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Abstract—Access forecasting for offshore wind farm operations
is concerned with the prediction of conditions during transfer
of personnel between offshore structures and vessels. Currently
dispatch/scheduling decisions are typically made on the basis
of single-valued forecasts of significant wave height from a
numerical weather prediction model. The aim of this study is
to move beyond the significant wave height metric using a data-
driven methodology to estimate vessel motion during transfer.
This is because turbine access is constrained by the behaviour of
crew transfer vessels and the transition piece in the local wave
climate. Using generalised additive models for location, scale, and
shape, we map the relationship between measured vessel heave
motion and measured wave conditions in terms of significant
wave height, peak wave period, and peak wave direction. This is
explored via a case study where measurements are collected via
vessel telemetry and an on-site wave buoy during the construction
phase of an east coast offshore wind farm in the UK. Different
model formulations are explored and the best performing trained
model, in terms of the Akaike Information Criterion, is defined.
Operationally, this model is driven by temporal scenario forecasts
of the input wave buoy measurements to estimate the vessel
motion during transfer up to 5 days ahead.

Index Terms—offshore wind, offshore operations, offshore
access, additive models, data-driven, forecasting

I. INTRODUCTION

Offshore wind power is now a major source of supply
in European electricity markets. With the expected growth
of the market in the next few years and the possibility of
exploiting deeper waters, access to the turbines is crucially
important in the construction and operation & maintenance
(O&M) phases of the wind farm life cycle [1]. Access will also
be important as assets in the water age and components need
to be replaced. Improving access is a route to reducing the cost
of wind energy by reducing turbine downtime, and improved
operations attractive due to the prospect of savings being made
at any time and across the remaining life of the wind farm,
and that these savings can be realised independently of turbine
manufacturers.

Access forecasting is concerned with the prediction of
the conditions for transfer of personnel between offshore
structures and vessels at the wind farm. In practice, this
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currently translates as single-valued deterministic forecasts
of significant wave height obtained via Numerical Weather
Prediction (NWP) models for horizons of over approximately
6 hours [2], [3]. This information is assimilated along with in-
formation flows from assets, other important weather variables
(lightning risk, visibility, etc), and live point measurements by
the marine coordination team who then use this information,
the current schedule, and site expertise to execute operation
and maintenance each day. The skipper, crew, and technicians
on each Crew Transfer Vessel (CTV) also form a pivotal part
of the decision making chain as they have the final say on any
attempted transfer.

Typically, the scheduling and dispatch process is coupled
with a service contract where transfers are expected to be
attempted below a significant wave height threshold, typically
around 1.5m for CTVs [1]. However, access is constrained
by the interaction of the vessel and the turbine access point.
Therefore, this study aims to go beyond the typical deter-
ministic significant wave height forecast by using a data-
driven vessel motion model. Operationally, this translates input
forecasts of wave height, period, and direction into actionable
information for the end-user based on the expected vessel
motion during transfer. Additionally, probabilistic forecasting
is explored to quantify the uncertainty in the weather forecasts.
The economic benefit of using probabilistic forecasts for
offshore operations is explored in [4].

Vessel scheduling and dispatch is a form of time-dependent
decision making; consider that good access conditions at a
single point in time is not sufficient as technicians must
complete work and be collected by the CTV at a later time.
Therefore, to usefully predict the quality of transfer over
the duration of the forecast horizon the uncertainty must be
accounted for at each step and be linked between horizons.
This stems from meteorological forecast error persistence, i.e.
if the significant wave height is over-forecast at a specific time-
step, then it is likely to be over-forecast at the adjacent time-
step. Statistical scenario forecasts (or trajectories) are used in
these applications [5]. Scenario forecasts are closely related to
meteorological physical ensemble forecasts which is a staple
of the operational NWP community, and could equally be used
to support time-dependent decision making [6], although the
number of scenarios is limited and site-specific re-calibration
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would be necessary [7]. The goal of this paper is to evaluate
the process of converting these met-ocean scenario forecasts
into vessel-specific forecast scenarios of motion during trans-
fer.

This application therefore requires a model of the vessel
motion during transfer events; such models can be classified
into physical models of the vessel motion or a data-driven
approach, the latter being the focus of this paper. The physical
modelling approach is explored in [8]–[11] whereby variations
of hydrodynamic models of the vessel/access point are con-
structed. This has the advantage of fully characterising the
vessel response in the wave climate of interest across the 6
degrees of motion. However, requires an input forecast sea-
state spectrum to excite the model in an operational forecasting
environment. An alternative is a fully data-driven model,
whereby using vessel telemetry, tagged transfer attempts, and
concurrent sea-state point measurements a model of the heave
motion of the vessel during transfer can be constructed. Oper-
ationally, forecasts of summary statistics of sea-state variables
can then be used to drive the vessel motion model.

