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Abstract

We consider the flow of a thixotropic fluid in a uniform cylindrical pipe, driven by an oscillating

pressure gradient or a body force. For a variety of rheological models, solutions can be obtained

by integrating ordinary rather than partial differential equations: we illustrate this approach for

the thixo-viscoplastic Houška model and the thixo-viscous simplified Moore–Mewis–Wagner model.

We present asymptotic results in the limits of small and large Deborah numbers, and numerical

results for intermediate Deborah numbers. Under asymmetrical ‘sawtooth’ forcing, thixotropy

leads to the net transport of fluid along the pipe, even when there would be no net transport of

the corresponding generalised-Newtonian fluid. We propose the name ‘thixotropic pumping’ for

this novel transport mechanism.
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I. INTRODUCTION

We consider the flow of a thixotropic fluid in a uniform cylindrical pipe, driven by an

oscillating pressure gradient or body force. (An everyday analogue occurs when a bottle of

tomato ketchup is gently shaken to break down the structure before it is poured.) If the

oscillation is asymmetric then the hysteretic response of the fluid can lead to net transport

along the pipe, even though a non-thixotropic fluid would experience no net transport. This

distinctive mechanism, which does not appear to have been investigated previously, may be

referred to as thixotropic pumping.

The study of thixotropic pipe flow is well established (e.g. [1–4]). A key motivation is

the transport of crude oil and drilling fluids in pipelines [2, 5–8]. Other related applications

include extrusion [9], peristaltic pumping [10], and pulsatile flow [11, 12]. Such applications

often involve complex geometries and time-dependent effects, and so there is a role for the

study of paradigm problems that bridge the gap between them and much simpler rheometric

flows (e.g. [13, 14]). Oscillatory pipe flow in particular has proved useful to elucidate the

role of elasticity in yield-stress fluids [15], complementing oscillatory rheometric flows [16].

Such paradigm problems can become particularly rich if processes with an externally

imposed timescale interact with the internal thixotropic dynamics. A particularly relevant

example is the thixotropic version of the Stokes problem in which rectilinear flow is driven by

an oscillating wall. McArdle et al. [17] obtained asymptotic descriptions of this flow in the

limits in which the thixotropic response was much faster or much slower than the oscillation,

and presented numerical results in the intermediate regime in which the dynamics are most

complicated. We will take a similar approach in the present work, although the dynamics

are rather different: the crucial interaction in the Stokes problem is between thixotropy and

inertia rather than between thixotropy and an imposed pressure gradient.

In this study we focus on the thixo-viscoplastic Houška rheology. However, the approach

can be generalised to other rheologies. We also briefly present illustrative results for the

thixo-viscous simplified Moore–Mewis–Wagner (sMMW) rheology, which allows us to ex-

plore the effect of shear-thickening (antithixotropic) as well as shear-thinning (thixotropic)

behaviour.

2



II. GENERAL FORMULATION

A. Governing equations

We consider axisymmetric rectilinear flow in a cylindrical pipe of radius R̂, driven by a

periodic pressure gradient with angular frequency ω̂ and maximum value Ĝ0. We present

the governing equations in non-dimensional form, where we have non-dimensionalised using

the length scale R̂, the pressure-gradient scale Ĝ0, the inverse time scale ω̂, a viscosity scale

given by the minimum viscosity µ̂0 of the fluid, and a velocity scale Ĝ0R̂
2/µ̂0. (See [18,

chapter 7] for details.)

The Cauchy stress equation is

1

r

∂

∂r
(rτ) = −G(t), (1)

where τ is the shear stress and G(t) = −∂p/∂z is the pressure gradient. We assume that

G(t) is periodic with period 2π and amplitude 1; unless otherwise stated, G(t) > 0 for

0 < t < π (the ‘forward phase’) and G(t) < 0 for π < t < 2π (the ‘reverse phase’). We will

consider two cases in particular: sinusoidal forcing

G(t) = sin(t) (2)

and ‘sawtooth’ forcing

G(t) =



T

T0
if 0 ≤ T ≤ T0,

1− (T − T0)
π − T0

if T0 ≤ T ≤ 2π − T0,
T − 2π

T0
if 2π − T0 ≤ T ≤ 2π,

(3)

where

T = 2π

(
t

2π
−
⌊
t

2π

⌋)
, (4)

and where the first peak of G(t) occurs at t = T0. For 0 ≤ T0 < π/2 the pressure gradient

increases more rapidly than it decreases (we will refer to this as a short rising leg / long

falling leg); for π/2 < T0 ≤ π the pressure gradient decreases more rapidly than it increases

(a long rising leg / short falling leg).

