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ABSTRACT

As the market of electric vehicles is gaining popularity, large-scale commercialized

or privately-operated charging stations are expected to play a key role as a technology

enabler. In this dissertation, we study the problem of charging electric vehicles at

stations with limited charging machines and power resources. Our electric vehicle

charging station is composed of a central controller, multiple charging machines, and

a plurality of parking lots. Each parking lot has a plug connectable to an arbitrary

charging machine through a switching bar system. The switching bar system allows

the station owner to serve a larger number of customers at the same time by enabling

dynamic connections, where the number of charging machines could be much less

than the number of plugs. The central controller collects all the information provided

by the customers in advance or on the fly and decides when to activate or de-activate

a machine-to-plug connection, how fast the vehicles should be charged, and how much

energy should be delivered to each vehicle.

The purpose of this study is to develop a novel profit maximization framework

for charging station operation in both offline and online charging scenarios, under

certain customer satisfaction constraints. The main goal is to maximize the profit

obtained by the station owner and provide a satisfactory charging service to the

customers. The framework includes not only the vehicle scheduling and charging

power control, but also the managing of user satisfaction factors, which are defined
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as the percentages of finished charging targets. The profit maximization problem is

proved to be NP-complete in both scenarios, for which two-stage charging strategies

are proposed to obtain efficient suboptimal solutions. Competitive analysis is also

provided to analyze the performance of the proposed online two-stage charging al-

gorithm against the offline counterpart under non-congested and congested charging

scenarios.

Finally, the simulation results show that the proposed two-stage charging strate-

gies have remarkable performance gains compared to the exhaustive search and other

conventional charging strategies with respect to not only the unified profit, but also

other practical interests, such as the computational time, the user satisfaction factor,

the percentage of electric vehicles serviced, the power consumption, the competitive

ratio, and the load factor.
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NOMENCLATURE

EV Electric Vehicle

NP Non-deterministic Polynomial-time

NP-Hard Non-deterministic Polynomial-time Hard

NP-Complete Non-deterministic Polynomial-time Complete

LP Linear Programming

MILP Mixed Integer Linear Programming

KKT Karush-Kuhn-Tucker

O( ) Big O Notation

FIFO First-In First-Out

QoS Quality of Service

MATLAB Matrix Laboratory Software

CVX MATLAB Software for Convex Optimization

PC Personal Computer

CPU Central Processing Unit

RAM Random Access Memory
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1. INTRODUCTION

1.1 Background

Electric Vehicle (EV) is a promising solution to future green transportation needs

due to its economic and environmental benefits, such as fuel economy, reduction of

petroleum consumption, and reduction of environmental pollution [1]-[2]. According

to the US Environmental Protection Agency [3], a typical EV can transform about

59% to 62% of the electrical energy to power, while conventional gasoline vehicles

can only transform about 17% to 21% of the energy stored in gasoline to power.

Moreover, it is well known that fossil fuel energy sources are becoming more and

more scarce. EVs help us mitigate this problem by utilizing other energy sources,

such as wind power, solar energy, hydroelectric energy, ocean energy, etc. In addition,

the adoption of EVs will help reduce the global emission of CO2 by half by 2050 as

predicted in [1], which will significantly reduce the environmental pollution.

EVs are mainly divided into three categories: Hybrid Electric Vehicles (HEV),

Plug-in Hybrid Electric Vehicles (PHEV), and Full Electric Vehicles (FEV or EV)

[4].

• The HEV model combines both gasoline and electric propulsion systems. In

a typical HEV, the electric motor assists the internal combustion engine. An

example of HEV is the Toyota Prius C, which provides about 1.5 miles of

electric-only driving with a 1 kWh battery (charged every time the vehicle
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brakes) and a maximum speed of 104 mph.

• The PHEV model also combines both gasoline and electric propulsion systems,

but the vehicle is powered mainly by the electric propulsion systems. This

type of EV needs to be recharged from an external source of electricity. An

example of PHEV is the Chevy Volt, which provides about 53 miles of electric-

only driving with a fully charged 18.4 kWh battery and a maximum speed of

100 mph.

• The FEV (or EV) utilizes one or more electric motors powered by rechargeable

battery packs, and thus have no internal combustion engine, fuel cells, or fuel

tanks. This type of EV also needs to be recharged from an external source

of electricity. Examples of FEV (or EV) are Tesla Model S and Nissan Leaf,

which provide respectively about 253 and 107 miles of electric-only driving

with a fully charged 85 kWh and 30 kWh batteries and 150 and 100 mph of

maximum speed.

In this work, we study the charging problem for PHEV and EV models. Fig. 1.1

shows the expected number of models offered and sales per model for PHEV and EV

through 2020, respectively [1].

Currently, there are mainly three methods of recharging EVs: battery swapping,

residential charging, and public charging.

• In battery swapping, the EV owner can swap a discharged battery for a fully
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Figure 1.1: Number of models offered and sales per model for PHEV and EV through
2020 [1]

charged one, saving the waiting time in the charging process.

• In residential charging, the EV owner connects the vehicle to the power grid of

the household. This method provides slow and regular charging speeds.

• In public charging, the EV owner connects the vehicle to an available pub-

lic charging station. This method provides optional slow, regular, fast, and

superfast charging speeds.

In this work, we focus on the public charging scenario, where the total power

demand will cause an additional load on the power grid that might seriously affect the

grid stability when each EV is charged at a fixed high charging speed and the number

of EVs is large. Table 1.1 shows the fixed charging speed and time provided by a

typical charging system. On the other hand, the current power grid infrastructure

might not be able to support a large number of EVs being charged simultaneously
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Figure 1.2: Global EV and PHEV sales from 2010 to 2050 [1]

[5]-[8]. According to the International Energy Agency [1], the adoption of electric

vehicles will increase exponentially from 2010 to 2050, achieving an annual global sale

of 106 million EVs, as shown in Fig. 1.2. In addition, the vehicle industry predicts

a global adoption of 20 million EVs by the end of 2020 [7], which will increase the

power load to approximately 60 GW when all EVs are charged at the same time

at a slow charging speed (e.g., 3kW/h [9]). Therefore, it is important to take into

account the power overloading issues when designing the EV charging strategies.

Table 1.1: Charging speed and time provided by a typical charging system
Charging time Power supply

6-8 hrs 3.3 KW
3-4 hrs 7 KW
1-2 hrs 22 KW

20-30 mins 50 KW
10 mins 120 KW
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1.2 Related Work

Two types of EV charging solutions with power control have been studied in past

years based on the mode of charging station operation: offline EV charging (the

station knows the present and future charging information, say through a reserva-

tion system) and online EV charging (the station knows only the present charging

information).

Many studies have been conducted to analyze the EV charging problems in res-

idential1 environments for both offline [10]-[13] and online [14]-[18] solutions. In

contrast to residential charging, public2 charging can serve EV customers in more

flexible places and provide faster charging services. The authors in [19]-[20] studied

the offline EV charging problem in a public environment. Due to the difficulty of

collecting charging information in advance in the public domain, several works have

been conducted to study the online EV charging problem in a public environment

[21]-[23].

The general scheduling problem in multiple-machine scenarios has been exten-

sively studied during the past decades [24]-[26]. For the offline EV charging-scheduling

problem, the authors in [27] presented a two-stage cost minimization framework that

optimizes the power allocation, the energy price, and the EV scheduling. The pre-

sented framework minimizes the power losses and voltage deviations at the first stage

and the cost of users at the second stage. In [28], an EV charging mechanism was

1Each household owns a private station to charge the owner’s vehicle.
2Each public facility owns multiple charging machines to serve a large number of EVs.
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proposed to optimize the EV scheduling in order to reduce the total charging time.

They formulated this problem as an integer programming (IP) problem that is proved

to be NP-complete. Two heuristic algorithms were proposed: the Earliest Start Time

(EST) algorithm and the Earliest Finish Time (EFT) algorithm. Also, several ap-

proaches have been presented to study the online EV charging-scheduling problem

[29]-[31]. The authors in [29]-[30] presented online charging scheduling mechanisms

to maximize the unified profit of the system in single-machine and multiple-machine

scenarios, respectively. In [31], an online charging strategy was proposed to schedule

EV charging among multiple charging stations and allocate power to the EVs in

order to minimize the time-averaged electricity cost.

1.3 Purpose

Note that all the works in [10]-[23] consider EV charging scenarios with a sufficient

number of machines to satisfy the charging requests of all customers. However, as

aforementioned, the number of EVs will increase drastically in the next few years,

which shows the importance of developing scheduling strategies to accommodate

more EVs and better utilize the charging station resources. We can claim that the

EV charging industry will face two main problems in the future: the high power

demand and the lack of sufficient charging machines to serve all customers.

It is also worth noticing that all the works in [10]-[31] aim to provide a full-charge

service to their customers. However, under large-scale scenarios, if the station must

fully charge each EV, the high power demand and charging facility requirements
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might negatively impact the profit of the operator. In this work, we introduce the

concept of user satisfaction factor control. The main idea is to adjust the fulfilled

percentage of the charging target for each user in order to strike a balance between

the profit and the quality of service (QoS).

Our work focuses on maximizing a unified profit for the EV charging, while

providing a satisfactory charging service for both offline and online scenarios. Based

on our results, we claim that the proposed EV charging strategies not only maximize

the station profit, but also address the issues of power overloading and charging

station shortage.

The main contributions of this study are summarized as follows:

• A profit maximization framework for charging is proposed, which jointly sched-

ules EVs, allocates power, and adjusts the user satisfaction factor, under peak

power and charging facility constraints. It is shown that the profit maximiza-

tion problem is NP-complete in both offline and online scenarios.

• An efficient two-stage charging strategy is proposed to solve the profit maxi-

mization problem for each charging scenario.

• The computational complexity is analyzed for both proposed offline and online

algorithms, where it shows that the greedy scheduling algorithms outperform

the LP relaxation scheduling algorithms in term of computational time by

slightly sacrificing the overall profit.
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• A competitive analysis for the online two-stage charging algorithm is provided.

The lower bound of competitive ratio is derived in terms of the unified profit

for a special case.

• Simulation results show that the proposed offline and online two-stage LP and

greedy strategies provide remarkable results with respect to the profit, the user

satisfaction factors, the percentage of EVs serviced, the power consumption,

the load factor of the system, the competitive ratio, and the computational

time.

The rest of the work is organized as follows. In Section 2, we describe the system

model and present the profit maximization framework under both offline and online

charging setups. In Section 3, we introduce an offline two-stage charging strategy

and analyze its properties. Similarly, we introduce an online two-stage charging

strategy and analyze its properties in Section 4. In addition, we provide a competitive

ratio analysis to analyze the proposed online two-stage charging algorithms. In

both Sections 3 and 4, we present simulation results to illustrate the performance

of the proposed two-stage charging strategies. Finally, we provide the main results

and contribution of our research work and discuss some promising future research

problems in Section 5.
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2. SYSTEM MODEL AND PROBLEM FORMULATION

2.1 System Model

Suppose that the EV charging operator owns C charging machines that operate in

a time-slotted fashion. During the day, a total of N vehicles arrive at the facility, and

are accommodated in the station’s parking lots, where each lot has a plug connectable

to an arbitrary charging machine through a switching bar system, as shown in Fig.

2.1.

Figure 2.1: Charging station with multiple machines and plugs

The switching bar system allows the station owner to serve a large number of
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customers at the same time by enabling dynamic connections from an arbitrary plug

to an arbitrary charging machine, where the number of charging machines could be

much less than the number of plugs (i.e., the number of charging parking lots). The

central controller collects all the information provided by the customers in advance or

on the fly and decides when to activate or de-activate a machine-to-plug connection,

how fast the EVs should be charged, and how much energy should be delivered

to each vehicle. All the charging machines are assumed to be identical, and thus

which parking lot is used does not affect the charging performance. As such, an

EV i ∈ {1, 2, . . . , N} can be charged at any parking lot by any charging machine

j ∈ {1, 2, . . . , C} to deliver a unified performance with C << N .

We consider a finite time horizon (e.g. 24 hours) that contains T time slots.

