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A quasi-analytical three-dimensional (3D) normal mode model for longitudinally invariant environ-

ments can be used to compute vertical noise coherence in idealized ocean environments. An exami-

nation of the cross modal amplitudes in the modal decomposition of the noise cross-spectral density

shows that the computation can be simplified, without loss of fidelity, by modifying the vertical and

horizontal mode sums to exclude non-identical mode numbers. In the special case of a Gaussian can-

yon, the across-canyon variation of the vertical wave number associated with each mode allows a set

of horizontally trapped modes to be generated. Full 3D and Nx2D parabolic equation sound propaga-

tion models can also be used to calculate vertical noise coherence and horizontal directionality.

Intercomparison of these models in idealized and realistic canyon environments highlights the focus-

ing effect of the bathymetry on the noise field. The absolute vertical noise coherence increases, while

the zero-crossings of the real component of the coherence are displaced in frequency when out-of-

plane propagation is accounted for. VC 2019 Acoustical Society of America.
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I. INTRODUCTION

Accurate models of the spatial coherence of ambient

noise can be used to improve detection of deterministic sig-

nals by informing array design and signal processing algo-

rithms. In deep water environments, simple models of surface

generated noise have been experimentally verified to be accu-

rate over a large range of depths (Cron and Sherman, 1962;

Barclay and Buckingham, 2013), while shallow water noise

fields have been modeled in a stratified range independent

ocean using modal (Kuperman and Ingenito, 1980) and wave

number integral techniques (Deane et al., 1997). Parabolic

equation (PE) propagation models have been used in a range

independent two-dimensional (2D) ocean to predict the verti-

cal noise directionality (Carey et al., 1990). Extending spatial

coherence noise models to three dimensions has been made

using the adiabatic normal mode approximation (neglecting

mode coupling) over large domains of hundreds of kilometers

of deep ocean to investigate downslope contributions to the

noise field’s directionality (Perkins et al., 1993). These mod-

els can be used to predict the second-order statistics for noise

generated by bubbles due to breaking and spilling waves at

the sea surface, a nearly ubiquitous source of ambient noise

in the ocean over the band from 100 Hz to tens of kHz.

However, three-dimensional (3D) propagation effects

can dramatically change the transmission characteristics of

sound in shallow water over smaller scales, such as near a

submarine canyon (Lin et al., 2015), shelf break front (Lin

and Lynch, 2012), set of seafloor scours (Ballard et al., 2012),

shallow banks or shoal (Sagers et al., 2014), or shallow water

wedge (Glegg and Yoon, 1990; Heaney and Murray, 2009).

In these cases and near other complex shallow water bathym-

etries, the ambient noise level statistics and horizontal and

vertical coherences (directionality) will also exhibit 3D char-

acteristics, such as increased noise intensity due to horizontal

focusing, or perturbed horizontal noise directionality due to

out-of-plane propagation. In this work, the 3D features of the

ambient noise field are demonstrated for the particular cases

of an idealized and realistic submarine canyon. A quasi-

analytical normal mode model and computational PE ambient

noise model are used to predict the power and spatial proper-

ties of the noise field and provide orientation specific esti-

mates of the coherence.

Ocean ambient noise is increasingly being used in acous-

tical oceanographic inversion problems, such as the estimate

of geoacoustic properties, wind speeds, and rainfall rates,

often under the assumption of simplified bathymetry. In cases

of empirical wind-noise and rainfall rate-noise relationships,

the shallow water propagation environment is too complex

and does not allow meaningful observations to be made

(Vagle et al., 1990). Passive acoustic inversions of seabed

acoustic properties have shown that the compressional and

shear wave speeds and attenuation, sediment density, and

presence of sub-bottom layering can all alter the vertical

noise coherence (Deane et al., 1997; Carbone et al., 1998;

Siderius et al., 2006). The water column sound speed profile

and variations in local sound speed also have an effect on the

vertical and horizontal noise coherences (Buckingham, 1994;

Barclay and Buckingham, 2013). Other parameters known to

alter underwater sound transmission, such as internal wavesa)Electronic mail: dbarclay@dal.ca
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(Lin et al., 2013b) and bottom roughness (Perkins and

Thorsos, 2007), may also have observable effects on the noise

intensity and coherence. This study shows the feasibility of

using a 3D PE model with idealized boundaries and isoveloc-

ity sound speed profiles to more carefully understand the

bathymetric effects on the surface wave generated ambient

noise intensity and coherence, including the effects of hori-

zontal refraction and reflection. It is demonstrated that such

effects are similar in magnitude to the other environmental

mechanisms discussed above under special circumstances, for

example, the vertical coherence in the overlapping ship noise

and ambient noise frequency band (75–500 Hz) in a submar-

ine or shelf break canyon.

In this paper we present three methods for modeling

ambient noise in a longitudinally invariant environment, using

an infinitely long Gaussian canyon as a demonstration. In Sec.

II A a semi-analytical model is developed using vertical and

horizontal normal mode decompositions for the arbitrary lon-

gitudinally invariant case and extended to a Gaussian canyon

example in Sec. II B. The reciprocal Nx2D PE and cylindrical

PE noise models are discussed in Sec. II C. The results from

the three methods applied to a Gaussian canyon example are

presented and discussed in Sec. III. Last, Sec. IV shows the

results for the PE computational noise models applied to a

realistic shelf break canyon environment.

