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Consensus and Clustering of Expressed and Private
Opinions in Dynamical Networks Against Attacks

Yilun Shang

Abstract—A continuous-time opinion dynamics with both ex-
pressed and private opinions on a given topic is introduced.
An opinion consensus strategy is proposed to achieve resilience
consensus against Byzantine attacks in dynamical networks.
Necessary and sufficient criteria are established for guaranteeing
consensus among normal nodes when the attacks are bounded in
each neighborhood of normal nodes. A modification that allows
opinion clustering, featuring non-global consensus, is presented.
Numerical examples are worked out to illustrate the effectiveness
of our theoretical results.

Index Terms—Consensus, clustering, social network, opinion
dynamics, expressed opinion, attack.

I. INTRODUCTION

A vast literature has been developed regarding resilient
or secure decision making against malicious attacks in

social networks, or more generally, networked systems with
interacting components [1]–[4]. Across e-commerce platforms,
for example, fake online reviews from ostensible customers
have caused significant damage on business [5], [6]. Security
against cyber attacks has been a key issue in cyber-physical
systems [7]. To uphold the performance of network, distributed
algorithms have been designed to cope with the compromise
of a group of malicious individuals and guarantee consensus of
the opinions or states of normal individuals based on nearest-
neighbor rules. In many realistic social networks, there is
a discrepancy between an individual’s private and expressed
opinions on a given topic, meaning that single-opinion models
are not accurate. For instance, a politician may falsify his or
her view to garner votes. A common rationale behind such
discrepancy arguably stems from social pressure exerted on an
individual to conform, either deliberately or passively, to the
group opinion [8]. It is linked to a variety of social phenomena
from pluralistic ignorance (where a majority of individuals
privately oppose a view but incorrectly assume that most others
accept it and hence go along with it) to the spiral of silence
[9], [10].

Here, we study a class of opinion dynamics model accom-
modating both a private opinion which evolves under social
influence from the expressed opinions of its neighbors, and an
expressed opinion which varies under a pressure to conform to
the local environment. We propose a purely distributed opinion
consensus strategy and establish sufficient and necessary con-
ditions for consensus against Byzantine attacks, in which each
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malicious agent may have complete knowledge of the whole
network and even collude with other malicious agents posing
a serious threat to the group decision making process. Next,
we examine a class of resilient opinion clustering problem
in dynamical networks, where multiple private and expressed
opinions co-exist in the final opinion configuration instead
of a common consensus. A couple of numerical examples
illustrating our theoretical results are provided.

Related work. There has been some related work on the
resilient opinion dynamics in complex social networks. In
[11], Sobkowicz introduced emotion effect into the Deffuant
opinion model [12] to make the neutral opinions tend to be
unstable while the extreme opinions resilient to change. This
idea has been largely extended by Amelkin et al. [13] to a
general model featuring polar opinion dynamics, where the
susceptibility of each individual takes the form of a function of
its present opinion. By leveraging cloud computing resources,
Alcaraz [14] proposed an opinion consensus based approach
to tackle Byzantine faults. Building upon compressive sensing
theory, an algorithm identifying the susceptible individuals
to stubborn individuals in online social networks is studied
in Wai et al. [15]. Moreover, a hybrid resilient consensus
model consisting of three types of individuals, i.e., averagers,
copiers, and voters is proposed by the author [16]. These work,
nevertheless, overlooked the difference between private and
expressed opinions.

