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10.1   Introduction 

In the study of defects in semiconductors, many techniques provide access to the structure or properties 

of ensembles of defects.  Microscopy techniques, however, allow us to access the structure and 

properties of individual defects.  Whilst in one sense this can be a weakness, leading to results which 

lack statistical significance, the ability to image defects at high resolution can provide a clarity of 

understanding and a wealth of information which is extraordinarily valuable.  It is said that “seeing is 

believing”, and microscopy represents the single most direct method to “see” defects, or rather to image 

them, since the resolution of modern microscopes extends right down to the atomic scale, far beyond 

the power of human sight.  Increasingly, microscopy techniques also provide access to nanoscale 

resolution of the properties of defects and material in their close vicinity, allowing direct correlation of 

structure and properties.   

There are any number of microscopy techniques that can be useful in addressing defects in 

semiconductors, and here we choose to focus on three main families:  scanning probe microscopy 

(SPM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). We note 

that other powerful microscopy techniques, particularly atom probe tomography (APT) are addressed 

elsewhere in this book.  In this chapter, we will first address the basic principles of our selected 

microscopy techniques (Section 10.2): it is vital that the reader who either chooses to use microscopy in 

their own research on defects or relies on microscopy data from the literature, should understand the 

physical principles underlying image formation and hence the strengths and (perhaps more importantly) 

limitations of the techniques.  In our discussions of image formation, we will elucidate the mechanisms 

by which defects are typically imaged in each technique.  Then, in the latter part of the chapter (Section 

10.3), we describe some key examples of the application of microscopy to semiconductor materials, 

addressing both point and extended defects and both 2D and 3D materials. 

10.2 Basic principles of the microscopy techniques 

10.2.1  Scanning probe microscopy 

10.2.1.1 Atomic force microscopy 
In its most basic form, the atomic force microscope (AFM) is a tool for measuring surface morphology 

at the nanoscale.  Hence, where defects intersect a surface and affect the surface topography, AFM can 

be used to identify them.  Whilst it is possible to achieve atomic resolution imaging in AFM in ultra-

high vacuum, for semiconductors this is more usually achieved using scanning tunnelling microscopy 

(STM) which is described in Section 10.2.1.3.  Here, we will address the application of AFM in air to 

image nanoscale (but not atomic level) surface features, related to defects. Examples of defects which 

influence the surface topography include dislocations, which necessarily create a pit where they intersect 

the surface, in order that the surface tension may balance the dislocation line tension.  Dislocation 

imaging in AFM is discussed is one of the examples we address later in the chapter, in Section 10.3.1.2.  

Here we address the principles of AFM and the basic image formation mechanism [1]. 

AFM employs a sharp tip, with end radius typically less than 10 nm, suspended from the end of a 

microcantilever.  In the simplest realisation of the technique, a piezo-electric scanner is used to scan the 

tip over the surface in contact with the sample, and where it encounters a change in the surface 

topography, the cantilever deflects.  This deflection is monitored by reflecting a laser beam from the 

back side of the cantilever onto a photo-detector.  If the path length followed by the laser beam is long, 

nanoscale motion of the cantilever is amplified into larger changes in the position of the laser beam at 

the photodetector, and hence the surface morphology can be measured.  This very simple 

implementation of AFM, similar to the operation of a record player, is rarely used, and indeed even 

when the technique was first invented [2], a feedback circuit was employed to control the deflection of 

the cantilever and hence the force on the surface.  The feedback circuit acts to continuously adjust the 

height of the cantilever, aiming to achieve a fixed cantilever (or equivalently laser spot) deflection.  This 
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fixed deflection value is the “setpoint” for the feedback circuit.  The cantilever height is adjusted by 

changing the voltage applied to the z-piezo - a piezoactuator oriented to provide motion in the z-direction 

(i.e. normal to the surface).  These voltages are then converted to heights using calibration data.  The 

accuracy of an AFM is hence only as good as the calibration data it relies on, and the calibration should 

usually be checked approximately every six months. The instrumentation used in AFM is illustrated 

schematically in Figure 1.  Note, that the figure shows a system in which the tip is scanned and the 

sample held stationary. This configuration allows large samples (such as full semiconductor wafers) to 

be scanned.  However, many microscopes, particularly those used for smaller samples keep the tip 

stationary and achieve relative motion between the tip and sample by moving the sample using a 

piezoactuator.  

The vertical resolution of a well-calibrated AFM is limited in theory by the ability to control the z-

motion via the application of voltage to the z-piezo.  In practice, the vertical resolution is actually 

determined by noise, and the noise floor of typical commercial microscopes is often less than 0.5 Å, 

allowing the imaging of atomic-scale features such as monolayer steps.  The horizontal resolution is in 

general determined by the radius of the apex of the tip used for imaging.  Since the forces acting on the 

tip include fairly long-range van der Waal’s interactions, even where portions of the tip away from the 

very apex do not directly contact the surface they still influence the tip deflection, and hence the 

resolution.  Hence, the creation and preservation of a sharp tip is paramount if high resolution imaging 

is to be achieved. 

When an AFM is operated, as described above, with the tip in constant contact with the surface, this is 

known as “contact mode”.  The constant rubbing of the tip over the surface tends to wear the tip, blunting 

its sharp apex (or sometimes damaging the sample) so many users prefer to employ an “intermittent 

contact” mode instead to reduce tip wear and hence improve resolution. The most common intermittent 

contact mode is the so-called “tapping mode”. In tapping mode the tip is oscillated at a frequency close 

to its resonant frequency, usually by a small piezo-element on the tip holder.  When the tip is close 

enough to the surface to make contact at the bottom of each oscillation,  

 
 

Figure 1: Schematic illustration of an atomic force microscope for a tip-scanning system 

 

the presence of the surface limits or damps the amplitude of oscillation, which varies linearly with tip-

sample separation.  Hence, the amplitude of oscillation may be used as the input parameter to a feedback 

circuit: a constant amplitude setpoint is maintained by varying the voltage applied to the z-piezo, so that 

the tip traces out a contour of constant surface height.  As in contact mode, calibration data is used to 

convert the voltages applied to the z-piezo to heights, forming the topography imaging.  The amplitude 



of vibration is also affected by a second mechanism even when the tip does not contact the surface:  the 

natural frequency of cantilever oscillation is a function of the force gradient experienced by the 

cantilever. Since the frequency of the driving oscillation is fixed, changes in the natural frequency can 

take the vibration on or off resonance, changing the amplitude of vibration. This effect has less influence 

on tapping mode imaging than the damping of the amplitude, but is used in “non-contact” mode to image 

the surface whilst applying minimal forces to the tip and sample. 

Non-contact imaging is not usually an effective way to achieve high resolutions in air, since most 

samples imaged in air are covered by a layer of fluid from atmospheric humidity, and non-contact 

imaging requires the tip to remain beyond this fluid layer, which tends to blur the outlines of surface 

features.  To achieve higher lateral resolutions in air, alternative approaches have recently been 

developed with the aim of controlling and minimising the force on the tip to maintain its sharpness.  An 

example of this is “PeakForce” tapping mode [3], in which rather than oscillating the tip close to 

resonance, the tip is oscillated off resonance by the main z-piezo and its deflection is measured 

throughout each oscillation cycle.  The variation in force during the oscillation cycle is then estimated, 

and the highest force experienced during the period in which the tip is in contact with the surface is 

monitored.  This is the “peak force” and is used as the feedback parameter, so that the cantilever traces 

a contour over the surface at which this peak force is constant.  There is increasing evidence that by 

maintaining low peak forces throughout imaging, blunting of the tip is minimised, facilitating high 

lateral resolutions in imaging, but the influence of materials properties, rather than topography, on this 

mode are not yet fully understood.   

10.2.1.2 Electrical characterisation techniques in AFM 
The potential uses of the AFM tip extend far beyond topographic imaging, with many opportunities 

available to measure the properties of materials.  Characterisation of electrical properties generally 

requires a conductive tip, and this can be achieved by coating a standard silicon tip in a metallic layer.  

It is important that the metallic layer is robust enough to avoid it wearing away during imaging, and PtIr 

layers are often used for this purpose.  An alternative is to use all-metallic pyramid structures on the end 

of metal or silicon cantilevers, but whilst such structures overcome problems with coating wear, these 

tips are more likely to deform plastically, becoming blunt.  For some applications, particularly scanning 

spreading resistance microscopy (SSRM) of Si, tips coated with or fully formed from highly-doped 

diamond are used, providing a hard, mechanically stable imaging probe. 

SSRM is part of a family of techniques which also includes conductive AFM (C-AFM) and tunneling 

AFM (TUNA).  In these techniques, the tip is usually kept in direct contact with the sample surface, a 

bias is applied between the tip and the sample, and the resulting current flow is monitored.  The 

techniques differ mainly in the nature and sensitivity of the amplifiers used to measure the current, with 

SSRM employing a logarithmic amplifier to access the resistivity of a broad range of samples, whilst 

C-AFM and TUNA employ linear amplifiers, with TUNA addressing smaller currents than C-AFM.  

Very recently, PeakForce TUNA [4] and other similar techniques have allowed currents to be measured 

in intermittent contact modes during the contact phase of the oscillation cycle, allowing current maps of 

very fragile materials to be built up. 

These current flow techniques are applicable to any material with sufficient conductivity to carry a 

measureable current.  More specific to semiconductors is scanning capacitance microscopy (SCM).  

SCM is again a contact mode technique.  Assuming that in air a semiconductor surface has a native 

oxide present, the metal coating on the surface, the native oxide and the semiconductor itself form a 

metal-oxide-semiconductor (MOS) capacitor (see Figure 2(a)).  The capacitance of such a device varies 

with applied voltage in a way that is dependent on the local carrier concentration.  Consider the 

application of a negative bias to a tip in contact with an n-type semiconductor.  The electrons are repelled 

from the tip, effectively increasing the thickness of insulating material between the metallic tip and the 

underlying semiconductor, and the capacitance of the device is reduced. If the device were left to 

equilibrate, minority carriers would accumulate at the semiconductor oxide interface, and the 

capacitance would then be controlled just by the oxide thickness. However, if the bias applied to the tip 

varies at high frequency there is insufficient time for this accumulation to occur.  (The relevant C-V 

curves are illustrated schematically in Figure 2(b)).  Under these circumstances, the amplitude of the 

change in capacitance with applied voltage is a function of the carrier concentration in the 

semiconductor, and hence on the dopant concentration, because for the same applied change in voltage 

a larger depletion region forms in a lightly doped semiconductor than a highly doped semiconductor, 

causing a larger change in capacitance.  (The variation in the C-V curves with dopant concentration is 



illustrated schematically in Figure 2(c)).  The rate of change of capacitance with voltage is monitored 

by a Gigahertz frequency capacitance sensor and is used as a measure of the carrier density in the 

material. The phase of the capacitance response relative to the drive voltage provides information as to 

whether depletion occurs during the positive or negative half of the drive cycle, hence determining 

whether the material is doped n- or p–type.  

A typical SCM data set thus consists of two images;  (1) A phase image in which n-type material is seen 

as black and p-type as white.  Non-semiconducting material (insulating or metallic) does not deplete and 

no fixed phase can be measured, so such regions appear grey and noisy.  (2)  An amplitude image in 

which highly doped material is seen as having a lower amplitude than lightly doped material,  

typically represented by a lower brightness in a greyscale image.  It should however be noted that 

undoped (or non-semiconducting) material shows no change in capacitance with voltage and thus yields 

no signal (seen as an even lower brightness in a greyscale image).   

SCM and SSRM are very widely used in the study of semiconductors.  Perhaps slightly less common is 

electrical force microscopy, and its more quantitative variant Kelvin probe force microscopy (KPFM).  

These techniques usually employ a lift mode – in which the topography of the sample is recorded during 

an initial scan line, and then the tip is raised through a fixed height and rescans the same trajectory 

during a second scan line during which electrical property data is collected.  The advantage of this 

approach is that during the topography scan the tip’s oscillation is strongly affected by forces arising 

from contact between tip and the sample.  In the lift scan however, forces arising from the potential 

difference between a biased tip and the sample may be more easily detected, allowing measurement of 

the variation in potential across the sample surface. 

As with topography, all electrical AFM techniques have resolution limited by the finite size of the tip.  

Furthermore, the sample topography can profoundly influence the electrical data, since changes in the 

tip-sample interaction area as the tip passes over varying topographic features alter the electrical 

interaction.  C-AFM provides a simple example: if the tip-sidewall runs up against a three-dimensional 

(3D) island forming a large contact area, an increased current can flow, even though the properties of 

the material may be unchanged relative to an adjoining area.  Similar issues apply to the other techniques 

mentioned here, and to myriad other methods which have been developed to probe electrical materials 

in the AFM.  This short section does not provide an exhaustive account, but rather a flavour of the 

available options.  For further details the reader should consult reference [5].  One interesting recent 

development worthy of mention is the integration of light sources with AFM setups to allow 

measurement either in darkness or with illumination.  This approach is most commonly used to assess 

the photoconductivity of solar cell materials in C-AFM or TUNA [6], but is equally applicable to other 

electrical AFM techniques and provides a wealth of new opportunities for the characterization of 

optoelectronic materials. 

10.2.1.3 Scanning tunneling microscopy  
The most common application of scanning tunneling microscopy (STM) in the study of semiconductors 

is in the study of the atomic structure of clean (i.e free from native oxide) semiconductor surfaces in 

ultra-high vacuum.  In this context, the termination of extended defects at the surface may be observed 

 
 

Figure 2: Schematic illustrations of (a) the instrumentation for SCM, (b) C-V curves for an n-type semiconductor for low-

frequency bias changes (leading to inversion) and high frequency bias changes (leading to deep depletion) and (b) C-V 

curves for n-type semiconductors with different carrier densities for high frequency bias changes.  Coxide is the capacitance 

of the oxide layer at the semiconductor surface. 

 



in exquisite detail [7].  Point defects in the surface structure are frequently observed and, whilst defects 

seen following surface cleaning or material deposition may not be representative of bulk defects, insight 

into defects in the bulk may be achieved by careful interpretation of images of cleaved surfaces [8].  

Specially prepared samples are sometimes required, for example material grown at lower temperatures, 

to ensure a sufficient density of defects to allow the relevant features to be found and identified.  Where 

shallow sub-surface point defects influence the electronic structure of the overlying surface layers, they 

may be detected, in addition to defects immediately at the surface. In two dimensional (2D) materials 

the distinction between surface and bulk defects is essentially meaningless, since there is no 3D bulk 

material.  Hence STM may find increasing application in assessing point defects in such novel structures. 

Unlike AFM, STM does not utilize a deflecting cantilever.  Instead a very sharp metallic needle forms 

the tip and is scanned over the sample surface, in very close proximity but with a few Ångstrom vacuum 

gap between the two.  Under the influence of an applied bias, electrons may tunnel across the gap, but 

the magnitude of the tunneling current is exponentially dependent on the distance between the tip and 

the sample.  Hence, the contribution of atoms away from the very apex of the tip to imaging is much 

smaller than in AFM, and it is this exponential dependence that allows STM to be used routinely for 

atomic resolution imaging, with the tunneling current flowing predominately between a single atom at 

the sample surface and a single atom at the tip apex.  Similar to AFM, a feedback circuit may be 

employed, with a z-piezo being used to maintain a fixed tunneling current. The voltages applied to the 

z-piezo form a map of the topography of the sample, with the tip tracing out a contour of constant 

tunneling current, equivalent to a constant tip-sample distance.  This simple description immediately 

begs the question: what do we mean by a constant tip-sample distance in this situation?  Simple models 

of the tip-sample interaction indicate that a better description of an atomic resolution STM image at 

constant tunneling current is a contour of constant local density of states (LDOS) at the Fermi level of 

the sample surface [9].  Whilst the original models from which this understanding is derived are known 

to be incomplete, they provide a useful starting point for discussion of STM data,  

 

 
Figure 3: STM images of defects at cleavage surfaces of Si-doped as-grown GaAs bulk crystals.  Top row:  occupied 

states images, recorded at biases from -2.0 to -2.2 V.  Bottom row: unoccupied states images, recorded at biases from 

+1.4 to +1.5 V. (a1) and (a2) show a SiGa donor, (b1) and (b2) a SiAs acceptor, (c1) and (c2) a SiGa-Ga-vacancy 

complex, and (d1) and (d2) the intersection line of a planar Si cluster. (Reprinted figure with permission from Reference 

[10] Copyright (1996) by the American Physical Society). 

