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Abstract—This paper describes a method to generate im-
proved probabilistic wind farm power forecasts in a hierarchical
framework with the incorporation of production data from
individual wind turbines. Wind power forms a natural hierarchy
as generated electricity is aggregated from the individual turbine,
to farm, to the regional level and so on. To forecast the wind
farm power generation, a layered approach is proposed whereby
deterministic forecasts from the lower layer (turbine level) are
used as input features to an upper-level (wind farm) probabilistic
model. In a case study at a utility scale wind farm it is
shown that improvements in probabilistic forecast skill (CRPS)
of 1.24% and 2.39% are obtainable when compared to two
very competitive benchmarks based on direct forecasting of the
wind farm power using Gradient Boosting Trees and an Analog
Ensemble, respectively.

Index Terms—Wind power, probabilistic forecasting, hierar-
chical forecasting, forecasting, wind power integration

I. INTRODUCTION

In certain electricity networks the paradigm shift from
large centralized thermal power stations to decentralised and
stochastic renewable energy sources has led energy forecasting
to be essential for economic and secure grid operation. Sig-
nificant uncertainties in the power network are now present
on the supply-side which increases the difficulty of balancing
the network [1]; to manage the influence of these renewable
sources it is necessary to use predictions of future generation
and, for risk minimisation, probabilistic forecasts [2].

Depending on the application, end-user requirements, and
time horizon there are various ways of approaching the
forecasting problem. A trader participating in the day-ahead
markets will have very different forecast requirements to a
network operator balancing supply and generation in real
time. These are example applications of short-term forecasting
(hours to days ahead) and very-short term forecasting (minutes
to hours ahead) respectively and this paper will focus on the
former.

Using the output of a Numerical Weather Prediction (NWP)
a data-driven approach is possible for the short-term forecast-
ing of a single wind farm. Typically, this involves mapping
concurrent NWP input features to a measured power time
series at the wind farm export cable using a statistical learning
technique. This avoids any assumptions of the physical phe-
nomena governing the wind to power process and is recom-
mended best-practice because it implicitly accounts for wake-
losses, terrain effects, turbine condition, and the systematic
bias in weather forecasts [2]. It follows that there are two

sources of error in wind power forecasts: meteorological
forecast errors and those from the wind-to-power conversion
process, the latter being the focus of this paper.

Due to the stochastic nature of the wind resource, in
academia the focus has been on developing probabilistic
methods for forecasting, which is reviewed comprehensively
in [3]. However, it has been noted that there is a disconnect
between the research in academia and application in industry,
which is mainly based around deterministic forecasting [2].
Deterministic wind power forecasting involves a best-guess
estimate of future generation and is reviewed extensively
in [4], [5].

An area of challenge for wind power prediction highlighted
within the IEA Wind Task 36 [6] is the lack of widely
available and publicised benchmark datasets to test various
methodologies on. For this reason, forecasting competitions
such as the 2012 and 2014 Global Energy Forecasting Com-
petitions (GEFCom) [7], [8] are a valuable pursuit and
provide learning for both forecast producers and users. A
common theme amongst the two winning approaches to the
two GEFCom wind forecasting competitions [9], [10] is the
use of Gradient Boosting regression Trees (GBT) with a focus
on feature engineering and cross validation to generate robust
and powerful models. The five most successful models in the
latest competition employed a fully non-parametric approach
using techniques such as k-Nearest Neighbour (kNN), and
Quantile Regression [8].

Large utility scale wind farms contain many turbines dis-
tributed over a wide geographical area with each turbine
experiencing different conditions. The turbine level data en-
abling this study is also routinely measured and transmitted
to operators making this data available for use in forecasting
systems. Here we propose an extension to [11] to evaluate the
use of turbine-level power data in a hierarchical probabilistic
forecasting framework which has proved successful in other
related applications [12], [13].