II. PROBLEM FORMULATION

Let t ≥ 0 be the time. A directed time-varying network
G(t) = (V,E(t), A(t)) of n nodes is considered, where V =
{v1, · · · , vn}, an edge (vi, vj) ∈ E(t) if information flows
from vi to vj at time t, and A(t) = (aij(t)) describes the non-
negative adjacency matrix with aij(t) = 0 if (vj , vi) 6∈ E(t).
The neighborhood of vi is denoted by Ni(t) = {vj ∈ V :
(vj , vi) ∈ E(t)}. The node set V is divided into two subsets
with V = N ∪B, where N represents the normal individuals
while B represents the Byzantine attackers. The number and
identities of Byzantine nodes are not available to the normal
ones in the network, meaning that a normal individual knows
neither how many of its neighbors are Byzantine nor whether
a neighbor is Byzantine. Byzantine individuals are viewed
as the worst case attackers since they may adopt arbitrary
opinion update rules and potentially send different information
to different neighbors [2], [3]. The dynamics of each normal
individual vi ∈ N is described by the following continuous-
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time system:

ẋi(t) = ui(t), t ≥ 0 (1)
˙̃xi(t) = ũi(t), t ≥ 0 (2)

where xi(t), x̃i(t) ∈ R represent the private and expressed
opinions of vi at time t, respectively, and ui(t) and ũi(t) are
control inputs to be specified later. The normal individuals
in N is said to achieve opinion consensus in the presence
of Byzantine ones in B if limt→∞ xi(t) − xj(t) = 0 and
limt→∞ x̃i(t) − x̃j(t) = 0 for all vi, vj ∈ N and all initial
conditions {xi(0)}n

i=1 and {x̃i(0)}n
i=1. Different from single-

opinion models, we here formally require both private and
expressed opinions reach a consensus.

Fig. 1. Schematic illustration of opinion evolution for a normal individual
vi.

Next, we present our opinion consensus strategy for normal
individuals as follows (c.f. Fig. 1). Fix an integer r. At time
t, each vi ∈ N received the expressed opinions {x̃i

j(t)}
of its neighbors, and creates a decreasingly ordered list for
{x̃i

j(t)}vj∈Ni(t). (Here, x̃i
j(t) ∈ R represents the opinion sent

from vj to vi at time t, and we assume x̃i
j(t) = x̃j(t) for all

vj ∈ N ∩Ni(t), meaning that normal individuals always send
their real expressed opinions to their neighbors.) The greatest
r values that are greater than xi(t) are censored by deleting
the corresponding incoming edges in G(t) (if there are fewer
than r greater values, all of them are erased). Similarly, the
smallest values in the list undergo this censor process. We
denote by Ri(t) the set of neighbors erased by vi at time t.
The opinion algorithm for vi ∈ N is proposed as:

ẋi(t) =
∑

vj∈Ni(t)\Ri(t)

aij(t)fij(x̃i
j(t), xi(t)) (3)

and

˙̃xi(t) =λi(xi(t) − x̃i(t)) + (1 − λi)

·
∑

vj∈Ni(t)\Ri(t)

bij(t)gij(x̃i
j(t), x̃i(t)), (4)

where λi ∈ [0, 1], the entries of the adjacency matrix at any
time t satisfy aij(t) ≤ ā for some constant ā > 0, and
similarly, 0 ≤ bij(t) ≤ b̄ for some constant b̄ > 0. Here,
Equation (3) describes the evolution of the private opinion of
vi, which is driven by the quantities fij(x̃i

j(t), xi(t)) exerted
by its neighbors. For each neighbor vj ∈ Ni(t)\Ri(t), fij

explains the influence of the expressed opinions of vj on the
private opinion of vi. We assume:
Assumption 1. The function fij : R × R → R is locally
Lipschitz continuous satisfying (i) fij(x, y) = 0 if and only if
x = y; and (ii) (x − y)fij(x, y) > 0 for x 6= y. The similar
assumptions hold for gij .
Remark 1. The parameter λi characterizes the resilience to
pressure to conform to the local environment encapsulated by
gij . In cooperative control, a typical choice of fij and gij in (3)
and (4) is fij(x, y) = gij(x, y) = x−y [17]. The individual vi

is minimally resilient when λi = 0, meaning that its expressed
opinion fully conforms to the group decision, e.g., the average
group opinion by taking bij(t) = (|Ni(t)|−|Ri(t)|)−1, where
| · | represents the cardinality of a set. It is maximally resilient
when λi = 1 as its expressed opinion is governed fully by the
difference between its own private and expressed opinions.
In this situation, the system (3) and (4) shares the same
equilibrium, namely, xi(t) → ci as t tends to infinity, with
the single-opinion dynamics delineated by xi(t) = x̃(t).

