps are summarized as: 

Step 1. Identify Objectives 

Step 2. Conduct Preliminary Analyses 

Step 3. Determine possible management actions and assess preliminary costs 

Step 4. Construct model 

Step 5. Organize and incorporate empirical data 

Step 6. Collect expert opinion responses 

Step 7. Compile and validate model 

Step 8. Determine sensitivity 

Step 9. Test specific sites 

Step 10. Assess feasibility, carry out management, and monitor results 

 

Methods 

Step 1. Identify objective(s)  

General Description: Before choosing which parameters to include in a BDN, it is 

important to clearly articulate an objective to determine which management options should be 

evaluated. Be as specific as possible, and consider the appropriate timescale for management 

action to produce results. 
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 Applied Project Result: Study objective: Restore Ellipse and Spike (potentially to target 

watersheds), resulting in 300 or more surviving adults per site, and detectable recruitment 

within ten years of management action.  

 

Step 2. Conduct preliminary analyses 

General Description: It is beneficial to use any existing data and/or literature values to 

inform the structure of a BDN, though it may not be possible to conduct targeted research to 

inform management decisions. If long-term data are available, using regression analysis (either 

simple, for each variable, or in a more comprehensive framework) can be a good starting point 

for determining which factors may be influencing the parameter of interest. Research in similar 

systems or for the same study organism may also be included when considering variables for 

initial models, as well as expert opinion. In cases where no known relationships have been 

established, another approach may be to arbitrarily include factors based only on expert 

knowledge, and weed out unimportant factors later in the process, through sensitivity analysis. 

A drawback to this method is the potential need for collecting relatively more expert opinion 

survey data than may ultimately prove necessary. Additionally, keep in mind that as model 

complexity increases so does model uncertainty. Sometimes it is better to begin with a simple 

model founded in empirical knowledge and add more information in the future as it becomes 

available, rather than starting with a very complex model that includes all possible 

relationships, which can quickly become unwieldly.  

Applied Project Result: A large number of hydrological, water quality, and biotic 

variables were included in multi-stage regression analyses (see Chiavacci et al. 2018 for details) 
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to determine species-specific factors impacting Ellipse and Spike presence in northeastern 

Illinois. Five factors were significant for Ellipse (factor, relationship): number of upstream dams 

(-), number of pollutant dischargers (-), host fish richness (+), mean annual duration of extreme 

low flows [-], and number of sites unsuitable for aquatic life [-]. Four similar yet distinct factors 

were significant for Spike: distance to downstream dam [+], high flow variation [+], number of 

pollutant dischargers [-], and host fish richness [+].   

Ellipse presence was negatively related to number of upstream dams and number of 

National Pollutant Discharge Elimination System (hereafter, NPDES) sites in the watershed. 

NPDES sites represent point sources of pollution and are associated with poor water quality. 

Duration of extreme low flows also negatively impacted Ellipse presence. Proportion of the 

watershed which failed to meet minimum water quality standards under section 303(d) of the 

Clean Water Act (Illinois Environmental Protection Agency) was also an important watershed-

level predictor which negatively affected Ellipse presence. According to 303(d) regulations, sites 

can fail to meet water quality standards for several reasons ranging from “aesthetic quality” to 

“primary contact recreation”. In this study, we further specified this metric to focus on sites 

deemed “unsuitable for aquatic life”, using a count of sites with this designation for each 

stream. Host fish richness was a positive predictor of Ellipse presence. In this study, it was 

further modified to reflect host suitability, based on transformation success estimates gathered 

from literature (Luo 1993; Allen et al. 2007; Schroeder et al. 2014; see Table 1, Appendix A) for 

weights and scoring). As with Ellipse, Spike presence was negatively related to number of 

NPDES dischargers and positively related to host fish richness. However, Spike presence was 

also positively related to distance to nearest downstream dam and negatively related to 
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variation in number of annual high flow events. The above factors were included in species-

specific models and were assumed to be the most likely variables affecting mussel presence for 

which empirical data were available.  

 

Table 1.  Weighted values for Ellipse fish hosts. Hosts with <2 successfully transformed juveniles 

in laboratory trials are weighted at 0.25, hosts with 2-10 transformed are weighted at 0.5, 11-

20 are weighted at 0.75, and >20 are weighted at 1.  

 

Common Name Scientific Name Mean Transformed Weight Reference 

Mottled Sculpin Cottus bairdii 32 1 Allen et al. 2007 

Slimy Sculpin Cottus cognatus 48 1 Allen et al. 2007 

Brook Stickleback Culaea inconstans 13 0.75 Allen et al. 2007 

Mud Darter Etheostoma asprigene 1 0.25 Allen et al. 2007 

Rainbow Darter Etheostoma caeruleum 1 0.25 Allen et al. 2007 

Iowa Darter Etheostoma exile 5 0.5 Allen et al. 2007 

Fantail Darter Etheostoma flabellare 8 0.5 Allen et al. 2007 

Johnny Darter Etheostoma nigrum 24 1 Allen et al. 2007 

Banded Darter Etheostoma zonale 1 0.25 Allen et al. 2007 

Logperch Percina caprodes 1 0.25 Allen et al. 2007 

Blackside Darter Percina maculata 2 0.5 Allen et al. 2007 
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Step 3. Determine possible management actions and assess preliminary costs 

General Description: Potential management options included in models should 

encompass only what is realistically feasible and applicable to the objective specified, even if 

this does not address all contributing factors identified in preliminary analyses. Management 

actions should also be as specific as possible. For example, consider the objective of improving 

recruitment for a fish species such as largemouth bass in an Illinois reservoir. Management 

actions targeted at improving habitat for this species might include “increase woody debris 

volume to 100m3/ha”, or “add thirty 10-ft oak logs per site”, rather than a more vague 

statement like “increase woody habitat”, for which cost and feasibility estimates will also be 

imprecise. Feasibility for a particular objective may vary based on logistical constraints of 

resources, as well as what the public or other stakeholders are willing to accept (which should 

also be a consideration).  

