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We report the importance of cross-phase modulation (XPM) on the coherence of a low-energy probe pulse co-
propagating with a high-energy pump pulse that generates incoherent supercontinuum in all-normal dispersion
(ANDi) fiber due to Raman amplification of quantum noise. By investigating numerous fiber and pulse parame-
ters, we show consistently that for weak probe pulses, the XPM from the pump is the dominant influence on the
degradation of the probe coherence. We show that the faster decoherence at the pump leading edge means that the
probe coherence is reduced more significantly when the probe has a higher group velocity, i.e., when an orthogo-
nally polarized probe is aligned to the fast (lower refractive index) axis of the fiber or when a co-polarized probe
has a longer central wavelength. Simulations show that this effect occurs for both polarization-maintaining (PM)
and non-PM ANDi fibers and can result in a probe decoherence rate that is higher than that of the pump. These
previously unreported results extend our earlier scalar simulations showing incoherent supercontinuum within a
single pulse.
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1. INTRODUCTION

Supercontinuum generation in all-normal dispersion (ANDi)
specialty and photonic crystal fibers (PCFs) [1–3] has gath-
ered significant interest due to ANDi fibers having a unique
combination of both tight mode confinement and a low, flat,
and single-signed dispersion profile. This permits a monotonic
positive chirp across the entire final supercontinuum spectrum
following its initial generation through the optical wavebreaking
process [4,5]. ANDi fibers therefore provide access to broad-
band, dissipative nonlinear propagation solutions that maintain
several desirable features of the input driving pulses, such as a
single-peaked time-domain distribution and smoothly varying
phase [6,7]. Such fibers have become a popular platform for
generating high-brightness pulses that are compressible to the
single-cycle limit [8].

Recent numerical and experimental investigations have
revealed that an almost perfect output spectral coherence can
be achieved using pump pulses with durations up to 1.5 ps [9],
ensuring excellent shot-to-shot amplitude and phase stability.

This broadens the types of seed lasers that can be used when
compared with pumping in the anomalous dispersion regime,
which typically requires pulses shorter than∼ 150 fs to mitigate
the influence of quantum noise [10]. The complexity and cost
of coherent supercontinuum sources can therefore be reduced
when using ANDi fiber. Applications include optical coherence
tomography [11,12], as well as spectroscopy and frequency
metrology [13,14] with possible extension to gigahertz repeti-
tion rates [15]. Additionally, with the recent development of
ANDi fibers with dispersion minima and low loss at wavelengths
around 1.5− 2 µm [16–18], the possibilities now extend to the
mid-infrared [17,19], opening new opportunities for research in
molecular fingerprinting [20] and silicon photonics [21].

For pulse durations above ∼ 1.5 ps, Raman gain coupled
with the characteristic steep-edged, flat-top spectra in the ANDi
regime [3,7] leads to the amplification of out-of-band quan-
tum noise [9]. This is distinct from coherent energy transfer
between pulse-seeded spectral components, which is the desired
process in both the ANDi regime and in soliton self-frequency
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shifting in the anomalous dispersion regime [10,22,23]. Noise
amplification is accelerated by the parametric amplification of
higher-order Stokes and anti-Stokes waves through four-wave
mixing (FWM) under non-phase-matched conditions [24–26]
when the coherent self phase modulation (SPM) and optical
wavebreaking processes fail to dominate the pulse propagation,
and when the competing Raman-assisted parametric FWM
process is not effectively suppressed [9]. Hence, the competition
between optical wavebreaking and Raman-assisted parametric
FWM is of central importance to the rate of decoherence of
multi-picosecond pulses in ANDi fibers [9,27]. Developing
a more complete understanding of the processes that limit
coherent spectral broadening in the ANDi regime has therefore
remained at the forefront of recent research [9,28,29].

Nonlinear coupling between optical signals through cross-
phase modulation (XPM) is a commonly used technique with
applications in all-optical switching [30], multiplexing [31],
and modelocking [32,33]. However, its influence on nonlin-
ear dynamics in ANDi fiber has remained largely unexplored.
Recent contributions have focused on the role of XPM in vector
modulation instability (MI) [28], building on previous studies
that introduced this effect using normal-dispersion pumping in
step-index silica fibers [34,35].

Here, we investigate vector propagation effects in ANDi
PCFs and show how they can couple with the Raman amplifi-
cation of out-of-band quantum noise and pulse decoherence.
Vector contributions to Raman-based decoherence have not
previously been studied. We investigate the output coherence
of a low-energy probe pulse that propagates with a high-energy,
incoherent supercontinuum-generating pulse as a function of
temporal walkoff due to differing wavelengths or polarization
state, thereby generalizing previous scalar reports [9]. We focus
on a central wavelength of 1040 nm, pulse energies around
60 nJ, and peak powers up to 15 kW. These pulse parameters
approximate those output by commonly used sources such as
femto- and picosecond Yb-fiber lasers operating at megahertz
repetition rates. Additionally, non-polarization-maintaining
(PM) and PM fibers are considered by adjusting the group

velocity mismatch (GVM) between the pump and probe over
the range of 0 to±10 ps/m [36,37].

