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Abstract

We study the static equilibria of a simplified Leslie–Ericksen model for a unidi-
rectional uniaxial nematic flow in a prototype microfluidic channel, as a function
of the pressure gradient G and inverse anchoring strength, B. We numerically
find multiple static equilibria for admissible pairs (G,B) and classify them ac-
cording to their winding numbers and stability. The case G = 0 is analytically
tractable and we numerically study how the solution landscape is transformed
as G increases. We study the one-dimensional dynamical model, the sensitivity
of the dynamic solutions to initial conditions and the rate of change of G and B.
We provide a physically interesting example of how the time delay between the
applications of G and B can determine the selection of the final steady state.
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1. Introduction

Recent years have seen a tremendous surge in research in complex fluids,
of which nematic liquid crystals (NLC) are a prime example[1, 2, 3]. Nematic
liquid crystals are anisotropic liquids that combine the fluidity of liquids with
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the orientational order of solids i.e. the constituent rod-like molecules typically
align along certain preferred or distinguished directions and this orientational
anisotropy can have a profound optical signature[4]. Various researchers have al-
ready looked at effects of magnetic, electric or flow fields on pattern formation in
confined nematic systems[1, 5]. In particular, microfluidics is a thriving area of
research; scientists typically manipulate fluid flow, say conventional isotropic flu-
ids, in narrow channels complemented by different boundary treatments, leading
to novel transport and mixing phenomena for fluids and potentially new health
and pharmaceutical applications[6, 7, 8]. A natural question to ask is what hap-
pens when we replace a conventional isotropic liquid with an anisotropic liquid,
such as a nematic liquid crystal?[3] Nematic microfluidics have recently gen-
erated substantial interest by virtue of their optical, rheological and backflow
properties along with their defect profiles[9].

In Sengupta et al.[3], the authors investigate, both experimentally and nu-
merically, microfluidic channels filled with nematic solvents. The authors work
with a thin microfluidic channel with length much greater than width and width
much greater than depth. A crucial consideration is the choice of boundary
conditions and the authors work with homeotropic or normal boundary condi-
tions on the top and bottom channel surfaces, which require the molecules to
be oriented in the direction of the surface normal. The anchoring strength is
a measure of how strongly the boundary conditions are enforced: strong an-
choring roughly corresponds to Dirichlet conditions for the director field and
zero anchoring describes free (Neumann homogeneous) boundary conditions.
We expect most experiments to have moderate to strong anchoring conditions.
The authors impose a flow field transverse to the anchoring conditions so that
there are at least two competing effects in the experiment: anchoring normal
to the boundaries and flow along the length of the microfluidic channel. They
work with weak, medium, and strong flow speeds in qualitative terms and ob-
serve complex flow transitions. In the weak-flow regime, the molecules are only
weakly affected by the flow and the molecular orientations are largely deter-
mined by the anchoring conditions. As the flow strength increases, a complex
coupling between the molecular alignments and the flow field emerges and the
nematic molecules reorient to align somewhat with the flow field. The medium-
flow director field exhibits boundary layers near the centre and the boundaries
where the director field is strongly influenced by either the flow field or the
boundary conditions. In the strong-flow regime, the molecules are almost en-
tirely oriented with the flow field, with the exception of thin boundary layers
near the channel surfaces to match the boundary conditions. The authors study
these transitions experimentally and their experimental results suggest a largely
uniaxial profile wherein the molecules exhibit a single distinguished direction
of molecular alignment and this direction is referred to as being the director
in the literature[1]. The authors present experimental measurements for the
optical profiles and flow fields and their experimental work is complemented
by a numerical analysis of the nematodynamic equations in the Beris–Edwards
theory[10]. The Beris–Edwards theory is one of the most general formulations
of nematodynamics, that accounts for both uniaxial and biaxial systems (with
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a primary and secondary direction of molecular alignment) and variations in
the degree of orientational order. The authors numerically reproduce the ex-
perimentally observed flow transitions, the director and flow-field profiles, all of
which are in good qualitative agreement with the experiments.

In Anderson et al.[11], the authors model this experimental set-up within
the Leslie–Ericksen model for nematodynamics. Their Leslie–Ericksen model
is restricted to uniaxial nematics with constant ordering (a constant degree of
orientational order)[5]. They present governing equations for the flow field and
the nematic director field along with the constitutive relations that describe the
coupling between the director and the flow field (see Appendix A for details)
and assume that all dependent variables only vary along the channel depth, with
a unidirectional flow along the channel length, consistent with the experiments.
These assumptions greatly simplify the mathematical model, yielding a decou-
pled system of partial differential equations for the director field, which captures
the flow dynamics through a single variable: the pressure gradient, G, along the
channel length. The authors define two separate boundary-value problems: one
for weak-flow solutions and one for strong-flow solutions, described by two dif-
ferent sets of boundary conditions for the director field. They find weak- and
strong-flow solutions for all values of the pressure gradient and they relate the
resulting flow profile to the mean flow speed by a standard Poiseuille-flow-type
relation. The energy of the weak-flow solution is lower than the strong-flow
solution for small G and there is an energy cross-over at some critical value,
G∗, that depends on the anchoring strength at the channel surfaces. Recently,
Batista et al.[12] undertook a comprehensive study of the interplay between the
pressure gradient and anchoring conditions on the transition between the weak-
flow and strong-flow solutions, which they related to a discontinuity in the mass
flow rate function.

In this paper, we build on the work in Anderson et al.[11] by performing
an extensive study of the static solution landscape, complemented by some nu-
merical investigations of the dynamical behavior, as the system evolves to these
equilibrium configurations. We adopt the same model with the same underpin-
ning assumptions as in Anderson et al.[11], but we do not define two separate
boundary-value problems. We impose weak anchoring conditions for the direc-
tor field on the top and the bottom surfaces since it includes both the weak
and strong anchoring configurations and allow us to capture the competition
between the flow field and the anchoring strength. In Bevilacqua et al.[13], the
authors adopt a similar approach to study the competition between the mag-
netic field and the anchoring strength on static equilibrium profiles, described
by critical points of a suitably defined energy.

We compute the static equilibrium solutions, using a combination of analytic
and numerical methods, as a function of G and the inverse anchoring strength
B. The case G = 0 is analytically tractable and we identify two different classes
of solutions and characterize their stability. This is complemented by an asymp-
totic analysis in the limits G → 0 and G → ∞, with the latter regime yielding
useful information about the boundary layers near channel surfaces, which are
experimentally observed in the strong-flow regimes[3]. We then study the solu-
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tion landscape for G 6= 0 and track the stable and unstable solution branches
as a function of (G,B). Our work largely focuses on the static equilibria but
the last section is devoted to a numerical study of the dynamic Leslie–Ericksen
model and its sensitivity to the initial condition. In particular, we present a nu-
merical example for which we can control the final steady state by manipulating
the rate of change of the pressure gradient and anchoring conditions.

The paper is organized as follows. In Section 2, we present the Leslie–
Ericksen dynamic model, the governing equations and boundary conditions. In
Section 3, we explore the static solution landscape as a function of the pressure
gradient and anchoring strength. In Section 4, we study the dynamic model,
with focus on the effects of initial conditions and the time-dependent forms
of the pressure gradient and anchoring strength, and conclude in Section 5 by
putting our work in context and discuss future developments.