In this study, to construct the data-driven model of ves-
sel motion during transfer, generalised additive models are
used [12] which enable the mapping of vessel heave mea-
surements to additive functions of wave buoy measurements.
In this instance understanding the uncertainty around trans-
fer conditions is essential, as well as modelling under het-
eroscedasticity to fully capture the relationship; consider that
under transferring at the edge of the vessel capabilities leads
to more uncertainty in the corresponding vessel motion. A
class of regression models that are capable of dealing with
this, as well as the non-negative nature of heave motion,
are Generalised Additive Models for Location, Scale, and
Shape [13].

This paper is organised as follows: Section II briefly de-
scribes the method for generating met-ocean scenario fore-
casts, Section III introduces the regression tools for the data-
driven vessel model, followed by Section IV where the data
used is introduced, results are presented for the case study, and
future work is outlined. Conclusions are drawn in Section V.

II. GENERATING MET-OCEAN FORECAST SCENARIOS

This section briefly outlines the methodology required to
obtain operational inputs for the vessel motion model in the
access forecasting tool. For more information on the entire
forecasting methodology the reader is referred to related work
by the authors [14]. The block flow diagram in Figure 1
illustrates the modelling stages of the access forecasting tool,
as well as the streams of data used in both the operational and
training stage of the modelling.

Site-specific post-processing of the weather forecast data is
used to increase the accuracy of the forecasts and quantify
the uncertainty for each variable of interest (significant wave
height, peak wave period, and peak wave direction). This stage
improves accuracy by removing systematic biases present in
the weather forecasts for the specific location of interest, which
are a feature of NWP output in general when comparing
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Fig. 1: Flowchart illustration of the access forecasting mod-
elling chain in operation and training phases. The vessel
motion model aspect (coloured gold) is the focus of this paper
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Fig. 2: Example post-processed density forecast of significant
wave height up to 5 days ahead

to specific measurement locations. Both quantile regression
and parametric distribution regression are explored to map
the relationship between the respective measurements at the
wave buoy and concurrent historical NWPs. An example of a
probabilistic density forecast of significant wave height for up
to 5 days ahead is shown in Figure 2.

To generate the statistical scenario forecasts, the joint dis-
tribution of each time horizon must be estimated using the
marginal distributions (i.e. Figure 2) and a copula function [5].
Samples with the correct temporal dependency structure can
then be drawn from the high-dimensional distribution and
used operationally as temporal scenarios for the vessel motion
model, which is the focus of this paper. The corresponding
scenario forecast of significant wave height is shown in
Figure 3.
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Fig. 3: Example post-processed scenario forecast of significant
wave height up to 5 days ahead

Wave direction is incorporated in the modelling in a straight-
forward manner by first clustering the measured data to sepa-
rate distinct sea states. The sea-states regimes are dominated
either locally generated wind waves or swell from the North
Sea. Weather forecasts are then used to predict the probability
of cluster membership via logistic regression. This completes
the operational input variable space for the access forecasting
tool which consist of temporal scenario forecasts of significant
wave height and peak wave period, as well as categorical
forecasts of sea-state regimes. For training of the vessel motion
model corresponding measurements of the above are used,
i.e. significant wave height Hs, peak wave period Tp, and
clustered sea-state regimes reg. which are dominated by peak
wave direction ωp.

III. GENERALISED ADDITIVE MODELS FOR LOCATION,
SCALE, AND SHAPE

This section details the regression model used to estimate
vessel motion during transfer. Generalised Additive Models for
Location, Scale, and Shape (gamlss) [13] models are termed
semi-parametric regression models. They are semi-parametric
in that an assumed conditional distribution is defined in the
model, however the parameters which govern the distribution
may include non-parametric smoothing functions in the re-
gression. This framework is an expansion of the more familiar
generalised additive models [12] in that any parameter of the
distribution can be a function of the explanatory variables, not
just the conditional mean.