Applied Project Result: Five possible management actions were chosen based on 

discussions with collaborators, experts surveyed, and propagation facilities within Illinois 

(Urban Stream Research Center, Warrenville, IL and Jake Wolf Memorial Fish Hatchery, Topeka, 

IL, Table 2). Approximate costs for each option were assessed based on literature values in the 

case of fish and mussel propagation (Southwick & Loftus 2018), and an average cost of 

proposed dam removals in the state of Illinois as of 2018 (S. Pescitelli, personal 

communication). An option of “No Action” was also included, for situations where the 

predicted probability of management success was so low that the cost of taking management 

action was undesirable. Costs for each option involving the release of organisms were based on 
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the cost of action resulting in survival of ~300 mussels to maturity, estimated from literature 

values (Liberty 2014; DeMartini 2017; McMurray & Roe 2017).  

It is not necessary to know the precise costs for each management option before 

creating a BDN (but it helps!). Having a relative measure of what each management approach 

will cost is useful when determining the utility of potential management outcomes in various 

scenarios, which will be determined using expert opinion surveys or discussions (see Step 6). 

 

 

 

Table 2. Preliminary costs for proposed management actions considered for Ellipse and Spike 

restoration to the South Branch Kishwaukee and West Branch DuPage Rivers.  

Management Action Cost 

No Action $0  
Release Juvenile Mussels $1,425  
Release Inoculated Host Fish $1,500  
Release Adult Mussels $20,300  
Remove Dam $718,000  

 

Step 4. Construct model 

General Description: Choosing which parameters to include in a BDN can be 

accomplished in a variety of ways. The most direct approach is through preliminary analyses 

and/or literature review, as described above. If no empirical data are available to determine 

prior probabilities and inform model structure, one alternative is to build various theoretical 
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forms of the model, populate them with estimates of parameter distributions based on expert 

knowledge or simulated data, and then test each form for sensitivity to inputs. This process will 

determine which components might be important for inclusion in future model iterations. 

Often, the most thorough and practical approach is to use a combination of these methods 

when preparing to build a BDN. To facilitate such exercises, a detailed description of how to 

create and populate BDNs using Netica (Norsys Software Corp.) follows.  

a. Open Netica, and select File>New Network to begin a new project 

*Note: Netica can also build Bayesian Belief Networks, which are similar to BDNs 

but do not include a decision or utility node and instead are used to predict 

relative probabilities of parameter states without incorporating a value 

statement.  

b. To create the graphical structure of a BDN, four buttons are necessary, and each button 

is located in the lower toolbar: 

i. Nature Node: is used to add nodes that contain probabilities based on either 

empirical data or expert opinion, and represent variables in the model (i.e., they do not 

include the decision or utility node). These nodes are populated by the user and 

discussed in Step 7.  

ii. Decision Node: is used to add a decision node. A single BDN may have multiple 

decision nodes, each of which must be associated with one or more utility nodes.  Each 

decision is assigned an expected value based on the states of parameters affecting and 

affected by the decision node, which is calculated as a function in Netica.  
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iii. Utility Node: is used to add a value statement about a decision node, based on a 

scale chosen by the user (usually 1-10 or 1-100). Values for this node are typically 

determined using survey responses or direct input from stakeholders.  

iv. Link: is used to connect nodes and describe relationships to Netica; links are what 

make BDNs happen!  They also enable calculation of the expected value in the decision 

node. A few important aspects of links are listed below:  

1. Nodes that have links going from but not to themselves are called parent 

nodes. Any node with a link going to itself from another node is a child node.  

Ex)  

 

 

 

2. Netica does not allow feedback loops between nodes because it does not 

incorporate time into its models (but users can adjust model parameters to 

reflect changes over time).  

3. The utility node (“Conservation Value” in the above example) does not 

connect to any other node, but should receive connections from the decision 

node and any nodes representing the parameter of interest (in this case, 

“Future Mussel Status”).  
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4. Nodes connected to the decision node should be only those which potential 

management options can alter.  

c. To add a node, simply select the appropriate button, then click anywhere on the 

window to paste it. When a node is created, it will appear in blue, unlabeled. To specify 

the name and data bins for a node, right click anywhere on the node and select 

Properties from the menu to open the dialogue box, pictured here: 

 

i. The “Name” field should contain no spaces, and should be as simple as possible. This 

is not visible on the graphic model, but is used when specifying relationships 

between nodes using equations or Netica’s built-in algorithms, as described in Step 

5.   

ii. The “Title” field is what will actually be displayed on the node in the graphical model, 

and can contain spaces.  
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iii. “State” specifies the levels of the parameter that will be represented by this node. 

These can be qualitative values such as “low, medium, high” or “yes, no”, or numerical 

values. Continuous data will need to be discretized into bins, which can be done by 

changing the Description dropdown to Discretization in the Properties dialog box:  

 

Threshold values can then be typed directly into the field to specify the bin minimum 

and maximum cutoffs. Netica will automatically adjust probabilities as discretization 

thresholds are updated.  
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 Qualitative states can be typed directly into the field, and additional states can be 

added by clicking “new”. By default, the probability listed for each node state will be 

equal to 100 divided by the number of states specified for that node. (For example, if a 

node has three states, default probability of each state occurring will be 33.333%).  

iv. The dropdown menu labeled “description” above has many functions which will be 

discussed in later steps. The Description field itself can be used to enter any working 

notes about the node that may be necessary for clarity. Once the node has been named 

and titled and states have been added, click ok to return to the network window and 

continue building the BDN.  

d. To connect nodes, select the link button, then click on the parent node and drag an 

arrow to the desired child node. A single parent node can lead into any number of 

children, but it is recommended that each child node have no more than five parents 

(Norsys Software Corp).  

Applied Project Result: Two similar but distinct model structures were determined for 

Ellipse and Spike using preliminary analyses. A maximum of three state bins was chosen for 

each node to facilitate manageable expert opinion surveys, and bins were fitted to the 

distribution of each node’s data. For example, the “number of upstream dams” node has bins 

of “0 to 3”, “3 to 6”, and “6 to 9”. The scale of the utility node was specified as 1-10, with 1 

being the lowest expected decision value and 10 being the highest.   
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Figure 1. Default presence model structure for Ellipse. Nature nodes are pictured as tan 

rectangles, the decision node as a blue rectangle, and the utility node (Conservation Value), as a 

pink hexagonal shape. Probabilities are set to 100/number of states, as Conditional Probability 

Tables (CPTs) have not yet been populated.  