2. Mathematical Model

As in Anderson et al.[11], we model the NLC within the microfluidic channel
in the Leslie–Ericksen framework. The channel has dimensions, Lx̂ >> Lŷ >>
Lẑ, in the x̂, ŷ and ẑ directions respectively, consistent with the experimental
set-up in Anderson et al.[11] and Sengupta et al.[3] The NLC is purely uniaxial
with constant order parameter, by assumption, and is hence fully described
by a director field, n, that represents the single preferred direction of nematic
alignment. Here, n and −n are physically indistinguishable (in the absence
of polarity the sign of n has no physical meaning). We additionally assume
that all dependent variables only depend on the ẑ-coordinate, along the channel
depth, as depicted in Figure 1. Then the director field is of the form n =

ẑ

x̂
−h

h

Fluid Flow

Figure 1: Schematic of the microfluidic channel set-up. The nematic molecules are anchored
at the top and bottom surfaces and are deformed by the fluid flow from the left.

(sin(θ(ẑ, t̂)), 0, cos(θ(ẑ, t̂))) and the velocity field is unidirectional, of the form
v = (û(ẑ, t̂), 0, 0), with −h ≤ ẑ ≤ h. Since n and −n are indistinguishable, θ
and θ+ kπ, k ∈ Z, describe the same director profile. We assume that û(ẑ, t̂) is
symmetric around the center-line (i.e around ẑ = 0) and no-slip conditions are
imposed on the channel walls (i.e. û(±h, t̂) = 0). We assume weak anchoring
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boundary conditions for θ on ẑ = ±h, that can be derived from the well-known
Rapini–Papoular weak-anchoring energy[14],

ES =

∫

ẑ=±h

A

2
sin2 θ dx̂ dŷ,

which enforces θ(−h) = k1π and θ(h) = k2π (k1, k2 ∈ Z) for large anchor-
ing coefficients A > 0. In other words, the Rapini–Papoular energy enforces
homeotropic anchoring (along the normal to the surface) described by, n =
± (0, 0, 1) on ẑ = ±h.

We substitute the assumed forms for v and n into the full Leslie–Ericksen
governing equations, as outlined in Appendix A, and obtain the following sys-
tem describing the evolution of θ and û:

γ1
∂θ

∂t̂
=K

∂2θ

∂ẑ2
− ∂û

∂ẑ
m(θ) ẑ ∈ (−h, h), t̂ > 0, (1a)

−Gẑ =
∂û

∂ẑ
g(θ) +

∂θ

∂t̂
m(θ) ẑ ∈ (−h, h), t̂ > 0, (1b)

θ(ẑ, 0) = Θ(ẑ) ẑ ∈ (−h, h), (1c)

û(±h, t̂) = 0 t̂ > 0, (1d)

K
∂θ

∂ẑ
=− A

2
sin(2θ(ẑ, t̂)) ẑ = h, t̂ > 0, (1e)

K
∂θ

∂ẑ
=
A

2
sin(2θ(ẑ, t̂)) ẑ = −h, t̂ > 0, (1f )

where K (N) is the elastic constant of the NLC, Θ is the initial condition,
−G = ∂P

∂x̂ is the component of the pressure gradient in the channel direction
and A (Nm−1) is the surface anchoring strength. Note that for a physically
realistic solution, we expect that as A → ∞, 2θ tends to an integer multiple of
π on ẑ = ±h.

The functions
m̂(θ) = α̂2 cos

2(θ)− α̂3 sin
2(θ) and

ĝ(θ) = α̂1 cos
2(θ) sin2(θ) +

α̂5 − α̂2

2
cos2(θ) +

α̂3 + α̂6

2
sin2(θ) +

α̂4

2
,

the α̂i (N m−2 s), i ∈ {1, . . . , 6}, are constant viscosities related to each other by
the Parodi relation[15], α̂2+ α̂3 = α̂6− α̂5. Characteristic values for the dimen-
sionless nematic viscosities are α1 = −0.1549, α2 = −0.9859, α3 = −0.0535,
α5 = 0.7324 and α6 = −0.39[11]. Note that the following inequalities must be
satisfied (see Appendix A.1.1):

ĝ(θ) > 0, γ̂1ĝ(θ) > m̂2(θ), (2)

where γ̂1 = α̂3 − α̂2. Note that, if θ1, θ2 are the solutions of (1) corresponding,
respectively, to initial conditions Θ1(ẑ) and Θ2(ẑ) = Θ1(ẑ) + kπ (k ∈ Z), then
θ2 = θ1 + kπ and both θ1 and θ2 correspond to the same physical description.
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We non-dimensionalize the system (1) using the scalings

z =
ẑ

h
, u =

ûα4h

K
, αi =

α̂i

α̂4
, γ1 =

γ̂1
α̂4

, t =
Kt̂

α̂4h2
. (3)

Furthermore, using (1a,b) we obtain the following decoupled dimensionless initial-
boundary-value problem for θ:

(

γ1g(θ)−m(θ)2
)∂θ

∂t
= g(θ)

∂2θ

∂z2
+ Gzm(θ) z ∈ (−1, 1), t > 0, (4a)

θ(z, 0) = Θ(z) z ∈ (−1, 1), (4b)

B∂θ

∂z
(1, t) = − sin(2θ(1, t)) t > 0, (4c)

B∂θ

∂z
(−1, t) = sin(2θ(−1, t)) t > 0, (4d)

the velocity u being available via equation

u(z, t) = −
∫ Gz + ∂θ

∂t (z, t)m(θ(z, t))

g(θ(z, t))
dz, (5)

where G = h3G/K and B = 2K/Ah are the dimensionless pressure gradient and
the dimensionless inverse anchoring strength respectively,

m(θ) = α2 cos
2(θ)− α3 sin

2(θ) and

g(θ) = α1 cos
2(θ) sin2(θ) +

1

2

(

(α5 − α2) cos
2(θ) + (α3 + α6) sin

2(θ) + 1
)

.

Note that, if θ1, θ2 are the solutions of (4) corresponding, respectively, to initial
conditions Θ1(z) and Θ2(z) = Θ1(z) + kπ (k ∈ Z), then θ2 = θ1 + kπ and both
θ1 and θ2 correspond to the same physical description.
We compute equilibrium solutions and dynamic time-dependent solutions of sys-
tem (4) for different values of dimensionless pressure gradient G, dimensionless
inverse anchoring strength B and initial conditions Θ, using parameter values
for the NLC 5CB as in Anderson et al[11].

3. Equilibrium Solutions

We begin by studying the static equilibria of the system (4), θ∗(z), which
satisfy







































g(θ∗(z))
d2θ∗

dz2
(z) = −Gzm(θ∗(z)) z ∈ (−1, 1),

Bdθ∗

dz
(1) = − sin(2θ∗(1)),

Bdθ∗

dz
(−1) = sin(2θ∗(−1)).

(6)

6



We characterize the equilibrium solutions in terms of their winding number,
defined to be

ω(θ∗) =
θ∗(1)− θ∗(−1)

2π
. (7)

The winding number is typically used in the literature in relation with topo-
logical defects[16], however here we use it as a measure of the rotation of the
director field between the top and bottom surfaces. The limit B → 0 is the
strong anchoring limit, when the boundary conditions on z = ±1 are strongly
enforced and both θ∗(1) and θ∗(−1) are integer multiples of π

2 in this limit.
Particularly, as we will see in Section 3.1, as B → 0, the stable equilibria at
z = ±1 tend to θ∗(±1) = nπ, n ∈ Z (homeotropic anchoring) and the unstable
equilibria to θ∗(±1) = (n + 1

2 )π, n ∈ Z (planar anchoring at the boundaries).
This is simply because θ∗(±1) = nπ is a minimum of the surface energy used to
derive the anchoring conditions at z = ±1. See B.1.1 for a detailed description
of different nematic configurations. In what follows, we track the stable and
unstable solutions of (6) as the model parameters are varied.