II. METHODS

A. 3D normal mode solution in a longitudinally
invariant waveguide

The coordinate system considered here is a 3D

Cartesian space, while the general idealized model geometry

contains a pressure release sea surface, isovelocity water col-

umn, homogenous seabed, and a topography H(y), which is

range dependent in the y coordinate, but range independent

in the x coordinate, or longitudinally invariant. An infinitely

long Gaussian canyon discussed in Sec. II B is a particular

case of this more general model geometry.

We are seeking a solution to the wave equation that

describes the propagation between an arbitrarily placed

source and receiver with modal components in the vertical

and y directions and a complete solution in the x direction.

We begin with the spectral representation of the acoustic

wave equation with a point source placed at (x0,y0,z0),

r2pþ k2p ¼ �4pd x� x0ð Þd y� y0ð Þd z� z0ð Þ; (1)

where the wave number k¼x/c, x is the angular frequency,

c is the sound speed, p is the acoustic pressure, and d(�) is

the Dirac delta function.

The solution to Eq. (1) can be found in the following

form using the adiabatic normal-mode approach:

p x; y; zð Þ ¼
X

m

X
n

Amn y; zð ÞvmnðxÞ; (2)

where Amn(y,z) is the 2D mode of order m and n determined

from the eigenvalue problem with boundary conditions on

the cross section of the waveguide,

@2Amn

@y2
þ @

2Amn

@z2
þ k2 � k2

x;mn

� �
Amn ¼ 0; (3)

where kx,mn is the eigenvalue of mode Amn, and the mode

coupling terms have been neglected. In Eq. (2), the longitu-

dinal component of the solution vmnðxÞ is governed by the

one-dimensional (1D) wave equation with the adiabatic

normal-mode approximation,

d2vmn

dx2
þ k2

x;mnvmn ¼ �4pd x� x0ð ÞAmnðy0; z0Þ; (4)

where the closure property of normal modes is exploited to

expand the Dirac delta function, and the eigenvalue kx,mn is,

in fact, the horizontal wave number of mode Amn. The solu-

tion to Eq. (3) can be readily found to be

vmn xð Þ ¼ 2pi Amnðy0; z0Þ
e6ikx;mnjx�x0j

kx;mn
: (5)

If we approximate the cross section of the waveguide to

be a series of range independent vertical patches, there will

be a set of 1D vertical modes configuring the local sound

pressure structure within each vertical patch and determined

from the next eigenvalue problem subject to the local bound-

ary conditions

d2

dz2
/m þ k2 � f2

m

h i
/m

� �����
y0
¼ 0; (6)

where y0 indicates the location of the patches, and fm is the

eigenvalue of mode /m and gives the vertical wave number

kz,m from the equation

k2
z;m ¼ k2 � f2

m: (7)

If we further assume the vertical patches to be infinitesimal

and neglect the horizontal gradient of the vertical modes

across the patches (neglect the mode coupling in the y direc-

tion), the 2D mode function Amn(y,z) can be decomposed in

the following way:

Amn y; zð Þ ¼ wmn yð Þ/m y; zð Þ; (8)

where the vertical mode /m is practically 2D because the verti-

cal patches are considered to be infinitesimal. Substituting Amn

in Eq. (3) with the decomposition yields the equation to deter-

mine wmnðyÞ

d2wmn

dy2
þ f2

m yð Þ � k2
x;mn

h i
wmn ¼ 0: (9)

As the last step of the normal mode approach, combining the

by-parts solutions to Eqs. (4), (6), and (9) gives an expres-

sion for the complex pressure at a point x¼ (x,y,z) due to a

source at x0¼ (x0,y0,z0) in the following double infinite sum

over mode numbers m and n:
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p x; y; zð Þ ¼ i2p
X

m

X
n

wmn y0ð Þ/mðy0; z0Þ

� wmn yð Þ/mðy; zÞ
e6ikx;mnjx�x0j

kx;mn
: (10)

The adiabatic assumption has been used to derive Eq.

(10). From Eq. (10) it can be seen that for each vertical

mode m, the equation has a completely independent set of

horizontal modes, indexed in both m and n. This normal

mode solution can then be used to calculate the ambient

noise field due to breaking waves by assuming the noise

sources are placed uniformly on an infinite plane parallel to

the ocean’s surface and at a depth z0.

To calculate the spatial cross-spectral density of a random

noise field between two receivers placed at x1¼ (x1,y1,z1) and

x2¼ (x2,y2,z2) at a single frequency, S12, we must integrate

over the infinite source distribution, giving

S12 x1; x2ð Þ ¼
ð ð1
�1
hjr x0; y0ð Þj2ip1p�2 dx0 dy0; (11)

where hjrðx0; y0Þj2i is the ensemble average of the noise

source strength at x0 ¼ ðx0; y0Þ, and p1 and p2 are the

Green’s functions from x0 to x1 and x2, respectively. In the

case of wind driven noise, the value of hjrðx0; y0Þj2i is taken

to be constant everywhere.