Note that the above opinion consensus strategy is associated
with a parameter r, which will be used to bound the number
of Byzantine individuals in the neighborhood of any normal
individual in the network (see Theorem 1 and Theorem 2
below). As such, an estimate of the upper bound of r suffices
in our scheme. Some conservative choices for example can be
r = |B| = n − |N | or the maximum degree in the network;
c.f. Remark 2 below.

It is also worth mentioning that the network G(t) (and the
matrix A(t)) is time-dependent and that the censor process
further adds to the variation of the network topology. To
facilitate the analysis, we assume the following.
Assumption 2. Let {τk}∞k=1 denote the time instants that the
network topology G(t) changes. There exists a constant τ > 0
such that τk+1 − τk ≥ τ for any k.

Fig. 2. Synchronous data flow for a normal individual vi.

In Fig. 2 we present the flow chart of a normal individual
vi ∈ N . Our proposed opinion consensus strategy includes
methods like sorting, censoring, and summation, in which the
sorting subroutine is the worst part. By using the Quicksort
algorithm, which has worst-case time complexity O(|Ni|2)
and worst-case space complexity O(|Ni|), our resilient con-
sensus strategy also is worst-case quadratic in time and linear
in space. Therefore, the complexity of the algorithm is low.
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III. CONSENSUS OF EXPRESSED AND PRIVATE OPINIONS

We now investigate the consensus evolution of expressed
opinions and private opinions when at most r Byzantine
individuals exit in each neighborhood of normal individuals.
Our strategy is to first show the maxima and minima of
opinions are bounded, and then establish the convergence of
their difference as time goes on.

Define M(t) = maxvi∈N xi(t) and m(t) = minvi∈N xi(t)
as the maximum and minimum private opinions, respec-
tively, for normal individuals at time t. Similarly, define
M̃(t) = maxvi∈N x̃i(t) and m̃(t) = minvi∈N x̃i(t) as the
maximum and minimum expressed opinions, respectively, for
normal individuals. Let M∗(t) = max{M(t), M̃(t)} and
m∗(t) = min{m(t), m̃(t)}. The following result shows that
[m∗(0),M∗(0)] is an invariant set, meaning that the final opin-
ions for normal individuals remain in this interval, regardless
of the network topology.
Theorem 1. Fix an integer r. Suppose each normal individual
updates its expressed and private opinions according to the
opinion consensus strategy with parameter r. Then for any
network G(t) containing at most r Byzantine individuals in
the neighborhood of each normal individual, we have xi(t) ∈
[m∗(0),M∗(0)] and x̃i(t) ∈ [m∗(0),M∗(0)] for all vi ∈ N
and all t ≥ 0.
Proof. We first show xi(t), x̃i(t) ≤ M∗(0) for all t ≥ 0
and argue by contradiction. If this is not the case, there must
exist time t0 such that there is a node vi ∈ N satisfying
(a) xi(t) ≤ M∗(0) for all t ≤ t0; x̃j(t) ≤ M∗(0) for any
vj ∈ N and t ≤ t0; xi(t0) = M∗(0) and ẋi(t0) > 0; or (b)
x̃i(t) ≤ M∗(0) for all t ≤ t0; xj(t) ≤ M∗(0) for any vj ∈ N
and t ≤ t0; x̃i(t0) = M∗(0) and ˙̃xi(t0) > 0. In other words,
either the private opinion of some vi or the expressed opinion
of some vi firstly attains the upper bound M∗(0).

