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Abstract: The synchronous dq based small-signal stability using the eigenvalue analysis and impedance methods is widely
employed to assesssystemstability. Generally, the harmonics are ignored in stability analysis which may lead to inaccuracies in
stability predictions, particularly, whenthe systemoperates in a harmonic-rich environment. Typically, the harmonic state-space
method (HSS) facilitates stability studies of linear time-periodic (LTP) systems, which considers the impact of harmonics. The
use of the dg-dynamic phasor state space and impedance method offers significant advantages over the HSS counterpart, as it
reduces systemorder, is more suitable for studying control systems, retains mutual coupling of harmonics, and simplifies the
stability study under unbalanced conditions. This paper extends dynamic phasor modelling for studying stability of modem
power systems that include power converters. It is shown that the proposed method reproduces the typical response of
STATCOM at the fundamental frequency as well as at significant low-order harmonics using both eigenvalues and impedance
analysis. Quantitative validations of the proposed extended models against synchronous dg small signal models confirm their
validity.

Acronyms and definitions

C,. STATCOM dcside capacitor
h  Harmonic order.

of power electronics converters [1][2]. Many stability
studies ignore these variations in their modelling and
analyse system performance based on the fundamental
igze STATCOMdclinkcurrent frequency only [3], [4]. However, this assumption could
. STATCOM Direct and quadrature currents lead to an incorrect assessment of system stability [5][6].
sda yector Therefore, careful and detailed modelling of the power
An integer number representinaharmonic order, system components is essential when assessing stability in

k which is the axis to which referred systems that containsignificantharmonics orunbalance.
K,q; STATCOM controller proportional gains Typical stability studies are carried out based on a set of
Kiz; STATCOM controllerintegral gains equations that model systems in a specific domain. For

example, the synchronous dq approach has been employed
to study the dc-link variation of HYDC systems [7], and a
VSC connected to a weak grid [8]. Also, synchronous dq
impedance models were successfully implemented in the
application of detecting system oscillations [9][10], and
retuning of controllers for improved damping [11]-[15].
Although this modelling method is suitable for control
systems and can be linearised with insignificant error, it is
limited for fundamental frequency analysis using a single
coordinate. Similarly an equivalent stationary-frame (a3)
impedance model has been introduced [16]. In one
application, the a8 modelwas used tosimplify the stability

The number of states and inputs of the studied
system
Lqq Return ratio matrix ofgrid-load
R, Ly STATCOM resistanceand inductance
vy STATCOMdclinkvoltage
v Direct and quadrature voltages vectorat k th
42k harmonic
A function oftime representing the complex
X, (t) Fourier coefficient ‘dynamic phasor parameter’
of the periodic signal
Coupling impedance caused by harmonic k at

£ assessment of a VSCbased systemby converting the system
fundamental frequency . into a single-input-single-output systemas a positive and
Mico Coupling impedance caused by the fundamental negative sequence system [17]. However, ignoring the

frequency at harmonic k

-y dl . frequency coupling between the sequence quantities may
A coupling impedancewhich caused by the

affect the results ofanalysing large systems where coupling

p existence ofpositive and negative harmonics at a
specific harmonic

1. Introduction

The existence of harmonics and oscillations over a wide
range of frequencies represent major problems for the
reliable operation of power systems. These harmonics and
oscillations could be initiated by different events in the
power system. Forexample, low-frequency oscillations can
be initiated due to sub-synchronous resonance (SSR), whilst
high-frequency variations are largely initiated by switching

is usually present. This disadvantage [17] has been
addressed [18][19] by taking into consideration the
coupling between the positive sequence and negative
sequence quantities. The capability of this modelling
technique was limited for frequencies more than twice the
fundamental frequency [20], cannot include harmonics and
its oscillatory nature is notsuitable for small-signal studies.
The inclusion of harmonics in stability studies was
introduced using the harmonic linearisation and Harmonic
State Space (HSS) methods. The former method was
employed to design control systems of VSC based FACTS
devices and study their interactions with other system
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components [21]-[26]. Even though the harmonic
linearisation method can reveal the frequency coupling
between the positive and negative sequence quantities, the
imposition of the linear time invariant (LTI) property
compromises its capacity to predictthe coupling that might
occur between existing harmonics [20]. HSS can, however,
include harmonics and present their effect on system
response, by mapping the input and output signals in linear
time-periodic (LTP) systems using the harmonic transfer
function (HTF) [27]-[29] linear operator. The HSS
approach has been employed for modelling balanced and
unbalanced operation of VSC-FACTS devices and their
stability [30]-[32]. High-order matrices and time-variant
parameters are, however, the main disadvantages of this
method.

