
BACKPROPGATION FOR CONTINUOUS THETA NEURON NETWORKS

A Dissertation

by

DAVID FAN

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Peng Li
Committee Members, Yoonsuck Choe

Arum Han
Xiaoning Qian

Head of Department, Miroslav M. Begovic

May 2015

Major Subject: Electrical Engineering

Copyright 2015 David Fan

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Texas A&M Repository

https://core.ac.uk/display/275572527?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ABSTRACT

The Theta neuron model is a spiking neuron model which, unlike traditional

Leaky-Integrate-and-Fire neurons, can model spike latencies, threshold adaptation,

bistability of resting and tonic firing states, and more. Previous work on learning

rules for networks of theta neurons includes the derivation of a spike-timing based

backpropagation algorithm for multilayer feedforward networks. However, this learn-

ing rule is only applicable to a fixed number of spikes per neuron, and is unable to

take into account the effects of synaptic dynamics. In this thesis a novel backpropa-

gation learning rule for theta neuron networks is derived which incorporates synaptic

dynamics, is applicable to changing numbers of spikes per neuron, and does not ex-

plicitly depend on spike-timing. The learning rule is successfully applied to XOR,

cosine and sinc function mappings, and comparisons between other learning rules

for spiking neural networks are made. The algorithm achieves 97.8 percent training

performance and 96.7 percent test performance on the Fischer-Iris dataset, which

is comparable to other spiking neural network learning rules. The algorithm also

achieves 99.0 percent training performance and 99.14 percent test performance on

the Wisconsin Breast Cancer dataset, which is better than the compared spiking

neural network learning rules.

ii

DEDICATION

To my family and friends, for their unconditional love and support.

iii

ACKNOWLEDGEMENTS

It is a pleasure to thank those who made this thesis possible. I would like to thank

my advisor, Dr. Peng Li, for his wise and tactful support and guidance throughout

this whole process. I would also like to thank my committee members, Dr. Xiaoning

Qian, Dr. Yoonsuck Choe, and Dr. Arum Han, for taking their time to review and

critique my work. Further thanks goes to Jimmy Jin for many interesting discussions

and help. Lastly, this thesis would not have been possible without the support of my

family and friends, whose love and encouragement has enabled me to keep moving

in a positive direction.

iv

NOMENCLATURE

AdEx Adaptive Exponential Integrate and Fire

BP Backpropagation

CD Contrastive Divergence

CEC Constant Error Carousel

DBN Deep Belief Network

ESN Echo State Network

LIF Leaky Integrate and Fire

LSM Liquid State Machine

LSTM Short Long Term Memory

NN (Sigmoidal) Neural Network

QIF Quadratic Integrate and Fire

RBM Restricted Boltzmann Machine

ReSuMe Remote Supervision Method

RNN Recurrent Neural Network

SI Sparse Initialization

SNN Spiking Neural Network

SRM Spike Response Model

v

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

NOMENCLATURE . v

TABLE OF CONTENTS . vi

LIST OF FIGURES . viii

LIST OF TABLES . xi

1. INTRODUCTION . 1

1.1 Learning in the Brain . 3
1.2 Neuron Models . 6
1.3 Sigmoidal Neural Networks . 9
1.4 Temporal Processing in Neural Networks 12
1.5 Spiking Neural Networks . 13
1.6 Spike-Timing Methods . 15
1.7 Rate-Based Methods . 16
1.8 Other Methods . 18

2. CONTINUOUS BACKPROPAGATION FOR THETA NEURON NET-
WORKS . 20

2.1 Theta Neuron Networks . 20
2.2 Gradient Descent Backpropagation Algorithm 23

2.2.1 Continuous Spiking Approximation 23
2.2.2 Network Topology . 28
2.2.3 Forward Pass . 29
2.2.4 Backward Pass . 29
2.2.5 Nesterov-Style Momentum . 31

3. IMPLEMENTATION AND MACHINE LEARNING BENCHMARKS . . . 36

vi

3.1 Demonstration of Learning Rule . 36
3.2 XOR Task . 40
3.3 Cosine and Sinc Tasks . 41
3.4 Fischer-Iris Dataset . 44
3.5 Wisconsin Breast Cancer Dataset . 46

4. DISCUSSION . 48

4.1 Investigation of Gradient Descent . 48
4.2 Weight Initialization . 50
4.3 Universal Function Approximation and Other Considerations 50
4.4 Machine Learning Tasks . 53
4.5 Recurrent Network Topologies and Baseline Current Learning 55
4.6 Biological Feasibility . 57

5. CONCLUSION . 61

REFERENCES . 62

APPENDIX A. BACKPROPAGATION WITH A RECURRENT HIDDEN
LAYER AND BASELINE CURRENTS 74

A.1 Network Topology . 74
A.2 Forward Pass . 75
A.3 Backward Pass for Baseline Currents 75
A.4 Backward Pass for Network Weights 77

vii

LIST OF FIGURES

FIGURE Page

2.1 Theta neuron phase circle. Shown for when the baseline current I0 is
less than zero, resulting in two fixed points. The attracting fixed point
is equivalent to the resting membrane potential, while the repelling
fixed point is equivalent to the firing threshold. 22

2.2 Plot of kernel as a function of phase. The peak occurs when θ = π. . 25

2.3 Response of single theta neuron with kernel. Top: Input is applied to a
single theta neuron, and the output is a function of the neuron’s phase.
Middle: Plots of input, theta nueron phase, and the threshold (i.e.
repelling fixed point). At A a kernelized input is applied. This input
alone is not large enough to cause the phase to cross the threshold,
and the phase begins to return to 0. At B another input spike is
recieved, this time the phase is moved past the threshold, and the
neuron begins to fire. At C the neuron is fully spiking, as evidenced
by the output kernel in the lower panel. As the phase crosses π, the
output reaches a maximum. Input is applied, but this does not affect
the dynamics very much, since the phase is current in the “spiking”
regime. The phase wraps around to 2π = 0. Finally, at D, a larger
input is applied which is enough to cause the neuron to fire again.
Bottom: Kernelized θ, which is the output of the neuron. This output
will be fed to downstream neurons. 27

2.4 Feed-forward neural network consisting of an input, hidden, and out-
put layer. 29

2.5 Comparison of classical momentum and Nesterov-style momentum.
In classical momentum, weight updates are performed by adding the
vectors −η5E(wt), the gradient, and µvt, the momentum. The next
epoch’s momentum vector is simply the difference of the new weight
and the old weight. In Nesterov-style momentum, weight updates are
performed by adding the momentum vector µvt first, then adding the
gradient calculated at the new point. The next epoch’s momentum
vector is calculated in the same way. 33

viii

3.1 Demonstration of learning rule for network with two weights. Top:
Topology of network (one input, one hidden, and one output neuron),
with weights labeled. Left panel: Weight trajectory on error sur-
face, comparing learning with and without momentum. The trajec-
tory which does not use momentum gets stuck in the local minimum,
while the trajectories which use momentum does not. Right: Zoomed
in contour plot of the weight trajectory. After a few oscillations the
weights converge, with Nesterov-style momentum converging slightly
faster and oscillating less than classic momentum. 37

3.2 Examination of weight changes as the creation of a new spike occurs.
Top: 100 weights are plotted as they change over the course of 100
learning epochs. Colors indicate the which input neurons the weights
correspond to - black traces correspond to input neurons which fire
earliest, followed by pink, blue, cyan, and lastly green. The red dot-
ted line indicates the weight corresponding to the input neuron which
fires exactly at the target time. The neuron begins to fire a spike
after about 18 learning epochs, marked by the dotted black line. Bot-
tom: Two measures of error over the course of learning. The left axis
corresponds to the timing error of the newly created spike - the abso-
lute difference between the output spike time to and the target spike
time td. The right axis corresponds to the raw SSE value used in the
backpropagation algorithm. 39

3.3 Comparison of network spiking activity for the XOR task before and
after learning. Four panels correspond to each of the four possible in-
puts to the XOR function: 01,10,00, and 11. Spikes occur at the times
indicated by the rasters. Grey spikes show activity before learning,
black spikes are after learning. Before learning has occurred, the out-
put spikes occur at roughly the same time for each input, indicating
that the network has not yet learned to discriminate the inputs. After
learning, the output spike fires early for input 01 and 10, and late for
input 00 and 11. The hidden layer spike times change dramatically
after learning. 41

3.4 Results for Cosine regression task. Left: Comparison of regression be-
fore and after learning. Right: Error as a function of learning epochs.
The algorithm quickly converges to the solution. 42

ix

3.5 Hidden neuron activity before and after learning for the Cosine re-
gression task. Left: Before learning, five hidden neurons each spike
once in response to each of the 50 input data samples. Right: After
learning, neurons 1-3 still spike once in response to each input, but
neuron 4 has learned to not produce a spike for certain inputs, while
neuron 5 produces multiple spikes for some inputs. This varied ac-
tivity is summed and combined to cause the output neuron to fire at
the desired times, enabling the entire network to accurately map the
cosine function. 43

3.6 Results for Sinc regression task. Left: Comparison of regression before
and after learning. The right-hand side tail fails to accurately map the
curves, instead converging to a sloped line. Right: Error as a function
of learning epochs. The error plateaus for a long period before rapidly
decreasing. This plateau corresponds to the local minimum when
every input is mapped to the mean of the sinc function. After a rapid
decline, the error slowly approaches a minimum. 44

x

LIST OF TABLES

TABLE Page

2.1 Table of constants used for simulation and experiments. 35

3.1 Comparison of performance of spiking neural network algorithms on
the Fischer-Iris Dataset. SpikeProp and NN A results are from Bo-
hte et al. 2000[10], Dynamic Synapse SNN result is from Belatreche
et al. 2006[3], Spike-Timing Theta BP and NN B results are from
McKennoch et al. 2009[61], and results for MuSpiNN are from Xu et
al. 2013[97]. Continuous Theta BP refers to this work. NN A and NN
B refer to sigmoidal neural networks trained with classical backprop-
agation. The closest comparison is with the Spike-timing Theta BP
method, from the same work. Note that while the Continuous Theta
BP results (this work) are obtained with 5-fold cross-validation, the
Spike-timing Theta BP results are obtained via 1/3 holdout, while
SpikeProp and NN experiments are conducted via 2-fold cross-validation. 46

3.2 Comparison of performance of spiking neural network algorithms on
the Wisconsin Breast Cancer Dataset. SpikeProp and NN A results
are from Bohte et al. 2000[10], Dynamic Synapse SNN result is from
Belatreche et al. 2006[3], Spike-Timing Theta BP and NN B results
are from McKennoch et al. 2009[61], and results for MuSpiNN are
from Xu et al. 2013[97]. Spike-timing Theta BP results are obtained
via hold out of 1/7 of the data, while Continuous Theta BP results
are obtained with 5-fold cross validation. 47

xi

1. INTRODUCTION

Mankind has always had a fascination with building machines that can emu-

late human characteristics. The ancient Greeks and Chinese envisioned and built

clever mechanical contraptions to do the work of men; these contraptions could

move on their own, make sounds, eat, tell time, etc. In just the past 50 years, these

rudimentary attempts to create artificial intelligence have been completely eclipsed

by modern advances. Developments in our understanding of the brain along with

the technological achievements of computing have led researchers to develop brain-

inspired computational algorithms. In 1943, Warren S. McCulloch and Walter Pitts,

a neuroscientist and a logician, formulated a logical analysis of a network of neurons

under certain simplifying assumptions[59]. Their analysis demonstrated that neu-

rons could be considered a type of universal Turing machine; this was one of the first

steps forward in the creation of artificial neural networks. In 1957 Frank Rosenblatt

developed the perceptron algorithm, which trains a layer of weighted sums combined

with a threshold, to produce a binary output[77]. This algorithm was implemented

in hardware with a series of photocells, potentiometers, and electric motors[6]. These

developments created a huge wave of optimism about the possibilities of construct-

ing machines which could think like humans. Unfortunately, in 1969 Marvin Minsky

and Seymour Papert published their book Perceptrons, wherein they analyzed the

perceptron algorithm and showed some critical limitations, including that fact that a

single layer of perceptrons is unable to handle linearly non-separable problems (e.g.

the XOR function). Furthermore, large-scale implementation of the perceptron algo-

rithm was limited by hardware constraints at that time. These setbacks, along with

a variety of other factors, culminated in an “AI winter”, during which researchers

1

saw a severe decline in funding which lasted until the 1980s. Despite these setbacks,

in 1982 John Hopfield published his work on what are now known as hopfield nets: a

recurrent binary neural network that can serve as content-addressable memory. This

work as well as others gradually helped to restore credibility to the field. Neural net-

work research again found new popular support in the 1990s, particularly with the

popularization of the backpropagation algorithm applied to multilayered sigmoidal

networks[79]. The field again took a downward swing as researchers found it difficult

to train networks with many layers. Furthermore, the advent of support vector ma-

chines and other linear classifier methods created a shift in focus in machine learning

towards these new and powerful techniques. The advent of deep learning methods in

the early 2000’s allowed the training of networks with many hidden layers, and thus

neural network research took off again. In short, the history of neural networks, and

artificial intelligence in general, has been filled with repeated cycles of overenthusi-

astic hype followed by disappointed disillusionment. Nevertheless, research in neural

networks continues to expand and influence other related lines of research, including

spiking neural networks (SNN), deep learning, probabilistic neural network methods,

brain structure modeling, and more. This introduction will give a brief summary of

some of these topics which are relevant to this work, beginning with a discussion of

computation and learning in the human brain, as well as some of the approaches used

for investigating this end. Following this, a discussion of sigmoidal neural networks,

temporal processing in neural networks, and spiking neural networks will be given.

Chapter 2 will present a novel backpropagation algorithm for continuously coupled

theta neuron networks. Chapter 3 will examine the application of this algorithm to

machine learning benchmarks. Chapter 4 will discuss the results obtained in Chapter

3 and compare them to other spiking neural network algorithms. Finally, Chapter 5

will give a summary of this thesis.

2

1.1 Learning in the Brain

The human brain contains roughly 86 billion neurons and 84 billion glial cells[2].