We may integrate (1) subject to the symmetry condition τ = 0 on r = 0 to obtain

τ = −1

2
rG(t). (5)
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We consider ideal thixotropic fluids [19], so the constitutive equation defines τ in terms

of the shear rate γ̇(r, t) = |∂w/∂r|, where w(r, t) is the axial velocity, and a scalar ‘structure

parameter’ λ(r, t) [20] which describes the local state of the fluid microstructure,

τ = τ (γ̇, λ) . (6)

The structure parameter evolves according to an equation of the form

D∂λ
∂t

= f

(∣∣∣∣∂w∂r
∣∣∣∣ , λ) . (7)

Here we have introduced the Deborah number

D =
ω̂

f̂0
, (8)

the ratio of the forcing frequency ω̂ to the structure response rate f̂0. The function f(γ̇, λ)

is a dimensionless net build-up / breakdown rate which depends on both the shear rate γ̇

and the structure parameter λ.

If the constitutive relation takes a suitable form then we can use (5) and (6) to write

|∂w/∂r| in terms of r, t and λ; equation (7) can then be integrated in t to obtain λ for any

r. This is the approach taken in this study.

The velocity is zero at the pipe wall r = 1,

w(1, t) = 0. (9)

No boundary condition is required for λ. Initial conditions will be specified when required,

but our focus is on situations in which the solutions are periodic,

w(r, t+ 2π) = w(r, t), λ(r, t+ 2π) = λ(r, t). (10)

We may expect this to be the long-term asymptotic behaviour of the system under periodic

forcing.

B. Integrated measures of transport

It is helpful to define three quantities that describe the transport of fluid.

The instantaneous flux of fluid along the pipe is defined by

Q(t) = 2π

∫ 1

0

rw(r, t) dr. (11)
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Integrating Q(t) over time, we obtain the total volume of fluid transported during the

forward phase,

Vπ =

∫ π

0

Q(t) dt, (12)

and the total volume of fluid transported during a full period,

V2π =

∫ 2π

0

Q(t) dt. (13)

Under symmetric forcing, or in the absence of thixotropic effects, we expect V2π to be zero.

If V2π 6= 0 then there is net transport in either the positive axial direction (V2π > 0) or the

negative axial direction (V2π < 0).

C. Asymptotic limits

As in the thixotropic Stokes problem [17], we can make analytical progress in two limits

of the Deborah number.

1. Fast adjustment (D = 0)

In the limit D = 0, the LHS of (7) is zero, so the structure parameter adjusts instanta-

neously to the equilibrium value λ = λeq(r, t) that satisfies

f

(∣∣∣∣∂w∂r
∣∣∣∣ , λeq) = 0. (14)

The fluid thus has a generalised-Newtonian rheology in which the shear stress τ is an in-

stantaneous function of the shear rate |∂w/∂r|, defined implicitly by (14) together with

(6).

2. Slow adjustment (D →∞)

In the limit D → ∞, the structure parameter becomes independent of time. However,

for periodicity to be maintained, we require the build-up and breakdown terms in (7) to

balance when integrated over a period. This can be seen by expanding λ for large D as

λ = λ0 +
1

D
λ1 + o

(
1

D

)
, (15)
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which leads to

∂λ0
∂t

= 0, (16)

∂λ1
∂t

= f

(∣∣∣∣∂w∂r
∣∣∣∣ , λ0) . (17)

Equation (16) implies that at leading order the structure parameter depends only on position,

λ0 = λav(r). Integrating equation (17) over a period and applying periodicity then yields∫ 2π

0

f

(∣∣∣∣∂w∂r
∣∣∣∣ , λav(r)

)
dt = 0, (18)

and this condition implicitly defines λav(r).