Dynamic phasor (DP) modelling helps with the
inclusion of harmonics and the investigation of unbalance
and converts the periodic parameters to dc parameters
which improves the accuracy of systemlinearisation. Most
of the implementations of dynamic phasor modelling for
stability assessment were carried out using the abc-dynamic
phasor. Suchanapproach increases the number of equations
and variables required to be analysed, and sometimes per-
phase models were used to simplify the analysis. However,
the per-phase models are not suitable for the study of
unbalanced systems. However, the aforementioned per-
phase modelling has several advantages compared with
conventional the dq equivalent [33]. The per-phase model
has been employed to design a solid-state transformer
controllerin the presence of disturbances using state-space
analysis, identify low-frequency oscillations in series
compensated systems, and study the effect of phase
unbalance on systemoscillations [34][35]. Similarly, the
small-signal impedance model based on the singlephase
dynamic phasor was utilised to identify the causes of sub-
synchronous resonance (SSR), but this formulation led to
diagonal and off-diagonal impedances that were entirely
fictitious and had no physical meaning [36]. One reported
stability assessment [37] artificially accounts for
fundamental frequency and second harmonic in the ac and
dcsides respectively.

This paper presents a generalised dg-dynamic phasor
(GDQ-DP) small-signal stability model suitable for both
electromagnetic transients and electromechanical dynamics,
including harmonic stability. The proposed model retains
the attributes of the synchronous dg model, i.e. linear time-
invariant (LTI), which is convenient for stability studies.
The impedance model derived fromthe proposed GDQ-DP
model facilitates stability studies under balanced and
unbalanced conditions using well-established stability
criteria. One-to-one comparison of the proposed extended
model and conventional synchronous dq confirms its
validity and reveals its capacity to assess stability under
unbalancedand harmonic polluted conditions.

The paper comprises eight sections. Sections 2 and 3
review the basics of dynamic phasor and synchronous dq
modelling, using STATCOM as an example. Sections 4 and
5 develop a generalised dg-DP modeland introduce criteria
for stability assessment when eigenvalue analysis and
small-signalimpedanceare employed. The effectiveness of

the proposed model for predicting stability of balanced and
unbalanced systems is tested in Section 6. High-level
qualitative comparisons between the proposed model and
other conventional modelling techniques are presented in
Section 7. The main findings and observations are
highlighted in Section 8. It is important to stress that the
main intension ofthis paper is development of a generalised
dynamic phasor model readily available for use in balanced
and unbalanced systems, and ac grids with significant
harmonic content. Controlling a specific sequence or
harmonics is not the focus of this research.

2. Conventional dynamic phasor
modelling

This section reviews the fundamentals of dynamic phasor
modelling and its merits when applied to power systens.
Generally, DP defines a real value waveformx(t) during
theinterval T € (t — T, t) using Fourier series [38]:

(@) = T2 _ Xy (B)e/ s @

The time-variant Fourier coefficient (X, (t)) is called a
dynamic phasor, and can be determined attime (t) from (2):

Xi(®) =1 [ x(@e T ostdr=(x), 2)

t-T

A DP, with harmonics included, can be used to represent
a generic dq quantity:

V =v4 +jvq :g(va + a2vb + avc)ejn(ust
= (vdk +jvqk) + Z?loz—oo(vdk +jvqk)ej(n—k)a>t (3)
n+k

where k is an inteaer number representing harmonic order,
which is the axis to which the quantities are referred.

By using (3), the measured quantities are transformed to
dqg frame at each harmonic of interest (k), and then the
undesirable harmonics (Vn, n # k) are filtered out using
low-pass filteras shown in Fia. 1 In this way, anv quantity
expressed in the abc frame can be transformed into positive
and negative sequence dg components and then to the DP
representation.