Case (a). Thanks to (3), we obtain

0 < ẋi(t0) =
∑

vj∈Ni(t0)\Ri(t0)

aij(t0)fij(x̃i
j(t0), xi(t0)). (5)

For vj ∈ N ∩ (Ni(t0)\Ri(t0)), we have xi(t0) =
M∗(0) ≥ x̃j(t0) = x̃i

j(t0) by assumption. For vj ∈
B ∩ (Ni(t0)\Ri(t0)), x̃i

j(t0) can be written as a convex
combination of {x̃i(t0)}vi∈N since the number of Byzantine
nodes in the neighborhood of a normal node is no more
than r. Hence, xi(t0) ≥ x̃i

j(t0) still holds. By Assumption
1, fij(x̃i

j(t0), xi(t0)) ≤ 0, which implies that the righthand
side of (5) is non-positive, offering the desired contradiction.

Case (b). It follows from (4) that

0 < ˙̃xi(t0) = λi(xi(t0) − x̃i(t0)) + (1 − λi)

·
∑

vj∈Ni(t0)\Ri(t0)

bij(t0)gij(x̃i
j(t0), x̃i(t0)). (6)

By assumption, we have xi(t0) ≤ M∗(0) ≤ x̃i(t0) and
λi ∈ [0, 1]. Since there are at most r Byzantine nodes in the
neighborhood of a normal node, x̃i

i(t0) ≤ x̃i(t0) for any vj ∈
Ni(t0)\Ri(t0) by invoking the censoring strategy. Therefore,
gij(x̃i

j(t0), x̃i(t0)) ≤ 0. The righthand side of (6) is a sum of
non-positive terms and hence is non-positive. This leads to a
contradiction and concludes the proof of xi(t), x̃i(t) ≤ M∗(0)

for all t ≥ 0. The proof for xi(t), x̃i(t) ≥ m∗(0) can be done
analogously. 2

Given S ⊆ V , if there exists a node vi ∈ S such that
|Ni\S| ≥ r, we say that S is r-reachable [1]. The idea
behind a r-reachable set S is that if there exists one node
in S that has sufficiently many neighbors outside of S, then
S can be influenced by nodes in V \S when appropriate
censoring strategies are applied. For any pair of nonempty,
disjoint subsets of V , G is called r-robust if one of these sets
is r-reachable. It is shown in [2] that G is 1-robust if and
only if it has a directed spanning tree. Therefore, in a robust
graph, at least one of any two mutually exclusive sets has good
“expansion properties” amenable to the external information,
which makes the overall consensus possible.

Define GN (t) = (N,EN (t)) to be the subgraph of G(t) =
(V,E(t)) induced by the set of normal nodes, where EN (t)
consists of all directed edges among the normal nodes at time
t. Furthermore, define Θ(t) = M∗(t) − m∗(t) ≥ 0 for each
time t ≥ 0. With these preparation, we can show our sufficient
and necessary criteria for resilient opinion consensus.
Theorem 2. Fix an integer r. Suppose each normal indi-
vidual updates its expressed and private opinions according
to the opinion consensus strategy with parameter r. If G(t) is
(2r+1)-robust, then opinion consensus for normal individuals
can be achieved for G(t) containing at most r Byzantine
individuals in the neighborhood of each normal individual.
Moreover, a necessary condition for reaching consensus is that
GN (t) is (r + 1)-robust.
Proof. We first show sufficiency part. Let i0 and j0 be indices
such that x∗

i0
(t) = maxvi∈N{xi(t), x̃i(t)} and x∗

j0
(t) =

minvi∈N{xi(t), x̃i(t)}, respectively. We take those with maxi-
mum derivatives if there are multiple such indices. Capitalizing
the property of the Dini derivatives [18], we consider two
cases.