III. HOUŠKA RHEOLOGY

The Houška rheology [21, 22] is a tractable and popular model [1, 3, 5, 7, 8] which

combines thixotropy with a yield stress. The structure parameter evolves according to (7),

with f given by a special case of Mewis & Wagner’s [20] general build-up / breakdown

function,

D∂λ
∂t

= f

(∣∣∣∣∂w∂r
∣∣∣∣ , λ) = κ(1− λ)−

∣∣∣∣∂w∂r
∣∣∣∣λ. (19)

Shear drives breakdown, so in an unsheared region the structure can only evolve by build-up;

thus in a permanently unsheared region the only long-term equilibrium state of the fluid is

fully structured, λ = 1. In general, λ lies within the range 0 ≤ λ ≤ 1.

The constitutive relation is based on that of a Bingham fluid [23, §4.2]. In simple shear

flow it becomes 
|τ | = τy0+λτy1 + (1+ληH1)

∣∣∣∣∂w∂r
∣∣∣∣ if |τ | > τy0+λτy1,

∂w

∂r
= 0 otherwise.

(20)

The parameter κ > 0 describes how rapidly build-up takes place relative to breakdown; the

parameters τy0 ≥ 0, τy1 ≥ 0 and ηH1 ≥ 0 describe, respectively, the minimum yield stress

and the rates of change of the yield stress and of the Bingham viscosity with the structure

parameter. Note that the dimensionless minimum viscosity is 1.

Under oscillatory forcing, it is necessary to keep track of up to three regions of the flow.

Close to the centre of the pipe is a region in which the shear stress given by (5) never

exceeds the maximum value of the yield stress, τy0 + τy1. In this core region, 0 ≤ r < rc, the
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fluid is fully structured and unsheared throughout the oscillation, λ = 1. Since maxt |G(t)| =

1, the boundary of the core region is given via (5) by rc = 2(τy0 + τy1).

At any instant, there may also be a wider plug region, 0 ≤ r < ry(t), in which the fluid

is (instantaneously) unyielded, τ(r, t) < τy0 + λ(r, t)τy1. The outer boundary of the plug

region, ry(t), moves in and out as the driving force increases and decreases; when ry(t) = 1

the entire flow becomes unyielded. Because the fluid in the annulus rc < r < ry(t) is not in

general fully structured, the location of ry(t) depends on the solution for λ(r, t) (except in

the simplest case τy1 = 0, in which the yield stress is independent of the structure parameter

and so ry = rc throughout the oscillation).

Finally, at any instant there may also be a yielded region extending from the outer

boundary of the plug as far as the wall, ry(t) < r < 1. During phases in which the pressure

gradient is small, this region ceases to exist because the fluid becomes unyielded everywhere

across the pipe.

A. Asymptotic limits

1. Fast adjustment (D = 0)

In the limit of fast adjustment, (19) yields∣∣∣∣∂w∂r
∣∣∣∣ = κ

(1− λeq)
λeq

. (21)

Combining (21) with (20) and (5), we find that the structure parameter is given by the

positive solution of the quadratic equation

κ(1− λeq)(1 + λeqηH1) + λeq(τy0 + λeqτy1) =
1

2
r|G(t)|λeq (22)

when this lies between 0 and 1, and by λeq = 1 otherwise. (The explicit solution for λeq,

which is presented by [3], is not informative for our purposes.)

2. Slow adjustment (D →∞)

In the limit of slow adjustment, the structure parameter is determined by (18). Substi-

tuting in f from (19) yields

λav

∫ 2π

0

∣∣∣∣∂w∂r
∣∣∣∣ dt = 2πκ(1− λav), (23)
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and thus
λav

1− λav
=

2πκ

I(r, λav)
, where I(r, λ) =

∫ 2π

0

∣∣∣∣∂w∂r
∣∣∣∣ dt. (24)

To evaluate I(r, λ) we require an expression for the shear during phases when the fluid is

yielded. Combining (5) and (20), we obtain

∂w

∂r
=


sign(G)

τy0+λτy1− 1
2
r|G|

1 + ληH1

if τy0+λτy1 <
1
2
r|G|,

0 otherwise.

(25)

Under sinusoidal forcing (2), it is then helpful to define

ty(r, λ) = arcsin

(
2(τy0 + λτy1)

r

)
, (26)

and to write

I(r, λ) = 4

∫ π/2

ty

1
2
r sin(t)− (τy0 + λτy1)

1 + ληH1

dt (27)

=
4

1 + ληH1

[
1

2
r cos(ty)− (τy0 + λτy1)

(π
2
− ty

)]
. (28)

Equation (24) can now readily be solved numerically to obtain λav(r).