With each neuron connecting to on average 7,000 other neurons, this yields an es-

timate for the number of synapses at about 0.6x1015. This high level of complexity

is to be expected, since a brain must store the memories, skills, impressions, and

abilities accumulated over a lifetime, which may last up to 4x109 seconds. How the

brain accumulates and stores this vast amount of information remains a subject of

intense study. Indeed, due in part to these complex unknowns, the brain has some-

times been called the last frontier of human scientific understanding. Measuring

instruments for in-vivo studies of the human brain are limited in that either their

resolution is too low (e.g. fMRI, Magneto-tomography, EEG), or their bandwidth

is too low (e.g. patch clamp recordings, microelectrode recordings, two-photon mi-

croscopy, optogenetic recordings). Therefore the investigation of the brain generally

takes a two-pronged approach: top-down methods, where the large-scale anatomy

and structures of the brain are correlated with functional attributes, and bottom-up

methods, where the molecular and cellular processes which comprise the function of

individual neurons are modeled and studied. A good example of this two-pronged

approach is in the study of the neocortex: the thin outermost layer of cells in the

mammalian brain which is associated with sensory processing, motor skills, reason-

ing, planning, and much more. Investigations into the global function and structure

of the neocortex reveal that it is made up of several distinct layers with different cell

types and distributions in each layer. The neocortex can be spatially mapped to dif-

ferent sensory and reasoning modalities - for instance, auditory processing occurs in

the temporal lobes (on the sides), while visual processing occurs in the occipital lobe

(in the back). Despite this specialization, the overall topology and structure of the

3

neocortex is conserved across these domains. This suggests that the neocortex im-

plements a general kind of processing algorithm, and can handle computations which

span a wide range of modalities[22]. This hypothesis is further supported by the ob-

servation that when one region stops receiving input (e.g. in a loss of vision), it can

be “recruited” to enhance other sensory modalities (hearing, tactile senses, etc.)[75].

This kind of general learning and adaptability is one of the characteristics which

some artificial intelligence research strives to achieve[99]. Further insight into the

function of the neocortex can be gleaned from its granularity and interconnectivity.

Its granular structure is defined by cortical columns which range from 300-600µm in

diameter, with each column showing distinct functional organization with respect to

the processing of sensory input or motor output (for instance, the tonotopic organi-

zation of the auditory cortex, or columns in the visual cortex responding to different

features)[64]. Although finding an exact definition for what constitutes a column

can be difficult, the clustering of both the termination of long-range connections as

well as receptive fields for sensory processing support the hypothesis that computa-

tion is both locally specialized and massively parallel[44]. This hypothesis is further

supported by the interconnectivity of the neocortex. Connections between cortical

regions are organized in a small-world topology - i.e. the connection probabilities as

a function of distance follow a power-law distribution, with many short/local connec-

tions and comparatively sparse (˜11%) region-to-region connectivity[34]. This topol-

ogy has been shown to be optimal for modularized information processing, where

different sensory and motor modalities are processed locally and in parallel[87].

While these top-down approaches to investigating the brain can provide broad

insight and general theoretic direction, the elucidation of the precise mechanisms by

which learning, memory, and computation occur requires a more detailed investiga-

tion of the brain on the cellular and molecular level. These “bottom-up” approaches

4

have produced some powerful insight into how the brain may adapt and learn. Per-

haps the best example of this is the discovery of synaptic plasticity: where memory

and learning is associated with changes in the connectivity and connection strength

between individual neurons. This idea dates back to the first half of the 20th cen-

tury when Donald Hebb proposed the now well-known Hebbian rule, which can be

summarized as “neurons that fire together, wire together”[84]. More recent work

has shed light on the original Hebbian hypothesis, leading to the discovery of Spike-

Timing-Dependent-Plasticity(STDP), where synapses are strengthened or weakened

depending on the relative timing of the firing of the neurons involved[16]. STDP has

been shown to be crucial for learning,[18] working memory,[91] spatial navigation,[39]

and more. Additionally, many theories of learning and computation in neural circuits

revolve around exploiting STDP-like learning rules[56][57][78][72][51]. Despite these

advances, however, a complete understanding of learning in the brain is far from

complete. Indeed, a prerequisite for understanding how STDP allows for learning is

a complete picture of how information is encoded in the firing activity of individual

neurons or populations of neurons. This is a difficult and convoluted question. It

is generally recognized that the brain can encode information in a diverse number

of ways: through average firing rates of individual or populations of neurons,[83]

through the timing of individual spikes,[88] through the phase of spikes firing rela-

tive to background voltage oscillations,[53] or through correlations between popula-

tions of neurons,[70] to name but a few. This diverse range of observed encodings

makes it difficult to create a unified theory of learning and computation in the brain.

Therefore, computer simulation techniques have been especially useful in trying to

understand particular aspects of this complex problem.

5

1.2 Neuron Models

Neurons can exhibit a wide range of dynamic behaviors resulting in a diverse

set of transformations of input spike trains into output spike trains. Some of these

behaviors include: tonic spiking, class 1/2 excitability, spike latency, threshold vari-

ability, and a bistability of resting and spiking states. Tonic spiking refers to the

ability of some neurons to fire continuously in the presence of persistent input[20].

Class 1 excitability is a neuron’s ability to fire at a low frequency when input is weak,

and to fire at a higher rate in proportion to the input. This is in contrast to class 2

excitable neurons, which have a more binary character, either remaining quiescent or

firing at a high frequency[76]. Spike latency refers to the delay that occurs between

an input and the resulting spiking event. For most cortical neurons, this latency

is inversely proportional to the strength of the input. Threshold variability refers

to the fact that a neuron’s voltage threshold to firing is not static, but depends on

past activity. For example, an excitatory input may not be strong enough to cause

a neuron to fire on its own, but an inhibitory input quickly followed by that same

excitatory input may cause a spike to occur. Furthermore, some neurons can exhibit

two stable modes of behavior, shifting between quiescence and tonic firing. This

switch can be caused by carefully timed input[46].

When conducting a computational study involving the modeling of neurons, the

researcher must choose a neuron model which not only captures the essential dy-

namic behaviors relevant to the work, but one which also remains computationally

and analytically tractable. This is usually a trade-off. For instance, the classic de-

scription of a neuron’s membrane voltage dynamics is the Hodgkin-Huxley model,

which captures the transmission probabilities of different ions through ion channels

in the neuron’s cell membrane[43]. The model is comprised of four first order differ-

6

ential equations, and a dozen or so parameters, and directly models the flow of ions

as the neuron fires, recovers, and responds to various current input. While the model

is excellent in terms of biophysical accuracy and can capture all of the previously

mentioned dynamic behaviors and more, this accuracy comes at a severe computa-

tional and analytical cost.

An attractive alternative to the Hodgkin-Huxley model is the Izhikevich model

which consists of two first order differential equations and four parameters which can

be tuned to allow the model to exhibit the same dynamic behaviors as the Hodgkin-

Huxley model[45]. The simplicity of the Izhikevich model makes it attractive for

simulating large populations of neurons. In contrast to the Hodgkin-Huxley model,

the Izhikevich model does not explicitly model the change of membrane voltage as

the neuron spikes. Instead it models firing events as a reset of variables when a

threshold is reached and creates an impulse output. Another similar model is the

Adaptive-Exponential-Integrate-and-Fire (AdEx) model which can exhibit most of

the same biologically realistic behaviors and also depends on two first order differ-

ential equations with a threshold and reset. The AdEx model can be more easily

mapped to biological values such as membrane capacitances[14].

A slightly less complex model is the Quadratic-Integrate-and-Fire (QIF) model,

which models the neuron membrane voltage response to inputs with a quadratic

differential equation. This produces dynamics which more closely emulates the be-

havior of real neurons[25]. The QIF model can be mapped onto the related Theta

neuron model, which is a focus of this thesis and will be discussed in further detail

in Chapter 2.

Yet another neuron model, and one of the simplest, is the Leaky-Integrate-and-

Fire (LIF) neuron, which is often used in neuron simulations, as well as for compu-

tational purposes. This model integrates the weighted sum of inputs over time, and

7

generates a “spike” - usually an impulse or a decaying exponential - when a threshold

is reached. After a spike occurs, the membrane voltage is reset. The spike is then

passed onto other neurons, which then convolve this impulse with a kernel function

to simulate the dynamics of synapses. The synaptic dynamics can be modeled with

different time constants to match different synapse types. The LIF model is easy to

simulate, but can be more difficult to analyze due to the many nonlinear constraints

in the model, such as thresholding, resetting, etc.

Neuron models are often used to understanding learning and information process-

ing in the brain, in both large-scale simulations and smaller network analyses. Large

scale simulations seek to create detailed simulations of large populations of biological

neurons in order to examine population dynamics and test various hypotheses. For

example, by simulating a simplified model of the entire brain, researchers can try to

characterize of the conditions under which large scale abnormal dynamic states may

occur, e.g. epilepsy, seizures, etc. [101]. Other studies study how networks of neurons

exhibit emergent properties of computation and self-organization. Unfortunately, it

is difficult to know ahead of time which properties of neurons should be modeled in

order to create the desired global effects. Other studies using neuron models focus on

the detailed computational mechanisms of a small population of neurons or even an

individual neuron, as in the case of the study of dendritic computation[100][13][92].

These studies try to create a mathematical framework for explaining the informa-

tion processing ability of even small networks of neurons, choosing neuron models

which are analytically tractable with respect to this goal. This thesis will focus on

deterministic models of neural computation, which have led to many powerful ad-

vancements in machine learning and artificial intelligence, including neural networks,

deep learning, and more. Some of these methods will be discussed in more detail in

the follow sections.

8

1.3 Sigmoidal Neural Networks

Sigmoidal neural networks (NN) refer to the classic method of computation in

which an alternating series of weighted sums and nonlinear thresholding operations

are used to transform input vectors to desired output vectors. The biological inspira-

tion for NNs comes from the idea that a neuron sums up the activity of presynaptic

neurons and produces a saturated response. However, NNs can only be considered

to very loosely approximate the function of real neurons. Perhaps the most useful

comparison is that both NNs and biological neurons are believed to operate via the

“connectionist” paradigm - in which the connections between many small units of

computation create a computationally powerful system[30]. While learning in bio-

logical neurons is difficult to elucidate, learning in NNs is comparatively much easier.

In 1973 Paul Werbos in his PhD thesis described a method for training a neural net-

work via gradient descent; this became known as backpropagation[96]. Rumelhart

et al.’s paper in 1986 helped to popularize this method, greatly enhancing the field

of neural network research[79]. In NNs, each “unit” is described as follows:

yj = σ(
∑
i

wijyi + bj) (1.1)

where yj is the jth unit’s output, yi are input units, wij is the weight from the ith unit

to the jth unit, bj is the jth unit’s bias, and σ is a smooth, monotonically increas-

ing “squashing” or “activation” function. The logistic function or the hyberbolic

tangent function is often used for σ. The backpropagation algorithm relies on the

continuously differentiable nature of the squashing function to efficiently calculate

the gradient of the error at the output layer.

It has been shown that a feed-forward NN with a single hidden layer can ap-

9

proximate any continuous function; this is known as the universal approximation

theorem[52]. Although NNs possess powerful abilities to learn arbitrary function

mappings, their training has several issues which can make application difficult. One

major issue is the difficulty in training networks with many layers or with recurrent

topologies, as in the case of recurrent neural networks (RNN). As error is back-

propagated from the output layer back towards the input layer, the influence of the

parameters on the output shrinks or grows exponentially[41]. This is known as the

“long time lag” problem. In feed forward networks with many hidden layers, this

can be partially overcome by carefully setting the learning rates in earlier layers,

but in recurrent neural networks this issue cannot be so easily resolved. For RNNs

this long time lag problem results in difficulties when training networks to learn re-

lationships between inputs which are separated by many time steps. A discussion

of attempts to solve this problem follows in the sections below. A second significant

issue is that the error surface is often highly non-convex, with the result being that

during the learning process the trajectory of the parameters may get trapped in local

minima. A variety of tricks can be useful to overcome this problem, including the

use of momentum in the gradient descent and setting the initial weights to some

optimal values[23]. For RNNs, initializing weights such that the recurrent network

is in an “edge of chaos” state (i.e. such that the hidden-to-hidden weight matrix has

a spectral radius of slightly greater than 1.0) allows the network to converge more

easily to the global minimum[47].

Another way to overcome the long time lag problem for networks with many hid-

den layers is the use of Restricted Boltzmann Machines (RBM). An RBM is formed

from two sets of nodes, labeled as a “hidden” layer and a “visible” layer, each node

is a binary random variable whose probability of being 1 is the logistic sigmoid of

the weights sum of its inputs. An RBM is “restricted” in the sense that its topology

10

is limited to each layer having no recurrent connections - furthermore, connections

are bidirectional between the hidden and visible layers. In 1985, Ackley, Hinton, and

Sejnowski published a fast learning algorithm for RBMs called Contrastive Diver-

gence (CD)[1]. By stacking layers of RBMs together and training them sequentially,

deep hierarchical representations of features can be constructed - these are known

as Deep Belief Networks (DBN). DBNs have been behind much of the recent boom

in interest in “deep learning”, having been applied with great success to handwrit-

ing recognition,[40] speech recognition,[24] as well as being the focus of AI research

being conducted by Google, Baidu, Microsoft, etc. While DBNs are very good for

learning the structure underlying large amounts of data, they are not as well suited

for sequential or temporal data. DBNs have been extended to a temporal context

by liking up sequences of DBNs, with one DBN for each timestep[90].

DBNs could explain certain aspects of computation in the brain, namely, the

learning of deep hierarchical representations of sensory input. Indeed, it has been

shown that by modeling neurons as stochastic processes and with certain topolog-

ical assumptions, networks of spiking neurons can perform probabilistic inference

via Markov chain Monte Carlo sampling[15]. This theoretical framework has been

used to implement RBMs with LIF neurons, appropriate for implementation on

large-scale neuromorphic hardware platforms[73][65]. Interest in related stochas-

tic models of neural computation have seen an abundance of progress in the last

few years, with models of Hidden Markov Model learning([48]) and other bayesian

computations([66]) being implemented with stochastic spiking neuron models. How-

ever, these approaches often sacrifice the biological plausibility of the neuron models

in order to perform the desired computations. Indeed, biological neurons are in-

herently temporal in nature - with diverse dynamical behavior occurring on a wide

spectrum of timescales, from the 100-nanosecond reaction times of fish in response to

11

electric signals ([17]) to the tens of minutes of the time course of neuromodulators[71].

Therefore neural computation algorithms which explicitly model time dependencies

are of great interest from both an application and a theoretical neuroscience stand-

point.

1.4 Temporal Processing in Neural Networks

The processing of temporal data with neural networks takes the form of applying

sequential input to the network, and training the network to produce the desired

sequential output. For example, in speech recognition the input might be sequential

Mel-frequency cepstral coefficients (MFCCs), while the output could be phone prob-

abilities. For such a task, the network must have some memory of recent input and

be able to model the temporal structure of this input. Naive attempts at solving

this problem with neural networks involved using RNNs trained with backpropaga-

tion, since RNNs possess fading memory which scales with the size of the recurrent

layer[31]. Unfortunately, due to the long time lag problem, this approach often fails

for time lags larger than 10 steps[49].

One workaround for this problem is to give each neuron unit a fading memory.