 

 

Figure 2. Default density model structure for Ellipse. Nature nodes are pictured as tan 

rectangles, the decision node as a blue rectangle, and the utility node (Conservation Value), as a 
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pink hexagonal shape. Probabilities are set to 100/number of states, as CPTs have not yet been 

populated.  

 

 

Figure 3. Default presence model structure for Spike. Nature nodes are pictured as tan 

rectangles, the decision node as a blue rectangle, and the utility node (Conservation Value), as a 

pink hexagonal shape. Probabilities are set to 100/number of states, as CPTs have not yet been 

populated. 
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Figure 4. Default density model structure for Spike. Nature nodes are pictured as tan rectangles, 

the decision node as a blue rectangle, and the utility node (Conservation Value), as a pink 

hexagonal shape. Probabilities are set to 100/number of states, as CPTs have not yet been 

populated. 

Step 5. Organize and incorporate empirical data 
 

General Description: After preliminary analyses and/or literature have been used to 

determine components to be included in a BDN, and the graphical structure of the model has 

been configured, the next step is to use existing data to determine the prior probabilities 

contained in each node. Incorporating empirical data into the BDN will update the default 

probabilities of node states (i.e., they will no longer be 100/number of states possible as in 

Figure 1-4) to reflect the distribution of the data. These updated probabilities represent prior 

beliefs about the system being modeled, and are contained in each node’s Conditional 

Probability Table (CPT). The CPTs of the nature nodes are ultimately what Netica uses to model 
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the probabilities of all possible state combinations and determine the expected value of each 

management option.  Depending on the node complexity and data type, there are several ways 

to populate the CPTs of nodes.  

a. Using probability estimates: The simplest way to populate CPTs is by entering 

probabilities directly. To open a node’s CPT, simply right click the node and select 

Table, which will open a dialog box like the one below. 

  

This node is a parent node, so its CPT is simple and represents only the prior 

probability that the parameter (weighted fish host richness) will be in any of the 

three states listed. Values can be typed directly into the white data field below each 

state title, and must sum to 100 for each row (Netica will alert you if they don’t). 

Entering data this way is appropriate for situations where priors may be based off of 
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literature values and a dataset is not available, or where existing data have simply 

been broken into bins and summarized. This is an efficient way to populate parent 

nodes, but what about more complex nodes with larger CPTs?  

b. Using equations: Below is a portion of the CPT for the mussel density node, which 

has five parent nodes. Clearly, it is very large and would be difficult to populate by 

hand.  

 

One alternative is to return to the Properties dialog box (by right clicking the node), 

and specify an equation that describes the relationship between that node and its 

parents. This can be used where targeted preliminary data have been collected that 
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are directly applicable to the system being modeled, or where strongly supported 

universal relationships are known. Netica has particular syntax that must be used 

when entering equations (described on the Norsys website here: 

https://www.norsys.com/tutorials/netica/secB/tut_B3.htm ). Changing the 

dropdown option from Description to Equation opens the equation field, where the 

formula can then be entered. The left side of the equation will always be the node 

name, with all parent nodes in parentheses, and the right side of the equation must 

include all parent nodes. An example is shown below.  

 

c. Using distributions: If some information is known about the parameter, but not its 

relationships to other parameters, the Equation field can also be used to specify a 

parameter’s distribution. The overall process is the same, with the right side of the 

“equation” being represented by a distribution. Specific syntax for distributions can 

also be found on the Norsys webpage listed above.  

https://www.norsys.com/tutorials/netica/secB/tut_B3.htm
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d. Using learning algorithms: Finally, when a more complete dataset is available for 

informing priors, it may be most useful to use Netica’s built-in learning algorithms to 

estimate probabilities. Generally, learning algorithms use an iterative process of adding 

observed values (cases) to update predicted probabilities for each node in the model. 

This is done using what the program calls “case data”, and requires some preparation.  

i. Case data can include observations of some or all nature nodes (those 

that are not decision or utility nodes), and may include missing data.  

ii. Data can be loaded into Netica from a csv file, which should contain only 

the variables to be included in the model (e.g., remove any label columns 

that do not contain actual observations). Any cells with missing data 

should be filled with an asterisk (*).  
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iii. To incorporate case data for one or more nodes, first select the node by 

either left-clicking on the node, or left clicking and dragging a box around 

multiple nodes. From the upper toolbar, select Cases>Learn.  

 

There are three options for loading cases: incorporate case files, learn 

using expectation maximization (EM), and learn using gradient. It is 

simplest to choose to incorporate case files directly. Typically the EM 

algorithm is used where missing data occur, and the gradient descent 

algorithm should be used where latent variables are known to exist (for 

more information on the three learning algorithms, see here: 

https://www.norsys.com/WebHelp/NETICA/X_Algorithms.htm).  

iv. Select the desired learning method, and choose a file to upload. Next, 

Netica will ask you to choose a number of degrees. Typically the default, 

https://www.norsys.com/WebHelp/NETICA/X_Algorithms.htm
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1, is selected, unless previous learning is being undone (but there are 

easier ways to do that anyway). After the number of degrees is specified, 

Netica will use an iterative process to build CPTs for all the selected 

nodes based on the case data. This may take a few minutes, depending 

on the size of the case file.  

v. Case data can also be unlearned, which may be necessary when building 

different model versions for comparison, or over time as new data 

become available. This can be accomplished by either repeating the 

learning process (Netica will then ask if you would like to remove old 

CPTs first), or by right clicking the node and selecting Modify>Remove 

Table.  

vi. When possible, comparing learned values to raw data distributions can 

be a useful check on model learning. Predicted probabilities based on 

learning should be similar to raw values. Drastic differences may indicate 

that the dataset being used is highly variable or of insufficient size.  

Applied Project Result: We used empirical data to populate six nodes in Ellipse models 

(Figure 5), and five nodes in Spike models (Figure 6). Because data were pooled from multiple 

sources and included missing observations in some cases, we used the EM algorithm to learn 

from cases when populating these nodes, then compared learned probabilities to observed 

data distributions to assess similarity. Learned probabilities were similar to observed 

probabilities for all nodes, thus learning was considered successful. Because 27 model versions 
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were built for each species during model validation, only one example for each species is shown 

below (see Step 7 for more detail on version comparisons).  