Under sawtooth forcing (3), the calculation is simpler, and we obtain

I(r, λ) =
π

1 + ληH1

1

2
r

(
1− 2

r
(τy0 + λτy1)

)2

. (29)

3. Numerical integration for 0 < D <∞

To obtain numerical results we substitute (25) into (19) to obtain a time-evolution equa-

tion for λ,

D∂λ
∂t

=


κ(1−λ)−

∣∣∣∣ 12r|G| − (τy0+λτy1)

1 + ληH1

∣∣∣∣λ when τy0+λτy1 <
1
2
r|G|,

κ(1−λ) otherwise.

(30)

Equation (30) can then be integrated forward in time using a standard method. In our

calculations we took the initial condition λ(r, 0) = λav(r) in all cases to ensure rapid conver-

gence to the asymptotic solution for large D. All results presented here had been integrated

for least four full periods, by which time periodicity had been reached.
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Once λ(r, t) has been obtained for a sufficient number of values of r, profiles of w(r, t) and

the flux Q(t) can be obtained by quadrature. The results presented below were obtained

using the inbuilt Runge–Kutta routine in Maple 2019 [24], and quadrature over r was carried

out on a minimum of N = 100 values of r; results were robust to the choice of N . For

sawtooth forcing with small values of T0, significantly higher t-resolution (up to 2000 points in

contrast to 200 for larger values of T0) was required in order to capture the fluxes accurately.

B. Sinusoidal forcing: numerical results

We first consider the behaviour under sinusoidal forcing, equation (2).

1. Structure parameter and velocity

Figure 1 shows typical results for the variation of λ with time over one period, for various

values of D and for values of r between the edge of the core r = rc and the wall r = 1. The

other parameters have been chosen so that the variation of both the yield stress and the

viscosity with λ is significant.

For very small values ofD, the structure parameter λ tracks the instantaneous equilibrium

value λeq closely (figure 1 a). There are phases during which the fluid is fully structured

right across the pipe, and small lags between λ and λeq are visible just after yielding and

unyielding.

As D increases, the lag also increases and the fully-structured phases disappear (figures

1 b–d). The lag is somewhat longer for smaller values of r (larger values of λ), where the

shear rates and thus the breakdown rates are lower; it is also most pronounced around the

minima of the shear rate (t = nπ/2 for n ∈ N), when not only is the breakdown rate smallest

but λeq is varying most strongly.

Thixotropic effects are clearest for intermediate values of D (figure 1 c). As D increases

further (figures 1 d–e) the lag increases further, but at the same time the variation of λ

over a period diminishes so the lag becomes less apparent. Figure 1 e demonstrates that

by D = 1 the large-D asymptotic solution λ ∼ λav(r) provides a reasonable approximation

everywhere across the pipe.

Figure 2 illustrates the corresponding profiles of λ and w across the pipe, during a quarter-
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FIG. 1. A Houška fluid with τy0 = 0.1, τy1 = 0.1, ηH1 = 1, κ = 0.1 and (a) D = 0.001, (b)

D = 0.03, (c) D = 0.1, (d) D = 0.3, (e) D = 1, under sinusoidal forcing: the variation with time of

λ at r = rc + (1− rc)n/6, n = 0 to 6. (Note that for these parameter values, rc = 0.4.) Solid lines

are numerical results for 0 < D < ∞; dashed lines in (a) and (e) correspond to the asymptotic

results in the limits (a) D = 0 and (e) D →∞.

period when the pressure gradient is increasing, for the limit of rapid adjustment D = 0

(figures 2 a, d), an intermediate value D = 0.1 (figures 2 b, e), and the limit of slow

adjustment D →∞ (figures 2 c, f).

The core region is 0 ≤ r < rc = 0.4 in each case. In the rapidly-adjusting limit (figure

2 a), this represents the minimal extent of the fully structured region; the outer boundary

of the fully structured region moves in and out through the oscillation, sometimes reaching

the pipe wall r = 1. In this limit, this outer boundary corresponds to the outer boundary

r = ry of the plug region, as can be seen by comparing figure 2 a with the corresponding

velocity profiles in figure 2 d. (Note the black squares that mark the boundary of the plug

region.)
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FIG. 2. A Houška fluid with τy0 = 0.1, τy1 = 0.1, ηH1 = 1, κ = 0.1, under sinusoidal forcing:

profiles of (a–c) the structure λ and (d–f) the velocity w at t = nπ/16 for n = 0 to 8, for (a,d)

D = 0; (b,e) D = 0.1; (c,f) D → ∞. (Note that for these parameter values, rc = 0.4.) The black

squares mark the boundary of the plug region, r = ry. In (d) the velocity w = 0 for t = 0, t = π/16

and t = π/8; in (e) and (f) the velocity w = 0 for t = 0 and t = π/16.