Each unit can be modeled as a leaky integrator, as follows:

yj[n] = σ(
n∑
k=1

(
∑
i

λk−1wijyi[n− k] + bj)) (1.2)

where 0 < λ < 1 is the time constant for the integration. This setup allows backprop-

agation to directly calculate the influence of data several timesteps away, via direct

connections from temporally delayed neurons[89]. However, this approach requires

keeping track of the history of each unit yj[n], n = 1...N , which can be computa-

tionally impractical. Nevertheless, this approach moves closer towards giving each

12

neural unit a memory of past inputs.

Another notable attempt to overcome this long time lag issue is the Long Short-

Term Memory (LSTM)[42]. The basic idea behind LSTM is to modify a neural unit to

store a value for an infinite duration by connecting it to itself with a weight of 1.0, and

setting its activation function to the identity. The unit refreshes its own value at each

time step, creating a memory cell; this is known as a Constant Error Carousel (CEC).

The CEC is controlled by multiplicative gates which determine when the CEC should

accept input, provide output, and reset its value. A network of LSTM units can be

combined with traditional sigmoidal neurons and trained via backpropagation[32].

In theory, the network can then learn when to memorize, forget, or recall certain

features across an infinite number of time steps. Beginning with Alex Graves’ PhD

thesis which applied LSTM to the TIMIT speech recognition dataset,[36] LSTM

has been shown to achieve excellent results on a variety of applications including

robot localization,[27] robot control,[58] handwriting recognition,[19] and especially

speech[35]. Although LSTM networks have been shown to be computationally pow-

erful in their own right, they fall short in terms of biological plausibility[69]. Spiking

neural networks, which directly model the spiking nature of real neurons, may be

more promising in terms of both providing insight into the biological basis of com-

putation and learning, as well as naturally being capable of temporal processing.

1.5 Spiking Neural Networks

Spiking neural networks have been described as the third generation of neural

network models. They attempt to capture the firing behavior of biological neurons

for computational use. There are several immediate advantages to this approach.

First, SNNs have been shown to have greater computational abilities than tradi-

13

tional NNs[55]. The temporal nature of spiking neuron models allows for robust

computation in a continuous time domain. Second, SNNs are desirable in terms of

power consumption for hardware implementation. Information is encoded in single

pulses which may occur sparsely, resulting in significant savings in power consump-

tion and information transmission. Third, SNNs are close to biological neurons in

their function and behavior. This makes them useful for implementing theories of

computation in the brain, as well as providing a framework from which to find new

insights into neuronal computation.

The most commonly used spiking neuron model is the Leaky-Integrate-and-

Fire(LIF) neuron, which takes input spike trains of the form y(t) =
∑

tn<t
δ(t− tn),

where δ is the Dirac delta function, and spikes occur at times tn. The dynamics are

described by:

1

τ

dxj(t)

dt
= −xj(t) +

∑
j

wijyi(t) (1.3)

where τ is the membrane time constant, xj(t) is the jth neuron’s membrane voltage,

and yi(t) is the input spike train from the ith neuron. When xj(t) is greater than

a firing threshold xth, then the neuron outputs a spike and xj(t) is reset to zero

or a resting potential. Instead of a spike train, synaptic dynamics can be modeled

instead, and are typically given by the alpha function:

y(t) = α
∑
tn<t

(e
− t−tn

τ1 − e−
t−tn
τ2) (1.4)

where α is a scaling constant.

Unfortunately, training SNNs is difficult. The main difficulty lies in the fact

that spikes are generated when the membrane voltage crosses a threshold, and the

membrane potential is reset. This discontinuous function cannot be easily differen-

14

tiated, and the method of gradient descent via backpropagation can no longer be

directly applied. Nonetheless, there have been many attempts at deriving learn-

ing rules for spiking neural networks. These attempts can be roughly grouped into

three broad categories: spike-timing-based methods, rate-based methods, and other

model-specific methods.

1.6 Spike-Timing Methods

A popular method for training spiking neural networks is the SpikeProp method,

which can be considered a spike-timing-based method[9]. This method calculates

the gradient of spike firing times with respect to synaptic weights, and is applicable

to multilayer feedforward architectures. It models neurons with the Spike Response

Model (SRM), which is a generalization of the LIF model[33]. However, in order for

this method to work well, this method must utilize multiple connections between each

pair of neurons (e.g. up to 16) with varying delays, in order to allow for a complete

range of temporal computation. This is due to the fact that synaptic time constants

are very short, removing the possibility for post synaptic potentials (PSPs) to inter-

act across large timescales. Creating a large number of delayed synaptic connections

shifts the burden of computation from the neuron model itself to the synapses[61].

SpikeProp has been extended in a variety of ways, including supporting multiple

spikes per neuron and recurrent network topologies[12].

Another spike-timing based approach utilizes the Theta Neuron model. The

Theta Neuron model is convenient for spike-timing calculations since the time to the

neuron spiking is a differentiable function of the times that input spikes arrive at

the neuron. With the simplification that synapses are modeled as spikes, a gradient

descent rule can be derived which finds the dependence of the timing of the output

15

spikes on the weights of the network[61]. This approach was applied to several ma-

chine learning benchmarks, as well as a robotic task[60]. However, there are several

drawbacks to this method which will be discussed in further detail in the next chap-

ter.

If one assumes that the initial number of output spikes is equal to the number of

target spikes, a simple error function consisting of a sum of the difference in timing

between each pair of output and target spikes can be constructed. The gradient with

respect to the output layer’s weights can then be taken for simple LIF spiking neuron

models. Extending this approach to multi-layer networks requires some heuristic as-

sumptions. Xu et al. 2013 analyzed this approach and applied it to several machine

learning benchmarks, calling it MuSpiNN[97].

Memmesheimer et al. took a more analytical approach to finding weights in a

spiking neural network[62]. They derived a perceptron-like learning rule which is

guaranteed to find weights which cause a layer of spiking neurons to fire at the de-

sired times, if such a solution exists. Their learning rule is applicable to a recurrent

network; however, it requires that exact target spike times are specified for each

neuron. Therefore it is not applicable to networks with hidden layers, where target

spike times are not given, and need to be learned. Nevertheless, they showed that

this approach can find weights in a recurrent network to generate periodic output,

create delay lines, and solve other interesting tasks.

1.7 Rate-Based Methods

Rate-based approaches are also useful for training SNNs. One simple approach is

to use SNNs to approximate NNs, after which traditional NN learning methods can

be used, e.g. backpropagation. For example, SNNs can be made to encode sigmoidal

16

values with their average firing rates. Smooth nonlinear transfer functions between

firing rates of neurons can be constructed, so that traditional NN learning methods

can be applied[80]. Using spiking neurons to perform NN computations shows that

spiking neurons at least can perform NN computations, but these methods of train-

ing spiking neural networks do not take advantage of the increased computational

possibilities afforded by using spiking neurons.

More specific rate-based learning methods which do take into account individ-

ual spikes can also be constructed. One example of this is the Remote Supervision

Method (ReSuMe)[74]. ReSuMe applies a heuristic approximation based on instanta-

neous firing probabilities to derive a Spike Timing Dependent Plasticity(STDP)-like

rule. It has the advantage that it can be applied to a wide range of spiking neu-

ron models, as long as the model is operating in a linear input-to-output firing rate

regime. It is also applicable to multilayer and recurrent network topologies, and can

handle multiple spikes per neuron[85].

The appeal of rate-based methods is that they are more amenable to simplifying

assumptions which allow for taking the gradient on a smooth error surface. It is also

possible to construct an error surface which takes into account both spike-timing and

the presence/absence of spikes. One can use the Victor & Purpura distance, which

is defined as the minimum cost of transforming one spike train into another by cre-

ating, removing, or shifting spikes[93]. This distance measure was used to construct

learning rules for a single layer of spiking neurons - termed the Chronotron learning

rule[29].

17

1.8 Other Methods

An interesting approach to using SNNs for computation is to avoid training the

network weights altogether. This is the fundamental idea behind Liquid State Ma-

chines (LSM). Input is applied to a “reservoir” - a recurrent network of spiking

neurons with fixed parameters. As the reservoir responds to the input in a dynamic,

nonlinear way, an output layer can be trained to map the reservoir’s activity to the

desired target via linear regression or some other simple method. This approach has

the benefit that the reservoir parameters do not need to be adjusted during learning

- only one output layer needs to be trained. The parameters are set such that the

reservoir is at the “edge of chaos” - i.e. its connections are neither too weak (which

results in a fast decay of activity, i.e. a short fading memory), nor too strong (which

results in the recurrent feedback overwhelming any input, i.e. a state of chaos)[50].

Reservoir Computing (RC) is the general study of such systems: the spiking neuron

implementation of RC is known as LSMs, while the NN implementation is known

as Echo State Networks (ESM)[54]. Using a fixed reservoir avoids the difficult prob-

lem of training weights in a recurrent network; however, recent advances in training

recurrent NN networks have caused Echo state networks to fall by the wayside[23].

Efforts to create learning rules for recurrent SNN networks have similarly overtaken

research in LSMs, although the state of research in training recurrent SNNs has yet

to mature[81].

Yet another unique approach to training spiking neural networks is through a

clever math trick. Bohte and Rombouts observed that a sum of shifted dirac delta

functions is the fraction derivative of a sum of shifted power-law kernels, and that one

can consider the spike-creating threshold function of a spiking neuron as a fractional

derivative[11]. This allows the derivation of backpropagation-style gradient descent

18

learning rules[8]. Unfortunately, this trick requires that input take the form of a

sum of power-law kernels, which restricts its usefulness to more general categories of

problems.

One final interesting approach to training spiking neurons worth mentioning is by

Schrauwen et al. which tries to bridge spiking neural networks with sigmoidal neural

networks. By replacing the hard threshold function which creates impulse spikes in

a spiking neuron model with a sigmoidal function that outputs an analog value, they

showed that the approximated spiking system can be trained with the traditional

backpropagation algorithm used for NNs[82]. With this method a trade-off exists

between how much “spiking” is being modeled by the network and how effectively

the NN backpropagation learning can be applied.

19

2. CONTINUOUS BACKPROPAGATION FOR THETA NEURON

NETWORKS

2.1 Theta Neuron Networks

The Theta neuron model is a specific implementation of the class of quadratic

spiking neuron models, which are described by the differential equation:

du

dt
= u2 + I (2.1)

where u is the state variable and I is the input. The solution is the tangent function;

therefore a spike is said to occur when the state u blows up to infinity. The following

change of variables yields the theta neuron model:[25]

u(t) = tan

(
θ(t)

2

)
. (2.2)

The quadratic spiking model, and by extension the theta neuron model has the

property that the neuron’s response to incoming synaptic input depends on the inter-

nal state of the neuron. This creates the important property that spikes incoming to

a neuron at different times will produce different effects. This temporal nonlinearity

in the neuron’s behavior could allow for more robust and interesting temporal com-

putation to occur. Indeed, the theta neuron exhibits several characteristics found

in real neurons, including first-spike latency (where the latency between an input

current and a spike event depends on the strength of the input), tonic firing (where

the neuron can fire repeatedly in response to constant positive input, and activity-

dependent thresholding (where the amount of input current needed to make the

20

neuron fire depends on the recent firing history of the neuron).

The theta neuron model is described by

τ
dθj(t)

dt
= (1− cos θj(t)) + αIj(t)(1 + cos θj(t)) (2.3)

where θj(t) ∈ [0, 2π] is the jth neuron’s phase at time t, τ is the time constant, α is a

scaling constant, and Ij(t) is the input current, which is given by a sum of a baseline

current I0 and weighted input spike trains:

Ij(t) = I0 +
N∑
i=1

wijSi(t). (2.4)

The neurons i = 1 . . . N provide spike trains to neuron j; the spike trains are given

by Si(t) =
∑

t′i<t
δ(t− t′i), which are then weighted by wij. A theta neuron produces

a spike whenever its phase equals π (i.e. ∀t = t′j, θj(t) = π). When I0 > 0, the

neuron exhibits tonic firing in the absence of other input, with its phase cycling

around the phase circle, spiking at periodic intervals. When I0 < 0, the phase circle

has two fixed points, one attracting and one repelling (Figure 2.1). In the absence

of input, the phase settles to the attracting fixed point. If positively weighted input

spikes cause the phase to increase enough to cross the repelling fixed point, then

the neuron will “fire” when its phase eventually crosses π. Thus, the repelling fixed

point is equivalent to a firing threshold. After firing, the neuron exhibits relative

refractoriness, during which a much larger excitatory input is required to cause the

neuron to quickly fire again. In the figure as well as in the rest of this work, the

phase is shifted by a constant cos−1(αI0+1
αI0−1) to set the attracting fixed point to be at

θ = 0. This shift is convenient for implementation of the learning rule, as will be

shown.

21

Figure 2.1: Theta neuron phase circle. Shown for when the baseline current I0 is less

than zero, resulting in two fixed points. The attracting fixed point is equivalent to

the resting membrane potential, while the repelling fixed point is equivalent to the

firing threshold.

The theta neuron model has the attractive property that it does not need to reset

the state variables after firing a spike, in contrast to many spiking neuron models.

This allows for the derivative to be directly taken when deriving gradient descent

learning rules. Indeed, such a method was first developed for a single-layer of neurons

([94]) and was applied to a robotic application[60]. The single layer gradient descent

rule was later extended to multiple layers by explicitly calculating the dependence

of each spike time on the parameters,[61] as follows: the change of phase of a neuron

before and after a spike is given by

θ+j = 2tan−1(αwij + tan(
θ−j
2

)). (2.5)

22

where θ−j is the phase before the input spike, and θ+j is the phase after the input

spike. The effect of the input spike on the phase is dependent on the current phase

and the weight from the ith neuron to the jth neuron. Furthermore, the remaining

time until the neuron fires a spike itself is a function of its current phase:

F (t) =

∫ π

θ(t)

dθ

(1− cos θ) + αI(t)(1 + cos θ)
. (2.6)

If there are input spikes, the integral can be broken up into the sum of sev-

eral pieces with the integration bounds of each piece determined by equation 2.5.

McKennoch et al. applied this learning rule to multilayer feedforward networks and

demonstrated their superior performance on a variety of machine learning bench-

marks when compared to other spiking neural network algorithms[61]. However, this

learning rule is only applicable to networks where spikes are transmitted via impulses,

and therefore neglects the modeling of synapses and synaptic currents. Furthermore,

this approach assumes a fixed number of spikes during the course of learning.

In this thesis, a gradient descent learning rule for theta neuron networks which ap-

proximates synaptic interactions and can handle changing numbers of spikes per

neuron as the weights are changed is derived.