Low-pass filter

>

X
ot abc/dq 2 —»
PLL % d, +h da,,

Fig. 1. Extraction of dynamic phasor parameters.

abc

3. Synchronous dq modelling

In this section, the synchronous dq modelling of a
STATCOM is used to demonstrate the proposed dq-
dynamic phasor modelling technique.



The basic topology of a STATCOM connected to a
power network is illustrated in Fig.2 a. Fig.2b depicts the
STATCOM cascaded control loops employed in this paper
for illustration [39][40]. The outer controllers on d and q
axes regulate dc voltage and reactive power respectively,
while the inner controllers regulate the dqg current and
estimate the modulating signals.

In this paper, the systemorac grid voltage at the point-
of-common-coupling (PCC) is assumed to be the reference
and aligned with the dqframe. For simplicity, it is assurmed
that the ac grid is strong, and that the PLL dynamics can be
ignored without introducing error or compromising the
generality of the proposed model. Also, the pulse width
modulation (PWM) delay and the measurement delay are
ignored in the analysis.

Based on the current directions assumed in Fig.2a, the
current equation of the STATCOM power circuit can be
written as (4) and (5) [41]:

Superscript  *  denotes reference  quantities,

Ky, aq,Kiaq are the proportional and integral controller gains,

p

Y= -1 0] XIm = [xl xm]T, Vsdq= [vsd 1]sq]T ,
isdq = [lsa sq] andv = [vg. QI

Rearranging (4) to (9), the overall state-space equation
ofthe STATCOM in the dq frame is:

d
< AX = A4y AX + BgAU (10)
Aisdq = quAX (11)

where the state, input and output matrices, and vectors are
defined as:

= [Ax; Ax, Axz Ax, Aigq Avg]T
UZ[Avsd Avsq AU;;C Q*]T

3
d .. 1 Rf Kpidg \ . Qg =02 R —=Woy.igy+ Vg, .0
d_tAlqu =L—fo12— (;—)/((,0) +le_fq)Alsdq+ dc sd-f 2( sd*tsda T Ysq sq)
1 idi
7 AVsaq + ”‘fq Aigyq (4) By
d = i [ 0 0 Kudevd 0
d_tAXIZ - iidq(Alsdq - Alsdq) (5) 3Kqupvq s 3Kqup17q 0 K K
2 2 iigpvq
The reference currents are given by: 0 0 Kiva 0
3Kivqlsq _3Kivqlsd 0 K.
= 1 0 pidevd 0
Ly L
Considering the power balance between the ac and dc 4 4
(sjides, the linearised equation describing dc voltage 3KpigKpgisg 1= szquvq 0 K,iq
namics is:
Y ;Lf 3ljf Ly
lsa lsq
d 1 (3, . — —_— 0 0
d_tAvdc = Cd_v {_(lgdq dq + Vgiq'Alsdq) - ZCdcvdc ZCdcvdc -
1
led RfAlsd + ( lsa- Rf sdq sdq) A17dc} (7)
The linearised formofreactive power is given as:
Avsq 3 T —Aisq
AQ Alqu[ Ade ] + EAdeq Aisd ] (8)
d *
0 0 Ky O —Kiiq 0 _Kiidevd
0 0 0 Ky Kqupvq K”quvq — Kiig 0
0 0 O 0 0 0 g\
0 0 O 0 quv quv 0
Adq = i 0 Kp_Ld 0 Rf Kpid » _Kpidevd
Ly Ly Ly Ly
o L o Kpiq _;Kpiq’(pwz"sq _ ‘Rf‘Kpiq+§Kpqupvq”sd 0
Ly Ly Ly Ly
3Vsd—Zisd.R Evs a
0 0 0 0 27sd”“sTf 2759 de
L CdcVdc CdcVdc Cdc”éc 4




Y
I
)
im
VSC
L
=

PWM

(b)

Fig.2.STATCOM construction and control:(a) Simplified
diagramof grid-connected STATCOM, (b) controlsystem.

State-space equations (10) and (11) permit asymptotic
stability assessment of complex systems using eigenvalues.
The derived state-space model has seven states, which are
the STATCOM dq currents and auxiliary states that
represent the integral parts of the currentcontrollers, and the
dc-link voltage and auxiliary states associated with the

integral parts of the dc voltage and reactive power controllers.