 

Figure 5. Ellipse presence model with priors, using long term data, median expert opinion 

values and all streams cases. CPTs have been updated to reflect empirical data distributions.  

 

Figure 6. Spike presence model with priors, using long term data, median expert opinion values 

and all streams cases. CPTs have updated to reflect empirical data distributions. 
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Step 6. Collect expert opinion responses 
 

General Description: Like many simulation-based models, BDNs offer a framework that 

is able to incorporate a mix of data sources, including expert opinion for cases where 

relationships are known to exist, but empirical data are lacking. The inclusion of a utility node in 

BDNs also creates a particular type of node where expert opinion (or stakeholder input, 

depending on the desired application), influences the decision outcome by attributing value to 

each possible management action and outcome combination. Thus, there are two ways to 

collect expert opinion or stakeholder input for use in BDNS.  

a. For knowledge gaps: Collecting expert opinion to populate CPTs of nodes with no 

empirical data can be accomplished in a few ways. Gathering experts in a workshop 

setting and holding discussions to determine prior probability estimates is one way, 

which may be the most efficient. Experts can be interviewed or complete surveys, 

which may be table or text based, depending on the complexity of the node for 

which opinions are being collected. Text based questions may be easier for experts 

to interpret, eliciting faster response time. However, they must be translated back 

into probabilities to populate the model, so this process can be less precise. No 

matter how they are collected, expert opinion data should be summarized and 

compared among experts to assess potential bias and level of agreement among 

individuals surveyed, as this may impact decision outcomes (Death et al. 2015; 

Hamilton et al. 2015). Assessing agreement can be accomplished by building model 
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versions using each individual expert’s responses (usually in cases where the number 

of experts surveyed is <5), or through use of summary statistics such a mean, 

median, minimum, and maximum values.  

b. For value assessment: Perhaps the most important application of survey data in 

BDNs is within the utility node, which determines optimal decision. Parents of the 

utility node should be the decision node and the parameter of interest (in the case 

of our mussel models, future mussel status or density). Utility values give a sense of 

relative satisfaction of different management action and outcome combinations, 

usually determined by the cost of each action. For example, on a scale of 1-10 a high 

cost option may be rated as 5 if it is successful, but 1 if it is not, where a low cost 

option may be rated as 10 if it is successful, but 3 if it is not. Decisions are then 

calculated as the utility value multiplied by the probability of an outcome occurring. 

Thus, the optimal decision of a model outcome can change drastically depending on 

the utility attributed to each management scenario, even if nature node inputs and 

the likelihood of each parameter state has not changed. When dealing with 

management scenarios involving conflicting stakeholder views, it is useful to 

construct multiple versions of models incorporating utility nodes that reflect each 

group’s values, to compare, for example, differences in perceived optimal decision 

between natural resources professionals and the public. This can be used as a 

measure of public support for a management action. If decisions do not change, the 

action is likely to receive little backlash, whereas if decision outcomes differ 
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drastically, there may be a need for continued public outreach to make proposed 

management actions more palatable.  

Applied Project Result: Expert opinion was used to inform two nodes in each model: 

“Conservation Value” (the utility node) and “Future Mussel Status” (the parameter of interest). 

This was accomplished by distribution of surveys to experts, including malacologists, ecological 

researchers, hatchery supervisors, and agency biologists. All participants were experts in 

aquatic ecology and/or mussel taxonomy, ranging from 7-35 years of experience in these areas. 

A total of 16 experts were invited to participate, with 13 ultimately returning surveys during the 

allotted nine month period. Surveys were table-based and asked participants to enter their best 

approximation of the likelihood of an event occurring (e.g., mussel presence at a given site), 

given some number of other conditions (e.g., number of upstream dams, host fish richness, 

management action; Figure 7). Responses were then summarized by median, minimum, and 

maximum and used to populate CPTs of model iterations corresponding to each combination of 

expert opinion, data set, and stream subset tested.  

For the utility node, preliminary costs were assessed as described in Step (6), and 

experts were asked to rank management outcomes based on the cost of each management 

decision, on a scale of 1-10 (Figure 8).  



31 
 

 

Figure 7. Example of expert elicitation table-based survey used for future mussel status node in 

Ellipse presence models. Experts were not asked to provide estimates for parts of the table 

where mussels were already present, as it was assumed that if mussels currently persist at a 

site, they will continue to do so under current conditions or with management action. 

Probabilities for these scenarios were uniformly set to 99% for continued presence, and 1% for 

possible future absence (to account for potential stochastic events).  

Current Mussel Status Management Decision Host Richness Number upstream dams
Present Absent

Low

Low Medium

High

Release Low

Juvenile Mussels Medium Medium

High

Low

High Medium

High

Low

Low Medium

High

Release Low

Adult Mussels Medium Medium

High

Low

High Medium

Absent High

Low

Low Medium

High

Release Low

Host Fish Medium Medium

High

Low

High Medium

High

Low

Low Medium

High

Low

Remove Barriers Medium Medium

High

Low

High Medium

High

Future Mussel Status
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Figure 8. Survey template used for utility node estimates.  

 

Step 7. Compile and validate model 
 

General Description: After all CPTs have been populated, the model must be compiled 

to update prior probabilities. This can be accomplished by clicking the compile ( ) button in 

the lower toolbar. A major function of BDNs and other simulation models is that they give users 

a way to compare multiple model structures and datasets to identify sources of uncertainty and 

variance. Part of this process should include some form of model validation, where multiple 

versions of each overall model structure arrangement are compared using variations in data 

subset. This can be achieved through various approaches.   

For large datasets of several hundred observations or more, cross-validation methods 

such as bootstrapping (comparing model versions using randomly selected subsets of data) or 

Future Mussel Status Cost Utility
Absent $0

Absent $1,425

Absent $1,500

Absent $20,300

Absent $718,000

Present $0

Present $1,425

Present $1,500

Present $20,300

Present $718,000
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using holdout data (building models with a random subset of data and testing with the 

remaining subset) can be used. If the dataset used is not large enough for cross-validation to be 

effective (i.e., resulting random subsets of data would be small [n<100]), another method is to 

divide data based on known sources of variation. For example, models using subsets of data 

from differing geographic regions or time periods may be compared to evaluate the impact of 

known sources of variation on model outcome. For BDNs in particular, it is also important to 

address variation in expert opinion inputs, since they may strongly affect the utility node and 

thus expected value of decisions. In cases where expert responses are variable, it may be useful 

to omit responses that are outliers, or apply a weighting system to account for differences 

resulting from varying levels of applicable expertise.  After multiple models have been created, 

differences can be assessed using sensitivity analysis (see Step 8).  