2.2 Gradient Descent Backpropagation Algorithm

2.2.1 Continuous Spiking Approximation

Commonly in spiking neural network models, several significant discontinuities

exist which impede the use of gradient descent techniques. First, spikes modeled as

impulse functions are obviously discontinuous. Second, spikes are transmitted only

23

when the membrane voltage crosses a threshold. Therefore the output is a hard-

threshold function of the membrane voltage. Finally, in many models the membrane

voltage is reset to some baseline voltage immediately after a spike; this reset is dis-

continuous as well. The theta neuron model avoids this last type of discontinuity

because after a spike is fired, the phase naturally will approach the attracting fixed

point. However, spikes still are modeled as impulses, being generated when the

phase crosses π. Many spiking neural network models attempt to mitigate the dis-

continuities when modeling spikes as impulses by instead modeling spikes as synaptic

currents. Synaptic models generally consist of convolving spikes with a first or second

order decaying exponential function. Sometimes a reset of the membrane voltage is

modeled as a strong hyperpolarizing synaptic current as well. Nevertheless, these

approaches do not avoid the hard-threshold issue for creating spikes. Indeed, a spike

is instantly created whenever the threshold is crossed. The other extreme is to use a

soft threshold with no spiking dynamics, as found in NNs. To avoid these problems

but still model realistic spiking behavior, the phases of theta neurons can be coupled

through a kernel, as follows:

κ(θi(t)) = K

exp

−1

2

(
cos(θi(t)

2
)

σ

)2
− exp(− 1

4σ2
)

 . (2.7)

where σ controls the spread of the function and K is a normalizing constant such that∫ 2π

0
κ(θ)dθ = 1 (Figure 2.2). Also, limσ→0+ κ(θi(t)) =

∑
tk<t

δ(tk), where θi(tk) = π.

This kernel value can then be directly fed to a downstream neuron j, after being

scaled by a weight wij:

τ
dθj(t)

dt
= (1− cos θj(t)) + αIj(t)(1 + cos θj(t)) (2.8)

24

Ij(t) = I0 +
N∑
i=1

wijκ(θi(t)). (2.9)

This smooth approximation of spikes can be used to derive learning rules for the

network using gradient descent, while still retaining spiking dynamics. The kernel

function acts as an approximation of synaptic dynamics, and there are no discon-

tinuities introduced by thresholding or resets. Additionally, the direct coupling of

subthreshold dynamics can be interpreted as a type of gap junction connectivity[21].

0 100 200 300
0

0.5

1

θ (Degrees)

κ(
θ)

Figure 2.2: Plot of kernel as a function of phase. The peak occurs when θ = π.

The system can be discretized via Euler’s method:

θj[n] = θj[n− 1] +
∆t

τ
[(1− cos θj[n− 1]) + αIj[n− 1](1 + cos θj[n− 1])] (2.10)

Ij[n− 1] = I0 +
N∑
i=1

wijκ(θi[n− 1])). (2.11)

25

To gain a more intuitive picture of the dynamics, a single theta neuron receiving

input and producing output was simulated (Figure 2.3). This demonstrates both

the synaptic currents roughly modeled by the kernel and the biologically realistic

properties of the theta model. The particular choice of the kernel (an exponential of

a cosine) is motivated by the desire to first map the phase (which may take values

in [0, 2π]) to the interval [−1, 1]. A square and exponential can then be applied to

obtain a Gaussian-like shape, after which κ(0) is subtracted to set the output to a

maximum when θ = π and 0 when θ = 0. Note that the shift of θ by the constant

cos−1(αI0+1
αI0−1) as mentioned earlier allows the output to be 0 when θ is at the attract-

ing fixed point. This prevents output being sent to downstream neurons when the

neuron is in a resting phase.

26

0 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

A B C

D
In

pu
t

0 10 20 30 40
0

2

4

6

Θ
(t

)
(R

ad
ia

ns
)

Input
Θ(t)
Threshold

0 10 20 30 40
0

0.05

0.1

Time (ms)

κ(
θ(

t)
)

Figure 2.3: Response of single theta neuron with kernel. Top: Input is applied to

a single theta neuron, and the output is a function of the neuron’s phase. Middle:

Plots of input, theta nueron phase, and the threshold (i.e. repelling fixed point). At

A a kernelized input is applied. This input alone is not large enough to cause the

phase to cross the threshold, and the phase begins to return to 0. At B another

input spike is recieved, this time the phase is moved past the threshold, and the

neuron begins to fire. At C the neuron is fully spiking, as evidenced by the output

kernel in the lower panel. As the phase crosses π, the output reaches a maximum.

Input is applied, but this does not affect the dynamics very much, since the phase

is current in the “spiking” regime. The phase wraps around to 2π = 0. Finally,

at D, a larger input is applied which is enough to cause the neuron to fire again.

Bottom: Kernelized θ, which is the output of the neuron. This output will be fed to

downstream neurons.

27

2.2.2 Network Topology

Learning rules are derived for a three-layered network, with input, hidden, and

output layers. This could be extended to networks with additional layers. A feed-

forward topology is assumed here (as in Figure 2.4), see the Appendix for derivation

of learning rules for a recurrent topology. Let I, H, and O denote the set of input,

hidden, and output neurons indexed over i,j, and k, respectively, with |I| = M ,

|H| = N , and |O| = P . Input neurons I are connected to hidden neurons H via

weights wij in a feed-forward manner and hidden layer neurons are connected to the

output layer O via weights wjk, again in a feed-forward manner. Input and target

spike trains are denoted by Xi[n] and Tk[n] respectively. The error function is given

by the sum squared error of the output layer and the targets:

E[n] =
1

2

P∑
k−1

(κ(θk[n])− Tk[n])2 (2.12)

Tk[n] = 1 if a spike is desired during the nth time bin, and Tk[n] = 0 otherwise.

Similarly, the input spike trains are 0 or 1 for each Xi[n].

28

Figure 2.4: Feed-forward neural network consisting of an input, hidden, and output

layer.

2.2.3 Forward Pass

Denote θk[n] as θnk for convenience. The forward pass for the input neurons i ∈ I,

hidden neurons j, l ∈ H, and output neurons k ∈ O are, respectively:

θni = θn−1i +
∆t

τ

[
(1− cos θn−1i) + α(1 + cos θn−1i)(I0 +Xi[n− 1])

]
(2.13)

θnj = θn−1j +
∆t

τ

[
(1− cos θn−1j) + α(1 + cos θn−1j)

(
I0 +

∑
i∈I

wijκ(θn−1i)

)]
(2.14)

θnk = θn−1k +
∆t

τ

[
(1− cos θn−1k) + α(1 + cos θn−1k)

(
I0 +

∑
j∈H

wjkκ(θn−1j)

)]
. (2.15)

2.2.4 Backward Pass

The dependence of the error on the weights wij and wjk needs to be found. Denote

∂θk[n]
∂wjk

as δnk,jk for convenience. Starting with hidden-to-output layer weights wjk, we

have:

∂E[n]

∂wjk
= (κ(θnk)− Tk[n])κ′(θnk)δnk,jk (2.16)

29

where κ′(θ) is the derivative with respect to θ:

κ′(θm(t)) = K exp

−1

2

(
cos(θm(t)

2
)

σ

)2
(sin(θm(t))

4σ2

)
. (2.17)

Continuing the derivative:

δnk,jk = δn−1k,jk +
∆t

τ

[
δn−1k,jk sin θn−1k + α(1 + cos θn−1k)κ(θn−1j) (2.18)

−αδn−1k,jk sin θn−1k

(
I0 +

∑
j∈H

wjkκ(θn−1j)

)]
(2.19)

The backward pass for input layer weights wij follows similarly:

∂E[n]

∂wij
=
∑
k∈O

(κ(θnk)− Tk[n])κ′(θnk)δnk,ij (2.20)

δnk,ij = δn−1k,ij +
∆t

τ

[
δn−1k,ij sin θn−1k − αδn−1k,ij sin θn−1k (I0 +

∑
j∈H

wjkκ(θn−1h))

]
(2.21)

δn−1j,ij = δn−2j,ij +
∆t

τ

[
δn−2j,ij sin θn−2j + α(1 + cos θn−2j)κ(θn−2i) (2.22)

−αδn−2j,ij sin θn−2j (I0 +Xi[n− 2])

]
(2.23)

It is also possible to find the gradient with respect to the baseline current I0 (see

Appendix). The learning rules can be summarized as:

∆wij = −ηh
N∑
n=0

∂E[n]

∂wij
(2.24)

30

∆wjk = −ηo
N∑
n=0

∂E[n]

∂wjk
(2.25)

where N is the number of time steps and ηh, ηo are the learning rates for each layer

of connections, respectively.

During simulation we need to keep track of the errors δ, which are updated at

each simulation time step. Each neuron keeps track of the errors which describe the

effect of a weight change on that neuron’s activity. The errors are then passed on

to downstream neurons. Finally, at the output layer, the dependence of the total

error on the weights can be calculated, and the appropriate weight updates are then

applied.

2.2.5 Nesterov-Style Momentum

There are several heuristic methods used for training recurrent sigmoidal neural

networks which can be applied to the current setup. Recurrent neural networks

suffer from the long time lag problem, which may also be a problem here, since

both algorithms backpropagate errors back in time. Recent work by Hinton et. al.

suggests several key methods for training recurrent neural networks, one of which is

the use of Nesterov-style momentum[23]. Classical momentum takes the form of:

vt+1 = µvt − η5 E(wt) (2.26)

wt+1 = wt + vt+1 (2.27)

where µ is the momentum coefficient. At each weight update step t, the gradient

is calculated at the current weight vector wt, and added to the momentum vector

vt. The new momentum term is then used to update the weight vector. In contrast,

31

Nesterov-style momentum is applied as follows:

vt+1 = µvt − η5 E(wt + µvt) (2.28)

wt+1 = wt + vt+1 (2.29)

The difference between classical momentum and Nesterov-style momentum is

that instead of calculating the gradient at the current weight vector, Nesterov-style

momentum first performs a partial update to the weight vector by adding µvt, then

calculating the gradient at this new location (Figure 2.5). This allows the gradient

descent to be more responsive to changes in the objective function as the weights are

updated. For instance, consider the example where the weight vector is poised to

enter a narrow valley in the error function. Classical momentum would calculate the

gradient at the point before entering the valley, pushing the weights past the valley

and onto the other side. Only at the next update would the reversed gradient cause

the weight trajectory to slow down. In contrast, Nesterov-style momentum first cal-

culates a partial update which crosses the valley, then calculates the gradient at the

new point. This gradient points in the opposite direction, and the weight trajectory

is immediately slowed. This subtle difference compounds across weight updates and

allows for faster convergence, particularly for when high values of µ are desired to

overcome large initial plateaus or abundant local minima. Indeed, Sutskever et al.

(2013) show that Nesterov-style uses a smaller effective momentum for directions

with high curvature relative to classical momentum. This prevents oscillations and

allows the use of a large µ[23].

32

Figure 2.5: Comparison of classical momentum and Nesterov-style momentum. In

classical momentum, weight updates are performed by adding the vectors −η 5

E(wt), the gradient, and µvt, the momentum. The next epoch’s momentum vector

is simply the difference of the new weight and the old weight. In Nesterov-style

momentum, weight updates are performed by adding the momentum vector µvt first,

then adding the gradient calculated at the new point. The next epoch’s momentum

vector is calculated in the same way.

The partial update in Nesterov-style momentum is not optimal for implementa-

tion with the backpropagation calculations because the partial update of the weight

vector demands resimulating the network with the partially updated weights, calcu-

lating the gradient, then simulating again at the final updated weight vector. A sim-

ple change of variables makes the algorithm easier to implement. Let w̃t = wt+µvt.

Then after some calculation we obtain:

vt+1 = µvt − η5 E(w̃t) (2.30)

w̃t+1 = w̃t + µvt+1 − η5 E(w̃t) (2.31)

Now the gradient is taken at the current weight vector and the partial weight update

33

is no longer explicitly necessary.

Weight initialization is another important consideration in the convergence of

RNNs. For the hidden-to-hidden layer connections, setting the initial weights such

that that the hidden layer is near the “edge of chaos” aids in finding good solu-

tions. Input-to-hidden layer weight initialization is an important consideration as

well. Hinton et al. suggests setting initial weights small enough to not cause the

activity in the hidden layer to saturate, but large enough to speed learning. Weights

are chosen randomly from a Gaussian distribution with a mean and variance that

is chosen through experimentation. Generally, the mean is chosen to be positive

and the variance is chosen to be large enough such that there will be a significant

fraction of negative weights. A few more tricks are employed: learning rates for

each weight layer are adjusted independently to compensate for errors shrinking as

they backpropagate towards the input layer, and weight updates are performed in

an online manner, where weights are updated after the presentation of each data

sample, rather than after presenting all data in the training set. This helps to speed

convergence.

All experiments used the constants outlined in Table 2.1.

34

Constant Name Symbol Value

Time constant τ 20ms

Input scaling α 1

Baseline current I0 -0.005

Output layer learning rate ηo Varies

Hidden layer learning rate ηh 1.0e3 ∗ ηo

Kernel Spread σ 2.0

Timestep ∆t 0.5ms

Table 2.1: Table of constants used for simulation and experiments.

35

3. IMPLEMENTATION AND MACHINE LEARNING BENCHMARKS

3.1 Demonstration of Learning Rule

A simple two-weight network was used to demonstrate the efficacy of the learning

rule. The network consists of one input neuron, one hidden neuron, and one output

neuron. The input neuron fires one spike, and the output neuron was trained to fire

at a desired time by setting the target value to 1 at the desired time and 0 otherwise.

In order to compare the use of momentum versus no momentum, the target values

are set such that the error surface contains a local minimum. Figure 3.1 examines

the result, and demonstrates successful implementation for this simple example.

One advantage of using a smoothed kernel is that spikes can be created and added

naturally during gradient descent. To examine in more detail what occurs when a

spike is created by the learning algorithm, the following setup was used: One output

neuron was trained to fire in response to 100 input neurons. Each input neuron fired

a spike in succession with a short delay between each firing event. The target spike

time for the output neuron was set to occur when the 70th input neuron fired. The

weights were initialized to the same small value, winit = 0.01, so that each input

neuron contributed equally and the output neuron did not fire. After 100 learning

epochs, the output neuron successfully created a spike and placed it to occur at the

correct target time.

36

Figure 3.1: Demonstration of learning rule for network with two weights. Top:

Topology of network (one input, one hidden, and one output neuron), with weights

labeled. Left panel: Weight trajectory on error surface, comparing learning with

and without momentum. The trajectory which does not use momentum gets stuck

in the local minimum, while the trajectories which use momentum does not. Right:

Zoomed in contour plot of the weight trajectory. After a few oscillations the weights

converge, with Nesterov-style momentum converging slightly faster and oscillating

less than classic momentum.