Inserting Eq. (10) into Eq. (11) gives the full expression

as four infinite sums and two infinite integrals over products

of the mode functions and the free-space solution in the lon-

gitudinally invariant direction x,

S12 ¼ 2pi
X

m

X
n

X
m0

X
n0

wmn y1ð Þ/m y1; z 1ð Þ

� wm0n0
� y2ð Þ/m0

� y2; z2ð Þ

�
ð1
�1
hjr x0; y0ð Þj2iwmn y0ð Þwm0n0

� y0ð Þ

� /m z0; y0ð Þ/m0
� z0; y0ð Þ dy0

�
ð1
�1

e�ikx;mnjx1�x0j

kx;mn

e�ikx;m0n0 jx2�x0j

kx;m0n0

" #�
dx0: (12)

The primed indexes in m and n have been introduced to dis-

tinguish the conjugated modes of p2* from the unconju-

gated modes of p1. Here, the sign convention of the

exponential term is selected to be negative. To calculate

the power spectral density, we can simply substitute p1* in

the place of p2*.

The integral in x0 given in Eq. (12) can be evaluated

within the sums and has an analytical solution given by

ð1
�1

e�ikx;mnjx1�x0j

kx;mn

e�ikx;m0n0 jx2�x0j

kx;m0n0

" #�
dx0

¼ 2i kx;mne�2Dik�x;m0n0 þ k�x;m0n0e
2Dikx;mn

� �
k�x;m0n0kx;mn kx;mn þ k�x;m0n0ð Þ kx;mn � k�x;m0n0ð Þ

; (13)

where the separation between the two receivers in the x
direction is written as

D ¼ jx2 � x1j: (14)

For each term in the four infinite sums, the solution to the

integral shown in Eq. (13) gives a cross modal amplitude

indexed by m, n, m0, and n0. The properties of this function

determine which products of modes will generate the dominant

terms over this four-dimensional summation. From the expres-

sion, it is evident that in instances where the difference

between the longitudinal wave numbers, kx,mn� k*
x,m0n0 is mini-

mized, the cross modal amplitude will be a maximum.

It is also important to note that kx,mn will be complex for

the evanescent modes or in the case where k is complex due

to medium attenuation. In an ideal case where kx,mn is real

and when m0 ¼ m and n0 ¼ n, Eq. (13) will have identical

longitudinal wave numbers and the quadruple sum will be

infinite—an intuitive result, as we are integrating over an

infinite sheet of noise sources. Due to the very small sound

absorption in seawater, this is never the case in reality, and

thus the cross modal amplitudes must always be finite, and

the noise field in the ocean must always have a finite value

despite the contributions from an infinite number of sources.

So long as /m, the vertical mode shapes, may be com-

puted, the generalized situation of an arbitrarily complex

water column sound speed profile, seabed acoustic proper-

ties, and bottom layering can be considered in calculating

the cross-spectral density S12. This can be accomplished

using numerical techniques (Westwood et al., 1996). Here,

the idealized case of a fluid seabed with an overlying isove-

locity sound speed profile is considered as a simple example

to provide some insight into the normal mode solution equa-

tion (12). The vertical modes can be found using the effec-

tive depth approximation (Weston, 1960) for a fast fluid

seabed, where the bottom is replaced by a pressure release

boundary placed at a distance DH beneath the true interface

depth such that the geometrical phase change experienced

by a ray (equivalent to a given mode) is approximately equal

to the true phase change (Buckingham, 1979). For a fast,

lossless fluid bottom, DH is given by

DH ¼ 1

b12kH sin acð Þ
; (15)

where b12 is the density ratio, and ac is the critical grazing

angle of the bottom. The advantage of this approximation is

that the vertical modes have the following sinusoidal solu-

tion in the water column:

/m ¼
ffiffiffiffiffiffi
2

He

r
sinðkz;mzÞ; 0 < z < H; (16)

where He ¼ H þ DH, and the vertical wave numbers are

given by

kz;m ¼ m
p

He
: (17)

As the bathymetry H is a function of y, so the mode func-

tions and modal wave numbers vary in y. With Eqs. (16) and

(17), we can also obtain an asymptotic formulation using the
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first-order Taylor expansion for the modal excitation term in

Eq. (12), i.e.,

/m y0; z0ð Þ ffi
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2

He y0ð Þ

s
m

p
He y0ð Þ

z0: (18)

Substituting Eqs. (16)–(18) in the normal mode solution, Eq.

(12), and assuming homogeneous noise strength, we can reach

the following equation for spatial cross-spectral density:

S12 ¼ hjrj2i
X

m

X
n

X
m0

X
n0

mm0 wmn y1ð Þwm0n0
� y2ð Þ

� /m y1; z 1ð Þ/m0
� y2; z2ð Þ

� 2p2z2
0

ð1
�1

He
�3 y0ð Þwmn y0ð Þwm0n0

� y0ð Þ dy0

� 2i kx;mne�2Dik�x;m0n0 þ k�x;m0n0e
2Dik x;mn

� �
k�x;m0n0kx;mn k x;mn þ k�x;m0n0ð Þ kx;mn � k�x;m0n0ð Þ

:

(19)

Since the bathymetry H is a function of y0, the orthogonality of

modes may not be used to reduce the integral term over y0.

However, the relative values of the cross modal ampli-

tudes are useful for truncating the series solution to certain

mode numbers m and n, and therefore greatly reducing the

computational complexity of calculating the cross-spectral den-

sity. Figure 1 shows the four-dimensional matrix of depth inde-

pendent cross modal amplitudes of the noise field at 100 Hz for

two sensors with a half-wavelength spacing in a 500 m deep

waveguide, on a base 10 log scale for (n, n0, m, m0<10) by

recasting the dimensions into two. With the inclusion of seawa-

ter absorption, 10�3 at 100 Hz, the terms where m¼m0 and

n¼ n0 remain finite but are significantly larger than the others

suggest that the quadruple sum may be greatly simplified with

minimal loss of fidelity in the modal solution.