(i) The maximum derivative is attained by a private opinion.
The Dini derivative of M∗(t), denoted as D+M∗(t), along the
trajectory of (3) is give by

D+M∗(t) =ẋ∗
i0(t)

=
∑

vj∈Ni0 (t)\Ri0 (t)

ai0j(t)fi0j(x̃i0
j (t), x∗

i0(t)), (7)

where D+M∗(t) = lim suph→0+
1
h (M∗(t + h) − M∗(t)).

For vj ∈ N ∩ (Ni0(t)\Ri0(t)), we have x∗
i0

(t) ≥ x̃i0
j (t) by

definition. For vj ∈ B ∩ (Ni0(t)\Ri0(t)), x∗
i0

(t) ≥ x̃i0
j (t)

still holds as there are at most r Byzantine nodes in the
neighborhood of a normal node. It follows from Assumption
1 and (7) that D+M∗(t) ≤ 0. Similarly, we can show that
D+m∗(t) ≥ 0.

(ii) The maximum derivative is attained by an expressed
opinion. In this case, the Dini derivative of M∗(t) along the
trajectory of (4) is give by

D+M∗(t) = ˙̃x∗
i0(t)

= λi0(xi0(t) − x̃∗
i0(t)) + (1 − λi0)

·
∑

vj∈Ni0 (t)\Ri0 (t)

bi0j(t)gi0j(x̃i0
j (t), x̃∗

i0(t)). (8)
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A similar argument shows that the righthand side of (8) is
a sum of non-positive terms and hence D+M∗(t) ≤ 0.
Similarly, we can show that D+m∗(t) ≥ 0.

Combining (i) and (ii), we obtain D+Θ(t) = D+M∗(t) −
D+m∗(t) ≤ 0 for all t. We claim that limt→∞ D+Θ(t) = 0.
If this is true, then M∗(t) → ρM and m∗(t) → ρm for some
constants ρM and ρm. Therefore, limt→∞ x∗

i0
(t) = ρM and

limt→∞ x∗
j0

(t) = ρm by definition. Since G(t) is (2r + 1)-
robust and our algorithm discard at most 2r neighbors in the
neighborhood of each normal node, the resulting network is
1-robust. According to the previous comment, there exists a
spanning tree in the network at any time. In the light of our
algorithm, all normal nodes along the path starting from the
root node to vi0 has the private and expressed opinions ρM

for sufficiently large t. Similarly, all normal nodes along the
path starting from the root node to vj0 has the private and
expressed opinions ρm for large enough t. As the root takes
both the maximum and the minimum opinions, we arrive at
ρM = ρm. The sufficiency is proved.

It remains to show the claim limt→∞ D+Θ(t) = 0. Suppose
that this does not occur. There must exist some ε > 0 for any
T > 0 there is t > T such that D+Θ(t) ≤ −2ε. Hence, there
is δ > 0 and a sequence {tl}∞l=1 tending to infinity such that
D+Θ(t) ≤ −2ε and |tl+1 − tl| > δ for all l. For any time
interval I with {τk}∞k=1 ∩ I = ∅, it follows from Assumption
1 that ẋi(t), ˙̃xi(t) are bounded for all vi ∈ N , and hence
D+Θ(t) is uniformly continuous on I . There exists δ0 > 0
such that for any t(1) and t(2) satisfying |t(1) − t(2)| < δ0,
|D+Θ(t(1)) − D+Θ(t(2))| < ε. Consequently, for any t ∈
[tl − δ0, tl + δ0],

D+Θ(t) = −|D+Θ(tl) − (D+Θ(tl) − D+Θ(t))|
≤ −(|D+Θ(tl)| − |D+Θ(tl) − D+Θ(t)|)
≤ −2ε + ε = −ε. (9)

On the other hand, if there exist some τk ∈ [tl−δ0, tl+δ0], by
Assumption 2 there exists δ1 ∈ (0, τ) such that D+Θ(t) ≤ −ε
for all t ∈ [tl−δ1, tl+δ1]. Combining the above discussion, we
see that there exists some δ2 > 0 satisfying

∫ ∞
0

D+Θ(t)dt ≤
limN→∞

∑N
l=1

∫ tl+δ2

tl−δ2
D+Θ(t)dt ≤ −2 limN→∞ Nεδ2 =

−∞, which contradicts the fact that Θ(t) is lower bounded,
namely, Θ(t) ≥ 0 for all t. The claim is then proved.