 

and illustrate why – for example – a sub-surface impurity atom which may have little or no impact on 

the surface height can nonetheless impact the STM data via its impact on the local electronic structure.    

Within our understanding of STM images as mapping the LDOS, we can also understand the 

opportunities offered by imaging at different tip biases.  For a tip positively biased relative to the sample, 

electrons flow from the occupied states of the sample into the unoccupied states of the tip.  Reversing 

the polarity of the bias instead accesses the unoccupied states of the sample.  When imaging compound 

semiconductors, the electronegativity difference between the metallic and non-metallic species can 



allow images of the occupied states of the sample to be dominated by the electron-rich non-metallic 

sites, whereas images of the unoccupied states primarily address the metallic sites.  This ability to 

distinguish between the metallic and non-metallic sublattices can allow identification of, for instance, 

which sublattice accommodates a particular amphoteric dopant atom: for example in highly Si-doped 

GaAs, SiGa donors can be observed, but so can SiAs acceptors, Si donor-Ga vacancy complexes (SiGa-

VGa) and planar Si clusters on (111) planes [10], all of which act as compensating defects reducing the 

overall electron concentration which can be achieved (Figure 3).    

Additional insights into the impact of defects on electronic structure can be gained using scanning 

tunneling spectroscopy (STS): the recording of site-specific current-voltage (I-V) or dI/dV-V curves.  

Under conditions where electrons are injected from the occupied states of the tip into the unoccupied 

states of the sample, peaks in the dI/dV-V curve, can (at a basic level) interpreted as corresponding to 

energies with a high LDOS.  More detailed interpretation of such curves can be challenging, and this 

approach is less widely applied than voltage dependent imaging, but as early as 1993 this technique was 

successfully used to reveal donor levels associated with bulk antisite defects in GaAs. Later studies 

address a wide range of samples [8], including 2D materials such as graphene [11]. 

 

10.2.2  Scanning electron microscopy  

10.2.2.1 Brief introduction to SEM 
In a scanning electron microscope (SEM) an image is formed when the intensity of the resultant 

electrons, X-rays, light or current is monitored as a focussed electron beam is rastered over the surface 

of the sample. In the scanning electron microscope the energy of the electron beam is usually selected 

from a range of energies spanning 100 eV to 30 keV [12,13,14,15]. Figure 4 shows a schematic of an 

SEM and also illustrates the range of signals which can be used to generate images and highlights those 

signals which can reveal defects present in the sample.  



 
Figure 4: Schematic of an SEM and an illustration of the range of signals which can be obtained. 

 

Resolution 

The spatial resolution of the images generated in the SEM depends on the electron beam spot size which 

is dependent on the size of the electron beam source; the electron energy; the beam current; and electron 

optical aberrations, in particular chromatic (due to the range of energies emitted by the electron source) 

and spherical aberrations and astigmatism. It also depends on the interaction volume; that is the volume 

within the sample from which the signal is obtained. The interaction volume depends on the signal being 

measured as displayed in Figure 5; the atomic number and density of the material under investigation; 

the energy of the incident beam; and the angle of the incident beam. For light and current based 

measurements, resolution may also be determined by carrier diffusion [16,17].  

The size of the electron source and the energy spread depends on the type of electron gun is used. Table 

1 summarises the types of guns available and their typical properties [13,14,15,18]. For imaging defects 

a small source size, low energy spread, low beam divergence and high beam current/beam brightness is 



required. In addition, for the imaging of defects using diffraction imaging, usually referred to as electron 

channelling contrast imaging (ECCI), a beam with low divergence is required. This will be discussed in 

section 10.2.2.2. An SEM with a Schottky emitter is the instrument best suited for imaging and analysing 

defects. The resolution achievable for different imaging modes will be discussed later in this section. 

 

Electron Gun 

Type 

Source Size 

(µm) 

Energy Spread 

(eV) 

Beam current 

(nA) 

(at 20 keV) 

Beam 

brightness 

(A/cm2/str) 

(at 20 keV) 

Tungsten hairpin 

thermionic emitter 
 20  3  1000 105 

LaB6  thermionic 

emitter 
 10  2  1000 106 

Cold cathode field 

emitter 
 5 × 10-3  0.3  20 108 

Schottky emitter  20 × 10-3  0.8 100 – 500 108 
Table 1. Summary of electron guns used in scanning electron microscopes [13,14,15,18] 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5: Illustrating the signals detected in the SEM. 
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Signals used to generate images in the SEM 

The signals which are used to generate images in the SEM are illustrated in Figure 4 and are described 

below. Figure 5 illustrates schematically the interaction volume for each of these signals. 

Secondary electrons 

The interaction of the electron beam with the sample gives rise to the emission of secondary electrons 

through ionisation of the sample under study. Secondary electrons are low energy electrons and are 

defined as those electrons with energy less than 50 eV. When the intensity of secondary electrons is 

monitored as the beam is scanned over the sample, a topographic image of the surface of the sample is 

formed. A topographic image is produced because the intensity of the secondary electron signal is 

dependent on the orientation of the sample surface with respect to the incident electron beam and to the 

position of the secondary electron detector. There is a higher yield of secondary electrons from a surface 

inclined with respect to the electron beam when compared to that of a flat surface, and regions of the 

sample facing the detector will appear brighter than those facing away. Because of their low energy, 

secondary electrons have a high probability of re-absorption in the sample. Therefore, only those 

generated close to the surface are emitted. Secondary electron imaging is therefore an extremely surface 

sensitive imaging mode (i.e., the interaction volume is small) and images with a resolution of order 1 

nm can be obtained in an SEM with a cold cathode field emitter or Schottky emitter. Figure 6 shows a 

secondary electron image revealing the topography of a nanoscale GaN pyramid structure. Note the 

edges of the pyramids are bright which is due to more secondary electron emission from an edge when 

compared to a flat surface.  

 

 
 

Figure 6: Secondary electron image of an array of GaN-based nanopyramids (reprinted from [19] with permission from 

Cambridge University Press). 

 

Secondary electrons are typically detected by an Everhart-Thornley detector. This detector comprises 

an electron collector which is positively biased at a voltage of around 200 V to attract the secondary 

electrons; and a scintillator biased at around 10 keV to convert the electrons to light which is coupled to 

a photomultiplier tube. Secondary electrons may also be detected by an in-lens detector where the 

secondary electrons are collected through the objective lens of the SEM. 

Backscattered electrons 

Backscattered electrons are those which have been elastically or inelastically scattered from the sample. 

Their energy can range from that of the incident beam down to that of the secondary electrons. Figure 7 

illustrates the energy distribution of secondary electrons and backscattered electrons in the SEM. The 

backscattered yield is dependent on the atomic number and density of the material under study, so atomic 

contrast can be provided by this imaging mode. The backscattered yield is also dependent on the 

inclination of the sample surface so backscattered electrons can also be used to provide an image of 



surface topography. As backscattered electrons generally come from deeper within the sample than 

secondary electrons, backscattered electron images generally exhibit a lower resolution than secondary 

electron images. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Schematic of the electron energy spectra (reprinted from[20]  under Creative Commons Attribution (CC BY) 

license: http://creativecommons.org/licenses/by/4.0/).). 

 

Backscattered electrons may also be detected by an Everhart-Thornley detector. In this case the electron 

collector is negatively biased (at around -50 V) to repel the lower energy secondary electrons. 

Backscattered electrons may also be detected by an electron sensitive diode(s) placed underneath the 

final SEM lens (pole pieces). This is usually a four quadrant diode, if the signals from all the quadrants 

are added together, a compositional contrast dominates; if the quadrants are operated in adjacent pairs 

and the signal from one pair subtracted from the other, topographic contrast dominates. 

Where the electrons incident on the sample undergo diffraction and an image formed by monitoring the 

intensity of the backscattered electrons as the beam is rastered over the sample, an image exhibiting 

contrast related to the sample’s structural properties may be formed. This imaging modality is commonly 

referred to as electron channelling contrast imaging (ECCI)). Where the electrons exiting the sample 

undergo diffraction, and the resultant electron backscatter diffraction (EBSD) patterns are recorded at 

each point in the raster scan, information derived from each EBSD pattern can be used to produce a map 

revealing the sample’s structural properties. This mapping technique commonly referred to as electron 

backscatter diffraction (EBSD) mapping. These techniques are discussed in the sections below.     

10.2.2.2 Electron channelling contrast imaging 
Electron channelling contrast images are produced when a sample is positioned so that a plane or planes 

in the sample are at, or are close to, the Bragg angle. That is the electrons entering the sample are 

diffracted and it is this which provides the dominant structural contrast in the resulting image. Electrons 

diffracted on exiting the sample can contribute to the structural contrast, but this component is highly 

dependent on the position of the detector. Any deviation in crystallographic orientation or in lattice 

constant due to local strain, may then be revealed by variation in the contrast in the electron channelling 

image constructed by monitoring the intensity of backscattered or forescattered electrons as the electron 

beam is scanned over the sample. Extremely small changes in orientation and strain are detectable, 

revealing, for example, low angle tilt and rotation boundaries and atomic steps and enabling extended 

defects such as dislocations and stacking faults to be imaged [21,22,23,24,25,26,27,28,29]. ECCI can 

provide similar information on defects as the transmission electron microscope (see sections 10.2.3 and 

10.3.1.4) where the defects either thread to the surface or lie within around 50 nm of the surface.  

For successful imaging of the structural properties of materials using ECCI all that is required is that the 

sample has a reasonably smooth, clean surface. For the imaging of metal surfaces this usually requires 

careful sample polishing to produce a high quality surface [30], this is also the case for semiconductor 

wafers cut from bulk crystals. However for most epitaxially grown semiconductor thin films no surface 

preparation is required. The spatial and depth resolution of ECCI is of the order of tens of nanometres. 

Figure 8 illustrates the two geometries, namely the backscatter and forescatter geometries which are 

used to acquire ECCI micrographs. The backscatter geometry (Figure 8(a)) has the advantage that this 

geometry does not require a high tilt of the sample and therefore a significant correction of the image to 

account for tilt is not required. This geometry also allows the easiest imaging of large samples, for 



example full semiconductor wafers.  The forescatter geometry (Figure 8(b)) has the advantage that 

images exhibit better signal-to-noise with respect to the backscatter geometry due to the increase in 

intensity of backscattered electrons. The detector used to detect the backscattered electrons is generally 

an electron-sensitive diode.  Key to the acquisition of good quality ECCI micrographs is the use of a 

good amplification system. 

 

 

 
Figure 9: (a) ECCI micrograph of a GaN thin film showing threading dislocations. Inset: an enlarged image of three 

dislocations. The different grey levels in the image indicate areas of different orientation (reprinted from [65] with 

permission from Cambridge University Press). (b) ECCI micrograph of a c-plane GaN thin film showing threading 

dislocations and atomic steps (reprinted from [22] with permission from the American Physical Society). (c) ECCI 

micrograph of an m-plane GaN thin film showing stacking faults (one highlighted by the ellipse). Partial dislocations can 

also be seen at the ends of the stacking faults (image courtesy of G. Naresh-Kumar). 

 

 

Figure 8: Illustrating the (a) backscatter and forescatter geometries for acquisition of ECCI micrographs. 
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Figure 9 shows electron channelling contrast images from nitride semiconductor thin films. All the 

images (and the inset of Figure 9(a)) show threading dislocations as spots with the black-white (B–W) 

contrast related to the strain field associated with the dislocations.  Figure 9(b) shows an ECCI 

micrograph revealing atomic steps. Figure 9(c) shows stacking faults and associated partial dislocations 

on either end of the stacking fault. A simple geometric procedure has been developed to identify a given 

threading dislocation in c-plane nitride thin films as either edge, screw, or mixed type by exploiting 

differences in the direction of the black-white contrast between two ECCI micrographs acquired under 

quasi 2-beam conditions from two symmetrically equivalent crystal planes. Crystal planes were chosen 

for which the diffraction vectors (g1 and g2) were at 120° to each other, where the g-vector was 

determined through the acquisition of electron channelling contrast patterns (ECPs) [22].  

An ECP is obtained when changes in the backscattered electron intensity are recorded as the angle of 

the incident electron beam is changed relative to the surface of a single crystal area of the sample. When 

a backscattered image is acquired at low magnification, as the beam is scanned over the sample, it 

changes its angle with respect to the surface of the sample (in our case by around 2.5°), allowing an 

ECP to be obtained [22]. Note that this method of acquiring an ECP is only possible if the scanned area 

of the sample (of order 5 mm × 5 mm in size) is smooth and of the same crystallographic orientation. 

Alternatively, if ‘beam rocking’ electron optics are available in the SEM, an ECP can be acquired from 

an area ranging from of order 10 µm × 10 µm to of order 500 nm × 500 nm in size [31], such ECPs are 

often referred to as selected area ECPs (SAECPs or SACPs). When the beam changes its angle with 

respect to the sample, different planes of the crystal satisfy the Bragg condition, giving rise to the 

appearance of overlapping bands of bright and dark lines (Kikuchi lines) superimposed on the image of 

the sample; an ECP from a GaN thin film is shown in Figure 10. The ECP is a 2D projection of the 

crystal structure, with the Kikuchi lines corresponding to different planes in the crystal. Comparing the 

ECP with kinematical and/or dynamical electron diffraction simulations allows the pattern to be 

indexed: i.e the planes in the ECP can be identified. The plane (or planes) which intersect the centre of 

the ECP, usually referred to as the pattern centre (PC), are those from which the incident electron beam 

is diffracted. In the example shown in Figure 10, the incident electron beam was diffracted from one of 

the {11-20} planes, that is a g-vector of <11-20> was selected.  

 

 

 

Figure 10: (a)  Dynamical simulation of an electron channelling pattern (ECP) from a GaN thin film. Electron beam 

energy is 30 keV, sample tilt  40 (courtesy of Aimo Winkelmann). (b)  Experimental ECP. The blue cross marks the 

pattern centre (PC) (c) Kinematical simulation of the ECP with some indexed planes highlighted (produced with ESPRIT 

DynamicS (Bruker Nano) software). In this case the PC intersects one of the {11-20} planes so a g-vector of <11-20> was 

selected. 

 

In principle if the diffraction condition can be selected, defects can be identified by investigating their 

visibility as a function of the diffraction condition, similar to the technique used to identify defects from 
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diffraction images in the TEM (see Section 10.3.1.4). However as ECCI micrographs from 

semiconductors are usually acquired in a plan view geometry, i.e., from the top of the as-grown surface 

of the sample, and the collected signal is backscattered electrons as opposed to transmitted electrons, 

the relaxation of the surface strain associated with a defect plays a significant role with regard to its 

visibility and this must be taken into account when attempting to identify defects with ECCI.  

