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Effects of front width on acoustic ducting by a continuous curved
front over a sloping bottom
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The behavior of sound near an ocean front in a region with wedge bathymetry is examined. The

front is parameterized as a zone of variation with inshore and offshore boundaries parallel to a

straight coastline. The importance of frontal width and frontal sound speed on the ducting of acous-

tic energy is examined. Previous analytical studies of sound propagation and parameter sensitivity

in an idealized wedge environment use an unphysical but convenient single interface front repre-

sentation, which is here replaced by a continuous sound speed profile. The continuous profile

selected is convenient for analytical investigation, but encourages the use of asymptotic approxima-

tion methods which are also described. The analytical solution method is outlined, and numerical

results are produced with an emphasis on comparing to the single interface front. These compari-

sons are made to highlight the strengths and weaknesses of the idealized model for capturing the

horizontal ducting effects. VC 2019 Acoustical Society of America.
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I. INTRODUCTION

Over the sloping bathymetry of a coastal shelf, sound

speed fronts occur due to temperature, density, and salinity

gradients.1–5 In a shelf-break front environment, the ocean

can be generally divided into three regions characterized

by sound speed behavior: inshore, offshore, and frontal.

Within the front, the sound speed gradient in range is

larger when compared to the more slowly varying inshore

and offshore regions. This kind of ocean feature can influ-

ence acoustic propagation through along-shore ducting and

refraction of acoustic energy by the front. Using mathe-

matical models of a curved coastal front, the importance of

front width can be determined, with prior analyses of a

similar environment from Lin and Lynch providing a

baseline for comparisons.6–8

To examine the ducting effects of front width over a slop-

ing bottom, the idealized front of Lin and Lynch is consid-

ered.6 This model describes the front as an instantaneous

change between isospeed inshore and offshore regions. While

convenient for analytic calculations, the effects of a more

physical continuously varying ocean are lost. This paper will

introduce a range dependent continuous inverse-square wave-

number profile, which has the advantages of representing a

continuously varying sound speed front in a mathematically

convenient form, as well as having some established applica-

tions in ocean acoustics literature.9,10 The method of normal

modes is applied, with the Wentzel-Kramers-Brillouin-Jeffreys

(WKBJ) approximation introduced for the front region to

facilitate numerical calculation of radial modes. Horizontal

wavenumber eigenvalues, radial mode eigenfunctions, and

transmission loss fields are calculated for various front widths

to illustrate front width influence on acoustic pressure. While

this paper seeks to address one unphysical aspect of the ideal-

ized wedge model, other properties such as bottom attenuation

and variability in the front structure have been examined by

other authors.11–14

II. MODEL DEVELOPMENT AND ANALYTICAL
SOLUTION

The solution method presented here will follow closely

those methods outlined by Frisk15 and Lin and Lynch6 for

acoustic pressure in a wedge with an impenetrable bottom

and a pressure release surface. This formulation will intro-

duce a continuously varying front region of constant curva-

ture with an inshore point source located at (r0, h0, y0) in

cylindrical coordinates as illustrated in Fig. 1. Spatial coordi-

nates in the wedge are y which is coincident with the shore-

line, h measuring angular displacement from the surface at

h¼ 0 and increasing towards the bottom at h¼ a, and r
which is distance from the shoreline measured perpendicular

to the shore. The front is centered at r¼ rI with a width of s,

and the sound speed inshore and offshore are given by the

constants c1 and c2 respectively, with a continuous cF(r) sat-

isfying c(rj)¼ cj at the inshore and offshore interfaces r1 and

r2. Acoustic pressure is given by the Helmholtz equation

r2 þ k2ðrÞ
� �

Pðr; h; yÞ ¼ �4p
@ðr � r0Þ

r
@ðh� h0ÞdðyÞ;

(1)

where k(r) is the range-dependent wavenumber, the time

evolution of the single frequency point source has beena)Electronic mail: bdecourcy@whoi.edu
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accounted for by factoring out e�ixt, the source frequency

given by x ¼ 2pf ; pðr; h; y; tÞ ¼ Pðr; h; yÞe�ixt, and with a

unit source strength of 1, with the appropriate implied

units of energy per length squared (J/m2). Boundary and

interface conditions on P are P(r, 0, y)¼ 0 (pressure

release), @P=@hjh¼a ¼ 0 (reflecting bottom), P(0, h, y) <1
(pressure is finite at the wedge apex), the Sommerfeld

radiation condition as r ! 1, and impedance interface

conditions at r¼ rj.

The along-shore spatial coordinate y can be converted to

and from the horizontal wavenumber spectrum ky through

the Fourier transform pair

Pðr; h; yÞ ¼ 1

2p

ð1
�1

Gðr; h; kyÞeikyydky; (2)

Gðr; h; kyÞ ¼
ð1
�1

Pðr; h; yÞe�ikyydy: (3)

The function G solves the radial mode equation

1

r

@

@r
r
@G

@r

� �
þ 1

r2

@2G

@h2
þ ðk2 � k2

yÞG

¼ �4p
@ðr � r0Þ

r
@ðh� h0Þ; (4)

and can be represented by a sum of separated eigenfunctions

G ¼
X

n

Unðh0ÞUnðhÞAnðr; kyÞ: (5)