The change of the 100 input weights across the training epochs reveals how the

learning algorithm is deciding to create and shift a spike (Figure 3.2). Before the

spike has been created, weights are updated slowly, with weights corresponding to

input neurons which fire before the target firing time increasing, and weights corre-

sponding to input neurons which fire after the target time decreasing. This trend

eventually causes the output neuron to fire in response to input spikes that come

before the target spike time. After the new spike is created there is a sudden change

in the trajectories of the weights as they rapidly change to shift the newly created

37

spike to the target time, since the newly created output spike does not initially oc-

cur at the target time, but later. This delayed spike creation is due to the “spike

latency” dynamics of the theta neuron model; it takes some time for the phase of the

output neuron to move around the phase circle beginning from the repelling fixed

point. As the output spike is shifted, oscillations occurring around 30-50 learning

epochs are a result of overshooting the target firing time until it settles at the correct

time. After learning has stabilized, the main weights which contribute to the neuron

are those which correspond to inputs that fire in a relatively narrow time window

before the target spike time (pink traces). These inputs correspond to those which

maximally contribute to causing the output neuron to fire at the target time, taking

into account the theta neuron dynamics.

38

0 20 40 60 80 100
0

0.5

1

|t o−
t d| (

se
c)

Epoch
0 20 40 60 80 100

0

0.5

E

0 20 40 60 80 100

0

0.1

0.2

W
ei

gh
t

Figure 3.2: Examination of weight changes as the creation of a new spike occurs.

Top: 100 weights are plotted as they change over the course of 100 learning epochs.

Colors indicate the which input neurons the weights correspond to - black traces

correspond to input neurons which fire earliest, followed by pink, blue, cyan, and

lastly green. The red dotted line indicates the weight corresponding to the input

neuron which fires exactly at the target time. The neuron begins to fire a spike after

about 18 learning epochs, marked by the dotted black line. Bottom: Two measures

of error over the course of learning. The left axis corresponds to the timing error of

the newly created spike - the absolute difference between the output spike time to

and the target spike time td. The right axis corresponds to the raw SSE value used

in the backpropagation algorithm.

39

3.2 XOR Task

The XOR task is commonly used as a test for classification algorithms since it

is a simple linearly non-separable problem. If an algorithm can solve the XOR task

then presumably it can scale to other more difficult linearly non-separable tasks. In

order to apply the XOR problem to theta neurons, the binary values of 0 and 1 need

to be encoded as spike times. This is done by having input and output spikes fire

early or late, which correspond to 1 or 0 respectively. Three input neurons were

used: two neurons encoded the binary inputs of 0 or 1 and the remaining neuron

marked the beginning of the trial by firing a single spike. Input neurons fire at

20ms or 40ms. The output layer has one neuron, which was trained to fire at ei-

ther 60m or 100ms depending on the input, while the hidden layer had 4 neurons.

Weights were randomly initialized with a Gaussian distribution with mean 2.5 and

variance 2.0. Momentum was set to 0.9, with the learning rate of the output layer set

to ηo = 1.0e3 After 220 epochs, the algorithm converged to the solution. (Figure 3.3)

40

Figure 3.3: Comparison of network spiking activity for the XOR task before and

after learning. Four panels correspond to each of the four possible inputs to the

XOR function: 01,10,00, and 11. Spikes occur at the times indicated by the rasters.

Grey spikes show activity before learning, black spikes are after learning. Before

learning has occurred, the output spikes occur at roughly the same time for each

input, indicating that the network has not yet learned to discriminate the inputs.

After learning, the output spike fires early for input 01 and 10, and late for input 00

and 11. The hidden layer spike times change dramatically after learning.

3.3 Cosine and Sinc Tasks

To test a small continuous theta neuron network’s ability to approximate non-

linear functions, regression tasks on data generated by the cosine and sinc functions

were used. To encode real-valued inputs as spikes, the value was scaled and shifted,

then encoded as the latency to the first spike firing time. Output values were sim-

ilarly encoded as a single target firing time for each input. For the cosine task, a

network with 2 input neurons, 5 hidden neurons, and one output neuron was used.

One input neuron was used to mark the start of a trial by firing once, while the

other input neuron fired at a later time proportional to the desired input value. The

41

output neuron is trained to fire at a time proportional to the value of the cosine

function such that the earliest possible target time came immediately after the latest

possible input spike. 50 data points, chosen randomly from a uniform distribution

on [0, 2π] were used. Weights were randomly initialized with a Gaussian distribution

with mean 12.0 and variance 6.0. Momentum was set to 0.99, with ηo = 1.0e3. After

1433 epochs, the algorithm converged to the solution (Figure 3.4). A closer examina-

tion of the activity of the hidden layer after training reveals that after learning, some

hidden units learned to fire multiple spikes or to not fire at all in response to different

inputs (Figure 3.5). This suggests that the learning algorithm can take advantage of

a changing number of spikes in the hidden layer to achieve more varied computations.

0 1 2 3 4 5 6
−1

−0.5

0

0.5

1

Input

O
ut

pu
t

Cosine task, 2x5x1 network, 1433 epochs

After learning
Before learning

0 500 1000

0.5

1

1.5

2

2.5

3

Epochs

E
rr

or

Figure 3.4: Results for Cosine regression task. Left: Comparison of regression before

and after learning. Right: Error as a function of learning epochs. The algorithm

quickly converges to the solution.

42

Figure 3.5: Hidden neuron activity before and after learning for the Cosine regression

task. Left: Before learning, five hidden neurons each spike once in response to each

of the 50 input data samples. Right: After learning, neurons 1-3 still spike once in

response to each input, but neuron 4 has learned to not produce a spike for certain

inputs, while neuron 5 produces multiple spikes for some inputs. This varied activity

is summed and combined to cause the output neuron to fire at the desired times,

enabling the entire network to accurately map the cosine function.

The sinc function was also used to provide more of a challenge. For the sinc

test, a network topology of two input neurons, 11 hidden neurons, and one output

neuron was used. 150 data samples from the interval [−3π, 3π] were taken, the other

parameters were the same as the cosine task. After 2200 epochs the learning rule

converged (Figure 3.6). Additional networks with different numbers of hidden units

were tested: from 5 to 20, with 11 hidden units yielding the best performance.

43

−5 0 5
−0.2

0

0.2

0.4

0.6

0.8

1

Input

O
ut

pu
t

Sinc task, 2x11x1 network, 2200 epochs

Before learning
After learning

0 500 1000 1500 2000

0.2

0.4

0.6

0.8

1

1.2

1.4

Epochs

E
rr

or

Figure 3.6: Results for Sinc regression task. Left: Comparison of regression before

and after learning. The right-hand side tail fails to accurately map the curves, instead

converging to a sloped line. Right: Error as a function of learning epochs. The error

plateaus for a long period before rapidly decreasing. This plateau corresponds to the

local minimum when every input is mapped to the mean of the sinc function. After

a rapid decline, the error slowly approaches a minimum.

3.4 Fischer-Iris Dataset

In order to compare the learning algorithm’s performance to other spiking neural

network learning algorithms, a network was trained to perform classification on the

Fischer-Iris dataset. [28]. The Fischer-Iris dataset consists of 3 classes of 50 samples,

each sample has 4 features, and some samples are not linearly separable from the

incorrect class. The features describe petal and septal lengths and widths for three

different classes of flower species. The network used for this task consists of four

input neurons, 8 hidden neurons, and 1 output neuron. In contrast to the XOR

task, no additional input neuron was used to signal the start of a trial; instead, two

spikes were used for each of the 4 input neurons: the first signaled the start of the

44

trial, and the second encoded the analog feature value in its timing. The output

neuron was trained to fire at one of three times, corresponding to the input data’s

class. 5-fold cross-validation was used to improve the robustness of the results, since

the size of each class was relatively small. Weights were initialized with a random

gaussian distribution having mean 2.0 and variance 4.0, momentum was set to 0.99,

and the learning rate ηo was set at 5.0e1. Classification error was calculated by de-

termining whether or not the output spike occurred closest to the target spike time

corresponding to the correct class, as opposed to the other classes’ target spike times.

Results in comparison to other spiking neural network algorithms are shown in Table

3.1. Although comparison is complicated by the use of different cross-validation or

holdout procedures, it can be seen that the Continuous Theta BP method performs

comparably with other spiking neural network methods. The hold-out method was

also used, in which 50 data samples were set aside for the test dataset. The use of

this method resulted in deceptively good numbers, even reaching 98% training and

100% test performance. However, these numbers highly depend on the selection of

data samples for the test and training data sets.

45

Algorithm Topology Epochs Train Test

SpikeProp 50x10x3 1000 97.4 96.1

Dynamic Synapse SNN 4x10x1 n/a 96 97.3

NN A 50x10x3 2.60E+06 98.2 95.5

NN B 4x8x1 1.00E+05 98 90

MuSpiNN 4x5x1 192 99.96 94.44

Spike-timing Theta BP 4x8x1 1080 100 98

Continuous Theta BP 4x8x1 3000 97.8 96.7

Table 3.1: Comparison of performance of spiking neural network algorithms on the

Fischer-Iris Dataset. SpikeProp and NN A results are from Bohte et al. 2000[10],

Dynamic Synapse SNN result is from Belatreche et al. 2006[3], Spike-Timing Theta

BP and NN B results are from McKennoch et al. 2009[61], and results for MuSpiNN

are from Xu et al. 2013[97]. Continuous Theta BP refers to this work. NN A and

NN B refer to sigmoidal neural networks trained with classical backpropagation. The

closest comparison is with the Spike-timing Theta BP method, from the same work.

Note that while the Continuous Theta BP results (this work) are obtained with 5-

fold cross-validation, the Spike-timing Theta BP results are obtained via 1/3 holdout,

while SpikeProp and NN experiments are conducted via 2-fold cross-validation.

3.5 Wisconsin Breast Cancer Dataset

The Wisconsin Breast Cancer Dataset consists of 699 samples from two classes

(malignant/benign), and each sample consists of 9 measurements (radius, texture,

perimeter, etc)[7]. Like the Fischer-Iris dataset, it contains both linearly and non-

linearly separable data points. A similar network to the Fischer-Iris task was used -

46

this time with 9 input neurons, 8 hidden neurons, and 1 output neuron. Encoding

input values and target classes were done in the same manner as well. Weights were

initialized with a mean of 1.0 and variance 5.0, momentum was set to 0.9, and the

learning rate ηo was set at 2.0e1. Results of the continuous theta learning algorithm

in comparison to other spiking neural network algorithms are shown in Table 3.2.

Algorithm Topology Epochs Train Test

SpikeProp 64x15x2 1500 97.6 97

Dynamic Synapse SNN 9x6x1 n/a 97.2 97.3

NN A 64x15x2 9.20E+06 98.1 96.3

NN B 9x8x1 1.00E+05 97.2 99

MuSpiNN 9x5x1 209 100 95.32

Spike-timing Theta BP 9x8x1 3130 98.3 99

Continuous Theta BP 9x8x1 5000 99.0 99.14

Table 3.2: Comparison of performance of spiking neural network algorithms on the

Wisconsin Breast Cancer Dataset. SpikeProp and NN A results are from Bohte

et al. 2000[10], Dynamic Synapse SNN result is from Belatreche et al. 2006[3],

Spike-Timing Theta BP and NN B results are from McKennoch et al. 2009[61], and

results for MuSpiNN are from Xu et al. 2013[97]. Spike-timing Theta BP results are

obtained via hold out of 1/7 of the data, while Continuous Theta BP results are

obtained with 5-fold cross validation.

47

4. DISCUSSION

4.1 Investigation of Gradient Descent

The application of the derived learning rule for continuous theta neural networks

to a simple two-weight problem demonstrates the importance of momentum for suc-

cessful learning (Section 3.1). Without momentum, the gradient descent will get

caught in shallow local minima and converge to suboptimal solutions. Here, no sig-

nificant difference between Nesterov-style momentum and classical momentum was

observed. This is because the benefits of Nesterov-style momentum shines when the

gradient must rapidly change directions. For the simple two-weight example, the

gradient is largely in one direction, and does not need to turn.

The importance of rapidly changing directions is demonstrated with the spike-

creation example (same section). In this example, 100 input weights contribute to

the creation and placement of one output spike. Before the output spike is created,

the learning rule moves the weights in the direction which creates a spike. Once the

spike is created, however, the direction of the gradient descent must quickly change

to shift the spike to the correct time. Because Nesterov-style momentum calculates

the gradient after a partial weight update, it is more sensitive to sudden changes

in the direction of steepest descent. In contrast, classical momentum is slower to

adjust, and may be more prone to overshooting. In experiments comparing classical

momentum to Nesterov-style momentum with all other parameters controlled for,

Nesterov style-momentum would correctly shift the trajectory from spike-creation

to spike-shifting. On the other hand, classical momentum would often be slower to

adapt, sometimes resulting in a spike being created then immediately removed as

the negative weights corresponding to input spikes occurring after the target spike

48

time would continue to decrease.

While the use of a kernel for the theta neuron model removes discontinuities

related to modeling spikes as impulses as well as eliminating the need for a hard-

threshold and reset function to model refractoriness, a significant discontinuity still

remains. The discontinuity caused by the bifurcation in the dynamics of the theta

model at the repelling fixed point results in difficulties for gradient descent to be

able to choose whether or not to create/remove spikes or shift them. The use of

Nesterov-style momentum may be helpful in overcoming this problem, since it can

better account for sudden and dramatic changes in the error surface when spikes

are created or removed. However, this remains a significant issue in the training

of spiking neural networks, and has been the subject of many studies. For exam-

ple, one approach is to construct an error function by directly taking into account

both the number and timing of spikes, which results in an error surface resembling a

patchwork of piecewise smooth surfaces adjoined by discontinuous boundaries. Gra-

dient descent on this error function results in a learning rule can find the minimum

within the support of a piecewise smooth surface, but may have trouble crossing

boundaries[29]. Other attempts have focused on analytical solutions for the input

weights to a single layer network given desired spike times. While this approach

is guaranteed to find a solution if one exists, it is not applicable to networks with

hidden layers, where target spike times are not explicitly specified[62].

In this work’s approach, the fact that spikes are kernelized and smoothed out in

time results in gradient descent naturally choosing whether to create a new spike or

create a new one. This is because the width of the kernel function determines the

temporal width of a spike. When a spike occurs it has a long “tail” on either side,

and target spikes which occur within this tail will cause the gradient to shift the spike

towards the target. At the same time, the target spike will influence the gradient to

49

create a new spike by increasing weights corresponding to neurons that have fired re-

cently before it. These influences compete continuously, with spike-shifting winning

when spikes are close to the target, and spike-creation winning when existing spikes

are far away.