Applied Project Result: To assess sources of bias and variance in our models, we built 27 

versions for each mussel species, incorporating three levels of data precision, data subset, and 

expert opinion statistics, and compared optimal decision outcomes and sensitivity of nodes 

among model versions.  

a. Data precision: We initially built models using long-term presence data collected 

from 1990-2017. To test for differences in outcome driven by data precision, we also 

performed quantitative field surveys during 2018 to collect density estimates of 

target species at all sites included in our models. Thus we were able to construct 

model versions including long-term presence data, 2018 presence data, and 2018 

density data to test for differences in decision outcome related to sampling method 

and data precision.  
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b. Data subset: To maintain specificity of data included in modeling efforts to our 

target rivers, we included long-term and 2018 data from seven streams and rivers. 

These included our target rivers, the South Branch Kishwaukee and West Branch 

DuPage, and five non-target rivers that were also within the Chicago Wilderness 

Area and contained varying levels of target mussel species (Figure 9). Non-target 

streams were the Mazon River, Kilbuck Creek, Beaver Creek, Poplar Creek, and 

Ferson Creek. Estimates of abundance from long term data were used to determine 

which streams would be chosen to represent low (absent), moderate, and high 

densities of each species. These estimates were confirmed in most cases during the 

2018 field season, although Ellipse densities were higher at some sites than 

anticipated (Table 3). Models including data from target rivers only, non-target rivers 

only, and both target and non-target rivers were compared.  
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Figure 9. Map of sites sampled during 2018 field season.  
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Table 3. Expected and observed densities of Ellipse and Spike at each target and non-target 

stream. Expected values were relative estimates based on previous qualitative sampling of 

sites. Observed values were maxima (per grid) densities observed during 2018 sampling. 

 
Expected Density 

(#/m2) 
Max Observed Density 

(#/m2) 

Stream Ellipse Spike Ellipse Spike 

South Branch Kishwaukee River Absent Absent 0 0 
West Branch DuPage River Absent Absent 0 0 
Mazon River Absent Absent 0 0 
Poplar Creek High Low 3.5 0 
Beaver Creek Low High 0 3.47 
Kilbuck Creek Moderate Moderate 6.9 0.8 
Ferson Creek Low Low 8 0.53 

 

Step 8. Determine sensitivity 
 

General Description: Sensitivity analyses offer a means of comparing the relative 

importance of each factor included in a model to determining the outcome of that model. They 

can also be used as a way of comparing relative performance of different model versions, and 

thus the influence various datasets have on model outcome. For BDNs in Netica, sensitivity 

analysis must be performed by hand for each model. To do this, first the lowest value and then 

the highest value state of each node must be selected, and the optimal default decision 

(whichever one has the highest expected value) should be recorded for each, as well as any 

changes in optimal decision. The difference between expected value for the minimum and 

maximum state value of each node equals the sensitivity of that node. This is repeated for each 
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node, for each model version, resulting in a table of values for each model (Table 4). These 

individual sensitivity tables can then be summarized further for ease of interpretation (Table 5).  

Applied Project Result: Optimal decision outcomes were sensitive to changes in expert 

opinion statistic, data precision, and stream subset, to varying degrees. General trends are 

described below, and a complete breakdown is given in Tables 5 and 6.  

a. Data precision: In general, no major differences in model performance were 

observed between long-term and 2018 presence models, indicating that 2018 data 

are not anomalous compared to long-term data. Models built using density data did 

not produce drastically different results from those using presence data (with all else 

held equal) in most cases, although there were differences in some scenarios (see 

Step 9 for more details). Because some differences were evident, we recommend 

using density data when available. However, presence models may still offer some 

insight to management scenarios where density estimates are not available, and 

should still be considered.  

b. Data subset: Differences in optimal decision choice and Future Mussel Status 

likelihoods were evident, primarily when using target stream data only. Because 

target species were almost always absent from target streams in both long term and 

2018 data, models using only target stream data tended to predict very low 

probability of establishment after management, regardless of approach. However, 

these species do persist in nearby streams and have previously survived in the target 

systems, thus this output is likely not accurate and may be overly pessimistic. Both 

non-target and all streams data produced more balanced models that had higher 
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sensitivity to input and produced results that were more reflective of observed 

densities in the field. There were no major differences in outcomes using non-target 

streams or all streams data, so for future management purposes we recommend 

using all streams data to increase empirical data sample size.  

c. Expert opinion: Model outcomes differed most drastically in response to differences 

in expert opinion statistics. For example, one expert in particular tended to choose 

higher than average utility values (e.g., 9 or 10 where others surveyed chose values 

closer to 5), which resulted in a less responsive model that valued all possible 

outcomes similarly highly. This highlights the importance of surveying multiple 

experts to assure that one individual is not biasing model output and to assess the 

level to which most experts agree. Minimum and maximum expert opinion values 

did not usually cause major differences in model performance, although minimum 

models tended to choose No Action as the best management action more often than 

did median models. In general, we recommend use of median models because they 

offer the most representative and least skewed measure of expert opinion 

responses, although in cases where it is necessary to be particularly conservative 

when choosing management options, using minimum models may be preferred.  
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Table 4. Example of sensitivity analysis table, for the Ellipse model including long-term data, all 

streams data, and median expert opinion values. Optimal decision for each model component is 

that which had the highest expected value when either the minimum or maximum state value 

was selected. Difference is the difference between expected value for each state selection for 

each component, and asterisks denote cases in which optimal decision changed when switching 

from minimum to maximum state selection.  