For each EV i, let the charging job be described by the arrival time ri ∈ [1, T ], the

departure time di ∈ [1, T ], and the required energy wi, where ri < di ≤ T . The

charging period of each EV is denoted by Ti = [ri, di] and its length is given by

|Ti| = di − ri + 1.

In the offline charging scenario, we assume the station is equipped with an web-

based reservation system such that every EV owner can book both the parking lot

and charging time window in advance. The station utilizes the above information

to design the charging strategy to obtain the maximum profit. In contrast, in the

online charging scenario, the operator learns the charging information on the fly

after the EVs are connected to the system. Therefore, the station can only maximize
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the instantaneous profit by optimizing the charging process based on the available

information of the customers currently connected and just arrived. Due to the lack of

information about future requests, the online charging strategies are forced to make

real-time decisions that may later turn out to be suboptimal. Thus, it is clear that the

online charging mechanisms will often perform worse than their offline counterparts.

Next, we first discuss the overall EV charging-scheduling problem for the offline

scenario.

2.2 Offline EV Charging-Scheduling Problem

In the offline EV charging-scheduling problem the goal is to maximize the unified

overall profit for the charging station by jointly optimizing over the EV scheduling,

the charging power, and the user satisfaction factors that are defined as the percent-

ages of charging given the desired target energy wi. The scheduling of EVs at time

t is represented by X t = {xti,j}, where 1 ≤ i ≤ N , 1 ≤ j ≤ C, and xti,j is given by

xtij =


1, if the ith EV is assigned to the jth charging machine at time t,

0, otherwise.

Then, the overall scheduling is denoted by X = {X1, X2, . . . , XT}. Similarly,

the charging power at time slot t is represented by P t = {pti,j}, where pti,j is the

charging power level of the jth machine for the ith EV at time t. Here, we assume

that the pti,j is limited by a safe maximum charging power psafe, which is a system

constant set by the operator in advance. The overall power allocation is denoted by
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P = {P 1, P 2, . . . , P T}. Note that we normalize the slot length such that the power

allocation vector is also the energy charging vector. Now, let γ = {γ1, γ2, . . . , γN}

denote the set of user satisfaction factors, at which each vehicle is serviced at the

end of the schedule, where γi ∈ [γmin, 1] for 1 ≤ i ≤ N . Here, we assume that the

minimum user satisfaction factor γmin is also a system constant set by the operator

in advance.

Next, we define the unified profit function for offline charging, which is formulated

as the difference between a linear revenue function and a quadratic cost function in

order to make the profit maximization problem economically plausible and compu-

tationally simple [32]. Let α > 0 be the price per unit of electrical energy (e.g.,

$/kWh) sold to the customers, and the revenue function is given as

U(X,P ) = α
T∑
t=1

C∑
j=1

N∑
i=1

ptijx
t
ij.

The operation cost of the station includes two parts:

• The power consumption cost is given by

C1(X,P ) = β
T∑
t=1

(
C∑
j=1

N∑
i=1

ptijx
t
ij

)2

,

where β > 0 is the purchase cost weighting parameter. Note that the quadratic

dependence reflects the fact that the per unit cost of power consumption for

the operator increases at a higher rate than the revenue as the total demand
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increases, which is matching the differential pricing strategy in power market

[33].

• The second part of operation cost is the satisfaction penalty, which is given by

C2(X, γ) = η
C∑
j=1

N∑
i=1

(
wi − γiwi

)2
1{ T∑

t=1
xtij≥1

},

where η > 0 is the penalty weighting parameter. The function C2(X, γ) was

defined to be the residual sum of the squared discrepancy between the delivered

and the desired values.

We assume that α, β, and η are constants over time and known by the system in

advance. With the notations introduced above, the unified profit of the system is

given by:

F (X,P, γ) = U(X,P )− [C1(X,P ) + C2(X, γ)] .

Thus, the overall offline EV charging-scheduling problem can be formulated as

13



follows:

maximize
X,P,γ

F (X,P, γ) (Problem 1)

subject to
C∑
j=1

N∑
i=1

ptijx
t
ij ≤ pmax, t = 1, . . . , T ; (2.1)

γiwi ≤
di∑
t=ri

ptijx
t
ij ≤ wi, i = 1, . . . , N, j = 1, . . . , C; (2.2)

C∑
j=1

xtij ≤ 1, i = 1, . . . , N, t = 1, . . . , T ; (2.3)

N∑
i=1

xtij ≤ 1, j = 1, . . . , C, t = 1, . . . , T ; (2.4)

xtij ∈ {0, 1}, i = 1, . . . , N, j = 1, . . . , C, t = 1, . . . , T ; (2.5)

0 ≤ ptij ≤ psafe, i = 1, . . . , N, j = 1, . . . , C, t = 1, . . . , T ; (2.6)

γmin ≤ γi ≤ 1, i = 1, . . . , N. (2.7)

Here, (2.1) ensures that the total power allocation at each time slot does not exceed

the power limit pmax; (2.2) guarantees that every EV will be charged at or above the

minimum user satisfaction factor provided by the station; (2.3) and (2.4) indicate

that every single machine can only charge one vehicle at a time and each EV can only

be charged by one machine at a time; (2.5) defines the charging machine assignment

indicator; (2.6) defines the feasible range for pti,j, which is limited by a safe maximum

charging power psafe for EVs; and (2.7) requires the user satisfaction factor to meet

a minimum target.
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Notice that problem (1) is a mixed integer linear programming (MILP) problem

due to the EV scheduling constraint (2.5). Theorem 2.2.1 below establishes the

complexity of solving problem (1) in an offline charging scenario.

Theorem 2.2.1 The offline EV charging-scheduling problem (1) is NP-complete.

Proof: To prove a problem is NP-complete, we need to show it is both NP

and NP-hard. First, we prove that problem (1) is NP. Recall that a problem is

considered to be NP if the verification process can be done in polynomial time. We

assume that we are given some instances and S is our certificate. A deterministic

algorithm verifies whether each EV i ∈ {1, 2, . . . , N} is assigned to any charging

machine j ∈ {1, 2, . . . , C}. Then, it checks if the total number of vehicles being

charged is less than or equal to C and if the total power consumption is less than or

equal to pmax at each time slot. Notice that the verification process can be completed

in polynomial time O(NC). Therefore, our problem is NP.

Next, consider the special case when the power is uniformly allocated and the

user satisfaction factors are set to be equal to 1, which means all EVs must be fully
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charged. Problem (1) is then reformulated as:

maximize
X

C∑
j=1

N∑
i=1

(
αwi − β

w2
i

|Ti|
− 2β

wi
|Ti|

N∑
k=1,k 6=i

|Tik|wk
|Tk|

)
xij (Problem 2)

subject to
C∑
j=1

N∑
i=1

wi
|Ti|

xtij ≤ pmax, t = 1, . . . , T ; (2.8)

C∑
j=1

xtij ≤ 1, i = 1, . . . , N, t = 1, . . . , T ; (2.9)

N∑
i=1

xtij ≤ 1, j = 1, . . . , C, t = 1, . . . , T ; (2.10)

xtij ∈ {0, 1}, i = 1, . . . , N, j = 1, . . . , C, t = 1, . . . , T, (2.11)

where xij =
T∑
t=1

xtij and |Tik| is the number of time slots when job i and job k overlap.

Then, we prove that problem (2) is NP-hard. Notice that problem (2) can be

reduced from the fixed time interval scheduling (IS) with parallel machines problem

[34]-[36], or the resource allocation problem [37]-[39], which both have been largely

studied and proven to be NP-hard. Thus, according to the reducibility principle, we

can claim that problem (2) is at least as “hard” as those problems, which implies it

is also NP-hard.

Since problem (1) contains the combinatorial optimization problem (2) for fixed

power allocation and user satisfaction factor, we can claim that problem (1) is also

NP-hard. Therefore, we conclude that problem (1) is both NP and NP-hard, which

proves its NP-completeness. �

The optimal solution to NP-complete problems can be obtained by exhaustive
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search, but the computational cost is far too high. In Section 3, we propose an offline

two-stage charging strategy to find a suboptimal solution to problem (1).

Next, we discuss the EV charging-scheduling problem for the online scenario to

address the issue when future EV request information is not available.

2.3 Online EV Charging-Scheduling Problem

In this scenario, the station only has knowledge about the present charging re-

quests. In addition, statistical information about future charging requests is not

considered, and therefore the station can only control the charging process of the cus-

tomers currently connected and just arrived. We propose a deterministic and greedy

online EV charging-scheduling approach that jointly optimizes the EV scheduling,

the power allocation, the user satisfaction factors to maximize the instantaneous

profit for the EVs connected to the station.

When a new EV n arrives at the station, let Jn be the set of EVs connected to

the system and Ln = [rn,maxk∈Jn dk] be the charging period from the arrival time of

EV n to the latest departure time of the EVs in Jn. Both Jn and Ln are updated at

every arrival time. The remaining desired energy target is also updated for all EVs

already connected. Since the system already knows the charging energy delivered to

each EV before the arrival of the new EV n, the central controller can recalculate the

remaining desired energy target by wLn
i = wi − vLn

i , where i ∈ Jn and vLn
i =

rn−1∑
t=1

ptij

is the energy already delivered before the arrival time rn of EV n.

Our main goal is to maximize the instantaneous profit of the operator during the
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period Ln by jointly optimizing over the EV scheduling, the charging power, and the

user satisfaction factors that are modified as the percentages of charging given the

updated desired energy target wLn
i . Similar to the offline section, the schedule of all

EVs at time t is represented by X t = {xti,j}, where i ∈ Jn, 1 ≤ j ≤ C, and t ∈ Ln.

Then, the overall scheduling during the charging period Ln is denoted by XLn =

{X t : t ∈ Ln}. Similarly, the charging power at time slot t is represented by P t =

{pti,j}, where pti,j is the charging power level of the jth machine for the ith EV at

t ∈ Ln. As such, the overall power allocation is denoted by PLn = {P t : t ∈ Ln}.

Now, let γLn = {γLn
1 , γLn

2 , . . . , γLn

|Jn|} denote the set of user satisfaction factors, at

which each vehicle is serviced at the end of the period Ln, where γLn
i ∈ [γmin, 1] for

i ∈ Jn.

Similarly, we define the profit function for the online charging as the difference

between a linear revenue function and a quadratic cost function for a given charging

period Ln. Let α > 0 be the price per unit of electrical energy (e.g., $/kWh) sold to

the customers, and the revenue function is given as

U(XLn , PLn) = α
∑
t∈Ln

C∑
j=1

∑
i∈Jn

ptijx
t
ij.

The operation cost of the station includes two parts:
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• The power consumption cost is given by

C1(XLn , PLn) = β
∑
t∈Ln

(
C∑
j=1

∑
i∈Jn

ptijx
t
ij

)2

,

where β > 0 is the purchase cost weighting parameter.

• The second part of operation cost is the satisfaction penalty, which is given by

C2(XLn , γLn) = η
C∑
j=1

∑
i∈Jn

(
wLn
i − γ

Ln
i wLn

i

)2
1{ ∑

t∈Ln

xtij≥1

},

where η > 0 is the penalty weighting parameter.

Here, we also assume that α, β, and η are constants over time and known by the

system in advance. With the notations introduced above, the instantaneous profit

of the system for the online charging is given by:

F (XLn , PLn , γLn) = U(XLn , PLn)−
[
C1(XLn , PLn) + C2(XLn , γLn)

]
.