4.2 Weight Initialization

The learning rule was successfully applied to a small network trained to solve the

XOR task (Section 3.2). The XOR task has a local minimum corresponding to cor-

rectly identifying two out of the four possible inputs. Without the use of momentum,

the learning rule would easily get stuck at this minimum. Furthermore, the ability of

the algorithm to find a good solution was sensitive to how the weights were initial-

ized, in agreement with the observations of Sutskever et al[23]. Faster convergence

was obtained when weights were not too large (which would result in the network

being saturated with a large number of spikes) or too small (which would result in

few initial numbers of spikes). Convergence was fastest when the initial number of

output spikes produced matched the number of target output spikes. If the number

of output spikes was too many or too few, convergence was still possible, but slower

and more susceptible to being trapped in local minima. This issue of sensitivity

to weight initialization (and of hyper-parameters in general) has sometimes been a

point of criticism of neural networks in general, and it is therefore not surprising to

find the same issue here.

4.3 Universal Function Approximation and Other Considerations

It has been shown that a neural network with a single hidden layer can act as

a “universal function approximator”, i.e. it can approximate any continuous func-

50

tion with compact support[52]. Spiking neural networks have been shown to possess

the same property[55]. To try to verify this property for continuous theta neuron

networks, two regression tasks were attempted with the derived learning rule - the

cosine and the sinc function (Section 3.3). A network with 2 input neurons, 5 hidden

neurons, and 1 output neuron was able to map a cosine function over a small interval.

Observation of the hidden neuron activity before and after learning reveals that over

the course of learning, the number of spikes produced per hidden neuron per trial

changes. At the initial weights before learning has begun, each hidden neuron fires

one spike in response to the input. When learning is finished, one hidden neuron pro-

duces either one or two spikes depending on the input, while another hidden neuron

produces either one or no spike at all in response to the input. This variable number

of spikes per trial shows that the learning algorithm is able to train hidden units

to produce a variable number of spikes in response to input. This offers a distinct

advantage over the exact-spike BP approach to training theta neuron networks.

The successful learning of a cosine mapping may indicate that a network could

learn any arbitrary function comprised of a sum of cosines. This idea was put to the

test with the sinc function mapping. It was more difficult to train a network to cor-

rectly map this function, indeed, after trying different numbers of hidden units (from

5 to 20), the best performance achieved was for a network with 11 hidden neurons.

For this case, the network was able to learn to map the function reasonably well,

with a slight mistake in one of the tails of the function. This may be due to getting

stuck in a local minimum which was too deep to be overcome with momentum. The

plot of the error over epochs reveals that after an initial drop in error in the first

10 or so epochs, there is not any significant improvement for nearly 1000 epochs.

This plateau corresponds to the local minimum where each input is mapped to the

mean of the sinc function. Here, the use of a large momentum coefficient greatly

51

aids convergence, reducing the time spent navigating this plateau. Eventually the

network finds a way to descend closer to the global minimum, rapidly decreasing

then leveling out as it searches the valley for a good solution. Unfortunately, further

iterations did not improve the error rate. This may be due to the relatively large

step size of the learning rate when it is close to the global minimum. There is a

trade-off when choosing a fixed learning rate: if the rate is large, the algorithm may

be able to find solutions farther from the initial starting point, but may be unable

to accurately converge to a global minimum in a narrow valley. On the other hand,

while a small learning rate can accurately descend narrow valleys, it way be slow

or more easily get stuck in local minima. This trade-off has encouraged the use of

learning rate schedules, which starts the learning rate at a large value and gradually

decreases it over the course of learning. The momentum coefficient can also be placed

on a similar schedule to aid in converging to the elusive global minimum[98].

It is worth considering why performance decreased when adding hidden neurons

for this sinc task. For small number of hidden neurons (5-8), the solution often took

on a bell-shape approximating the sinc function, but was unable to model the tails.

Adding more hidden neurons (9-13) enabled the network to model these tails more

successfully. However, adding even more hidden neurons caused performance to de-

crease, resulting in “messy” solutions where the error of individual output values

had a larger variance. One hypothesis for this behavior is that the large number

of hidden neurons feeding into one output neuron causes the output neuron to be

easily saturated, reducing its sensitivity to individual inputs. This kind of problem

can occur in sigmoidal neural networks, where it has been shown that using sparse

initialization (SI), where each neuron only receives input from a subset of neurons

from the previous layer, can be beneficial[67].

52

4.4 Machine Learning Tasks

In section 3.4 and 3.5, the continuous theta backpropagation algorithm was used

to train theta networks to classify the Fischer-Iris dataset and the Wisconsin Breast

Cancer Dataset. Although these datasets are relatively simple, they provide a way

to compare the current algorithm to other neural network algorithms. The algo-

rithms being compared are the SpikeProp algorithm,[10] dynamic synapse SNN,[3]

sigmoidal neural networks trained with backpropagation (NN A and NN B), and the

spike-timing theta BP algorithm discussed in Chapter 2. The SpikeProp algorithm

uses a large number of input neurons because each input feature is encoded by mul-

tiple neurons, with each neuron having graded and slightly overlapping “receptive

fields”. This method of encoding analog values in spikes is biologically plausible and

well-studied, but comes at the cost of a much larger network with many more param-

eters to train[26]. It also neglects the appeal of encoding values using spike timing,

instead opting for a population code. Furthermore, the SpikeProp algorithm uses

multiple synaptic connections between neurons - for the results shown, 16 synaptic

connections are used between each pair of neurons. On the Fischer-Iris task, Spike-

Prop is training 50 ∗ 10 ∗ 3 ∗ 16 = 24, 000 parameters, while the continuous theta

method is training 32. The improved performance of both Theta neuron methods

relative to SpikeProp indicate that the burden of computation can be successfully

shifted from the synapses to the nonlinear dynamics of the theta neuron model.

Sigmoidal neural networks of different sizes were also used in the comparison,

with NN A being the same size as the SpikeProp network, and NN B the same size

as the spike-timing theta and continuous theta algorithms. However, NN algorithms

achieved lower performance than the theta neuron methods. Theoretical compari-

son of the difference between NN algorithms vs algorithms using the theta neuron

53

model may be difficult. However, the improved performance of the theta neuron

model could be due to the robustness of computation obtained from the nonlinear

temporal dynamics modeled by the theta model. In comparison, a sigmoidal neuron

consists solely of a sigmoidal threshold of a weighted sum. While the simplicity of

the sigmoidal neural network makes analysis easy, this may come at the cost of com-

putational power, particularly in a temporal context.

The main comparison to be made is with the spike-timing theta BP algorithm

investigated by McKennoch et al., since it also uses the theta neuron model[61].

However, results for the machine learning tasks should be taken with a grain of salt

since McKennoch et al. do not use cross-validation, instead separating the Fischer-

Iris dataset into 100 training and 50 test samples, and the Wisconsin Breast Cancer

dataset into 599 training and 100 test samples. In contrast, this work presents results

for 5-fold cross-validation. Running tests in the same hold-out manner as the spike-

timing theta BP work can result in 100% test performance for both the Fischer-Iris

task and the Wisconsin Breast Cancer dataset using continuous theta BP, depending

on the choice of training and test subsets. The small size of the dataset precipitated

the decision to present results using 5-fold cross-validation to give a better idea of

how well the algorithm is able to learn the complete dataset.

The improved performance of the continuous theta method over the spike-timing

method could be explained in several ways. First, the learning rules for the spike-

timing method assumes that spikes are modeled as impulses. This is a crucial as-

sumption in the derivation, since the times of spikes occurring form the bounds of

integrals which are summed to calculated the gradient. In contrast, the continu-

ous theta method presented here models spikes as smooth Gaussian-shaped kernels

whose width can be adjusted to loosely match the synaptic dynamics of real neurons.

Second, the spike-timing method assumes a fixed number of spikes, and calculates

54

the effect of shifting each spike by a certain amount. Spikes can still be added or

removed over the course of learning as the weights change, but these occurrences are

not taken into account in the learning rules and account for significant discontinuities

in the error surface. Furthermore, if during the course of learning via spike-timing

theta BP a neuron stops firing any spikes, it will not be able to recover, and will

effectively drop out of the network. This is because if a neuron does not fire there

is no way for the learning rule to determine the effect of changing that neuron’s

weight on the timing of the spikes that it fires. Therefore all weights to the silent

neuron will stop being adjusted. For tasks where each neuron fires a single spike,

the computational power of the network may progressively decrease as neurons stop

firing during the course of learning.

In contrast to the spike-timing theta BP method, the continuous theta algorithm

presented here is able to both create and remove spikes over the course of learn-

ing. This allows the spiking network to take advantage of a much greater realm

of computations where the number of times a neuron fires can carry discriminatory

information. At the same time, learning the timing of individual spikes is not ne-

glected. The overall effect is that the continuous theta backpropagation algorithm

is able to bridge the gap between spike-timing coding and rate-coding. The ability

to make use of a broader realm of computations may help to explain the improved

performance on the Wisconsin Breast Cancer dataset.

4.5 Recurrent Network Topologies and Baseline Current Learning

The continuous nature of a coupled theta neural network allows for the gradient

to be calculated for more complex topologies. In the Appendix, backpropagation for

a continuous theta neural network with a recurrent hidden layer is derived. This the-

55

oretically would allow for computations with long time lags to be made, in which the

recurrent hidden layer could sustain its own activity. For sigmoidal neural networks,

recurrent topologies have been used to successfully model complex temporal func-

tions on relatively long timescales. However, in this case convergence to acceptable

solutions proved difficult, for several possible reasons. First, training a reasonably-

sized network was very slow, especially since the number of weights in the hidden

layer is H2. This made it difficult to find parameters which could encourage good

convergence by trial and error. Second, it is possible that using a recurrent topol-

ogy would be more useful on longer timescales on the order of tens or hundreds of

time constants. Because of the computational expense, this was difficult to assess.

Finally, it is possible that the long-time lag problem, where errors do not backprop-

agate significantly far back in time within a recurrent or deep topology, prevents the

learning rule from updating weights quickly enough[4]. Although more investigation

is needed, the ability to apply backpropagation to recurrent topologies for theta neu-

ral networks could still be a potential advantage.

Presented in the Appendix are learning rules for the baseline current of each neu-

ron. As discussed in Chapter 2, when the theta neuron’s baseline current is positive,

the fixed points of dynamics disappear, and the dynamics take on periodic oscilla-

tions around the phase circle - i.e. the neuron fires continuously without the need

for additional input. This bistable behavior could be exploited to allow neurons to

encode a binary “memory”, with some neurons learning to produce sustained ac-

tivity to encode some information which can be accessed later. Another potential

benefit of adjusting the baseline current would be to allow each neuron to customize

its sensitivity to inputs, if, for example, some neurons receive a high degree of input

and other receive smaller values. However, there were difficulties in demonstrating

these potential benefits. As the baseline current crosses from a negative value to a

56

positive one, a bifurcation of the neuron’s dynamics occurs. This results in a major

discontinuity in the error surface. This shift to tonic firing is very disruptive the

the gradient descent process. A more intelligent way of deciding how to store long

term memories would be needed to take advantage of this feature of the theta neuron

model. Something closer to the Long Short Term Memory LSTM architecture might

be needed, where memory cells are guarded with differentiable “gates” for reading,

writing, and resetting. [32]. An interesting recent development in this line of neural

network research is the Neural Turing Machine, in which a recurrent neural network

is coupled with an external memory bank and given differentiable reading and writ-

ing operations[37]. Restricting the baseline current to negative values to prevent this

catastrophic bifurcation resulted in marginal improvements on the XOR task and

the Fischer-Iris task (not shown), but these were sporadic and inconsistent. It may

be that learning both weights and baseline currents simultaneously create unfavor-

able interactions in the gradient. Indeed, convergence generally took longer when

applying learning rules to both weights and baseline currents. Nevertheless, being

able to learn additional parameters which control each neuron’s sensitivity to input

could prove to be a benefit in certain situations.

4.6 Biological Feasibility

The question of how biologically feasible a neuron model and its accompany-

ing learning algorithms may be is important for advancing understanding of how the

brain performs computations. One of the primary questions relevant which is relevant

to this work to consider is the biological feasibility of backpropagation. Many stud-

ies have considered this question (e.g. see Stork 1989,[86] which is dedicated to this

question alone). The main problem with the biological feasibility of backpropagation

57

is that it requires a neural mechanism for keeping track of and transmitting errors

from the last output layer to the hidden and input layers. The needed large-scale

organization of many neurons precisely transmitting errors to the correct neurons

seems like a daunting requirement. However, recent work by Bengio et al. suggests

that layers of denoising auto-encoders in a deep learning framework only need to

propagate errors forward and backwards one layer[5]. The biologically realistic prop-

agation of errors from one layer to another is a more reasonable demand. Indeed,

O’Reilly explores such an idea in his work on a biologically plausible generalization of

contrastive divergence[68]. Nevertheless, although backpropagation and other error-

driven algorithms are sometimes criticized for being biologically infeasible, the use

of backpropagation in spiking neural networks remains useful for assessing the com-

putational possibilities of spiking neuron models. For example, showing that theta

neurons can perform robust computations by utilizing both rate-coding and spike-

timing coding supports the idea that the brain could be doing the same, helping to

bridge the old rate-coding vs. timing-coding debate[38].

The question of whether or not the learning rules derived in this work are biolog-

ically plausible is an interesting one as well. Admittedly, the equations presented in

Section 2 do not directly model any known cellular or molecular processes. However,

there must be biological processes which do accomplish the overall goal of temporal

and structural credit assignment. For example, spike timing dependent plasticity

(STDP) is a well-studied mechanism which changes synaptic weights based on the

relative spike timing of the presynaptic and postsynaptic neurons. A wide variety

of STDP types and mechanisms exist and have been shown to be affected by neuro-

modulators of various kinds[71]. This high level of complexity creates a rich realm of

possibilities for STDP-based learning rules and computation, placing the possibility

of credit assignment via these types of processes on the table[51]. In addition to

58

the various forms of STDP, the various forms of dendritic computation adds another

dimension of possibility for complex and robust learning rules in the brain[100].

In this work, to create a continuously differentiable spiking neural network, the

theta neurons are directly coupled such that information about subthreshold mem-

brane dynamics are transmitted to other neurons. While this is not traditionally

modeled in spiking neural networks algorithms, it is certainly biologically plausi-

ble. Gap junctions are the means by which cells can share ions and small organic

molecules, and form the basis for electrical synapses between neurons in the brain

(as distinct from chemical synapses, which use neurotransmitters)[21]. Gap junctions

are particularly prevalent during postnatal development when the brain is rapidly

developing, and remain present in certain classes of neurons in adulthood[95]. The

interaction of chemical and electrical synapses have been shown to play a large role

in the population dynamics of interneurons in the cortex, affecting synchrony and

stability of activity[63]. Therefore, the derivation of the algorithm in this work can be

said to take into account some of the effects of both chemical and electrical synapses.

While these effects here are modeled qualitatively and not as strictly biologically

realistic mechanisms, they may provide some insight into their importance for com-

putation in the brain.

