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Nonlinear internal waves in shallow water have significant acoustic impacts and cause three-

dimensional ducting effects, for example, energy trapping in a duct between curved wavefronts that

propagates over long distances. A normal mode approach applied to a three-dimensional idealized

parametric model [Lin, McMahon, Lynch, and Siegmann, J. Acoust. Soc. Am. 133(1), 37–49 (2013)]

determines the dependence of such effects on parameters of the features. Specifically, an extension of

mode number conservation leads to convenient analytical formulas for along-duct (angular) acoustic

wavenumbers. The radial modes are classified into five types depending on geometric characteristics,

resulting in five distinct formulas to obtain wavenumber approximations. Examples of their depen-

dence on wavefront curvature and duct width, along with benchmark comparisons, demonstrate

approximation accuracy over a broad range of physical values, even including situations where tran-

sitions in mode types occur with parameter changes. Horizontal-mode transmission loss contours

found from approximate and numerically exact wavenumbers agree well in structure and location of

intensity features. Cross-sectional plots show only small differences between pattern phases and

amplitudes of the two calculations. The efficiency and accuracy of acoustic wavenumber and field

approximations, in combination with the mode-type classifications, suggest their application to deter-

mining parameter sensitivity and also to other feature models.
VC 2019 Acoustical Society of America. https://doi.org/10.1121/1.5125261
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I. INTRODUCTION

Curved nonlinear internal waves (NIWs), which occur

widely and frequently in shallow-water oceans, can produce

dramatic acoustic propagation effects. As only one example,

a curved NIW train allows acoustic energy to become trapped

in ducts between two waves and propagated over long distan-

ces. Many such phenomena are observed in the ocean and are

investigated by computational and analytical models. The

objective of this paper is to determine, using a modal

approach, how acoustic quantities vary with changes in the

environmental parameters of an idealized three-dimensional

(3-D) curved duct feature model (Lin et al.1). This work

builds upon papers by DeCourcy et al. that define a mode-

type classification system2 and develop convenient formulas

for extracting wavenumber parameter dependence3 in a

curved shelf-slope front model. These techniques are adapted

here for cases of shallow-water NIWs over flat ocean bot-

toms. Using formulas based on mode number conservation, it

is possible to obtain wavenumber approximations efficiently

that are accurate enough for sensitivity computations of

acoustic quantities including transmission loss.

The effects of NIWs are important because of the preva-

lence of mechanisms by which they are formed.4 Propagation

in curved waveguides has a long history of modeling interest,

and has been explored using several techniques as in Ref. 5.

The 3-D NIW acoustic effects gained considerable attention

as a result of field data, such as the SWARM95 experiment.6

Observations and analysis from that experiment and others,

along with numerical simulations, provide striking evidence

of 3-D acoustic effects produced by NIWs and ducting.7–9

Additional data with NIWs and further analysis followed

results from a 2007 experiment on the northern shelf of the

South China Sea,10 indicating that near-surface ducting plays

a significant role in the long-distance propagation observed.

This led to feature models for NIW trains11 and specification

of effects from individual wavefronts. Mirror and 3-D ducting

behaviors from a single curved NIW are quantified in Ref. 12,

which treats a simpler geometry than the idealized two-wave

ducting model in Ref. 1 and this paper.

Long-distance propagation in the Ref. 1 model is pri-

marily the result of ducting by two acoustic mode types that

can form in NIW trains. The first are whispering gallery

(WG) modes that carry acoustic energy along the concave

interface of curved wavefronts. The second are fully bounc-

ing (FB) modes, which are essentially trapped between two

wavefronts with very little energy leaking out. Although

leaky (L) modes contribute less to in-duct propagation,

retaining some of them may be necessary for representing

the fields near a source or wavefronts. This NIW model has

three types of L modes that are classified according to loca-

tions of a turning point, which determines a boundary of par-

tial energy trapping. Conditions for acoustic ducting were

previously derived by Lynch et al.13 and this paper extendsa)Electronic mail: milonm2@rpi.edu
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their results by predicting wavenumber changes as feature

parameters vary. These predictions in turn can be used to

estimate the relevant modes and field quantities of interest

for a particular set of feature parameters.

Computational approaches to this problem, such as PE

methods, are extremely valuable. However, they are usually

limited in providing broad quantitative insight into the

effects from environmental parameter variations without a

large computational burden. Normal mode approaches are

helpful for insight, but there is a significant numerical chal-

lenge for the present model. The angular wavenumbers are

complex-valued and determined from a complicated disper-

sion relation, in which they appear as (large) orders of

Hankel functions. For this and related problems, numerical

root-finding methods are known to be slow and error-prone,

which inhibits examination of ducting effects across wide

ranges of parameter values. Thus, the results here are

directed toward finding approximate and still accurate wave-

numbers, from formulas that provide physical insight into

effects of parameter variations, and are significantly more

computationally tractable.

The primary result of this paper is that useful wavenumber

approximations can be obtained for the NIW feature model

through the principle of mode number conservation. It is well

known (see Ref. 14, for example) that acoustic normal modes

are analogous to quantum mechanical waves with discrete

energy levels. The energy levels are expressed in terms of

mode number through Bohr quantization, while the acoustic

equivalent is a conservation law previously applied to vertical

modes in a Pekeris waveguide by Weston15 and Pierce.16

Because regions of modal energy trapping are often bounded

by turning point locations, they appear as the limit(s) of inte-

gration over a modal wavenumber. The invariance of energy

levels and mode numbers allows estimating wavenumber

responses to parameter changes, provided phase effects from

any interface(s) and turning point(s) are incorporated. The

approach here extends work by DeCourcy et al.2,3 for the

parameter dependence in an idealized single-interface coastal

front over a sloping bottom. The NIW case requires handling

pairs of interfaces and subsequent radial mode phase changes,

and also new approximation formulas. Treating more than two

interfaces would be a natural extension, suggesting that the

approach could provide useful approximations for other fea-

ture models of interest. Further, the techniques in Ref. 3 can

also be applied to the NIW problem in order to identify the

environmental parameters to which propagation is most sensi-

tive, and to quantify the effects of the variations. It is possible

that an analogous approach could be used to examine conse-

quences of uncertainty in parameter values on predictions

obtained from data modeling or numerical computations.

Direct applications of these methods require negligible mode

coupling effects; possible extensions to handle weak coupling

are not considered. Asymptotic methods are also needed, and

parameter-magnitude conditions for the present case are

provided.