3.1. No fluid flow (G = 0)

When G = 0, we can explicitly solve the system (6) to obtain the static
equilibria (see Appendix B for more details). We divide the potentially stable
equilibria (see Section B.1) into two families:

Type I θ∗an
(z) = anz, where Ban = − sin(2an), (8)

Type II θ∗ãn
(z) = ãnz +

π

2
, where Bãn = sin(2ãn). (9)

For every value of B, we obtain an ordered set of solutions for (8), with 0 =
a0 < a1 < . . . < an, n ∈ N ∪ {0} depending on B. Moreover, if an defines a
solution, so does −an, which we denote by a−n (identical remarks apply to (9)).
Let θ∗an

denote the solution corresponding to an in (8), then θ∗an
= −θ∗a−n

and
ω(θ∗an

) = −ω(θ∗a−n
) = an

π , where ω(θ∗an
) satisfies the transcendental equation

B = − sin(2πω(θ∗an
))

πω(θ∗an
)

. (10)

Analogous statements apply to solutions θ∗ãn
with ãn a solution of equation (9),

where ω(θ∗ãn
) satisfies the transcendental equation

B =
sin(2πω(θ∗ãn

))

πω(θ∗ãn
)

. (11)

Thus there is a symmetric (with respect to ω(θ∗) = 0) arrangement of solutions,
which is physically reasonable since we do not expect to have a preferred twist
direction when G = 0. In Section B.1 we analyze the linear stability of the
equilibria (8)–(9) to conclude that

Type I is stable if n is even and is unstable if n is odd,
Type II is stable if n is odd and is unstable if n is even.
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ω(θ∗an)

B

θ∗a−4
θ∗a−3

θ∗a−2
θ∗a−1

θ∗a0

θ∗a1 θ∗a2

θ∗a3 θ∗a4

Type I

-2 - 32
-1 - 12

0 1
2

1 3
2

2

0.1

B∗
4 = B∗

−4

0.3

B∗
2 = B∗

−2

0.6

0.7

0.8

0.9

1

Figure 2: Case G = 0: Solutions of (10) indicating the emergence of non-constant steady-state
solutions θ∗an

, n = 0,±1, . . . at critical values B∗
2n for n = ±1,±2, . . .. The solid and dashed

lines represent, respectively, the values of ω(θ∗an
) for which the steady state θ∗an

is stable or
unstable.

It is clear that the director profiles for θ∗an
and θ∗a−n

are reflections of each other
about the angle θ = 0. The constant solutions θ∗a0

≡ 0 and θ∗ã0
≡ π

2 exist for all
values of B. These are the only solutions for large values of B. Non–constant
solutions subject to (8) and (9) emerge as B decreases.
We define critical values B∗

2n with n = ±1,±2, . . . such that, for n > 0, the
solution branches,

(

ω(θ∗a2n
),B

)

and
(

ω(θ∗a2n−1
),B

)

(and
(

ω(θ∗a2n+1
),B

)

if n < 0)
coalesce at the critical value B = B∗

2n and cease to exist for B > B∗
2n (see

Figure 2). Similarly, we define the critical values B∗
2n+1 with n = 0,±1, . . .

as the coalescence points for solutions of Type II (see Figure 3 for a complete
description). Solutions with large winding numbers are only observable in the
strong–anchoring limit. Notice that for B → 0 the stable equilibria are either
θ∗an

with ω(θ∗an
) = kπ or θ∗ãn

with ω(θ∗ãn
) = (k + 1

2 )π, k ∈ Z, and in both
cases θ∗(±1) tends to a multiple of π. We can apply the same reasoning to
deduce that for B → 0, the unstable equilibria are such that θ∗(±1) → (k+ 1

2 )π,
as previously claimed before Section 3.1. For weaker anchoring, the director
profile has greater freedom to reorient at the boundaries and escape from the
energetically expensive fixed rotation imposed by large winding numbers. For
G = 0, B∗

i = B∗
−i (i ∈ N). For B > B∗

1 , θ
∗
a0

and θ∗ã0
are the only constant steady

states of system (6). For simplicity, in what follows we denote the equilibrium
solutions as θ∗a, where θ∗a = θ∗an

if it is of Type I and θ∗a = θ∗ãn
if it is of Type II.

3.2. Fluid flow (G > 0)

Next, we study the static equilibria of the system (6) when we apply a
pressure difference G > 0 across the microfluidic channel, inducing a fluid flow.
The solutions are computed numerically for all values of G using Chebfun via
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ω(θ∗ãn)

B

θ∗ã−3
θ∗ã−2

θ∗ã−1

θ∗ã0

θ∗ã1

θ∗ã2 θ∗ã3

Type II

-2 - 32
-1 - 12

0 1
2

1 3
2

2

B∗
3 = B∗

−3

0.7

1

1.5

B∗
1 = B∗

−1

2.3

Figure 3: Case G = 0: Solutions of (11) indicating the emergence of non-constant steady-state
solutions θ∗

ãn
, n = 0,±1, . . . at critical values B∗

2n+1
for n = 0,±1, . . .. The solid and dashed

lines represent, respectively, the values of ω(θ∗
ãn

) for which the steady state θ∗
ãn

is stable or
unstable.

the method of continuation[17]. When the G = 0 solution θ∗a is taken as the
initial condition (see §3.1), the corresponding solution with G > 0 is denoted by
θ∗a,G . We numerically compute the stability of the equilibria with G > 0 (using
the function eigs of the MATLAB package Chebfun) and find that the stability
properties of the G = 0 equilibria propagate to the G > 0 cases.

3.2.1. Asymptotics when G ≪ 1

When G ≪ 1, we can approximate θ∗a,G by the expansion

θ∗a,G(z) = θ∗a(z) + Gθ(1)
G

(z) + · · · , where θ∗a is the corresponding solution for

G = 0. It is straightforward to verify that θ
(1)
G

is a solution of































d2θ
(1)
G

dz2
(z) = zQ(θ∗a(z)) z ∈ (−1, 1)

B
dθ

(1)
G

dz
(1) = −2θ

(1)
G

(1) cos(2θ∗a(1)),

B
dθ

(1)
G

dz
(−1) = 2θ

(1)
G

(−1) cos(2θ∗a(−1)),

(12)

where Q(s) = −m(s)/g(s). The solution to (12) is given by

θ
(1)
G

(z) = J(z) + Cz +D, (13)
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where

I(r) =

∫ r

0

sQ(as+ b)ds, J(z) =

∫ z

0

I(r)dr, (14)

C =
2(−1)k cos(2a)

(

J(−1)− J(1)
)

− B
(

I(1) + I(−1)
)

2B + 4(−1)k cos(2a)
, (15)

D = −1

2

(

J(1) + J(−1)
)

+
B(−1)k

(

I(−1)− I(1)
)

4 cos(2a)
, (16)

with b = k = 0 for Type I solutions where a satisfies (8) and b = π
2 and

k = 1 for Type II solutions, where a satisfies (9). We validate the asymptotic

z

θ
∗ a
0
,G
(z
)

G =0.1

G =2

G =5

G =10

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Figure 4: Static equilibra θ∗
a0,G

when B = 1

3
. Comparison of the asymptotic solution given

by (13) (dashed) with the full numerical solution to (6) (solid).

analysis performed above by numerically computing the equilibria θ∗a,G of (4)
for small values of G by solving (6) with Chebfun and comparing this with the
asymptotic result (13). When θ∗a = θ∗a0