As mentioned above, threading dislocations in c-plane GaN can be identified by exploiting differences 

in the direction of the black-white (B–W) contrast between two ECCI micrographs acquired under quasi 

2-beam conditions from two symmetrically equivalent crystal planes. As a result of surface relaxation, 

the B–W contrast direction is perpendicular to the g-vector for a pure screw dislocation [31]. For an 

edge dislocation the direction of the B–W contrast generally depends on its Burgers vector and not on 

the g-vector. Hence for edge dislocations, we expect the direction of the B–W contrast to either reverse 

or remain the same when the diffraction conditions are changed. The degree of contrast observed for an 

edge dislocation, that is its visibility, is dependent on the selected diffraction condition. If the g-vector 

and the Burgers vector of the edge dislocation are orthogonal, the visibility of the edge dislocation will 

be strongly reduced and this can help with the identification of the dislocation.  If the diffraction 

conditions are selected so that the contrast observed for both edge and screw dislocations are similar, 

mixed dislocations may be identified as their B–W contrast direction changes in a manner intermediate 

to that of the edge and screw dislocations. In practice it is difficult to achieve exact 2–beam conditions; 

however it is possible to get sufficiently close to allow quantitative analysis of the resultant ECCI 

micrographs. Where it is not possible to acquire an ECP, it is possible to identify the threading 

dislocations as either an edge dislocation or one with a screw component (i.e., a screw or a mixed 

dislocation) by comparing two ECCI micrographs acquired for the sample placed in at least two 

orientations. If, for a given dislocation, the B–W contrast direction ‘flips’ (rotates by 180), or stays the 

same, on comparison of the two images, then it is likely to be an edge dislocation. The B–W contrast 

direction for a screw or mixed dislocation will be observed to change but by an angle other than 180.  

In practice the direction of the B–W for each dislocation should be compared for at least three images 

to unambiguously identify a dislocation as either an edge dislocation or one containing a screw 

component. 

Simulations of dislocation contrast may also help the understanding of the contrast exhibited by 

dislocations observed in ECCI micrographs. For example Carnevale et al. [27] used simulations to 

support their analysis of misfit dislocations in thin films of GaP grown on Si, while Picard et al. have 

simulated contrast for inclined threading edge and screw dislocations in SrTiO3 [32] and Pascal et al. 

have simulated contrast for threading edge dislocations in GaN [33].  

The conditions required to image defects using ECCI are quite stringent: a high brightness, small beam 

diameter (nanometres), high current (nanoamps or higher), low divergence (a few mrad) electron beam, 

is required. As discussed above, such conditions are met in an SEM equipped with a Schottky gun. ECCI 

micrographs are generally acquired at electron beam energies of 20 keV to 30 keV to obtain the best 

signal-to-noise ratio. The performance of the diodes used to detect backscattered electrons reduces for 

lower electron beam energies [21]. An amplifier system specifically designed to optimise the contrast 

and brightness of the ECCI micrographs is also invaluable for obtaining good images. Lastly, ideally 

the SEM should be equipped with beam rocking to enable the acquisition of SAECPs. The acquisition 

of electron backscatter diffraction patterns (discussed in the next section) can also help with the 

determination of diffraction conditions [30]. 

Until recently, ECCI was mostly used to investigate the structural properties of metals and geological 

materials, but its use for the characterisation of defects in semiconductors is steadily expanding. To date 

ECCI has been used to image defects in nitride semiconductors [22,23,24], Si1-xGex [34], SiC [35], GaAs 

[26], GaP [27,28], GaAsyP1-y [28], GaSb [29]. For more information on ECCI, the following papers 

provide informative reviews of the technique [21,29,34,35].  

10.2.2.3 Electron backscatter diffraction 
In electron backscatter diffraction (EBSD) the electron beam is incident on a sample which typically is 

tilted at an angle near to 70°. The primary electrons (typically with energies between 10 keV and 30 

keV) are scattered inelastically through high angles forming a diverging source of electrons which can 

be diffracted as they leave the sample. A simple description for the formation of an EBSD pattern 

(EBSP) presumes that those electrons that satisfy the Bragg condition for a given plane all need to have 

directions on two so called Kossel cones relative to both the upper and lower surfaces of that plane, see 

Figure 11(a). The intersections of these Kossel cones with the detector screen approximately mark the 



edges of the Kikuchi bands, which thus have a width of about twice the Bragg angle, with the projection 

of the relevant lattice plane in the centre of the Kikuchi band. An EBSP consists of a large number of 

overlapping Kikuchi bands and is related to a 2-D, gnomonic, projection of the crystal structure, see 

Figure 11(b). The Kikuchi lines appear as almost straight lines, because the Kossel cones are very 

shallow, as the Bragg angle is of order 1°. Each Kikuchi band is effectively a trace of the lattice plane 

from which it is formed; an EBSD pattern can thus provide a direct measurement of the angles between 

lattice planes and directions in a sample’s crystal structure.  
 

 
Figure 11: (a) Illustration of the EBSD detection geometry and a conventional EBSD detector. (b) An EBSP from a GaN 

thin film acquired at an energy of 5 keV and a probe current of ≈1.5 nA. The red lines outline a pair of Kikuchi bands; the 

large yellow circles indicate high-order Laue zone (HOLZ) rings and the small green circles highlight reflection high-

energy electron (RHEED) spots. Reprinted from [38] under Creative Commons Attribution (CC BY) license: 

http://creativecommons.org/licenses/by/4.0/). 

 

The EBSP is generally detected by an electron sensitive phosphor or scintillator screen and a CCD or 

CMOS camera [36] (see Figure 11(a)), although there have been recent developments of direct electron 

cameras [37,38].  The EBSP shown in Figure 11(b) was acquired at 5 keV from a GaN thin film using 

energy-filtered direct electron detection. Direct electron detection allows high quality EBSPs to be 

acquired at low electron beam energies, pattern acquisition down to 3 keV is achievable [38]. 

Rotations of a crystal (e.g. tilts or twists in a thin film) will produce corresponding rotations of the EBSP; 

while strain will produce a distortion of the EBSP. Therefore, if EBSPs are acquired from a grid of 

points on a sample, it is possible to analyse these EBSPs to produce maps of tilts, twists and strains. For 

a more detailed discussion of the EBSD technique see [21,36,39]. 

Recent developments of EBSD analysis techniques, where experimental EBSD patterns are compared 

with either a reference experimental pattern or simulated pattern using cross-correlation, have greatly 

improved the sensitivity of EBSD and its applicability to the study of semiconductors. Sensitivities of 

less than one part in 10,000 to changes in tilt, in-plane rotation and strain are now possible [40]. Once 

such sensitivity is achievable it is then possible to calculate the density of dislocations necessary to 

accommodate the observed misorientations and strain, that is the geometrically necessary dislocations 

(GNDs) [41]. For an example of what can be achieved with such cross-correlation high resolution 

electron backscatter diffraction (cross-correlation HR-EBSD), Figure 12(a) shows an EBSD-derived 

twist map for a patterned epitaxially overgrown GaN thin film [42]. Figure 12(b) shows the distribution 

of GNDs derived from the measurement of tilt, twist and strain. 

 

 

 

 

 



As for ECCI, EBSD has mostly been used to investigate the structural properties of metals and 

geological materials, however with the development of cross-correlation HR-EBSD, its use for the 

characterisation of semiconductors is steadily expanding. For example it has been used to study crystal 

orientation and/or strain in Si [43], Ge [44], SiGe [45] and nitride semiconductors [42,22,46,47]. A 

detailed description of this technique for the study of InAlN thin films and its correlation with ECCI can 

be found in [47]. 

The cross-correlation of experimental EBSD patterns with simulated patterns has also enabled EBSD to 

reveal the presence of polytypes e.g., wurtzite and zincblende GaN in the same sample [48], antiphase 

domains [49], or inversion twinning [50]. For example Figure 13(a) shows an EBSD-derived map of a 

GaP thin film containing antiphase domains [49]. Antiphase domains arise in zincblende-type crystals 

due to their non-centrosymmetric nature. The zincblende crystal structure is not invariant to a rotation 

of 90° around the [001] direction, because the arrangement of the anions and cations in the (111) plane 

is inverted relative to that of the (1-11) plane; this is illustrated in Figure 13(b). Figure 13(a) shows an 

EBSD-derived map from a GaP thin film revealing domains (green and blue) which are rotated by 90 

degrees relative to each other around the [001] surface normal, corresponding to an interchange between 

the [111] and [1-11] directions. The orientation of each point of the map was obtained from cross-

correlation of the acquired EBSD pattern with simulated patterns. The alignment of the antiphase 

domains along the <110> direction is due to a small miscut of the Si substrate [49]. 

 

 
Figure 13: (a) EBSD-derived map revealing regions exhibiting different orientations of the zincblende lattice with respect 

to the [001] direction in a GaP thin film (antiphase domains). The antiphase domains are identified from cross-

correlation of each experimental pattern in the map with dynamical simulations (reprinted from [49] under Creative 

Commons Attribution (CC BY) license: http://creativecommons.org/licenses/by/4.0/). (b) Illustrating the different stacking 

of the Ga and phosphorous atoms in the GaP lattice for the (111) and (1-11). The images were generated using VESTA 3 

[51]. 

 

10.2.2.4 Cathodoluminescence  
Cathodoluminescence (CL) is the process of light generation by an impinging beam of electrons on a 

material [52]. CL reveals the influence of crystal structure, composition, and strain on intrinsic 

luminescence and/or reveals defect or dopant-related luminescence. The primary electrons lose energy 

 

 

 

 

 

 

 

 

 

 

 
Figure 12: (a) A cross-correlation HR-EBSD map of twist from a patterned epitaxially overgrown GaN thin film. (b) GND 

distributions derived from the measurement of tilt, twist and strain using cross-correlation HR-EBSD. Maps courtesy of 

A.Vilalta-Clemente, A. J. Wilkinson and G. Naresh-Kumar. 
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through impact ionisation, which is an inelastic process, generating electron-hole pairs. These pairs can 

then recombine radiatively generating light emission. It is important to note that in the case of 

semiconductors the electron energy is a few orders of magnitude larger than the band gap, which makes 

it possible to even look at wide band gap materials, such as diamond, aluminium nitride (AlN) or boron 

nitride (BN). There are, however, short wavelength limits imposed on the wavelength detection, such as 

absorption by water vapour at a wavelengths shorter than 200 nm (spectrometer and detector are not 

inside the vacuum system), the material and quantum efficiency of the detector and other optical 

elements (e.g. absorption of UV light by glass windows or lenses). 

The previously mentioned interaction volume (Section 10.2.2.1) defines the lateral dimension and the 

depth at which the electron beam generates electron-hole pairs. After generation these electron-hole 

pairs can diffuse before recombination through non-radiative or radiative processes. Their diffusion 

length increases the volume where the CL signal is generated compared with the volume within which 

the electron-hole pairs are formed. In GaN [53,54] the diffusion length of the charge carriers is about 

50-60 nm, whereas in GaAs it is can be several microns dependent on the doping concentration [55,56]. 

The knowledge of the size of the interaction volume and which electron beam parameters influence it 

are crucial for CL imaging when it comes to depth information and spatial resolution. The interaction 

volume in a solid can be simulated using Monte Carlo methods, for example CASINO [57] or NIST 

DTSA-II [58]. 

The spatial resolution is mostly influenced by the size of the electron beam size, the excitation volume 

and the carrier diffusion length in the studied material [16]. The highest spatial resolution for bulk 

material will therefore be ultimately limited by the diffusion length. The diffusion length, though, is a 

bulk property. Confinement within nanostructures, such as quantum wells, small surface features or 

defects, further limits the diffusion of the generated carriers by either increasing or decreasing the 

probability of radiative or non-radiative recombination. This allows features several orders of magnitude 

smaller than the diffusion length to be observed; for example 20 nm spaced quantum wells in GaAs have 

been resolved [59] or peak shifts in the emission from InGaN/GaN quantum wells over an  10 nm 

distance have been measured [60]. Other resolution limiting effects include surface contamination by 

carbon, charging of the sample, mechanical vibrations and electrical noise [59]. 

Conventional CL imaging either records a panchromatic or monochromatic CL image. For panchromatic 

CL the total luminescence intensity is measured, whereas for monochromatic CL the intensity within a 

specific wavelength interval is chosen. By contrast, CL hyperspectral imaging is a more powerful 

technique in which an entire luminescence spectrum is recorded at each pixel in an image created by a 

scanning electron beam [61,62]. The resultant multi-dimensional data set can be treated mathematically 

to extract images describing subsets of the recorded data. For example, numerical peak fitting can 

produce 2D CL images of the energy peak position, peak area and peak half-width illustrating the spatial 

luminescence behaviour of the sample under investigation. Another mathematical tool is principal 

component analysis, a multivariate statistical analysis technique, which is useful for obtaining sample 

information when dealing with low signal-to-noise spectra [63]. An alternative way to build up a 

hyperspectral CL data set is by recording a large set of CL intensity images at different wavelengths, 

where the wavelength is selected by using a monochromator and the light is detected by a 

photomultiplier tube [64]. 

Threading dislocations (TDs) which give rise to non-radiative recombination are observed as dark spots 

in a CL image. If the excitation volume is sufficiently small, the size of the dark spots is determined by 

the minority carrier diffusion length [65]. Figure 14 shows a CL intensity image from GaN where 

dislocations are revealed as dark spots. 

 



 
 

Figure 14: CL intensity image of the near band edge emission in a GaN layer. The dark spots are related to non-radiative 

recombination at threading dislocations. 

 

Figure 15 shows the CL data obtained through peak fitting from an InGaN/GaN multiple quantum well 

(MQW) structure. The surface exhibits a high density of V-shaped pits (“V-defects”), common in this 

type of structure, caused by TDs propagating to the surface and opening up into a pit at one of the QW 

interfaces. Apart from the previously mentioned non-radiative recombination at the TDs reducing the 

CL intensity, the peak energy map exhibits a blueshift where a pit is located compared with the 

surrounding planar areas. This blueshift may be caused by a change in InN content or thinner QW on 

the facets of the V-pits [60]. The energy shift around the pits is most likely related to strain variations 

caused by the presence of the dislocations. 

Other examples for CL imaging of defects include stacking faults [66,67] and misfit dislocations in GaN 

[68], dislocations in diamond [69] and GaInP [70]  and grain boundaries in silicon [71]. 

 

 
Figure 15: SE micrograph (top), CL intensity (middle) and peak energy image (bottom) of the MQW emission of an 

InGaN/GaN MQW structure. Adapted  and reprinted from [19] with permission from Cambridge University Press. 

1 µm 



10.2.2.5 Electron beam induced current 
Electron beam-induced current (EBIC) describes a technique where a measureable current is generated 

when a high energy electron beam is incident on a sample and electron hole-pairs are created. These 

electron-hole pairs can undergo three mutually exclusive processes. They can recombine either 

radiatively (producing cathodoluminescence) or non-radiatively, or they can be swept apart towards 

electrical contacts and produce a current, which is EBIC [12]. The last process can only occur if there is 

an internal electric field present in the sample, such as in p-n or Schottky diodes or light-emitting diodes 

(LEDs), leading to carrier drift towards the contacts. This current can be measured using a current 

amplifier. Although EBIC is used as a standalone technique for the investigation of recombination 

properties of defects, it can be combined with CL to provide complementary information [71,72]. The 

generation of electron-hole pairs can be described by the generation rate 𝐺 which is a combination of 

the non-radiative and radiative recombination rates 𝑅𝑁𝑅 and 𝑅𝑅, respectively, and the measured current 

𝐼𝐸𝐵𝐼𝐶: 

 

𝐺 = 𝑅𝑁𝑅 + 𝑅𝑅 + 𝐼𝐸𝐵𝐼𝐶/𝑞. 

 

This indirectly provides information on non-radiative recombination processes since the CL provides a 

measure of the radiative recombination and the EBIC directly measures the current [73]. The resolution 

of EBIC is similar to CL as discussed in Section 10.2.2.4 since the same electron-hole pairs are involved 

in this process. However, knowledge of the structure and in particular the depth of the space charge 

region (caused by the internal electric field) is important for the choice of beam conditions which in turn 

has an influence on the resolution [17]. 

An example of EBIC recorded together with the CL of a blue-emitting LED consisting of InGaN/GaN 

multiple quantum wells (MQWs) is shown in Figure 16 [74]. The CL intensity image and EBIC image 

both exhibit darks spots which coincide at the same position. Since the dark spots in the CL image appear 

in the same location of the corresponding EBIC image, they are not caused by carrier escape from the 

junction but rather non-radiative recombination at defects, possibly clusters of point defects in the MQW 

region. 