A set of orthonormal angular eigenfunctions UnðhÞ
¼

ffiffiffiffiffiffiffiffiffiffiffi
ð2=aÞ

p
sinðgnhÞ can be derived, where gn¼ðp=aÞðn�1=2Þ

is a separation constant as well as the dimensionless angular

wavenumber. With this definition for the angular eigenfunc-

tions the radial mode equation takes the form of a Bessel

equation for the inshore and offshore regions, for which the

wavenumber is the constant value kj¼2pf/cj with j¼1 or 2

denoting inshore or offshore, respectively.6,15 Due to the

chosen coordinate system and model geometry, G is

completely separable as shown in Eq. (5). Range-dependent

perturbations to the model that would break the separability

of G will require a mode coupling treatment.16

Within the front region, the square of the wavenumber

will be represented by an inverse square wavenumber profile

kFðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2=r2

p
as shown in Fig. 2, which allows the

radial mode equation to remain a Bessel type equation,

1

r

d

dr
r

dAn

dr

� �
þ a2 � k2

y

� �
� g2

n � b2
	 


r2

� �
An

¼ �4p
dðr � r0Þ

r
: (6)

The constants a and b are chosen such that k(r1)¼ k1 and

k(r2)¼ k2. The radial mode function An is determined by

matching two solutions of the radial mode equation found

with the method of variation of parameters, each solving one

of the boundary conditions (at r¼ 0, and at r¼ r1) on either

side of the point source at r¼ r0,6,15,17 and is expressed as a

linear combination of Bessel type functions as

Anðr; kyÞ ¼
i2p2

1� Rn
Jgn
ðkr1r0ÞBnðr; kyÞ; (7)

where kr1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

1 � k2
y

q
, Rn acts like a reflection coefficient

related to energy that returns to the inshore region r < r1

after being refracted back by the front, and Jn is the Bessel

function of the first kind. The function Bn is

Bnðr; kyÞ ¼

1

2

Jgn
kr1rð Þ

Jgn
kr1r0ð Þ Hð1Þgn

kr1r0ð Þ þ RnHð2Þgn
kr1r0ð Þ

h i
; 0 � r < r0;

1

2
Hð1Þgn

kr1rð Þ þ RnHð2Þgn
kr1rð Þ

h i
; r0 < r � r1;

d1nH
ð1Þ
�i�n

krFrð Þ þ d2nH
ð2Þ
�i�n

krFrð Þ; r1 � r � r2;

TnH
ð1Þ
gn

kr2rð Þ; r2 � r;

8>>>>>>>>><
>>>>>>>>>:

(8)

FIG. 1. (Color online) Model geometry for the shelf-slope wedge with con-

tinuous sound speed front. Model parameters are: front location rI, front

width s, bottom slope angle a, source frequency f, inshore/offshore sound

speeds c1/c2. Boundary conditions are pressure release at the surface h¼ 0

and reflection at the bottom h¼ a.

FIG. 2. (Color online) Illustration of four radially defined ocean regions of

physical importance in the model. The inshore region is comprised of I

and II, which in turn lie on either side of the radial location of the inshore

point source at r¼ r0. The front region is denoted by III, while the off-

shore region is IV.

1924 J. Acoust. Soc. Am. 146 (3), September 2019 DeCourcy et al.



where kr2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

2 � k2
y

q
; �n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � g2

n

p
; krF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � k2

y

q
,

and H
ð1;2Þ
gn

are Hankel functions of the first and second kind.

Figure 2 illustrates the division of r into four regions I, II,

III, and IV relative to the r locations 0, r0, r1, and r2, with I

and II representing the inshore region, III the front, and IV

offshore. The quantity Rn can be derived by satisfying the

conditions of continuity for the radial mode function and its

derivative at r1 and r2, and the condition of finiteness at

r¼ 0. It is expressed as

Rn ¼ �
D11E1 � D12E2

D21E1 � D12E2

FD; (9)

where

Dpq ¼
krq

H
ðpÞ0
gn
ðkrqrqÞ

H
ðpÞ
gn
ðkrqrqÞ

� krF

H
ð1Þ0
�i�n

krFrqð Þ
H
ð1Þ
�i�n

krFrqð Þ

krq
H
ðpÞ0
gn
ðkrqrqÞ

H
ðpÞ
gn
ðkrqrqÞ

� krF

H
ð2Þ0
�i�n

krFrqð Þ
H
ð2Þ
�i�n

krFrqð Þ

; (10)

F ¼
kr1

H
ð1Þ0
gn
ðkr1r1Þ

H
ð1Þ
gn
ðkr1r1Þ

� krF

H
ð2Þ0
�i�n

krFr1ð Þ
H
ð2Þ
�i�n

krFr1ð Þ

kr1

H
ð2Þ0
gn
ðkr1r1Þ

H
ð2Þ
gn
ðkr1r1Þ

� krF

H
ð2Þ0
�i�n

krFr1ð Þ
H
ð2Þ
�i�n

krFr1ð Þ

: (11)

Eq ¼
H
ð1Þ
�i�n

krFrqð Þ
H
ð2Þ
�i�n

krFrqð Þ
; D ¼ H

ð1Þ
gn
ðkr1r1Þ

H
ð2Þ
gn
ðkr1r1Þ

: (12)

The coefficients d1n, d2n, and Tn can be found simultaneously

with Rn by satisfying the continuity conditions on the radial

mode function and its derivative.

The pressure P can now be expressed as

Pðr; h; yÞ ¼ i
2p
a

X
n

sin gnh0ð Þsin gnhð Þ

�
ð1
�1

Jgn
kr1r0ð ÞBnðr; kyÞeikyy

1� Rn
dky; (13)

after substituting Eqs. (5), (7), and (8) into Eq. (2). The inte-

gral in Eq. (13) can be approximated by complex integration

using residue theory. First, the existence of the square roots

in Bn introduce branch cuts in the ky plane emanating from

the points 6k1, 6k2, and 6a. The Pekeris branch cut will be

used for these, which will expose leaky mode eigenvalues in

the first quadrant of the ky plane.18 The Hankel functions

have a singularity where the argument is zero, occurring at

the branch points 6k1, 6k2, and 6a, which will be excluded

from the interior of the closed integration path to be chosen

in the ky plane. There will be singularities in the integrand

where Rn¼ 1, which are also the locations of the eigenvalues

in the ky plane denoted ky,nm, where m represents the m-th

radial mode eigenvalue associated with angular mode n.