The model also has four inputs, which are the ac grid dq
voltages, and the dc-link voltage and reactive power
commands. The small-signal impedance approach offers a
powerful and practical alternative method for stability
assessment, where synthesis of detailed system model is
challenging [11][42]. The small-signalimpedance model can
be extracted directly from the standard state-space model
described in (10) and (11). Following minor algebraic
manipulation (particularly, expressing thesystemvoltages in
terms ofthe currents), yields:

Avsdq = azAisdq - bzAi;dq (12)
Aigyq = c,(Av" — Av) (13)
d,Av = e,Avgy, + f,Aiggq (14)

On this basis, the small signal impedance model of the
STATCOM becomes:

AVqu = quAiqu - szzAV* (15)

where Z 44 represents STATCOM impedance matrix in the
dq reference frame, and is given by:

Zgq= (U —Db,c,d;'f) (a, +b,c,d;e,) (16)

Equation (16) is simplified as:

Avsy  dvsg
7. = Adisqg  Aigq — de qu (17)
Aigqg  Aigg
The matrices in (16) are defines as:
[ Kiid
v Kiiq
| (,L)Lf LfS + Rf‘l‘ (Kipq + T)
-K 4 Kia 0 SCdcVie—ad
pid S 2zde7dc 7de
bz = Kiiq ’ dz = Vdc
0 Kipq + T 0 1
[ Kivd . .
_ vad + s 0 £ = 3[ lsa lsq
“= 0 K Kivg| = 72 —lsq lsa
_ pua T I
3 . 3
_ Evsd - ZRfI’Sd ;Usq
e, = 3 3
Evsq - Evsd

4. Generalised dg-dynamic phasor
modelling for stability analysis

This section proposes a generalised model that can
facilitate stability studies, where the effects of harmonics and
network unbalance are considered. For illustration, the
STATCOM synchronous dg model describedin Section2is
transformed to the dg-dynamic phasor model. Thus, the
dynamic phasor transformations of the state-space equations
(10) and (11) become:

S (AX), = B2 o AgqBX) + T o BggAU),  (18)
(Biggqdie = T2 _ ol CaqBX), (19)

The expansion of (18) and (19) can be carried out using
previously described dynamic phasor characteristics [38].
These equations represent generalised state-space equations
with infinite dimensions which can be written in compact
formas:

= AX, = AppAX, + Bpp AU, (20)
(Aiggq) ) = CppAXy, (21)

where the state and input matrices and vectors have infinite
length and are given in a generalformas:

AXkI [AXk=0 AXk=k1 AXk:—kl AXk=—kn]T

AUy = [(AU) g (AUYi, (AU, g, oo (AU 1T

The matrices (App, Bpp and Cpp) are time invariant
matrices which have sets of submatrices that can include the
harmonics of the studied system.



[ Ak=0 ACk=_k; ACk=k; " ACk=—;, ACk=i, ]
acy_g, Ak—k, 0 0
A — ac—_y, A g, 0 0
DP :
0 0 Aoy,
[ac—_y, 0 0 A, |
[ br-o DGy bCog, - by, By ]
bey_y,  byok, 0 0
Bpp = bckf—kl by 1, . 0 0
be_y, 0 0 by
[bey- i, 0 0 by,

The definitions of the sub-matrices of (App)and (Bpp)
are found in the Appendix Equations (20) and (21) are
capable of including the fundamental frequency (k = 0) as
well as an infinite number of harmonics (k = ). Each
harmonic frequency ‘except the fundamental frequency’
generates two components: the positive and negative
sequence components of the k™ harmonic (depicted by
suffixes k and —k ). The existence of the positive and
negative sequence components in (20) and (21) facilitate
stability studies of balanced systems, while the expansion of
the fundamental frequency represents unbalanced systems.

In the generalised state matrix(App ), matrices (ac,_ )

and (ackzkl) represent the effects of positive and negative
sequence components onthe fundamental frequency, andthe
coupling of the fundamental frequency on the positive and
negative components.

The size of the state and input matrices (App,Bpp) 5
calculated using (22) for the state matrix and (23) for the
input matrix as follows:

size(App) = (A +n)L,,2(1 +n)L,) (22)
size(Bpp) = (1 +n)L,,2(1 +n)L,) (23)

where n is the number of harmonics to be included in the
study, and £, and £, represent the number of states and
inputs of the studied system. For example, when two
harmonics and the fundamental are considered when
analysing STATCOM stability, the sizes of the state and
input matrices (App) and (Bpp) become (42x42) and
(42x24) respectively.