In Sec. II the feature model formulation and its parame-

ters are reviewed, and its normal mode components and

wavenumbers defined. Section III introduces a classification

scheme for radial duct modes and illustrates their spatial

behavior. Section IV describes the wavenumber conservation

approach that incorporates both radial-direction and endpoint

modal phase changes to specify the responses of angular

wavenumbers to changes in model parameters. Angular

wavenumber variations from two different parameters are

illustrated, and accuracy of the approximations are bench-

marked with results from the modal dispersion relation. In

Sec. V, modeling assumptions are briefly explored and wave-

number prediction quality is demonstrated. Approximate and

benchmark-accurate wavenumbers, along with PE results, are

used to generate horizontal transmission loss contour plots,

which are compared qualitatively and quantitatively. Finally,

conclusions are summarized in Sec. VI. The accuracy and

efficiency of these approximations suggest possible exten-

sions and other applications for specifying acoustic depen-

dence and sensitivity.

II. MODEL FORMULATION AND MODAL SOLUTION

In shallow-water ocean environments, surface warming

leads to higher temperatures and sound speeds in the upper

ocean. This produces variations that can often be modeled by

one or more constant-property layers, and results in the for-

mation of nonlinear internal waves of depression. An ideal-

ized 3-D feature model (Lin et al.1) of this type is used to

quantify effects of wave parameters on acoustic energy propa-

gation in NIW ducts. The feature model differs from some

others, for example, one proposed by Katsnelson and

Pereselkov,11 which has a train of internal waves and a ther-

mocline with continuous depth variation. The environmental

complexity and consequent mode coupling requires parabolic

equation (PE) methods to efficiently solve the horizontal

acoustic problem. However, it was shown17 that a continuous

thermocline for a single NIW can often be approximated by a

square wave with two sharp interfaces. This treatment was

extended to a pair of waves and the intermediate duct,18

which is used for the feature model here. With this formula-

tion the acoustic propagation is adiabatic, and individual

mode behaviors provide useful wavenumber approximations

for any frequency, unlike ray theory employed by Ref. 11.

A schematic of the 3-D NIW duct geometry and its

cylindrical coordinates is shown in Fig. 1. The ocean is mod-

eled by two layers, where sound speed cW(r, z) is constant

within the unshaded region (labeled region I) containing a

duct, and another (larger) constant within the shaded region

(region II) containing the waves and the warm surface layer.

The corresponding constant depths of the top layer in these

two regions are hI and hII. The ocean surface is assumed to

be pressure-release, and water has density qW¼ 1000 kg/m3

in both layers. The constants H, D, W, and w represent total

water depth, wavefront radius of curvature, duct width, and

wave width. The geometry and the constant parameter values

contribute to keeping the acoustic propagation problem not

only adiabatic but also mathematically separable. No termi-

nation conditions in h are specified for ducts or wavefronts

in this model, allowing free propagation in the angular direc-

tion. The ocean bottom is modeled as a semi-infinite fluid

layer with constant density qB> qW, sound speed cB> cW,

and attenuation aB.
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Acoustic pressure for a point source of frequency f¼x/

2p in a NIW duct is specified by the 3-D Helmholtz equation

1

r

@

@r
r
@P

@r

� �
þ 1

r2

@2P

@h2
þ qðzÞ @

@z

1

qðzÞ
@P

@z

� �

þ x2

c2ðr; zÞP ¼ �4p
dðr � rsÞ

r
dðhÞdðz� zsÞ: (1)

The cylindrical coordinates r and h are horizontally oriented

polar coordinates, with depth z measured from the ocean

surface as in Fig. 1. Acoustic pressure is pðr; h; z; tÞ
¼ Pðr; h; zÞe�ixt, with time dependence from a single-

frequency point source factored out of Eq. (1). The source is

located in the duct at ðr; h; zÞ ¼ ðrs; 0; zsÞ, where D < rs

< DþW and hI < zs < hII.

The model coordinate geometry and environmental

assumptions lead to a separable boundary value problem,

because horizontal and vertical variability only occur at

interfaces coinciding with lines of constant r and z. Thus,

mode coupling need not be considered here. The separation

parameter is fm(r), which is the horizontal wave number cor-

responding to vertical mode number m. The vertical and hor-

izontal components of the pressure solution satisfy

qðzÞ d

dz

1

qðzÞ
dwm

dz

� �
þ k2ðr; zÞ � f2

mðrÞ
� �

wm

¼ dðz� zsÞ; (2a)

1

r

@

@r
r
@Am

@r

� �
þ 1

r2

@2Am

@h2
þ f2

mðrÞAm

¼ �4p
dðr � rsÞ

r
dðhÞ; (2b)

where wm ¼ wmðzÞ; Am ¼ Amðr; hÞ, and the medium wave-

number is given by kðr; zÞ ¼ x=cðr; zÞ.

In the duct and wave regions, vertical modes satisfy a

three-layer Pekeris waveguide. The usual continuity condi-

tions of pressure and normal velocity component are applied

at each horizontal interface. Details of solving this familiar

problem can be found in Refs. 19 and 20. Because the upper-

layer thickness differs in the duct and wave regions, different

vertical mode problems are solved in each region. The eigen-

values of Eq. (2a) for the two problems are complex (because

of bottom attenuation) and are denoted by fm(r), which means

this quantity is constant for r within each region I and II. The

two constant values are denoted for convenience by fm;j

where the subscript j is j¼ I or j¼ II. These values are needed

for solutions of the horizontal problem given by Eq. (2b).

Figure 2(a) is the schematic side view of Fig. 1, and also

contains the reference parameter values used for example

computations in this paper. The focus here is on propagation

in a single duct region, so the width w of the waves (refer-

ence value w¼ 300 m) is treated as infinite, which is the so-

called “well approximation.”1,13 As in work by Finette and

Oba,7 the extended wave regions are assigned the wave

sound speed value. The in-duct modal behavior is preserved

and the model analysis becomes more tractable (half as

many interfaces), at the cost of neglecting effects of acoustic

tunneling (Refs. 1 and 18, and Sec. V). The well approxima-

tion is suggested in Fig. 2(a) by the solid lines at depth 40 m,

and corresponding wavenumber results are expressed as

fmðrÞ ¼
fm;I ; r1 < r < r2;

fm;II ; r < r1; r > r2:

(
(3)

Subscripts k¼ 1, 2 identify radial interface locations r1¼D
and r2¼DþW, which are the first (or inshore) and second

(or offshore) duct interfaces. Subscript commas are added

after vertical and horizontal mode number subscripts m and

n and before any j and k subscripts. In this paper D and W
are used to specify wave-duct interfaces, except for deriva-

tions where the rk notation is convenient.