Aspects of the electricity network provides a suitable frame-
work when studying hierarchical forecasting; wind power be-
haviour is hierarchical by its nature, rising from the individual
turbine, to farm, to regional level etc. At different levels
of the hierarchy the behaviour and interactions between the
measurements can pose different problems. At the lowest level
the time-series is often characterized by intermittency and
there is a tendency to observe noisy measurements, whereas
at the top level these influences can be smoothed out. This has
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been discussed extensively in [13]–[15] where it is emphasised
that a simple bottom-up approach to forecasting the top level,
by summing the constituent lower level forecasts, tend to
deliver poor performance because of the low signal to noise
ratio of the bottom hierarchy.

II. FORECASTING METHODOLOGY

In the composition of the hierarchical model, the first
layer is composed of out-of-sample deterministic forecasts
of each turbine and an aggregated deterministic farm level
forecast. These are then used as input features to a top-level
probabilistic model which provides the desired final forecast.

In the benchmark and individual turbine forecasting models
the explanatory variables xt contains features derived from the
NWP, namely forecast wind speed and direction at 10m and
100m above ground linearly interpolated to 30-minute resolu-
tion. Feature engineering is used to boost the predictive power
of all models, this included temporal features (leading and
lagging wind speed forecasts, averages, ratios, and gradients)
[16] and time-of-day features to capture diurnal bias in the
NWP which are modelled by cubic spline kernels [17].

In total three benchmark models are used. The deterministic
and a probabilistic benchmark consist of power forecasts at
the farm level produced using the GBT method with feature
engineering inspired by the winning approach to the wind
tracks of the 2012 and 2014 GEFCom competitions [9], [10].
The other probabilistic benchmark model uses the output of
the GBT mean benchmark to generate a probabilistic forecast
via the Analog Ensemble technique [18]. These robust and
very competitive benchmarks are based on the conventional
approach to forecasting, using solely the smoother wind farm
level power data and are used to determine any improved skill
of the hierarchical approach. A summary of the input features
used in this study is shown in Table I for the GBT benchmarks
and individual turbine models.

The Analog Ensemble (AnEns) consists of wind farm power
observations which correspond to the most similar mean
forecasts in the training dataset to the current mean forecast of
interest. In this case the AnEns was conditioned by lead time
and the algorithm used to rank past forecast similarity was
k-nearest neighbours (kNN) with a Euclidean distance metric.
The advantage of this method is that it is very computationally
efficient although a large training period is necessary to
produce competitive forecasts. A similar approach was used in
the second place entry in the GEFCom2014 competition [19].
For a more detailed description of the AnEns method please
refer to [18].

A. Gradient Boosting Trees

The Gradient Boosting Tree (GBT) framework is an en-
semble learning algorithm that it is non-linear, non-parametric,
and can be used in conjunction with various differentiable loss
functions. This means that the same model framework can be
used to fit the deterministic mean forecast, using the square
loss function, and the probabilistic forecasts, using the quantile
loss function.

TABLE I
LIST OF INPUT FEATURES BY MODEL - METEOROLOGICAL INPUTS AT

100M (UNLESS SPECIFIED)

Model Features ID

GBT
Bench-
marks &
Layer 1
Individ-
ual
Turbines

Wind speed - 10m ws-10m
Wind speed ws
Wind direction - 10m wd-10m
Wind direction -
Leading ws (1 to 4 periods) ws-pl-[1-4]
Lagging ws (1 to 4 periods) ws-nl-[1-4]
Leading wd (-1 to -4 periods) -
Lagging wd (-1 to -4 periods) -
Average ws (0 to 4 periods) ws-av-pl
Average ws (0 to -4 periods) ws-av-nl
Average wd (0 to 4 periods) -
Average wd (0 to -4 periods) wd-av-nl
Standard deviation ws (0 to 4 periods) -
Standard deviation ws (0 to -4 periods) -
Standard deviation wd (0 to 4 periods) -
Standard deviation wd (0 to -4 periods) -
WS ratio (100m & 10m) -
WS gradient (-1 to 0 period) -
Direction difference (100m & 10m) -
Time of day splines (4) -
Persistence pers.