This disparity between identical and cross modes is

accentuated in the vertical relative to the horizontal, particu-

larly for low order modes. Low order vertical modes,

adjacent horizontal cross modal amplitudes are �5 dB below

the peak n¼ n0 amplitudes, much larger than those across verti-

cal modes. For higher order vertical modes, neither the hori-

zontal nor vertical cross modal amplitudes are significant.

In the case where the receivers are aligned within the y-

plane, in other words, when D¼ 0 in Eq. (13), the expression

for the cross modal amplitudes simplifies even further to

2i

k�x;m0n0kx;mnðkx;mn � k�x;m0n0 Þ
; (20)

showing clearly that the difference in longitudinal wave

numbers drives relative significance of the cross modal

amplitudes. In this case the depth independent cross modal

amplitudes for two sensors with an arbitrary spacing on the

yz-plane are significantly greater when n¼ n0 and m¼m0,
suggesting that the quadruple sum may again be simplified

and truncated.

Techniques for further generalizing this model to incor-

porate a depth dependent sound speed profile in the water

column, as well as depth dependent viscoelastic seabed, are

available and will give more realistic vertical mode shapes

and perturbed vertical mode numbers, altering the horizontal

modes shapes and mode numbers as well. In Sec. II B, the

normal mode approach is applied to the case of an idealized,

longitudinal invariant canyon model, and used to compute

the noise cross-spectral density between two receiver points.

B. Normal mode solution in a Gaussian canyon

The cross modal amplitudes and an expression for the

cross-spectral density for two arbitrarily space receivers in a

generalized longitudinally invariant ocean environment were

derived. The Gaussian canyon model is a special case of

such a problem, where

H yð Þ ¼ Ce�ðy=CÞ2 þ B; (21)

and the maximum depth of the canyon is given by C while

the minimum water depth at the canyon’s shoulders is given

by B.

In the idealized case considered in this paper, the verti-

cal modes and vertical wave number are given by Eqs. (16)

and (17), where the wave number now has an explicit

across-canyon functionality.

This allows us to write the horizontal across-canyon

component of the wave equation in a closed form by com-

bining Eqs. (9), (17), and (21),

d2wmn

dy2
þ k2 � m2 p2

Ce�ðy=CÞ2 þ B

 �2

� k2
x;mn

" #
wmn ¼ 0;

(22)

subject to the following simplified boundary condition:

lim
y!61

wmn ¼ 0: (23)

Note that it is straightforward to employ the more general

Sommerfeld radiation boundary condition to include oscillatory

FIG. 1. (Color online) Four-dimensional cross modal amplitudes for the hori-

zontal and vertical mode decompositions of the cross-spectral density of sur-

face generated noise in a generalized longitudinally invariant environment.
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solutions for wmn, but without loss of generality, especially for

trapped modes, we choose this simplified boundary condition

for easier discussion.

The existence of an analytical solution to such an equation

is not immediately obvious. The method of finite difference is

appropriate for finding the across-canyon horizontal mode

shapes and mode numbers for each vertical mode. To do so, the

across-canyon dimension must become finite over the interval

�D< y < D, where D is large enough to extend beyond the

domain where the Gaussian changes rapidly. With this satisfied,

the approximation to the radiation condition can be written as

w6D;mn ¼ 0: (24)

The radiation condition requires that the across-canyon

horizontal wave number be purely imaginary at 6D, the

boundaries of the domain, and the horizontal across-canyon

mode number ky,mn(y) are calculated from the characteristic

equation. Lastly, the normalization condition,ð1
�1
jwmnðyÞj

2dy ¼ 1; (25)

is applied, providing the complete solution to Eq. (22).

C. Nx2D and cylindrical 3D PE models in a Gaussian
canyon

1. Reciprocal PE

In order to consider more complex and realistic canyon

bathymetries, bottom types, bottom roughness, and spatially

variable sound speed profiles, we introduce the use of a PE

sound propagation model for the simulation of noise. In this

case, the PE model will exploit the reciprocity nature of the

wave equation by modeling the receiver as a computational

source at x1 and computing the complex pressure field

p(x,xi,yj,zk) everywhere in the domain, where the indexed spa-

tial variables represent the discrete Cartesian grid, and x is a

single angular frequency. Then, by invoking reciprocity, the

noise power S11(x) due to a quasi-infinite sheet of noise sour-

ces placed just below the surface at a depth z0, can be obtained

through the discretized and simplified version of Eq. (11),

S11ðxÞ ¼
X1

i¼�1

X1
j¼�1
hjr xi; yjð Þj2ijpðx; xi; yj; z

0Þj2DxiDyj;

(26)

where, in practice, the limits of the summation indices i and

j will be finite and DxiDyj represent the particular case of the

Cartesian element of area over which the noise sources have

been averaged.