A closed integration path illustrated in Fig. 3 and as

described in Lin and Lynch is used, which includes a seg-

ment along the real ky axis that avoids branch points,

integration paths that run along either side of the branch

lines in the first quadrant of the ky plane, and a path that

approaches infinity in the upper half ky plane.6 The integral

along the last integration path vanishes, while the branch

line integrals can be ignored if only the far field is of inter-

est.18,19 For a closed path C as described above, the far-field

approximation and the residue theorem20 together state thatÐ1
�1 �

Ð
C ¼ 2pi

P
ðresiduesÞ,

Pðr;h;yÞ��4p2

a

X
n

sinðgnh0ÞsinðgnhÞ
X

m

eiky;nmy

�Res
Jgn

kr1r0ð ÞBnðr;kyÞeikyy

1�Rn
;ky;nm

 !
; (14)

where Res(F(z), zm) is the residue of F at zm, and is defined

by ð1=2piÞ
Ð

Cm
FðzÞdz ¼ ResðFðzÞ; zmÞ, for a closed contour

Cm which contains only zm and no other singularities.20

Because Hankel functions only have singularities21 in the ky

plane where ky¼6k1, 6k2, 6a, and as it is unlikely that an

eigenvalue will coincide with these values, a path Cm can be

defined in a neighborhood of any ky,nm that will not contain

any singularities arising from the Hankel functions. There

may be locations in the ky plane where d1n, d2n, Tn, or Rn

have singularities. Again, these are not expected to coincide

with ky,nm in which case there will be a valid contour Cm to

calculate the residue.

The residue in Eq. (14) is calculated under the assumption

that the ky,nm are simple poles. A pole at ky,nm will have multi-

plicity higher than 1 if ð@=@kyÞð1� RnÞky¼ky;nm
¼ 0, in which

case the complex integration requires more care.22,23 Due to

the complexity of the dispersion relation for this model, its

derivative can be tested numerically for each eigenvalue to

determine if its multiplicity is higher than 1. For eigenvalues

tested and presented in this paper, none have multiplicity

higher than 1, so calculations will proceed with this in mind.

For simple poles, Eq. (14) can be approximated as

Pðr;h;yÞ�4p2

a

X
n;m

sinðgnh0ÞsinðgnhÞJgn
kr1;nmr0ð Þ

� dRn

dky

����
ky¼ky;nm

" #�1

Wn r;ky;nmð Þeiky;nmy; (15)

with

FIG. 3. (Color online) The Pekeris branch cut, isolating the integration path

around the branch line CB, and exposing the leaky mode eigenvalues (blue

diamonds above the horizontal real axis).
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Wn r; ky;nmð Þ ¼
Jgn

kr1;nmrð Þ; 0 � r � r1;

d1nH
ð1Þ
�i�n

krF;nmrð Þ þ d2nH
ð2Þ
�i�n

krF;nmrð Þ; r1 � r � r2;

TnH
ð1Þ
gn

kr2;nmrð Þ; r2 � r:

8><
>: (16)

III. WKBJ APPROXIMATION OF THE FRONT REGION

To aid in numerical computations involving radial

behavior in the front, the radial mode equation within the

front will be approximated using the WKBJ method, which

will yield approximated radial mode functions and an

approximated dispersion relation. The first step will be to

transform the radial mode equation into a more convenient

form by introducing the function b(s)¼ r1/2W(r), where

s ¼ r�1
I r. This leads to the equation

d2b00ðsÞ � hðsÞbðsÞ ¼ 0; (17)

where

hðsÞ ¼ 1

s2
t

� 1

s2

� �
; (18)

and d¼ (�2 þ 1/4)�1/2, and st¼ (qFrId)�1. The term q2
F

¼ �k2
rF has been introduced, because for lower radial mode

numbers which are associated with the trapped modes, a2

< k2
y for real ky. For ky within the WG and TR regions,

st� 1, and will grow as radial mode number increases.

The function h(s) has a zero at s¼ st, so st is a turning

point of Eq. (17) where the behavior of b(s) transitions

between exponential and oscillatory. This information can

be used to classify radial mode behavior and types, by using

the oscillatory or exponential characteristics of a mode to

determine if it is trapped or leaky. Introducing the notation

jrðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ðrÞ � k2

y � ðg2
n=r2Þ

q
to represent the radial wave-

number as the square root of the square of the wavenumber

in the water minus the squares of the horizontal wavenumber

ky and the scaled azimuthal wavenumber gn/r, the function

h(s) can be expressed as

hðsÞ ¼ �r2
I d

2 j2
r ðrÞ �

1

4r2

� �
: (19)

Therefore, the turning point in r, given by rt occurs when

jr(rt)¼ 1/(2rt), for some r1 < rt < r2. Solving for rt gives

rt ¼ q�1
F

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

n � 1
p

� �n=qF, which is the location at which

jr(r)¼ 0. Because rt is dependent on ky, for a given eigen-

value ky,nm, the radial mode shape will differ as ky changes.