 

 
Figure 16: (a) CL intensity and (b) MQW peak energy images and (c) EBIC image of a InGaN/GaN LED. Adapted and 

reprinted from [74] under Creative Commons Attribution (CC BY) license: 

http://creativecommons.org/licenses/by/4.0/.  

 

Other examples for EBIC include the investigation of grain boundaries in silicon [71], stacking faults in 

4H-SiC [75], measurement of the diffusion length in GaN [76,77] and -Ga2O3 [78], recombination 

behaviour of dislocations in bulk GaN [79] and solar cells [80]. 

10.2.2.6 EDX/WDX  
Energy- and wavelength-dispersive X-ray spectroscopy (EDX/WDX) are two similar techniques for 

measuring X-rays, which only differ in how the same emitted X-rays are detected. When a high energy 

electron beam strikes a material it can cause the ejection of an inner shell electron. This hole can then 

be filled through relaxation of an electron from a higher energetic state. The energy the electron has to 

lose can result in the emission of a characteristic X-ray. The X-ray energies are specific to the atomic 

structure of an element and its energy levels [81]. The detection of these X-rays therefore allows 

elemental identification which is used for compositional analysis of materials [13].  

In WDX the X-rays emitted from the material are dispersed to different angles depending on their energy 

using a diffracting crystal according to Bragg’s law. The detector, generally a gas proportional counter 



or scintillation counter, only detects X-rays of one energy at a time and the angle of diffraction has to 

be changed in order to record a whole X-ray spectrum, similar to a monochromator for light detection. 

In EDX the X-rays are directly measured using a solid-state silicon detector. The X-rays impinging on 

the silicon generate electron-holes pairs, the number of which is proportional to the X-ray energy. WDX 

has a much higher energy resolution compared with EDX, but it is more time consuming to generate an 

entire X-ray spectrum. EDX on the other hand provides an almost instantaneous X-ray spectrum, but 

with lower resolution and more noise due to the electronics. A comprehensive review of X-ray 

spectroscopy and its principles can be found in Goldstein et al.[13 ]. 

Quantitative measurements of the chemical composition of identified elements are generally carried out 

by WDX in an electron probe microanalyser (EPMA), which is similar to an SEM, but a dedicated 

machine with numerous WDX spectrometers containing different diffracting crystal in order to cover a 

range of X-ray energies. For quantitative analysis the results of the sample under investigation have to 

be compared against standards of known composition and matrix corrections need to be applied taking 

additional effects (e.g. material density, absorption, energy loss) into account that could lead to errors 

in the results [12]. The spatial resolution mainly depends on the size of the excitation volume, which is 

defined by the electron beam energy. This means that there is a trade-off between the highest spatial 

resolution and the necessary, minimum beam energy for excitation of X-rays [82]. 

Figure 17(a) shows an example of a composition image of the In:Ga ratio, which was calculated from 

WDX elemental images of indium and gallium for an InGaN epilayer [83]. The CL was simultaneously 

recorded and CL images of the intensity and peak wavelength of the InGaN near band edge emission 

are displayed in Figure 17(b) and (c), respectively. Local changes in composition are directly evidenced 

by an energy shift and intensity change since the band gap is a function of alloy composition as observed 

in points A and B corresponding to indium-rich and poor regions, respectively. 

 
Figure 17: (a) In:Ga ratio calculated from In and Ga WDX maps, (b) CL intensity and (c) peak wavelength maps acquired 

simultaneously from an InGaN epilayers. Reprinted from  [83] with permission form John Wiley and Sons. 

 

10.2.3 Transmission electron microscopy 

10.2.3.1 Brief introduction to TEM 
Electron-matter interaction in a TEM 

A transmission electron microscope (TEM), akin to an SEM, is based on the interaction of a beam of 

electrons accelerated to a high voltage (typically 80-400 kV for a TEM) within a sample. Using a 

relativistic approach, the wavelength of electrons accelerated to a high voltage is given by the formula 

𝜆 =
ℎ

√2𝑚0𝑒𝑉 (1 +
𝑒𝑉

2𝑚0𝑐2)

 

where ℎ = 6.626 × 10−34 𝐽𝑠 is Planck's constant, 𝑚0 = 9.109 × 10−31 𝑘𝑔 is the rest mass of the 

electron, 𝑒 = 1.602 × 10−19 𝐶 is the elementary charge, V is the accelerating voltage and 𝑐 = 2.998 ×
108 𝑚/𝑠 is the speed of light in a vacuum. This expression shows that the wavelength, and consequently 

the theoretical resolution of the microscope, decreases with increasing voltage. For a conventional TEM, 

with an accelerating voltage of 80-400 kV, the wavelength of the electrons ranges between 1.6 pm and 

4.2 pm which seems well-suited for the observation of structures at the atomic scale. Nevertheless, it 

should be noted that in practice it is not the electron wavelength which limits the resolution of the TEM, 

but instead aberrations in the electromagnetic lenses. In fact, the best microscopes currently used for 

atomic resolution images employ a rather low voltage (i.e. 60-200 kV) but some (or several) lens 

aberrations are corrected. 



An electron, accelerated to a high voltage, will interact with the atoms constituting the sample in several 

ways, either by interaction with the atomic nucleus or with the electron cloud. The interaction of the 

incident electron with the nucleus is usually considered to be elastic (i.e. resulting in no loss of energy 

for the incident electron), whilst interaction with the electron cloud is usually inelastic (i.e. the incident 

electron transmits part of its energy to the material). Each of these interactions give rise to different 

signals, which contain information about the material, and which are outlined in Figure 18 and Figure 

19. One needs to bear in mind that in TEM, the material exposed to the incident beam consists of a thin 

foil, as opposed to the bulk material typically imaged in an SEM, and the electrons used in imaging are 

transmitted through that thin foil. Hence the signals relevant to TEM differ from those outlined for SEM 

as described in Figure 4 in section 10.2.2.1. 

 

 
 

Figure 18: Diagram of the signals generated (and imaging techniques using these signals) by the elastic interaction between 

a high energy electron beam and a thin sample. 

Elastic interaction of an incident electron with the material arises from the interaction of the electrons 

with the nucleus of the atoms. We will see later that this interaction is not strictly elastic. The incident 

electron trajectory is then deflected when approaching the nucleus. However, different scattering 

mechanisms result in an incident electron being deflected to different scattering angles. Hence, the 

scattering cross-section, σ , which is the probability of a scattering event occurring, is related to the 

scattering angle. Because the TEM foil is thin, some of the incident electrons are not scattered and a 

direct, unscattered beam is transmitted through the sample. Scattering at low angles (15-50 mrad) is 

dominated by Bragg scattering – which is the same phenomenon used in X-ray diffraction and ECCI as 

described in section 10.2.2.2. Elastic scattering at such low angles (15-50 mrad) is usually coherent (i.e. 

the electrons are in phase). Bragg scattering is controlled by the structure of the sample, and results in a 

diffraction pattern. These electrons will be used for diffraction contrast and high-resolution TEM 

imaging, as we will describe later.  Scattering at higher angles (> 50 mrad) is usually incoherent and 

follows the Rutherford scattering rule 𝜎𝑅𝑢𝑡ℎ = 1.62 × 10−24 𝑍2

𝐸0
2 𝑐𝑜𝑡𝑎𝑛2 (

𝜃

2
), where 𝑍 is the atomic 

number of the scattering atoms, E0 the incident electron energy, and θ the deviation angle. Since 𝜎𝑅𝑢𝑡ℎ 

is proportional to 𝑍2, Rutherford scattering is exploited in scanning transmission electron microscopy 

with a high angle annular dark field detector (STEM-HAADF), which provides Z-contrast images as 

described in section 10.2.3.3. 

 



 
 

Figure 19: Schematic of the signals generated by the inelastic interaction between a high energy electron beam and a thin 

sample. 

Inelastic scattering corresponds to the interaction of the incident electron with the electron clouds of the 

sample atoms. The incident electron trajectory is also deviated, but at much lower angles (< 15 mrad) 

than the deviations caused by the nucleus. The energy transferred to the materials can result in various 

effects, which are summarised in Figure 19. Of relevance in this chapter are the diffusely scattered 

electrons and X-rays. Diffuse scattering results in the formation of Kikuchi bands, which are very useful 

when orienting crystalline samples in the TEM. X-rays are generated by electronic transitions in the 

atoms and are used for energy dispersive X-ray spectroscopy (EDX). Other signals that could be of 

interest, but not discussed here, are cathodoluminescence (CL) and plasmons and phonons which result 

in energy losses used in electron energy loss spectroscopy (EELS). 

Beam damage 

The high energy electrons used in a TEM can damage the sample. Depending on the type of interaction 

of the electron with the specimen (elastic or inelastic), different damage mechanisms can occur. Atomic 

displacement, beam sputtering, specimen heating, specimen charging, structural damage, mass loss and 

hydrocarbon contamination have been reported in different types of materials [84]. In this section we 

will pay special attention to the mechanisms of atomic displacement and beam sputtering as they are 

less straightforward, and therefore more difficult to identify. 

Atomic displacement originates from the elastic interaction between an incident electron and the nucleus 

of an atom in the sample. This interaction, in spite of being considered elastic (as we mentioned earlier), 

results in a transfer of energy from the electron to the nucleus. This transferred energy, small compared 

to the electron energy, is given by the formula 

𝐸 = 𝐸𝑚𝑎𝑥 sin2 (
𝜃

2
) 

Where E is the energy transferred to the nucleus (in eV), Emax is the maximum energy that can be 

transferred corresponding to a 180o electron deviation (in eV), and θ is the incident electron trajectory 

deviation. The maximum energy Emax can be written as a function of the incident electron energy E0 as 

follows [84,85]. 

𝐸𝑚𝑎𝑥 = 𝐸0
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where m0, M and A are the rest mass of the electron, the nucleus mass and the atomic mass number of 

the nucleus, respectively. Emax is generally rather low – of the order of a few eV – but can reach several 

tens of eV for light nuclei (e.g. B, C, N, O) and/or high beam energy. Figure 20 illustrates the variation 

of Emax with E0 for atoms that compose common semiconductor materials. If the transferred energy 

exceeds the displacement energy of the nucleus, Ed, the atom can be moved from its initial location in 

the crystal, thus creating a Frenkel pair (i.e. a vacancy and an interstitial) in the crystal. The displacement 

energy Ed depends strongly on the nucleus itself, on the nature and strength of the bond of this nucleus 

in the crystal, and on the crystallographic direction in which the nucleus is to be extracted. The values 

of displacement Ed can often be obtained using molecular dynamics simulations – a rough order of 

magnitude would be in the range 10-100 eV. 



 

 
Figure 20: Maximum energy transferred to the sample Emax as a function of the incident beam energy E0 for a range of 

common atoms in semiconductors. 

Atomic displacement can also happen through sputtering. Beam sputtering involves atoms close to the 

sample surface so that a displaced nucleus can be ejected from the sample. Given that the nucleus does 

not have to be relocated to an interstitial site in the crystal, this mechanism requires much less energy 

than atomic displacement into the “bulk” crystal. In such a case, the displacement energy Ed can be 

expressed as a function of the sublimation (i.e. transition from the solid phase to the gas phase) energy 

Esub of the material. Egerton et al. [86] showed that a reasonable approximation of Ed can be given by 

𝐸𝑑 =
5

3
𝐸𝑠𝑢𝑏. Given that the sublimation energy of most materials is of the order of a few eV, it appears 

quite likely that most samples are susceptible to beam sputtering in the TEM. Sputtering will need to be 

particularly carefully considered in TEM studies of the emerging 2D materials. 

In both cases – atomic displacement and beam sputtering – one can see that it is possible to avoid electron 

beam damage by reducing the acceleration voltage of the microscope below the knock-on voltage. If 

this is not possible – if the gun does not allow such a low voltage, or if the lower voltage results in a 

poor image contrast – one can try to reduce the radiation dose by limiting the specimen exposure time. 

Another potential solution, assuming that beam sputtering is the dominant beam damage mechanism, 

would be to coat the exit surface of the TEM foil with a heavy element [84]. 

Sample preparation 

In order to conduct a TEM experiment, the sample has to meet two key requirements: the sample must 

be electron transparent and the sample must fit in the TEM sample holder. These conditions imply that 

the sample must be thinner than 200 nm approximately and that the sample must be mounted on top of 

a 3.05 mm diameter ring. Therefore, one of the important parts of a TEM experiment is sample 

preparation. Different methods exist for preparing samples (mechanical polishing, focussed ion beam 

(FIB), electropolishing, chemical etching, ultramicrotome, etc.) depending on the material properties. 

The most commonly applied in studies of semiconductor defects are mechanical polishing and FIB.  Box 

1 outlines a typical procedure for sample preparation by mechanical polishing, with some tips to help 

ensure successful results. 

 

 

 Using a diamond scribe and/or a diamond saw, cut two rectangles of typical size 3 mm × 

1.5 mm from the original sample.  

Tip: Cut along specific crystallographic directions – this will facilitate finding the 

zone-axis during the TEM experiment.  

 Stick the top surfaces of the two rectangles to each other using an epoxy resin.  

Tips: (1) Make the glue line as thin as possible to avoid damaging the front 

surface during the ion milling step. (2) Make sure that the sample can sit on a 

support stub on its own with the glue line perpendicular to the support. This 



ensures that the electron beam will be almost parallel to a zone-axis once in the 

TEM (some microscopes do not allow for large sample tilts).  

 Mount the sample on a stub using thermoplastic wax.  

 Grind the first side of the sample using SiC or diamond abrasive discs until a flat surface is 

obtained (Take special care to avoid any chipping near the glue line).  

Tips: (1) Gradually decrease the grain size of the disc. (2) Make sure that for a 

given disk the sample thickness does not fall below ~2-3 times the grain size of 

the disk – this will ensure that there will be no damage from grinding in the final 

foil.  

 Polish the first side of the sample using a cotton wheel in a dimpler until no scratches are 

visible in an optical microscope.  

 Flip the sample and repeat the grinding/polishing procedure until the sample thickness 

reaches 20-40 μm approximately.  

Tips: Use a P400 disc (average grain 35 μm) down to a sample thickness of 80-

100 μm, then P600 (average grain 25.8 μm) down to 50-70 μm and finally P800 

(average grain 21.8 μm) down to 40-60 μm. Final polishing down to 20-40 μm is 

made with a cotton wheel in the dimpler.  

 Stick a 3.05 mm TEM ring onto the sample. 

 Mill the sample using an ion milling system until a hole appears in the sample. The ion 

milling system uses two Ar+ ion guns operating between 0.1 and 6 kV accelerating voltage 

with an incident angle up to ± 10o.  

Tips: (1) Position the sample with the glue line on the rotation axis of the ion mill 

stage. (2) Operate the system at 5-6 kV until colourful fringes start appearing 

around the glue line, then decrease the voltage down to 3 kV until a hole forms 

near the glue line, finally, decrease the voltage down to 0.1-2 kV for 15 minutes 

to clean the surface from high energy ion mill damage. 

 
Box 1:  Typical procedure for preparation of TEM samples by mechanical polishing, with some tips and tricks. 

 

 

Preparation by FIB involves putting the sample in an SEM equipped with an electron gun and a Ga3+ 

ion gun, as well as a source for Pt deposition – other elements (often C, W) can also be used. The electron 

gun is usually operated at fairly low voltage (5 kV) and is used for imaging, while the ion gun operates 

at much higher voltage (often 30 kV) and is used for milling. Imaging with the ion gun is also possible 

but one has to minimize the exposure to the beam as it damages the sample (as could be expected from 

a beam whose primary function is to mill the sample!). In essence, FIB aims to excavate a thin slice out 

of the bulk sample, and a typical procedure, with some helpful tips, is given in Box 2. 

 

 Deposit a protective Pt layer on the surface of the sample in order to protect it from the 

high energy ion beam. 