Finally, the biological plausibility of the theta neuron model itself should be con-

sidered. The use of the theta neuron model provides an additional level of biological

realism when compared to the LIF model or sigmoidal neural networks. This may

be an additional reason for its improved performance presented in the results. For

example, the ability to model first-spike latencies gives the possibility of spikes being

“canceled” by later inhibitory input after the firing threshold has been crossed. While

the theta model lacks certain characteristics of more complex models and therefore

does not provide a complete model of neuron dynamics, it retains an analytical sim-

59

plicity which allows for concrete computational performance evaluations.

60

5. CONCLUSION

In this thesis a novel backpropagation learning rule for theta neuron networks cou-

pled by smoothed spikes was derived. This learning rule was shown to be effective for

training spiking neural networks where changes in both the timing and the number

of spikes were beneficial for the task at hand. Nesterov-style momentum was used

to improve convergence. Several benchmarks were used to compare the learning rule

against other spiking neural network learning algorithms; these benchmarks included

the XOR task, the Fischer-Iris dataset, and the Wisconsin Breast Cancer Dataset.

Comparable performance for the Fischer-Iris Dataset and improved performance on

the Wisconsin Breast Cancer dataset was shown. The successful demonstration of a

continuously coupled theta neuron network to perform computations suggests that

computation in biological neural networks can simultaneously make use of the prop-

erties modeled. These properties include those modeled by the theta neuron model

itself (such as spike latencies, activity-dependent thresholding, and tonic firing), as

well as those modeled by coupling neurons with a smoothing kernel (such as synap-

tic dynamics and coupled sub-threshold dynamics via gap junctions). Although the

biological plausibility of these learning rules is not strong, it has been demonstrated

that a network of nonlinear dynamic nodes modeling biological neurons are able to

perform complex spike-timing and classification tasks.

61

REFERENCES

[1] David H Ackley, Geoffrey E Hinton, and Terrence J Sejnowski. A learning algo-

rithm for Boltzmann Machines. Cognitive Science. Special Issue: Connectionist

models and their applications, 9(1):147–169, March 1985.

[2] Frederico a C Azevedo, Ludmila R B Carvalho, Lea T. Grinberg, José Marcelo

Farfel, Renata E L Ferretti, Renata E P Leite, Wilson Jacob Filho, Roberto

Lent, and Suzana Herculano-Houzel. Equal numbers of neuronal and nonneu-

ronal cells make the human brain an isometrically scaled-up primate brain.

Journal of Comparative Neurology, 513(5):532–541, April 2009.

[3] Ammar Belatreche, Liam P. Maguire, and Martin McGinnity. Advances in

design and application of spiking neural networks. Soft Computing, 11(3):239–

248, 2007.

[4] Y Bengio, P Simard, and P Frasconi. Learning long term dependencies with

gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2):157–

166, 1994.

[5] Yoshua Bengio, Dong-Hyun Lee, Jörg Jorg Bornschein, and Zhouhan Lin. To-

wards Biologically Plausible Deep Learning. CoRR, abs/1502.0, February 2015.

[6] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer,

2006.

[7] C L Blake and C J Merz. UCI Repository of machine learning databases.

University of California, page http://archive.ics.uci.edu/ml/, 1998.

[8] Sander M. Bohte. Error-backpropagation in networks of fractionally predic-

tive spiking neurons. Lecture Notes in Computer Science (including subseries

62

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),

6791 LNCS(PART 1):60–68, June 2011.

[9] Sander M. Bohte, Joost N. Kok, and Han La Poutré. Error-backpropagation in

temporally encoded networks of spiking neurons. Neurocomputing, 48(1-4):17–

37, October 2002.

[10] Sander M. Bohte, Joost N. Kok, and Han La Poutre. SpikeProp: Backpropa-

gation for networks of spiking neurons. Neurocomputing, 48(1-4):17, 2002.

[11] Sander M. Bohte and Jaldert O. Rombouts. Fractionally Predictive Spiking

Neurons. Advances in Neural Information Processing Systems, 23:13, October

2010.

[12] Olaf Booij and Hieu Tat Nguyen. A gradient descent rule for spiking neu-

rons emitting multiple spikes. Information Processing Letters, 95(6 SPEC.

ISS.):552–558, September 2005.

[13] Tiago Branco and Michael Häusser. The single dendritic branch as a fundamen-

tal functional unit in the nervous system. Current Opinion in Neurobiology,

20(4):494–502, August 2010.

[14] Romain Brette and Wulfram Gerstner. Adaptive exponential integrate-and-fire

model as an effective description of neuronal activity. Journal of neurophysi-

ology, 94(5):3637–3642, November 2005.

[15] Lars Buesing, Johannes Bill, Bernhard Nessler, and Wolfgang Maass. Neu-

ral dynamics as sampling: A model for stochastic computation in recurrent

networks of spiking neurons. PLoS Computational Biology, 7(11):e1002211,

November 2011.

63

[16] Natalia Caporale and Yang Dan. Spike timing-dependent plasticity: a Hebbian

learning rule. Annual review of neuroscience, 31:25–46, January 2008.

[17] C E Carr, W Heiligenberg, and G J Rose. A time-comparison circuit in the

electric fish midbrain. I. Behavior and physiology. The Journal of Neuroscience,

6(1):107–119, 1986.

[18] Stijn Cassenaer and Gilles Laurent. Corrigendum: Conditional modula-

tion of spike-timing-dependent plasticity for olfactory learning. Nature,

487(7405):128–128, March 2012.

[19] Mohamed Cheriet and Reza Farrahi Moghaddam. Guide to OCR for Arabic

Scripts. In Guide to OCR for Arabic Scripts, pages 453–484, 2012.

[20] B W Connors and M J Gutnick. Intrinsic firing patterns of diverse neocortical

neurons. Trends in neurosciences, 13(3):99–104, March 1990.

[21] Barry W Connors and Michael A Long. Electrical synapses in the mammalian

brain. Annual Review of Neuroscience, 27:393–418, January 2004.

[22] O D Creutzfeldt. Generality of the functional structure of the neocortex. Die

Naturwissenschaften, 64(10):507–517, October 1977.

[23] George E. Dahl, Tara N. Sainath, and Geoffrey E. Hinton. Improving deep neu-

ral networks for LVCSR using rectified linear units and dropout. In ICASSP,

IEEE International Conference on Acoustics, Speech and Signal Processing -

Proceedings, volume 28, pages 8609–8613, 2013.

[24] George E. Dahl, Dong Yu, Li Deng, and Alex Acero. Context-dependent pre-

trained deep neural networks for large-vocabulary speech recognition. IEEE

Transactions on Audio, Speech and Language Processing, 20(1):30–42, 2012.

64

[25] G. B. Ermentrout and N. Kopell. Parabolic Bursting in an Excitable System

Coupled with a Slow Oscillation. SIAM Journal on Applied Mathematics,

46(2):233–253, April 1986.

[26] C W Eurich and S D Wilke. Multidimensional encoding strategy of spiking

neurons. Neural Computation, 12(7):1519–1529, 2000.

[27] Zheng Fang. A robust and effcient algorithm for mobile robot localization.

Acta Automatica Sinica, 33(1):0048, 2007.

[28] Ra Fisher. The use of multiple measurements in taxonomic problems. Annals

of Eugenics, 7(2):179–188, 1936.

[29] Rzvan V. Florian. The chronotron: A neuron that learns to fire temporally

precise spike patterns. PLoS ONE, 7(8):e40233, January 2012.

[30] J a Fodor and Z W Pylyshyn. Connectionism and cognitive architecture: a

critical analysis. Cognition, 28(1-2):3–71, March 1988.

[31] Surya Ganguli, Dongsung Huh, and Haim Sompolinsky. Memory traces in

dynamical systems. Proceedings of the National Academy of Sciences of the

United States of America, 105(48):18970–18975, December 2008.

[32] F a Gers, J Schmidhuber, and F Cummins. Learning to forget: continual

prediction with LSTM. Neural Computation, 12(10):2451–2471, October 2000.

[33] Wulfram Gerstner. Time structure of the activity in neural network models.

Physical Review E, 51(1):738–758, January 1995.

[34] Gaolang Gong, Yong He, Luis Concha, Catherine Lebel, Donald W. Gross,

Alan C. Evans, and Christian Beaulieu. Mapping anatomical connectivity

patterns of human cerebral cortex using in vivo diffusion tensor imaging trac-

tography. Cerebral Cortex, 19(3):524–536, March 2009.

65

[35] a Graves, a Mohamed, and G Hinton. Speech recognition with deep recurrent

neural networks. Acoustics, March 2013.

[36] Alex Graves and Jürgen Schmidhuber. Framewise phoneme classification with

bidirectional LSTM networks. Proceedings of the International Joint Confer-

ence on Neural Networks, 4(5-6):2047–2052, 2005.

[37] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural Turing Machines. CoRR,

abs/1410.5, October 2014.

[38] Robert Gütig. To spike, or when to spike? Current Opinion in Neurobiology,

25:134–139, April 2014.

[39] Hatsuo Hayashi and Jun Igarashi. LTD windows of the STDP learning rule and

synaptic connections having a large transmission delay enable robust sequence

learning amid background noise. Cognitive Neurodynamics, 3(2):119–130, June

2009.

[40] G E Hinton and R R Salakhutdinov. Reducing the dimensionality of data with

neural networks. Science (New York, N.Y.), 313(5786):504–507, 2006.

[41] S Hochreiter. Untersuchungen zu dynamischen neuronalen Netzen. Diploma

thesis, Technische Universität München, 1991.

[42] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural

Computation, 9(8):1735–1780, November 1997.

[43] a. L. Hodgkin and a. F. Huxley. A quantitative description of membrane

current and its application to conduction and excitation in nerve. Bulletin of

Mathematical Biology, 52(1-2):25–71, August 1990.

66

[44] Jonathan C Horton and Daniel L Adams. The cortical column: a structure

without a function. Philosophical Transactions of the Royal Society of London.

Series B, Biological sciences, 360(1456):837–862, April 2005.

[45] Eugene M. Izhikevich. Simple model of spiking neurons. IEEE Transactions

on Neural Networks, 14(6):1569–1572, January 2003.

[46] Eugene M. Izhikevich. Which model to use for cortical spiking neurons? IEEE

Transactions on Neural Networks, 15(5):1063–1070, September 2004.

[47] Herbert Jaeger and Harald Haas. Harnessing nonlinearity: predicting chaotic

systems and saving energy in wireless communication. Science (New York,

N.Y.), 304(5667):78–80, 2004.

[48] David Kappel, Bernhard Nessler, and Wolfgang Maass. STDP installs in

winner-take-all circuits an online approximation to Hidden Markov Model

learning. PLoS Computational Biology, 10(3):e1003511, March 2014.

[49] Jan Koutńık, Klaus Greff, Faustino J. Gomez, Jurgen Jürgen Schmidhuber, Jan

Koutnik, Klaus Greff, Faustino J. Gomez, and Jurgen Jürgen Schmidhuber. A

Clockwork RNN. CoRR, abs/1402.3, February 2014.

[50] Robert Legenstein and Wolfgang Maass. Edge of chaos and prediction of com-

putational performance for neural circuit models. Neural Networks, 20(3):323–

334, April 2007.

[51] Robert Legenstein, Christian Naeger, and Wolfgang Maass. What can a neuron

learn with spike-timing-dependent plasticity?, March 2005.

[52] G. Lewicki and G. Marino. Approximation of functions of finite variation

by superpositions of a sigmoidal function. Applied Mathematics Letters,

17(10):1147–1152, 2004.

67

[53] Evgueniy V Lubenov and Athanassios G Siapas. Hippocampal theta oscilla-

tions are travelling waves. Nature, 459(7246):534–539, May 2009.

[54] Mantas Lukoševičius and Herbert Jaeger. Reservoir computing approaches to

recurrent neural network training. Computer Science Review, 3(3):127–149,

August 2009.

[55] Wolfgang Maass and Henry Markram. On the computational power of circuits

of spiking neurons. Journal of Computer and System Sciences, 69(4):593–616,

December 2004.

[56] Timothée Masquelier, Rudy Guyonneau, and Simon J. Thorpe. Spike timing

dependent plasticity finds the start of repeating patterns in continuous spike

trains. PLoS ONE, 3(1):e1377, January 2008.

[57] Timothée Masquelier, Etienne Hugues, Gustavo Deco, and Simon J Thorpe.

Oscillations, phase-of-firing coding, and spike timing-dependent plasticity: an

efficient learning scheme. The Journal of neuroscience : the official journal of

the Society for Neuroscience, 29(43):13484–13493, October 2009.

[58] Hermann Mayer, Faustino Gomez, Daan Wierstra, Istvan Nagy, Alois Knoll,

and Jürgen Schmidhuber. A system for robotic heart surgery that learns to

tie knots using recurrent neural networks. IEEE International Conference on

Intelligent Robots and Systems, pages 543–548, April 2006.

[59] Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas imma-

nent in nervous activity. The Bulletin of Mathematical Biophysics, 5(4):115–

133, December 1943.

[60] Sam McKennoch, Preethi Sundaradevan, and Linda G. Bushnel. Theta neu-

ron networks: Robustness to noise in embedded applications. In IEEE In-

68

ternational Conference on Neural Networks - Conference Proceedings, pages

2330–2335. IEEE, August 2007.

[61] Sam McKennoch, Thomas Voegtlin, and Linda Bushnell. Spike-Timing

Error Backpropagation in Theta Neuron Networks. Neural Computation,

0(0):080804143617793–37, January 2008.

[62] Raoul Martin Memmesheimer, Ran Rubin, BenceP Ölveczky, and Haim Som-

polinsky. Learning precisely timed spikes. Neuron, 82(4):925–938, April 2014.

[63] Elliott B Merriam, Theoden I Netoff, and Matthew I Banks. Bistable network

behavior of layer I interneurons in auditory cortex. The Journal of Neuro-

science, 25(26):6175–6186, June 2005.

[64] Vernon B. Mountcastle. The columnar organization of the neocortex. Brain,

120(4):701–722, April 1997.

[65] Emre Neftci, Srinjoy Das, Bruno Pedroni, Kenneth Kreutz-Delgado, and Gert

Cauwenberghs. Event-driven contrastive divergence for spiking neuromorphic

systems. Frontiers in Neuroscience, 7(January):1–14, November 2014.

[66] Bernhard Nessler, Michael Pfeiffer, Lars Buesing, and Wolfgang Maass.

Bayesian computation emerges in generic cortical microcircuits through Spike-

Timing-Dependent Plasticity. PLoS Computational Biology, 9(4):e1003037,

April 2013.

[67] Ryusuke Niwa and Yuko S. Niwa. The fruit fly drosophila melanogaster as a

model system to study cholesterol metabolism and homeostasis. Cholesterol,

2011:735–742, 2011.

[68] Randall C. O’Reilly. Biologically plausible error-driven learning using local

activation differences: The Generalized Recirculation Algorithm. Neural Com-

69

putation, 8(5):895–938, 1996.