Figure 4 illustrates the expected behavior of the radial

mode functions by indicating oscillatory or exponential

behavior in the ðg2=r2;ReðkyÞ2Þ plane, with the zeros of

jr(r) shown as thick solid lines. Three clear mode types

appear in the illustration: whispering gallery (WG) modes

are trapped modes with purely exponential decay offshore

for real ky, leaky modes with purely oscillatory behavior off-

shore, and between the two in the ky spectrum are transition

(TR) modes which are not trapped, but which transmit less

energy offshore due to the range-dependent nature of the

radial wavenumber. This behavior for TR modes is seen in

the mixed exponential behavior between the offshore inter-

face of the front at r2, and an offshore turning point at

jr2(r)¼ 0, before they transition to purely oscillatory behav-

ior beyond the turning point. The real ky spectrum is there-

fore divided into three regions, with WG modes occurring

when k2 < ReðkyÞ < k�1, TR modes occurring when

k�2 < ReðkyÞ < k2, and leaky modes occurring when

0 < ReðkyÞ < k�2. The quantity k�j denotes locations at which

FIG. 4. (Color online) Diagram of the general mode behavior in r dependent on horizontal wavenumber ky in the ðg2
n=r2;Reðk2

y ÞÞ plane. Curves for jr(r)¼ 0

are labeled in the figure, with regions above the curves exhibiting exponential behavior and regions below exhibiting oscillatory behavior. Three mode types

are identified based on the exponential/oscillatory distinctions: whispering gallery (WG), transition (TR), and leaky.

1926 J. Acoust. Soc. Am. 146 (3), September 2019 DeCourcy et al.



the radial wavenumber will have zero real part at r1 or r2,

and is defined k�j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

j � ðg2
n=r2Þ

q
.

For complex ky, Re(st) > 0, and due to the fact that

Re(ky) � Im(ky) in the WG and TR regions (to be shown in

Sec. IV, and as seen in Refs. 6 and 7) as well as for a consid-

erable number of leaky modes, the introduction of a nonzero

imaginary component of ky will serve to slightly perturb the

behavior of the WG mode approximations that assume

Im(ky)¼ 0. For this reason, classification of modes hence-

forth will be based solely on the real component of ky, and

the imaginary component of rt will not be considered.

For small d in Eq. (17), the uniformly valid WKBJ

approximation is24

bðsÞ � d�1=6 f ðsÞ
hðsÞ

� �1=4

a0Ai d�2=3f ðsÞ
� �h

þb0Bi d�2=3f ðsÞ
� �i

; (20)

where

f ðsÞ ¼

3

2

ðs

st

ffiffiffiffiffiffiffiffiffiffiffi
jhðtÞj

p
dt

" #2=3

; st � s;

� 3

2

ðst

s

ffiffiffiffiffiffiffiffiffiffiffi
jhðtÞj

p
dt

� 
2=3

; s � st:

8>>>>><
>>>>>:

(21)

For the reference parameter values used for numerical calcu-

lations (as described in Sec. IV), d� ��1 is around 1/300 to

1/150, so the WKBJ approximation is valid. Transitioning

back to the model variables and functions, the radial mode

function within the front can be approximated by

AFnðrÞ � a0F1ðrÞ þ b0F2ðrÞ; (22)

where the linearly independent functions F1 and F2 are given

by

F1ðrÞ ¼ GðrÞAi cgðrÞð Þ; F2ðrÞ ¼ GðrÞBi cgðrÞð Þ; (23)

with

GðrÞ ¼
ffiffiffiffiffi
3

2c

s
gðrÞ

z2
r � 1

 !1=4

; (24)

gðrÞ ¼ lðzrÞð Þ2=3; rt � r;

� nðzrÞð Þ2=3; r � rt;

(
(25)

lðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1
p

� cos�1 1

z

� �
; (26)

nðzÞ ¼ ln
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2
p

z

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2
p

; (27)

and where rt¼ (qFd)�1, zr¼ r/rt, and c ¼ ð3
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ ð1=4Þ

p
Þ2=3

.

Now that the radial mode functions have been approxi-

mated within the front, these approximations will be applied

to the dispersion relation. For ease of calculation, the two

linearly independent functions H
ð1Þ
�i�n
ðkrFrÞ and H

ð2Þ
�i�n
ðkrFrÞ

can be replaced in the dispersion relation given by Eq. (9) by

the two approximated linearly independent functions F1

and F2. This will require the approximation of the quantities

F01ðrÞ=FðrÞ; F02ðrÞ=FðrÞ, and F1(r)/F2(r). After some lengthy

calculations, the resulting approximations are

F01ðrÞ
F1ðrÞ

¼ 1

6r

ffiffiffiffiffiffiffiffiffiffiffiffi
z2

r �1
p
gðrÞ3=2

1þ4cgðrÞAi0 cgðrÞð Þ
Ai cgðrÞð Þ

 !
� 1

2r

z2
r

z2
r �1

;

F1ðrÞ
F2ðrÞ

¼Ai cgðrÞð Þ
Bi cgðrÞð Þ ; (28)

and with F02ðrÞ=F2ðrÞ defined as F01ðrÞ=F1ðrÞ with Ai(	)
replaced with Bi(	).

IV. INFLUENCE OF FRONT WIDTH VARIATIONN

Now consider numerical results for the following

parameter values, which agree with those used by Lin and

Lynch to allow for easier comparison:6 center of the front at

rI¼ 4000 m, bottom slope a¼ 3
, inshore sound speed

c1¼ 1500 ms�1, offshore sound speed c2¼ 1520 ms�1, and

source frequency f¼ 25 Hz. The values of the front width s
will be given explicitly in the following numerical calcula-

tions. To determine the eigenvalues, the dispersion relation

as given by Eq. (9) set equal to 1 is solved for ky. The

approach used to find these modes locates the curve in the

complex ky plane along which jRnj ¼ 1 within a thin strip,

and then slices the strip into individual boxes containing

intersections of jRnj ¼ 1 and contours of zero phase. The

boxes containing eigenvalues are then iteratively refined to

at most 10�8 in length along the real and imaginary axes,

and the eigenvalue location within the refined box is approx-

imated by calculating the intersection of the jRnj ¼ 1 and

arg(Rn)¼ 0 curves which are assumed to be nearly linear at

this scale.