Tip: To minimize damage, first deposit Pt using the electron gun, then with the 

ion gun.  

 Using the ion gun for removing material, and the electron gun for monitoring, mill two 

ditches, one on each side of the Pt layer.  

 Now that the sides of the sample slice are exposed, make a cut underneath – this will 

separate the slice from the bulk sample.  

 Extract the slice from the bulk sample using a sharp needle-shape probe, and transfer the 

sample to a TEM grid.  

 Gradually thin down the sample slice from both sides using ion beam of decreasing 

currents (in order to remove previous beam damage) until electron transparency thickness 

(~200 nm).   

Tip: For best results (to make a sample suitable for atomic scale imaging), 

perform a final cleaning of the sample using the ion gun at a lower voltage, or 

using a separate ion milling system (such as the system mentioned for mechanical 

preparation in Box 1) at 0.1-1 kV  

 



Box 2:  Typical procedure for preparation of TEM samples using FIB, with some tips and tricks. 

 

 

TEM equipment 

Although the exact architecture of a TEM instrument will depend on its mode of operation (e.g. parallel 

beam, convergent beam), most TEMs are built with a common arrangement. Figure 21 presents the basic 

architecture for a TEM operating in parallel beam illumination, and each component is described below. 

 

 
Figure 21: Schematic of a parallel beam TEM. To illustrate the principle behind diffraction contrast imaging, here an 

objective aperture is positioned around one of the diffracted beams, thus forming a dark field image (in practice, the 

objective aperture is centred on the optic axis and the incident beam is tilted). 

Electron gun: The most common types of electron guns in recent TEMs are the LaB6 filament and the 

field emission gun (FEG). Although the emission mechanisms are different for these two types of guns 

– thermionic (LaB6) or field emission (FEG) – the main idea is that an electron source is placed at the 

cathode with respect to two anodes (or Wehnelt (i.e. a ‘grid’ which acts as an electrostatic lens) plus 

anode in the case of a thermionic gun). The electrons are then extracted from the source (cathode) and 

accelerated by the anode to the operating voltage of the microscope. An undeniable advantage of FEGs 

over LaB6 filaments is that electrons emanate from a much smaller region of the cathode, leading to a 

smaller, brighter, and more coherent source. 

Condenser lens 1 (C1): The first condenser lens is used to demagnify (or magnify in the case of a FEG) 

the electron source. 

Condenser lens 2 (C2): The second condenser lens is important in that it determines the area of exposure 

of the specimen. By underfocussing C2, the sample is illuminated by a quasi-parallel beam. By focussing 

C2, the sample is illuminated by a convergent beam (in some microscopes, a lens called the ‘upper 

objective lens’ is inserted between C2 and the sample to further decrease the convergence angle). A 

parallel incident beam is used to achieve a coherent electron beam – which gives rise to sharp diffraction 

patterns. When the electron beam is made convergent, the electron probe can be rastered across the 

surface (hence the appellation scanning TEM or STEM) with a resolution close to the probe size (related 

to the convergence angle). In aberration-corrected microscopes, the C2 lens is followed by aberration 



correctors, which are essentially a set of additional multipole lenses whose functionality is to correct a 

specific type of aberration – e.g. astigmatism, spherical aberration, chromatic aberrations. 

Condenser aperture: Along with the second condenser lens, an aperture can be inserted in order to 

control the illumination of the specimen as well as the convergence angle of the beam. 

Sample: The sample is mounted in the sample holder which can be translated in the three spatial 

directions and tilted around the two axes perpendicular to the optic axis.  

Objective lens: An objective lens is placed after the sample in such a way that the sample is in the focal 

plane of the lens. The distance between the sample and the objective lens is called ‘eucentric height’. 

Objective aperture: The objective aperture is located in the focal plane of the objective lens. 

Consequently, the objective aperture is placed where the diffraction pattern of the sample forms. This 

aperture is used to select a particular set of diffraction conditions (and therefore a particular set of 

information about the sample), thus enabling particular imaging conditions which will be described later. 

Selected area aperture: The selective area aperture is placed in the image plane of the objective lens. It 

allows one to virtually select which part of the sample is illuminated. 

Intermediate and projector lenses: The intermediate and projector lenses are used to select which mode, 

between imaging and diffraction, will be observed on the viewing screen. When imaging mode is 

selected, the lenses are adjusted so that the viewing screen is in the image plane of the combination of 

the two lenses. Similarly, when diffraction mode is selected, the lenses are adjusted so that the viewing 

screen is in the focal plane of the combination of the two lenses. Using two lenses enables the 

magnification of the image or diffraction pattern.  

Viewing screen: The electrons thus selected can finally hit the phosphor screen leading to observable 

fluorescence. To record an image, the viewing screen can be lifted to allow the beam to hit a 

photographic film or a camera.  

10.2.3.2 Technique for diffraction contrast imaging of defects - Bright Field, Dark Field, 

Weak Beam Dark Field 
Diffraction contrast imaging is achieved by viewing the diffraction pattern of the specimen and using 

the objective aperture to select only one particular diffraction spot. Hence only the planes diffracting the 

beam in this particular way will appear on the viewing screen. Depending on the beam going through 

the objective aperture (either the direct beam or a scattered beam) and on the sample orientation allowing 

the excitation of different diffraction conditions. This type of imaging is qualified as bright field 

imaging, dark field imaging or weak beam dark field imaging and is mainly used for the characterisation 

of defects as illustrated in Figure 22. The application of this technique to the characterisation of 

dislocations will be further discussed in Section 10.3.1.4. In theory, diffraction contrast imaging is 

possible regardless of the sample orientation, as long as a diffraction pattern can be obtained. In practice, 

the contrast of the image can be strongly increased if the sample is tilted away from the zone-axis, along 

the Kikuchi band associated with the selected reflection. This results in the sample being in ‘two-beam 

conditions’, where only the direct beam and one diffracted beam are strongly excited. It is also 

recommended to select a deviation parameter 𝒔 > 0 in order to further improve the contrast. (𝒔 is also 

called the excitation error and describes, in the reciprocal space, how far away the system is from the 

Bragg conditions). 

 



 
Figure 22: Bright field (a), dark field (b) and weak beam dark field (c) TEM images of an InGaN/GaN quantum well 

structure observed along the 〈112̅0〉 zone-axis using 𝒈 = 11̅00. Dislocations in each images are indicated by an arrow. 

Bright field imaging is obtained when an objective aperture is used to select only the direct beam. Given 

that the direct beam contains the information about the planes which do not diffract the incident beam, 

all the material which does not diffract will appear bright, whilst regions of material where the beam is 

scattered (e.g. defects) will appear dark (Figure 22(a)). 

Dark field imaging is obtained when an objective aperture is used to select a diffracted beam. One issue 

with dark field imaging as can be observed in Figure 21 is that the selected beam is off-axis and therefore 

subject to aberrations by the intermediate and projector lenses. In most TEMs this is solved by tilting 

the incident beam adequately so that the diffracted beam is kept on-axis. When the sample is in two-

beam conditions, the majority of electrons not contributing to the direct beam are contributing to this 

particular diffracted beam. Therefore a dark field picture results in the negative of a bright field picture, 

with all the diffracting planes appearing brighter (Figure 22(b)). 

Weak beam dark field imaging occurs when the same conditions as for dark field are fulfilled, but the 

sample is tilted slightly further (perpendicularly to the Kikuchi band) to increase the deviation parameter 

s. In that case, the diffracted beam g becomes weak, and the higher order diffraction spots 3g (or 5g) 

becomes stronger. Like in dark field, an objective aperture is put around g. The resulting image is similar 

to a dark field picture except that only the planes which are strongly diffracting appear (Figure 22(c)). 

This technique allows us to have a better resolution: when observing dislocations for example, only the 

planes closest to the core will appear. Therefore, dislocations appear much thinner, i.e. dislocation 

densities in high dislocation density films can be counted more easily and their Burgers vectors found. 

10.2.3.3 Techniques for compositional analysis near defects - High angle annular dark 

field STEM, EDX 
High angle annular dark field STEM (STEM-HAADF) 

We mentioned earlier that high angle scattering (> 50 mrad) of the electron beam by the nuclei of atoms 

is dictated by Rutherford scattering, with the cross section proportional to Z2. STEM-HAADF is built 

around this effect. By using an eponymous annular detector that collects electrons scattered at a high 

angle, a Z-contrast image is generated as the convergent probe is scanned across the sample. The term 

dark field originates from the fact that only diffracted electrons contribute to the image. STEM-HAADF 



is therefore suited for the study of compositional variations across the sample, where regions of higher 

average atomic number appear brighter than regions of lower average atomic number (as illustrated by 

the bright contrast from InGaN quantum wells in a GaN matrix in Figure 23). However, STEM-HAADF 

cannot be straightforwardly used to quantify the composition. Other techniques (e.g. EDX) often 

embedded in the same microscope are usually used for this purpose. One also has to bear in mind that 

the thickness of the TEM foil will affect the image contrast – thinner regions appear darker than thicker 

regions – and that strain can also influence the contrast if the detector does not collect solely electrons 

diffracted at a sufficiently large angle (illustrated by contrast arising at a dislocation in Figure 23).    

 

 
Figure 23: STEM-HAADF image of a dislocation in an InGaN/GaN quantum well sample. The quantum wells appear 

brighter due to the greater atomic number of InGaN over GaN. Quantum wells can also be seen forming on the sidewalls of 

the pit formed at the termination of the dislocation. The dislocation is also visible indicating strain-related contrast. 

Energy dispersive X-ray spectroscopy (EDX) 

Unlike STEM-HAADF which provides essentially qualitative compositional information, EDX is in 

essence quantitative. Provided that sufficiently high signal can be detected, the atomic species present 

in the sample and their fraction, can be determined. The atomistic mechanism for generation of the EDX 

signal is explained in Section 10.2.2.6. Here we add some comments about typical quantification routes 

used in TEM. Quantification of the proportion of each species can be obtained by analysis of the 

intensity of the peaks relating to different elements in the X-ray spectrum. Most TEM analysis software 

employs the Cliff-Lorimer method [87]. EDX can therefore be a useful technique to investigate 

compositional fluctuations at defects, for example, in order to investigate segregation phenomena. 

However, a common mistake is to overestimate the capabilities of the technique. For example, as we 

explicitly mentioned, the signal needs to be sufficiently high to be able to extract information from a 

spectrum, which can be more difficult to achieve when the signal arises from a small volume in a thin 

TEM foil. Although the systems are continuously being improved, minute amounts of impurities in the 

material, as is the case for semiconductor dopants, will not be detected. Unfortunately, trying to increase 

the EDX signal often results in an increase of the electron dose in the sample, which can damage the 

sample.  Furthermore, the Cliff-Lorimer analysis does rely on a calibration factor, termed the Cliff-

Lorimer factor, which can be derived from standard samples, but which can vary with the foil thickness 

and electron beam energy among other factors.  This can limit the accuracy of the quantification unless 

treated with great care. 

 



10.2.3.4 Techniques for high-resolution imaging of defects - High resolution TEM, STEM 
High resolution TEM 

In the previous section, we have seen that diffraction contrast arises from selecting a single diffraction 

spot using the objective aperture. Thus only the information conveyed by the selected diffraction 

condition – a specific set of planes in Bragg condition – will contribute to the image. However, if one 

uses a larger objective aperture, or no aperture at all, several diffraction spots can contribute to the 

image. For example, in a configuration where two (0g and g) or three beams (-g, 0g and g) are allowed 

through the aperture, one can visualize on the viewing screen a set of black and white fringes resulting 

from the interference of these beams. Although these fringes cannot be directly interpreted as atomic 

planes (those that relate to the g vector), the fringe spacing relates to the plane spacing. If more 

diffraction spots are selected, then the superposition of interference fringes from several g vectors results 

in interference ‘spots’, that one can relate to the crystal structure of the sample. High resolution TEM 

(HR-TEM) is obtained when the microscope is set up in order to make these interferences visible on the 

screen. Let us emphasize this again: although it can be very tempting to associate atoms with the 

interference spots on the screen, one must always be aware that this is technically incorrect. Moreover, 

the image displayed on the viewing screen is a convolution of the interference pattern and of the contrast 

transfer function of the objective lens (i.e. the ability of the objective lens to transfer certain spatial 

frequencies). This contrast transfer function is far from being constant for all frequencies, and can 

dramatically affect the image contrast just by changing the focus of the microscope. As a general rule 

of thumb, HR-TEM should mainly be used qualitatively, typically to observe the undefected crystal or 

identify the presence of a defect. For more quantitative interpretations such as identifying the atomic 

arrangement at the core of a dislocation, one must compare the experimental image with simulations. 

An additional interesting analysis technique in HR-TEM is geometric phase analysis [88], which allows 

one to map the distribution of strain across the image – for example to identify the tensile and 

compressive regions of a dislocation. 

High resolution STEM 

With the advent of aberration correctors, high resolution STEM (HR-STEM) is perhaps currently the 

best suited technique for the study of defects at the atomic scale. HR-STEM is based on the same idea 

as STEM-HAADF where the contrast is due to Rutherford scattering – i.e. proportional to Z2. The main 

difference is that aberration correctors allow for smaller probe size and therefore improved resolution, 

down to the atomic scale. A crucial difference with the previous technique (HR-TEM) is that in HR-

STEM the images can be directly interpreted in terms of atoms. You still have to bear in mind that the 

typical TEM sample is not atomically thin, hence an ‘atom’ in the image correspond in fact to an atomic 

column. This is therefore the technique of choice to study atomic arrangement around defects (See 

Figure 24).   

 

 
Figure 24: HR-STEM image of the core structure (here double 7-4-8-4-9 atom rings) of a mixed dislocation in AlGaN 

observed along [0001]. 



 

10.3 Examples of the application of microscopy to semiconductor materials 

10.3.1 Dislocation densities and Burgers vectors in GaN 

10.3.1.1 Motivation for the application of microscopy to study dislocation types and 

densities in GaN 
The nitride family of materials is perhaps unique amongst the conventional compound semiconductors 

in the extent to which nitride devices are robust to the presence of high densities of extended defects, 

particularly dislocations.  This allows the use of heteroepitaxial layers grown on highly mismatched 

substrates in the fabrication of both electronic and optoelectronic devices in GaN, with dislocation 

densities in working light emitting diodes (LED) and high electron mobility transistors (HEMTs) 

frequently in excess of 109 cm-2.  However, dislocations do impact the performance of nitride devices, 

particularly laser diodes [89], and this has provided an impetus for the development of techniques both 

for the reduction of dislocation densities in heteroepitaxial materials and for the growth of bulk GaN 

with dislocation densities down to ~104 cm-2 [90].  Provision of feedback for the development of the 

materials growth has thus required the availability of techniques which allow quantification of 

dislocation densities ranging over five orders of magnitude.  In typical (0001) GaN heteroepitaxial 

layers, the basis of most devices, three types of threading dislocations are observed:  pure edge, or ‘a-

type’ (Burgers vector, b = 1/3<11-20>), pure screw, or ‘c-type’ (b = <0001>), and mixed, or ‘c+a type’ 

(b = 1/3<11-23>). Quantification of the proportion of dislocations of each type can aid understanding 

of the mechanisms of both dislocation generation and reduction.  Information on these mechanisms can 

also be deduced from the spatial distribution of dislocations across the surface of a sample.  Microscopy 

provides the means to access all of these parameters of the dislocation distribution in the nitrides, but 

different methods are more appropriate to different dislocation density regimes.   