Consider a target variable y, in this case vessel heave
motion, the conditional density fd(y|θ) depends on up to four
parameters; these are the location (θ1), scale (θ2), and shape
parameters (θ3, θ4), where the latter are normally referred to
as skewness and kurtosis parameters of the distribution. An
additive regression model ηθi is created for each distribution
parameter θi for i = 1, . . . , 4. Let xi be the pool of Ni
explanatory variables in the submodel for θi, and gi(.) is the

defined link function, then the model formulation of gamlss
is

gi(θi) = ηθi = β0θi +

Ni∑
n=1

fnθi(xin), i = 1, . . . , 4 (1)

where the function fnθi is the effect of explanatory variable n
on the distribution parameter θi, which can be linear or non-
linear effects; β0θi are the intercepts of each submodel. These
models are fitted iteratively using a combination of maximum
likelihood, transformation of distribution parameters θ using
the inverse link function, and successive backfitting of the pre-
dictor functions in each submodel ηθi . For more information,
the reader is referred to [13].

IV. CASE STUDY

This section introduces the data available for the case study,
results, as well as discussion points throughout the analysis,
and future work. The case study is carried out at an east
coast offshore wind farm in the UK; the vessel telemetry data
is collected during the construction phase of the wind farm
from two purpose built offshore wind service vessels with the
same specification: length 19.2m, width 8.2m, maximum Draft
2m, passengers 12, aluminium catamaran. Ocean measure-
ments are collected from a Centre of Environment Fisheries
and Aquaculture Science (CEFAS) wave-buoy within the site
boundary. The method is implemented in R using the package
gamlss [13], [15].

Approximately 700 push-on instances are available along-
side concurrent wave buoy measurements. To label transfer
events the measured push-on force is available from the vessel
telemetry, as well as time-stamped swipes from personnel ID
cards following any transfer event. For matching the time
resolution of the vessel motion and buoy measurements, the
closest buoy measurement in time is used and all the vessel
measurements are averaged per push-on event. The focus of
this analysis is the vessel heave peak to peak measurement,
which is a measure of the vertical displacement of the vessel,
localised to the area of measurement, during transfer events.

To test different model configurations a goodness-of-fit
metric is used, called the Akaike Information Criterion (AIC)

AIC = 2k − ln(L̂) (2)

which rewards the model with the highest likelihood function
L̂, penalised by the number of input parameters k used to
estimate the model; overfitting is then less likely for the model
with the minimum AIC.

To develop the model several configurations are tested,
beginning with basic linear regression models and leading
to truncated regression models with smooth non-parametric
base learners. As discussed, truncated regression is deployed
to respect the non-negativity of the vessel heave peak to
peak measurements. Results of the case study are detailed in
Table I, which shows that eventually using a truncated student-
t distribution as the parametric response family allows for
better AIC results compared to the normal distribution family;



TABLE I: Formulations for the vessel motion model during transfer dependent on observed sea-state. The symbols ps indicates
a penalised beta spline, † is a varying coefficient model, poly is a fractional polynomial model, Hs is significant wave height,
Tp is peak wave period, ωp is peak wave direction, and reg. is the regime membership.

Formula & Explanatory Variables
ID Distribution Location Scale Shape AIC
N-1 Normal ∼ Hs ∼ 1 n/a -1653
N-2 Normal ∼ Hs + Tp ∼ 1 n/a -1687
N-3 Normal ∼ Hs + Tp ∗Hs ∼ 1 n/a -1695
N-4 Normal ∼ Hs ∼ Hs n/a -1746
N-5 Normal ∼ Hs + Tp ∼ Hs n/a -1779
N-6 Normal ∼ Hs + Tp ∗Hs ∼ Hs n/a -1787
N-7 Normal ∼ Hs + poly(Tp + T 2