In contrast, for the other cases plotted the fluid is never fully structured outwith the

core (figures 2 b and c). There is still a yield surface marking the outer boundary of the

plug flow, but this now occurs for values of λ < 1 (figures 2 b–c and e–f). Consequently

there are still phases during which the yield surface reaches the pipe wall and the velocity

drops to zero across the pipe. The period-averaged structure parameter λav at the wall is

somewhat higher than the minimum value taken at the wall by the instantaneous equilibrium

structure parameter λeq(t) (cf. figures 2 a and c). As a result the maximum velocity

decreases somewhat with increasing D (figures 2 d–f). The other notable feature is that

for intermediate values of D the lag is different at different radial positions, leading to the
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FIG. 3. A Houška fluid with τy0 = 0.1, τy1 = 0.1, ηH1 = 1, κ = 0.1, under sinusoidal forcing.

(a–c) The flux Q(t) over a period, for (a) D = 0.03; (b) D = 0.1; (c) D = 0.3. (d) The maximum

flux Qmax. (e) The total volume of fluid transported during the forward phase, Vπ. The dashed

lines correspond to the asymptotic results in the limits D = 0 (heavy dashed) and D → ∞ (light

dashed).

rather complicated variation seen in figure 2 b.

2. Transport of fluid

Figure 3 illustrates how the processes described in section III B 1 affect the flux of fluid

Q(t), for cases corresponding to those plotted in figures 1 and 2. Along with examples of

Q(t) (figures 3 a–c), we show the variation of the maximum flux Qmax = maxtQ(t) (figure

3 d) and of the total volume of fluid transported during the forward phase, Vπ (figure 3 e).

In the limit D = 0 the maximum flux is highest but the fluid is slowest to yield at the

wall, giving the taller and narrower dashed peaks in figures 3 a–c; conversely, in the limit

12



D →∞ the maximum flux is lowest but the fluid is quickest to yield at the wall, giving the

shorter and wider dashed peaks in figures 3 a–c. Between these limits, the maximum flux

Qmax decreases monotonically with increasing D (figure 3 d).

In each limit the velocity, and thus the flux, is in phase with the pressure gradient and

so the maximum fluxes in each direction occur at t = π/2 and t = 3π/2. Between these

limits the flux lags behind the pressure gradient, because as the pressure gradient increases

the structure is still breaking down; the lag increases with D up to about D = 0.1 (figures

3 a–b) and then decreases (figures 3 b–c).

The broadening of the peaks of Q(t) with increasing D partly compensates for the re-

duction in Qmax, with the consequence that the total volume of fluid transported during the

forward phase Vπ decreases less strongly with D than does Qmax (cf. figures 3 d, e).

C. Sawtooth forcing: numerical results

We now consider the behaviour of the fluid under sawtooth forcing, equation (3). Figures

4 a–c illustrate the flux Q(t) for various values of D and T0, all in cases in which the pressure

gradient has a short rising leg. Figure 4 d shows the total volume of fluid transported during

the forward phase, Vπ, while figure 4 e shows the total volume of fluid transported over a

full period, V2π.

In both the small-D limit (figure 4 a) and the large-D limit (figure 4 c), the velocity at

any position r is an instantaneous function of the pressure gradient G(t). Consequently, the

flux is in phase with G(t) throughout the oscillation, and there is symmetry between the

forward and reverse phases. Thus, in each limit there is no net transport of fluid over a full

period (figure 4 e).

For intermediate values of D, thixotropy plays a role. During phases when |G(t)| is

increasing, the structure is breaking down; consequently |Q(t)| increases at first more slowly

than it would without thixotropy. Conversely, during phases when |G(t)| is decreasing,

the structure is rebuilding; consequently |Q(t)| decreases at first more slowly than it would

without thixotropy. The consequence is the ‘shark’s-tooth’ shape of Q(t) apparent in figure

4 b, with a concave-outward phase as |Q(t)| increases followed by a convex-outward phase

as |Q(t)| decreases.