10.3.1.2 AFM methods for dislocation density quantification   
As was mentioned in Section 10.2.1.1, the termination of a dislocation at a sample surface necessarily 

results in the formation of a small surface pit, to achieve an equilibrium of forces between the dislocation 

line tension and the surface tension.  The formation of such pits or “dimples” was predicted by Frank as 

early as 1951 [91], who also noted that dislocations with a screw component intersecting a close-packed 

surface must be associated with a step edge emanating from the dislocation termination.  As grown GaN 

surfaces exhibit dislocation pits associated with all types of threading dislocations, and step edge 

terminations are indeed seen at screw and mixed dislocations.  This allows AFM imaging of the 

dislocations and discrimination between dislocations with and without a screw component.  However, 

the relevant pits are small in lateral extent (typically 20-30 nm for mixed dislocations and less than 10 

nm for edge dislocations) and also shallow (less than a nanometre). Pits associated with edge 

dislocations in particular are often only visible when tip sharpness is carefully preserved.  (Whilst in 

general blunt tips limit the lateral resolution rather than the vertical resolution, a blunt tip cannot 

penetrate into a narrow pit, or may not penetrate its full depth.  In the latter case, the ability to detect the 

dislocation depends on the relative magnitudes of the depth to which the tip penetrates and the 

background noise). A variety of wet etching methods have been applied to increase the size of 

dislocation-related pits at GaN surfaces (and are reviewed in Reference [92]), but in many cases the 

resulting pits are sufficiently large that for samples with dislocations densities in excess of 108 cm-2 

(which includes most common materials for LEDs and HEMTs), pits tend to merge making detailed 

quantification difficult.   

A more successful approach for (0001)-oriented GaN grown by the most common technique, metal-

organic vapour phase epitaxy (MOVPE), is the application of a surface treatment using SiH4 and NH3 

in the deposition system immediately post-growth.  This can be straightforwardly used to increase the 

diameters of pits associated with edge and mixed dislocations to approximately 45 nm and 60 nm 

respectively, allowing them to be easily imaged in AFM [92].  Tapping mode images of a sample before 

and after surface treatment are shown in Figure 25.  Edge dislocations may be distinguished from mixed 

dislocations not only by the smaller pit size but also because the treatment leaves terraces  



 
 

Figure 25:  Images of a (0001) GaN surface before (a) and after (b) treatment with SiH4 and NH3 to increase the size of 

the dislocation pits.  Reprinted from Reference [92] with permission from Elsevier. 

 

distinguishable at the surface so that step terminations at mixed dislocations can be identified.  The 

identification of pure screw dislocations by this method has not been thoroughly explored since most 

MOVPE-grown materials contain very few pure screw dislocations.  This method has been applied to 

samples with dislocation densities ranging from ~105 cm-2 [93] to 5 × 109 cm-2 [94], although for the 

lowest dislocation densities it is very slow, since imaging must be carried out at a sufficient resolution 

to locate the small pits over very large areas.  It has been extensively used to explore spatial distributions 

of dislocations in GaN [95] and to relate them to defect formation mechanisms. It has also been used to 

locate dislocations terminating at the surface of large (few micron height) three-dimensional islands, 

including on semi-polar facets (facets inclines to (0001)) [92].  It has been used on films grown in non-

polar orientations [96], and has in this context been suggested to have some efficacy for the identification 

of stacking faults as well as dislocations.  However, it should be noted that the specific surface treatment 

outlined here is not generalizable to other semiconductors, and indeed fails on strained AlGaN surfaces, 

although it is effective on relaxed AlGaN [97].  Nonetheless, it provides a useful example of the level 

of detail which basic topographic AFM can provide in materials where sufficient surface topography 

exists or can be generated at the surface terminations of extended defects.     

10.3.1.3 SEM methods for dislocation density quantification  
One of the advantages of ECCI in the SEM is the ability to acquire images rapidly (in the order of 

minutes) from large areas of the surface of a sample (of order 10 µm × 10 µm). For dislocations which 

thread through the sample and reach the surface, dislocation densities can be determined by simply 

counting the number of dislocations in the image. There are a number of different techniques for 

obtaining a count of the dislocations ranging from a simple manual count, to the use of appropriate 

plugins in image processing packages such as ImageJ [98], to the development of bespoke image 

processing software exploiting machine learning techniques. If the diffraction condition(s) can be 

determined, it is in principle also possible to identify the dislocation type as described in Section 

10.2.2.2. Using the procedure described in Section 10.2.2.2, Naresh-Kumar et al. [99] identified 300 

threading dislocations in a GaN thin film. Approximately 51% were identified as pure edge dislocations 

(Burgers vectors ⅓<11-20>),  42% were mixed dislocations (Burgers vectors ⅓<11-23>), and pure 

screw dislocations accounted for  7% of the total dislocation density (Burgers vectors <0001>).  

While ECCI is an excellent technique for quantification of defects which reach the surface, it is harder 

to quantify dislocations below the surface due to the surface sensitivity of the ECCI technique and the 

difficulty in determining the precise sampling depth of the technique. However, it is possible to obtain 

quantitative data on dislocations which lie below the surface, as illustrated for example by the paper by 

Carnevale et al. [100] on misfit dislocations in GaP lying at up to around 100 nm from the surface.  

The ability to image large areas of a sample makes it possible to probe the statistical distribution of the 

dislocations threading to the surface of a sample. Ripley's K-function [101,102] is one of the most widely 

used methods to analyse point pattern data providing information on the variation of the density of points 

under investigation and it determines whether they are clustered (under-dispersed), random (dispersed) 

or regular (over-dispersed).  

Ripley's function produces concentric circles with increasing radii around each identified point in an 

image and counts the number of neighbouring points that are contained within each circle. This process 

is repeated for each point within the image with the cumulative total for a given radius r computed over 



a range of values of r to produce the distribution function K(r).  L(r) is a function derived from K(r) 

which is easier to interpret, and is simply the deviation between the measured K(r) and a points 

distribution of the same density but exhibiting complete spatial randomness (CSR)[103].  

To determine the statistical significance of any deviation from CSR, any deviation can be evaluated 

using simulated significance intervals by computing the lowest and highest value of L(r) for each radius 

r to define the lower and upper bounds of a significance envelope. A Monte-Carlo method is generally 

employed for these simulations. If the empirical L-function lies above the upper bound of the CSR 

envelope, this implies that there is a higher density of points than would be expected under CSR and 

there is clustering. Similarly, if the empirical L-function lies below the lower bound, this indicates that 

there is a lower density of points than would expected under CSR, and thus the points are over-dispersed.  

Figure 26(a) shows an ECCI micrograph from a GaN thin film where the dislocations are highlighted 

by red circles. This point pattern has then been analysed using L(r) and this is shown in Figure 26(b). 

The deviation of experimental L(r) outside the 90% significance envelope indicates a statistically 

significant over dispersion of dislocation for a radius of  ≲ 150 nm; this is likely due to the mutual 

repulsion of neighbouring dislocations due to their associated strain fields [104,105] and to limits 

imposed by spatial resolution which is 70 m for this image. There is also statistically significant 

clustering of dislocations for a radius of ≳ 500 nm. Examination of Figure 26 shows that the dislocations 

are arranged in long lines, in particular along boundaries between regions exhibiting different grey scales 

in the image. The changes in grey scale indicate changes in orientation between subgrains in the film. 

The clustering indicated by the L(r) is probably due to these lines of dislocations. 

For more information on statistical analysis of the distribution of dislocations the reader is referred to 

the work of Moram et al. who have published detailed studies on the use of spatial analysis techniques 

for the analysis of defects observed in AFM and CL images, see for example [105,106]. Note that Moram 

et al. employed the AFM techniques for dislocation identification described in Section 10.3.1.2. 

10.3.1.4 TEM methods for dislocation density quantitation  
In Section 10.2.3.2 we saw that dislocations can be observed using TEM, and we will discuss this in 

more detail shortly. Probably the most ‘accurate’ way to obtain the density of dislocations is by using 

plan-view imaging. In GaN devices, the dislocations that matter the most are often those which thread 

toward the surface. These will be seen end-on in a plan-view geometry. The density of dislocations will 

therefore be obtained by directly counting how many dislocations intersect the foil over a given area. 

Here the word ‘accurate’ above was purposely written with quotation marks because the area of material 

is relatively small (typically less than 1 μm2), making the density thus obtained statistically less reliable 

 

Figure 26: (a) ECCI micrograph from a GaN thin film with dislocations highlighted with red circles (b) L(r) for the 

dislocation distribution shown in (a), showing the L(r) determined from experiment, L(r) expected from complete spatial 

randomness (CSR=1) and a significance interval of 90% (Dislocations identified and statistical analysis undertaken using 

in-house software developed by Simon Kraeusel). Adapted and reprinted from [107] with permission from Cambridge 

University Press. 
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than if it were obtained with other techniques (e.g. AFM or SEM). Nevertheless its reliability is still 

typically better than density values obtained from cross-sectional TEM observation. 

However, cross-sectional imaging can provide a density of dislocation, but over a much smaller area of 

materials hence reducing the statistical strength of the measurement. Moreover, in this geometry most 

dislocations will run parallel to the TEM foil. Therefore, in order to obtain a density of dislocations in 

cross section, one has to count the number of dislocations at a certain position in the foil, but the 

thickness of the TEM foil is also required. This last value can be obtained through additional TEM 

analysis, typically by comparing an experimental convergent beam electron diffraction (CBED) pattern 

with a simulated one. EELS can also be used for this purpose, by comparing the zero-loss peak with the 

total intensity of the low-loss spectrum. As such, cross-sectional TEM imaging is not the ideal technique 

to obtain a reliable density of dislocations. The real strength of the approach is that one can visualize the 

behaviour of dislocations throughout the thickness of the film – which is information that cannot be 

obtained by plan-view imaging or any surface techniques. For example, in Figure 27, we can see that a 

high density of dislocations is generated near the substrate/film interface (bottom of the picture), but 

also we see that the dislocations interact with each other within ca. 2 μm from the interface, hence 

reducing greatly the number of dislocations that thread to the surface (top of the image). 

 

 
Figure 27: Bright field images of dislocations in a GaN film grown on sapphire, observed using the diffraction conditions 

𝒈 =112̅0 (left) and 𝒈 = 0002 (right). 

 

g.b analysis 

Let us consider further why dislocations generate contrast in the TEM: we will see that not only can 

dislocations be imaged in the TEM, but that the technique also allows one to determine the Burgers 

vector of the dislocations. A coherent electron beam will be diffracted by the crystal lattice. However, 

a dislocation generates a strain field that distorts the crystal locally. The overall idea is that if the set of 

planes that diffracts the beam also happens to be locally distorted due to the presence of the 

dislocations, then contrast will arise. Given that the lattice distortion is the most pronounced near the 

core of the dislocation, this means that one can observe by TEM the dislocation line inside the sample 

(see Figure 27). Additionally, the lattice distortion will be affected by the dislocation’s Burgers vector. 

Hence by investigating which diffraction conditions give rise to contrast, one can identify the Burgers 

vector of individual dislocations. Experimentally, dislocation observation is achieved by performing 

one of the diffraction contrast techniques described in Section 10.2.3.2 (bright field, dark field or weak 

beam dark field), and selecting a g vector that satisfies 𝒈. 𝑹 ∉ ℤ. When 𝒈. 𝑹 ∈ ℤ the dislocation will 

be out-of-contrast, this is why this is often referred to as the ‘invisibility criterion’. 𝑹 denotes the 

displacement field of the dislocation, which represents the distortion of the lattice, and takes the form 

(for a dislocation in an isotropic medium): 

𝑹(𝑟, 𝜙) =
1

2𝜋
(𝒃𝜙 +

1

4(1 − 𝜈)
(𝒃𝒆 + 𝒃 × 𝒖(2(1 − 2𝜈) ln 𝑟 + cos 2𝜙)))  



where 𝒃 is the Burgers vector of the dislocation, 𝒃𝒆 is the edge component of the Burgers vector, 𝒖 is 

the line direction of the dislocation, 𝜈 is the Poisson’s ratio, and 𝑟 and 𝜙 are the polar coordinates. We 

can see that for dislocations, the expression is rather complicated as 𝒈. 𝑹 will depend on 𝒈. 𝒃 and 𝒈. 𝒃 ×
𝒖. A simplification of the invisibility criterion is that the defect will be out-of-contrast when 𝒈. 𝒃 = 0, 

bearing in mind that some residual contrast may arise from the term 𝒈. 𝒃 × 𝒖. In Figure 27 this criterion 

was used to differentiate edge (𝒃 = 𝒂 =
1

3
[112̅0]) to mixed (𝒃 = 𝒂 + 𝒄 =

1

3
[112̅3]) dislocations: edge 

dislocations will be visible when 𝒈 = 112̅0 (left image) but not when 𝒈 = 0002 (right image), while 

mixed dislocations will be visible under both conditions. 

Core identification by HR-STEM 

Alternatively, HR-STEM in plan-view geometry can be employed to identify the Burgers vector of 

dislocations. Dislocations are therefore seen end-on and the resolution of the technique allows one to 

observe the atomic arrangement near the dislocation. The Burgers vector of the dislocation can therefore 

be obtained by drawing a Burgers circuit around the dislocation (see Figure 28). Bear in mind that you 

will obtain the projection of the Burgers vector in the viewing plane, so that any component of the 

Burgers vector parallel to the zone axis will not contribute to the Burgers circuit. Hence, unfortunately, 

Burgers circuit drawn around edge and mixed dislocations will appear similar, and no component of the 

Burgers vector of a screw dislocation will be visible. 

However, the real asset of HR-STEM is that one can identify the core configuration of the dislocation, 

as depicted in Figure 28. The core configuration of the dislocation depends in part on the dislocation 

type, but also can reveal other information about the material, such as the amount of strain, atomic 

segregation, etc. However, to be able to draw meaningful conclusions this approach requires 

identification of a statistically significant number of defects per sample. Even so, the problem of 

projection persists and the distinction between edge and mixed dislocations can be achieved by 

observing the Eshelby twist [108]. The Eshelby twist is an apparent rotation of the lattice that is caused 

by the relaxation of stresses at the free surface. This is due to the screw component of a dislocation. 

Hence mixed and screw dislocations will exhibit an Eshelby twist, while edge dislocations will not, 

which can be used to discriminate them in HR-STEM images.     

 

 
Figure 28: HR-STEM image of the core structure (here double 5-6 atom rings) of a mixed dislocation in AlGaN observed 

along [0001].  The white arrows indicate a Burgers circuit around the core. 

10.3.1.5 Intercomparison of the various methods  
It is possible to achieve accurate quantification of dislocation densities and Burger’s vectors using SPM, 

SEM, or TEM.  Indeed, careful comparisons have been made of the dislocation densities recorded using 

AFM on SiH4-treated surfaces and plan view TEM on the same sample, and the results are consistent 

between the different technqiues92.  Similarly, comparisons have been made between the results of ECCI 

and AFM on SiH4-treated surfaces, not just on the same sample, but on the same defects in the same 

sample, and again good agreement has been achieved65. However, the different techniques have different 



strengths and weaknesses, and not all samples will yield accurate results using all techniques. One factor 

which limits each technique is the fact that separate dislocation-related features tend to overlap as the 

dislocation separation is reduced. In ECCI, it is possible to discriminate between TDs if they are more 

than ca. 80 nm apart.  For AFM using the SiH4 treatment, this spacing is somewhat lower, with mixed 

dislocations separated by about 50 nm and edge dislocations separated by about 40 nm being 

distinguishable92.  For AFM on untreated surfaces, using a very sharp tip, it is possible to reduce these 

value further, but at some cost in terms of the reliability of the measurement, since tip blunting can 

quickly make it impossible to resolve the tiny edge dislocation pits.   

Pragmatically, AFM on treated surfaces and ECCI remain effective as a mean of both measuring 

dislocation density and assessing Burger’s vectors up to a dislocation density of mid 109 cm-2. In high 

resolution plan view STEM, where the individual dislocation cores can be imaged, the minimum spacing 

at which separate dislocations can be resolved is clearly far smaller.  It should be noted however, that in 

cross-sectional TEM, even when the WBDF technique is used to minimize the width of the dislocation-

related features, projection effects may cause contrast from dislocations separated from one another in 

the through-sample-thickness direction to overlap, limiting the effectiveness of this approach in 

quantification at very high dislocation densities. 