The overall online EV charging problem for a given charging period Ln is formu-
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lated as follows:

maximize
XLn ,PLn ,γLn

F (XLn , PLn , γLn) (Problem 3)

subject to
C∑
j=1

∑
i∈Jn

ptijx
t
ij ≤ pmax, t ∈ Ln; (2.12)

γLn
i wLn

i ≤
di∑
t=ri

ptijx
t
ij ≤ wLn

i , i ∈ Jn, j = 1, . . . , C; (2.13)

C∑
j=1

xtij ≤ 1, i ∈ Jn, t ∈ Ln; (2.14)

∑
i∈Jn

xtij ≤ 1, j = 1, . . . , C, t ∈ Ln; (2.15)

xtij ∈ {0, 1}, i ∈ Jn, j = 1, . . . , C, t ∈ Ln; (2.16)

0 ≤ ptij ≤ psafe, i ∈ Jn, j = 1, . . . , C, t ∈ Ln; (2.17)

γmin ≤ γLn
i ≤ 1, i ∈ Jn. (2.18)

Here, (2.12) ensures that the total power allocation does not exceed the power limit

pmax; (2.13) guarantees that every EV will be charged at or above the minimum

user satisfaction factor provided by the station; (2.14) and (2.15) indicate that every

single machine can only charge one vehicle at a time and each EV can only be

charged by one machine at a time; (2.16) defines the charging machine assignment

indicator; (2.17) defines the feasible range for ptij, which is limited by a safe maximum

charging power psafe for EVs; and (2.18) requires the user satisfaction factor to meet

the minimum target.
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Notice that problem (3) has the same structure as problem (1), and therefore

it is also an NP-complete problem. In Section 4, we introduce an online two-stage

EV charging strategy as a suboptimal solution to problem (3) given the complexity

issue.

In the next sections, we introduce the proposed offline and online two-stage EV

charging strategies to find efficient suboptimal solutions to problems (1) and (3).
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3. OFFLINE TWO-STAGE CHARGING STRATEGY

As aforementioned, the station might not be able to serve all EVs that require

service at each time slot due to the limited number of charging machines. Therefore,

the station needs to first determine “whom” it will charge (i.e., a subset of vehicles

with a maximum size C) at each time slot and then decide “how much” it should

charge. Thus, our offline two-stage charging strategy is to first find a schedule for

the EVs and then optimize the charging power and user satisfaction factors. Then,

it verifies if every EV is charged with at least the minimum user satisfaction factor.

Figure 3.1 shows how this algorithm works. Note that these two stages could iterate

between each other to further improve the performance locally. However, it is not the

focus in this dissertation, as we target at a very simple and efficient charging strategy.

Meanwhile, such heuristic iterations cannot lead to any optimality guarantee anyway.

Figure 3.1: Offline two-stage charging algorithm with γ verification

Specifically, the first stage, called Electric Vehicle Scheduling (EVS), is respon-
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sible for finding the feasible schedule for the EVs such that the unified profit is

maximized given a fixed charging power solution and the desired user satisfaction

factors. Based on the schedule obtained in the first stage, the second stage, called

Power and QoS Optimization (PQO), optimizes the power allocation and the user

satisfaction factors under the peak power and charging level constraints. Then, the

algorithm verifies if every EV is charged with at least γmin of the desired energy

target. If not, the EVs with invalid γ’s are rejected and the overall algorithm is

re-executed until a feasible solution is found. The final charging solution will be

obtained after these steps.

3.1 Electric Vehicle Scheduling (EVS)

The goal here is to find a feasible schedule of EVs that maximizes the unified profit

under a fixed power allocation and fixed user satisfaction factors. We introduce two

algorithms: the offline LP relaxation and greedy scheduling algorithms. Here, we set

ptij = wi

|Ti| and γi = 1 for all i ∈ {1, 2, . . . , N}, j ∈ {1, 2, . . . , C}, and t ∈ [ri, di]. This
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special problem can be formulated as:

maximize
X

C∑
j=1

N∑
i=1

αwi − β w2
i

|Ti|
− 2β

wi
|Ti|

∑
1≤k≤N
k 6=i

|Tik|wk
|Tk|

xij (Problem 4)

subject to
C∑
j=1

N∑
i=1

wi
|Ti|

xtij ≤ pmax, t = 1, . . . , T ; (3.1)

C∑
j=1

xtij ≤ 1, i = 1, . . . , N, t = 1, . . . , T ; (3.2)

N∑
i=1

xtij ≤ 1, j = 1, . . . , C, t = 1, . . . , T ; (3.3)

xtij ∈ {0, 1}, i = 1, . . . , N, j = 1, . . . , C, t = 1, . . . , T, (3.4)

where xij =
di∑
t=ri

xtij and |Tik| is the number of time slots when job i and job k overlap.

3.1.1 Offline LP Relaxation Scheduling Algorithm

In this algorithm, the idea is to relax the EV scheduling constraints (3.4) by

replacing xtij ∈ {0, 1} with a weaker constraint 0 ≤ xtij ≤ 1. The obtained optimal

fractional solution to the relaxed LP problem is then rounded using a derandomiza-

tion algorithm [40]. In this work, we utilize a greedy rounding algorithm to obtain

the desired integer solution x̃tij ∈ {0, 1}. This approximation algorithm runs in poly-

nomial time and determines a feasible solution, which is close to the optimal solution.
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The relaxed LP problem can be formulated as:

maximize
X

C∑
j=1

N∑
i=1

αwi − β w2
i

|Ti|
− 2β

wi
|Ti|

∑
1≤k≤N
k 6=i

|Tik|wk
|Tk|

xij (Problem 5)

subject to
C∑
j=1

N∑
i=1

wi
|Ti|

xtij ≤ pmax, t = 1, . . . , T ; (3.5)

C∑
j=1

xtij ≤ 1, i = 1, . . . , N, t = 1, . . . , T ; (3.6)

N∑
i=1

xtij ≤ 1, j = 1, . . . , C, t = 1, . . . , T ; (3.7)

0 ≤ xtij ≤ 1, i = 1, . . . , N, j = 1, . . . , C, t = 1, . . . , T, (3.8)

It can be shown that the offline LP relaxation scheduling algorithm guarantees

at least (e− 1)/e of the optimal solution in the worst-case scenarios [41]-[43]. In the

following theorem, we analyze the complexity of the proposed scheduling algorithm.

Theorem 3.1.1 Given a set of N jobs and C machines, the offline LP relaxation

scheduling algorithm finds a feasible schedule in O (T ·min{N,C} · (2N + T + 1))

time.

Proof: The algorithm starts by solving the relaxed LP problem (5). This pro-

cess depends on the algorithm utilized to solve this problem. A good complexity

approximation is dependent on the product of the number of variables and the num-

ber of constraints. Specifically, it needs O (min{N,C} · T · (2N + T )) computation

times. Here, min{N,C} · T is the number of variables and (2N + T ) is the number
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of constraints. After the relaxed LP problem (5) is solved, the algorithm needs to

round the fractional solutions to obtain the desired integer solution. This process

also depends on the rounding algorithm implemented. In this case, we utilize a

greedy rounding algorithm, which takes O (min{N,C} · T ) computation times. Fi-

nally, the total computational time of the offline LP relaxation scheduling algorithm

is O (T ·min{N,C} · (2N + T + 1)). �

As shown in Theorem 3.1.1, finding the exact EV schedule at each time slot to

maximize the unified profit is a challenging task, specially in large-scale systems. In

the next subsection, we address this problem by proposing an offline greedy schedul-

ing algorithm that decides whether to schedule an EV based on its individual profit

and charging time. We will show later that, in contrast to the LP relaxation ap-

proach, the computational time of the greedy scheduling algorithm does not increase

rapidly with respect to the number of variables, at the cost of sacrificing certain

optimality.

3.1.2 Offline Greedy Scheduling Algorithm

The offline greedy scheduling algorithm schedules the EVs to idle machines in a

non-increasing order of their individual profits. If two or more EVs have the same

individual profit, the algorithm chooses the one with the shortest charging time.

Once all machines are occupied, the algorithm needs to decide whether to accept

part of a new charging job or decline it. In [44]-[45], the authors proposed a similar

algorithm based on individual profit maximization. Their approach schedules only

26



the non-overlapping jobs with the highest individual profit. But our algorithm is

able to schedule part of certain charging jobs, which improves the unified profit. The

proposed greedy algorithm guarantees at least 1/2 of the optimal solution in the

worst-case scenarios [44].

The offline greedy scheduling algorithm (see Algorithm 1) first calculates the

individual profit of all users and sorts them into a non-increasing order. Then each job

is scheduled based on this order until all the charging machines are occupied. After

that, the system has to make the decision whether to accept or decline some charging

requests. The station checks if part of the latest charging job can be processed

and chooses the machine that provides the largest profit. If it is not possible, the

considered charging job is declined. The following theorem derives the computational

time of the offline greedy scheduling algorithm.

Theorem 3.1.2 Given a set of N jobs and C machines, the offline greedy scheduling

algorithm finds a feasible schedule in O (N(logN + C)) time.

Proof: The algorithm starts by calculating the individual profit of each user and

then sorting them into a non-increasing order. The process of sorting the N charging

jobs takes O (N logN) time. Then, the algorithm schedules the sorted jobs one by

one to the idle machines. Since the algorithm needs to check if the latest job can be

scheduled to any machine, the process of selecting the machine takes O (NC) time.

Therefore, the total computational time of the offline greedy scheduling algorithm is

O (N(logN + C)). �
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Table 3.1: Algorithm 1: Offline greedy scheduling algorithm

1. Let X be the total EV schedule and S be the set of accepted EVs. Initialize
X and S.

2. Let pit = wi

|Ti| and γi = 1 for all i = 1, . . . , N , t = 1, . . . , T , where Ti is the
charging period of EV i.

3. Calculate the individual profit fi = αwi − β
w2

i

|Ti| − 2β wi

|Ti|
∑

1≤k≤N
k 6=i

|Tik|wk

|Tk|
for all

i = 1, . . . , N , t = 1, . . . , T , where |Tik| is the number of time slots when job i
overlaps with job k.

4. Sort users in a non-increasing order of their individual profits (i.e. f1 ≥ f2 ≥
. . . ≥ fN). If two or more EVs have the same individual profit, then choose
the one with the shortest charging time first.

5. Run the following:

FOR i := 1 TO N DO

Let Hi = {j : j is idle between time ri and di, j ∈ {1, 2, . . . , C}}.
IF |Hi| ≥ 1 THEN

z∗i = min{j : j ∈ Hi}.
Let xti = z∗i , for ri ≤ t ≤ di.

ELSE

Calculate |Gik|, the number of time slots when job i does not

overlap with job k.

IF |Gik| > 0 for any k ∈ {1, 2, . . . , N} THEN

Choose k∗ = argmax
k∈{1,2,...,N},k 6=i

|Gik|.

Let xti = xtk∗ , for t ∈ Gik.

ELSE

Reject EV i.

END IF

END IF

END FOR

6. Output X and S.
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3.2 Power and QoS Optimization (PQO)

The goal in this step is to maximize the unified profit of the system based on the

schedule obtained from EVS. Recall that given a schedule X̃, the unified profit is

given by

F (P, γ) =
T∑
t=1

α C∑
j=1

N∑
i=1

ptij − β

(
C∑
j=1

N∑
i=1

ptij

)2
− η C∑

j=1

N∑
i=1

(
wi − γiwi

)2
.

Based on the knowledge of future charging requests, we can partition the schedule

into multiple independent groups of EVs based on their arrival and departure times.

Here, the EVs from different independent groups are not overlapping in term of their

charging times. Those EVs will be in one group if each EV in this group is overlapping

with at least another EV. For instance, as shown in Fig. 3.2, we can partition the

set of scheduled users {1, 2, 3, 4, 5, 6, 7, 8, 9} into three independent groups {1, 2, 3},

{4, 5, 6}, and {7, 8, 9}.

Let M denote the number of independent groups. For 1 ≤ m ≤ M , let Im be

the set of EVs included in the mth group, and |Im| be the size of Im. The charging

period of the mth group is denoted by Dm = [mini∈Im ri,maxi∈Im di] and its length is

given by |Dm| = maxi∈Im di −mini∈Im ri + 1.

After grouping, the original problem is divided into multiple subproblems, which

can be solved independently by the same technique. Thus, the unified profit for the

station is given by the sum of the profits from each group m. The optimization
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Figure 3.2: Partition the set of all users into independent groups

problem to find the profit for the mth group can be formulated as:

maximize
P,γ

∑
t∈Dm

α∑
i∈Im

ptij − β

(∑
i∈Im

ptij

)2
− η∑

i∈Im

(wi − γiwi)2 (Problem 6)

subject to
∑
i∈Im

ptij ≤ pmax, j = 1, . . . , C,m = 1, . . . ,M, t ∈ Dm; (3.9)

γiwi ≤
di∑
t=ri

ptij ≤ wi, i ∈ Im, j = 1, . . . , C,m = 1, . . . ,M ; (3.10)

0 ≤ ptij ≤ psafe, i ∈ Im, j = 1, . . . , C,m = 1, . . . ,M, t ∈ Dm; (3.11)

0 ≤ γi ≤ 1, i ∈ Im. (3.12)

The above problem is a convex quadratic problem, and thus its optimal solutions

can be obtained by solving the Karush-Kuhn-Tucker (KKT) conditions [46]. For

better exposition, let Wm =
∑
i∈Im

wi be the total energy demanded by the mth group
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Figure 3.3: Impact of the energy demand on the unified profit of the system

of EVs.