Figure 5(a) shows a portion of the ky plane with eigen-

values for a 100 m front, and angular modes n¼ 1–3. Dashed

vertical lines are placed to illustrate the separation between

leaky modes and TR or WG modes, with leaky modes falling

to the left of each color-coded dashed line (leaky/trapped

division line for n¼ 1 is the right-most, while n¼ 3 is the

left-most). Figures 5(b) and 5(c) give similar results for front

widths of 50 and 0 m respectively.

A clear difference between the three illustrated front

widths are the appearance and locations of local peaks in the

imaginary components of ky. These peaks occur at predict-

able values, when the differences in phase of the radial

modes across the front are close to an integer multiple of p,

achieving near-resonance. The phase difference across the

front can be approximated by the front width multiplied by

an average radial wavenumber in the front, leading to the

simple equation

sjrðrIÞ ¼ Np; (29)

for integers N¼ 1, 2, 3, …, where any eigenvalues ky,nm for

which Eq. (29) is approximately true can be classified as

near resonant (NR). A simple relation between s and the ky
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values for which near-resonance occurs can be achieved, by

noting that for a fixed N in Eq. (29), s is inversely propor-

tional to the radial wavenumber, such that an increase in s
must be accompanied by a decrease in the real part of jr,

which must in turn be accompanied by an increase in the

real part of ky by the relation k2ðrÞ ¼ j2
r ðrÞ þ k2

y þ g2
n=r2,

assuming Im(ky) � Re(ky). Therefore, as the front width

increases, the first modes exhibiting near resonance occur at

lower indices, and as s goes to zero near-resonance eventu-

ally disappears, agreeing with the behavior seen in Fig. 5.

One final difference to note is most clearly shown in

Fig. 5(d), in which radial modes are plotted for n¼ 1 and the

three front widths of 100, 50, and 0 m. A general trend of

increasing Im(ky) with increasing s is seen, which suggests

that larger front widths are associated with “leakier” leaky

modes, as higher energy decay along shore is necessarily

related to higher transmission of energy offshore.

To see this last point more clearly, consider Fig. 6,

which shows how individual modes change with front width.

In both Figs. 6(a) and 6(b), all radial mode eigenvalues

shown are associated with angular mode n¼ 1, and similar

mode numbers m are connected by dashed lines across the

various front widths of 0, 25, 50, 75, 100, and 200 m. The

radial modes plotted are m¼ 12–21 in Fig. 6(a) and

m¼ 32–41 in Fig. 6(b). Modes m¼ 12–21 are the lowest

mode numbers associated with leaky modes at reference

parameter values, with modes m¼ 1–11 being WG and TR

modes. For these leaky modes, the general trend observed is

an increase in the imaginary component of ky as the front

width increases. It is also apparent that the growth of Im(ky)

with growing s is sensitive to the initial ky value. In Fig.

6(b), a selection of modes that are near resonance are shown.

Modes m¼ 37–41 do not exhibit a growth in Im(ky) as s
increases from 75 m, as the NR status of a mode disrupts the

monotonic growth of Im(ky) seen in modes 32–36, as well as

all modes in Fig. 6(a).

Figure 7 illustrates the first five radial modes associated

with each of the first three angular modes for a front width

of s¼ 100 m, illustrated by the dashed horizontal lines. The

trapping of energy that was seen by Lin and Lynch6 is also

present here, with the Whispering Gallery effect manifesting

as a trapping of acoustic energy close to the inshore side of

the interface. With this in mind, it is pertinent to address the

effects of various front widths on the behavior of these WG

and other modes to see if the physical simplification of an

idealized front loses some of the expected behaviors, or if it

is a strong representation of the acoustic ducting effects in

this environment.

In Fig. 8, two radial modes are shown for angular mode

n¼ 1 and front widths of s¼ 0, 100, and 200 m. For both

modes pictured, the idealized front mode is given by the

thick solid lines (blue for real components, red for imagi-

nary), and the location of the idealized front is denoted by a

thick vertical black line. For the front width of 100 m, the

FIG. 5. (Color online) Radial mode eigenvalues in the ky plane for angular mode numbers n¼ 1 (blue circles), n¼ 2, (red triangles), and n¼ 3 (brown squares).

Vertical dashed lines represent Re(ky) cut-off value separating leaky modes (to the left) from TR and WG modes (to the right). (a) Front width s¼ 100 m, (b)

Front width s¼ 50 m, (c) Front width s¼ 0 m. (d) A comparison of angular modes n¼ 1 only for front widths s¼ 0 (red circles), s¼ 50 (blue triangles),

s¼ 100 (black squares).
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modes are represented by thin solid lines, as are the inshore

and offshore interfaces of the front, and the 200 m front is

similarly represented by thin dashed lines. In Fig. 8(a), the

WG mode m¼ 8 is shown, and for all front widths repre-

sented it appears to undergo very little perturbation, with the

mode shapes for the three front widths sharing enough ink as

to make the differences imperceptible in many areas. In con-

trast, Fig. 8(b) shows the leaky mode m¼ 16, and in this

case the influence of front width is far more visible. Inshore,

the mode shapes are in closer agreement for smaller r, with a

slight phase shift appearing as the mode approaches the

front, as well as a slight growth in mode amplitude.