Finally, we show the necessity. Suppose that GN (t) is not
r + 1-robust. There exist two nonempty and disjoint sets
S1, S2 ⊆ N which are not r + 1 reachable. Every node in
these two sets has no more than r normal neighbors not in the
set. Fix ρ1 < ρ2. Let xi(0) = x̃i(0) = ρ1 for all vi ∈ S1, and
xi(0) = x̃i(0) = ρ2 for all vi ∈ S2. For all the other nodes vi

in the network, set xi(0) = x̃i(0) ∈ (ρ1, ρ2). Assume that all
Byzantine nodes always send the expressed opinion ρ1 to each
node vi in S1, and the expressed opinion ρ2 to each node vi in
S2 at all time t. Through out opinion consensus strategy with
parameter r, nodes in S1 and S2 will never adopt opinions not
in their own sets. Accordingly, consensus cannot be achieved
among normal nodes in N . The necessity is proved. 2

Remark 2. In Theorem 2, the number r is a given parameter,
which is assumed to be known for each normal node (some
estimates are given in Section II). We here assume that r

is known as it is related to the robustness condition of the
network; see also [19] for a discrete time system. In practice,
it would be possible to obtain an agreed r in a distributed
manner via some consensus protocol coupled with the opinion
consensus process. For example, if a normal node vi has a
feasible value ri, it can adopt the max consensus strategy;
e.g. [20]. Otherwise, vi can increase ri by 1.
Remark 3. It is worth mentioning that in the sufficiency
in Theorem 2, we showed that both private and expressed
opinions of normal nodes converge to the same consensus
value, which is stronger than what is required in our definition
of consensus in Section II. Persistence to the individuals’
initial opinions has been identified to be a possible cause
of non-vanishing discrepancy between expressed and private
opinions in [21]. In our framework, such “stubbornness” to the
initial opinions has been considered as a malicious behavior
and is aimed to be conquered. Hence, we are able to show
the strong result of vanishing discrepancy, which interestingly
echoes recent data analysis on social networks [22].
Remark 4. Despite the fault tolerance mechanism considered
in our proposed protocol, the consensus outcome critically re-
lies on the requirement of normal agents’ private and expressed
opinions following a predetermined protocol (Eqs. (3) and (4)).
In reality, it may be questionable as mass media and systemic
bias may impinge on private opinions and distort expressed
opinions. This limitation, however, tends to be an inherent
part of any form of distributed consensus algorithm. If we for
example adopt the proposed algorithm for a cryptocurrency
to maintain the transactions of distributed ledger. An intruder
can exploit this weakness and can open the doors for double
spending problem. As such, our work may fit better in some
well-trained environments such as jury deliberation and panel
meetings.

IV. CLUSTERING OF EXPRESSED AND PRIVATE OPINIONS

In this section, we consider the clustering, namely, the
coexistence of different opinion clusters for both expressed
and private opinions. This can be achieved by generalizing
the scaled consensus method [3].
Definition 1. Given scalar number αi 6= 0 for every node
vi ∈ V , we say that the normal nodes in N achieve resilient
opinion clustering with respect to (α1, · · · , αn) in the presence
of Byzantine nodes in B if limt→∞ αixi(t)−αjxj(t) = 0 and
limt→∞ αix̃i(t)−αj x̃j(t) = 0 for all vi, vj ∈ N and all initial
conditions {xi(0)}n

i=1 and {x̃i(0)}n
i=1.