Remark 3.2.1 In order to better understand the structure of the optimal solu-

tion for problem (6), it is worth analyzing the relationship between the achiev-

able profit and Wm, which is shown in Fig. 3.3. Let R1 = α|Dm|
2β

and R2 =

1
2η
{2 min (|Im|psafe, pmax) (|Im|β + η|Dm|)− α|Im|} for notation simplicity. Then, we

observe the following operation regions:

• When Wm ∈ [0, R1), the profit increases as Wm increases until its maximum

is reached. This region can be viewed as the “low demand” region, and it is

anticipated that the station can fully satisfy all EVs in the mth group.

• When Wm ∈ [R1, R2], the profit starts decreasing but it remains acceptable.

• When Wm ∈ (R2,∞), the profit decreases fast until it reaches 0. In this region,

the energy demand is too high, which is beyond the capability of the charging
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station. It will be shown later that in this region, no EV can be fully charged.

In Theorem 3.2.1 below, we provide the optimal solution to the sum of charging

power and the user satisfaction factors for a given feasible schedule.

Theorem 3.2.1 The optimal solution to problem (6) is given as follows:

• If 0 ≤ Wm < R1, then γ∗i = 1 and
∑

i∈Im p
∗
ij
t =

∑
i∈Im

wi

|Dm| .

• If R1 ≤ Wm ≤ R2, then γ∗i = 1− 2β
∑

i∈Im wi−α|Dm|
2wi(|Im|β+η|Dm|)

and
∑

i∈Im p
∗
ij
t =

α|Im|+2η
∑

i∈Im wi

2(|Im|β+η|Dm|) .

• If Wm > R2, then γ∗i = 1−
∑

i∈Im wi−|Dm|min(|Im|psafe, pmax)
|Im|wi

and
∑

i∈Im p
∗
ij
t = min (|Im|psafe, pmax) .

As aforementioned, this problem can be solved by standard convex optimization

techniques. The detailed proof is presented in Appendix A.

Remark 3.2.2 We can obtain the following lower and upper bounds of γ∗i from

Theorem 3.2.1.

• If 0 ≤ Wm < R1, then γ∗i = 1.

• If R1 ≤ Wm ≤ R2, then 1− 2βmin(|Im|psafe, pmax)−α
2ηwi

≤ γ∗i ≤ 1.

• If Wm > R2, then 0 ≤ γ∗i < 1− 2βmin(|Im|psafe, pmax)−α
2ηwi

.
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From the station owner’s point of view, the station is able to compute the expected

range of user satisfaction factor guaranteed at a certain time based on the total

energy demand.

Remark 3.2.3 The optimal sum power
∑

i∈Im p
∗
ij
t is constant over time for all t ∈

Dm. From the KKT conditions given in the Appendix A, we observe that
∑

i∈Im p
∗
ij
t =∑

i∈Im
γ∗i wi

|Dm| , where γ∗i ∈ [0, 1]. Notice that the right-hand side of the above equation

does not depend on t, and therefore the sum power at each time slot is constant over

time.

Remark 3.2.4 The optimal power allocation P ∗ may not be unique. The system of

equations to solve the power allocation consists of |Im|+ (maxi∈Im di −mini∈Im ri +

1) equations and |Im| +
∑

i∈Im (di − ri) unknown variables. Since the arrival and

departure times satisfy ri < di, we have more unknown variables than equations in

most cases. This implies our system of equations is underdetermined, and therefore

the optimal power allocation P ∗ may not be unique.

As aforementioned, after P ∗ and γ∗ are obtained, the algorithm verifies if every

EV satisfies the condition γ∗i ≥ γmin. If not, the group of EVs with γ∗i < γmin

are rejected and the algorithm re-executes the first and second stages until either a

feasible solution is found or all EVs are rejected.

Next, we provide a numerical analysis to analyze the performance of our offline

two-stage EV charging algorithm.
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3.3 Numerical Analysis

This section presents some simulation results to illustrate the performance of our

offline two-stage charging algorithms. The numerical analysis was conducted using

the MATLAB-based optimization tool CVX [48] on a PC with Intel Core i7-4770,

CPU speed 3.40 GHz, and 8 GB RAM.

We consider a public charging station with C = 12 charging machines and T = 24

time slots. We partition the entire frame [0, 24] into multiple slots, each of which is

of length ∆ = 1 hour. The total demand of the system and the individual charging

speed are limited to pmax = 1MW and psafe = 20kW , respectively. The number of

EVs is N = 30, and the amount energy (in kWh) that each EV asks is a random real

number over [10, 40]. All EV customers have different arrival and departure times.

We randomly pick ri from [1, 16] and di from [ri + 2, ri + 8]. The charging time

is restricted to be at least 2 hours since currently available charging stations take

around 2-3 hours to charge their EVs [8]. We set γmin to be 0, 0.5 or 0.7, respectively,

α = 4$/kWh, β = 0.10$/(kWh)2, and η = 0.20$/(kWh)2.

We illustrate the performance of our offline two-stage charging algorithms in terms

of the average unified profit, user satisfaction factor, percentage of EVs serviced,

power consumption, load factor, and computational time, where the average results

are taken over 100 random realizations. We compare our algorithms against an

exhaustive search algorithm and some conventional charging strategies.

First, we show the efficiency of our offline two-stage charging algorithms by com-
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Figure 3.4: Average profit of the offline two-stage algorithms against the exhaustive
search

paring it with the exhaustive search algorithm. Due to the high computational cost

of exhaustive search, we only consider the case when γmin = 0.

Fig. 3.4 illustrates how the average profit of the station is affected by the number

of vehicles N when C = 10. Due to its complexity, the profit of the exhaustive

search algorithm is approximated by f(N) = −0.035N3 − 2.9N2 + 74N + 220 when

N > 20. The function f(N) is obtained using the MATLAB tool called Basic Fitting

[49]. We can observe that the offline two-stage LP (vs. greedy) algorithm obtains

its maximum profits when N = 25 (vs. N = 20). Notice that the profit starts to

decrease when the number of EVs gets larger than N = 25 (vs. N = 20). Such a

critical number can be viewed as the “service capacity” with each algorithm. It is

worth mentioning that the profit will no longer increase even if more EVs can be

charged due to the cost of power consumption for the operator, which increases at a

higher rate than the revenue.
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Figure 3.5: Influence of the number of charging machines on the average profit of
the station

Table 3.2: Average computational time (sec)
Number of EVs Exhaustive Search Offline LP Offline Greedy

5 18.9932 1.3686 1.2771
10 753.8080 1.9585 1.8642
15 5140.2536 5.3386 2.4304
20 567887.6684 6.6386 2.9947
25 10262000.0000 7.9902 3.5720
30 88354800.0000 9.3342 4.1654

Then, we analyze the influence of the number of charging machines C on the

average profit of the station. Fig. 3.5 shows that when N = 15, the offline exhaustive

search and the offline two-stage LP algorithms need approximately C = 4 machines

to achieve their maximum profits. Meanwhile, the offline two-stage greedy algorithm

needs about C = 10 machines to achieve its maximum profit. For the design of

the station infrastructure, this information is useful with large number of charging

stations.
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Figure 3.6: Benefit of controlling the user satisfaction factor

In Table 3.2, we show the average computational time when C = 10. Notice that

both two-stage algorithms consume almost the same amount of computational time

when N < C. After this point, the computational time of the offline two-stage LP

algorithm increases at a higher rate. Due to its complexity, the computational time

of the exhaustive search algorithm is approximated by Q(N) = 4.5×10−7N10−1.1×

10−5N9 + 5.3× 10−5N8 + 2× 10−4N7 when N > 20. Similarly, the function Q(N) is

obtained using Basic Fitting. Table 3.2 shows that the exhaustive search algorithm

consumes much more time and resources compared to the proposed strategies. As

expected, the offline two-stage algorithms utilize less system resources to find the

solution at the cost of decreasing certain optimality. However, as shown in Fig.

3.4, both algorithms provide an acceptable unified profit compared to the exhaustive

search algorithm.

We show the benefit of controlling the user satisfaction factor in Fig. 3.6, where
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the average is taken over both random realizations and different customers. When

N = 30, the two-stage LP and greedy algorithms with control of the user satisfaction

factor γ achieve a percentage of charging close to 72%. On the other hand, the two-

stage LP and greedy algorithms without γ control can only guarantee about 60% and

55% percentages of charging, respectively. Therefore, the control of user satisfaction

factors provides a better QoS.

Next, we compare our proposed charging strategies with two other practical charg-

ing algorithms. The first benchmark model is a greedy charging algorithm with fixed

power allocation, where the power is delivered at a constant charging speed. To fully

charge the vehicle, the customers have to stay connected until the expected charging

time ends. The second benchmark model is a greedy charging algorithm with uni-

form power allocation, where the power is allocated uniformly based on the charging

time and desired energy target of each user. Both charging mechanisms utilize a

First-In, First-Out (FIFO) scheduling policy, where users are served in the order of

their arrivals whenever a charging machine is idle. If all machines are occupied, the

incoming EVs will be rejected. Due to the relatively small number of EVs nowadays

and the simplicity of those algorithms, current public charging stations have imple-

mented similar ideas to charge the EVs. In the following simulations, the number of

charging machines is set as C = 10 and γmin is set to be 0, 0.5 or 0.7, respectively.

In Fig. 3.7, we show the average profit attained by different charging strategies.

Notice that the average profit provided by the two offline two-stage algorithms de-
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Figure 3.7: Average profit of the offline two-stage algorithms against other practical
charging algorithms

creases as γmin increases. This is an expected result since the greater the value of

γmin, the larger the number of EVs rejected. However, we can observe that both

offline two-stage algorithms outperform the benchmark charging approaches for any

value of γmin. Also, notice that the greedy fixed and uniform power allocation algo-

rithms have very poor performance since they provide negative profits when N ≥ 22

and N ≥ 28, respectively.

Furthermore, the average user satisfaction factor is shown in Fig. 3.8, where

the average is taken over both random realizations and different customers. In con-

trast to the previous result, the average user satisfaction factor increases as γmin

increases. This is obvious since our algorithms reject all the EVs with γ smaller than

γmin. Notice that both offline two-stage algorithms provide about 72% of charging

when γmin = 0. Moreover, those algorithms outperform the conventional charging

strategies when γmin = 0.7, achieving about 93% and 89% of charging. Thus, both
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Figure 3.8: Average user satisfaction factor of the offline two-stage algorithms against
other practical charging algorithms

algorithms provide satisfactory results in terms of the user satisfaction factor while

providing a larger profit.

In Fig. 3.9, we show the percentage of EVs serviced. As aforementioned, the

percentage of EVs serviced will decrease as γmin increases. We can observe that both

offline two-stage algorithms outperform the First-In, First-Out (FIFO) scheduling

policy when γmin = 0. The offline two-stage LP and greedy algorithms provide

about 100% and 95% of vehicles serviced, respectively. Moreover, when γmin = 0.7,

those algorithms provide respectively 65% and 50% of EVs serviced. This result is

still acceptable considering that both algorithms guarantee at least 93% and 89% of

charging, respectively.

We present the results related to the average power consumption in Fig. 3.10,

where the average is taken over both random realizations and time. Notice the

proposed offline two-stage algorithms consume less power compared with the other
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Figure 3.9: Average percentage of vehicles serviced of the offline two-stage algorithms
against other practical charging algorithms
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other practical charging algorithms
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Figure 3.11: Average load factor of the offline two-stage algorithms against other
practical charging algorithms

practical approaches for any value of γmin. This result is reflected on the profit shown

in Fig. 3.7. As expected, the larger the power demand, the higher the consumption

cost, which affects negatively the profit of the station.