While in experiments the choice of seed laser will cause spe-
cific parameters such as peak power thresholds and fiber lengths
to vary from those presented in this work, the main conclusions
will apply to seeding with titanium sapphire lasers as well as
Yb-fiber lasers, and to mid-infrared sources used with chalco-
genide ANDi fiber [17]. The findings may also be applicable
to picosecond and femtosecond fiber amplifier and oscillator
design, especially where optical wavebreaking is suppressed and
the critical power for Raman amplification is exceeded [38].

The model is detailed in Section 2 with supplementary
material in Appendix A. In Section 3, we show how XPM and
Raman amplification couple to cause decoherence between
co-propagating pulses. Orthogonally polarized pulses are con-
sidered in Section 3.A. We investigate the probe coherence as
the pump transitions from coherent to incoherent dynamics
(Section 3.A.1) and show that the probe decoherence can occur
faster than the pump (Section 3.A.2). Co-polarized pulses with
different central wavelengths are then studied in Section 3.B.
Section 4 concludes the paper.

2. NUMERICAL METHODS

To model the influence of XPM on the coherence, we used
the pump–probe approach outlined in Fig. 1. We con-
sider transform-limited Gaussian input pulses for both the
pump and probe, with a temporal field envelope given by
A(T)=

√
P0exp[−2ln(2)(T/T0)

2
]. (T is the retarded time in

the co-moving frame of reference traveling at the group velocity
of the pump pulse central wavelength, and T0 is the full width
at half maximum pulse duration and is equal for the pump and
probe unless otherwise specified.) Peak powers were on the order
of kiloWatts and Watts for the pump and probe, respectively,
so they experienced different degrees of spectral broadening as
demonstrated by the example of orthogonally polarized pump
and probe in a birefringent PCF shown in the right-hand plot
of Fig. 1.

Fig. 1. Left (input pulses): the propagation of transform-limited high-energy pump (top row) and low-energy probe (bottom row) pulses in ANDi
PCF is simulated to investigate how the pump modifies the probe coherence. This is done by tuning the GVM between the pump and probe, accessed
using the fiber birefringence and probe central wavelength. Right (output pulses): the colormaps under the time-and frequency-domain plots have
been matched to indicate how the pump and probe spectra are distributed in the time domain. The asymmetric spectral broadening of the probe
shows that XPM driven by the pump pulse dominates, and that SPM within the probe is negligible. Equation (1) is therefore satisfied.
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Our choice of pulse parameters was determined by the
inequalities shown by Eqs. (1) and (2). These ensured that
any nonlinear propagation effects and resulting decoherence
experienced by the probe were driven entirely by the pump,
and that the fiber length was sufficient for the pump to undergo
incoherent spectral broadening. In Eq. (1), LN = 1/(γ P0)

is the nonlinear length, γ = kn2/Aeff parameterizes the fiber
nonlinear response, and P0 is the pulse peak power:

LN probe� Lfiber� LN pump, (1)

LWB > L?R. (2)

Here, LWB ≈ 1.1
√

LNLD is the wavebreaking length [6],
and LD = T2

0 /|β2| is the dispersion length. The Raman
length is defined as L?R = 1/(g ?s P0) [9], where g ?s is the mixed
parametric-Raman peak gain coefficient [24–26], given by
Eq. (3):

g ?s = 2γ Re
(√

K (2q − K )
)

. (3)

K =−β2�
2
R/(2γ P0) is the linear phase mismatch between the

seed pulse and (anti)-Stokes wave normalized to the nonlinear
contribution to the mismatch, q = (1− fR)+ fRχ̃

(3)
R (−�R),

and χ̃ (3)R (−�R) is the complex Raman susceptibility [9]. The
Raman effect was included using the experimentally measured
silica response [39] via a fractional contribution to the nonlinear
response of fR = 0.18 and a maximum χ̃

(3)
R =−1.38i at a

frequency detuning of�R/(2π)= 13.2 THz.
The vector generalized nonlinear Schrödinger equation

(GNLSE) included polarization dynamics and interactions
between pulses resulting from XPM, and is detailed in
appendix A. The GNLSE was integrated using the Runge–
Kutta fourth-order interaction picture method (RK4IP) [40]
along with the conservation quantity error method (CQEM,
[41]) adaptive step sizing technique for a negligible integration
error [42]. The CQEM ensured that the total photon number
over both the pump and probe pulses was conserved (accounting
for loss) so that energy transfer between the pump and probe was
permitted.

We considered a hexagonal-lattice silica ANDi PCF
with pitch and relative hole size of 3= 1.7 µm and
d/3= 0.3, giving max(D(λ))=−31 ps/(nm km) and
γ = 0.027 rad(Wm)−1 at 1040 nm. (The wavelength depend-
ence of γ was also included.) The dispersion profile (Fig. 2) was
calculated using an analytical approach [43,44]. Fiber loss was
included using a measured loss spectrum for standard single-
mode silica fibers digitized from Ref. [45] (Fig. 2). To simplify
the calculations, D(λ) and Aeff (and hence γ ) were the same for
both birefringence axes. For orthogonally polarized pump and
probe pulses, the polarization-dependent GVM was included
using 1β1 = β1 pump − β1probe, where β1 is the inverse group
velocity. The GVM for co-polarized pump and probe pulses was
determined by the fiber dispersion. The XPM contribution was
also modified depending on the relative polarization by modi-
fying XPM relative to SPM by εXPM = 2/3 or 2 for orthogonal
and parallel polarization states, respectively [46] [Appendix A,
Eq. (A3)]. This method of incorporating XPM and the polariza-
tion GVM has been used to accurately model vector nonlinear

Fig. 2. Left axis (orange solid): dispersion curve for the silica
hexagonal-lattice ANDi PCF.3= 1.7 µm, and d/3= 0.3. Right axis
(blue dashed): loss profile used in the simulations.

propagation [47]. Spontaneous Raman scattering noise was also
included [10,48].