The cross-spectral density can be computed by running

a second instance of the model, this time with the source

(reciprocal receiver) placed at x2, and by combining the

results through the discrete version of Eq. (11),

S12 xð Þ ¼
X1

i¼�1

X1
j¼�1
hjr xi; yjð Þj2ip1 x; xi; yj; z

0
 �
� p2

� x; xi; yj; z
0
 �

DxiDyj: (27)

This reciprocal method of noise is discussed in detail by

Jensen and Carey in their texts on computational acoustics

and ocean ambient noise, respectively (Jensen, 1994; Carey

and Evans, 2011). In Carey’s seminal paper on PE noise

modeling on a vertical array, an additive noise marching

scheme is used in lieu, where at each range step in the algo-

rithm’s marching routine, a noise source is added just below

the sea surface with a randomly chosen phase (Carey et al.,
1990). This increases computational efficiency as the resul-

tant pressure field at the final marching step contains contri-

butions from all noise sources, thus provides the modeled

noise power at every depth. However, as the additive super-

position of noise sources is coherent with the marching, a

large (�20–30) number of model realizations must be exe-

cuted to achieve a stable estimate of the noise field (Dyer,

1973). In our case, as we are only dealing with two receivers,

the reciprocal method is less costly from a computational

perspective. In order to reproduce the coherence curve

between two arbitrarily spaced sensors, the code must be run

once at each desired frequency and sensor location combina-

tion. This method is benchmarked below against the known

solution in a Pekeris waveguide (Deane et al., 1997).

The complex pressure field computed at z0 for a source

at an arbitrary location xi can be plotted as a transmission

loss, which, in reciprocity, describes the surface receive sen-

sitivity for a receiver placed at xi. The surface receive sensi-

tivity gives the relative magnitude of the contribution of that

discrete point in the domain to the overall noise field, assum-

ing hjrðx0; y0Þj2i is uniform everywhere. Though this is the

case for wind driven noise, for spatially non-uniform noise

processes such as a rain storm the transmission loss must be

computed using the source strength modulated pressure field

given by

TL ¼ 10 log hjr x0; y0ð Þj2ip1 x; xi; yj; z
0
 �n o

: (28)

Values of the ensemble average of the noise source

strength for wind driven breaking waves have been empirically

derived and experimentally measured (Burgess and Kewley,

1983; Kuperman and Ferla, 1985; Farmer and Vagle, 1988;

Kewley et al., 1990). In this study we are primarily concerned

with the coherence of uniformly distributed noise sources,

which is not dependent on source spectrum or level.

Computationally, we can relate the surface noise level

distribution at each discrete point to the total noise probabil-

ity distribution function. First, we assume the noise at each

discrete point in the domain is the summation of several

wave-breaking events, which by the central limit theorem

yields a Gaussian source distribution. This is realistic since

each point represents an area on the order 102 m2 for a typi-

cal order wavelength PE range step. This is further com-

pounded by the fact that the mean noise level predicted here

is an ensemble averaged level due to a stationary process. In

other words, the measurement was taken over some average

in time greater than time scales of the individual breaking

wave, yet, less than the time scale of a change in wind stress

or mean wave height. Thus, the ensemble of breaking waves

at each discrete point in the domain can be modeled as a
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single source with amplitude determined by a Gaussian

distribution

hjr xi; yjð Þj2i ¼ fxðQÞ ¼
1

r
ffiffiffiffiffiffi
2p
p e� Q�lð Þ2=2r2

; (29)

where l is the mean, r is standard deviation, and Q is the

random variable representing the source level of a single

wave breaking event. The numerical values of these coeffi-

cients and their relationships to meteorological and oceano-

graphic processes and forcing are beyond the scope of the

work presented in this paper.

Since the noise level of each ensemble averaged source

is a function of a random variable Q, we can calculate the

total mean noise level distribution by examining Eq. (26). It

shows that the total noise is simply a sum of each individual

ensemble averaged noise source receive level, weighted by

the product of the source’s amplitude, given by Eq. (29), and

the elemental area over which the source has been averaged.

2. Benchmark: Vertical noise coherence in a Pekeris
waveguide

The noise coherence is an integral over phase differences

between two closely spaced sensors as a function of range. For

this reason, the size of the range stepping is akin to a spatial

sampling frequency. If the sampling frequency is too low, the

integrand is too poorly sampled and the error on the integral,

the mean noise level, is large. As the frequency increases, the

integrand varies more quickly with range, therefore, the range

step size must be decreased relative to the wavelength in order

to maintain constant uncertainty on the coherence. In order to

verify the accuracy of the reciprocal PE model and determine

the required range and depth grid spacing, the vertical noise

coherence in a shallow water Pekeris waveguide was calcu-

lated and compared to the analytical solution (Deane et al.,
1997). A non-uniform depth grid spacing was used, allowing

the depth of the noise sources below the surface to be placed

arbitrarily without increasing computational cost. The mono-

pole noise sources were placed at 8.5 cm for all frequencies in

both the PE model and the waveguide integral full field solu-

tion as specified by Deane et al. (1997). The comparison of the

full field solution and PE modeled solution of the real and

imaginary vertical noise coherence plotted against dimension-

less frequency �x ¼ xd/c is shown in Fig. 2, where d is the sen-

sor spacing and c is 1500 m/s, the sound speed in a Pekeris

waveguide with a depth of 50 m, bottom sound speed of

1650 m/s, and bottom density of 1700 kg/m3. The fit between

the two models is reasonable with some error in the PE mod-

eled coherence at low dimensionless frequency due to a combi-

nation of limited spatial resolution in depth and range, and the

inability of the PE model to propagate energy at angles steeper

than �89 deg. These errors combine at each frequency step

cumulatively and with different magnitudes depending on fre-

quency, leading to a jagged estimate of coherence.