We introduce the concept of load factor to measure the efficiency of the electrical

energy usage. It is defined to be the average load divided by the peak load over a

specified time period as:

Load factor =
Average load

Maximum load in a given time period
.

A high load factor implies that the power usage is relatively constant and efficient.

In Fig. 3.11, we show the average load factor of the system, where the average

is taken over both random realizations and time. We can observe that both offline

two-stage algorithms achieve at least 85% of load factor when γmin = 0. Notice that
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Figure 3.12: Average number of iterations of the offline two-stage algorithms

the load factor of the greedy algorithm decreases faster as γmin increases. This result

is expected since the greedy algorithm rejects more EVs than the LP algorithm,

which causes more variations on the power consumption. On the other hand, both

the fixed and uniform power allocation models provide a load factor close to 50%,

which means that the power consumption is not steady enough. This result is also

reflected in the achieved profit shown in Fig. 3.7.

Finally, we show the average number of iterations needed to find the solution

in Fig. 3.12. Notice that the two offline two-stage charging algorithms find a fea-

sible solution after a few iterations. As expected, the number of iterations needed

increases as γmin increases. As aforementioned, our offline charging algorithms are

re-executed until either a feasible solution is found or all EVs are rejected. Therefore,

our algorithm always finds a solution after a certain number of iterations.

In the next section, we introduce an online two-stage EV charging strategy as a
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suboptimal solution to problem (3) in Section 2 when the future customer arrival

information is not available.
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4. ONLINE TWO-STAGE CHARGING STRATEGY

In this scenario, the station also needs to first determine “whom” it will charge

(i.e., a subset of vehicles with a maximum size C) and then decide “how much”

it should charge at each time slot. In contrast to the offline case, the online EV

charging strategy is executed every time when a new user arrives at the charging

facility. Specifically, every time a new EV arrives at the station, our online two-stage

charging strategy first finds a schedule for the EVs currently connected to the system

and then optimizes the charging power and user satisfaction factors. Afterwards, the

algorithm verifies if every EV could be charged with at least γmin. If not, the new

EV is rejected immediately and the previous charging strategy is resumed. Figure

4.1 shows how this algorithm works. Here, the two stages could also iterate between

each other to further improve the performance locally. However, the purpose of this

work is to provide a very simple and efficient charging strategy. Meanwhile, such

heuristic iterations cannot lead to any optimality guarantee anyway.

Figure 4.1: Online two-stage charging algorithm with γ verification
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4.1 Electric Vehicle Scheduling (EVS)

The goal here is to find the feasible schedule of EVs that maximizes the instanta-

neous profit. Similar to the offline case, we introduce two algorithms: the online LP

relaxation and greedy scheduling algorithms. We set ptij =
wLn

i

|Ti| and γLn
i = 1, where

the individual charging period is denoted by Ti = [rn, di] and its length is given by

|Ti| = di − rn + 1 for all i ∈ Jn, j ∈ {1, 2, . . . , C}. This problem can be formulated

as follows:

maximize
XLn

C∑
j=1

∑
i∈Jn

(
αwLn

i − β
(
wLn
i

)2

|Ti|
− 2β

wLn
i

|Ti|
∑

k∈Jn,k 6=i

|Tik|wLn
k

|Tk|

)
xij

(Problem 7)

subject to
C∑
j=1

∑
i∈Jn

wLn
i

|Ti|
xtij ≤ pmax, t ∈ Ln; (4.1)

C∑
j=1

xtij ≤ 1, i ∈ Jn, t ∈ Ln; (4.2)

∑
i∈Jn

xtij ≤ 1, j = 1, . . . , C, t ∈ Ln; (4.3)

xtij ∈ {0, 1}, i ∈ Jn, j = 1, . . . , C, t ∈ Ln. (4.4)

where xij =
∑
t∈Ln

xtij and |Tik| is the number of timeslots in Ln when job i and job k

overlap.
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4.1.1 Online LP Relaxation Scheduling Algorithm

Similar to the approach presented in the offline section, the idea is to replace

xtij ∈ {0, 1} with a weaker constraint 0 ≤ xtij ≤ 1, for all t ∈ Ln. The obtained

optimal fractional solution to the relaxed LP problem is then rounded using a greedy

rounding algorithm to obtain the desired integer solution x̃tij ∈ {0, 1}. This online

LP relaxation scheduling algorithm is executed every time when a new EV arrives

at the station. It can be shown that this algorithm also runs in polynomial time and

guarantees at least (e− 1)/e of the optimal solution in the worst-case scenarios. In

the following theorem, we show the complexity of the online LP relaxation algorithm.

Theorem 4.1.1 Given a set of Jn jobs and C machines at the arrival time rn, the

online LP relaxation scheduling algorithm finds a feasible schedule in approximately

O (N · T ·min{N,C} · (2N + T + 1)) time, where N = maxn |Jn|.

Proof: The algorithm starts by solving the relaxed LP problem when a new

EV arrives at the system. A good complexity approximation for the computational

time is dependent on the product of the number of variables Vt and the number

of constraints Kt at each time slot t ∈ Ln, where the total computation takes

O (Ln ·min{|Jn|, C} · (2|Jn|+ Ln + 1)) times. In the worst case, the computational

time is upper bounded by N ·(min{N,C} · T · (2N + T )). After the relaxed LP relax-

ation problem is solved, we utilized a greedy rounding algorithm to obtain the desired

integer solution. This process takes O (N ·min{N,C} · T ) computational times. Fi-

nally, the total computational time of the online LP relaxation scheduling algorithm
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considering all the possible arrivals is O (N · T ·min{N,C} · (2N + T + 1)). �

Similar to the offline charging scenario, we propose an online greedy schedul-

ing algorithm to address the computational cost at the expense of decreasing the

optimality.

4.1.2 Online Greedy Scheduling Algorithm

The online greedy scheduling algorithm schedules the EVs to idle machines in a

non-decreasing order of their arrivals. If two or more EVs arrive at the same time,

the algorithm chooses the one with the shortest charging time. Once all machines

are occupied, the algorithm needs to decide whether to accept or decline the new

EV.

The online greedy scheduling algorithm (see Algorithm 2) first checks if there is

any charging machine idle to schedule the new EV n. If not, the algorithm calculates

the individual profit fk of all EVs already connected to the station k < n and the

individual profit fn of EV n. Then, the algorithm needs to immediately make the

decision whether to accept or decline EV n. If fn ≥ fk for any EV k < n, the station

stops charging EV k and schedule EV n to the idle charging machine. Moreover,

if fn < fk and dn > dk for any EV k < n, the station starts charging EV n after

EV k is charged. Finally, if none of the above conditions are satisfied, the EV n is

declined immediately. The following theorem derives the computational time of the

online greedy scheduling algorithm.

Theorem 4.1.2 Given a set of Jn jobs and C machines at the arrival time rn, the
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Table 4.1: Algorithm 2: Online greedy scheduling algorithm

FOR each EV n arriving at the station DO

Let XLn be the total EV schedule and SLn be the set of accepted EVs in Ln.

Initialize XLn and SLn .

FOR t := rn TO maxk∈Jn dk DO

Let Hn = {j : j is idle between time rn and dn, j ∈ {1, 2, . . . , C}}.
IF |Hn| ≥ 1 THEN

z∗n = min{j : j ∈ Hn}.
Let xtn = z∗n, for rn ≤ t ≤ dn.

ELSE

Let ptn = wLn
n

|Tn| and γLn
n = 1, for all t ∈ Ln.

Calculate fn = αwLn
n − β

(wLn
n )

2

|Tn| − 2β w
Ln
n

|Tn|
∑
k<n

|Tnk|wLn
k

|Tk|
, where fn is the

individual profit and |Tnk| is the number of time slots in Ln when job

n and job k overlap.

IF fn ≥ fk THEN

Choose k∗ = argmax
k<n

fn
fk

.

Let xtn = xtk∗ , for rn ≤ t ≤ dn.

ELSE IF fn < fk and |Gnk| > 0 for any k < n THEN

Choose k∗ = argmax
k<n

|Gnk|.

Let xtn = xtk∗ , for t ∈ Gnk∗ .

ELSE

Reject EV n.

END IF

END IF

END FOR

Output XLn and SLn .

END FOR
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online greedy scheduling algorithm finds a feasible schedule in O (N2 (logN + C))

time, where N = maxn |Jn|.

Proof: The algorithm starts by calculating the individual profit of each user in

Jn at time rn when all charging machine are occupied. If two or more EVs arrive

at the same time, the algorithm chooses the one with the shortest charging time.

The process of sorting the |Jn| charging jobs takes O (|Jn| log |Jn|) computational

times. Since N = maxn |Jn|, we say this process can be completed in at most

O (N logN) time. Then, the algorithm schedules the sorted jobs one by one to

the idle machines. The process of selecting the machine takes at most O (NC)

computational times. This algorithm runs every time a new EV arrives at the station,

and therefore the total computational time of the online greedy scheduling algorithm

is O (N2 (logN + C)) in the worst-case. �

4.2 Power and QoS Optimization (PQO)

The goal in this step is to maximize the profit of the station operator based on

the schedule obtained from the previous stage. The optimization problem to find the
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maximum instantaneous profit for the station can be formulated as:

maximize
PLn ,γLn

∑
t∈Ln

α
C∑
j=1

∑
i∈Jn

ptij − β

(
C∑
j=1

∑
i∈Jn

ptij

)2
− η

C∑
j=1

∑
i∈Jn

(
wLn
i − γ

Ln
i wLn

i

)2

(Problem 8)

subject to
C∑
j=1

∑
i∈Jn

ptij ≤ pmax, t ∈ Ln; (4.5)

γLn
i wLn

i ≤
di∑
t=ri

ptij ≤ wLn
i , i ∈ Jn, j = 1, . . . , C; (4.6)

0 ≤ ptij ≤ psafe, i ∈ Jn, j = 1, . . . , C, t ∈ Ln; (4.7)

0 ≤ γLn
i ≤ 1, i ∈ Jn, t ∈ Ln. (4.8)

The above problem is a convex quadratic problem, and thus its optimal solutions

can be obtained by solving the KKT conditions. Similar to the offline case, let

the total energy demanded by the EVs i ∈ Jn during the period Ln be defined by

WLn =
∑
i∈Jn

wLn
i .

Let RLn
1 = α|Ln|

2β
and RLn

2 = 1
2η

[2 min (|Jn|psafe, pmax) (|Jn|β + η|Ln|)− α|Jn|],

where RLn
1 and RLn

2 are also updated at every arrival time based on the available

information. In Figure 4.2, we provide the similar operation regions illustrated in

the offline case for any given charging period Ln.

• When WLn ∈ [0, RLn
1 ), the profit increases as WLn increases until its maximum

is reached. This region can be viewed as the “low demand” region, and it is

anticipated that the station can fully satisfy all EVs in Jn.
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Figure 4.2: Impact of the energy demand on the instantaneous profit of the system

• When WLn ∈ [RLn
1 , RLn

2 ], the profit starts decreasing but it remains acceptable.

• When WLn ∈ (RLn
2 ,∞), the profit decreases fast until it reaches 0. In this

region, the energy demand is too high, which is beyond the capability of the

charging station. It will be shown later that in this region, no EV can be fully

charged.

In Theorem 4.2.1, we provide the optimal solution to the sum of power and the

user satisfaction factors for a given feasible schedule at t ∈ Ln.

Theorem 4.2.1 The optimal solution for problem (8) is given as follows:

• If 0 ≤ WLn < RLn
1 , then γ∗i

Ln = 1 and
∑

i∈Jn p
t
ij
∗

=
∑

i∈Jn
wLn

i

|Ln| .

• If RLn
1 ≤ WLn ≤ RLn

2 , then γ∗i
Ln = 1− 2β

∑
i∈Jn w

Ln
i −α|Ln|

2wLn
i (|Jn|β+η|Ln|)

and
∑

i∈Jn p
t
ij
∗

=
α|Jn|+2η

∑
i∈Jn w

Ln
i

2(|Jn|β+η|Ln|) .
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• If WLn > RLn
2 , then γ∗i

Ln = 1−
∑

i∈Jn w
Ln
i −|Ln|min(|Jn|psafe, pmax)

|Jn|wLn
i

and
∑

i∈Jn p
t
ij
∗

= min (|Jn|psafe, pmax) .