Numerical solutions at f¼ 75 Hz for the first two vertical

modes in duct (dashed blue) and wave (solid red) regions

appear in Figs. 2(b) and 2(c). Mode m¼ 1 [Fig. 2(b)] has

exponential behavior in the upper water layer and oscillatory

behavior in the lower water layer for both duct and wave

regions. Mode m¼ 2 [Fig. 2(c)] oscillates in both water layers

for both regions. All modes shown have exponential decay in

the ocean bottom. For m> 2 vertical mode solutions differ lit-

tle between duct and wave regions, and ducting effects van-

ish. The real parts of fm(r) are several orders larger than their

corresponding imaginary parts; for example, mode m¼ 2

has complex horizontal wavenumbers f2;I ¼ 0:3092þ 5:3803

�10�5i and f2;II ¼ 0:3056þ 6:0525� 10�5i. This mode has

the greatest difference (both absolute and relative) in phase

speeds between the duct and wave regions, making it the low-

est to show significant ducting effects;1 it is used for numeri-

cal examples for the remainder of this paper. Note that the

wavenumbers in both regions specify fm(r) from Eq. (3),

which appears in the horizontal mode Eq. (2b).

Equation (2b) can be solved using a wavenumber inte-

gration technique.21 The solutions are

FIG. 1. Idealized model of two nonlinear internal wavefronts and duct

between them. Upper shaded layer with constant sound speed c1> c2 in

lower unshaded layer. Duct region denoted by index I, wave region by II.

Parameter values in ocean bottom are constant. Star indicates source loca-

tion (rs, 0, zs). Adapted from Fig. 1 in Ref. 1.
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Amðr; hÞ ¼
1

2p

ð1
�1

Gðr; gÞeighdg; (4)

where G solves

1

r

d

dr
r

dG

dr

� �
þ f2

mðrÞ �
g2

r2

� �
G ¼ �4p

dðr � rsÞ
r

: (5)

Continuity conditions on G and its first derivative are

enforced at each interface between regions I and II.

Finiteness at r¼ 0 and the Sommerfeld radiation condition

for large r are also applied. The integral in Eq. (4) can be

evaluated by contour integration in the g-plane. Application

of all the conditions leads to a formula for G, with the result

that isolated singularities occur at g¼ gmn, where gmn is an

angular wavenumber associated with radial mode n corre-

sponding to vertical mode m. Contributions at these points

include all the proper normal mode solutions of Eq. (2b),

and may include improper modes depending on branch cut

choices. For the often-used Pekeris cuts, contributions from

the branch line integrals are relatively small except possibly

in the source near field22 and are neglected here.

Local wavenumbers corresponding to the modal solu-

tions of Eq. (1) satisfy the relation

k2 ¼ k2
zm þ f2

m ¼ k2
zm þ k2

rmn þ
g2

mn

r2
; (6)

where kzm is the vertical wavenumber of vertical mode m,

and krmn is the radial wavenumber of horizontal mode n
associated with vertical mode m. With approximate expres-

sions for solutions of Eqs. (2a) and (2b), the modal pressure

solution is constructed as

Pðr; h; zÞ ¼
X

m

X
n

cmnðrs; zsÞGmnðrÞeigmnhwmðzÞ; (7)

where GmnðrÞ ¼ Gðr; gmnÞ. Mode shape functions Gmn(r)

and wm(z) are normalized using procedures described in

Refs. 1 and 23, and cmnðrs; zsÞ ¼ iGmnðrsÞwmðzsÞ is an ampli-

tude coefficient depending on source location. For the

remainder of the paper, mode numbers m and n are sup-

pressed except where defining new quantities or where their

omission may be confusing.

III. RADIAL MODE SOLUTIONS AND CLASSIFICATION

The primary objective of this paper is to develop useful

approximations for acoustic quantities that characterize

normal-mode sound propagation through models of NIW

ducts. These rely on finding efficient and accurate approxi-

mations to normal mode phases in terms of environmental

parameters. That is accomplished in Sec. IV, while this sec-

tion provides necessary background for classifying radial

mode properties.

The radial modes GmnðrÞ are expressed in terms of solu-

tions to Eq. (5) as

GðrÞ ¼
A0H

ð1Þ
g ðfIIrÞ þ A0H

ð2Þ
g ðfIIrÞ; r < r1;

A1H
ð1Þ
g ðfIrÞ þ B1H

ð2Þ
g ðfIrÞ; r1 < r < r2;

A2H
ð1Þ
g ðfIIrÞ; r > r2:

8>><
>>:

(8)

The constants in Eq. (8) use the notation of Fig. (5) in Ref. 1,

and are determined by applying subsidiary conditions.21 The

Sommerfeld radiation condition is already incorporated in

FIG. 2. (Color online.) (a) Cross-section h¼ constant of Fig. 1, showing an upper water layer (light blue, higher sound speed) over a lower (dark blue, lower

sound speed). Ocean layers overlay attenuating bottom sediment (brown). Reference values indicated for sound speed, ocean depth, water layer depths, and

bottom parameters. Well approximation (Refs. 7, 18) indicated by solid lines, wave profile by dashed; interior and exterior j¼ I regions (far left and right)

replaced with sound speed of j¼ II region. (b) First unnormalized vertical mode m¼ 1 in the duct j¼ I (dashed blue) and wave j¼ II (solid red) regions, for

source frequency f¼ 75 Hz. Thin horizontal lines indicate top water layer depth in duct (dashed blue) and wave (solid red). (c) Same as (b), but for m¼ 2.

Adapted from Fig. 7 in Ref. 1.
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Eq. (8) for r> r2 by excluding an incoming Hankel function.

Boundedness for small r is ensured by combining outgoing

and incoming waves for r < r1 to form a Bessel function of

the first kind using the formula 2Jg ¼ H
ð1Þ
g þ H

ð2Þ
g . The four

remaining coefficients are found using continuity conditions

of G and its first derivative at r¼ r1 and r¼ r2, along with a

normalization condition. The dispersion relation provides

the essential fifth condition to determine the constant angular

wavenumbers g¼ gmn, which were introduced below Eq. (5).

They specify the radial wavenumbers krmn ¼ ðf2 � g2=r2Þ1=2

and the geometric properties of the radial modes.