From Definition 1, we easily reproduce the resilient opinion
consensus defined in Section II by setting α1 = α2 = · · · =
αn = 1. In general, we have xi/xj → αj/αi and x̃i/x̃j →
αj/αi as t tends to infinity. The concept of opinion clustering
is useful in social opinion networks [23]. For instance, an
agent may simply reject whatever its competitors support and
advocate whatever its competitors oppose in an antagonistic
or competitive scenario, which can be appropriately modeled
by setting αi = 1 while αj = −1 for a pair of rivals vi and
vj .

To the end of clustering, the opinion consensus strategy
presented in Section II can be modified as follows. Fix an
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integer r. At time t, each vi ∈ N received the expressed
opinions {x̃i

j(t)} of its neighbors, and creates a decreasingly
ordered list for {αj x̃

i
j(t)}vj∈Ni(t). The greatest r values that

are greater than αixi(t) are censored by deleting the incoming
edges in G(t) (if there are fewer than r such values, all of them
are erased). Similarly, the smallest values in the list undergo
this censor process. Similarly, the opinion algorithm for vi ∈
N is proposed as:

ẋi(t)

= sgn(αi)
∑

vj∈Ni(t)\Ri(t)

aij(t)fij(αj x̃
i
j(t), αixi(t)) (10)

and

˙̃xi(t) =λi(xi(t) − x̃i(t)) + (1 − λi)

·
∑

vj∈Ni(t)\Ri(t)

bij(t)gij

(αj

αi
x̃i

j(t), x̃i(t)
)
, (11)

where sgn(·) is the standard signum function, and all previous
assumptions are applied here. The following corollary can be
established with similar arguments as in Section III.
Corollary 3. Fix an integer r. Suppose each normal individual
updates its expressed and private opinions according to the
above opinion clustering strategy with parameter r. If G(t) is
(2r+1)-robust, then opinion clustering for normal individuals
can be achieved for G(t) containing at most r Byzantine
individuals in the neighborhood of each normal individual.
Moreover, a necessary condition for reaching clustering is that
GN (t) is (r + 1)-robust.

V. NUMERICAL EXAMPLES

In this section, numerical simulations are presented to
illustrate our theoretical results.

Example 1. Consider a network G having node set V = N∪
B with normal N = {v1, · · · , v5} and Byzantine B = {v6}. It
is direct to check that G is 3-robust. The initial configuration
is chosen as x1(0) = x̃1(0) = −3, x2(0) = x̃2(0) = 5,
x3(0) = x̃3(0) = −1, x4(0) = x̃4(0) = −2, x5(0) = x̃5(0) =
2, x̃6(0) = 3. The normal nodes follow (3) and (4) with
fij(x, y) = gij(x, y) = x−y, λ = 0.9, aij = bij being binary
characterizing the adjacency of the nodes. The Byzantine
node follows the dynamics ˙̃x6(t) = −x̃6(t) − 1

2 ln(t + 1)
featuring a monotonic decrease, which potentially drives the
group decision towards the minus infinity if not appropriately
dealt with. The opinion trajectories are shown in Fig. 3(a)
and the discrepancies between private and expressed opinions,
denoted by ∆i(t) = |xi(t) − x̃i(t)|, are shown in Fig. 3(b).
Here, ∆i(t) measures the discrepancy between expressed and
private opinions of each normal node vi. We observe from Fig.
3(a) that resilient opinion consensus is reached as one would
expect despite the intervention of a malicious node v6. Fig.
3(b) shows that the discrepancies ∆i(t) (i = 1, · · · , 5) start
at zero and finally die out leading to consensus in line with
our theoretical result of Theorem 2. This further reveals that
the difference between expressed and private opinions may
arise even when there is no discrepancy between expressed
and private opinions initially, which shadows some real-life
phenomena.
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Fig. 3. (a) Opinion consensus trajectories and (b) discrepancy between private
and expressed opinions over network G with a Byzantine node v6 shown in
the inset of (b).

Fig. 4. Rich-core of Zachary’s karate club with N = {v2, v3, · · · , v9} and
B = {v1}.