Shot noise was included in the simulations using the standard
one photon per mode approach [10]. Although noise levels
above the quantum limit cause a more rapid reduction in coher-
ence [9] and have been shown to influence the propagation
dynamics [29,49], our focus was to explore the combined effect
of XPM and Raman amplification, so we assume quantum
noise limited seed lasers. We consider pulse durations between
100 fs and 7 ps, implying the use of mode-locked lasers, which
have excellent noise properties [50]. Pulse peak powers were
restricted to < 100 kW so we did not expect to see incoherent
optical wavebreaking or incoherent cloud formation [9] over the
meter-length fibers used. The generality of our work is therefore
not reduced by considering only quantum noise limited seed
pulses for the pulse energies and peak powers investigated.

The shot-to-shot output spectral stability was calculated
over an ensemble of independently generated pairs of spectra
using the modulus of the first-order degree of coherence and its
average (denoted by angular brackets), defined by Eqs. (4) and
(5), respectively [51,52]. These equations were applied to the
pump and probe ensembles separately:∣∣∣g (1)12 (λ, ta − tb)

∣∣∣= ∣∣∣∣∣ 〈A?a (λ, ta )Ab(λ, tb)〉√
〈|Aa (λ, ta )|2〉〈|Ab(λ, tb)|2〉

∣∣∣∣∣
a 6=b

,

(4)

〈|g (1)12 |〉 =

∫
∞

0 |g
(1)
12 ||A(λ)|

2dλ∫
∞

0 |A(λ)|
2dλ

. (5)

Each simulation comprised 24 individual shots (276 pairs
of spectra, sufficient for the averaging [9,10]). Equations (4)
and (5) are defined over the interval [0; 1], with a value of 1
indicating perfect coherence.

The fiber length over which 〈|g (1)12 |〉 decreases to 0.9 is the
coherence length, L c. Its dependence on the pulse duration is
expressed in Eq. (6), and while an approximate analytic formula
exists [9], we circumvent the need for numerical fitting by cal-
culating 〈|g (1)12 |〉 directly as a function of fiber length during the
simulations:

L c ∝
1

fR�RT0
. (6)

Alternatively, the coherence length can also be expressed as L c ∝

L?R/LWB [9] [see Eq. (3) for the definition of LWB and L?R].
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Although the ANDi regime does not permit solitons, the
soliton number [Eq. (7)] is a useful parameter for interpreting
the results:

N =

√
LD

LN
. (7)

3. DECOHERENCE DUE TO XPM-ASSISTED
RAMAN AMPLIFICATION

We first explore how the coherence of an orthogonally polar-
ized probe is affected by XPM-assisted Raman amplification
(Section 3.A) and then show the effect of the competition
between the coherent optical wavebreaking process with
Raman-assisted parametric FWM in the pump (Section 3.A.1).
We then show how the probe energy affects the probe coherence
(Section 3.A.2). The second mode of decoherence with co-
polarized but offset wavelength pulses is studied in Section 3.B.
The XPM-assisted decoherence process generally follows a
four-step pattern:

1. The pump pulse undergoes a combination of FWM and
Raman scattering, amplifying Stokes and anti-Stokes
waves that are seeded by quantum noise and therefore have
stochastic amplitude and phase profiles. This essentially
scalar process degrades the pump coherence following the
pattern identified in Ref. [9].

2. The pump Stokes and anti-Stokes waves interfere with the
main part of the pump to produce stochastic time-domain
intensity modulations that are amplified with propagation
distance.

3. While the pump and probe overlap in the time domain,
XPM transfers the stochastic Raman-amplified inten-
sity modulations of the pump pulse to a stochastic phase
modulation in the probe.

4. This phase modulation drives Raman-assisted parametric
FWM in the probe, which develops noise-seeded, incoher-
ent Stokes and anti-Stokes spectral sidebands, degrading
the probe coherence.

A. Cross-Polarization Decoherence

Figure 3 shows the pump and probe at the output of a 1.3 m
length of the ANDi PCF (representative of lengths used in
recent studies of supercontinuum decoherence in ANDi
fiber [9,27–29]). Here, Epump = 60 nJ (Npump = 770),
Eprobe = 5 pJ, and 1β1 = 0 ps/m. The pump has under-
gone significant spectral broadening as described in step 1
above and in scalar reports of Raman-induced decoherence in
ANDi fiber. Strong Stokes and anti-Stokes bands are visible in
the ensemble average as a shallow spectral modulation with a
frequency corresponding to the Raman gain peak at 13.2 THz.
The time-domain modulations outlined in step 2 are visible on
the left-hand side, and the coherence of the spectral components
resulting from the noise-seeded broadening is low.