Because one objective of this paper is accurate approxi-

mations for angular wavenumbers, results must be tested

against benchmarks for validity (see Sec. IV). For any set of

environmental parameters, the most accurate wavenumber

values can be obtained from numerical solutions (referred to

as “numerically exact”) of the radial-mode dispersion

relation, which is given by Eq. (11) of Ref. 1. The bisection

method is used to obtain most of the numerically exact g val-

ues in this paper. Because of challenges in the numerical

evaluation of the complex-order Bessel functions, the algo-

rithm did not converge for some higher radial mode num-

bers. For these an equivalent dispersion relation formula,

expressed in terms of ratios of Hankel functions and their

derivatives, is used as in Refs. 2 and 3. For convenience sim-

pler quantities are defined

�jk ¼
H
ð1Þ
g ðfjrkÞ

H
ð2Þ
g ðfjrkÞ

; �
ð‘Þ
jk ¼

H
ð‘Þ0
g ðfjrkÞ

H
ð‘Þ
g ðfjrkÞ

; (9)

in which ‘¼ 1, 2 indicates Hankel function type. After

applying all the subsidiary conditions as before, the disper-

sion relation formula can be written as

��II1

�I1ðfII�
ð1Þ
II1 � fI�

ð1Þ
I1 ÞðfII�

ð1Þ
II2 � fI�

ð2Þ
I2 Þ � �I2ðfII�

ð1Þ
II1 � fI�

ð2Þ
I1 ÞðfII�

ð1Þ
II2 � fI�

ð1Þ
I2 Þ

�I1ðfII�
ð2Þ
II1 � fI�

ð1Þ
I1 ÞðfII�

ð1Þ
II2 � fI�

ð2Þ
I2 Þ � �I2ðfII�

ð2Þ
II1 � fI�

ð2Þ
I1 ÞðfII�

ð1Þ
II2 � fI�

ð1Þ
I2 Þ
¼ 1: (10)

Comparing curves of phase and amplitude for Eq. (10) in the

complex plane locates additional roots. This approach is

detailed in Ref. 24 and used for a shelf-slope front model. It

is very helpful for leaky modes and complements the bisec-

tion method used for low n values.

Mode normalization is performed after g and all coeffi-

cients except one (for specificity, A0) are determined. The pro-

cedure is described in the Appendix of Ref. 1 and is analogous

to many other mode treatments, such as for vertical modes in

the KRAKEN algorithm.23 An initial value of A0¼ 1 could be

selected, and corresponding unnormalized radial modes U
defined for the three regions of G in Eq. (8). The conditions at

the two vertical wave-duct interfaces can be expressed as

f ðrk; gÞ
gðrk; gÞ

Uðrk; gÞ þ
dUðrk; gÞ

dr
¼ 0; (11)

for k¼ 1, 2. Exact expressions for ratios f and g of radial

mode n at the interfaces are

f ðr1; gnÞ
gðr1; gnÞ

¼
fIIJgnþ1

ðfIIr1Þ
Jgn
ðfIIr1Þ

� gn

r1

; (12a)

f ðr2; gnÞ
gðr2; gnÞ

¼ fIIH
ð1Þ
gnþ1
ðfIIr2Þ

H
ð1Þ
gn
ðfIIr2Þ

� gn

r2

; (12b)

which are found using the appropriate region II solutions. As

shown in the Appendix of Ref. 1, any of the mode coeffi-

cients A0 is given by

A�2
0 ¼ 2gn

ðr2

r1

U2
nðr; gnÞ

r
dr � r1

@

@g
f ðr1; gÞ
gðr1; gÞ

����
gn

U2
nðr1; gnÞ

þ r2

@

@g
f ðr2; gÞ
gðr2; gÞ

����
gn

U2
nðr2; gnÞ: (13)

Equations (11) and (13) are equivalent to Eqs. (A4) and

(A13) in Ref. 1, using the interface location notation from

this paper. Finally, normalized modes can be written as

G¼A0U with A0 from Eq. (13).

Angular wavenumbers g are important in this paper for

specifying quantities of acoustic interest, such as the trans-

mission loss fields illustrated in Sec. V. They are also useful

in determining turning point locations, and consequently the

geometric properties of radial modes.2 The coefficient of

Gmn in Eq. (5) is readily shown from Eq. (6) to be k2
rj. The

standard substitution GmnðrÞ ¼ r�1=2QmnðrÞ reduces Eq. (5)

with source term omitted approximately to

d2Q

dr2
þ k2

rjQ ¼ 0; (14)

because 1/4r2 is small compared with k2
rj for r values of interest

here. Radial mode behavior can be ascertained from Eq. (14)

in analogy to the constant coefficient case. Positive values of

k2
r produce oscillatory solutions, while negative coefficients

lead to exponential behavior. The case k2
r ¼ 0 (with a simple

zero) is a turning point (TP) across which Q(r) solutions

change between oscillatory and exponential. The behavior in

range of radial modes can thus be classified according to turn-

ing point locations, which along with boundaries or interfaces

signify where acoustic energy is trapped.

Figure 3(a) shows the five different radial mode types

which emerge in the idealized NIW model. The lowest radial

mode numbers n are associated with whispering gallery

(WG) modes, which have one turning point in the duct

(D< r < DþW) and a second at the r¼DþW interface.

The familiar whispering gallery effect occurs in this feature

model for shallow grazing angles, which cause acoustic
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energy to reflect repeatedly along the outer interface of the

duct, trapping it over long distances along the front.

Increasing grazing angles slightly may produce fully bounc-

ing (FB) modes, which also have two TPs, one at each inter-

face. These modes oscillate across the entire width of the

duct, and again play a critical role for long-distance propaga-

tion in the along-front direction. Radial modes with steeper

grazing angles leak energy across the interface at r¼DþW,

and are characterized by the occurrence of a single turning

point. Although previous work on this model1 grouped all

three types of leaky modes in a single category, in contrast

here the wavenumber approximations require consideration

of these cases separately. The first two share properties with

WG and FB modes. Leaky whispering gallery (L-WG)

modes, which may arise instead of FB modes as model

parameters change, have an in-duct turning point (D< r
< DþW), with acoustic energy again propagated along the

outer edge of the duct. Trapping effects are naturally less

than those of true WG modes, because their energy pene-

trates through the r¼DþW interface. Similarly, leaky

bouncing (L-B) modes have a turning point at the r¼D
interface and contribute to the modal solution in the duct and

beyond the right interface, while experiencing more along-

front energy loss than L-WG and FB modes. Finally, this

feature model includes totally leaky (L-T) modes, which

have the steepest grazing angles and a turning point for

r<D. Because energy is lost through both wave-duct

interfaces, their along-front propagation attenuates more rap-

idly than for other modes. Nonetheless, it may still be neces-

sary to include some L-T modes in pressure-field

computations that approximate the near field.

Figure 3(b) is a schematic that is primarily designed to

illustrate the oscillatory and exponential range behavior of

the radial modes, and the corresponding regions of ducted

and transient energy. The figure has its vertical axis as a

scaled azimuthal wavenumber g/D and its horizontal axis as

a scaled range r/D. The middle region (green online) repre-

sents the duct, while the outer (red and blue online) are the

two wave regions. Turning points occur where k2
r ¼ f2

�g2=r2 ¼ 0, which is equivalent to g¼ fr. Dividing the lat-

ter equation by D specifies the sloped lines on the figure;

there are two because f differs in the wave and duct regions.