Offshore, the phase and amplitude differences are more

exaggerated, with amplitude nearly doubling a short distance

front the front. Figure 8(c) shows a closer view of the front

region for m¼ 16, in which it is clear that the divergence

from the idealized mode shape is far more exaggerated for

the front width of 200 m compared with 100 m. The behav-

iors seen in these two modes in Fig. 8 are not too surprising,

as the eigenvalue behavior shown in Figs. 5 and 6 suggest

that Im(ky) increases with increasing front width, and that

this increase is greater for larger radial mode numbers, i.e.,

FIG. 7. (Color online) Sample radial and angular mode profiles for front width of 100 m: (a) Angular mode n¼ 1 and radial modes m¼ 1–5, (b) angular mode

n¼ 2 and radial modes m¼ 1–5, (c) angular mode n¼ 3 and radial modes m¼ 1–5. Real components shown as solid lines, imaginary components as dashed

lines.

FIG. 6. (Color online) Evolution of eigenvalues in the ky plane as front width changes. A single radial mode number m is represented by identical symbols con-

nected by dashed lines. A collection of radial modes for a single front width s share the same color, corresponding to the legend. (a) Radial mode numbers

m¼ 12 to 21, representing leaky modes with the lowest mode numbers. (b) Radial mode numbers m¼ 32 to 41, illustrating a non-monotonic growth of Im(ky)

near NR modes.
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“leakier” modes. An interpretation of these results is that the

trapping behavior exhibited by WG and TR modes which

have zero or nearly zero Im(ky,nm) is captured well by the

idealized front model, while the leaky modes are not.

The goal of the approximation of Eq. (15) which ignores

contributions from branch line integrals is to conveniently

represent the far-field behavior in y. It is expected that by

excluding the branch line integrals, the near-field will lose

accuracy, but by including leaky modes that are exposed by

the Pekeris branch cut, an approximation of the near-field

can be achieved.18 The far-field is described by the WG and

TR modes, which propagate long distances along shore in

the y direction due to their zero or near-zero Im(ky,nm) val-

ues, while leaky modes will have little influence in the far-

field due to their larger Im(ky,nm) values. Closer to the

source, more leaky modes are required to represent the field,

and with larger front widths associated with higher Im(ky)

values in the leaky modes, the influence of leaky modes will

be less apparent in the far-field for larger width continuous

fronts. A rough approximation of the limit on the influence

of a single leaky mode can be calculated by assuming that

behavior of a single mode in the (r, y) plane is largely gov-

erned by the plane wave approximation exp ðijr;nmðrÞr
þiky;nmyÞ. Using a 1/e decay rate to judge the influence of

leaky modes in the (r, y) plane, the range in y that a leaky

mode will propagate at a given r and for a given eigenvalues

ky,nm is approximately y ¼ ~yðr; n;mÞ ¼ ½1� Imðjr;nmðrÞÞr�=
Imðky;nmÞ, where jr;nmðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ðrÞ � k2

y;nm � ðg2
n=r2Þ

q
. To

properly evaluate the acoustic pressure at a location (r*, y*),

all modes for which ~yðr�; n;mÞ > y� must be included. This

leads naturally to the definition

ymaxðr; nÞ ¼ ~yðr; n;MÞ; (30)

where M is the last in a finite set of consecutive mode num-

bers beginning with 1.

Figure 9 gives the transmission loss field in the (r, y)

plane located at h¼ 1.5
 for a source located at (r0, h0, y0)

¼ (3900 m, 1.5
, 0 m), and with a front width of s¼ 100 m.

Figures 9(a)–9(c) show the contributions from angular

modes n¼ 1, 2, and 3 respectively, with 66 radial modes in

Fig. 9(a), 42 modes in Fig. 9(b), and 24 modes in Fig. 9(c) to

illustrate the extent that a finite sum of modes can represent

the far-field. Figure 9(d) includes all modes represented in

Figs. 9(a)–9(c). In all subfigures, the dotted lines represent

the ymax value which denotes the limit to the accuracy of a

finite sum approximation under the 1/e decay condition.

Regions of the (r, y) plane to the right of and above these

lines are well represented by the finite sum of modes, as all

modes that propagate into that region are included, while the

regions to the left of and below these lines cannot be consid-

ered accurately represented, as not all modes that contribute

to that portion of the field are included. In Fig. 9, only the

positive y axis is shown as the field is symmetric across

y¼ 0.

To best understand the impact of front representation on

the acoustic ducting effect, a relative difference between the

transmission loss in a 100 m front model compared to an 0 m

front model can be considered, by examining D100 ¼ jTL0

�TL100j=TL0, where TLs is the transmission loss calculated

for a front of width s. Figure 10(a) illustrates this value in

the (r, y) plane at h0¼ 1.5
 and r0¼ 3900 m, using the same

m and n values present in Fig. 9 for the front of 100 m, and

analogous mode numbers for the idealized front of 0 m. Four

relative difference levels are considered: D100 < 0:01; D100

< 0:05; D100 < 0:1, and D100 > 0:1, with higher relative

difference represented by darker shades. Additionally, the

relative field differences are shown for a source located at

r¼ 3900 m (a) and a source at r¼ 3000 m (b) to illustrate

the effects of the front representation for a source located

farther inshore, and that the influence of the sharp front

approximation is less pronounced for such a source location.