The probe ensemble (second row) shows spectral broadening
through XPM-assisted Raman amplification outlined in steps
3 and 4, which results in very low probe coherence. It is not
possible to characterize this effect using a scalar model alone:

Fig. 3. Orthogonally polarized pump and probe ensembles after
co-propagating in silica ANDi PCF with1β1 = 0 ps/m. Left column:
time-domain. Right column: normalized spectral power density (SPD,
left y axis) and coherence data (red trace, right y axis). Blue traces show
the ensemble average, and fine gray lines show the individual shots.
Top: pump (60 nJ, 7 ps). Bottom: probe (5 pJ, 7 ps). The arrows mark
the two most energetic Stokes peaks.

the output probe ensemble without the XPM term was always
coherent. XPM dominates the probe propagation, as the spec-
tral broadening is driven externally (as opposed to SPM in the
pump propagation), leading the initially identical pump and
probe spectra to evolve differently. The one feature common to
the pump and probe is a pair of Raman peaks (first and second
Stokes, highlighted by the black arrows), with a spacing equal to
the frequency of the main peak in the Raman response of silica
(13.2 THz). However, these features also differ in detail, with
those in the probe spectrum having narrower bandwidths and
shorter central wavelengths.

The origin of these differing characteristics is illustrated in
Fig. 4 for 90 cm of PCF and 1β1 = 7 ps/m, so that the probe
advances through the pump, but neither the pump nor probe
becomes fully incoherent, so it is easier to distinguish each
nonlinear process. XPM-assisted Raman amplification in the
probe is seen directly: the Stokes and anti-Stokes waves in both
pulses occur at the same delay (−4 ps). The weaker contribution
of XPM to the probe versus SPM to the pump means that the
chirp at −4 ps is lower for the probe. Coupled with the com-
mon Raman modulation frequency of �R/(2π)= 13.2 THz,
this leads to the probe Raman bands having different central
frequencies to the pump Raman bands. The Raman bands of
the probe also have narrower bandwidths because the probe has
undergone less broadening than the pump, and so the Raman
bands are generated from a narrower initial spectrum. The
XPM-assisted Raman amplification is purely a phase effect,
evidenced by the chirp of each pump/probe Raman band, which
closely matches that of the pump/probe pulses, showing that
the probe Raman amplification occurs without transferring
photons across polarization axes [46]. This is also confirmed by
the pump and probe energies, which remain stable apart from
loss.

The continuous Raman amplification seen in Fig. 4 would be
truncated if, instead of being positive, 1β1 becomes negative
so as to minimize the temporal overlap of the probe with the
pump Raman band at its leading edge. An asymmetry in probe
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Fig. 4. Spectrograms of orthogonally polarized pump (blue
colormap) and probe (black contour) with the same initial central
wavelength (1040 nm, 288 THz) after propagating through 90 cm of
ANDi PCF with 1β1 = 7 ps/m. The spectrograms are normalized to
the peak of the pump pulse (−70 to 0 dB).

decoherence versus the sign of the GVM is a clear effect of incor-
porating XPM. To illustrate this, the incoherent broadening of
the probe by the pump for1β1 values of 7,−7, and 10 ps/m is
shown from left to right in Fig. 5 for a 130 cm length of the PCF
(all other parameters are the same as those in Figs. 3 and 4). In all
cases, the pump Raman scattering was mainly confined to the
pump leading edge, as the temporal walkoff between the pump
Stokes and anti-Stokes waves was negligible due to the low fiber
dispersion of−31 ps/(nm km).

The left-hand plot of Fig. 5 (1β1 = 7 ps/m) is the same as
Fig. 4 but for 130 cm of PCF instead of 90 cm. The longer inter-
action length and large temporal overlap has allowed the pump
to continuously stimulate Raman amplification in the probe,
causing its average coherence to degrade to 〈|g (1)12 |〉 = 0.15.

Energy transfer from the probe to its incoherent Stokes waves
was significant (highlighted in the figure by the red dashed
lines).

This changes for1β1 =−7 ps/m, shown in the central col-
umn. The lower probe group velocity moved the probe towards
the trailing edge of the pump, so the same average temporal
overlap as for 1β1 = 7 ps/m resulted in significantly reduced
XPM-assisted Raman amplification in the probe and a higher
probe coherence of 〈|g (1)12 |〉 = 0.6.

It was possible to maintain a high probe coherence for a pos-
itive GVM only if the GVM was increased substantially. Using
1β1 = 10 ps/m (third column, Fig. 5) maintained an average
probe coherence of 0.6. For this GVM, the probe reached a delay
approximating the pump FWHM duration after propagating
L c pump = 72 cm, so temporal overlap of the pulses was small by
the time that Raman scattering had become significant for the
pump.

1. Competition betweenOpticalWavebreaking and
Raman-AssistedParametric FWM

The competition between optical wavebreaking and
Raman-assisted parametric FWM determines whether the
supercontinuum process in ANDi fiber is coherent or incoher-
ent [9]. This competition is parameterized by the coherence
length, L c [Eq. (6)], at which 〈|g (1)12 |〉 decreases to 0.9. Since
LWB increases if the pulse duration is increased, even if the
peak power is held constant, this results in a reduced coher-
ence length and a faster rate of decoherence. In this section,
by adding XPM, we provide the first study of the probe coher-
ence as the pump transitions from coherent to incoherent
propagation dynamics.