These lines are significant because for azimuthal wavenum-

bers below (or above) them, oscillatory (or exponential)

behavior arises from k2
r being positive (or negative). For

example, square symbols in Fig. 3(a) that correspond to in-

duct and in-wave TPs of WG, L-WG, and L-T modes lie on

these lines. Also, the two different f values in the wave and

duct may cause one g value to produce different mode

behavior on each side of a wave-duct interface, as for WG,

FB, and L-B modes. Only the real parts of g and f are needed

for this figure, because the imaginary parts for both parame-

ters are much smaller than the real. To illustrate use of the

figure, select a mode type and a value for g/D on the vertical

FIG. 3. (Color online.) (a) Example radial mode types: whispering gallery (WG), fully bouncing (FB), and leaky (L-WG, L-B, L-T). Turning points (TPs) indi-

cated by purple squares. (b) Schematic showing principal geometric features (oscillatory or exponential) of radial mode types, with vertical and horizontal

axes as scaled azimuthal wavenumber g/D and radius r/D. Superscript R denotes real part of complex wavenumbers; mode numbers m, n omitted on all quan-

tities. On horizontal axis 1 and X¼ 1þW/D are wave-duct interfaces; on right vertical axis, existence regions of four mode types shown for case XfR
II < fR

I .

The L-T mode region continues below horizontal axis. Sloped lines of radial wavenumbers krj ¼ ðf2
j � g2=r2Þ1=2 ¼ 0 show TP locations. (c) Same as (b),

except for case fR
I < XfR

II . Here L-WG modes occur in same relative position as FB modes in (b).
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axis, and track the behavior as r changes. For instance, con-

sidering a WG mode (top row of boxes), choose g/D that lies

in the interval fI < g=D < XfI. Moving from left to right,

there are exponentially decaying solutions in the left wave

region and left side of the duct, oscillations in the right side

of the duct up to the r¼DþW interface, and exponential

behavior in the right wave region before becoming oscilla-

tory at large enough ranges. An analogous schematic appears

as Fig. 1(b) in Ref. 2, to assist in classifying mode types and

behaviors in a coastal shelf-slope front model.

For g < XfII oscillations leak across the interface at

DþW, and thus the value XfII is a cutoff for leaky modes.

Because XfII < fI as shown on the vertical axis of Fig. 3(b), it

is not possible for an in-duct turning point to occur in the leaky

region, so L-WG modes cannot arise. Similarly, if instead fI <
XfII as shown on the vertical axis of Fig. 3(c), it can be argued

that FB modes do not arise. The relationship of these two mode

types to each other and to WG modes is reinforced by the fact

that the FB and L-WG regions are in the same relative posi-

tions on the two sub-figures. The applicable sub-figure depends

on the relative positions of fI and XfII, which in turn is deter-

mined by model parameters. Thus for fixed parameter values,

only four of the five possible mode types occur.

The quantity X¼ 1þW/D (also equal to r2/r1), appear-

ing in cutoff values that separate mode types, provides physi-

cal intuition into the formation of FB and L-WG modes. The

NIWs with smaller X values (duct width small relative to

radius of curvature) support FB modes. This is because

larger amounts of acoustic energy is more easily trapped in a

narrow region, where interaction occurs between two rela-

tively close interfaces. On the other hand, larger X values

(relatively wider ducts) have less trapping, and FB modes

are supplanted by L-WG modes. In the present problem X
remains close to 1 because W/D is typically of order 10�2;

nonetheless, small X changes are sufficient to produce differ-

ent modal types. Note that a similar scaling of wave, duct, or

front widths by a large parameter such as radius of curvature

would be necessary to apply the methodology to other cylin-

drical feature models. Another useful condition in this prob-

lem is that g and fD are of similar size, both order 104 for

parameter values of interest.

As noted, this mode type classification extends previous

work1 by distinguishing three leaky mode types. While all

three have non-negligible energy passing through the off-

shore wave-duct interface, their oscillatory behavior begins

at different locations: in the duct, at the inshore wave-duct

interface, or in the inshore wave region. Consequently, the

three types contribute differently to full acoustic field results.

In addition, specification of modal TP locations is needed for

developing wavenumber approximations in Sec. IV.

IV. PARAMETER DEPENDENCE OF ANGULAR
WAVENUMBERS

Accurate values of g that are useful for benchmarking

subsequent approximations can be found numerically from

the radial-mode dispersion relation. Determining the needed

complex roots can be challenging and inefficient, because of

complicated dispersion relation formulas such as Eqs. (9)

and (10). Further, the results do not provide physical insight

into the influence of feature-parameter variations. In contrast,

finding the response of g values to parameter changes is feasi-

ble without solving the dispersion relation, by using mode

number conservation that leads to convenient formulas for cal-

culations and for understanding parameter dependence.

Mode number conservation integrals are an acoustic

equivalent to Bohr quantization integrals14 and were previ-

ously applied to vertical waveguides.15,16,25,26 This concept

was later extended3 to radial modes in a shelf-slope front

model and used to predict accurate wavenumber variations

from its feature-parameter changes. In adapting this approach

to the NIW model, it should be mentioned that two different

radial mode indexing conventions are in the literature.

Reference 1 and this paper use n to count the number of local

amplitude extrema, that is peaks or troughs, for r � r2. The

formulations in Refs. 3 and 15 instead count the number of

modal nodes in that region. Thus, the mode number in corre-

sponding formulas [such as Eq. (8) in Ref. 3] are replaced

here by n – 1. The left side of the radial mode number conser-

vation Eq. (15) for the NIW model has an integral over a for-

mula for radial wavenumber kr, using Eq. (6):

ðDþW

sn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2ðrÞ � g2

n

r2

r
dr ¼ ðn� 1� UnÞp; (15)

and (fixed) vertical mode numbers m are suppressed in the

remainder of this section. In Eq. (15) sn is the TP located at

the smallest r value for radial mode n. The total phase cor-

rection Un is the sum of partial-oscillation phase changes in

cycles at any TPs for a mode that occur at endpoints of the

integration integral. Thus, for any selected radial mode, the

integral accounts for the number of complete and partial

oscillations between the most-inshore TP and the offshore

duct interface. That value plus Unp produces an excellent

approximation to p times the integer n – 1.