 Minimum Maximum   

Model Component 
Optimal 
Decision 

Expected 
Value 

Optimal 
Decision 

Expected 
Value Difference  

Future Mussel Status No Action 7 Juveniles 9 2.00 * 
Current Mussel Status Juveniles 7.5 Juveniles 8.96 1.46  
Duration Extreme Low Flows Juveniles 8.19 Juveniles 8.05 0.14  
Number NPDES Dischargers Juveniles 8.07 Juveniles 8.13 0.06  
Number Upstream Dams Juveniles 7.88 Juveniles 8.58 0.70  
Weighted Host Richness Juveniles 8.35 No Action 7.41 0.94 * 
Number 303(d) Sites Juveniles 8.1 Juveniles 7.98 0.12  
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Table 5. Summary of node sensitivities and decision changes for all default Ellipse models. Cells 

highlighted in yellow indicate decision changes during sensitivity testing for that node.   

 

 

 

 

 

 

Data Precision

Expert 

Opinion Streams Optimal Decision

Expected 

Value

Future 

Mussel 

Current 

Mussel Flows NPDES Dams Host 303d

Decision 

Changes

long-term presence Med All Release juveniles 8.11 2 1.16 0.14 0.06 0.7 0.94 0.12 2

long-term presence Min All No Action 7.42 2 1.95 0.08 0.01 0.17 0.07 0.06 4

long-term presence Max All Release juveniles 8.39 2 0.99 0 0.0.5 1.22 0.24 0.02 1

long-term presence Med Non-target Release juveniles 7.83 2 1.93 0.23 0.01 0.58 0.45 0.15 2

long-term presence Min Non-target No Action 7.4 2 1.95 0.32 0.02 0.04 0.16 0.01 5

long-term presence Max Non-target Release juveniles 8.48 2 0.79 0.02 0.03 1.11 0.21 0 1

long-term presence Med Target No Action 7.34 2 1.94 0.23 0.23 0.63 0.52 0.01 6

long-term presence Min Target No Action 7.34 2 1.95 0.09 0.09 0.15 0.04 0.01 3

long-term presence Max Target Release juveniles 8.12 2 1.27 0.25 0.25 1.46 0.34 0 2

2018 presence Med All Release juveniles 8.01 2 1.71 0.09 0.02 0.69 0.85 0.09 2

2018 presence Min All Release juveniles 7.49 2 1.95 0.11 0.01 0.24 0.29 0.06 4

2018 presence Max All Release juveniles 8.52 2 0.78 0 0.02 1.16 0.22 0.01 1

2018 presence Med Non-target Release juveniles 7.88 2 1.91 0.15 0.06 0.65 0.47 0.1 2

2018 presence Min Non-target Release juveniles 7.45 2 1.95 0.19 0.07 0.2 0.3 0.16 6

2018 presence Max Non-target Release juveniles 8.51 2 0.8 0.02 0.02 1.18 0.19 0.02 1

2018 presence Med Target Release juveniles 7.94 2 1.69 0.05 0.05 0.7 0.58 0.17 2

2018 presence Min Target Release juveniles 7.46 2 1.95 0.05 0.16 0.1 0.28 0.3 3

2018 presence Max Target Release juveniles 8.57 2 0.64 0.03 0.05 1.13 0.34 0.03 1

2018 density Med All Release juveniles 9 3 2.13 0.16 0.01 0.93 0.11 0.04 1

2018 density Min All Release juveniles 8.27 3 2.91 0.18 0.04 0.43 0.37 0.06 3

2018 density Max All Release juveniles 9.27 3 1.45 0.04 0.04 0.76 0.21 0.02 1

2018 density Med Non-target Release juveniles 8.92 3 2.28 0.29 0.07 0.5 0.26 0.23 1

2018 density Min Non-target Release juveniles 8.92 3 2.28 0.29 0.07 0.5 0.74 0.23 1

2018 density Max Non-target Release juveniles 9.25 3 1.44 0.11 0.02 0.73 0.2 0.08 1

2018 density Med Target Release juveniles 9.04 3 1.82 0.01 0.31 0.32 0.15 0.34 1

2018 density Min Target Release juveniles 8.17 3 2.9 0.08 0.27 0.21 0.45 0.48 3

2018 density Max Target Release juveniles 9.25 3 1.3 0.06 0.01 0.67 0.3 0.14 1
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Table 6. Summary of node sensitivities and decision changes for all default Spike models. Cells 

highlighted in yellow indicate decision changes during sensitivity testing for that node.   

 

Step 9. Test specific sites 
 

General Description: Finally, after model structure, prior probabilities, and sensitivity 

have been determined, the BDN can be used to choose an optimal decision for a specific site of 

interest. To do this, the most recent available data should be used to select the appropriate 

current state of each node in the model for which information exists. This acts as the 

observation that informs the prior probabilities already added to the model, and the decision 

Data Precision

Expert 

Opinion Streams Optimal Decision

Expected 

Value

Future 

Mussel 

Current 

Mussel Flows NPDES Dams Host

Decision 

Changes

long-term presence Med All Release juveniles 7.83 2 1.35 0.4 0.13 1.36 0.57 3

long-term presence Min All Release juveniles 7.87 2 1.42 0.38 0.52 1.07 0.67 2

long-term presence Max All Release juveniles 7.83 2 1.29 0.48 0.07 1.26 0.48 3

long-term presence Med Non-target Release juveniles 7.96 2 1.33 0.27 0.37 1.24 0.32 2

long-term presence Min Non-target Release juveniles 7.44 2 1.95 0.38 0.39 0.63 0.48 3

long-term presence Max Non-target Release juveniles 8.03 2 1.31 0.29 0.36 0.99 0.36 2

long-term presence Med Target Release juveniles 7.96 2 1.42 0.03 0.36 1.25 0.27 3

long-term presence Min Target Release juveniles 8.07 3 2.91 0.7 0.63 0.94 0.5 2

long-term presence Max Target Release juveniles 8.55 3 2.08 0.51 0.68 1.05 0.08 2