FIG. 8. (Color online) Illustration of the evolution of radial mode shape as front width changes. Blue (dark) lines represent real components, while red (light)

represent imaginary components. The thick solid lines represent a reference idealized front with s¼ 0 m, thin solid lines represent a front width of s¼ 100 m,

and dashed lines represent a front width of s¼ 200 m. Vertical thick solid, thin solid, and dashed lines represent the idealized, 100 m, and 200 m fronts, respec-

tively. (a) Mode n¼ 1, m¼ 8, (b) mode n¼ 1, m¼ 16, (c) close-up on the front region of n¼ 1, m¼ 16.
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First, consider the regions in Fig. 10(a) which indicate

agreement between the two fields within 1%, shown in white

in the contour plot. These areas are concentrated largely

where the ducting is observed, between the front and the

inshore shadow zones. The introduction of the 100 m

continuous front does little to alter this behavior inshore,

which is dominated by the WG and TR modes. This is

expected, as it was previously observed that the WG and TR

modes are not as sensitive to the front width compared to

leaky modes.

FIG. 9. (Color online) Transmission loss fields in the (r, y) plane at h¼ 1.5
, for a source located at r0¼ 3900 m, y0¼ 0 m, h0¼ 1.5
 denoted by a white star,

and a front width of s¼ 100 m. (a) Contribution from angular mode n¼ 1 and radial modes m¼ 1–66. Horizontal solid lines represent the front interfaces,

while the horizontal dashed line is at r¼ rI. The dotted curves represent the locations of e�1 decay for modes at the given n. (b) Angular mode n¼ 2, radial

modes m¼ 1–42. (c) Angular mode n¼ 3, radial modes m¼ 1–24. (d) All modes from (a)–(c).

FIG. 10. Relative difference D100

¼ jTL0 � TL100j=TL0 between trans-

mission loss fields for front widths of 0

and 100 m. The four color levels repre-

sent agreement to within 1%, 5%,

10%, or greater than 10% in order of

increasing shades.
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In the darkest shaded regions of Fig. 10(a), the relative

difference between the two considered TL fields is greater

than 10%. Three major regions of disagreement are

observed: the near field, close to y¼ 0, the shadow zones

close to r¼ 0, and the front region, close to r¼ rI. For the

near-field, disagreement between the 100 and 0 m fronts is

not of significant interest, as the approximation given here is

for the far-field, and not enough leaky modes are included to

arrive at any conclusions for this area. In the shadow zones

inshore, energy does not propagate, so disagreement between

the two fields is also of little interest, as much of it could be

due to limits in numerical accuracy for small values. The pri-

mary region of interest for disagreement between the two

fields is in the vicinity of the front. It is clear that the inter-

ference patterns for the two front widths do not align, so this

must be considered when choosing to use an idealized front

model to gain insight on interference patterns near the front,

and this becomes more important when the source is close to

the front.

V. CONCLUSION

The effects on acoustic propagation of a curved continu-

ously varying sound speed front over a sloping bottom are

examined in comparison to a benchmark model of an ideal-

ized front by Lin and Lynch.6 To account for the continuous

front, an inverse square wavenumber profile is used in place

of a sharp discontinuity, which has the benefit of convenient

mathematical interpretations in terms of Hankel functions.

With the introduction of a more physically acceptable front

representation, the same mode types that appeared in the ide-

alized model are present, with the whispering gallery modes

that account for trapping of energy on the inshore side of the

front exhibiting nearly identical mode shapes for those front

widths considered when comparing with the idealized

results. In contrast, leaky modes behave quite differently

than their idealized counterparts, propagating shorter distan-

ces along shore as more energy passes through the front

rather than being refracted by it. In addition to the difference

in the amount of ducted energy for the leaky modes, some

leaky modes can be classified as near-resonant in the contin-

uous model, which can be characterized by a larger imagi-

nary component in the associated ky eigenvalue, indicating

stronger transmission across the front than neighboring

modes.

Despite the noted differences, the idealized front model

does an excellent job of describing the general acoustic duct-

ing behavior inshore. Notable deviations from the continu-

ous model are exhibited mainly in the interference patterns

near the front, due to the reflective nature of the idealized

model compared with the refractive nature of a continuous

sound speed front. For the purposes of providing insight into

the shelf-slope environment, representing the front with an

idealized jump in sound speed does not significantly alter the

along-front ducting of sound inshore, such that interest in

inshore propagation in the shelf-slope front environment can

be safely investigated with the convenient idealized front

formulation. The structure of the front will understandably

play a larger role in behavior in and around the front, in

which case it is recommended that a continuous representa-

tion is considered.

ACKNOWLEDGMENTS

The authors would like to thank Dr. T. F. Duda for his

comments on this work. This work was supported by the

Office of Naval Research under grants to Rensselaer

Polytechnic Institute (Grant No. N00014-14-1-0372, which

is a Special Research Award in Ocean Acoustics for the

Ph.D. degree of B.J.D., and also Grant No. N00014-17-1-

2370), and to Woods Hole Oceanographic Institution (Grant

No. N00014-11-1-0701 which is a Multidisciplinary

University Research Initiative, and Grant No. N00014-18-1-

2172 which is a Postdoctoral Fellowship for B.J.D.).

1T. H. Kinder and L. K. Coachman, “The front overlaying the continen-

tal slope in the Eastern Bering Sea,” J. Geo. Res. 83, 4551–4559

(1978).
2A. R. Parsons, R. H. Bourke, R. D. Muench, C.-S. Chiu, J. F. Lynch, J. H.

Miller, A. J. Plueddemann, and R. Pawlowicz, “The Barents Sea Polar

Front in summer,” J. Geo. Res. 101, 14201–14221 (1996).
3C. A. Linder and G. Gawarkiewicz, “A climatology of the shelfbreak

front in the Middle Atlantic Bight,” J. Geo. Res. 103, 18405–18423

(1998).
4J. F. Lynch, A. E. Newhall, B. Sperry, G. Gawarkiewicz, A. Fredricks, P.