Layer 2
Proba-
bilistic
Model

Layer 1 aggregation (mean) L1-agg
L1 turbine forecasts (2,13,11,17,23,25) L1-T[#]
L1 turbine forecast variance (all) L1-var
Leading L1 aggregation (1, 2, 3) L1-agg-pl[#]
Lagging L1 aggregation (-1) L1-agg-nl1
Average L1 aggregation (0 to 4 periods) L1-agg-av-pl
Average ws (0 to 4 periods) ws-av-pl

Individual trees can be fit very efficiently using the process
of recursive partitioning but have limited predictive power and
for this reason are often called weak learners [20]. Gradient
boosting attempts to overcome this drawback by constructing
a ‘stronger’ learner from an ensemble of weak learners. The
gradient boosting tree Fn(xt) is the sum of n regression trees

yt = Fn(xt) + εt (1)

=

n∑
i=1

fi(xt) + εt (2)

where each fi(xt) is a regression tree. The ensemble of
regression trees is constructed sequentially by estimating the
new regression tree fn+1(xt) via

argmin
fn+1

∑
t

L (yt, Fn(xt) + fn+1(xt)) (3)

for some loss function L(·). Where L(·) is differentiable, this
optimisation can be solved by steepest descent written

gn(xt) =
∂L (yt, Fn(xt))

∂Fn
(4)

fn+1(xt) = −ρngn(xt) (5)

where

ρn = argmin
ρ

∑
t

L (yt, Fn(xt)− ρgn(xt)) . (6)

The user must specify the number of trees to fit, n, and the
number of regions each tree divides the input space into.
An additional shrinkage parameter may be included in (5) to



Fig. 1. Block-flow diagram illustration of the proposed layered methodology

control the learning rate of the fitting procedure and reduce
the impact of individual trees. It is important to note that it is
necessary to do extensive tuning of the hyper-parameters used
for the boosting and tree-fitting processes [21].

B. Hierarchical Approach

The hierarchical methodology is effectively split into a
two-layer approach consisting of a deterministic turbine layer
and a probabilistic farm-level layer. Using a similar approach
has proven successful in the context of incorporating off-site
information to improve the accuracy of an individual wind
farm [10]. In this case, it is proposed to improve accuracy
at the wind farm level by using internal information from a
lower hierarchy via deterministic mean forecasts for each wind
turbine. A summary of this method is shown in Figure 1.

1) Deterministic Layer: The individual out-of-sample tur-
bine mean forecasts yi,t are combined to produce a mean
forecast for the wind farm zt using a weighted sum

zt =

D∑
i=1

ωiyi,t + εt (7)

which is essentially a forecast calibration step whereby infor-
mation from the wind farm smoother time-series is used to
fit a weighted aggregation of the turbine forecasts. The two-
way passage of information from the lower and higher levels
of the hierarchy differentiate this method from a conventional
bottom-up approach, the importance of which is emphasised
in other hierarchical forecasting applications [15]. Weighting
parameters are estimated by elastic net penalized regression
[22]

ω = argmin
β

{
1

2N
||Z−Yβ||22+

λ

[
(1− α)1

2
||β||22 + α||β||1

]}
(8)

where λ is a tuning parameter, α is a compromise between
ridge (α = 0) and lasso (α = 1) regression, Z and Y
are matrices of vertically stacked instances of zt and yt.

Conditioning the weighted sum on forecast wind direction was
also tested by partitioning the data into a number of discrete
directional bins, as described in [11], however in this study
was shown to provide no value in improving the forecast via
cross-validation. The optimal value of α and λ are determined
through k-fold cross validation.

The tuning and regularisation strategy of the GBT models
utilised k-fold cross validation, with 5 folds, via a grid-
search of the interaction depth and shrinkage parameters. The
parameters held constant were the number of trees (500), the
minimum number of observations at each leaf node (30), and
the bag fraction (75%) which is the fraction of the training set
randomly chosen to fit the next tree in the ensemble. In the
deterministic models the k-fold cross validation was used to
minimise the Root Mean Squared Error (RMSE).