In summary, the eigenvalues of the generalised state-
space model presented in (20) and (21) can be employed to
assess the stability of arbitrary power systems.

Similarly, the generalised impedance model of the
STATCOM is derived from (12) to (14) as:

Y- ok BVgaq) i = LEof@,Algqq) i + LZob Al ), (24)

Y-l Bigaq ) = Liz- ol €,V N — L= ol G AV) . (25)

Tk d,AV) = X2 (€, AV )y + D20 Agqq ) (26)
Bxpanding (25) to (26) and rearrangingyields:

<Avsdq>k = Az(Aisdq>k + BzAi;dq

27)
(28)
(29)

where, the voltage and current vectors are givenas:

<AVsdq)k =

[(Avsdq>k=0 <AVsdq)k=k1 <AVsdq)k=—k1 <Avsdq)k=—kn]T

<Aisdq>k =

[(Aisdq>k=0 (Aisdq>k=k1 (Aisdq)kz—kl <Aisdq>k=—kn]T

(Av) = [(AV)jmg (AV)jy, (AV)jm_y, =+ (AV)jmy 1T

After further manipulation of (27) to (29), the
generalised STATCOM impedance modelis obtainedas:

ZDP = (l - BzCzDz_le)_l(Az + BzCzDz_lEz)

(30)

The impedancematrices in (30) have infinite dimensions
and follow the same pattern found in the derivation of the
state-space equations in (20) to (21), which are summarised

as follows:

[ hdy_
hley,
Az = [hl g,
hl
[ Bdi—o
Bl
B, =Bl
[ Bl _y,

[ Cdy—o
Clk=k1
C, = | Cly,

[ Cly-
[ Ddy—
DIy,
D, =Dl _y,

Dl i,

[ Edy—
Ely_y,
E, = [Ele

El i,

Bl i,
hdy,
0

0
0

]
Bdyy,

Clk= -kq
C dk= k1

le— -k

Ddy_

El i,
Edy_y,

Bl
0
hd,__
0
0
Bl
0
Bdy_

0
0

Clk=k1
0
C dk= -kq

0
0

le=k1
0
de:_kl

0
0

Ely,
0
Edy_,

0
0

Cdy—

= N -

= n



Fdi_o Fly, Fhey, o Flgy
Flo,  Fdy, 0 0
FZ = |Flk=—k1 0 dez_kl 0 I
[ 0 0 0o |
| Flie s, 0 0 Fdy_y |

These generalised matrices are capable of determining
the STATCOM impedance at arbitrary frequency,
—oo < k < +0o0. At fundamental frequency, Zpp can be
obtainedby setting k = 0 in submatrices A, throughF,.

The frequency coupling observed in the presented
generalised dg-dynamic phasorand STATCOM model, and
any VSC based devices, is a reflection of the instantaneous
power variations into the dc link [43]. The frequency
coupling affects the STATCOM impedance in bhoth
magnitude andthephase.

The STATCOM impedance in (30) can be re-written as:

[ Zf  Ep-k; Ek=k; " Ek=—k, Ek=k, |
Mo Lok 0 0 0
Zpp = l’-—l:(l,o 0 L . 0 0 (31)
Hig,0 0 0 Ly=x, 0
M0 O 0 .. 0 Zy |

Equation (31) is generalised and written in a compact
formas:

Zop = {Zf|k=o + 2k oo(Er) k = 0} (32)

Zg k=1 + Mo k#0
where g, is the coupling between the harmonics and the
fundamental frequency, and matrices o represents the
coupling between the fundamental frequency and the
harmonics. The frequency coupling might appear also in the
diagonal impedance as the dc-link voltage will be affected
by the presence of the positive and negative sequence
components. If it is assumed that the derived systemis a
decoupled system, where the systemis assumed as a multi-
grids operated atdifferent frequencies, the coupling matrices
will be equalto zero.