We calculated the average coherence for both the pump
and the probe over a broad range of GVM, pump energy, and
duration values while maintaining a fixed pump peak power of
15 kW (approximating values commonly used in experiments
and simulations [3,7,9]). We parameterize the pump charac-
teristics using Npump [Eq. (7)] and use a constant peak power
to fix LN = 2.5 mm (γ P0 = 405 rad/m). The pump duration

Fig. 5. Decoherence of orthogonally polarized pump and probe pulses with the same central wavelength (1040 nm, 288 THz), shown by the blue
colormap and black contour, respectively, as a function of group velocity mismatch. Both the magnitude and sign of 1β1 change the degradation
of the probe coherence. Epump = 60 nJ, Eprobe = 5 pJ, T0 = 7 ps, and Lfiber = 130 cm. Columns from left to right: 1β1 = 7 ps/m, −7 ps/m, and
10 ps/m. Insets: pump coherence (blue dashed) and probe coherence (solid black) as a function of frequency (THz) over the region of highest spectral
power density.
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Fig. 6. Top left: Average pump coherence (left y axis, purple solid
line) and L?R/LWB (right y axis, green dashed line) as a function of
Npump for a 1 m length of PCF. Top right: average probe coherence as
a function of Npump and1β1 for a 1 m length of PCF. The red dashed
line in the right-hand plot shows where 〈|g (1)12 |〉 is minimized for a given
Npump. The purple region shows where L c probe is shorter than L c pump,
and therefore where the decoherence for the probe occurs at a higher
rate than the pump. Bottom: energy transferred from the pump and
probe pulses to the phonon field as a function of propagation distance
(Npump = 900 and1β1 = 0 ps/m).

ranged from 0.1 ps to 7 ps and the pump energy from 1.6 nJ to
112 nJ, giving L?R = 0.1 m while varying LWB from 0.04 m to
2.9 m to show the effect of both coherent and incoherent pump
dynamics on the probe. The probe energy and duration were
held constant at 5 pJ and 7 ps (P0 ≈ 0.7 W), giving probe non-
linear and dispersion lengths of 61 m and 2.7 km, respectively,
ensuring that Eq. (1) was fulfilled for the full parameter space.
The results are shown in Fig. 6. Due to the PCF length of 1 m,
the 〈|g (1)12 |〉 = 0.9 contour in Fig. 6 gives the pairs of 1β1 and
Npump values resulting in L c probe = 1 m.

The average pump coherence (Fig. 6, top left) had no GVM
dependence because Eq. (1) was fulfilled. For clarity, we there-
fore show the average pump coherence for 1β1 = 0 ps/m
only. L c pump = 1 m for Npump = 400 (Epump ≈ 42 nJ,
T0 = 2.7 ps), shown by the purple dashed lines. The variation of
L c pump ∝ L?R/LWB versus pump parameters and fiber disper-
sion is also shown. The transition from optical wavebreaking to
Raman-assisted parametric FWM occurs for Npump ≈ 400.

Our previous observation that the probe coherence is reduced
more quickly for 1β1 > 0 ps/m is shown here by the asym-
metry of the 〈|g (1)12 |〉 contours around 1β1 = 0 ps/m (Fig. 6,
top right). The minimum Npump that results in L c probe = 1 m
occurs at1β1 = 5 ps/m. For large |1β1| values, L c probe = 1 m
is maintained only if the pump soliton order increases linearly
with |1β1|.

The asymmetry of the probe decoherence with GVM
becomes less significant as Npump (and thus the pump decoher-
ence rate) is increased. This is shown by the negative gradient
of the red dashed line (Fig. 6, top right), which tracks the min-
imum probe coherence for each Npump, and happens because
Raman amplification occurs at the leading edge of the pump
first and then progresses through the peak towards the trailing

edge [9], and this progression occurs earlier in the propagation
as Npump is increased.

2. AcceleratedDecoherence for Low-EnergyProbe

Figure 6 shows that for some values of Npump and1β1, the probe
coherence degrades further than that of the pump despite the
reduction in the pump influence on the probe by εXPM = 2/3
[Eq. (A3)]. This is most pronounced when the probe energy is
significantly smaller than the pump energy. For example, the
average pump coherence is equal to 0.3 when Npump = 950,
but the average probe coherence takes the same value between
−2≤1β1 ≤ 7 ps/m and 630≤ Npump (shown by the white
contour), where Eprobe ≈ 10−4 Epump. The region where the
pump coherence exceeds the probe coherence is confined to
smaller ranges of1β1 as Npump is decreased, until eventually the
pump coherence is higher only when the probe pulse propagates
faster than the pump pulse. These effects can be understood by
examining the mixed parametric-Raman gain for the first Stokes
waves of the pump and probe [9,24–26], which take compa-
rable values of g ?s P0 = 9.6 m−1 and (2/3)g ?s P0 = 6.4 m−1 for
an average probe coherence of 0.3 at 1β1 = 0 ps/m (where
Npump ≈ 800, T0 = 5.3 ps, and Epump = 85 nJ). The low probe
energy combined with the comparable Raman gain and equal
Stokes seed energy (set by the quantum noise) results in a higher
fraction of the probe energy being transferred to the Stokes and
anti-Stokes waves:

αP(z)=
E (z)
E input

− αfiber(z). (8)