2) Probabilistic Layer: The desired final predictive distri-
bution, determined using quantile regression (including the
5th,10th,...,95th quantiles), is calculated using the NWP input
features and the available deterministic forecasts generated by
the lower hierarchy layer. This indicates that there are several
possible configurations available to optimise. Feature selection
is employed to determine the most valuable input features from
a candidate pool that includes: 1) NWP features xt, 2) the
mean forecast of the lower hierarchy zt, 3) individual turbine
mean forecasts yi,t, and 4) temporal and spatial features
derived from the lower hierarchy power forecasts. For this
particular case study (see Section III) the final engineered
feature list for the layered probabilistic model are summarised
in Table I.

For the tuning of the quantile GBT models certain key
quantiles (5th, 30th, 50th, 70th, 95th) in the distribution were
tuned individually to minimise the pinball loss function [23].
For target quantile q the pinball loss function at time t is

PB(q)
t =

{
(1− q)(ẑ(q)t − zt) , if zt < ẑ

(q)
t

q(zt − ẑ(q)t ) , if zt ≥ ẑ(q)t
(9)

and spline interpolation was then used to determine the inter-
vening quantile hyper-parameters. The same rigour of tuning



via cross validation is also applied to the benchmark models.
For the AnEns benchmark, k fold cross validation is used
to determine the optimum k neighbours which constitute the
ensemble and it was computationally feasible to efficiently
minimise the Continuous Rank Probability Score (CRPS).

III. CASE STUDY

The methodologies are tested at Gordonbush wind farm
operated by SSE in the UK. This is a large utility scale park
with 35 2MW turbines spread across an area of approximately
15km2. Generation data from individual turbine SCADA sys-
tems and the wind farm power export meter are used at 30
minute resolution with instances of curtailment flagged and
excluded from the forecasting exercise. Training and testing
data are partitioned with a 15 and 6 month length respectively.
Numerical Weather Forecasts from the European Centre for
Medium-Range Weather Forecasts (ECMWF) comprise of
wind speed and direction at 10 and 100m above ground at
the closest grid point to the wind farm, with 2 issue times per
day. The methodologies described are implemented in R using
the packages glmnet, kknn and gbm [24]–[27].

IV. RESULTS

To evaluate the mean forecast, the RMSE performance
metric is used [28]. Probabilistic forecasts are evaluated in
terms of their reliability (also called calibration) and sharpness.
Reliability is a necessary condition for probabilistic forecasts
to be useful in decision making, and reliable forecasts are
differentiated between using the CRPS score. The calibration
is calculated from an indicator variable η

(q)
t for a given

nominal quantile forecast

η
(q)
t =

{
1 , if zt < ẑ

(q)
t

0 , otherwise
(10)

from which the mean of the series of outcomes is calculated
over the entire testing dataset to give the actual coverage â(q)

of the quantile

â(q) =
1

N

N∑
t=1

η
(q)
t (11)

the coverage is then determined over the distribution quantiles
and is illustrated via a reliability diagram [1]. An extension
to this measure includes deviations from nominal proportions
to highlight the sometimes subtle differences between model
calibration. This is known as the bias b(q) of the quantile
forecast [29]

b(q) = q − â(q) (12)

The sharpness and calibration can be both quantified via the
CRPS [30]

CRPS =
1

N

N∑
t=1

∫ ∞
−∞
{Ft(z)− 1(z ≥ zt)}2dz (13)
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Fig. 2. Relative influence of input features: GBT Benchmark
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Fig. 3. Relative influence of input features: Hierarchical Model

where 1(.) is the indicator function. This score essentially
compares the predictive forecast distribution Ft against the
empirical distribution of the observation zt.