According to the dynamic phasor transformation in (3),
the measured impedance in the abc coordinate frame at a
specific harmonic is equal to the impedance of its generated
harmonics represented in dg-dynamic phasor form
multiplied by the transformation factor (e*/¥“%). The roll-off
nature, i.e. low-pass characteristics of the inductances and
capacitors, results in reasonably sized matrices for the
analysed system [44]. The optimum ssize of the STATCOM
matrices can be found by scanning the frequency spectrum
until the impedance does not change and the additional
eigenvalues are displaced by (+jw) without any changes in
theirreal parts. It should be noted that for systemanalysisfor
harmonic order (k = 0), the generalised state-space and
impedance models will be equal to the forms of the
synchronous dg model presented in Section 3.

Although the modelling process presented is carried out
fora STATCOM, itis not limited to STATCOMs and can be
generalised for modelling other systemcomponents.

5. Stability criteria of the proposed dqg-
dynamic phasor

The generalised state-space model in (20) can be re-
written as:

B BC

d _[A—N+p AC;
k™ BC B

at AC, A—N+p]AXk+[

|auy (33)
where AC; and AC,, are matrices that represent the mutual
effect between the fundamental frequency and harmonics, p
is a diagonal matrix that represents the frequency coupling
due to the existence of positive and negative components at
a specific frequency, and N is a diagonal matrix that
represents the transformation of differential variables of the
systemto adynamic phasor, andis definedas:
N =diag[0 jwl —jol jk,wl —jkywl —jk,wl]

The eigenvalues of the generalised state matrix in (33)
can therefore be writtenas [45]:

1
A (App) =det(App—2A) = (A—N) + p + (AC;.AC,)2
(34)

Accordingto (34), the inclusion ofharmonics in a stable
system generates repeated eigenvalues if the coupling
term {p + (AC;.AC,)"/?* } is equal to zero. This coupling
term has a vital effect on representing different operating
conditions of the devices, as the existence of harmonics will
be seen as a change ofthis term.

Systemstability is ensured when the systemeigenvalues
(&) satisfies:
)Lk(ADp) <0 (o <w < ) (35)

The small-signal impedance facilitates stability
assessment of the device at the point of common coupling
(PCC) using generalised Nyquist stability criterion [46] [47],
which plots theeigenvalues of thereturn ratio matrix(Lg) as:

Ay = det(A ] — (Lg)) =0 (36)
<LR)k = (Zg)k'<Ydevice)k (37)

where (Zy), and (Ygeyice) are the grid impedance and

device admittance in dg-dynamic phasor formas seen from
the PCC. Similar to the eigenvalue analysis, when harnmonic
coupling is ignored the Nyquist contour repeats itself as
frequencyincreases.

6. Stability assessment of test system
using generalised models

This section presents four case studies to demonstrate the
effectiveness and capacity of the proposed generalised model

6



when predicting system stability under balanced and
unbalanced conditions. The test system parameters and
initial operating conditions are listedin Tablel.

TABLE 1 TEST SYSTEM PARAMETERS.

Parameter Value Parameter Value
Sbase 100kVA Kipag » Kiiag 1000V/A, 400V/A.s
Vbase 415kV vad , Kivd ZOA/V, 200A/V.s
Vac 1000V Kpvg Kiwg ~ -0.002A/VA,-0.1A/VA s
Cac 400pF RgLg 0.25Q, ImH
B,0,L 65kW, 12kVAr Rr, Ly 0.1Q, 5mH

6.1. Synchronous dgq model validation

This section investigates the validity of the benchmark
synchronous dg model. A step change in the reactive power
reference, from -12kVAr to +12kVAr, is applied at t=0.4s.
The dominant eigenvalues of the model at (-2.5+j0.00) are
repeated and real, as shown in Table 2, and represent the
states of the direct (i) and quadrature (i,,) currents. The

current settling time is 1.6s. As shownin Fig.3, both cuments
settle at t=2.0s, validating the benchmark model.

10
—
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1= N\
D
-
5 25.7 }—)
O ) Settlin
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25.7
2568l
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N
< 25.74
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o time ™
= 25.72 ime “
o 25.7 {fr
-20 25'6(?5 1 15 2 25

0 0.5 1 1.5 2 2.5
Time(s)
(b)
Fig. 3. Validation of synchronous dg STATCOM model: (a)
Direct current (i4), (b) Quadrature current (i ).
6.2. Balanced STATCOM operation with no
harmonics
This case study represents a base case and assumes the
STATCOM operates under balanced conditions with no
harmonics, which is equivalent to k = 0in the proposed

generalised model. Table 2 shows that under balanced
conditions the test system has seven non-oscillatory stable
modes, all located onthe left-hand side of the complexplane.
The Bode plots of STATCOM impedances for the balanced
case are depicted by the solid (blue) line in Fig. . This case
study will be used as a benchmark forthe following cases to
represent the effect of the unbalance and harmonics on
STATCOM response.