≡ 0 and θ∗a = θ∗ã1
the asymptotic

solution approximates the actual solution for values of G significantly beyond
the expected regime (see respectively Figures 4(a) and 5(a), where we find that
the asymptotic solution approximates the full numerical solution well for values
of G as large as 7). We note that the graphical representation of the solutions
θ∗a0,G

and θ∗ã1,G
in Figures 4 and 5 agrees well with the experimental situations

reported by Jewell et al.[18], where the authors study the role of the pressure
gradient into the transition between these two steady states in the limiting case
B = 0. We choose a moderate anchoring strength to illustrate the differences
between the numerics and asymptotics clearly. The asymptotic approximations
rapidly improve as B → 0. Figure 6 plots the director field n and the flow
profile u (obtained by using (5)) associated with the equilibria θ∗a0,G

and θ∗ã1,G
,

computed when G = 0.5 and B = 1
3 . The director fields exhibit a continuous
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z

θ
∗ ã
1
,G
(z
)

G =7

G =0.1

G =2

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

Figure 5: Static equilibra θ∗
ã1,G

when B = 1

3
. Comparison of the asymptotic solution given

by (13) (dashed) with the full numerical solution to (6) (solid).

x

z

-0.005 0.005
-1

1

(a) n with θ∗a0,0.5
.

u(z)

z

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
-1

-0.6

-0.2

0.2

0.6

1

(b) Velocity profiles associated to θ∗a0,0.5
(solid) and

θ∗
â1,0.5

(dashed).

x

z

-0.1 0.1
-1

1

(c) n with θ∗
ã1,0.5

.

Figure 6: Director and flow profiles associated with the static equilibra θ∗a0,0.5
and θ∗

ã1,0.5
when

B = 1

3
. We note that, in (a), n ≈ (0, 0, 1) but different scales have been used in the x and z

axis to allow the reader to appreciate the change between θ∗a0,0.5
and θ∗a0,0

(corresponding to

n = (0, 0, 1)). In (b), x and z axis have the same scale.

rotation between the two channel surfaces. This behavior is broadly known as
the tumbling regime and is typically observed in nematic microfluidics with small
flow rates[19]. We note that solutions θ∗a0,G

and θ∗ã1,G
correspond to the weak-

and strong-flow solutions (obtained with weak anchoring) in Anderson et al.[11],
Figure 6 being easily compared with Figure 4(d)-(f) in [11]. In contrast to [11],
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our stability analysis suggests that both solutions are stable when G = 0.5 and
B = 1

3 .

3.2.2. Asymptotics when G → ∞
For G ≫ 1, we can perform a similar asymptotic expansion of the form

θ∗G(z) = θ
(0)
G

(z) + (1/G)θ(1)
G

(z) + · · · . Substituting this expansion into (6) and
equating terms at leading order gives

zQ(θ
(0)
G

(z)) = 0, z ∈ (−1, 1) (17a)

B
dθ

(0)
G

dz
(1) = − sin(2θ

(0)
G

(1)), (17b)

B
dθ

(0)
G

dz
(−1) = sin(2θ

(0)
G

(−1)). (17c)

Equation (17a) implies that θ
(0)
G

(0) can take arbitrary values in R and

θ
(0)
G

(z) ≡ ± arctan

(√

α2

α3

)

+ kπ ≡ σ±

k (18)

with k ∈ Z arbitrary; the value σ+
0 is broadly known as the flow-aligning angle

or Leslie angle[20]. However, the boundary conditions (17b.c) are not satisfied
by (18) and hence we expect to find boundary layers near z = −1, 0 and 1, in
order to match the boundary conditions. The solution in the two outer regions
−1 < z < 0 and 0 < z < 1 are given by (18) for any two particular integer
values of k, say k1 and k2.

Near z = −1, we rescale in (6) by introducing the variable η =
√
G(z + 1)

and perform an asymptotic expansion in powers of 1/
√
G. The corresponding

leading-order term in G, θ(0)L,G(η), is a solution of

d2θ
(0)
L,G

dη2
(η) = −Q(θ

(0)
L,G(η)),η > 0 (19a)

B̄
dθ

(0)
L,G

dη
(0) = sin(2θ

(0)
L,G(0)), (19b)

lim
η→∞

θ
(0)
L,G(η) = σ±

k1
, (19c)

where we have rescaled B̄ =
√
GB assuming that B̄ = O(1) to obtain the richest

asymptotic limit. We point out that the asymptotic analysis could be done

without this assumption. Then (19b) would be B dθ
(0)
L,G

dη = 0 and θ
(0)
L,G(η) = σ±

k1
.

We would need to use the second term, θ
(1)
L,G , of the asymptotic expansion (at

least) and the results with these two terms would be worse than those obtained

here. Equation (19c) is the matching condition between θ
(0)
L,G and θ

(0)
G

.

12



Near z = 0, we set ξ = G1/3z and the corresponding leading-order term,

θ
(0)
C,G(ξ), satisfies

d2θ
(0)
C,G

dξ2
= ξQ(θ

(0)
C,G(ξ)), ξ ∈ (−∞,∞), (20a)

lim
ξ→−∞

θ
(0)
C,G(ξ) = σ±

k1
, (20b)

lim
ξ→∞

θ
(0)
C,G(η) = σ±

k2
, (20c)

where (20b,c) describe the matching conditions.

Finally, we introduce the variable ζ =
√
G(1 − z) near z = 1 and θ

(0)
R,G(ζ),

the leading–order solution in G, satisfies

d2θ
(0)
R,G

dζ2
= Q(θ

(0)
R,G(ζ)), ζ > 0, (21a)

B̄
dθ

(0)
L,G

dη
(0) = sin(2θ

(0)
L,G(0)), (21b)

lim
ζ→∞

θ
(0)
R,G(ζ) = σ±

k2
, (21c)

where (21c) is the matching condition.
We numerically solve the three boundary layer problems (19), (20) and (21),

using Chebfun, matching to the constant values in (18). For our particular
choice of dimensionless nematic viscosities α2 and α3, all values of σ

±

k (defined
in (18)) are close to some odd multiple of π

2 , and thus the inner director field is
largely flow-aligned and is rotated kπ times with respect to the flow direction.
There are multiple choices for the outer solutions, σ±

k1
and σ±

k2
, for −1 < z < 0

and 0 < z < 1 respectively, yielding different asymptotic approximations. In
Figures 7 and 8 we compare the asymptotic approximations (18), (19), (20)
and (21) with numerical solutions of the full system (6) for large values of G.
The two cases are labeled as θ∗a0,G

and θ∗ã1,G
respectively, depending on the

initial condition used to generate them. The values of σ±

k1
and σ±

k2
are extracted

from the numerical solution and used in the asymptotic approximation (18)-
(21) (these values are different for solutions θ∗a0,G

and θ∗ã1,G
). Once the outer

values are determined, we can compute the asymptotic approximation using the
methodology outlined above. The asymptotic solution approximates the full
numerical solution well. The asymptotic solutions also show that the boundary
layers near the walls have width proportional to G−1/2, consistent with the
experimental findings in Sengupta et al[3]. Figure 9 plots the director field n

and the flow profile u (obtained by using (5)) associated with the equilibria
θ∗a0,G

and θ∗ã1,G
, computed for G = 100 and B = 1

3 . The director field is largely
flow-aligned, this behavior being typically observed in nematic microfluidics
with high flow rates[19]. Furthermore, the director field associated with θ∗a0,G

exhibits a third transition layer near the centre as predicted by the asymptotic

13



analysis. In contrast to [11], our stability analysis suggests that both solutions
are stable when G = 100 and B = 1

3 .
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Figure 7: Static equilibria θ∗
a0,G

with G → ∞ and B = 1

3
. Comparison of asymptotic solution

given by (13) (dashed) with the full numerical solution to (6) (solid).
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Figure 8: Static equilibria θ∗
ã1,G

when G → ∞ and B = 1

3
. Comparison of asymptotic solution

given by (13) (dashed) with the full numerical solution to (6) (solid).