[69] Randall C O’Reilly and Michael J Frank. Making working memory work: a

computational model of learning in the prefrontal cortex and basal ganglia.

Neural computation, 18(2):283–328, March 2006.

[70] Stefano Panzeri and Mathew E. Diamond. Information carried by population

spike times in the whisker sensory cortex can be decoded without knowledge of

stimulus time. Frontiers in Synaptic Neuroscience, 2(JUN):17, January 2010.

[71] Verena Pawlak, Jeffery R. Wickens, Alfredo Kirkwood, and Jason N D Kerr.

Timing is not everything: Neuromodulation opens the STDP gate. Frontiers

in Synaptic Neuroscience, 2(OCT):146, January 2010.

[72] Dejan Pecevski, Lars Buesing, and Wolfgang Maass. Probabilistic inference in

general graphical models through sampling in stochastic networks of spiking

neurons. PLoS Computational Biology, 7(12):e1002294, December 2011.

[73] Bruno U. Pedroni, Srinjoy Das, Emre Neftci, Kenneth Kreutz-Delgado, and

Gert Cauwenberghs. Neuromorphic adaptations of restricted Boltzmann ma-

chines and deep belief networks. In The 2013 International Joint Conference

on Neural Networks (IJCNN), pages 1–6. IEEE, August 2013.

[74] Filip Ponulak and Andrzej Kasiski. Supervised learning in spiking neural net-

works with ReSuMe: sequence learning, classification, and spike shifting. Neu-

ral Computation, 22(2):467–510, February 2010.

[75] Michael J. Proulx, David J. Brown, Achille Pasqualotto, and Peter Meijer.

Multisensory perceptual learning and sensory substitution. Neuroscience and

Biobehavioral Reviews, 41:16–25, April 2014.

70

[76] John Rinzel and G. Bard Ermentrout. Analysis of neural excitability and

oscillations. Methods in Neuronal Modeling, pages 251–292, 1998.

[77] F Rosenblatt. The perceptron: a probabilistic model for information storage

and organization in the brain. Psychological Review, 65(6):386–408, 1958.

[78] Timothy Rumbell, Susan L. Denham, and Thomas Wennekers. A Spiking Self-

Organizing Map combining STDP, oscillations, and continuous learning. IEEE

Transactions on Neural Networks and Learning Systems, 25(5):894–907, May

2013.

[79] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning

representations by back-propagating errors. Nature, 323(6088):533–536, Octo-

ber 1986.

[80] T D Sanger. Probability density methods for smooth function approximation

and learning in populations of tuned spiking neurons. Neural computation,

10(6):1567–1586, August 1998.

[81] J Schmidhuber. Deep learning in neural networks: an overview. arXiv preprint

arXiv:1404.7828, abs/1404.7:1–66, April 2014.

[82] B. Schrauwen and J. Van Campenhout. Backpropagation for Population-

Temporal Coded Spiking Neural Networks. In The 2006 IEEE International

Joint Conference on Neural Network Proceedings, pages 1797–1804. IEEE,

2006.

[83] M N Shadlen and W T Newsome. The variable discharge of cortical neurons:

implications for connectivity, computation, and information coding. The Jour-

nal of Neuroscience, 18(10):3870–3896, May 1998.

71

[84] H Söderlund, L Kääriäinen, and C H von Bonsdorff. Properties of Semliki

Forest virus nucleocapsid., volume 53. 1975.

[85] Ioana Sporea and Andre Gruning. Supervised learning in multilayer Spiking

Neural Networks. Neural Computation, 25(2):473–509, February 2012.

[86] D.G. Stork. Is backpropagation biologically plausible? In Neural Networks,

1989. IJCNN., International Joint Conference on, pages 241–246 vol.2. IEEE,

1989.

[87] S H Strogatz. Exploring complex networks. Nature, 410(6825):268–276, March

2001.

[88] Y Sugase, S Yamane, S Ueno, and K Kawano. Global and fine information

coded by single neurons in the temporal visual cortex. Nature, 400(6747):869–

873, August 1999.

[89] Ilya Sutskever and Geoffrey Hinton. Temporal-Kernel Recurrent Neural Net-

works. Neural Networks, 23(2):239–243, March 2010.

[90] Ilya Sutskever, Geoffrey Hinton, and Graham Taylor. The Recurrent Tempo-

ral Restricted Boltzmann Machine. Neural Information Processing Systems,

21(1):1601–1608, 2008.

[91] Botond Szatmáry and Eugene M. Izhikevich. Spike-timing theory of working

memory. PLoS Computational Biology, 6(8):11, January 2010.

[92] Yuki Todo, Hiroki Tamura, Kazuya Yamashita, and Zheng Tang. Unsuper-

vised learnable neuron model with nonlinear interaction on dendrites. Neural

Networks, 60:96–103, August 2014.

72

[93] J D Victor and K P Purpura. Nature and precision of temporal coding in visual

cortex: a metric-space analysis. Journal of neurophysiology, 76(2):1310–1326,

1996.

[94] Thomas Voegtlin. Temporal coding using the response properties of spiking

neurons. Advances in neural information processing systems, page 8, 2007.

[95] Xiao-Jing Wang. Neurophysiological and computational principles of cortical

rhythms in cognition. Physiological reviews, 90(3):1195–1268, July 2010.

[96] P Werbos. Beyond regression: New tools for prediction and analysis in the

behavioral sciences. PhD thesis, Harvard University, 1974.

[97] Yan Xu, Xiaoqin Zeng, Lixin Han, and Jing Yang. A supervised multi-spike

learning algorithm based on gradient descent for spiking neural networks. Neu-

ral Networks, 43:99–113, July 2013.

[98] Y. Nesterov. A method of solving a convex programming problem with con-

vergence rate O(1/k2).pdf. Soviet Mathematics Doklady, 1983.

[99] Roman V. Yampolskiy. Turing test as a defining feature of AI-completeness.

Studies in Computational Intelligence, 427:3–17, 2013.

[100] Danke Zhang, Yuanqing Li, Malte J Rasch, and Si Wu. Nonlinear multiplicative

dendritic integration in neuron and network models. Frontiers in computational

neuroscience, 7(May):56, January 2013.

[101] Yong Zhang, Boyuan Yan, Mingchao Wang, Jingzhen Hu, Haokai Lu, and Peng

Li. Linking brain behavior to underlying cellular mechanisms via large-scale

brain modeling and simulation. Neurocomputing, 97:317–331, November 2012.

73

APPENDIX A

BACKPROPAGATION WITH A RECURRENT HIDDEN LAYER AND

BASELINE CURRENTS

A.1 Network Topology

The learning rules presented in Chapter 2 only cover the case when the hidden

layer is not recurrent, and assumes a fixed baseline current I0. Here the case where

the hidden layer is recurrent is considered, and the gradient with respect to each

neuron’s baseline current is considered. I0 is replaced with Ij, and backpropagation

for each baseline current is calculated.

Let I, H, and O denote the set of input, hidden, and output neurons indexed over

i,j, and k, respectively, with |I| = M , |H| = N , and |O| = P . The indices l, h, and

p are also used for hidden units. Input neurons I are connected to hidden neurons

H via weights wij in a feed-forward manner, neurons within the hidden layer H are

connected recurrently via weights wjl, and hidden layer neurons are connected to the

output layer O via weights wjk, again in a feed-forward manner. Input and target

spike trains are denoted by Xi[n] and Tk[n] respectively. The error function is given

by the sum squared error of the output layer and the targets:

E[n] =
1

2

P∑
k−1

(κ(θk[n])− Tk[n])2 (A.1)

Tk[n] = 1 if a spike is desired during the nth time bin, and Tk[n] = 0 otherwise.

Similarly, the input spike trains are 0 or 1 for each Xi[n].

74

A.2 Forward Pass

Denote θk[n] as θnk for convenience. The forward pass for the input neurons i ∈ I,

hidden neurons j, l ∈ H, and output neurons k ∈ O are, respectively:

θni = θn−1i +
∆t

τ

[
(1− cos θn−1i) + α(1 + cos θn−1i)(Ii +Xi[n− 1])

]
(A.2)

θnj = θn−1j +
∆t

τ

[
(1− cos θn−1j) + α(1 + cos θn−1j)Ij +

∑
i∈I

wijκ(θn−1i) +
∑
l∈H
l 6=j

wljκ(θn−1l)

 (A.3)

θnk = θn−1k +
∆t

τ

[
(1− cos θn−1k) + α(1 + cos θn−1k)

(
Ik +

∑
j∈H

wjkκ(θn−1j)

)]
. (A.4)

A.3 Backward Pass for Baseline Currents

We want to find the dependence of the error on the baseline currents Ii,Ij, and

Ik, as well as the weights wij,wlj, and wjk. Beginning with output baseline currents

Ik:

∂E[n]

∂Ik
=
∑
k∈O

(κ(θnk)− T nk)κ′(θnk)δnk,k (A.5)

δnk,k = δn−1k,k +
∆t

τ

[
δn−1k,k sin θn−1k + α(1 + cos θn−1k)

−αδn−1k,k sin θn−1k

(
Ik +

∑
j∈H

wjkκ(θn−1j)

)]
(A.6)

75

The backward pass for hidden layer baseline currents Ij is:

∂E[n]

∂Ij
=
∑
k∈O

(κ(θnk)− T nk)κ′(θnk)δnk,j (A.7)

δnk,j = δn−1k,j +
∆t

τ

[
δn−1k,j sin θn−1k + α(1 + cos θn−1k)

∑
l∈H

wlkδ
n−1
l,j κ′(θn−1l)

−αδn−1k,j sin θn−1k (Ik +
∑
l∈H

wlkκ(θn−1l))

]
(A.8)

δn−1l,j = δn−2l,j +
∆t

τ

δn−2l,j sin θn−2l + α(1 + cos θn−2l)

1l(j) +
∑
p∈H
p 6=l

wplδ
n−2
p,j κ

′(θn−2p)

−αδn−2l,j sin θn−2l

Il +
∑
i∈I

wilκ(θn−2i) +
∑
p∈H
p 6=j

wplκ(θn−2p)

 (A.9)

where 1l(j) denotes the indicator function which equals 1 when l = j and 0 otherwise.

The backward pass for input layer baseline currents Ii is:

∂E[n]

∂Ii
=
∑
k∈O

(κ(θnk)− T nk)κ′(θnk)δnk,i (A.10)

δnk,i = δn−1k,i +
∆t

τ

[
δn−1k,i sin θn−1k + α(1 + cos θn−1k)

∑
j∈H

wjkδ
n−1
j,i κ′(θn−1j)

−αδn−1k,i sin θn−1k (Ik +
∑
j∈H

wjkκ(θn−1j))

]
(A.11)

76

δn−1j,i = δn−2j,i +
∆t

τ

[
δn−2j,i sin θn−2j

+α(1 + cos θn−2j)

wijδn−2i,i κ′(θn−2i) +
∑
l∈H
l 6=j

wljδ
n−2
l,i κ′(θn−2l)

−αδn−2j,i sin θn−2j

Ij +
∑
i′∈I

wi′jκ(θ′n−2i) +
∑
l∈H
l 6=j

wljκ(θn−2l)

 (A.12)

δn−2i,i = δn−3i,i +
∆t

τ

[
δn−3i,i sin θn−2i + α(1 + cos θn−3i)− αδn−3i,i sin θn−3i (Ii +Xi[n− 3])

]
(A.13)

A.4 Backward Pass for Network Weights

The dependence of the error function on the weights needs to be calculated.

Denote ∂θk[n]
∂wjk

as δnk,jk for convenience. Starting with output layer weights wjk, we

have:

∂E[n]

∂wjk
= (κ(θk[n])− Tk[n])κ′(θnk)δnk,jk (A.14)

δnk,jk = δn−1k,jk +
∆t

τ

[
δn−1k,jk sin θn−1k + α(1 + cos θn−1k)κ(θn−1j)

− αδn−1k,jk sin θn−1k

(
Ik +

∑
j∈H

wjkκ(θn−1j)

)]
(A.15)

The backward pass for hidden layer weights wlj is:

∂E[n]

∂wlj
=
∑
k∈O

(κ(θnk)− T nk)κ′(θnk)δnk,lj (A.16)

77

δnk,lj = δn−1k,lj +
∆t

τ

[
δn−1k,lj sin θn−1k + α(1 + cos θn−1k)

∑
h∈H

whkδ
n−1
h,lj κ

′(θn−1h)

−αδn−1k,lj sin θn−1k (Ik +
∑
h∈H

whkκ(θn−1h))

]
(A.17)

δn−1h,lj = δn−2h,lj +
∆t

τ

[
δn−2h,lj sin θn−2h

+ α(1 + cos θn−2h)

∑
p∈H
p 6=h

(
1l(p)1j(h)κ(θn−2l) + wphδ

n−2
p,lj κ

′(θn−2p)
)

−αδn−2h,lj sin θn−2h

Ih +
∑
i∈I

wihκ(θn−2i) +
∑
p∈H
p6=h

wphκ(θn−2p)

 (A.18)

The backward pass for input layer weights wij is:

∂E[n]

∂wij
=
∑
k∈O

(κ(θnk)− Ŷ
n

k)κ′(θnk)δnk,ij (A.19)

δnk,ij = δn−1k,ij +
∆t

τ

[
δn−1k,ij sin θn−1k + α(1 + cos θn−1k)

∑
h∈H

whkδ
n−1
h,ij κ

′(θn−1h)

−αδn−1k,ij sin θn−1k (I0 +
∑
h∈H

whkκ(θn−1h))

]
(A.20)

78

δn−1h,ij = δn−2h,ij +
∆t

τ

[
δn−2h,ij sin θn−2h

+ α(1 + cos θn−2h)

1j(h)κ(θn−2i) +
∑
p∈H
p 6=h

(
wphδ

n−2
p,ij κ

′(θn−2p)
)

−αδn−2h,ij sin θn−2h

Ih +
∑
i′∈I

wi′hκ(θ′n−2i) +
∑
p∈H
p6=h

wphκ(θn−2p)

 (A.21)

Therefore the learning rules can be summarized as:

∆wij = −ηw
N

N∑
n=0

∂E[n]

∂wij
(A.22)

∆wlj = −ηw
N

N∑
n=0

∂E[n]

∂wlj
(A.23)

∆wjk = −ηw
N

N∑
n=0

∂E[n]

∂wjk
(A.24)

∆Ii = −ηI
N

N∑
n=0

∂E[n]

∂Ii
(A.25)

∆Ij = −ηI
N

N∑
n=0

∂E[n]

∂Ij
(A.26)

∆Ik = −ηI
N

N∑
n=0

∂E[n]

∂Ik
(A.27)

where N is the number of time steps and ηw, ηI are the learning rates for the weights

and baseline currents, respectively.

79