Although high resolution STEM provides the ultimate resolution for samples with very high dislocation 

densities, increasingly the GaN used in technological applications has a much lower concentration of 

defects.  When assessing materials grown by hydride vapour phase epitaxy [109] (with dislocation 

densities less than 108 cm-2) or ammonothermal growth [93] (with dislocation less than 106 cm-2), the 

small area typically sampled by plan-view TEM can mean that not one single dislocation is found in the 

field of view. In these low dislocation density samples, SEM-based methods such as ECCI or CL present 

a huge advantage in being able to assess a large area quickly and easily.  AFM on treated samples can 

address large areas112 (e.g. 30 µm × 30 µm), although this approach is very slow.  It is also very reliant 

on the SiH4 treatment.  This can be applied as a post-growth treatment to materials grown by other 

techniques, but that reduces the convenience of this approach.  Overall, the availability of a range of 

techniques to suit the requirements of different experiments is rather useful, with either ECCI or AFM 

being particularly useful for fast-turnaround estimation of dislocation density, with minimal sample 

preparation, and STEM being well-suited to more in-depth studies of the mechanisms by which 

dislocations interact.         

10.3.2 Imaging of the impact of dislocations on materials properties  

10.3.2.1 The interaction of dislocations with doping 
In considering the interaction of dislocations with doping in gallium nitride two essentially separate 

issues arise: (1) Methods for the reduction of the dislocation density lead to local changes in intentional 

or unintentional dopant incorporation, so that variations in dislocation density are often also related to 

variations in doping density. (2) Dopants, whether intentional or unintentional may segregate to 

dislocation cores, or to strained regions adjacent to dislocation cores.  The two issues overlap to some 

extent where the dopant segregation affects the movement or bending of dislocations, hence influencing 

dislocation density reduction mechanisms.  However, we shall address separately how microscopy can 

contribute to understanding of each of these issues, and in so doing provide short cases studies on (for 

the former) the application of SCM in understanding impurity incorporation and (for the latter) the 

application of TEM techniques to understand the influence of impurity species on dislocation cores.   

Many methods for the reduction of dislocation densities in the heteroepitaxial growth of GaN involve 

the formation of 3D islands which are then coalesced to produce a 2D film. Dislocations tend to bend 

towards the inclined surfaces of the islands in order to shorten their line-length in the crystal and hence 

reduce the total energy. When the islands coalesce, bent dislocations may then meet and either 

annihilate, or react producing a new threading dislocation. Either process may reduce the dislocation 

density.  The formation of 3D islands may be induced by altering the growth conditions during the initial 

stages of growth on the foreign substrate [94].  Alternatively, a GaN film with a high dislocation density 

may first be grown and then a mask of some sort used to prevent further 2D growth and induce 3D 

growth on the unmasked areas.  Such a mask may be self-assembled – for example incomplete layers of 

SiNx deposited in situ during MOVPE growth are commonly used – or may be deposited and deliberately 

patterned ex situ to provide a regular array of masked and unmasked regions [110].  The most common 

variant on the latter process is the “epitaxial lateral overgrowth” or ELOG method in which a GaN layer 

is patterned with stripes of an amorphous material, usually SiNx or SiO2 which acts as a mask [111]. In 

one popular variant, facetted ELOG (FACELOG), the V:III ratio and temperature are reduced to 



encourage the growth of facetted stripes in the unmasked regions, forming triangular prisms of GaN 

usually aligned along [1-100].  Dislocations tend to bend towards the inclined side facets to shorten their 

line length in the crystal.  Once the growth of the triangular prism structures is complete, the V:III ratio 

and temperature are increased, and a flux of a Magnesium precursor may be added to the growth 

environment.  All these changes tend to encourage lateral growth, overgrowing the mask stripes, so that 

the prisms of GaN coalesce to form a flat film. At the coalescence boundaries, dislocations meet and 

may annihilate.   

Figure 29(a) shows a schematic of this growth process, and may be compared to the TEM image in 

Figure 29(b) which reveals the impact of the facetted growth and lateral overgrowth on the dislocation 

structure [112].  Figure 29(c) and 29(d) show SCM images of the same sample, providing the phase and 

amplitude of the SCM signal respectively [113]. The SCM phase data shows that the GaN triangular 

prisms formed in the initial growth stage are n-type (appearing black), whilst the regions where lateral 

coalescence has occurred are p-type (appearing white).  The latter point might seem unsurprising since 

a Mg prescursor was employed to enhanced the lateral growth rate.  However, the p-type material has 

not been deliberately annealed, and so the acceptors are expected to be compensated by hydrogen.  

However, a clear signature of p-type conductivity is seen.  The SCM amplitude data, reveal that there 

are variations in the concentration of the electrons in the n-type region, with detailed analysis [113] 

suggesting that during growth there was a higher concentration of n-type dopant incorporation on 

semipolar inclined {11-22} facets than on the (0001) facet.  The donor in this case is unknown: SCM 

does not give information about the chemical nature of the dopant.  It may be Si (from the mask) or 

oxygen (from the growth environment). 

 
Figure 29:  Dislocations and unintentional doping in GaN grown by a FACELOG technique: (a) Schematic, in which 

dislocations are shown as thin dark lines. (b) (0002) WBDF TEM image in which the white lines on the right-hand half of 

the image correspond to the white lines in (a). (c) SCM phase image in which black regions indicate n-type doping and 

white regions indicate p-type doping.  (d) SCM amplitude image which provides information on the carrier concentration 

variation across the structure. (All images are cross sections).  (a) and (b) reprinted from [112], with the permission of 

AIP publishing.  (c) and (d) reprinted from [113], with the permission of AIP publishing. 

 

The observation that n-dopants are incorporated unintentionally on semi-polar inclined facets is 

ubiquitous in SCM studies of GaN samples in which dislocation density reduction is achieved using a 

transition from 3D to 2D growth [110].  Whist unintentional doping in GaN was, in the early days of 

heteroepitaxial growth studies, often attributed to point defects such as nitrogen vacancies [114], later 

worked showed that it is largely attributable to oxygen contamination, and SCM studies have shown 

that the majority of this contamination is confined to specific spatial regions in which semi-polar facets 

are present during growth, with the uptake of oxygen being far lower on both polar and non-polar facets.  

Overall, these studies illustrate that SCM is useful not only in identifying and quantifying unintentional 

(and indeed intentional) doping but in deriving its origins and its relationship to both point and extended 

defects.   



AFM-based techniques including SCM [115], conductive AFM [116] and surface photovoltage 

microscopy [116] has also been used to address the electrical properties of dislocation cores in materials 

doped with different species.  However, to understand the impact of doping on dislocation core structure, 

TEM techniques are far more appropriate.  As shown in Section 10.2.3.3, high resolution STEM-

HAADF imaging may be used to resolve the core structure of dislocations.  The structure of dislocation 

cores in undoped GaN have been identified by this approach: a-type dislocations typically form a 5/7-

atom ring structure as illustrated in Figure 30(a-c) [117]. This experimental finding is consistent with 

theoretical predictions of the stable dislocation structure made using both density functional theory [118] 

and multiscale modelling [119] approaches. Neither n- nor p-doping leads to changes in the observed 

structure of a-type dislocations [117,120]. For a+c dislocations, on the other hand, both dissociated and 

undissociated dislocation cores are seen, with approximately equal frequency in undoped material.  The 

undissociated cores exhibit a double 5/6-atom ring core structures, illustrated in Figure 30(d-f). A variety 

of dissociated core structures have been observed experimentally, one example of which (a 7/4/8/4/9 

atom ring) is shown in Figure 30(g-i). Cores of different dissociated length may be observed, with the 

number of 4/8-atom rings increasing as the core length increases. Whilst Si-doping has little effect on 

these core structures [120], the addition of Mg-doping led to a much reduced occurrence of dissociated 

cores which has been attributed to the segregation of Mg to the tensile region adjacent to the core, which 

reduces the dislocation line energy and hence the driving force for dissociation [117]. These studies, the 

conclusions of which are supported by consistent findings from molecular dynamics simulations, 

illustrate the power of HAADF-STEM in identifying not only the  

 
 

Figure 30: Typical STEM-HAADF images of (a) an a-type dislocation core, (d) an (a+c)-type dissociated core with a 

7/4/8/4/9 atom ring structure and (g) a 5/6-atom (a + c)-type undissociated core. (b), (e) and (h) are corresponding 

simulated STEM-HAADF images for (a), (d) and (g) respectively. Similarly (c) , (f) and (i) show the relevant core 

structures for each row obtained from molecular dynamics simulations, in which the white spheres represent Ga atoms 

and the dark spheres represent N atoms.  Reprinted figures with permission from [117]. Copyright (2013) by the 

American Physical Society. 

 

core structure, but also variations in the local chemical composition (in this case by inference rather than 

direct observation) which can profoundly affect the impact of the dislocations on the local electrical 

properties.  

10.3.2.2 Combining ECCI and CL to investigate the influence of defects on light emission 
Although, as was explained in Section 10.3.1.1, GaN-based optoelectronic devices are remarkably 

robust to the presence of threading dislocations, it was shown, as early as 1997, by a comparison of 

atomic force microscope (AFM) and cathodoluminescence (CL) images that dislocations in GaN can 

indeed act as non-radiative recombination centres [121].  TDs can have various effects on a material’s 

optical and electrical properties leading to other recombination channels besides near band edge 



recombination or act as scattering centres affecting the carrier transport. The influence of the dislocation 

type on the optical properties, including whether they are radiative or non-radiative centres for 

recombination, shows strong ambiguity in the literature. Sugahara et al. have found that all types of 

dislocations in homo- and heteroepitaxial GaN act as non-radiative recombination centres for minority 

carriers as seen in transmission electron and CL images [122]. Hino et al. on the other hand discovered 

evidence in AFM, SEM and PL measurements that only dislocations with a screw-component (screw- 

and mixed-type) act as centres for non-radiative recombination, whereas edge-type do not behave that 

way [123]. The opposite was reported by Albrecht et al., who found evidence in thick homoepitaxial 

GaN layers that only dislocations with an edge-component (edge- and mixed-type) are recombination 

active; meaning that only edge- and mixed-type dislocations are centres for non-radiative recombination 

and screw-type dislocations have no impact on the luminescence, i.e. produce no dark spots in CL 

image[124]. More recently Medvedev et al. showed that screw-type dislocations introduced through 

scratching or indentation exhibit bright luminescence, which is shifted by 0.3 eV from the regular GaN 

band edge emission peak even at room temperature [125]. 

Besides influencing the optical properties of GaN-based devices, dislocations can also impact on their 

electrical performance. High current densities and low effective Schottky barrier heights were observed 

in areas close to dislocations having a screw-component in an n-doped GaN film [126]. Dangling bonds 

near edge-type dislocations in AlGaN form acceptor-like states, which reduce the free carrier 

concentration and mobility with increasing edge dislocation density [127]. The same authors also 

correlate a decrease of PL intensity with increasing edge-type dislocation density to these dislocations 

being centres for non-radiative recombination. Furthermore, a reduction of TD density showed a drastic 

decrease of reverse-bias leakage current in GaN p-n junctions [128].  

To further investigate the optical behaviour of dislocations CL, electron channelling contrast imaging 

(ECCI) and AFM imaging was performed on the same area micron scale of a Si-doped GaN epilayers 

as displayed in Figures 31(a)-(c), respectively [65].  

 

 



 
Figure 31: (a) CL intensity of the GaN band edge emission, (b) ECCI and (c) AFM images from the same micron scale area 

of a Si-doped GaN epilayers. Reprinted from [65] with permission from Cambridge University Press. 

 

The CL intensity image of the GaN near band edge emission shows a large number of dark spots, 

associated with non-radiative recombination at TDs [121,122]. They have varying diameter and appear 

in clusters of two or more dislocations in close proximity, which can lead to an underestimation of the 

TD density. The CL measurement was performed at a relatively high current (5 kV, ≈6 nA) in order to 

excite an intense enough GaN band edge emission due to carbon contamination from the previously-

performed ECCI measurement on the same area leading to larger observed black spots.  

From several ECCI images it was determined that 60% of the dislocations are edge-type, fewer than 

2% are screw-type and the remainder are mixed-type with a total TD density of (5.1± 0.4)×108 cm-2. It 

is possible to discriminate between TDs in the ECC image in Figure 31(b) if they are further than 

approximately 80 nm apart. For the investigated area, approximately 750 TDs were found using the 

ECCI technique, with about 400 TDs being resolved as single dislocations in the CL image. Careful 

comparison of the images in Figure 31(a) and (b) shows a one-to-one correlation of the dark spots in 

the CL image and spots with B-W contrast in the electron channelling image for those single 

dislocations. 

AFM imaging (Figure 31(c)) of the same area was performed to confirm that all dislocations were 

visible in the ECC image for the selected channelling conditions.  The AFM studies utilised the SiH4 

treatment described in Section 10.3.1.2. Careful comparison identified isolated dark spots 

corresponding to single dislocations in the CL image to be TDs of both edge- and mixed-type in the 

AFM image. Therefore, it can be concluded that both pure edge dislocations and TDs with a screw-

component act as centres for non-radiative recombination in the investigated Si-doped GaN layer. The 

results are inconclusive about pure screw dislocations acting as non-radiative recombination centres, 



because their density (<2% of the total dislocation population) is not high enough to identify single 

and isolated screw TDs for a comparative measurement. 

Other examples of combining luminescence information from CL with structural information from 

ECCI are the investigation of growth temperate of GaInP on TDs [70] , grain boundaries in CdTe thin 

film solar cells [129] or the investigation of recombination behaviour of dislocations in III-V 

photovoltaic materials using electron beam-induced (EBIC) instead of CL [130]. 

 

10.3.3 A multi-microscopy example: structure, properties and interactions of dislocations 

in InGaN  
In the previous subsections we have seen how several types of information can be acquired within the 

same microscope (topography and SCM in the AFM, ECCI and CL in the SEM). In this section, we 

expand the idea of correlative microscopy by describing how various properties of the materials can be 

correlated using multiple separate microscopes. We refer to this approach as ‘multi-microscopy’, and 

the use of AFM alongside ECCI and CL in Section 10.3.2.2 provides a first illustration of its usefulness. 

We will further illustrate this approach by linking the properties of dislocations in InGaN using AFM, 

SEM-CL, and TEM, with a focus here on the practical aspects of how the correlative experiment can be 

achieved. 

Practical aspects 

Probably the most important aspect of the multi-microscopy approach is that identification of the same 

region is done with the help of one or several ‘markers’. It is particularly helpful to have markers at 

different length scales which can significantly reduce the time required to find the same feature (here, a 

specific dislocation) in all the different microscopes. Here we employed, as a micro-scale marker, a 

TEM grid but one could also use an intentional scratch or even unintentional debris on the surface. Our 

nano-scale markers here are a natural feature of our sample: trench defects. The sample preparation can 

obviously be adjusted depending on the requirements of the experiment (especially based on which 

microscopes are to be used). Figure 32 shows an example for the study of threading dislocations in 

InGaN using AFM, SEM-CL and TEM (in that specific order!). 

 

 
Figure 32: (Top) Illustration of the multi-microscopy set-up. (Bottom from left to right) AFM, SEM-CL, STEM-HAADF of the 

same micrometer-scale region of material, and HR-STEM image the dislocation indicated by a white square. 

The sample is first cut to a 3 mm square – in anticipation of a future TEM sample preparation. Cleaning 

of the sample surface is highly recommended beforehand to prevent having particles between the sample 

surface and the grid which will be stuck to it. We used a 300 square mesh copper grid (mesh size ca. 50 

μm) as is usually employed for TEM sample preparation. In order to avoid damaging and bending the 



grid during manipulation with tweezers, a 2 mm hole copper ring is stuck onto the grid prior to any 

manipulation of the grid. The set-up is then stuck to the surface of the sample by putting four small 

drops of glue at the edges of the set-up, and positioned so that the grid (not the copper ring) is in contact 

with the sample surface. It is important to put only small drops of glue outside the grid, and not below 

it, in order to avoid having the glue spreading under the grid, which would increase the grid-sample 

distance and eventually also cover the regions of interest. It is crucial that the grid-sample distance 

remains as low as possible otherwise the AFM tip may not be able to reach the sample through the mesh. 