3.3. Equilibrium solution landscape in G.
In this section, we study how the static solution landscape for the system

(4) evolves as the pressure gradient G increases. In Section 3.1, we compute
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(dashed).
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Figure 9: Director and flow profiles associated to the static equilibra θ∗a0,100
and θ∗

ã1,100
when

B = 1

3
.

the static equilibria, θ∗a for G = 0. In what follows, we let θ∗a,G denote the nu-
merically computed equilibrium, via continuation methods with θ∗a as initial
condition. We numerically compute the stability of the equilibria with G > 0
(using the function eigs of the MATLAB package Chebfun) and find that the
stability properties of the G = 0 equilibria propagate to the G > 0 cases. Figures
10 and 11 show the evolution of the steady state solutions, θ∗an

and θ∗ãn
, as G

increases. For G = 0 and B > B∗
1 , the trivial solution θ∗a0

≡ 0 is the unique
stable equilibrium. For G > 0 the trivial solution is not an equilibrium and for
B > B∗

1 , θ
∗
a0,G

is not the unique stable equilibrium. As the pressure gradient
G increases, new equilibria appear for B > B∗

1 . Additionally, some equilibria,
e.g. those with a large positive winding number, become suppressed or have a
smaller window of existence in B, as G increases.

We believe that the asymmetry in the solution branches with positive and
negative winding numbers for G > 0 is a consequence of the fact that we work
with unit-vector fields, and not director fields without a direction. We speculate
that a more sophisticated model, such as the Beris–Edwards model for nema-
todynamics which accounts for the head–tail symmetry of nematic molecules,
may resolve this asymmetry between positive and negative winding numbers for
large G.

Let B∗
i,G denote a critical value of B for a fixed G > 0; this definition is

analogous to the definition of B∗
i for G = 0. We conjecture that there is a

saddle-node bifurcation at each critical value such that if n > 0, the stable
branch, θ∗a2n,G

, and the unstable branch, θ∗a2n−1,G
(θ∗a2n+1,G

for n < 0), collide at

B = B∗
2n,G and cease to exist for B > B∗

2n,G (similarly for B∗
2n+1,G and solutions

of Type II). In Figure 12 we plot the critical values B∗
i,G i = ±2, 3, . . . as a
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Figure 10: Evolution of the steady-state solutions of Type I as G increases. The solid and
dashed lines represent, respectively, the values of ω(θ∗

an,G
) for which the steady states, θ∗

an,G
,

are stable or unstable.
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Figure 11: Evolution of the steady-state solutions of Type II as G increases. The solid and
dashed lines represent, respectively, the values of ω(θ∗

ãn,G
) for which the steady states, θ∗

ãn,G
,

are stable or unstable.

function of the pressure gradient. For example, if G ≈ 15, the critical value
B∗
−2,G → ∞ so that for G > 15, the solution branches θ∗a−2,G

and θ∗a−1,G
do not

coalesce and exist for all B.
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Figure 12: Evolution of the critical values B∗
i,G

as G increases.

4. Time-dependent solutions

In this section, we study the time-dependent behavior of the system (4).
We numerically compute the time-dependent solutions using a self-implemented
finite-difference method, with mesh resolution ∆z =0.0125 and time step ∆t =
0.01. As we have seen in Section 3, there are multiple static equilibria for a given
pair (G,B) and it is of interest to investigate steady-state selection, for different
choices of the initial conditions. We perform a preliminary investigation of the
parameter space by working with either constant or linear initial conditions. We
conclude that the time-dependent system converges to:

θ∗a0,G if Θ(z) = C, (22)

θ∗an,G if Θ(z) = Cz, (23)

θ∗ãn,G if Θ(z) = Cz +
π

2
, (24)

where C is a constant. We note that the initial conditions in (22)–(24) do not
satisfy the boundary conditions in (4) and in Section 4.1, we propose alternative
initial conditions that respect these boundary conditions. In Figure 13 we use
linear initial conditions (23) that have C ∈ [− 7π

2 , 7π
2 ], G = 2, B = 1

10 , and
find that the steady state converges to different equilibria θ∗an,2, depending on
the initial value C. We compute the corresponding winding numbers and use
the winding number to label the static equilibria in Figure 13. Particularly,
for any pair (G,B), we numerically find a critical value C∗ such that if C ∈
(C∗ − ǫ, C∗ + ǫ), with ǫ > 0 sufficiently small, we have

lim
t→∞

θ(t, z;Cz) =

{

θ∗a−2,G
if C ∈ (C∗ − ǫ, C∗),

θ∗a0,G
if C ∈ [C∗, C∗ + ǫ).

(25)
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Figure 13: Winding number for the solution of the system (4) with B = 1

10
, G = 2, with

different linear initial conditions Θ(z) = Cz, C ∈ [−7π
2
, 7π

2
]. The critical value C∗ is indicated

on the x-axis.

Figure 14 plots the initial condition Θ(z) = C∗(z), where C∗ is the critical value

z

θ∗a0,G

θ∗a−2,G

Θ = C∗z

System (4) approaches θ ∗
a
−2 ,G

System (4) approaches θ ∗
a0 ,G
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Figure 14: Solutions θ∗
a0,G

and θ∗
a2,G

obtained with B = 1

10
and G = 2. The critical initial

condition Θ(z) = C∗z is plotted with dashed line.

obtained with G = 2 and B = 1
10 . System (4) with initial condition Θ(z) = Cz

approaches either θ∗a0,2 or θ∗a−2,2 if C ≥ C∗ or C < C∗, respectively.
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4.1. Tuning the pressure gradient and the boundary conditions

The pressure gradient and boundary conditions have been assumed to be
constants in our computations so far. However, it is of experimental interest to
consider situations where both the pressure gradient and boundary conditions
are continuously tuned over a short period of time until they attain the desired
state. We consider tuning the flow at a rate δ by applying

G(t) =
{

0 if t ≤ t1,
Ḡ tanh(δ(t− t1)) otherwise.

(26)

Similarly, we apply time-dependent anchoring conditions of the form

θz(1, t) =



















C if t ≤ t2

C(1− tanh(κ(t− t2)))

− sin(2θ(1, t)) tanh(κ(t− t2))

B otherwise,

θz(−1, t) =



















C if t ≤ t2

C(1− tanh(κ(t− t2)))

+
sin(2θ(1, t)) tanh(κ(t− t2))

B otherwise,

(27)

for some constant κ > 0. In particular, these conditions are satisfied by the
initial (linear) condition Θ = Cz for t ≤ t2 and then, the anchoring is switched
on with a tuning rate κ, to attain the required weak anchoring conditions at
z = ±1.

We numerically study this modified dynamic system, using (26) and (27),
and find that if t1 ≤ t2, then the final steady state is identical to the steady
state attained with constant values G = Ḡ and boundary conditions (4c)–(4d),
for the parameter sweep that we performed. This indicates that if we first
apply a pressure gradient and then enforce strong anchoring, the system will
always relax to the same equilibrium state, regardless of the time delay between
application of the pressure gradient and anchoring.