As aforementioned, this problem can be solved by standard convex optimization

techniques. Notice that the the station learns all the information about the EVs

currently connected to the station, and therefore its solution can be obtained using

the same approach presented in Appendix A for small periods of time.

Remark 4.2.1 We can obtain the following lower and upper bounds of γ∗i
Ln from

Theorem 4.2.1.

• If 0 ≤ WLn < RLn
1 , then γ∗i

Ln = 1.

• If RLn
1 ≤ WLn ≤ RLn

2 , then 1− 2βmin(|Jn|psafe, pmax)−α
2ηwLn

i

≤ γ∗i
Ln ≤ 1.

• If WLn > RLn
2 , then 0 ≤ γ∗i

Ln < 1− 2βmin(|Jn|psafe, pmax)−α
2ηwLn

i

.

From the station owner’s point of view, the station is able to compute the expected

range of user satisfaction factor guaranteed at a certain time based on the total

energy demand.

Remark 4.2.2 The optimal sum power
∑

i∈Jn p
t
ij
∗

is constant over time for all t ∈ Ln.

From the KKT conditions given in the Appendix A, we observe that
∑

i∈Jn p
t
ij
∗

=∑
i∈Jn

γ∗i
LnwLn

i

|Ln| , where γ∗i
Ln ∈ [0, 1]. Notice that the right-hand side of the above

equation does not depend on t, and therefore the sum power at each time slot is

constant over time.
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Remark 4.2.3 The optimal power allocation P ∗Ln may not be unique. The system

of equations to solve the power allocation consists of |Jn|+(maxi∈Jn di−mini∈Jn ri+

1) equations and |Jn| +
∑

i∈Jn (di − ri) unknown variables. Since the arrival and

departure times satisfy ri < di, we have more unknown variables than equations in

most cases. This implies that the system of equations is undetermined, and therefore

the optimal power allocation P ∗ may not be unique.

Similar to the offline case, after we obtain the solution to P ∗Ln and γ∗Ln , the

algorithm verifies if all EVs satisfy the condition γ∗Ln
i ≥ γmin after the new EV

arrives at the station. If not, the new EV is rejected immediately. Here, the first

and second stages are not re-executed.

In the next section, we apply the concept of competitive analysis to evaluate

the proposed online two-stage charging strategy under non-congested and congested

scenarios.

4.3 Competitive Analysis

In this section, we apply the concept of competitive ratio to evaluate the proposed

online algorithms against the offline counterparts and derive the closed-form expres-

sions for a special scenario. For general cases, we will illustrate the competitive ratio

performance by simulations. The main idea behind competitive analysis is to ensure

that an online algorithm could guarantee an acceptable performance compared to

the offline algorithm. The concept of competitive ratio is defined below [47].

Definition 1 An online algorithm is σ-competitive if minJ∈Υ
Fon(J)
Foff(J)

≥ σ, where J is
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an input instance with N jobs, Υ is the collection of instances, Fon(J) and Foff(J) are

the unified profit obtained by the online and offline charging algorithms, respectively.

Here, as an special case, we analyze the competitive ratio when each EV has

a different arrival time ri, with the same departure time d, user satisfaction factor

γ = 1, and energy requirement W . As time goes on, the number of EVs increases,

which increases the total demand and the per unit cost of power consumption for

the operator.

In the following theorem, we provide lower bounds of the competitive ratio in

this special case under non-congested and congested scenarios.

Theorem 4.3.1 Given an arbitrary arrival time, a fixed departure time, the same user

satisfaction factor γ = 1, and the same energy requirement W , the lower bounds of

the competitive ratio for non-congested and congested scenarios are given as follows:

(a) Non-congested (N-C) scenario (i.e. Gt ≤ C for all t ∈ [1, T ])

σ ≥ αT − 2βWN

αT − βWN
,

(b) Congested (C) scenario (i.e. Gt > C for any t ∈ [1, T ])

σ ≥
αWC

(
|S|−C
T

+ 1
)
− βW 2

[
2|S|C
T

+ |S|−C
C

+ 2(|S|−C)2

T−2(|S|−C)+1

]
αW |S| − βW 2|S|2

T

,

where Gt is the number of EVs be charged at time t and S is the set of all EVs

scheduled.
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Figure 4.3: Average competitive ratios for the special case under non-congested and
congested scenarios

The detailed proof of Theorem 4.3.1 is presented in Appendix B. Figure 4.3

plots the competitive ratios obtained for both LP and greedy algorithms under non-

congested and congested scenarios in the mentioned special case, averaged over 100

random realizations. The setup of parameters is given in the next section. The

numerical evaluation of competitive ratio for general cases is given in the next section.

4.4 Numerical Analysis

This section presents some simulation results to illustrate the performance of the

online two-stage charging algorithms. The numerical analysis was conducted using

the MATLAB-based optimization tool CVX [48] on a PC with Intel Core i7-4770,

CPU speed 3.40 GHz, and 8 GB RAM.

We consider a public charging station with C = 12 charging machines and T = 24

time slots. We partition the entire frame [0, 24] into multiple slots, each of which is
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Figure 4.4: Average profit of the online LP two-stage algorithm against its offline
counterpart

of length ∆ = 1 hour. The total demand of the system and the individual charging

speed are limited to pmax = 1MW and psafe = 20kW , respectively. The number of

EVs is N = 30, and the amount energy (in kWh) that the EV asks is a random real

number over [10, 40]. All EV customers have different arrival and departure times.

We randomly pick ri from [1, 16] and di from [ri + 2, ri + 8]. The charging time

is restricted to be at least 2 hours since currently available charging stations take

around 2-3 hours to charge their EVs [8]. We set γmin to be 0, 0.5 or 0.7, respectively,

α = 4$/kWh, β = 0.10$/(kWh)2, and η = 0.20$/(kWh)2.

This section presents some simulation results to illustrate the performance of our

online two-stage charging algorithms in terms of the average profit, user satisfac-

tion factor, percentage of EVs serviced, power allocation, load factor, computational

time, and competitive ratio, where the average results are taken over 100 random

realizations.
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Figure 4.5: Average profit of the online greedy two-stage algorithm against its offline
counterpart

In Fig. 4.4 and Fig. 4.5, we show the average profit for both offline and online

charging scenarios. Notice that the offline two-stage algorithms provide a better

profit as expected due to the knowledge of future charging requests. Also, we ob-

serve that the profit obtained by the online two-stage algorithms decreases as γmin

increases.

We also show in Fig. 4.6 and Fig. 4.7 the average computational times for both

the offline and online charging scenarios. As expected, notice that both online two-

stage algorithms consume more overall computational time compared to their offline

counterparts. In addition, the computational time of the offline algorithms varies as

γmin increases due to the additional iterations needed to find the final solution.

Furthermore, the average user satisfaction factor is shown in Fig. 4.8 and Fig. 4.9,

where the average is taken over both random realizations and different customers.

The online LP and greedy two-stage algorithms provide respectively about 60% and
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Figure 4.6: Average computational time of the online LP two-stage algorithm against
its offline counterpart
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Figure 4.7: Average computational time of the online greedy two-stage algorithm
against its offline counterpart
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Figure 4.9: Average user satisfaction factor of the online greedy two-stage algorithm
against its offline counterpart
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Figure 4.10: Average percentage of vehicles charged of the online LP two-stage al-
gorithm against its offline counterpart

75% (vs. 100% and 85%) of charging when γmin = 0 (vs. γmin = 0.7). Notice

that the user satisfaction factor increases as the value of γmin increases, at the price

of rejecting more customers. This information can be utilized to design an online

strategy to achieve certain QoS requirement based on the expected number of arriving

users.

In Fig. 4.10 and Fig. 4.11, we show the percentages of EVs serviced. The online

LP and greedy two-stage algorithms respectively serve 75% and 70% (vs. 40% and

50%) of EVs when γmin = 0 (vs. γmin = 0.7). This is still a good result in terms of

overall customers satisfaction since about half of the expected EVs are successfully

scheduled and charged with at least 70% of the desired energy target for both offline

and online charging scenarios.

We present the average power consumption in Fig. 4.12 and Fig. 4.13, where

the average is taken over both random realizations and time. Notice that both
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Figure 4.11: Average percentage of vehicles charged of the online greedy two-stage
algorithm against its offline counterpart
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Figure 4.12: Average power consumption of the online LP two-stage algorithm
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Figure 4.13: Average power consumption of the online greedy two-stage algorithm
against its offline counterpart

online algorithms provide a lower power consumption compared with their offline

counterparts. This is expected since the offline approach utilize the future charging

information to uniformly allocate the total sum of power in order to reduce the power

consumption cost.

In Fig. 4.14 and Fig. 4.15, we show the average load factor, where the average

is taken over both random realizations and time. We can observe that the online

two-stage LP and greedy algorithms respectively achieve about 82% and 78% (vs.

75% and 73%) of load factor when γmin = 0 (vs. γmin = 0.7). This is an outstanding

result since it shows that both offline and online two-stage algorithms provide a very

stable power consumption, which reduces power peaks and improves the profit of the

operator.

Finally, we illustrate the competitive ratios for general cases. In Fig. 4.16, Fig.

4.17, and Fig. 4.18, we show the competitive ratios achieved under non-congested,
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Figure 4.14: Average load factor of the online LP two-stage algorithm against its
offline counterpart
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Figure 4.15: Average load factor of the online greedy two-stage algorithm against its
offline counterpart
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Figure 4.16: Average competitive ratio for general cases under non-congested sce-
narios.

congested, and very congested environments, respectively. In the non-congested

case, the number of customers is small enough such that all EVs can be successfully

scheduled and charged on the available machines. Here, both the online LP and

greedy algorithms provide a competitive ratio of at least 88% (vs. 80%) when N = 30

and γmin is 0 (vs. 0.7). Meanwhile, in the congested case, the number of customers

is large but the set of EVs rejected is still small. Here, the online LP and greedy

algorithms provide a competitive ratio of at least 55% and 25% (vs. 40% and 65%)

when N = 30 and γmin is 0 (vs. 0.7), respectively. Finally, in the highly congested

case, the number of EVs rejected is large. Here, both online LP and greedy algorithms

provide a competitive ratio close to 20% and 18% (vs. 15% and 40%) when N = 30

and γmin is 0 (vs. 0.7).

65



Number of Users

5 10 15 20 25 30

A
v
er

ag
e 

C
o

m
p

et
it

iv
e 

R
at

io
 (

%
)

0

20

40

60

80

100

LP with γ
min

=0

LP with γ
min

=0.5

LP with γ
min

=0.7

Greedy with γ
min

=0

Greedy with γ
min

=0.5

Greedy with γ
min

=0.7

Figure 4.17: Average competitive ratio for general cases under congested scenarios.
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5. CONCLUSION

This section summarizes the work presented in this dissertation and highlights

the results and contribution of this research. We also present some promising future

research problems.

5.1 Summary of the Work

In this dissertation, we studied a profit maximization framework for electric ve-

hicle charging under offline and online charging setups. Our algorithms achieve this

goal by jointly optimizing EV scheduling, charging power, and user satisfaction fac-

tors for multiple EVs, where customers are guaranteed to be charged with at least

γmin of the desired energy target.

In Section 2, we described the system model and introduced the overall profit

maximization problem for EV charging under both offline and online charging setups.

We showed that the profit maximization problem is NP-complete for both cases,

and proposed two-stage EV charging strategies to obtain some efficient suboptimal

solutions.

In Section 3, we presented an offline two-stage EV charging strategy to obtain

suboptimal solutions. In the first stage, the station finds the best EV scheduling

that maximizes the unified profit by using either an offline LP relaxation or greedy

algorithm with fixed charging power and user satisfaction factors. Then, based on

the suboptimal schedule, the second stage optimizes the power allocation and user
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satisfaction factors to maximize the unified profit of the station operator, where

the optimal solutions were derived. Afterwards, the algorithm verifies if every EV

is charged with at least γmin percentage of the desired energy target. If not, the

EVs with invalid γ’s are rejected and the offline two-stage charging algorithm is

re-executed until a feasible solution is found.