3. Horizontal coherence and directionality

The horizontal coherence cannot be calculated directly

from the reciprocity PE model in the cylindrical coordinate

system, since the receiver must always be placed at the ori-

gin. A second horizontally displaced receiver would involve

defining a new coordinate origin, making the computation of

the complex pressure field along the radials in the original

coordinate system difficult; the two co-located fields are a

requirement for computing the reciprocal cross-spectral and

power spectral densities.

However, ambient noise in the ocean can be modeled by

a superposition of plane waves, and the horizontal noise

directionality can be used to compute the horizontal noise

coherence, using the relationship derived by Cox (1973),

C �xð Þ ¼ 1

2

ðp

0

FðhÞe�i�xcosh sin h dh; (30)

where F(h) is the directional density function in the horizon-

tal case, h is the angle of azimuth, and C is the noise coher-

ence between two sensors, or the normalized cross-spectral

density,

C12 ¼
S12ffiffiffiffiffiffiffiffiffiffiffiffi
S11S22

p : (31)

For the familiar case of isotropic noise, the coherence is

given by Cð�xÞ ¼ syncð�xÞ, with the familiar zero crossings

at k/2. More general closed form relationships between hori-

zontal coherence and directionality have been described by

Walker and Buckingham (2012).

The horizontal noise directionality can be directly com-

puted from the computational noise models by integrating

along each bearing of surface receive sensitivity. This is

straightforward in the Nx2D case. In the cylindrical 3D case,

since the grid spacing employed by the PE marching scheme is

non-uniform in range, the domain is divided into one-degree

wedges, with all the contributing noise sources within each

wedge summing to the total noise received at that angle. The

contributing area for each noise source must be carefully

accounted for since the cylindrical elemental areas are of the

form rDrDhðrÞ, where the azimuthal differential Dh varies in

FIG. 2. (a) Real and (b) imaginary components of the vertical noise coher-

ence in a Pekeris waveguide, calculated by the PE reciprocity method (solid

lines) and the exact wave number integral solution (dashed lines).
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range due to the azimuthal grid upsampling method employed

in the marching algorithm (Lin et al., 2012).

III. RESULTS AND DISCUSSION

A. Normal modes

To arrive at the noise cross or power spectrum using the

normal mode method, we must first compute the mode

shapes and then combine them with the cross modal ampli-

tudes shown in Fig. 1. For a Gaussian canyon with C¼ 100

m and B¼ 50 m, and a fluid bottom half-space with a sound

speed of 1700 m/s and a density of 1700 kg/m3, the across-

canyon dependencies of the vertical wave number for the

first five vertical modes are shown in Fig. 3. The resulting

modes shapes for the canyon bathymetry plotted in Fig. 3(a)

are shown for the first five across-canyon horizontal modes

of the first six vertical modes in Fig. 4, showing the relation-

ship between the vertical modes, vertical wave number, and

horizontal mode shapes.

The computed horizontal mode shapes can then be

substituted into the approximate expression for noise cross-

spectral density and power-spectral density given by Eq. (19).

As Eq. (31) shows, the noise coherence is independent of the

frequency characteristics of the ensemble average of source

terms hjrðx0; y0Þj2i shown as a multiplicative factor outside of

the quadruple sum in Eq. (19). The real component of the verti-

cal coherence calculated using the first 10 horizontal modes for

each of the first 16 vertical modes is shown in Fig. 5.

The computation of the cross modal amplitudes for the

cross-spectral and power-spectral densities for two receivers

placed in the y-z plane may be simplified by neglecting all

terms except those that satisfy n¼ n0 and m¼m0. Figure 5

compares the real component of the vertical coherence for

the full mode sum versus the simplified sum. The two curves

are in good agreement, with their zero crossings nearly

identical, showing that the excluded modes are not large

contributors to the noise coherence as predicted by the

expression for the cross modal amplitudes in Eq. (19).

Although the solution is robust to the exclusion of cross

modes, the normal mode solution does not include mode

coupling. In certain 2D and 3D environments, mode cou-

pling can be critical for computing an accurate sound field

(Ballard et al., 2015). PE propagation models can avoid this

problem, and thus provide an attractive alternative for 3D

noise modeling.

B. Nx2D and cylindrical 3D PE

The vertical coherence was calculated using the reciproc-

ity PE method between two sensors placed at 50 m depth in the

center of a North–South oriented Gaussian canyon with a max-

imum depth of 100 m. A 2D PE model run was carried out for

a source at 50 and 51 m, at every one degree of bearing, creat-

ing an Nx2D version of the surface receive sensitivity. The sur-

face receive sensitivity for noise at 750 Hz on the receiver at

50 m depth is shown in Fig. 6(a). The bathymetric effect

increases the noise sensitivity along the canyon axis relative to

bearings across the canyon, even without the effect of horizon-

tal reflection or refraction. Indeed, such a bathymetric shadow-

ing effect has been observed in deep ocean trenches (Barclay

and Buckingham, 2014).