On the other hand, if we apply the anchoring condition before the pressure
gradient by choosing t1 > t2, then a different steady state can be attained,
depending on the time delay and the respective rates. As an illustrative example,
we find that if Θ = Cz with C < C∗ and B > B∗

−2, solutions of system (4) with
(26)–(27) may approach the equilibrium solution, θ∗

a0,Ḡ
, instead of the expected

solution, θ∗
a−2,Ḡ

. This can be explained as follows: when t2 < t ≤ t1, i.e. while

G = 0, the trivial solution θ∗a0
= 0 is the unique steady state and thus the system

must approach this solution during the early stages. As a consequence, when the
flow begins (t > t1), the solution is already sufficiently close to θ∗a0

and thus can
no longer access the equilibrium state θ∗

a−2,Ḡ
, as it would do if t1 ≤ t2. Hence,

given model parameters Ḡ, B, t2, κ and δ, if the initial condition is Θ = Cz,
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one can define a critical value t∗1(C) such that










lim
t→∞

θ(t, z;Cz) = θ∗a−2,Ḡ
if t1 < t∗1

lim
t→∞

θ(t, z;Cz) = θ∗a0,Ḡ
if t1 ≥ t∗1.











(28)

If C is such that limt→∞ θ(t, z;Cz) = θ∗
a−2,Ḡ

for all t1 > 0, t∗1(C) is not defined.

C
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Figure 15: Critical values t∗
1
(C) obtained when solving the system (4),(26)–(27) with Ḡ = 40,

t2 = 0 and δ = κ = 5. For t1 < t∗
1
(C), the solution evolves to the steady state θ∗

a−2,Ḡ
; for

t1 ≥ t∗
1
(C), the system evolves to the steady state θ∗

a0,Ḡ
. Note that t∗

1
= 0 when C = C∗ (see

Definition (25)).

Figure 15 shows the dependence of the critical times t∗1 on C and B. We
observe that, as the inverse anchoring strength B increases, the critical time
t∗1 (C) decreases. This is expected since as B increases, the anchoring strength
decreases and thus the system is able to reorient itself more easily.

5. Conclusions

We have explored the static equilibria of a Leslie–Ericksen model for a unidi-
rectional uniaxial nematic flow in a prototype microfluidic channel, as a function
of the pressure gradient G and inverse anchoring strength, B. As B → 0, we
approach the strong-anchoring limit. Since the Leslie–Ericksen model can be
seen as a limiting case of the more general Beris–Edwards and Stark–Lubensky
models, we expect that our analytical treatment of the static equilibria may
be useful for other researchers in terms of comparison with their flow profile
simulations.

We adopt the same model with the same underpinning conditions as in An-
derson et al.[11] and build on their work by performing an extensive study of the
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static solutions (instead of limiting ourselves to two specific steady states). In
particular, the weak- and strong-flow solutions (obtained with weak anchoring)
in Anderson et al.[11] correspond to θ∗a0,G

and θã1,G . As B → 0, the solution
θã1,G has 1/2-winding number (associated with a rotation by π radians between
the top and bottom surfaces) consistent with the Dirichlet conditions for the
strong-flow solution in Anderson et al[11]. Our stability analysis suggests that
both solutions are stable when G = 0 and do not lose stability as G increases.
In Anderson et al.[11] the authors report that the strong-flow solution has lower
energy than the weak-flow solution for large G and the critical G∗ depends on
the anchoring strength. This is in line with our stability analysis and we spec-
ulate that the unstable solution branches in our numerical picture may provide
valuable information about how the different solution branches are connected
in the full solution landscape. The asymptotic analysis in the limit G → +∞
allowed us to obtain useful information about the boundary layers near the cen-
ter and the channel surfaces, which were experimentally observed by Sengupta
et al.[3] in the strong-flow regimes. It is also shown that the transition layer at
the center may have a different width compared to the surface boundary layers.

We assume symmetry in the flow profile, which allows the liquid crystal dy-
namics to be decoupled from the flow dynamics. This enables us to determine
explicit and asymptotic solutions that provide key insight into the system be-
havior. In practice we might expect to observe transitions between the steady
states that we have computed here. However, in evolving from one steady state
to another the configurations may not exhibit symmetry, and thus this behavior
cannot be captured by our model. Solving the fully coupled Leslie–Ericksen
model would determine the range of validity of our model in such situations.

We numerically find static equilibria with large winding numbers that are
linearly stable within the simple Leslie–Ericksen model. We expect these dis-
torted equilibria to lose stability with respect to perturbations in the x and y
directions and so are unlikely to be observable in practice. Finally, we perform a
preliminary investigation of the sensitivity of dynamic solutions to initial condi-
tions. Working with a linear initial condition, we numerically find critical values
that separate basins of attraction for the distinct steady states. Further, we also
study the effect of varying the pressure gradient and anchoring conditions with
time and how the rate of change can affect the critical initial conditions that
lead to the selection of a particular steady state. This numerical experiment
may guide future physical experiments on these lines if experimentalists can
control fluid flow and anchoring conditions with time, so as to attain a desired
state or at least control transient dynamics. We hope that our results may aid
experimentalists to design new control strategies for microfluidic transport and
mixing phenomena.
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A. Leslie–Ericksen continuum theory for nematodynamics

The Leslie–Ericksen dynamic theory is widely accepted to model dynamic
phenomena in nematic liquid crystals. A unit vector n = (n1, n2, n3), called
the director, is defined to describe the local direction of the average molecu-
lar alignment in liquid crystals, while the instantaneous motion of the fluid is
described by its velocity vector v = (v1, v2, v3). The full equations for nemato-
dynamics describe the evolution of n and v. When electromagnetic and grav-
itational forces are disregarded, the Leslie–Ericksen model for incompressible
fluids is[20, 21, 22, 23]:

vi,i = 0 in Ω, (A.1a)

ρ
dvi

dt̂
= σji,j in Ω× (0,+∞), (A.1b)

ρ1
d

dt̂

(dni

dt̂
+ v · ∇ni

)

= gi + πji,j in Ω× (0,+∞), (A.1c)

where ξj denotes the partial derivative of ξ with respect to x̂j and t̂ represents
the time. Equations (A.1a)-(A.1c) represent mass, linear and angular momen-
tum conservation, respectively, with Ω being the domain occupied by the liquid
crystal, ρ is the mass density (assumed constant) and ρ1 is a constant, measured
in terms of weight divided by distance, that arises from the consideration of a
rotational kinetic energy of the material element. Here, σ, π and g represent, re-
spectively, the stress tensor, the director stress tensor and the intrinsic director
body force. They are defined as

σji = −Pδij −
dF

dnk,j
nk,i + σ̄ji,

πji = βjni +
dF

dni,j
,

gi = γni − βjni,j −
dF

dni
+ ḡi,

(A.2)

where P is the pressure of the fluid flow and δij is the Kronecker delta. The
vector (β1, β2, β3) and the scalar function γ (sometimes called direction tension)
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are Lagrange multipliers ensuring ‖n‖ = 1[23]. F represents the Frank–Oseen
free elastic energy, which is associated to distortions of the anisotropic axis. In
the case of nematic liquid crystals, F depends on four elastic constants Ki (i =
1, 2, 3, 4), corresponding to the curvature components describing splay, twist,
bend and saddle-splay effects (see for instance equation (4.130) in Stewart[24]).
Here, we exploit the one-constant approximation of the Frank–Oseen elastic free
energy density given by[1]

F =
K

2
ni,jni,j , (A.3)

where K is the only elastic constant considered. This condition has been taken
for analytical purposes, since the simpler form of equation (A.3) makes it a
valuable tool to reach a qualitative insight into distortions in nematics[1]. Note
that in this framework, F does not depend on ni, so that the term dF

dni
appearing

in the definition of gi can be disregarded. Furthermore,

σ̄ji = α1nknpAkpninj + α2Ninj + α3Njni + α4Aij + α5Aiknknj + α6Ajknkni,

Ni =
dni

dt̂
+ v · ∇ni − ωijnj , ωij =

vi,j − vj,i
2

, Aij =
vi,j + vj,i

2
,

and ḡi = −γ1Ni − γ2njAji,

where αi are constant viscosities satisfying the Parodi relation[15], α2 + α3 =
α6 − α5, and γ1 = α3 − α2, γ2 = α6 − α5. More details about these parameters
can be found in Section A.1.1.