In Section 4, we introduce an online two-stage EV charging strategy to address

the issue when EV arrival information is not available in advance at the station.

Similarly, every time a new EV arrives at the station, our online two-stage charging

strategy first finds the best EV scheduling that maximizes the instantaneous profit

by using either an online LP relaxation or greedy algorithm with fixed charging

power and user satisfaction factors. Then, the second stage optimizes the power

allocation and user satisfaction factors to maximize the instantaneous profit of the

station operator. Here, optimal solutions were derived. Finally, after the solutions

to the power allocation and user satisfaction factors are obtained, the station verifies

if the previous EVs can still be charged with at least γmin satisfaction factor after

the new EV arrives at the station. If not, the new EV is rejected immediately and

the previous charging strategy is resumed.

In Sections 3 and 4, simulation results were presented to evaluate our two-stage al-

gorithms by comparing with other charging approaches, and showed that our strate-

gies perform well with respect to the average profit, user satisfaction factor, per-

centage of EVs serviced, computational time, power consumption, load factor, and
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competitive ratio.

We showed that for both offline and online cases the profit and the percentage

of EVs serviced decrease as the value of γmin increases, while the user satisfaction

factor increases as the value of γmin increases, at the price of rejecting more customers.

Therefore, we observe that there is a clear tradeoff between the profit obtained by

the station owner and the quality of the charging service provided to the customers.

5.2 Summary of the Contributions

The main contributions of this work are summarized as follows:

• A profit maximization framework for charging is proposed, which jointly sched-

ules EVs, allocates power, and adjusts the user satisfaction factor, under peak

power and charging facility constraints. It is shown that the profit maximiza-

tion problem is NP-complete in both offline and online scenarios.

• An efficient two-stage charging strategy is proposed to solve the profit maxi-

mization problem for each charging scenario. In the offline case, the first stage

finds a suboptimal schedule by using either an offline LP relaxation or greedy

scheduling algorithm. Then, given the schedule from the first stage, the sec-

ond stage optimizes the charging power and user satisfaction factors, where

closed-form solutions are derived. After that, the algorithm verifies if each EV

is charged with at least the minimum user satisfaction factor. If not, the EVs

that violated this condition are rejected and the offline two-stage algorithm is

re-executed until a feasible solution is found. In the online case, the first stage
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also finds the suboptimal schedule that maximizes the instantaneous profit by

using either an online LP relaxation or greedy scheduling algorithm. Then,

the second stage optimizes the charging power and user satisfaction factors of

the EVs currently connected to the station, where closed-form solutions are

also derived. Afterwards, the algorithm verifies if all EVs are charged with

at least the minimum user satisfaction factor. If not, the new EV is rejected

immediately and the previous charging strategy is resumed.

• The computational complexity is analyzed for both offline and online algo-

rithms, where it shows that the greedy scheduling algorithms outperform the

LP relaxation scheduling algorithms in terms of computational time by slightly

sacrificing the overall profit.

• A competitive analysis for the online two-stage charging algorithm is also con-

sidered. The lower bounds of competitive ratio are derived in terms of the

unified profit for a special case when all EVs depart at the same time with a

high power demand. For this special case, the competitive ratio σ is guaran-

teed to be at least αT−2βWN
αT−βWN

and
αWC( |S|−C

T
+1)−βW 2

[
2|S|C

T
+
|S|−C

C
+

2(|S|−C)2

T−2(|S|−C)+1

]
αW |S|−βW2|S|2

T

for

non-congested and congested scenarios, respectively.

• Simulation results show that the proposed offline two-stage LP and greedy

strategies respectively provide at least 86% and 76% of the unified profit ob-

tained by the exhaustive search charging strategy when the minimum user
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satisfaction factor is 0%. Meanwhile, under non-congested scenarios, both on-

line two-stage LP and greedy strategies guarantee at least 88% (vs. 80%) of

the unified profit obtained by their offline counterparts when the minimum

user satisfaction factor is 0% (vs. 70%). Similarly, under congested scenarios,

the online two-stage LP and greedy strategies guarantee respectively at least

55% and 25% (vs. 40% and 65%) of the unified profit obtained by their of-

fline counterparts when the minimum user satisfaction factor is 0% (vs. 70%).

Moreover, both offline two-stage LP and greedy algorithms achieve user satis-

faction factors of 72% (vs. 88% and 92%) when the minimum user satisfaction

factor is 0% (vs. 70%). Meanwhile, the online two-stage LP and greedy algo-

rithms respectively achieve user satisfaction factors of 60% and 75% (vs. 98%

and 85%) when the minimum user satisfaction factor is 0% (vs. 70%). Notice

that as the value of the minimum user satisfaction factor increases, the profit

of the station decreases and the user satisfaction factor achieved at the end

of the schedule increases. Therefore, we can say that there is a clear tradeoff

between the profit obtained by the operator and the quality of the charging

service provided for both offline and online charging strategies. It is worth

mentioning that these simulation results are obtained in a congested scenario

with a small number of charging machines.

• In addition to the average profit and user satisfaction factor, our offline and

online charging strategies provide outstanding results with respect to the av-
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erage computational time, percentage of EVs serviced, power consumption,

competitive ratio, and load factor of the system.

5.3 Future Research Work

Several future research lines related to the EV charging problem presented in this

dissertation have been identified. Some of them are summarized as follows:

• Our overall EV charging-scheduling problem was proved to be NP-Complete,

and solved using an efficient two-stage algorithm to find suboptimal solutions.

An interesting idea would be to consider other approximation algorithms to

determine if we can improve the profit of the station and get closer to the op-

timal solution. An example of such algorithms is the submodular optimization

approach.

• In this work, we presented a greedy and deterministic online two-stage EV

charging strategy. A possible extension of this work would be to consider

certain statistical information to predict the customer arrival in the future.

This would help with a better plan for allocation of power and scheduling of

charging machines to improve the profit and QoS.

• For both offline and online charging scenarios, we assumed that all EVs have

identical battery packs. An attractive idea could be to study the influence on

the charging efficiency when considering different battery packs.
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APPENDIX A

OPTIMAL SOLUTION TO THE EV CHARGING PROBLEM

A.1 The proof of Theorem 3.2.1

Since problem (6) is a convex quadratic problem, we can obtain the optimal

solution by KKT. The Lagrangian function of problem (6) is given by

F =−

∑
t∈Dm

α∑
i∈Im

ptij − β

(∑
i∈Im

ptij

)2
− η∑

i∈Im

(wi − γiwi)2

 (A.1)

+
∑
t∈Dm

λt

(∑
i∈Im

ptij − pmax

)
+
∑
i∈Im

µi

(
γiwi −

di∑
t=ri

ptij

)

+
∑
i∈Im

υi

(
di∑
t=ri

ptij − wi

)
+
∑
t∈Dm

∑
i∈Im

σij
(
ptij − psafe

)
+
∑
i∈Im

zi (γi − 1) .
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After taking the derivative with respect to ptij and γi, respectively, we obtain the

following KKT conditions

∂F

∂ptij
= −α + 2β

∑
i∈Im

p∗ij
t + λt − µi + υi + σij = 0; (A.2)

∂F

∂γi
= 2ηw2

i (γ∗i − 1) + µiwi + zi = 0; (A.3)

∑
i∈Im

p∗ij
t ≤ pmax, t ∈ Dm; (A.4)

γ∗iwi ≤
di∑
t=ri

p∗ij
t ≤ wi, i = 1, 2, . . . , N ; (A.5)

0 ≤ p∗ij
t ≤ psafe, i = 1, 2, . . . , N, ri ≤ t ≤ di; (A.6)

0 ≤ γ∗i ≤ 1, i = 1, 2, . . . , N ; (A.7)

λt ≥ 0, µi ≥ 0, υi ≥ 0, σij ≥ 0, zi ≥ 0; (A.8)

λt

(∑
i∈Im

p∗ij
t − pmax

)
= 0, t ∈ Dm; (A.9)

µi

(
γ∗iwi −

∑
t∈Dm

p∗ij
t

)
= 0, i = 1, 2, . . . , N ; (A.10)

υi

(∑
t∈Dm

p∗ij
t − wi

)
= 0, i = 1, 2, . . . , N ; (A.11)

σij

(
p∗ij

t − psafe
)

= 0, i = 1, 2, . . . , N, t ∈ Dm; (A.12)

zi

(
γ∗i − 1

)
= 0, i = 1, 2, . . . , N. (A.13)
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From (A.2) and (A.3), we obtain

∑
i∈Im

p∗ij
t =

α− λt + µi − υi − σij
2β

, (A.14)

γ∗i =
2ηw2

i − µiwi − zi
2ηw2

i

. (A.15)

After solving for all possible values of λt, µi, υi, σij, and zi, we discuss the optimal

solutions in the following cases.

Case 1) λt > 0, µi > 0 and υi = 0, σij = 0, and zi = 0:

According to (A.4), (A.5), (A.9), (A.10), (A.11), (A.12), and (A.13), we have

∑
i∈Im

p∗ij
t = pmax,

∑
t∈Dm

p∗ij
t = γ∗iwi,

∑
t∈Dm

p∗ij
t < wi,

p∗ij
t < psafe,

γi < 1.

Therefore, the optimal solution to the sum of power is given by

∑
i∈Im

p∗ij
t = pmax. (A.16)
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Now, let us find the solution to γi. We have
∑
t∈Dm

p∗ij
t = γ∗iwi for i ∈ Im and

0 ≤ γi < 1. By summing up
∑
t∈Dm

p∗ij
t over i and switching the summations, we

obtain the following

∑
i∈Im

p∗ij
t =

∑
i∈Im

γ∗iwi
|Dm|

. (A.17)

Let us substitute (A.16) into (A.17)

∑
i∈Im

γ∗iwi
|Dm|

= pmax. (A.18)

We solve the equation and find the following optimal solution

γ∗i =

|Dm|pmax + |Im|wi −
∑
j∈Im

w(j)

|Im|wi

= 1−
∑

i∈Im wi − |Dm|pmax
|Im|wi

. (A.19)

The solutions (A.16) and (A.19) are valid only when Wm > 2pmax(|Im|β+η|Dm|)−α|Im|
2η

.
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Case 2) λt = 0, µi > 0 and υi = 0, σij > 0, and zi = 0:

According to (A.4), (A.5), (A.9), (A.10), (A.11), (A.12), and (A.13), we have

∑
i∈Im

p∗ij
t < pmax,

∑
t∈Dm

p∗ij
t = γ∗iwi,

∑
t∈Dm

p∗ij
t < wi,

p∗ij
t = psafe,

γi < 1.

Thus, the optimal solution to the sum of power is given by

∑
i∈Im

p∗ij
t =

∑
i∈Im

psafe = |Im|psafe. (A.20)

Now, let us find the solution to γi. We have
∑
t∈Dm

p∗ij
t = γ∗iwi for i ∈ Im and

0 ≤ γi < 1. Similar to the previous case, we sum up
∑
t∈Dm

p∗ij
t over i and switch the

summations to obtain the following

∑
i∈Im

p∗ij
t =

∑
i∈Im

γ∗iwi
|Dm|

. (A.21)
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Let us substitute (A.20) into (A.21)

∑
i∈Im

γ∗iwi
|Dm|

= |Im|psafe. (A.22)

We solve the equation and find the following optimal solution

γ∗i =

|Dm||Im|psafe + |Im|wi −
∑
j∈Im

w(j)

|Im|wi

= 1−
∑

i∈Im wi − |Dm||Im|psafe
|Im|wi

. (A.23)

The solutions (A.20) and (A.23) are also valid only whenWm >
2|Im|psafe(|Im|β+η|Dm|)−α|Im|

2η
.

If we combine the results from the first two cases, we obtain the following:

∑
i∈Im

p∗ij
t = min (|Im|psafe, pmax) . (A.24)

and

γ∗i = 1−
∑

i∈Im wi − |Dm|min (|Im|psafe, pmax)
|Im|wi

. (A.25)

when Wm >
2 min(|Im|psafe,pmax)(|Im|β+η|Dm|)−α|Im|

2η
.