In order to capture the effects of horizontal reflection

and refraction of noise due to the canyon’s bathymetry, a

cylindrical 3D PE model must be employed (Lin et al.,
2012; Lin et al., 2013a). The surface receive sensitivity for a

receiver placed at 50 m depth in a Gaussian canyon as previ-

ously described at 750 Hz shows increased noise sensitivity

along the canyon axis, shown in Fig. 6(b). When compared

to the Nx2D case with the identical geometry and model

properties, it is apparent that the trapped horizontal modes in

FIG. 3. (Color online) Vertical wave

number as a function of across-canyon

range, where the bathymetry is given

in (a), for the first five vertical modes

(b)–(f), indexed by m, at 500 Hz.
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the canyon play an important role in shaping the horizontal

directionality of the noise field. Noise sources at ranges

greater than 500 m, at mid-quadrant azimuthal angles (e.g.,

45 deg, 135 deg, etc.) contribute less to the total noise field

when compared to the Nx2D case. In the non-reciprocal pic-

ture, the effect of the out-of-plane component of the seafloor

reflection and horizontal refraction on sound propagating out

of the canyon causes a focusing along the axis, and thus a

reduction of sound reaching the mid-quadrant regions.

For both the Nx2D and 3D cases, the surface receive sen-

sitivity shows an across–along-canyon asymmetry in the rela-

tive noise field contributions over short (<500 m) ranges. In

the Nx2D case, any asymmetry between the across- and along-

canyon directions in the noise field due to nearby sources

(<500 m away) is largely outweighed by the angularly uniform

contributions from more distant sources, shown in the nearly

isotropic horizontal noise directionality in Fig. 7(a). This is due

to the fact that although the distant sources are weaker in

amplitude, their total contribution is multiplied by the cylindri-

cal coordinate element of area, hence, scaling linearly with

range from the receiver. This effect places more importance on

the distant contributions of surface noise to the overall field

and, hence, masks the effect of the canyon on the horizontal

noise directionality.

Figure 7(b) presents the horizontal directionality showing

a pronounced increase in noise arriving along the trench axis

(90 and 270 deg), with a lower noise contribution arriving from

other bearings. Distant sources do not reach the receiver with

the same intensity that they do in the Nx2D case because of the

out-of-plane propagation. Instead, we see increased focusing of

noise along traveling along the axis, while distance mid-

quadrant sources do not reach the receiver.

The vertical coherence can be directly calculated using

the reciprocal PE method. Figures 8(a) and 8(b) show the

real and imaginary components of the vertical coherence

computed using the Nx2D for noise arriving from along

(90 deg bearing angle) and across (0 deg bearing angle) can-

yon axis directions. Figures 8(c) and 8(d) show the same

results computed using the 3D PE method. A conventional

hydrophone with omnidirectional sensitivity would record

the mean of these two curves along with all the contributions

FIG. 4. (Color online) The first five hor-

izontal mode shapes with mode number,

n, for each of the first six vertical modes,

m, for the Gaussian canyon bathymetry

from Fig. 3(a) at 500 Hz. Note the

increase in range scale.

FIG. 5. (Color online) Comparison of the real component of the vertical

noise coherence calculated with the full mode sum (black line) and simpli-

fied modal sum, in which only the modes where n¼ n0 and m¼m0 are kept

(red line) for two receivers centered at 50 m over the axis of the Gaussian

canyon shown in Fig. 3(a).
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from the other bearing angles. Using the PE reciprocity

method, the vertical noise coherence contribution from a

chosen bearing angle can be calculated individually. The

small displacement of the zero crossings and mismatch

between the curves shows in both models that the noise

coherence is influenced by bathymetric shadowing. A com-

parison of the Nx2D and 3D vertical noise coherences shows

the zero crossing in the real component to be significantly

shifted, demonstrating the importance of horizontal refrac-

tion and reflection in modeling the noise near a submarine

canyon.

C. Inter-model comparison

The real vertical noise coherence at a depth of 50 m

over a 100 m deep Gaussian canyon with bathymetry shown

in Fig. 3(a) is calculated using the normal mode quasi-

analytical model and the 3D PE computational model, and

compared in Fig. 9. Both models have isovelocity sound

speed profiles and typical parameters for a hard sandy bot-

tom. The adiabatic approximation and the fact that the nor-

mal mode model only describes the across-canyon sound

field, which can be expressed as horizontal trapped modes,

explains some of the misfit between the two models.

Although the form and oscillatory behavior is replicated by

both models, the zero crossings and amplitudes are not well

matched.

IV. HUDSON CANYON EXAMPLE

By comparing the Nx2D and cylindrical 3D PE noise

models in a realistic ocean environment, the effects of hori-

zontal reflection and refraction on the mean noise level, hori-

zontal directionality, and vertical coherence can be shown.

As an example, a simulated receiver is placed at 50 m depth

along the axis of the Hudson Canyon, shown in Fig. 10(top),

with an isovelocity sound speed profile, and a uniform half-

space seabed with compressional sound speed 1700 m/s and

a density of 1700 kg/m3 is simulated.