2018 presence Med All Release juveniles 8.24 3 2.9 1.66 0.85 0.43 0.71 2

2018 presence Min All Release juveniles 8.24 3 2.9 0.66 0.85 0.43 0.71 2

2018 presence Max All Release juveniles 8.61 3 2.06 0.52 0.76 0.62 0.09 2

2018 presence Med Non-target Release juveniles 8.09 3 2.91 0.26 0.68 0.12 0.1 3

2018 presence Min Non-target Release juveniles 8.65 3 2.19 0.1 0.61 1.21 0.16 2

2018 presence Max Non-target No Action 7.23 2 1.95 0.4 0.01 0.57 0.41 4

2018 presence Med Target No Action 7.23 2 1.95 0.24 0.01 0.09 0.09 4

2018 presence Min Target No Action 7.3 2 1.95 0.44 0.45 0.66 0.54 6

2018 presence Max Target No Action 7.3 2 1.95 0.22 0.25 0.29 0.2 4

2018 density Med All No Action 7.36 2 1.95 0.15 0.23 0.62 0.54 4

2018 density Min All No Action 7.23 2 1.95 0.31 0.17 0.02 0.04 2

2018 density Max All No Action 7.35 2 1.95 0.4 0.25 0.65 0.48 5

2018 density Med Non-target No Action 7.35 2 1.95 0.15 0.09 0.26 0.16 4

2018 density Min Non-target No Action 7.38 2 1.95 0.13 0.15 0.28 0.26 4

2018 density Max Non-target No Action 7.36 2 1.95 0.15 0.23 0.62 0.54 4

2018 density Med Target No Action 7.36 2 1.95 0.08 0.1 0.23 0.01 4

2018 density Min Target No Action 7.65 3 2.91 0.54 0.16 0.49 0.1 4

2018 density Max Target No Action 7.73 3 2.91 0.31 0.19 0.62 0.14 4
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node adjusts its expected values accordingly. To enter an observation for a node in the model, 

left click on the desired state to select it. The probability for that state will change to 100 (since 

it is no longer a probability but an observation, there is 100% certainty), and a black bar will 

appear (Figure 10). This can be repeated for as many sites as desired to obtain real-world 

expected values of management decisions.  

Applied Project Result: To begin with, we have applied both Ellipse and Spike models 

for one site at each of our target rivers. In keeping with recommendations, we used only 

median expert opinion models and all streams datasets. However, we used density and 

presence models to highlight potential differences between these levels of precision. Because 

there were no differences between long-term and 2018 presence models, long-term presence 

data have been omitted here for simplicity. See Table 7 for a comparison of Ellipse and Spike 

optimal decision outcomes at initial sites in each target river.  

 

Figure 10. Example of BDN with site-specific values selected. This model included long-term 

presence data, median expert opinion values, and all streams data. The site specified is a 
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portion of the West Branch DuPage River located in Warrenville, IL; a site of previous mussel 

restoration for juvenile Lampsilis spp.  

 

Table 7. Ellipse and Spike optimal decision outcomes for two potential reintroduction sites: for 

the West Branch DuPage River, in Warrenville, IL, and for the South Branch Kishwaukee River, 

near Kingston, IL. For simplicity and because no differences in decision were observed between 

long-term and 2018 presence datasets, only 2018 presence and density are shown here.  

Dataset River Species Decision 

Presence WB DuPage  Ellipse Release juveniles 

Presence WB DuPage  Spike No Action 

Presence SB Kishwaukee Ellipse No Action 

Presence SB Kishwaukee Spike No Action 

Density WB DuPage  Ellipse Release juveniles 

Density WB DuPage  Spike No Action 

Density SB Kishwaukee Ellipse Release juveniles 

Density SB Kishwaukee Spike No Action 
 

 

Step 10. Assess feasibility, carry out management, and monitor results 
 

General Description: Before enacting any on-the-ground management, feasibility of 

proposed action should be assessed. Parameters at proposed restoration sites supported by 

model findings should be measured to ensure real-time suitability. Utility nodes may also need 

to be updated to reflect site-specific restoration costs including things like paid labor or cost of 

supplies, if needed. In some cases, this may alter decision outcomes, especially for BDNs in 

which two or more decision options have similar expected values. It is important to remember 

that BDNs offer a useful tool in decision-making, but decisions are not final and model 

parameters should be updated as often as needed to reflect management needs.  
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 The ultimate goal of creating a BDN to inform management decisions is to help 

professionals choose the most efficient and promising management option for a specific 

scenario. Thus, the initial product of a BDN is a management decision which can then be carried 

out. Further, BDNs should ideally be used as a tool for facilitating adaptive management 

practices, i.e., they can be updated with additional observations after management action is 

taken, adding information which may change expected value of outputs. Accordingly, if 

management is successful, the BDN functions as a decision-making map that can be used in 

future scenarios to reduce uncertainty. If management fails despite being chosen by the BDN as 

optimal, structural changes may be needed to help elucidate areas where research should be 

focused to better inform future management efforts. For example, consider a case where 

survival of propagated mussels in the wild is unknown (e.g., Plain Pocketbook, Lampsilis 

cardium). Utility of this model will be impacted by prior probability estimates of survival, which 

will likely be low for the sake of being conservative. However, if juveniles are released at a 

particular site and a five year follow up survey finds higher survival than anticipated, the utility 

of the option to release juveniles in this management scenario can be updated to reflect this 

new and more specific information, which may in turn impact future model applications. 

Overall, the implementation of a BDN is often the first step in adaptive management, and 

should be used as a baseline for ongoing efforts when attempting to understand and manage 

the system under consideration, or other similar scenarios.  

Applied Project Result: Our model outputs will be expanded to consider additional sites 

following working group meetings in spring 2019, and may be used to evaluate the potential of 

other streams besides the original targets, particularly for Spike. Propagation approval and 
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methods for Ellipse are still being developed, meaning that it will likely be necessary to update 

cost estimates for restoring this species moving forward. However, general cost trends are not 

expected to change (i.e., release of adult mussels will be significantly more expensive than 

releasing host fish or juvenile mussels, and dam removal will be the most expensive option).  

 Ellipse and Spike models will be used to guide reintroduction of these species within the 

Chicago Wilderness Area in the near future. Based on model results, it is not likely that 

restoration of Spike will be undertaken at this time. However, because Ellipse results were 

promising and there is sustained interest in the ecology and management of this species, it will 

continue to be a focus of reintroduction efforts. 