When this shark’s-tooth response is combined with an asymmetrical sawtooth forcing,
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FIG. 4. A Houška fluid with τy0 = 0.1, τy1 = 0.1, ηH1 = 1, κ = 0.1, under sawtooth forcing. (a–c)

The flux Q(t), for T0 = nπ/8, n = 0 to 4 and (a) D = 0; (b) D = 0.1; (c) D → ∞. (d) The total

volume of fluid transported during the forward phase, Vπ, for T0 = nπ/8, n = 0 to 4. (e) The

total volume of fluid transported over a full period, V2π, for T0 = nπ/8, n = 0 to 3 (for T0 = π/2,

V2π = 0). Arrows show the direction of increasing T0.

the result is that during the longer falling leg Q(t) is convex-outward for most of the time

when it is positive, and Q(t) is concave-outward when it is negative. (This is clearest for

T0 = 0 in figure 4 b.) Consequently, the total volume of fluid transported during the forward

phase, Vπ, is enhanced for intermediate values of D (figure 4 d), and the total volume of

fluid transported during the reverse phase is reduced. The result is that over a period

thixotropic pumping occurs: there is net transport in the positive direction, V2π > 0 (figure

4 e), and the total volume of fluid transported over a period may be a substantial fraction

of Vπ. (This pattern is, of course, reversed when the asymmetry of the sawtooth is reversed,

π/2 < T0 < π.)

Figure 5 demonstrates that the basic mechanism of thixotropic pumping persists when
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FIG. 5. A Houška fluid with (a, b) τy0 = 0.1, τy1 = 0, ηH1 = 1, κ = 0.1 (yield stress independent

of λ); (c, d) τy0 = 0.1, τy1 = 0.1, ηH1 = 0, κ = 0.1 (viscosity independent of λ), under sawtooth

forcing. (a, c) The net flux during the forward phase, Vπ, for T0 = nπ/8, n = 0 to 4. (b, d) The

total volume of fluid transported V2π over a full period, for T0 = nπ/8, n = 0 to 3 (for T0 = π/2,

V2π = 0). Arrows show the direction of increasing T0.

either the shear stress or the viscosity depends on the structure parameter.

Figures 5 a and b show the total volume of fluid transported during the forward phase,

Vπ (figure 5 a) and the total volume of fluid transported over a full period, V2π (figure 5 b),

when the yield stress is independent of λ, i.e. τy1 = 0. The overall pattern is very similar

to that shown in figures 4 d and e, except that because the apparent viscosity of the flux

is lower the total volume of fluid transported during the forward phase is higher (cf. figure

5 a with figure 4 d), and because the shear stress depends less strongly on λ the effect of

thixotropic pumping is weaker (cf. figure 5 b with figure 4 e).

Figures 5 c and d show the total volume of fluid transported during the forward phase,

Vπ (figure 5 c) and the total volume of fluid transported over a full period, V2π (figure 5 d),

when the viscosity is independent of λ, i.e. ηH1 = 0. The overall pattern is again similar to
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that shown in figures 4 d and e, although the effect of thixotropy on the net flux during the

forward phase for strongly sawtooth forcing is now more conspicuous and the lower yield

stress leads to higher values of Vπ (cf. figure 5 c with figure 4 d). The effect of thixotropic

pumping is again weaker when V2π (figure 5 d) is considered as a fraction of Vπ.

IV. SIMPLIFIED MOORE–MEWIS–WAGNER RHEOLOGY

The simplified Moore–Mewis–Wagner (sMMW) rheology provides a convenient descrip-

tion of purely viscous thixotropic behaviour, and has been used in several previous studies

[4, 17, 25]. The model is defined by

f(γ̇, λ) = κ

∣∣∣∣∂w∂r
∣∣∣∣c − ∣∣∣∣∂w∂r

∣∣∣∣a λb (31)

in (7), together with the constitutive relation (in simple shear flow)

τ = λ
∂w

∂r
. (32)

The sMMW rheology has the feature that in the limit D = 0 the fluid becomes a power-law

fluid. In contrast to the Houška rheology, λ is no longer bounded above, 0 ≤ λ <∞.