6.3. Unbalanced STATCOM operation

This section assesses STATCOM stability when it
operates in an unbalanced ac grid using generalised state-
space and impedance models established in Section 5. The
unbalanced voltage waveforms of the STATCOM are shown
in Fig.4. The analysisin Table 2 shows eigenvalues for two
balanced positive and negative sequence systems, with each
systemhaving 7 modes in comparisonwith balanced system
The positive sequence, which physically rotates at +w,,
appears at zero frequency because of the frequency shift of
the dynamic phasor. The negative sequence which normally
rotates at —w,, appears at 2w,, (628.32 Hz). As previously
stated in (33), under unbalanced conditions the coupling
term AC,, exists. Note that under unbalanced conditions the
negative real parts of the eigenvalues exhibit slight shifts
compared to the balanced case.

N
o
P

Voltage(V)
o

-ZOC\

-4005 151 152 153 154 1.55

Time(s)
Fig.4.STATCOM voltage under unbalanced operation

TABLE 2 EIGENVALUE ANALYSIS OF
BALANCED AND UNBALANCED TEST SYSTEM

Modes Balanced condition Unbalanced condition
A -1.54x10%+j0.00 -1.49x10°+j0.00
A, -7.99x10*+j0.00 -7.99x10*+j0.00
A3 -221.58+j0.00 -204.51+j0.00
Aa -10.47+j0.00 -10.52+j0.00
As -24.04+j0.00 -23.09+j0.00
Ae -2.50+j0.00 -2.50+j0.00
A, -2.50+j0.00 -2.50+j0.00
As -1.49x10°+j628.32
Ao -7.99x10°+j628.32
A0 -204.51+j628.32
A1x -10.52+j628.32
Az -23.09+j628.32
Az -2.50+j628.32
A1g -2.50+j628.32
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Fig.5.STATCOM impedance under unbalanced operation.

Fig. shows Bode plots of STATCOM impedances when
the phase 'b' voltage is artificially sets as [V,| =
[1.0 0.85 0.65] p.u. to reflect voltage unbalance of
different severities. As shown in Fig., the magnitude of the
STATCOM negative sequence impedance increases for the
diagonal impedance (Zg4q and Zyq) as voltage unbalance
severity increases, whilst the diagonal positive sequence
impedance remains unchanged. The phase plots also exhibit
some differences between balanced and unbalanced
conditions. This is related to the coupling present between
the fundamental frequency and the negative sequence
component. The twoimpedances at k =0,-2 match each other
under balanced operation (with no harmonics) or when the
coupling effectis ignored. This can be used to identify the
unbalance of the modelled systems which depends on the
severity of the unbalance. In summary, the stability
assessment under unbalanced operation shows additional
eigenvalues, with real parts identical to those of the balanced
system and imaginary parts shifted to the double power
frequency, resembling the co-existence of positive and
negative components. The impedance plots exhibit clear
divergence between balanced and unbalanced cases.

6.4. STATCOM operation with harmonics
Assessment of STATCOM operation in the presence of
harmonics is facilitated by injection of the 5" and 7
harmonics intothe ac grid. These harmonics commonly exist
in power networks, particularly, at distribution levek. The
STATCOM voltage waveformis presented in Fig.6.
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Fig.6.STATCOM voltage waveformwith harmonics
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Fig. 7. Eigenvalue analysis of STATCOM using dg-dynarmic
phasor: (a) Coupling effect ignored, (b) Coupling effect
considered.

According to (3), transformation of these frequencies to
dg-dynamic phasor representation generates six additional
frequencies components, which are interpreted as positive
and negative sequence components k — 1 =(1,-1,5,-5,7,-7).
This case generates 42 eigenvalues, which are shifted up
by wdue to the dg-dynamic phasor transformation and not
presentedas complexconjugates. Thus, the axis of symmetry
is located at w = w,, as shownin Fig.7(a).