We attempted to calculate the energy in the pump and probe
Stokes and anti-Stokes waves directly, but it is often not possible
to separate the characteristics of each nonlinear process in the
noisy spectra accurately. The total energy transferred to the
phonon field (i.e., the energy loss due to the frequency detuning
between the pulses and the Stokes waves) is an equivalent metric,
obtained using Eq. (8). E (z)/E input gives the fractional energy
loss for the pulses at propagation distance z, αfiber(z) is the
fractional energy loss from linear propagation in the fiber, and
αP(z) is the fractional energy lost by the pulses to the phonon
field through Raman amplification. This quantity is reliable
because of the negligible error introduced by our chosen inte-
gration method, because SPM, self-steepening, and dispersive
pulse broadening are lossless, and because of the higher gain
for the Stokes waves in comparison with the anti-Stokes waves
[9,24–26], causing a net transfer of energy to the phonon field
from the pump and probe pulses.

The contribution to the phonon energy from the pump and
probe is shown as a percentage of their respective input ener-
gies in the bottom row of Fig. 6 for Npump = 900 (T0 = 6 ps,
Epump ≈ 95 nJ) and 1β1 = 0 ps/m. At the fiber output, the
probe has contributed 2.2% of its energy to the phonon field for
PCF lengths above 0.8 m, whereas the pump has contributed
1.6% in that section of the fiber, which confirms the proposed
explanation for the relative coherences of the pump and probe.
Equivalently, the average probe coherence is expected to be pro-
portional to the probe energy as long as Eq. (1) is satisfied. This
is confirmed by Fig. 7, which shows how 〈|g 12,probe|〉 depends
on the ratio of probe energy to pump energy for a constant
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Fig. 7. Average probe coherence for 1 m of ANDi PCF with
1β1 = 0 ps/m as a function of the ratio of the probe energy to the
pump energy. The pulse durations were constant at 7 ps, and the
pump energy was held constant at 60 nJ. The shaded region shows the
confidence interval of the linear fit to one standard deviation.

pump energy of 60 nJ (1β1 = 0 ps/m, Tpump = 7 ps giving
LN = 4.5 mm, LD = 2.75 km, and Npump = 780). The fitted
curve shows that the relationship has a dominant linear compo-
nent, which is given by (2.11± 0.3)Eprobe/Epump for the pulse
and fiber parameters chosen.

We note that the accelerated probe decoherence is important
for a very broad range of GVM values, and occurs faster than
the pump decoherence (top right plot in Fig. 6, purple shading)
when Npump > 300 and when1β1 is between 0.3 and 8 ps/m.
The corresponding birefringence of 9× 10−5 to 2.4× 10−3

covers both non-PM and PM fibers. The faster loss of coher-
ence for low-energy signal propagating with an incoherently
broadened high-energy pulse is therefore expected whenever it is
polarized along the fiber fast (lower index) axis.

B. Co-Polarized, Cross-Wavelength Decoherence

Figure 8 shows co-polarized pump and probe pulses in the same
format as Figs. 4 and 5 and for the same fiber parameters. The
pump central wavelength was constant at 1040 nm, but the
probe was set to 1100 nm (top row of Fig. 8), and 1300 nm (bot-
tom row) to explore how the fiber dispersion affects the probe
decoherence. The pulse duration was 7 ps (probe bandwidths
of 0.25 nm and 0.35 nm, respectively, and a pump bandwidth
of 0.23 nm). Differences in the propagation for co-polarized
pulses in comparison with cross-polarized pulses are due to
the increased strength of XPM, which is three times higher
compared with the cross-polarized case.

The GVM was just 2 ps/m for a probe central wavelength of
1100 nm, so its large overlap with the pump leading edge caused
significant Raman amplification. The Raman gain for the pump
was g ?s P0 = 7 m−1 [L?R = 14 cm, Npump = 770; see Eqs. (2)
and (3)], but the gain for the probe was higher at approximately
15.3 m−1 because εXPM = 2 for co-polarized pulses [Eq. (A3)]
and because of the different dispersion values at the pump and
probe wavelengths. The Raman gain for the 1300 nm probe
(bottom row of Fig. 8) was 22.5 m−1, but the effect is reduced
by the larger GVM of∼ 9 ps/m. The larger Raman gain means
the probe coherence degraded faster than for the orthogonally
polarized pump and probe in Section 3.A. In the top row of
Fig. 8, the probe coherence degraded to 〈|g (1)12 |〉 = 0.15 com-
pared to 〈|g (1)12 |〉 = 0.24 for the pump. L c pump = 72 cm, and

Fig. 8. Cross-wavelength decoherence for co-polarized pump
and probe (XPM factor of 2). T0 = 7 ps and Lfiber = 130 cm for
all simulations, and the pulses have zero initial relative delay. Top:
λc pump = 1040 nm (288 THz), λc probe = 1100 nm (273 THz).
Bottom: λc pump = 1040 nm, λc probe = 1300 nm (231 THz). Insets:
pump and probe coherence for the region of highest spectral power
density (dashed blue and solid black lines, respectively).

L c probe was 71 cm and 83 cm for the two wavelengths, respec-
tively (compare with equivalent average coherence values for
cross-polarized probe pulses, where Npump = 770 and1β1 = 2
and 9 ps/m: 0.23 and 0.57, respectively). The fiber dispersion
profile therefore has a similar influence on the probe coherence
to the polarization GVM, except the probe Raman gain is higher
because of the stronger influence of XPM.