By combining (5), (31) and (32), we obtain a time-evolution equation for λ at each point

r,

D∂λ
∂t

= κ

∣∣∣∣rG(t)

2

∣∣∣∣c λ−c − ∣∣∣∣rG(t)

2

∣∣∣∣a λb−a. (33)

A. Asymptotic limits of the sMMW model

1. Fast adjustment (D = 0)

In the limit of fast adjustment, the fluid has a power-law rheology, in which the structure

parameter and the stress are given by

λeq = κ1/b
∣∣∣∣∂w∂r

∣∣∣∣n−1

and τ = κ1/b
∣∣∣∣∂w∂r

∣∣∣∣n−1
∂w

∂r
, where n− 1 =

c− a
b

. (34)

Equation (5) may be integrated to give the velocity profile

w(r, t) = sign(G)

(
|G|

2κ1/b

)1/n
n

n+ 1

(
1− r(n+1)/n

)
, (35)

and hence the flux

Qfast(t) = sign(G)

(
|G|

2κ1/b

)1/n
πn

3n+ 1
. (36)
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2. Slow adjustment (D →∞)

In the limit of slow adjustment, the structure parameter is determined by (18),

λbav

∫ 2π

0

∣∣∣∣∂w∂r
∣∣∣∣a dt = κ

∫ 2π

0

∣∣∣∣∂w∂r
∣∣∣∣c dt, (37)

and the shear rate is given by
∂w

∂r
=

τ

λav
= −rG(t)

2λav
. (38)

We thus obtain

λb+c−aav = κβ
(r

2

)c−a
, where β(a, c;G) =

∫ 2π

0
|G(t)|c dt∫ 2π

0
|G(t)|a dt

. (39)

In the case of sinusoidal forcing, equation (2), we can evaluate the integrals in (39) to

obtain

β =
B
(
1
2
, 1+c

2

)
B
(
1
2
, 1+a

2

) , (40)

where B(x, y) is the standard Beta function.

In the case of sawtooth forcing, equation (3), we obtain

β =
a+ 1

c+ 1
, (41)

which is independent of T0.

Substituting (39) into (38) and integrating yields

w(r, t) =
G(t)

21/n(κβ)1/(nb)
n

n+ 1

(
1− r(n+1)/n

)
(42)

and

Qslow(t) =
G(t)

21/n(κβ)1/(nb)
πn

3n+ 1
. (43)

The forms of the velocity profiles in the quickly and slowly adjusting limits, given by

(35) and (42), are identical but their amplitudes and time-dependences are not. (It is only

in these limits that the velocity profiles take an identical form.) For thixotropic (shear-

thinning) cases in which c < a and so n < 1, the peaks in the quickly adjusting flux (36) are

thinner but higher than those in the slowly adjusting flux (43); for antithixotropic (shear-

thickening) cases in which c > a and so n > 1, the peaks in the quickly adjusting flux (36)

are broader but lower than those in the slowly adjusting flux (43).
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FIG. 6. A simplified MMW fluid with b = 1, κ = 1 and (a, c, e) a = 1 and c = 0.5 (shear-thinning,

n = 0.5); (b, d, f) a = 0.5 and c = 1 (shear-thickening; n = 1.5), under sinusoidal forcing. The

flux Q(t) is shown for (a, b) D = 0.01; (c, d) D = 0.1; (e, f) D = 1. The dashed lines correspond

to the asymptotic results in the limits D = 0 (heavy dashed) and D →∞ (light dashed).

B. Numerical results

To obtain numerical results we integrate (33) forward in time using a standard method,

and obtain the velocity w(r, t) and the flux Q(t) by quadrature, as described in §III A 3.

Figure 6 illustrates the flux Q(t) for a shear-thinning fluid (a, c, e) and a shear-thickening

fluid (b, d, f) under sinusoidal forcing, equation (2).

The shear-thinning fluid (figures 6 a, c, e) behaves in the same way as a Houška fluid

(figures 3 a–c). As D increases, the peak in the flux becomes lower and broader. The flux

lags behind the forcing for intermediate values of D (figures 6 a, c); by D = 1 the lag has

disappeared.