The eigenvalues corresponding to positive and negative
sequence harmonicsare located in the upperand lower parts
of the complex plane respectively. The eigenvalues
associated with fundamental frequency are real. Fig.7(a)
shows that when frequency coupling is ignored the
eigenvalues are repeated as multiples of the fundamental
frequency. When frequency coupling is considered the
eigenvalues are no longer repeated (shifted by w) as shown
in Fig.7(b), where the most dominant eigenvalues are
presented. The eigenvalues show the system has become
unstable.



Similarly, impedance analysis shows thatthe inclusionof
frequency coupling affects the magnitude and phase of the
diagonal STATCOM impedances as shown in Fig.8. When
the frequency coupling is ignored the Bode plots of the
diagonal STATCOM impedances for different harmonics
coincide, whilst they diverge when frequency coupling i
considered. Therefore, ignoring the frequency coupling can
lead to some errors in stability analysis as the stability noms
will be affected by the drift in the magnitudes of impedances
of the systembeing assessed.
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Fig.8. The effect of couplingon STATCOM impedance.

7. Comparison of proposed dg-dynamic
phasor and conventional modelling
approaches
This section presents high-level comparisons between

the proposed dynamic phasor modelling method and several

conventional modelling techniques being used for system

stability assessment. Table 3 summarises the key attributes
and limitations of the modelling approaches being compared.

The synchronous dqmodelling method has been adopted as
a benchmark against which the proposed extended modek
are validated. The proposed modelling method shows
advantages relative to its counterparts in terms of ability to
facilitate more generic stability studies that includea number
of harmonics and in unbalanced grids, to cater for harmonic
coupling, and to retain the main attributes of linear time
invariant systems. The stability criteria of the proposed
method can be derived based on the synchronous dq
approach due to the similarity between the parameters of
both modelling techniques. However, the complexity of the
derivation is the main disadvantage. It should be stressed that
the selectionofmodelling approach must be made based on
the purpose of the studies to be carried out, taking into
account theeffort, time and complexity of implementations.

8. Conclusion

A generalised dg-dynamic phasor model and its
impedance equivalent are proposed. A STATCOM
connected to a grid is employed to demonstrate the
effectiveness of the proposed models when assessing the
stability of complex power systems that include balnced
and unbalanced grids, and a number of harmonics. The
proposed modelling method is generalised and validated
using MATLAB-Simulink. It is shown that the proposed
model can perform stability studies in systems that include
harmonic coupling. This is not possible with the LTI-
harmonic linearisation method and unified modelling
technique. However, the complexity of the derivation could
limit the use of this method when analysing large systerrs.
Despite the aforementioned limitations, the proposed
generalised model is well-suited for detailed stability
assessments of power electronic systems and their control
with time constants spread over wide frequency range,
encompassing both electromechanical dynamics and
electromagnetic transients. Further work on application of
the proposed generalised model for development of an
arbitrary harmonic suppressor are underway.

TABLE 3 COMPARISON BETWEEN PROPOSED DQ-DYNAMIC PHASOR MODEL AND OTHER MODELLING TECHNIQUES

Characteristic Identify Complexity of Matrices size of Identify Type of Stability
harmonic effects derivation each state variable unbalance parameters assessment range
Multiple . nd . .
Synchronous dgq [7][48] coordinates Simple Small Usnr\]g (2) order Linear _tlnt1e— (—00,400)
requ|red armonic Invarian
Unified modelling using C(')\glrJ(;}:lﬂtis Simole Small Limited for Linear time-
(XB [16] required P ws > 2wy variant (—oo,+oo)
Single phase dynamic ) ) ) Linear time-
phasor [36], [49], [50] Not applicable Simple Small Not applicable invariant (—00,+0)
Harmonics linearisation Positive negative Linear time-
method-LT1[21][22] Yes Moderate Moderate componegnts invariant (—00,400)
Harmonic state-space . Positive negative Linear time- on L
(HSS) [5] [32] Yes Difficult Large components variant 3+
Proposed dg-dynamic . Moderate Positive negative Linear time-
phasor Yes Difficult (2/3) of HSS parameters invariant (=00, +00)
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Appendix

Generalised state-space model
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