For completeness, note that the most general case of XPM-
assisted decoherence occurs for cross-polarized pulses with
different central wavelengths. For those conditions, the probe
decoherence will be a function of the pulse polarization state as
well as the fiber polarization GVM and dispersion. Although
the size of this parameter space goes beyond the scope of the
current work, the two cases outlined in Sections 3.A and 3.B
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provide insights that are useful for predicting the propagation
dynamics in the more general case. For example, cross-polarized
pump and probe pulses with respective central wavelengths of
1040 nm and 900 nm would have a GVM of−6.2 ps/m for the
PCF used in this work, and so, in a weakly birefringent fiber, the
probe would develop in a way similar to the 1β1 =−7 ps/m
simulation in Fig. 5. However, were the probe propagated with
its polarization aligned to the fast (low-index) axis of a highly
birefringent fiber instead, then this GVM would be counter-
acted, resulting in a more significant loss of coherence for the
probe. Note that we have chosen wavelength offsets that are
mismatched from the Raman gain peak at 13.2 THz to avoid
coherently seeded Raman amplification.

4. CONCLUSION

We have studied a new mechanism through which the ANDi
supercontinuum decoherence process can be transferred to a
co-propagating probe signal via a combination of XPM and
Raman amplification of out-of-band quantum noise. We have
systematically characterized the mechanism using a vector
GNLSE to investigate the decoherence of a low-energy probe
that co-propagates with a high-energy, continuum-generating
pump. Our work extends a scalar investigation that showed that
Raman decoherence is highly significant for picosecond pulses
in meter-length fibers [9] to include XPM-based nonlinear
coupling.

We explored a broad range of pulse and fiber parameters such
as fiber birefringence, pulse durations, peak powers, central
wavelengths, and the assignment of the pump and probe pulses
to both the fast and slow polarization axes. The pump pulses
investigated had sufficient energy and duration to undergo sub-
stantial decoherence over fiber lengths of approximately 1 m if
propagated on their own. For the probe, we chose pulse param-
eters that resulted in a negligible contribution to nonlinear and
dispersive effects.

N̂pump(�)=−iγ (�)
(

1+
�

ω0

)
(F[(1− f R)(|Apump(z, T)|2 + εXPM|Aprobe(z, T)|2)

+ f RF−1
[h̃ R(�)F[|Apump(z, T)|2 + |Aprobe(z, T)|2]] + i0R(z, T)]). (A3)

The main conclusion is that there is an asymmetry in the
probe decoherence versus the sign of the GVM. This effect
can be observed only using vector simulations, and occurs
because the temporal overlap of the probe pulse with the Raman
amplification in the pump leading edge is maximized when
the probe has a higher group velocity. This is the case when an
orthogonally polarized probe is propagated along the fast (lower
index) axis of the fiber, or when a co-polarized probe has a longer
central wavelength, and occurs in both PM and non-PM fibers.
The polarization GVM and the fiber dispersion have equivalent
roles in the probe decoherence for narrow-band input pulses,
and so the PCF hole and pitch size as well as the birefringence
will determine the probe coherence in general. The relative

polarization state of the pump and probe was also found to be
of central importance as it determines the strength of the XPM
coupling between the pulses. We also observed that the probe
decoherence can occur at a higher rate where the probe energy is
sufficiently small, and that this happens for both orthogonally
and co-polarized probes.

APPENDIX A. GENERALIZED NONLINEAR
SCHRÖDINGER EQUATION

We simulated the nonlinear propagation of both the pump and
probe using Eq. (A1). Operators D̂ and N̂ are responsible for
linear and nonlinear effects acting on field envelope A(z, T):

∂ A(z, T)
∂z

=

(
D̂+ N̂

)
A(z, T). (A1)

We took the standard approach of applying the fiber disper-
sion and loss in the frequency domain using the linear operator
defined in Eq. (A2):

D̂(�)=
α(�)

2
− i

[
1β1�−

β2(�)

2
�2

]
, (A2)

where α(�) is the fiber loss spectrum, β2(�) is the full fiber
group velocity dispersion (its frequency dependence accounts
for the higher orders), and�=ω−ω0 is the angular frequency
grid centered on zero. The polarization GVM is accounted for
using 1β1 as described in Section 2 and, being the difference
between the pump and probe group velocities, was included
for orthogonally polarized probe pulses only to keep the pump
pulse centered at the origin of the temporal grid. The fiber
dispersion determined the GVM for co-polarized pulses.