For the shear-thickening fluid (figures 6 b, d, f), both behaviours are reversed. As D
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FIG. 7. A simplified MMW fluid with (a, b) a = 1, b = 1, c = 0.5, κ = 1 (shear-thinning); (c, d)

a = 0.5, b = 1, c = 1, κ = 1 (shear-thickening), under sawtooth forcing. (a, c) The net flux during

the forward phase, Vπ, for T0 = nπ/8, n = 0 to 4. (b, d) The total volume of fluid transported over

a full period, V2π, for T0 = nπ/8, n = 0 to 3 (for T0 = π/2, V2π = 0). Arrows show the direction

of increasing T0.

increases, the peak in the flux becomes higher and narrower. More unexpectedly, the flux

leads the forcing for intermediate values of D (figures 6 d, f). This occurs because of a

competition between the increasing magnitude of the pressure gradient during this interval

and the increasing viscosity as the structure builds up; the maximum value of Q(t) occurs

when the pressure gradient is large but the structure has not yet built up enough to slow

the flow.

We now consider sawtooth forcing (3), with a short rising leg, 0 ≤ T0 ≤ π/2. Figure 7

shows the total volume of fluid transported during the forward phase, Vπ (figures 7 a, c),

and the total volume of fluid transported during a full period, V2π (figures 7 b, d). The

behaviour for a shear-thinning fluid (figures 7 a, b) is similar to that for a Houška fluid

(figures 4 and 5), although the value of D that maximises the transport is somewhat lower.
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The behaviour for a shear-thickening fluid (figures 7 c, d) is the opposite of that for a

shear-thinning fluid: thixotropy decreases the total volume of fluid transported during the

forward phase for intermediate Deborah numbers (figure 7 c) rather than increasing it, and

the consequence is that the total volume of fluid transported during a period is negative

(figure 7 c) rather than positive. The effect of thixotropy is maximised for somewhat higher

values of D than it was for the shear-thinning fluid.

V. DISCUSSION AND CONCLUSIONS

We have investigated the pumping of a thixotropic fluid by an oscillating pressure gra-

dient in a cylindrical pipe. This paradigm problem allows us to investigate the interaction

between externally imposed forcing and the thixotropic dynamics, which may operate on

very different timescales. At the same time, it is sufficiently simple that for a variety of rhe-

ological models we can obtain solutions by integrating ODEs rather than PDEs; it therefore

offers high-precision benchmark solutions as well as dynamical insight.

As in the thixotropic Stokes problem [17], we find a rapidly-adjusting limit in which

the fluid has a generalised-Newtonian rheology, and a slowly-adjusting limit in which the

structure depends on position but not on time and is controlled by a balance between

the period-averaged build-up and breakdown rates. As the Deborah number increases, the

structure of the fluid first tracks its instantaneous equilibrium value; then lags it, with

the lag largest when the flow conditions are changing most rapidly; and finally approaches

the slowly-adjusting limit. For shear-thinning fluids the flux also lags behind the pressure

gradient, most strongly for intermediate values of the Deborah number.

For a thixo-viscoplastic Houška fluid, there are up to three flow regions: a fully structured

core region; a partly structured but unyielded plug region; and an annular yielded region.

The boundary between the plug and yielded regions moves in and out over the course of

an oscillation; this behaviour recalls that predicted in Stokes’ third problem for a fluid with

distinct static and dynamic yield stresses [26], which can be thought of as a limiting case of

thixotropy.

Under asymmetrical sawtooth forcing with a longer period of acceleration in one direction

than the other, thixotropic pumping leads to a net flux of fluid over the course of one period.

For intermediate Deborah numbers and for strongly asymmetric waveforms, the total volume
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of fluid transported over a period can be a substantial fraction of the total volume of fluid

transported in each direction over the corresponding half-period.

A purely thixo-viscous fluid, described using the simplified Moore–Mewis–Wagner model,

behaves analogously to a Houška fluid when it is shear-thinning. However, a shear-thickening

fluid behaves in the opposite manner: the flux leads the pressure gradient for intermediate

values of the Deborah number, and the net transport of a shear-thickening fluid under

sawtooth forcing is in the opposite direction to that of a shear-thinning fluid.

It is plausible that the mechanisms elucidated here are generic rather than being arte-

facts of particular rheological models. Interesting directions for future work might include

exploring how they are modified in more complex rheological models, such as those that

exhibit viscosity bifurcations [27], and investigating the differences or similarities between

the responses to asymmetrical forcing of thixotropic and elasto-viscoplastic fluids [15].
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