The vertical coherence for four bearing angles, 0 and

180 deg, the approximate across-canyon directions, and 55

and 285 deg up and down the canyon axis, are shown in

Figs. 10(a), 10(b), 10(c), and 10(d), respectively. The Nx2D

and cylindrical 3D results are intercompared and plotted ver-

sus dimensionless frequency. The Cron and Sherman vertical

coherence model is plotted as a visual reference for a deep-

water environment with no bathymetric influence on the

noise field. In the two across-canyon directions both compu-

tational models agree. Noise propagating across the canyon

propagates within the vertical plane. The mismatch between

the PE modeled results and the Cron and Sherman model for

FIG. 6. (Color online) (a) Nx2D and (b) cylindrical 3D PE calculated sur-

face receive sensitivities at 0.1 m, 750 Hz for a receiver placed at 50 m depth

over the center of a Gaussian canyon with bathymetry shown in Fig. 3(a)

and the axis oriented North–South.

FIG. 7. (Color online) Probability distribution function of noise as a func-

tion of bearing (arrival) angle predicted by the (a) Nx2D and (b) cylindrical

3D PE noise model at 750 Hz for a receiver placed at 50 m in the center of a

Gaussian canyon with a bathymetry shown in Fig. 3(a) and the axis oriented

North–South (90–270 deg bearing).
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noise in an infinite half-space (i.e., bottomless ocean) shows

the in-plane effect of the bathymetry on vertical noise coher-

ence. However, for noise propagating along the canyon axis

in either direction, 3D effects become apparent. Focusing of

the noise field along the axis by horizontal reflections shifts

the zero crossings of the coherence, and increases the abso-

lute coherence a higher dimensionless frequency. This effect

is larger for noise arriving from the shallower and narrower

canyon head, relative to noise arriving from the deeper and

wider canyon mouth.

V. CONCLUSIONS

A quasi-analytical 3D adiabatic normal mode model

(neglecting mode coupling) for longitudinally invariant envi-

ronments can be used to quickly compute vertical noise

coherence curves in idealized ocean environments. An

examination of the cross modal amplitudes in the modal

decomposition of the noise cross-spectral density shows that

the computation can be simplified, without loss of fidelity,

by modifying the vertical and horizontal mode sums to

exclude non-identical mode numbers. This holds for all lon-

gitudinally invariant 3D environments, and was demon-

strated for the particular case of an infinitely long Gaussian

FIG. 8. (Color online) (a) Real and (b) imaginary components of the vertical coherence of noise arriving from along (thick red line) and across (thin blue line)

the canyon axis, calculated using Nx2D PE, and (c) real and (d) imaginary components of the vertical coherence of noise calculated using 3D cylindrical PE.

FIG. 9. (Color online) The real vertical noise coherence for a pair of

receivers placed at 50 m depth over the axis of a Gaussian canyon, shown in

Fig. 3(a), calculated using the normal mode model (solid black line) and 3D

cylindrical PE model for noise arriving from the across-canyon direction

(thin blue line), along-canyon direction (thick red line), and at all axial

angles (dashed black line).
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canyon, where it was seen that the across-canyon variation

of the vertical wave number associated with each mode

allows a set of horizontally trapped modes to be generated.

Additionally, to take into account the acoustic mode

coupling, two PE reciprocity noise modeling methods were

used to compute the horizontal noise probability distribution

directionality, surface receive sensitivity, and vertical noise

coherence for a receiver placed at the center of a Gaussian

canyon. The first used a standard Nx2D PE propagation

code, while the second used a cylindrical 3D PE propagation

code, capable of resolving horizontal reflections from the

seabed and horizontal refraction. The 3D propagation effects

were shown to significantly affect the noise field by focusing

sound that propagates along the axis of the canyon, thus

amplifying the contribution of noise arriving from the up

and down axes directions. This effect can be seen in the sur-

face receive sensitivity and horizontal noise directionality.

Additionally, these 3D propagation effects alter the zero

FIG. 10. (Color online) Bathymetry of Hudson Canyon (top) with the receiver location (white dot) and bearings along which the real component of the vertical

coherence was calculated using the Nx2D model (thin blue line) and cylindrical 3D model (thick red line) across the canyon at (a) 0 deg, (b) 180 deg, and along

the canyon axis at (c) 55 deg and (d) 285 deg. The Cron and Sherman model for deep water vertical noise coherence (light green line) is plotted for comparison.
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crossings of the vertical coherence. Noise arriving from

directions both along and across the canyon’s axis shows

increased absolute coherence. This increase is due to a larger

contribution from the real component, which represents

noise whose directional density function is symmetric about

the horizontal, while the imaginary component, which repre-

sents noise whose directional density function is anti-

symmetric about the horizontal, shows no change when 3D

effects are included. The additional noise, which is focused

by horizontal reflections from the canyon’s bathymetry,

propagates as a set of trapped horizontal and vertical modes,

and thus contributes to the noise directional density symmet-

rically. The adiabatic and trapped horizontal mode approxi-

mations made in the development of the normal mode model

cause significant degradation of vertical coherence predic-

tions, when compared with the cylindrical 3D PE model. To

correctly model the vertical coherence in a submarine can-

yon, a full 3D computational model is required.

This last effect was demonstrated by simulation in a

realistic ocean environment, the Hudson Canyon, a shelf

break submarine canyon located off the coast of New Jersey.

It was found that the focusing effect of the canyon on the

vertical noise coherence is significant in the along axis direc-

tions of the canyon, particularly for noise arriving from the

shallower, narrower head of the canyon. In order to develop

more sophisticated and effective sensor arrays, signal proc-

essing algorithms, and acoustical oceanographic sensing

methods for use in regions near shelf break canyons, these

3D effects must be included in noise model predictions.
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