Once the grid is securely in place, AFM measurements may be performed. 

It is recommended to perform AFM observation of the sample before SEM-CL to avoid sample 

contamination due to electron beam exposure. Given that the measurements performed on the AFM are 

often tip-dependent, you should use the same fresh tip to record all the images during a single AFM 

session. In the context of the study of dislocations in InGaN, AFM was used to record morphological 

properties, which are, for each dislocation, the size of the pit terminating the dislocation – which is 

indicative of the dislocation type [92] – and the distance to the nearest neighbouring dislocation. This is 

obviously non-exhaustive and any information that can be recorded on the AFM (e.g. capacitance, 

conductivity) can also be acquired. For accurate measurements on small defect-related features, typical 

image sizes are small (1-3 μm). Once the requisite small scale images have been recorded within a 

particular grid square, a larger scan (10-20 μm) should be taken. That will facilitate identification of the 

same region in the next microscope(s), in this case the SEM-CL.  

In the SEM, the first requirement is to find the same region which was analysed in the AFM, using the 

micron-scale markers and overview scan. In this example, SEM-CL was used to record the optical 

properties – intensity and emission wavelength – of the dislocations previously analysed by AFM and 

compared to that of the surrounding defect-free material. Again, an overview SEM image of the whole 

50 μm square should be recorded at the end of the experiment to help with identification of the 

approximate position of the region of interest within the square during TEM sample preparation. 

Our approach to preparation of the sample for plan-view TEM in this multi-microscopy example follows 

the standard mechanical polishing preparation procedure (as outlined in Box 1 in section 10.2.3.1), 

although there are a couple of points to note. First, the grid-sample holder has to be reinforced with more 

glue, otherwise it won’t sustain the mechanical stress applied during mechanical grinding. Glue can be 

placed anywhere on the grid, as long as the regions of interest are avoided. The second point, perhaps 

the most critical, has to do with the ion milling. Here it is crucial to position the centre of rotation of the 

ion mill as close as possible to the region of interest. The idea is to minimise the time spent milling once 

the hole has formed – otherwise it will blunt the edges of the hole, and sputtering of the grid to the 

sample may occur. One should be extremely careful and stop the ion milling when the hole forms. After 

formation of the hole, it is recommended to use a low voltage (e.g. 1-3 kV) ion beam in single 

modulation mode in order to enlarge the hole towards the region of interest. Initial TEM imaging is 

needed to check whether the region of interest is electron-transparent. If not, the gentle ion milling step 

must be repeated. It is highly unlikely that the whole region of interest will be suitable for TEM analysis 

at the same time (the foil thickness will vary across the region of interest). Hence, several iterations of 

gentle ion milling and TEM observation will be required in order to be able to analyse as many defects 

as possible. In this example, the atomic configuration of the dislocation core was obtained by TEM – as 

illustrated in Figure 32. 

Results 

The extensive dataset thus generated can now be analysed to extract potential correlations between the 

morphological, optical and structural properties of each dislocation. Figure 33 illustrates the multi-

microscopy approach, whereby we can obtain general trends over the entire dataset involving data from 

several microscopes. Here we correlate the intensity ratio (which is the CL emission intensity at the 

dislocation compared to that of the surrounding defect-free material) which we obtained by CL, to the 

distance to nearest neighbour which we measured by AFM. The dataset is also separated into edge and 

mixed dislocations, which were identified by analysis of the AFM data. Interpretation of such trends 

(along with other trends not shown here) enabled us to highlight the segregation of In atoms near the 

core of dislocations, which leads to the bright spot seen in the CL image in Figure 32, in contrast to the 

dark spots seen where dislocations intersect MQWs and form V-pits in Section 10.2.2.4. More details 

about the analysis can be found in reference [131]. 

 



The strength of the multi-microscopy approach is also the ability to extract individual data points from 

the trend and analyse them further. For example, in Figure 33 two mixed dislocations with similar 

properties (low intensity ratio and small distance to nearest neighbour) have been selected and analysed 

by TEM.  Despite their similarities in AFM and SEM-CL, their core configurations are intrinsically 

different – one is dissociated (left image) and the other one is undissociated (right image). This 

highlights that the core structure of a dislocation (in InGaN) does not dominate its optical properties. 

 

 
Figure 33: (Top) Plot of the intensity ratio (measured by CL) versus distance to nearest neighbour (measured by AFM) as a 

function of the dislocation type (obtained by AFM). (Bottom) HR-STEM images of the core of the dislocations corresponding 

to the data points highlighted in the top graph. In inset, zoom-out HAADF-STEM image of the dislocation. 

10.3.4 Imaging defects in 2D materials 

10.3.4.1 Addressing the electrical properties of defects in 2D transition metal 

dichalcogenides by scanning probe microscopy  
Layered materials such as NbSe2 and WSe2 which can be mechanically exfoliated to produce two-

dimensional (2D) semiconductor samples have long been attractive to researchers using STM to study 

defects since cleavage provides a straightforward means of producing clean, atomically-flat surfaces 

[132].  As the popularity of 2D materials has increased, so has the breadth of SPM studies, expanding 

to encompass not only mechanically exfoliated samples but also materials grown by chemical vapour 

deposition [133]. Furthermore, a wide range of SPM techniques have been applied, including C-AFM 

(which can resolve atomic-scale periodicity in samples imaged under a dry nitrogen atmosphere [134]), 

KPFM and differential surface photovoltage microscopy [133]. STM remains, however, an extremely 

powerful approach to the identification of defects in 2D materials and the assessment of their impact on 

electronic structure.  A wide variety of atomic scale features are observed in STM images, believed to 

be linked to point defects and/or impurities, which are influenced (as is usual) by both topographic and 

electronic contributions, which complicate image interpretation [132, 135].  Identification of the defect 

is somewhat more straightforward for dislocations, since at low angle grain boundaries (for example) 

the misorientation of the atomic planes in adjacent regions provides a clear signature of the nature of the 

defects at the boundary, independent of the atomic resolution images of the defects themselves. 



Huang et al. [136] imaged dislocations at low angle grain boundaries in WSe2, and observed an array of 

dislocations characterised by bright “butterfly features” – i.e. pairs of bright lobes located symmetrically 

on either side of the boundary (see Figure 34).  These butterfly features had significant apparent height 

when the boundary was imaged at a negative tip bias (Figure 34(a-c)), but with a positive tip bias no 

such protrusion was observed (Figure 34(d)).  This suggested that the apparent protrusion was actually 

an electronic feature, linked to redistributions of the LDOS at the defects, rather than out-of-plane lattice 

deformations. STS revealed the presence of states in the band gap between the Fermi-level and the 

conduction band minimum.  These unoccupied states will be imaged at negative tip bias, when the 

electrons tunnel into them, and explain the bright features observed in imaging under these conditions.   

A number of possible dislocation core-structures were proposed and the projected density of states was 

simulated with density functional theory.  A 4/6 atom ring core structure was identified which allowed 

good agreement between simulated and experimental STM images and also consistency with the STS 

data in terms of the gap states. Low angle grain boundaries subjected to external strain were then 

modelled based on these structures, and the models suggested that strain can be used to modify the gap 

states and hence the electrical impact of the grain boundaries on devices. 

It is important to note here that the comparison of images predicted by atomistic modelling with real 

experimental data was key to identification of the defect structure, and there are clear parallels to the 

identification of dislocation core structures in GaN using STEM-HAADF data (Section 10.3.2.1), 

despite the very different nature of both the imaging technique and the material under study. Equally, 

the use of STS and voltage dependent imaging to identify features linked to unoccupied states is a similar 

approach to that which was applied to the understanding of point defects in GaAs in Section 10.2.1.3. 

 
 

Figure 34: STM images of a low angle grain boundary in WSe2. Leftmost image: Overview of a boundary with a 

misorientation angle, θ, of 4.5°, displaying an array of butterfly features corresponding to dislocations. Scale bar: 2 nm. 

(a) – (d) Images of a particularly butterfly feature recroded under different tip biases.  Note that the apparent protrusion 

disappears when the tip is positively biased relative to the sample, accessing the occupied states of the sample. Scale bar: 

1 nm. Reprinted (adapted) with permission from [136]. Copyright (2016) American Chemical Society. 

 

 

10.3.4.2 ECCI examination of graphene nucleation on C-Face silicon carbide 
Investigating defects in 2-D films using ECCI is an enticing prospect. To obtain images in such thin 

films requires that the penetration depth of the electron beam, and therefore the energy of the incident 

electron beam, be set to as low as is possible when acquiring an ECCI micrograph. It has been shown 

that the channelling contrast is greater at lower beam energies [21]; however the brightness of the 

electron source decreases with beam energy and this, coupled with the decreasing performance of the 

electron sensitive diodes with energy [21], means that in practice the lowest energies used to acquire 

ECCI micrographs are of order 10 keV.   

In spite of this, attempts have been made to analyse 2-D films with ECCI. One interesting result has 

been published by Hite et al. [137] where the initial stages of epitaxial graphene growth were studied 

by characterization of graphene formed in localized areas on C-face 6H-SiC substrates. Their SEM 

studies revealed that the initial growth begins with small, hexagonal ‘basins’ recessed into the SiC 

substrate. These graphene-covered basins (GCBs) are produced through the sublimation of Si on the 

formation of the graphene. ECCI revealed that the graphene growth nucleated around threading screw 

dislocations in the SiC substrate, see Figure 35.   

 



 

Future developments in SEM and electron detector performance will lead to many more SEM studies 

of 2-D materials. 

 

10.3.4.3 Dislocation and point defect identification in h-BN by TEM and future outlook 

using machine learning 
Hexagonal boron nitride (h-BN) is a wide band gap semiconductor (ca. 6 eV) which exhibits single 

photon emission in the visible and near ultraviolet part of the spectrum [138,139]. This emission is 

currently thought to occur at defect sites but no direct correlation between a specific defect type and 

emission property has so far been demonstrated. This is indeed a challenging task. A first step is to 

demonstrate an ability to identify the structure and chemistry of such defects – using TEM. 

2D materials are of course atomically thin. This indicates that all kinds of atomic scale defects stretch 

through the entire (single atom) thickness of the material. This property is particularly interesting for 

the study of point defects, as in 3D materials these are extraordinarily difficult to identify by TEM due 

to their small size comparative to the thickness of the TEM foil. The main difficulty for imaging atomic 

scale defects in 2D materials is beam damage – especially for those made of light element, i.e. graphene 

and h-BN. As we have seen in Section 10.2.3.1 the maximum energy transferred can be significant in 

such materials. Moreover, owing to the atomically thin nature of the materials, the displacement energy 

is much lower than for bulk materials. For example, they would be more prone to beam sputtering than 

to atomic displacement. Hence when one wants to observe 2D materials by TEM, one must employ low 

voltages (80 kV or even 60 kV) and extremely low electron dose (implying using TEM instead of 

STEM). 

Just to name a few examples, aberration corrected HR-TEM has been used to observe the atomic 

structure of grain boundaries in chemical vapour deposited h-BN, which consist of a succession of 5 and 

7 atom rings (Figure 36) [140]. In another study, single B vacancy in bilayer h-BN have been observed 

and shown to result in interlayer bonding (Figure 37) [141].  

 

 
 

Figure 35: Magnified ECCI image of a screw dislocation in the center of a GCB, with an arrow indicating the direction of 

the dark-to-light contrast. The inset shows an image of the entire GCB. (b) Same GCB, only tilted to the opposite side of 

the Bragg angle (0.4 difference)—behavior that confirms the nature of the threading screw dislocation. The arrow 

indicates that the dark-to-light contrast has changed direction. (c) Secondary electron detector image of the same GCB 

shows giraffe stripes and no features where the TSD is located (circled), proving that the signal at the TSD location is not 

a morphological feature (Reprinted with permission from [137]. Copyright 2011 American Chemical Society). 



 
Figure 36: Aberration-corrected HR-TEM images of h-BN monolayer containing (a-b) no defect, (c-d) a grain boundary. 

Adapted from [140]. Copyright 2013, American Chemical Society. 

 

 
Figure 37: (a) Aberration-corrected HR-TEM images of h-BN bilayer containing B vacancies. (b) Atomic structure model, 

(c) image simulation, and (d) experimental image of vacancy with one interlayer bond. (e-g) Same for vacancy with two 

interlayer bonds. Reprinted figures with permission from [141]. Copyright 2011 by the American Physical Society. 

The increasing access to aberration-corrected microscopes will undoubtedly result in a larger volume of 

data of materials at the atomic scale (not necessarily limited to 2D materials). However manual 

identification of the atomic structure of defects is time-consuming and requires an experienced user. In 

2018, we are now at the advent of artificial intelligence, machine learning and neural networks, which 

could make the defect identification task automated, faster, and (with proper training of the algorithm) 



unbiased and more reliable than if it were done by a human. Machine learning for image recognition is 

embedded everywhere in our daily life, and has now been applied to identify the structure and 

composition of defects in TEM [142]  and STEM [143]. These algorithms can be trained from simulated 

images of simple defects. Even though it was trained on basic defects in graphene, a deep learning 

algorithm was able to identify more complex defects such as 3-fold and 4-fold coordinated Si impurities 

in experimental images of graphene (Figure 38). Without further training the algorithm was also able to 

identify defects in other materials. These studies allow us to envision a future where microscopy (not 

only TEM) of defects in semiconductors would be nearly fully-automated. 

 

 
Figure 38: (a) Aberration-corrected HR-STEM image of 3-fold coordinated Si defect in graphene. (b) Output from machine 

learning approach for the image in (a), and (c) representation of the defect. (d-e) Same for a 4-fold coordinated Si defect in 

graphene. Adapted with permission from [143]. Copyright 2017, American Chemical Society. 

10.4 Conclusions and outlook  

This chapter has illustrated the enormous usefulness of microscopy techniques, particularly for the 

analysis of extended defects, and also, in certain circumstances for the analysis of point defects.  It has 

also highlighted some recurring challenges, which include appropriate sample preparation, identification 

of artefacts, damage to the sample during imaging, achieving an appropriate resolution to address any 

particular problem, and achieving sufficient sampling to allow statistically significant conclusions to be 

made in techniques which sometimes image only very limited areas.   

Despite these challenges, microscopy techniques play a vital role in the characterisation of defects in 

semiconductors and as they continue to develop new opportunities will arise. Although this chapter has 

been necessarily selective, focussing on some of the current key techniques, new methodologies are 

continuously being developed, and we note a number of emerging trends.  In the TEM sphere, we are 

increasingly seeing integration of techniques for the characterisation of (opto)electronic properties of 

materials directly into the electron microscope.  One exciting example of this is the application of CL 

in the TEM, where the limited interaction volumes attainable due to the use of thin film samples aids 

the achievement of excellent resolution [144].  Similarly, SEM-based techniques are becoming ever 

more sophisticated, with CL experiments in the SEM being extended to allow time-resolved as well as 

time-integrated experiments [145].  In SPM, the range of techniques to allow the electrical 

characterisation of semiconductors at the nano-scale is ever-expanding, and may increasingly be 

integrated with mechanical property measurements, even for very stiff materials (such as most 

semiconductors).  Hence, nanoscale studies of semiconductors are extending to embrace piezotronic and 

optopiezotronic devices, where mechanical stimuli are used to manipulate the electronic and 

optoelectronic properties of nanostructures [146]. 

All of these endeavours which link materials properties to materials structure have the potential to 

generate vast data sets.  Hence, parallel developments in machine learning and big data techniques will 

be vital in the future to maximise the information and understanding which can be extracted from 

microscopy data.   
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