p ) ∼ Hs n/a -1806
N-8 Normal ∼ Hs + poly(Tp + T 2

p ) ∼ Hs + 1(ωp < 120) n/a -1811
tr-N-1 Tr. Normal [0,∞) ∼ Hs + poly(Tp + T 2

p ) ∼ Hs + 1(ωp < 120) n/a -1823
T-1 t-family ∼ Hs + poly(Tp + T 2

p ) ∼ Hs + 1(ωp < 120) ∼ 1 -1811
tr-T-1 Tr. t-family [0,∞) ∼ Hs + poly(Tp + T 2

p ) ∼ Hs + 1(ωp < 120) ∼ 1 -1823
tr-T-2 Tr. t-family [0,∞) ∼ Hs + poly(Tp + T 2

p ) ∼ Hs + 1(ωp < 120) ∼ Hs -1827
tr-T-3 Tr. t-family [0,∞) ∼ Hs + ps(Tp) ∼ Hs + 1(ωp < 120) ∼ Hs -1829
tr-T-4 Tr. t-family [0,∞) ∼ Hs + ps(Tp) ∼ Hs + reg. ∼ Hs -1826
tr-T-5 Tr. t-family [0,∞) ∼ ps†(Hs, reg.) + ps(Tp) ∼ Hs + reg. ∼ 1 -1830
tr-T-6 Tr. t-family [0,∞) ∼ ps†(Hs, reg.) + ps(Tp) + Tp ∗Hs ∼ Hs + reg. ∼ 1 -1838
tr-T-7 Tr. t-family [0,∞) ∼ ps†(Hs, reg.) + ps(Tp) + Tp ∗Hs ∼ ps†(Hs, reg.) ∼ 1 -1846
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(a) Model fit in South-Westerly (SW) regime
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Fig. 4: Plot of vessel motion during push-on and concurrent ocean measurements. The distributional model fit is for the tr-T-7
model with constant peak wave period

this is due to the ability to specify the shape parameter of the
distribution.

In terms of the base-learner functions, improvement is also
indicated when using polynomial functions compared to linear
effects, as shown in Table I. Eventually penalised beta splines
are employed for modelling the effect of significant wave
height and peak wave period on both the location and scale
parameters. Additionally, modelling the interaction of both
variables is clearly valuable for the location of the distribution.
Incorporating peak wave direction also improves the AIC
results via influencing the scale parameter of the distribution,
either through an indicator variable or through the clustered

regime membership.

The marginal effect plot of significant wave height is shown
in Figure 4 for the minimum AIC model (tr-T-7) with peak
period held constant. The model formulation means that under
the different regimes the coefficients of the penalised spline
learner for Hs change for both the locations and scale param-
eters of the distribution. The effect of the varying coefficient
spline is clear in the changing shape of the uncertainty between
Figures 4a and 4b. This allows for the regime membership to
influence the model fit more flexibly than simply varying the
intercept terms. Lastly, the motivation behind using a model
framework with conditional heteroscedasticity is clear, as the
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Fig. 5: Example scenario forecast of vessel motion during
transfer up to 5 days ahead

uncertainty grows with significant wave height.
The final part of analysis includes an exploration of the

operational characteristics of the vessel motion during transfer
model. This means driving the model with the met-ocean
forecast scenarios of wave height and period, as well as the
forecast regime membership. A resulting example forecast is
shown in Figure 5 where the mean heave peak to peak dis-
placement is calculated for each input scenario. An important
aspect to consider here is that the forecast significant wave
height, which is obviously the major driver in the output of the
vessel motion model when compared to Figure 3, is that often
the forecast significant wave height is beyond the maximum
measured wave height during transfer. Therefore, for the shape
parameter of the model a threshold significant wave height
feature is in practice used to stabilise predictions outside the
region that is observed during training of the model. Forecasts
must then be transformed from Figure 5 to reflect that there
is zero chance of a successful transfer in this region, which is
part of the motivation behind a related study on access forecast
visualisation [16].

Future work should consider the utilisation of the uncer-
tainty information in the vessel motion during transfer model,
as only the mean displacement is considered. This could be
done via sampling of the distribution or via a mixture model to
generate a forecast density of heave displacement. However,
computational expenditure may become an issue, especially
using sampling, as the number of forecast scenarios can be
prohibitive. Additionally, a turbine specific access model could
be derived given a large enough dataset. The above model
considers the three most important driving environmental fac-
tors, other site-specific driving environmental factors could be
incorporated into the model such as tidal effects and visibility.
Lastly, this model considers the motion of the vessel at the
point of measurement and a useful extension would be to
derive the motion of the vessel fender at the point of contact
to the turbine transition piece.

V. CONCLUSIONS

This paper describes a data-driven methodology for moving
access prediction for offshore operations beyond the typical
significant wave height metric. To this end, the relationship
between vessel motion during transfer and concurrent ocean
measurements is mapped using a statistical learning technique.
This unique dataset stems from vessel telemetry which mea-
sures heave peak-to-peak displacement and an on-site wave
buoy measuring peak wave period, peak wave direction, and
significant wave height. Using generalised additive models for
location, scale, and shape different model formulations are
explored via a case study, where measurements are collected
during the construction phase of an east coast offshore wind
farm in the UK. It is demonstrated that a truncated regression
using penalised spline base-learners, interaction terms, and
varying coefficient terms are capable of learning the desired
relationship. Operationally, this model is driven with temporal
scenario forecasts of the sea state to estimate the vessel motion
during transfer up to 5 days ahead. This new forecasting
capability pertains to offshore planners, schedulers, marine
coordinators, and vessel skippers who will be able to make
more informed safety-critical decisions, with the potential for
reductions in the cost of offshore wind energy.
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