It is valuable to make use of the antiderivative of the

wavenumber integral in Eq. (15),

ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 � g2

n

r2

r
dr ¼ gn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2r2

g2
n

� 1

s
� cos�1 gn

fr

� �2
4

3
5: (16)

As in Ref. 3, define the function l(n)

lðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � 1

q
� cos�1 1

n

� �
; (17a)

ln;jk ¼ l
fjrk

gn

� �
: (17b)

The contributions from evaluating the wavenumber integral

are summarized next. The most-inshore TP at r¼ sn in

Eq. (15) for each mode type is specified in column two of

Table I. Contributions from the lower limit of integration

should be considered for all five mode types. However, for

WG, L-WG, and L-T modes [see Fig. 3(a)], it follows from

Eqs. (17a) and (17b) and sn that lðfjsn=gÞ ¼ lð1Þ ¼ 0.

Thus, the only lower-limit contributions are from TPs at the
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inshore interface for FB and L-B modes, which have �lI1

terms in their rows of the third column. The L-T mode type

has two terms from piecewise evaluation of the integral on

both sides of the interface r¼D, which produces �lI1 and

lII1. All five mode types contain a term lI2 in column three

that arises from the upper limit of integration. At this point it

is easy to express Eq. (15) in a concise form to make its

terms clear. Denote the sum of the ln contributions from col-

umn three for any mode type of number n as Rln. Then

including the phase correction Un, dividing by p, and rear-

ranging terms, Eq. (15) is simply expressed (terms in cycles)

as

n� 1 ¼ gn

p

X
ln þ Un: (18)

It remains to determine the phase contributions (column

four of Table I) from the TPs. These serve as endpoints of

the mode oscillation regions that are inshore of the interface

at DþW. It follows directly from Fig. 3(a) that there are

seven such TPs: three not at interfaces (two in duct for WG,

L-WG; one in wave for L-T), and four at interfaces (one for

WG, two for FB, one for L-B). The former three produce

terms from the WKBJ connection formulas for Airy func-

tions.27,28 These generate a –p/2 shift that contributes a cycle

shift of /¼ –1/4 to Un, as seen in column four. The latter

four TPs are modeled using Rayleigh reflection theory, and

the phase follows from using radial wavenumbers in the

reflection coefficient R,

R ¼ krI � krII

krI þ krII

: (19)

The ratio of region I and II densities is of course one, and

only the real parts of gn and f are used. As modes transition

from oscillatory to exponential behavior at an interface,

k2
rI > 0 and k2

rII < 0, so total internal reflection occurs from

Eq. (19). Its phase can be represented in polar coordinates

using an arctangent, and produces a /¼ –/k value in cycles,

where

/k ¼
1

p
tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2=r2

k � f2
II

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2

I � g2=r2
k

q
0
B@

1
CA: (20)

At an interface for a leaky mode, oscillations occur on both

sides because k2
rj > 0. As expected R is real and positive, so

there is no phase contribution. In summary of results in col-

umn four, it is easily seen from Fig. 3(a) that the in-duct TP

of WG modes accounts for the phase correction /¼ –1/4

and the interface TP accounts for /¼ –/2 from Eq. (20).

Similar reasoning applies to FB modes with two interface

turning points, giving phase corrections /¼ –/1 and

/¼ –/2. All three leaky modes have no phase change at the

r¼ r2 interface, and the single TPs contribute /¼ –1/4 for

L-WG and L-T modes, and /¼ –/1 for L-B modes. The L-T

modes cross the r¼ r1 interface, but the Rayleigh reflection

coefficient evaluates to zero there. The resulting total phase

corrections Un are summarized in column four of Table I.

For given mode numbers m and n, the expressions in the

third and fourth columns of Table I specify all quantities in

Eq. (18) except for the value of g. The resulting formula pro-

vides an implicit equation for g as a function of model

parameters that is far easier to solve numerically than the

dispersion relation. For example, Fig. 4(a) [or Fig. 4(b)] is

generated by allowing the parameter of interest D (or W) to

vary while all others are fixed at the reference values. The

solutions produce curves (shown dashed) of azimuthal wave-

numbers for 10 (or 8) modes versus the varying parameter.

The algorithm for obtaining these solutions typically con-

verges to complex gn values, of which only the real parts are

plotted. Numerical solutions of the dispersion relation for gn

are shown as symbols, different for each mode type, and are

benchmarks for the wavenumber approximations. Overall

the approximations show excellent accuracy (lines pass near

centers of symbols), with the lowest accuracy for L-T

modes. It is striking that even as modes transition from one

type to another, approximation accuracy is maintained, as

noted for a shelf-slope model.3

Figure 4(a) shows responses of scaled azimuthal wave-

number g/D to changes in radius of curvature D, with a fixed

duct width W¼ 500 m and all other parameters at their refer-

ence values. Horizontal lines (heavy solid) g/D¼ fI and

g/D¼ fII indicate two boundaries where changes in mode

type and TP (s) locations occur. Although approximation

accuracy may slightly decrease close to these curves,

improvements are possible by including additional terms.

However, this approach sacrifices the convenience of the

current versions, especially because accuracy improves to its

typical high level by moving away from the curves. One

light solid curve g/D¼XfI is an upper bound for azimuthal

wavenumbers, and the other, g/D¼XfII, separates leaky

modes from WG and FB modes. In summary, approximate

results show high accuracy across a wide range of parameter

values; specifically, in this figure, increasing or decreasing D
up to 50% from its reference value shows that scaled wave-

number curves have non-linear variations with D.

An analogous example is Fig. 4(b) for duct width W,

with radius of curvature fixed at its reference value of

D¼ 50 km. The same overall conclusions apply to this case

as to Fig. 4(a), with accurate approximate results when W
varies by up to 6 40% from its reference value. One feature

of Fig. 4(b) is the approximation-benchmark comparisons as

TABLE I. Definitions of quantities in Eqs. (15) and (18) for each mode

type. Second column sn is turning point location for lower integration limit.

Third column is an analytic expression obtained by integrating left-hand

side of Eq. (15) and using Eqs. (16), (17a), and (17b). Fourth column is sum

Un of phase changes occurring at turning points that occur with mode oscil-

lations in-duct, in-wave, or at in-shore and off-shore interfaces, with minus

sign common to all terms factored out. Mode number subscripts suppressed

in table entries.

Mode type sn

P
ln �Un

WG g/fI lI 2 1/4þ/2

FB D lI2 � lI1 /1þ/2

L-WG g=fI lI 2 1/4

L-B D lI2 � lI1 /1

L-T g=fII lI2 � lI1 þ lII1 1/4
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duct width decreases and L-B modes move into the L-T

region. A few such modes appear in Fig. 4(b), where the

solid symbols oscillate slightly around the approximation

curves. Because in-duct acoustic propagation is of primary

interest here, including additional term(s) to improve that

accuracy is not pursued. Overall the wavenumber approxi-

mations in this figure appear sufficiently accurate for deter-

mining acoustic field properties, as, for example,

transmission loss in Sec. V.