A.1. Simplified model

In this work, we assume that the microfluidic channel, with domain (0, l)×
(0, w)×(−h, h) has length l much greater than width w and width much greater
than height 2h, so that the director and the flow fields may be assumed to de-
pend only on the ẑ-coordinate. In the case of the director field, this assumption
is not unrealistic for confined systems where the third dimension is very small
compared to the lateral dimensions (in our case l ≫ w ≫ 2h) and has been
broadly considered in the literature (see e.g. [21, 24, 25]). In the case of the flow
field, this assumption comes from the fact that the flow velocity is dictated by
the pressure gradient and, as shown in Anderson et al.[11], is consistent with the
experiments in Sengupta et al[3]. Thus, we let n = (sin(θ(ẑ, t̂), 0, cos(θ(ẑ, t̂)),
v = (û(ẑ, t̂), 0, 0). Moreover, û(ẑ, t̂) is considered symmetric around ẑ = 0 and
the no-slip condition is assumed in the channel walls (i.e. û(±h, t̂) = 0).
Using this information in the constitutive formulae, one has that

• Aij = 0 except for A13 = A31 =
ûẑ

2
.

• ωij = 0 except for ω13 =
ûẑ

2
and ω31 =

−ûẑ

2
.

• N1 = n1,t̂ − w13n3 = cos(θ)θt̂ −
ûẑ

2
cos(θ) = cos(θ)(θt̂ −

ûẑ

2
).

• N2 = 0.
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• N3 = n3,t̂ − w31n1 = − sin(θ)θt̂ +
ûẑ

2
sin(θ) = sin(θ)(

ûẑ

2
− θt̂).

• ḡ1 = −γ1N1 − γ2A31n3 =
cos(θ)ûẑ

2
(γ1 − γ2)− γ1 cos(θ)θt̂.

• ḡ2 = 0.

• ḡ3 = −γ1N3 − γ2A13n1 = − sin(θ)ûẑ

2
(γ1 + γ2) + γ1 sin(θ)θt̂.

Now, taking into account that F only depends on the variables n1,3 and n3,3

one has that πij,i = 0 except for π31,3 and π33,3. Thus,

• π31,3 =

(

dF

dn1,3

)

,3

= Kn1,33.

• π33,3 =

(

dF

dn3,3

)

,3

= Kn3,33.

• g1 = γn1 + ḡ1 = γn1 +
cos(θ)ûẑ

2
(γ1 − γ2)− γ1 cos(θ)θt̂.

• g2 = 0.

• g3 = γn3 + ḡ3 = γn3 −
sin(θ)ûẑ

2
(γ1 + γ2) + γ1 sin(θ)θt̂.

• σ̄ij = 0 except for σ̄11, σ̄13, σ̄31 and σ̄33.

In our case, it follows from the linear momentum equation (A.1b) that

ρdû
dt̂

= σ11,1 + σ31,3 = −P,1 + σ̄31,3,

0 = σ22,2 = −P,2,

0 = σ33,3 = −(P + 2F ),3 + σ̄33,3.

Note that we will use the notation f,1, f,2, f,3; f,x̂, f,ŷ, f,ẑ and fx̂, fŷ, fẑ
interchangeably. Therefore, it follows from (A.1b) that

−(P + 2F )x̂ + σ̄31,ẑ = ρ
dû

dt̂
in (0, l)× (0, w)× (−h, h)× (0,+∞), (A.4a)

(P + 2F )ŷ = 0 in (0, l)× (0, w)× (−h, h)× (0,+∞), (A.4b)

−(P + 2F )ẑ + σ̄33,ẑ = 0 in (0, l)× (0, w)× (−h, h)× (0,+∞). (A.4c)

The Reynolds number for the flow can be defined as Re = ρUl/α4, where l is a
representative axial length of the channel and U is a typical axial velocity. Since
U = l/τ , where τ = K/α4h

2 is the relevant timescale of interest in the channel
(see equation (3)), this gives a reduced Reynolds number ǫ2Re ≡ (h/l)2Re =
ρK/α2

4 ≪ 1.[3,11] Thus we may safely neglect the inertial terms, i.e., ρdû/dt̂ = 0
in equation (A.4a). From (A.4b), one has that P + 2F = q(x̂, ẑ, t̂). Now, if we
integrate with respect to x̂ in equation (A.4a) and take into account that F only
depends on ẑ and t̂,

P + 2F = x̂σ̄31,ẑ + r(ẑ, t̂). (A.5)
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If relation (A.5) is introduced in equation (A.4c), one has that (x̂σ̄31,ẑ+r(ẑ, t̂)),ẑ =
σ̄33,ẑ. Consequently, σ̄31,ẑẑ = 0, and so

σ̄31 = C(t̂)ẑ +D(t̂), (A.6)

where C(t̂) and D(t̂) are functions to be determined. Then, from relation (A.5),
one has that

P + 2F = C(t̂)x̂+ r(ẑ, t̂). (A.7)

From equations (A.4c) and (A.7) it follows that (C(t̂)x̂+r(ẑ, t̂)),ẑ = (r(ẑ, t̂)),ẑ =
σ̄33,ẑ, where integrating with respect to ẑ one has that r(ẑ, t̂) = σ̄33 + s(t̂), s
being a time-dependent function to be determined. Returning to equation (A.7),
it follows that

P = −2F + C(t̂)x̂+ s(t̂) + σ̄33. (A.8)

Replacing the value of σ̄31 in equation (A.6) one has that

ûẑg(θ) + θt̂m(θ) = C(t̂)ẑ +D(t̂).

A consequence of the symmetry of û enforces ∂θ
∂t̂

= 0 at ẑ = 0. Any scenario

for which ∂θ
∂t̂

6= 0 would induce a velocity profile that is non-symmetric and thus

violate our original assumption. As a result, this implies that D(t̂) = 0 for our
system and hence

ûẑg(θ) + θt̂m(θ) = C(t̂)ẑ, (A.9)

where

g(θ) = α1 cos
2(θ) sin2(θ) +

α5 − α2

2
cos2(θ) +

α3 + α6

2
sin2(θ) +

α4

2
, (A.10a)

m(θ) = α2 cos
2(θ)− α3 sin

2(θ). (A.10b)

Note that we have reduced equations (A.4a)–(A.4c) to equation (A.9), the pres-
sure being available via equation (A.8). Now, the angular momentum balance
equation (A.1c) for i = 1 and i = 3 reduces, respectively, to

ρ1n1,t̂t̂ = g1 + π31,3 = γn1 + ḡ1 + π31,3 = γn1 + ḡ1 +Kn1,33,

ρ1n3,t̂t̂ = g3 + π33,3 = γn3 + ḡ3 + π33,3 = γn3 + ḡ3 +Kn3,33.