Example 2. We consider a real-world social network, the
Zachary’s karate club [24], which describes the relationship
between members of a university karate club in 1977. The rich-
core of Zachary’s karate club is identified in [25]; see Fig. 4. It
is a undirected 3-robust graph characterizing the relationship
between core members. We assume that the normal node set
is N = {v2, v3, · · · , v9} and the Byzantine node set is B =
{v1}. The initial private and expression opinions of all nodes
are randomly taken in the interval [0, 1]. The Byzantine node
v1 has its own dynamics ˙̃x1(t) = −x̃1(t) + 1

2 sin( t
5 ), which

features a periodic fluctuation modeling repeated divergence.
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Fig. 5. Expressed and private opinion evolution for Example 2 over network
depicted in Fig. 4 with (a) or without (b) the censoring strategy. The same
parameters are used in panel (c) as in panel (a) except that the expressed
dynamics are scraped. v1 is the Byzantine node following its own dynamics.

As in Example 1, the Byzantine equation is chosen to illustrate
the theoretical results as Byzantine nodes can determine their
own strategy.

Recall that the identity of Byzantine v1 is not known
by these normal ones mimicking the real situation. We first

compare (a) our censoring strategy, where all normal nodes
follow (3), (4) with fij(x, y) = gij(x, y) = x − y, λ = 0.8,
aij = bij = 1 if vi and vj are connected and 0 otherwise,
with (b) a “placebo” strategy which takes the similar algorithm
by replacing Ni(t)\Ri(t) with Ni(t) in (3) and (4). In other
words, each normal individual will take stock of the situation
by sorting its neighbors expressed opinions and removing
the maximum and minimum extremes in case (a), while
no extreme opinions are censored in case (b). The opinion
trajectories for cases (a) and (b) are shown, respectively, in
Fig. 5(a) and 5(b). As expected, all opinions converge in Fig.
5(a) in line with Theorem 2. From Fig. 5(b), we observe
that with the intervention of the Byzantine node v1, neither
private nor expressed opinions could reach consensus, both of
which display periodic-like fluctuations. This highlights the
non-triviality of the censoring strategy.

Finally, in Fig. 5(c) we plot the opinion evolution where
each normal agent vi has only a single private opinion [3],
[26], namely, x̃i

j(t) ≡ xi
j(t) for vj ∈ Ni(t)\Ri(t) in (3) and

the dynamics (4) are scraped. All other parameters are the
same as in case (a). Comparing with Fig. 5(a), we observe that
the convergence becomes slightly faster due to the omission
of expressed opinions. For example, the time to consensus in
Fig. 5(a) is around t = 20 and the corresponding time in Fig.
5(c) is around t = 15. Also, the final consensus values are
different between them as one would expect.

VI. CONCLUSION

In this paper, we studied consensus and clustering of both
expressed and private opinions in directed complex networks
against Byzantine individuals. The communication network
G(t) is modeled as a time-varying directed graph with positive
dwell time. A general purely distributed censoring algorithm is
proposed to rule the opinion dynamics of both private opinions
and expressed opinions. Necessary and sufficient conditions
for resilient consensus and clustering are established based
upon the concept of network robustness. In particular, if G(t)
is (2r + 1)-robust, the resilient consensus can be achieved
under our proposed dynamics when G(t) contains at most r
Byzantine nodes in the neighborhood of each normal node.
Analogous result is derived for resilient clustering via a
modified opinion consensus strategy. Our results shed light on
the discrepancy and evolution between expressed and private
opinions in social networks.

In addition to the acquisition of r and correct expression of
private opinions mentioned in the work, there are numerous
avenues of interesting future research, such as a thorough study
of the mechanism of expressed and private opinions, other
types of malicious behaviors, and the effect of possible time
delays in communication. As this work is theoretical by nature,
it would also be appealing to explore cross-validation for the
experimental parameters in real-life social networks.
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