Although the nonlinear operator is commonly defined in the
time domain, we opted for the frequency domain definition
given by Eq. (A3) to account for the frequency dependence of γ
and because this definition is more readily incorporated into the
CQEM [42]:

For the probe propagation, N̂probe takes the same form as
Eq. (A3), but Apump(z, T) and Aprobe(z, T) are swapped. F
and F−1 denote the fast Fourier transform and its inverse,
respectively. XPM is included using εXPM|A(z, T)|2, where
εXPM = 2/3 or 2 for orthogonally polarized or co-polarized
pulses, respectively. h̃R(�) is the Raman response of the
fiber, and 0R(z, T) accounts for spontaneous Raman scat-
tering noise [10,48]. We neglected the degenerate FWM
term given by A?pump A2

probeexp(−4i1nz/λ) (or, for the

probe A?probe A2
pumpexp(4i1nz/λ)) because we found that

its contribution averaged to zero [46], where 1n > 3× 10−5

(corresponding to |1β1|> 0.1 ps/m, which covers the majority
of the GVM range explored), and also because our aim was to
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investigate the effects of XPM-assisted Raman amplification on
the probe decoherence in isolation from other field coupling
effects. Additionally, a Raman term involving the product of
both A1 and A2 had a negligible effect for the pump and probe
energies selected, and so was excluded to reduce computation
time.
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Lisowska, D. Pysz, R. Kasztelanic, and M. Klimczak, “Development
of highly nonlinear polarization-maintaining fibers with normal dis-
persion across entire transmission window,” J. Opt. 21, 015504
(2018).

37. K. Tarnowski, T. Martynkien, P. Mergo, K. Poturaj, A. Anuszkiewicz, P.
Béjot, F. Billard, O. Faucher, B. Kibler, and W. Urbanczyk, “Polarized
all-normal dispersion supercontinuum reaching 2.5 µm generated in
a birefringent microstructured silica fiber,” Opt. Express 25, 27452–
27463 (2017).

38. R. G. Smith, “Optical power handling capacity of low loss optical
fibers as determined by stimulated Raman and Brillouin scattering,”
Appl. Opt. 11, 2489–2494 (1972).

39. R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, “Raman
response function of silica-core fibers,” J. Opt. Soc. Am. B 6, 1159–
1166 (1989).

40. J. Hult, “A fourth-order Runge-Kutta in the interaction picture method
for simulating supercontinuum generation in optical fibers,” J.
Lightwave Technol. 25, 3770–3775 (2007).

41. A. M. Heidt, “Efficient adaptive step size method for the simulation of
supercontinuum generation in optical fibers,” J. Lightwave Technol.
27, 3984–3991 (2009).

42. A. A. Rieznik, A. M. Heidt, P. G. Konig, V. A. Bettachini, and D.
F. Grosz, “Optimum integration procedures for supercontinuum
simulation,” IEEE Photon. J. 4, 552–560 (2012).

43. M. Koshiba and K. Saitoh, “Applicability of classical optical fiber the-
ories to holey fibers,” Opt. Lett. 29, 1739–1741 (2004).

44. K. Saitoh and M. Koshiba, “Empirical relations for simple design of
photonic crystal fibers,” Opt. Express 13, 267–274 (2005).

45. T. Miya, Y. Terunuma, T. Hosaka, and T. Miyashita, “Ultimate low-loss
single-mode fibre at 1.55µm,” Electron. Lett. 15, 106–108 (1979).

46. G. P. Agrawal,Nonlinear Fiber Optics, 4th ed. (Academic, 2006).
47. J. S. Feehan, F. Ö. Ilday, W. S. Brocklesby, and J. H. V. Price,

“Simulations and experiments showing the origin of multiwave-
length mode locking in femtosecond, Yb-fiber lasers,” J. Opt. Soc.
Am. B 33, 1668–1676 (2016).

48. P. D. Drummond and J. F. Corney, “Quantum noise in optical fibers. I.
Stochastic equations,” J. Opt. Soc. Am. B 18, 139–152 (2001).

49. M. H. Frosz, “Validation of input-noise model for simulations of
supercontinuum generation and rogue waves,” Opt. Express 18,
14778–14787 (2010).

50. N. R. Newbury and W. C. Swann, “Low-noise fiber-laser frequency
combs (Invited),” J. Opt. Soc. Am. B 24, 1756–1770 (2007).

51. J. M. Dudley and S. Coen, “Coherence properties of supercontinuum
spectra generated in photonic crystal and tapered optical fibers,”
Opt. Lett. 27, 1180–1182 (2002).

52. J. M. Dudley and S. Coen, “Numerical simulations and coher-
ence properties of supercontinuum generation in photonic crystal
and tapered optical fibers,” IEEE J. Sel. Top. Quantum Electron 8,
651–659 (2002).

53. https://www.doi.org/10.15129/a254c0da-7324-4215-8430-ad3831
22de12.

https://doi.org/10.1088/2040-8986/aaf4af
https://doi.org/10.1364/OE.25.027452
https://doi.org/10.1364/AO.11.002489
https://doi.org/10.1364/JOSAB.6.001159
https://doi.org/10.1109/JLT.2007.909373
https://doi.org/10.1109/JLT.2007.909373
https://doi.org/10.1109/JLT.2009.2021538
https://doi.org/10.1109/JPHOT.2012.2188281
https://doi.org/10.1364/OL.29.001739
https://doi.org/10.1364/OPEX.13.000267
https://doi.org/10.1049/el:19790077
https://doi.org/10.1364/JOSAB.33.001668
https://doi.org/10.1364/JOSAB.33.001668
https://doi.org/10.1364/JOSAB.18.000139
https://doi.org/10.1364/OE.18.014778
https://doi.org/10.1364/JOSAB.24.001756
https://doi.org/10.1364/OL.27.001180
https://doi.org/10.1109/JSTQE.2002.1016369
https://www.doi.org/10.15129/a254c0da-7324-4215-8430-ad383122de12
https://www.doi.org/10.15129/a254c0da-7324-4215-8430-ad383122de12