It remains to compute n1,33, n3,33, n1,t̂t̂ and n2,t̂t̂:

• n1 = sin(θ) ⇒ n1,3 = cos(θ)θẑ ⇒ n1,33 = − sin(θ)(θẑ)
2 + cos(θ)θẑẑ,

• n1,t̂ = cos(θ)θt̂ ⇒ n1,t̂t̂ = − sin(θ)(θt̂)
2 + cos(θ)θt̂t̂,

• n3 = cos(θ) ⇒ n3,3 = − sin(θ)θẑ ⇒ n3,33 = − cos(θ)(θẑ)
2 − sin(θ)θẑẑ,

• n3,t̂ = − sin(θ)θt̂ ⇒ n3,t̂t̂ = − cos(θ)(θt̂)
2 − sin(θ)θt̂t̂.
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Thus, equation (A.1c) when i = 1 and i = 3 becomes

ρ1(− sin(θ)(θt̂)
2 + cos(θ)θt̂t̂) = γ sin(θ)− γ1 cos(θ)θt̂ + cos(θ)

ûẑ

2
(γ1 − γ2)

+K(− sin(θ)θ2ẑ + cos(θ)θẑẑ),

ρ1(− cos(θ)(θt̂)
2 − sin(θ)θt̂t̂) = γ cos(θ) + γ1 sin(θ)θt̂ − sin(θ)

ûẑ

2
(γ1 + γ2)

+K(− cos(θ)θ2ẑ − sin(θ)θẑẑ).

We neglect the term ρ1θt̂t̂, since the rotational inertia of the molecules is ac-
cepted to be much smaller than the elastic and viscous torques[25]. Then, mul-
tiplying the first equation by cos(θ), the second one by sin(θ) and subtracting
them, one obtains:

γ1θt̂ = Kθẑẑ +
ûẑ

2

(

γ1 − γ2 cos(2θ)
)

. (A.11)

Thus, the evolution of θ and û are described by the following system

γ1θt̂ =Kθẑẑ − ûẑm(θ) ẑ ∈ (−h, h), t̂ > 0, (A.12a)

C(t̂)ẑ =ûẑg(θ) + θt̂m(θ) ẑ ∈ (−h, h), t̂ > 0, (A.12b)

θ(ẑ, 0) =Θ(ẑ) ẑ ∈ (−h, h), (A.12c)

û(±h, t̂) =0 t̂ > 0, (A.12d)

where Θ is the initial condition for θ and C(t̂) = Px̂, i.e., the channel direction
component of the pressure gradient. Although system (A.12) has been derived
from the Lelie–Ericksen model (A.1), it can be also obtained by simplifying the
more general Beris–Edwards and Stark–Lubensky models[10, 26, 27].

A.1.1. Remarks on coefficients

The coefficients αi and γi are usually called Leslie Coefficients (see for in-
stance Lee[28] or Wang et al.[25] for further information about their physical
meaning and how to approximate them experimentally). They depend only
on the temperature and have the dimension of viscosity. Some constraints on
the Leslie Coefficients come from the non-negativity of the Dissipative func-
tion[21, 24]. When the Parodi relation is used[15], the dissipative function is
defined as[24]:

D = α1(niAijnj)
2 + 2γ2NiAijnj + α4AijAij + (α5 + α6)AijAjknink + γ1NiNi.

In our particular case,

D = α1û
2
ẑ sin

2(θ) cos2(θ) + 2γ2
ûẑ

2
(θt̂ −

ûẑ

2
)(cos2(θ)− sin2(θ)) + α4

û2
ẑ

2

+(α5 + α6)
û2
ẑ

4
+ γ1(θt̂ −

ûẑ

2
)2 = 2θt̂ûẑm(θ) + γ1θ

2
t̂
+ g(θ)û2

ẑ.
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This expression is a quadratic form and can be rewritten as:

D =
[

X Y
]

[

g(θ) m(θ)
m(θ) γ1

] [

X
Y

]

, with X = ûẑ, Y = θt̂.

A reasonable assumption is that the dissipation function is positive[24], which is
fulfilled if and only if the determinant of every principal submatrix is positive[29],
i.e.,

g(θ) > 0 and γ1g(θ)−m2(θ) > 0. (A.13)

When θ = 0, this implies that

γ1 > 0, α5 − α2 + α4 > 0 and γ1(α5 − α2 + α4) > 2α2
2.

B. Equilibrium Solutions with G = 0.

When G = 0, we can explicitly solve the first equation of system (6) to obtain
θ∗(z) = az + b where a and b are constants to be determined by the boundary
conditions. These solutions may be categorized as

Type I θ∗(z) = anz +mπ, where m ∈ Z and

Ban = − sin(2an), (B.1)

Type II θ∗(z) = ãnz + (m+
1

2
)π, where m ∈ Z and

Bãn = sin(2ãn), (B.2)

Type III θ∗(z) = (n+
1

4
)πz + bm, where n ∈ Z and

cos(2bm) = −B(n+
1

4
)π, (B.3)

Type IV θ∗(z) = (n+
3

4
)πz + b̃m, where n ∈ Z and

cos(2b̃m) = B(n+
3

4
)π. (B.4)

For every value of B, we obtain ordered set of solutions for (B.1), with 0 =
a0 < a1 < . . . < an (n ∈ N ∪ {0} depending on B). Furthermore, if an provides
a solution, so does −an, which we denote by a−n. Equivalent statement can
be made for ãn, bm and b̃m, solutions of equations (B.2), (B.3) and (B.4),
respectively.
We observe that constant solutions of Type I and II, θ∗ ≡ k π

2 (k ∈ Z) exist for
all values of B, while solutions of Type III and IV exist only if B ≤ 4

π . The
associated director fields are

Type I n(z) = (−1)m(sin(anz), 0, cos(anz)),
Type II n(z) = (−1)m(cos(ãnz), 0,− sin(ãnz)),
Type III n(z) = (−1)m(sin((n+ 1

4 )πz + b0), 0, cos((n+ 1
4 )πz + b0))

Type IV n(z) = (−1)m(sin((n+ 3
4 )πz + b̃0), 0, cos((n+ 3

4 )πz + b̃0))
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and thus, since director fields with m ∈ Z are the same but with opposite
direction, all possible director profiles in (B.1)–(B.4) are covered by m = 0.
Figure B.16 shows the solution landscape in terms of a, b and B, restricted to
a ∈ [2π, 2π] and b ∈ [0, π

2 ]. Since solutions of Types III and IV are always

ab

B

-2π

-π

0

π

2π

0

π
4

π
2

0

0.5

1

1.5

2

2.5

Figure B.16: Solution landscape with a ∈ [−2π, 2π] and b ∈ [0, π
2
]. Solutions of Type I (Type

II) correspond to b = 0 (b = π
2
) and are plotted in black (red). Solutions of Types III and IV

correspond to b ∈ [0, π
2
] and are plotted in blue and green, respectively.

unstable (see Section B.1), we only track solutions of Type I and II in this
paper.

B.1. Linear Stability of Equilibrium Solutions

B.1.1. Sample liquid crystal molecular configurations

In this section we show the director field corresponding to some steady state
solutions of the system (4) with G = 0. Particularly, Figures B.17 and B.18
show the director profiles associated, respectively, to solutions θ∗an

and θ∗ãn
,

n = 0,±1,±2± 3,±4.
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(a) θ∗a−4
(b) θ∗a−3

(c) θ∗a−2
(d) θ∗a−1

(e) θ∗a0
(f) θ∗a1

(g) θ∗a2
(h) θ∗a3

(i) θ∗a4

Figure B.17: n associated with steady states θ∗an
(Type I), obtained with B = 0.001 and

G = 0. These states are stable if n is even and unstable if n is odd.

(a) θ∗
ã−4

(b) θ∗
ã−3

(c) θ∗
ã−2

(d) θ∗
ã−1

(e) θ∗
ã0

(f) θ∗
ã1

(g) θ∗
ã2

(h) θ∗
ã3,0

(i) θ∗
ã4,0

Figure B.18: n associated with steady states θ∗
ãn

(Type II), obtained with B = 0.001 and
G = 0. These states are stable if n is odd and unstable if n is even.
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