Tyack, C.-S. Chiu, and P. Abbot, “Spatial and temporal variations in

acoustic propagation characteristics at the New England Shelfbreak

Front,” IEEE J. Ocean. Eng. 28, 129–149 (2003).
5B. J. Sperry, J. F. Lynch, G. Gawarkiewicz, C.-S. Chiu, and A. Newhall,

“Characteristics of acoustic propagation to the Eastern Vertical Line Array

Receiver during the Summer 1996 New England Shelfbreak PRIMER

Experiment,” IEEE J. Ocean. Eng. 28, 729–749 (2003).
6Y.-T. Lin and J. F. Lynch, “Analytical study of the horizontal ducting of

sound by an oceanic front over a slope,” J. Acoust. Soc. Am. 131,

EL1–EL7 (2012).
7B. J. DeCourcy, Y.-T. Lin, and W. L. Siegmann, “Approximate formulas

and physical interpretations for horizontal acoustic modes in a shelf-slope

front model,” J. Acoust. Soc. Am. 140, EL20–EL25 (2016).
8B. J. DeCourcy, Y.-T. Lin, and W. L. Siegmann, “Estimating the parame-

ter sensitivity of acoustic mode quantities for an idealized shelf-slope

front,” J. Acoust. Soc. Am. 143, 706–715 (2018).
9M. J. Buckingham, “On acoustic transmission in ocean-surface wave-

guides,” Philos. Trans. Phys. Sci. Eng. 335, 513–555 (1991).
10A. J. Robins, “Reflection of a plane wave from a fluid layer with continu-

ously varying density and sound speed,” J. Acoust. Soc. Am. 89,

1686–1696 (1991).
11F. B. Jensen and W. A. Kuperman, “Sound propagation in a wedge-shaped

ocean with a penetrable bottom,” J. Acoust. Soc. Am. 67, 1564–1566

(1980).
12G. B. Deane and C. T. Tindle, “A three-dimensional analysis of acoustic

propagation in a penetrable wedge slice,” J. Acoust. Soc. Am. 92,

1583–1592 (1992).
13G. B. Deane and M. J. Buckingham, “An analysis of the three-dimensional

sound field in a penetrable wedge with a stratified fluid or elastic bottom,”

J. Acoust. Soc. Am. 93, 1319–1328 (1993).
14A. D. Heathershaw, C. E. Stretch, and S. J. Maskell, “Coupled ocean-

acoustic model studies of sound propagation through a front,” J. Acoust.

Soc. Am. 89, 145–155 (1991).
15G. V. Frisk, Ocean and Seabed Acoustics: A Theory of Wave Propagation

(Prentice-Hall, Englewood Cliffs, NJ, 1994), Chap. 4.7, Appendix B.
16A. D. Pierce, “Extension of the method of normal modes to sound propa-

gation in an almost-stratified medium,” J. Acoust. Soc. Am. 37, 19–27

(1965).
17C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for

Scientists and Engineers (McGraw-Hill, New York, 1978), Chap. 1.5.
18F. B. Jensen, W. A. Kuperman, M. B. Porter, and H. Schmidt, Computational

Ocean Acoustics, 2nd ed. (Springer, New York, 2011), Chap. 1, Sec. 1.3.4;

Chap. 2, Secs. 4.5.2, 4.6.2.

1932 J. Acoust. Soc. Am. 146 (3), September 2019 DeCourcy et al.

https://doi.org/10.1029/JC083iC09p04551
https://doi.org/10.1029/96JC00119
https://doi.org/10.1029/98JC01438
https://doi.org/10.1109/JOE.2003.808833
https://doi.org/10.1109/JOE.2003.819153
https://doi.org/10.1121/1.3662030
https://doi.org/10.1121/1.4954881
https://doi.org/10.1121/1.5022776
https://doi.org/10.1098/rsta.1991.0059
https://doi.org/10.1121/1.401001
https://doi.org/10.1121/1.384330
https://doi.org/10.1121/1.403900
https://doi.org/10.1121/1.405417
https://doi.org/10.1121/1.400520
https://doi.org/10.1121/1.400520
https://doi.org/10.1121/1.1909303


19D. C. Stickler, “Normal-mode program with both the discrete and branch

line contributions,” J. Acoust. Soc. Am. 57, 856–861 (1975).
20M. J. Ablowitz and A. S. Fokas, Complex Variables: Introduction and

Applications, 2nd ed. (Cambridge University Press, New York, 2003), pp.

206–207.
21M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions

(Dover Publications, New York, 1964), p. 358.

22R. B. Evans, “The existence of generalized eigenfunctions and multiple

eigenvalues in underwater acoustics,” J. Acoust. Soc. Am. 92, 2024–2029

(1992).
23W. E. Zorumski and J. P. Mason, “Multiple eigenvalues of sound-absorbing

circular and annular ducts,” J. Acoust. Soc. Am. 55, 1158–1165 (1974).
24M. H. Holmes, Introduction to Perturbation Methods, 2nd ed. (Springer,

New York, 2013), Sec. 4.3.

J. Acoust. Soc. Am. 146 (3), September 2019 DeCourcy et al. 1933

https://doi.org/10.1121/1.380525
https://doi.org/10.1121/1.405254
https://doi.org/10.1121/1.1914680

	s1
	s2
	d1
	l
	n1
	d2
	d3
	d4
	d5
	d6
	d7
	d8
	f1
	f2
	d9
	d10
	d11
	d12
	d13
	d14
	d15
	d16
	f3
	s3
	d17
	d18
	d19
	f4
	d20
	d21
	d22
	d23
	d24
	d25
	d26
	d27
	d28
	s4
	d29
	f5
	f7
	f6
	d30
	f8
	f9
	f10
	s5
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24