Case 3) λt = 0, µi > 0, υi = 0, σij > 0, and zi = 0:

According to (A.4), (A.5), (A.9), (A.10), (A.11), (A.12), and (A.13), it can be
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found that

∑
i∈Im

p∗ij
t < pmax,

∑
t∈Dm

p∗ij
t = γ∗iwi,

∑
t∈Dm

p∗ij
t < wi,

p∗ij
t = psafe,

γ∗i < 1.

So, we can say that
∑
t∈Dm

p∗ij
t = γ∗iwi for i ∈ Im and 0 ≤ γi < 1. Let us sum up this

result over i so that

∑
i∈Im

∑
t∈Dm

p∗ij
t =

∑
i∈Im

γ∗iwi.

By switching the summations on the left hand side and solving the equation, we

obtain that

∑
i∈Im

p∗ij
t =

∑
i∈Im

γ∗iwi
|Dm|

, (A.26)

which is the optimal sum of power for this case.

Next, we derive the optimal value of γ∗i . From (A.15), we know that γ∗i =

2ηw2
i−µiwi

2ηw2
i

, where µi = 2ηwi(1− γ∗i ). Then, based on the case conditions and (A.14),
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we obtain

∑
i∈Im

p∗ij
t =

α + µi
2β

=
α + 2ηwi(1− γ∗i )

2β
. (A.27)

Using the result from (A.26), we have

∑
i∈Im

γ∗iwi
|Dm|

=
α + 2ηwi(1− γ∗i )

2β
. (A.28)

After solving this equation, we obtain the following optimal solution

γ∗i =

α|Dm|+ 2η|Dm|wi + 2β
(
|Im|wi −

∑
j∈Im

w(j)
)

2wi(|Im|β + η|Dm|)

= 1−
2β
∑

i∈Im wi − α|Dm|
2wi(|Im|β + η|Dm|)

. (A.29)

Substituting (A.29) into (A.26), we obtain the optimal solution to the sum of power

∑
i∈Im

p∗ij
t =

∑
i∈Im

α|Dm|+ 2η|Dm|wi + 2β
(
|Im|wi −

∑
j∈Im

w(j)
)

2|Dm|(|Im|β + η|Dm|)

=
α|Im|+ 2η

∑
i∈Im wi

2(|Im|β + η|Dm|)
. (A.30)
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Equations (A.29) and (A.30) are the optimal solutions to the user satisfaction

factors and sum of power, respectively. This is valid whenever α|Dm|
2β

≤ Wm ≤

2 min(|Im|psafe,pmax)(|Im|β+η|Dm|)−α|Im|
2η

.

Case 4) For any other values of λt, µi, υi, σij, and zi > 0, we obtain γ∗i = 1 and∑
i∈Im p

∗
ij
t =

∑
i∈Im

wi

|Dm| whenever Wm < α|Dm|
2β

.

In all, the optimal solutions can be summarized in the form given in Theorem

3.2.1.
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APPENDIX B

COMPETITIVE ANALYSIS

B.1 The proof of Theorem 4.3.1

We analyze the competitive ratio for the EV charging problem for non-congested

and congested scenarios. Here, we consider a special case where each EV has a

different arrival time ri, with the same departure time d, user satisfaction factor

γ = 1, and energy requirement W .

B.1.1 Non-congested scenario (Gt ≤ C for all t)

Let I be the set of EVs be charged simultaneously in the offline case. When

Gt ≤ C for all t ∈ [1, T ], all EVs are scheduled and charged successfully. The unified
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profit obtained by the offline algorithm is given by

Foff =
T∑
t=1

α C∑
j=1

∑
i∈I

ptij − β

(
C∑
j=1

∑
i∈I

ptij

)2
− η∑

i∈I

(wi − γiwi)2 , (B.1)

=
T∑
t=1

α∑
i∈I

γiwi
T
− β

(∑
i∈I

γiwi
T

)2
− η∑

i∈I

(wi − γiwi)2 , (B.2)

=
T∑
t=1

α∑
i∈I

W

T
− β

(∑
i∈I

W

T

)2
 , (B.3)

= αWN − βW
2N

T
− 2β

W 2

T

N−1∑
i=1

(N − i) , (B.4)

= αWN − βW
2N

T
− 2β

W 2

T

[
N(N − 1)− N(N − 1)

2

]
, (B.5)

= αWN − βW
2N2

T
. (B.6)

For the online case, let Jn and Ln be the set of scheduled EVs and the length of

the charging period after the nth arrival, respectively. Here, the expected charging

time of each EV is calculated by Ti = T + 1 − i. The profit provided by the online
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algorithm is given by

Fon =
N∑
n=1

∑
t∈Ln

α C∑
j=1

∑
i∈Jn

ptij − β

(
C∑
j=1

∑
i∈Jn

ptij

)2
− η∑

i∈Jn

(
wLn
i − γ

Ln
i wLn

i

)2


(B.7)

=
N∑
n=1

α∑
i∈Jn

γLn
i wLn

i

TLn
i

− β

(∑
i∈Jn

γLn
i wLn

i

TLn
i

)2

− η
∑
i∈Jn

[
wLn
i − γ

Ln
i wLn

i

]2 (B.8)

=
N∑
n=1

α∑
i∈Jn

W − vLn
i

TLn
i

− β

(∑
i∈Jn

W − vLn
i

TLn
i

)2
 (B.9)

= αWN − βW 2

N∑
i=1

1

Ti
− 2βW 2

N−1∑
i=1

Ti − 1

Ti

N∑
k>i

1

Tk
(B.10)

= αWN − βW 2

N∑
i=1

1

Ti
− 2βW 2

N−1∑
i=1

N − i
Ti

(B.11)

= αWN − βW 2

N∑
i=1

1

T + 1− i
− 2βW 2

N−1∑
i=1

N − i
T + 1− i

(B.12)

= αWN − βW 2

N∑
i=1

1

T + 1− i
− 2βW 2

[
N + (N − 1− T )

N−1∑
i=1

1

T + 1− i

]

(B.13)

= αWN − 2βW 2N + βW 2(2T + 1− 2N)
N−1∑
i=1

1

T + 1− i
. (B.14)

Notice that

N∑
i=1

1

T + 1− i
=

1

T
+

1

T − 1
+ · · ·+ 1

T − (N − 1)
≥ N

T
. (B.15)
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Substituting (B.15) into (B.14), we have

Fon ≥ αWN − 2βW 2N + βW 2(2T + 1− 2N)
N

T
(B.16)

= αWN + βW 2(1− 2N)
N

T
(B.17)

≥ αWN − 2βW 2N2

T
(B.18)

Based on the results obtained in (B.6) and (B.18), the lower bound of the com-

petitive ratio under a non-congested scenario is given by

σ =
Fon

Foff

≥
αWN − 2βW 2N2

T

αWN − βW 2N2

T

≥ αT − 2βWN

αT − βWN
. (B.19)

B.1.2 Congested scenario (Gt > C for any t)

When Gt > C for any t ∈ [1, T ], a set {1, 2, . . . , |S|} of EVs is scheduled and

charged, where |S| < N . The unified profit obtained by the offline algorithm is

92



determined by

Foff =
T∑
t=1

α C∑
j=1

∑
i∈S

ptij − β

(
C∑
j=1

∑
i∈S

ptij

)2
− η∑

i∈S

(wi − γiwi)2 (B.20)

=
T∑
t=1

α∑
i∈S

γiwi
T
− β

(∑
i∈S

γiwi
T

)2
− η∑

i∈S

(wi − γiwi)2 (B.21)

=
T∑
t=1

α∑
i∈S

W

T
− β

(∑
i∈S

W

T

)2
 (B.22)

= αW |S| − βW
2|S|
T

− 2β
W 2

T

|S|−1∑
i=1

(|S| − i) (B.23)

= αW |S| − βW
2|S|
T

− 2β
W 2

T

(
|S|(|S| − 1)− |S|(|S| − 1)

2

)
(B.24)

= αW |S| − βW
2|S|2

T
. (B.25)

For the online case, let In and Ln be defined similar to the non-congested sce-

nario. For this specific case, the set of EVs that are partially scheduled is S1 =

{1, 2, . . . , |S| − C}, and the set of EVs completely scheduled is S2 = {|S| − C +

1, |S| − C + 2, . . . , |S|}, where S = S1

⋃
S2. The profit provided by the online algo-
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rithm is given by

Fon =
N∑
n=1

∑
t∈Ln

α
C∑
j=1

∑
i∈Jn

ptij − β

(
C∑
j=1

∑
i∈Jn

ptij

)2

− η
∑
i∈Jn

[
wLn
i − γ

Ln
i wLn

i

]2
(B.26)

=
N∑
n=1

α∑
i∈Jn

γLn
i wLn

i

TLn
i

− β

(∑
i∈Jn

γLn
i wLn

i

TLn
i

)2

− η
∑
i∈Jn

[
wLn
i − γ

Ln
i wLn

i

]2 (B.27)

=
N∑
n=1

α∑
i∈Jn

W − vLn
i

TLn
i

− β

(∑
i∈Jn

W − vLn
i

TLn
i

)2
 (B.28)

= αWC

|S|−C∑
i=1

1

Ti
+ 1

− βW 2

C |S|−C∑
i=1

(
1

Ti

)2

+

|S|∑
i=|S|−C+1

1

Ti


− 2βW 2

|S|−C∑
i=1

1

Ti

|S|−C∑
k=1

C − k
Ti+k

+

|S|∑
i=|S|−C+1

|S| − i
Ti

 (B.29)

= αWC

|S|−C∑
i=1

1

Ti
+ 1

− βW 2C

|S|−C∑
i=1

(
1

Ti

)2

− 2βW 2

|S|−C∑
i=1

1

Ti

|S|−C∑
k=1

C − k
Ti+k

− 2βW 2C

+ βW 2

(2T + 1− 2|S|)
|S|∑

i=|S|−C+1

1

Ti

 . (B.30)
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Now, let us find the lower bound of Fon. Notice that

|S|−C∑
i=1

1

Ti
=

1

T
+

1

T − 1
+ · · ·+ 1

T − (|S| − C − 1)
≥ |S| − C

T
, (B.31)

|S|−C∑
i=1

(
1

Ti

)2

=
1

T 2
+

1

(T − 1)2
+ · · ·+ 1

(T − (|S| − C − 1))2
≤ |S| − C

C2
,

(B.32)

|S|∑
i=|S|−C+1

1

Ti
=

1

T − (|S| − C)
+

1

T − (|S| − C + 1)
+ · · ·+ 1

T − (|S| − 1)

≥ C

T
, (B.33)

|S|−C∑
i=1

1

Ti

|S|−C∑
k=1

C − k
Ti+k

=
1

T

(
C − 1

T − 1
+ · · ·+ C − (|S| − C)

T − (|S| − C)

)

+
1

T − 1

(
C − 1

T − 2
+ · · ·+ C − (|S| − C)

T − (|S| − C)− 1

)
+ · · ·+ 1

T − (|S| − C − 1)

(
C − 1

T − (|S| − C)
+ · · ·+ C − (|S| − C)

T − (|S| − C)− (|S| − C) + 1

)
≤ (|S| − C)2

T − 2(|S| − C) + 1
. (B.34)

Substituting (B.31)-(B.34) in (B.30), we have

Fon ≥ αWC

(
|S| − C
T

+ 1

)
− βW 2C

(
|S| − C
C2

)
− 2βW 2

[
(|S| − C)2

T − 2(|S| − C) + 1

]
− 2βW 2C + βW 2(2T + 1− 2|S|)C

T

≥ αWC

(
|S| − C
T

+ 1

)
− βW 2

[
2|S|C
T

+
|S| − C
C

+
2(|S| − C)2

T − 2(|S| − C) + 1

]
.

(B.35)
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Based on the results obtained in (B.25) and (B.35), the lower bound of the com-

petitive ratio under a congested scenario is given by

σ =
Fon

Foff

≥
αWC

(
|S|−C
T

+ 1
)
− βW 2

[
2|S|C
T

+ |S|−C
C

+ 2(|S|−C)2

T−2(|S|−C)+1

]
αW |S| − βW 2|S|2

T

. (B.36)

In all, the lower bounds of the competitive ratio for both non-congested and

congested scenarios can be summarized in the form given in Theorem 4.3.1.
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