For ensemble decision trees it is important to evaluate
variable importance via the measure ”relative influence” which
allows the user to look under the hood; this is a quantitative
measure based on the number of times a variable has been
selected for splitting, with a weighting applied derived from
the predictive improvement to the model from each split
averaged over all the trees [31]. Figures 2 and 3 illustrate the
importance of selected variables across key quantiles in the
probabilistic GBT benchmark and probabilistic hierarchical
model.

For the benchmark model the engineered feature giving the
average of the leads of wind speed shows the highest influence
in the model, especially at the lower tail of the distribution.
At the upper tail of the distribution a greater mix of features
contribute to the predictive power of the model, including the
circular average of wind direction from the negative lags. This
indicates that at the higher levels of power production, wind
direction and other features have more influence on the power
forecast, compared to the lower power generation levels which
are simply dominated by average wind speed. The influence of



the engineered temporal features across all quantiles indicates
the importance of what is essentially smoothing of the deter-
ministic meteorological forecast by using average features and
leading/lagging inputs.

For the proposed model, the out-of-sample aggregated mean
forecast from the turbine level (layer 1) has most of the
influence across the quantiles, along with the average leads
of this feature. The only meteorological feature selected at
this higher layer of the model is the average wind speed of the
positive leads, which shows the importance of this explanatory
variable at both levels of the hierarchy.

The case study results are given in Table II showing the
forecast performance of the proposed method versus time
horizon of the lower hierarchy (deterministic) and the upper
hierarchy (probabilistic) models. These are compared with the
benchmark models to give a percentage change in forecast
skill. The deterministic results show that averaged across all
the horizons it is possible to gain a 1.61% reduction in RMSE
using a hierarchical approach.

The probabilistic hierarchical approach led to an average
improvement in CRPS of 1.24% over the GBT benchmark,
which is in-line with the deterministic improvement. It should
be emphasised that this benchmark method is state-of-the-art
and based on the winning method from the GEFCom2014,
competition with additional focus on feature engineering. In
the context of simply better utilisation of existing data, with
no necessary large investments in new equipment, this modest
improvement could have an accumulated large impact across
a portfolio with no necessary cost overheads. In terms of
forecast reliability, as shown in Figure 4, overall the proposed
model is well calibrated and gives improvements over the GBT
benchmark (Figure 4 (a)), at the upper end of the distribution
with some slightly diminished performance at the lower end
of the distribution.

The AnEns CRPS is marginally greater than the GBT
models which, given the computational advantages and relative
simplicity of this approach, is notable. However the reliability
reveals that the calibration of this forecast is poor, especially
in the lower half of the distribution. The hierarchical method
offers a 2.39% improvement in CRPS when compared to the
AnEns benchmark. Overall, using a hierarchical probabilistic
method resulted in improvement in forecast CRPS of 1.24%
and 2.39% averaged over the forecast horizon, compared to
very competitive benchmark models based on direct forecast-
ing wind farm power via GBT regression and the AnEns
technique respectively. Figure 5 gives an example of the
resulting density forecast from the hierarchical approach.

Future work should consider the utility of this approach in
combination with downscaled NWP and if similar improve-
ments are possible on very-short time scales where statistical
methods typically outperform those based on NWP. It would
be prudent to test the approach on wind farms with different
characteristics, such as offshore and very-large onshore farms
to test if the approach generalises. Additionally, compar-
isons could be made to bottom-up hierarchical forecasting
approaches such as estimating the joint distribution of the
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lower level turbine forecasts via a copula and the marginal
distributions of the individual turbines.

V. CONCLUSIONS

This paper investigates a novel method for probabilistic
hierarchical forecasting of wind farm power, incorporating
turbine-level data using a layered approach where generated
deterministic forecasts from the lower hierarchy (turbine level)
are used as input features to a higher-level wind farm prob-
abilistic model. On a case study at a utility scale wind farm
in the UK it is shown that average improvements in CRPS of
1.24% and 2.39% are obtainable when compared to two very
competitive benchmark models based on GBT regression and
the AnEns technique respectively.
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