V. TRANSMISSION LOSS APPROXIMATIONS

The objective of this section is to use approximate and

numerical-benchmark angular wavenumbers g to compute

transmission loss (TL) plots for qualitative (contours) and

quantitative (level curves) comparisons. Because horizontal

field properties are of particular interest in NIW environ-

ments, the TL is examined for a single vertical mode m. Its

contribution to the time-independent pressure solution is

Pmðr; h; zÞ ¼ iwmðzsÞwmðzÞ
X

n

GmnðrsÞGmnðrÞeigmnh;

(21)

and horizontal-mode TL normalized with respect to a source

value (1 m away) is

TLm ¼ �20 log10

���� Pmðr; h; zÞ
Pmðrs; 0; zsÞ

����: (22)

For a horizontal cross-section at depth z¼ zs, Eq. (22) can be

expressed as

TLm ¼ �20 log10

���� Amðr; hÞ
Amðrs; 0Þ

����; (23)

where

Amðr; hÞ ¼ i
X

n

GmnðrsÞGmnðrÞeigmnh (24)

is the normal mode approximation to the integral in Eq. (4).

To demonstrate the capabilities of wavenumber approxi-

mations from Sec. IV, TL is computed twice from Eqs. (23)

and (24) and twice using a documented parabolic equation

(PE) algorithm.1 The same model parameter values are used:

D¼ 60 km, W¼ 500 m, reference values for others, and fre-

quency f¼ 75 Hz. The second vertical mode m¼ 2 is

selected for all examples, because for the reference parame-

ter values (at least), this mode is strongly trapped in the NIW

duct. The source is placed inside the duct at ðr; h; zÞ
¼ ðrs; 0; zsÞ, where D < rs < DþW and hI < zs < hII, to

further highlight trapping. Figure 5(a) is obtained from Eq.

(23) using numerically exact g values for n¼ 1 to 10

obtained by solving the full dispersion relation. Radial

source coordinate rs¼ 60.425 km is selected, and a specific

value for zs does not appear in horizontal TL Eqs. (23) and

(24). Next, approximate values for Re(g) at D¼ 60 km are

taken from the curves shown in Fig. 4(a), which are then used

in the same TL computation to generate Fig. 5(b). The small

imaginary parts of g found from the dispersion relation are

used in both calculations, to ensure that differences in Figs.

5(a) and 5(b) arise only from the real parts of g. Figure 5(c)

shows the TL in the same waveguide calculated using the PE

algorithm, again with vertical mode m¼ 2. Finally, Fig. 5(d) is

a second PE computation, this time with the well approxima-

tion removed and the NIW fronts as sketched by the dashed

vertical lines in Fig. 2(a), using wave width w¼ 300 m.

Comparing Figs. 5(a) and 5(b), it is clear that the wave-

number approximations preserve the pattern features of the

transmission loss field, including effects from different mode

FIG. 4. (Color online.) Parameter dependence of scaled azimuthal wavenumber gmn=D for vertical mode m¼ 2. Numerical solutions of dispersion relation

shown as solid shapes, with each mode type identified by shape and background shading. Approximation curves generated using solutions of Eq. (18). See text

discussion for definitions of horizontal lines (heavy solid) and sloped curves (light solid). Mode numbers suppressed. (a) Plot versus radius of curvature D
from 25 to 75 km, with reference value D¼ 50 km, for radial modes n¼ 1–10 (top–bottom). (b) Plot versus duct width W from 300 to 700 m, with reference

value W¼ 500 m, for radial modes n¼ 1–8 (top–bottom). Approximation accuracy excellent for nearly all cases and mode types, even as they change type.
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types. For example, mechanisms responsible for long-

distance propagation are clearly visible in both images; very

similar whispering gallery patterns are observable along the

inshore side of the outer duct interface from the four WG

modes included. Features from the four leaky modes also

remain intact using the approximate wavenumbers; beams

leaking across the offshore interface show very minor differ-

ences in positioning and intensity. The in-duct results from

Fig. 5(b), near the inshore interface region shown in the inset

plot, slightly misestimate TL compared with Fig. 5(a). The

relatively intense approximate and benchmark fields near the

offshore interface are in strong agreement along the entire

duct length shown in Figs. 5(a) and 5(b). The magnified

insets show the same number and positions of interference

beams, although the benchmark field is slightly better

defined than the approximation. A key result is the striking

pattern agreement, particularly in the duct, between Figs.

5(a), 5(b), and the PE computation in 5(c) that confirms the

approximation accuracy compared with both the benchmark

modal solution and the high-accuracy PE computation using

the well approximation. Finally, Figs. 5(c) and 5(d) illustrate

the effectiveness of the well approximation. Using the

notation w for wave width, the propagation patterns in the

wave regions D� w < r < D and DþW < r < DþW þw
cannot be accurately captured by the well approximation,

but agreement is very good with Fig. 5(d) elsewhere. For

example, the inset box in Fig. 5(d) shows partially trapped

energy in the inner wave region that is transmitted back into

the duct; although the well approximation does not handle

this behavior, the in-duct TL patterns show only minor dif-

ferences. In summary, this example supports the conclusion

that the TL field of Fig. 5(a), constructed from approxima-

tions using the approach of Sec. IV, preserves almost every

TL feature inside and outside the duct, other than in the adja-

cent wave regions without the well approximation.

Figure 6(a) plots cross sections, along the line

y¼ 59.4 km shown (blue) in Fig. 5 subfigures. The solid

(blue) curve (labeled “Numerically Exact”) is from Fig. 5(a),

and the dashed (red) curve (“Approximate”) is from Fig.