Conclusions and Future Directions 
 

 Overall, BDNs tended to choose release of juvenile mussels as the optimal decision, 

except for in situations where probability of future mussel establishment was low, in which 

case No Action was suggested. When applied to specific target sites, No Action was always the 

optimal decision for Spike, indicating that Spike may be too sensitive to real-world conditions at 

these sites to be suitable for reintroduction at this time. Models predicted that release of 

juvenile Ellipse in the West Branch DuPage River should be successful. However, results for the 

South Branch Kishwaukee River were conflicting, depending on use of presence vs density data. 

From a modeling standpoint, this may be due to variations in Ellipse density. In long-term data 

and during the 2018 field season, it has been observed that where Ellipse occur, they tend to be 

highly abundant and often dominate the mussel fauna at that site (Illinois Natural History 

Survey, unpublished data). However, this is not accounted for in BDNs using only presence data. 
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In such cases, the model must weigh the probability of mussel presence compared to the cost 

of each management option. In this case, if probability of future mussel presence is much lower 

than 50%, No Action becomes the best option. Yet density models attribute more value to high 

density establishment in the utility node, which may outweigh the negative impact of 

probability of low or no density, especially for sites where probabilities of absence are near 

50%.  

Indeed, density was an influential factor when considering Ellipse in the South Branch 

Kishwaukee River. For most model versions, probability of establishment after management 

was around 40%, which was low enough to result in No Action as the optimal decision for 

presence models. However, in density models, while probability of absence after management 

was still around 60%, probabilities of moderate and high densities were each around 20%, with 

the value of a high density population being relatively higher than that of a moderate density 

population in the utility node. Thus, when BDNs were able to calculate utility using a finer scale, 

decision outcomes shifted. Simply, it was considered less risky and more favorable to attempt 

management even at a 60% rate of failure, if there was also a 20% chance of a very favorable 

outcome. However when all presence was considered equal, the risk of failure was too high for 

the model to consider any management decision worth implementing.  

 Future restoration efforts for Ellipse and Spike will seek to identify other environmental 

or biotic variables that have not been previously included. Habitat is one such intuitively 

important factor which is somewhat difficult to quantify for freshwater mussels due to the 

ever-shifting nature of stream sediments and hydrology. Further topics of consideration also 

include propagation practices for both host fish and mussels themselves, as there is past 
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evidence to suggest that not all fish hosts are created equal for a particular population of 

mussels, even within a species (Riusech & Barnhart 1998; Bigham 2002). Additional surveys 

during the 2019 field season will be aimed at creating broader BDNs which evaluate potential 

large-scale management approaches and their effects on overall mussel community richness in 

central Illinois. Generally, the development of a structured decision making method for 

freshwater mussel management is needed, and should be a focus of ongoing effort and 

selected research, when possible.  
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Appendix A. Weighted values for Spike fish hosts. Hosts with 0-20 successfully transformed 

juveniles in laboratory trials are weighted at 0.25, hosts with 21-50 transformed are weighted 

at 0.5, 51-100 are weighted at 0.75, and >100 are weighted at 1. 
 

Common Name Scientific Name Mean Transformed Weight Reference  

Eastern Sand Darter Ammocrypta pellucida 10 0.25 Schroeder, Ellipsaria 2014 

Rock Bass Ampbloplites rupestris 15 0.25 Schroeder, Ellipsaria 2014 

Rock Bass Ampbloplites rupestris 1 0.25 Luo 1993 

American Eel Anguilla rostrata 13 0.25 Schroeder, Ellipsaria 2014 

Holston Sculpin Cottus baileyi 164 1 Luo 1993 

Banded Sculpin Cottus carolinae 3 0.25 Luo 1993 

Brook Stickleback Culaea inconstans 39 0.5 Schroeder, Ellipsaria 2014 

Northern Pike Esox lucius 21 0.5 Schroeder, Ellipsaria 2014 

Rainbow Darter Etheostoma caeruleum 21 0.5 Schroeder, Ellipsaria 2014 

Rainbow Darter Etheostoma caeruleum 3 0.25 Luo 1993 

Iowa Darter Etheostoma exile 9 0.25 Schroeder, Ellipsaria 2014 

Johnny Darter Etheostoma nigrum 103 1 Schroeder, Ellipsaria 2014 

Banded Darter Etheostoma zonale 3 0.25 Schroeder, Ellipsaria 2014 

Banded Killifish Fundulus diaphanus 11 0.25 Schroeder, Ellipsaria 2014 

Blackspotted Topminnow Fundulus olivaceus 57 0.75 Schroeder, Ellipsaria 2014 

Longnose Gar Lepisosteus osseus 17 0.25 Schroeder, Ellipsaria 2014 

Green Sunfish Lepomis cyanellus 12 0.25 Schroeder, Ellipsaria 2014 

Pumpkinseed Lepomis gibosus 19 0.25 Schroeder, Ellipsaria 2014 

Bluegill Lepomis macrochirus 7 0.25 Schroeder, Ellipsaria 2014 

Longear Sunfish Lepomis megalotis 13 0.25 Schroeder, Ellipsaria 2014 

Burbot Lota lota 3 0.25 Schroeder, Ellipsaria 2014 

Smallmouth Bass Micropterus dolomieu 39 0.5 Schroeder, Ellipsaria 2014 

Largemouth Bass Micropterus salmoides 148 1 Schroeder, Ellipsaria 2014 

Golden Shiner Notemigonus crysoleucas 1 0.25 Schroeder, Ellipsaria 2014 

Yellow Perch Perca flavescens 59 0.75 Schroeder, Ellipsaria 2014 

Logperch Percina caprodes 63 0.75 Schroeder, Ellipsaria 2014 

Gilt Darter Percina evides 7 0.25 Schroeder, Ellipsaria 2014 

Blackside Darter Percina maculata 21 0.5 Schroeder, Ellipsaria 2014 

Slenderhead Darter Percina phoxocephala 5 0.25 Schroeder, Ellipsaria 2014 

River Darter Percina shumardi 2 0.25 Schroeder, Ellipsaria 2014 

Black Crappie Pomoxis nigromaculatus 51 0.75 Schroeder, Ellipsaria 2014 

Longnose Dace Rhinichthyes cataractae 3 0.25 Schroeder, Ellipsaria 2014 

Sauger Sander canadensis 72 0.75 Schroeder, Ellipsaria 2014 

Walleye Sander vitreus 296 1 Schroeder, Ellipsaria 2014 
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