5(b). There are six distinct peaks in the duct interference pat-

tern. Counting from inshore to offshore, peak 1 shows the

largest differences in amplitude and pattern phase; peaks 4,

5, and 6 (strongest) have excellent amplitude and phase

agreement; and peaks 2 and 3 have very good maximum

FIG. 5. (Color online.) Horizontal TL comparisons in (x, y) for D¼ 60 km, W¼ 500 m, and reference values of other parameters. Point source (blue circle) at

(0, 60.425), f¼ 75 Hz, and m¼ 2. (a) Numerically exact (benchmark) computations of g from dispersion relation Eq. (10) using ten radial modes n¼ 1–10

(four WG, two FB, three L-B, one L-T). (b) Same as (a), with approximate values of Re(g) as in Fig. 4(a). (c) PE computation using same environment as (a)

and (b), including well approximation with a duct between two NIW wavefronts [solid line, Fig. 2(a)]. (d) Same as (c) but without well approximation [dashed

line, Fig. 2(a)] using wave width w¼ 300 m. In all subfigures, larger rectangular box magnifies region in smaller rectangular box to highlight details of TL

field. Key pattern features of all four subfigures correspond very well in the duct region, with disagreements mainly in wave regions of Fig. 5(d) because well

approximation is not used.
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amplitude agreement (differences of order 1 dB) with small dis-

crepancies in pattern phase. The most observable differences,

other than peak 1, are the pattern phase shifts in peaks 2 and 3,

and the two smaller fades between peaks 3 and 5. In summary,

the TL approximation provides excellent predictions for the

three peaks in the low-loss region near the offshore interface,

and good predictions elsewhere in the duct except for the low-

est peak near the inshore interface. Within both wave regions,

the error of the approximation is low.

Figure 6(b) shows incoherent transmission loss along

the same cross-sectional line y¼ 59.4 km. The same expres-

sion Eq. (23) is used, but now with Amðr; hÞ given instead by

Amðr; hÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

n

jGmnðrsÞGmnðrÞeigmnhj2
s

: (25)

Incoherent loss predictions are expected to agree well,

because the influence of benchmark and approximate angu-

lar wavenumbers is confined to radial mode functions and

coefficients. Figure 6(b) shows excellent agreement in the

whispering gallery region (including the highest peak) and

everywhere in the wave regions, along with less than 1 dB

difference elsewhere in the duct. It should be mentioned that

wavenumber approximations which are even a little less

accurate than those from Fig. 4(b) can significantly change

incoherent TL comparisons. Overall, coherent loss predic-

tions from this paper’s approach are very good.

Figure 6(c) represents a benchmark test for the well

approximation, and compares results from Figs. 5(c) and

5(d) along the line y¼ 59.4 km. Transmission loss from a PE

computation using finite wave width of w¼ 300 m (solid,

green online, labeled “PE Exact”) is compared with TL from

another treating wave width as infinite (dashed, purple, “PE

Well”). The two curves in Fig. 6(c) have excellent agreement

in the duct, except near the r¼D interface. This discrepancy

arises from energy that is reflected into the duct from the

inner wave, as is visible in Fig. 5(d), and also affects TL in

the inner wave region. The outer wave regions have pattern

oscillations without the well approximation, whereas the

solution using the well approximation tracks closely the

mean of those oscillations. An important observation is that

both PE results in the duct are very similar to Fig. 6(a); the

solid and dashed curves in Figs. 6(a) and 6(c) almost share

ink. This observation has several implications: first, modes

indeed represent a valid high-accuracy solution approach for

this NIW model; second, the well approximation has little

effect on in-duct propagation, and often provides good esti-

mates outside of the duct region; and third, the wavenumber

prediction methods outlined in Sec. IV are accurate enough

to be useful in comparison with two high-accuracy modeling

approximations.

VI. SUMMARY AND CONCLUSIONS

The 3-D shallow-water nonlinear internal wave duct

model of Lin et al.1 provides a computational approach for

examining how acoustic quantities in modal propagation

depend on the environmental feature parameters. A theoreti-

cal and analytical approach centered on mode number con-

servation, as applied to a 3-D shelf-slope model,2,3 is shown

to be useful for formulating the dependence of sound propa-

gation on nonlinear internal wave parameters. A previous

normal mode classification, which specified whispering gal-

lery, fully bouncing, and leaky modes, is extended to distin-

guish via turning point locations three categories of leaky

modes. The complete classification scheme shows the

regions of oscillation and phase changes for each possible

mode type, leading to five distinct formulas for mode num-

ber conservation.

From these five formulas, angular wavenumber responses

to changes in NIW parameters can be predicted efficiently and

without using any information from the complicated modal dis-

persion relation. Example plots are shown for wavenumber

dependence on parameters specifying radius of wavefront cur-

vature and duct width. Wavenumber approximations from

mode conservation are compared to those determined numeri-

cally from the dispersion relation, and the accuracy agreement

is excellent. The agreement is particularly important for whis-

pering gallery and fully bouncing modes that are responsible for

long-distance acoustic propagation in the duct. Wavenumber

approximations remain accurate even when parameter changes

result in transitions between different mode types.

Because of the wavenumber approximation accuracy, it

is feasible to perform sensitive computations including trans-

mission loss. Furthermore, benchmark tests against PE solu-

tions show this method can be used in conjunction with

FIG. 6. (Color online.) Transmission loss curves, from cross sections along

horizontal line y¼ 59.4 km shown (solid, blue) in Fig. 5 subfigures. Vertical

lines are wave-duct interfaces. (a) Coherent TL curves: solid (blue, labeled

“Numerically Exact”) is from Fig. 5(a), and dashed (red, labeled

“Approximate”) is from Fig. 5(b). Both coherent loss curves share close

similarities in phase and amplitude of interference patterns, such as in the

whispering gallery region near the offshore interface. Some differences

occur, as from the inshore interface to the middle of the duct. (b) Incoherent

TL curves: same as (a) but calculated using Eq. (25). Incoherent loss results

from both curves agree closely in the duct and wave regions shown. (c)

High-accuracy TL curves from PE calculations: dashed (purple, labeled “PE

Well”) is from Fig. 5(c), and solid (green, labeled “PE Exact”) is from Fig.

5(d). PE calculations without well approximation show excellent agreement

with normal mode solutions, except in two wave regions adjacent to duct

interfaces.
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model simplifications such as the well approximation. An

example of a horizontal-plane coherent loss using the

approximate wavenumbers preserves all the main features of

the numerically exact modal pressure field, particularly for

long-distance propagation patterns. A cross-sectional plot

shows only minor differences in pattern phase and ampli-

tude. As expected, incoherent loss pattern agreement is

excellent. The efficiency and accuracy of these approxima-

tions suggest usefulness in other applications. They can pro-

vide computational efficiency for insight into environmental

parameter influences on acoustic field quantities. In addition,

mode number conservation formulas can quantify the sensi-

tivity of propagation predictions to model parameter

changes, which are proxies for uncertainty in field data.

Future work can further explore influences of modeling

assumptions in this paper, by avoiding the well approxima-

tion and by including more NIW wavefronts. Taking advan-

tage of mode number conservation permits handling of

additional wave-duct interfaces for such purposes. The

approach can also be extended to models for other features,

including eddies and variable bathymetry. The approach and

results of this paper provide tools for investigating the

dependence and sensitivity of modal field properties on 3-D

physical oceanographic processes.
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